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1. INTRODUCTTON 

ECENT YEARS have  shown  significant attention being 
given to  the development  of  basic  and  applied under- 
standing of that  part of electromagnetics which is often 

referred to by that generic term of  "transient." In a general 
sense transient may refer to any nonmonochromatic  (or  non- 
CW) electromagnetic  problem. However, such  a definition is 
perhaps too broad to be useful. Sometimes  nonmonochro- 
matic  problems are analyzed or solved experimentally using 
single frequency  concepts applied to some  narrow  band  of 
frequencies; such cases  are excluded  from  consideration in 
this paper. For this paper transient and broad band will be 
used somewhat  interchangeably because of the close relation 
of the time and frequency  (broad-band)  domains and the use 
of concepts which give information  about  both  domains 
simultaneously. 

A. Background 
In the early  investigations  of  basic electromagnetic  phenom- 

ena (say through most  of the Nineteenth  Century) there was 
no discussion of transient versus continuous wave (CW) 
electromagnetics. Electric and magnetic phenomena were 
understood in a  static sense  and the time derivative terms were 
next  introduced. All the  experiments were static or transient 
in nature. It was only when  light was later shown to  be  an 
electromagnetic  phenomenon that CW concepts  (such as  wave- 
length) were introduced. Even then  the  experiments below 
the microwave  region  were  of a transient nature,  including 
damped  sinusoids [SI. Even  wire  telegraphy  was transient 
and  wire telephony involved  broad-band distortionless (Le., 
transient) transmission [ 31. 

With the development  of  wireless  telegraphy  and radio  the 
emphasis shifted to CW electromagnetic  concepts. Now there 
was  some  carrier or center  frequency  on which information 
was modulated in the form  of  some  narrow bandwidth  around 
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the carrier frequency.  The  introduction of radar  continued 
this trend  toward CW electromagnetic  development. 

In  recent years, some  new problems have appeared  on the 
scene to shift some of the emphasis  back toward transient 
considerations. One  class of problems involves protection of 
electronic equipment  from the effects of strong transient 
fields. This includes  the  nuclear  electromagnetic pulse ( E m )  
and lightning in particular. As an outgrowth of the efforts in 
these areas  some  of the new understanding is being  applied in 
some areas of electromagnetic inverse scattering, in particular 
remote sensing  and radar scatterer discrimination. These 
interests have extended to the basic  phenomenology  of the 
transient electromagnetic field generation, to sensors  (special 
antennas)  for measuring the transient fields, to simulators 
(special antennas) [ 2 6 ]  for  producing desired temporal and 
spatial electromagnetic field distributions, and to the inter- 
action of  such  field distributions with very complicated 
scatterers. With respect to EMP in particular the technology is 
quite extensive  and the reader is referred to an  upcoming 
special  issue  of the IEEE Transactions on Antennas and 
Propagation on  the subject. 

It should be noted  that even  some CW problems are  showing 
transient aspects as their bandwidths (say for communication 
or radar) are  increased.  Dispersion  can  be important when 
short RF bursts, in particular, are used. 

In trying to understand the transient electromagnetic  prob- 
lem one  attempts to look at the subject in new  ways so as to 
exhibit important features of the  problem  that may not be 
so apparent  from  a CW point of  view. In this quest it is useful 
to go  back to the  sources to see the insights  and  clues  given  by 
some  of the  important early investigators [ 1 I -[ 3) .  At a 
minimum  such  works stimulate one's intellect to some unac- 
customed ways  of thinking. 

A recent book [ 131  addresses  some of the  important topics 
in transient electromagnetics in some detail. The reader is 
referred to this work  as a general reference  for the  topic  under 
discussion here. 

B. Conventions 
In this paper when time  harmonic waves are considered the 

time  dependence eiwr is used. For  more general purposes  the 
Laplace transform is defined  in  a two-sided sense as 

&) = F(t)e-" d t  

F ( t )  = - I F(s)eS' ds 

u 
o+i- 

27n' a , - i m  
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with the  contour CO from 52, - io0 to no + io0 to the right of 
all  singularities in  the s plane.  Here F ( t )  may be  a  scalar,  vec- 
tor, dyadic,  etc.,  function of time. This Laplace transform de- 
fines the complex frequency 

s = f i + i w .  (1.2) 

The time harmonic form of the solution is obtained by setting 
fi = 0. A tilde - over  a quantity indicates the Laplace  trans- 
form; this  notation  then is used for  the time harmonic form. 

The symmetric product (similar to  the  inner  product) is 
indicated  by 

(&, r‘) ; b(r’)> = 5 z ( r ,  r‘) * b ( r ‘ ) K )  (1.3) 
S or V 

where integration is over  some  surface or volume  which  may 
be specified or  left  in a  general form. The comma separates 
quantities with a common variable of integration. The dot 
(or  other  symbol) directly  above the separating comma indi- 
cates the multiplication sense as a dot  product (or  other  type 
of product). This symmetric product can  involve two,  three, 
etc., integrations  by use of additional commas and the inte- 
grands  can be scalar, vector, or dyadic quantities. The inte- 
grands  may also be functions of complex frequency s or time 
t and integration may or may not be included over such 
variables as desired.  If two  or more ranges of integration are 
used then  subscripts can  be  placed on ( ,> and/or  certain 
integrations indicated explicitly. 

C. Basic Equations 

Maxwell’s equations with equations of continuity as 
The  starting  point of transient electromagnetics is of course 

a 
at  

a 
a t  

V X E(r, t )  = - - B(r, t )  7 J,  ( I ,  t )  

V X H(r, t )  = - D(r, t )  + J(r, t )  

a a 
at  at 
a a 
at at 

V * J(r, t )  = - - V * D(r, t )  = - - p(r, t )  

V . J , ( ~ , t ) = - - V . B ( r , r ) = - - p , ( r , r )  (1.4) 

where  magnetic currents and  charges  have  been  included for 
generality. The  constitutive  relations (including Ohm’s  Law) 
are ... - ... 

D(r, s) = z(r, s) * E(r, s), zr, s) = z(r, s) g(r ,  s) 

B(r,  s) =&, 8 )  - H(r, s), J,,, (r, s) = z, (r,  s) - H(r, s) 

... 
... .., ... .,v .., ... 

(1.5) 

where the current densities in this case do  not include sources. 
In time domain these  relations are 

D(r, t )  = 2 ( I ,  t )  E(r, t) ,  J(r, t )  = 5 ( I ,  t )  f E(r, t )  

B(r, t )  = &r, t )  t H(r,  t) ,  J ,  (r,  t )  = Z(r ,  t )  t H(r,  t )  

(1.6) 

where * indicates convolution over time. More  general forms 
of the constitutive  relations are  possible  including  nonlinearities 
and more general linear  relations among the field components. 
For most of this paper the sirnple  free  space (or equivalently 

uniform isotropic medium) relationships  are  chosen  as 

D(r, t )  = € O W ,  t ) ,  B(r, t )  = 110H(r, t )  (1.7) 

with 
+ ... ... + u (r, s) = 2, (r, s) = 0 

except perhaps in some  localized  region of interest. 
Define 

- 1 c=- 
G speed of light 

20 E wave impedance 

y=- propagation constant 

7 = c t  time  in distance  units.  (1.8) 

S 

C 

In solving  Maxwell’s equations it is convenient to introduce 
the Green’s functions.  The free-space  Green’s functions satisfy 
[ I l l  

[ vz - 7 2 1  G&, r’; s) = -6(r - r‘) 

[ v x   v x  + 7 2 1  Zo(r , rr ; s )= ia (r -rr )  (1.9) 
... 

where 7 is the  identity dyadic (1 with a subscript being  a unit 
vector) and 6(r - r ’ )  is the  threedimensional delta function. 
The radiation conditions (with Re[$] 2 0) are 

... 
lim r [ V + y l t l  X&(r ,r ’ ; s )=O.  

+ 
(1 .lo) 

? +  

Defining 

{ E y l r - r ‘ I ,  R = r - r ’ ,  R = I R I  (1.11) 

explicit representations of the Green’s functions are 

1 --* + - 6(r - r‘)l 
3Y2 

(1.12) 

where strictly speaking r # I ‘  but  for singular  integrals the 
principal  value  integral is implied and for distributions such as 
6(r - r’) their usual  rules  apply so as to give the  proper behav- 
ior when integrated over current densities [ 391 , [ 8 1 ] . For use 
with  surfaces  (instead of volumes)  slightly different conditions 
apply,  in  particular at r = r’. 
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Here  all polarizability and conductivity effects are included as 
part of the  two current densities. 

D. Integral Equations 
For general  shapes  and impedance loading distributions on 

antennas and scatterers (as well as other  types of electromag- 
netic problems), integrd equations have  been a  powerful tool 
for analysis.  Consider  some antenna or scatterer in free space 
as in Fig. 1 with surface S or volume V. Depending on the 
type of integral equation  employed  the integration is over S 
or Y (or some combination) which can be given the general 
form as - 

( f i r ,  r‘; s) ; Zr‘, 8 ) )  = &, s) (1.14) 

where 7 is the response (typically a current density) and 
is some  forcing function related to  the incident field or is some 

source field. The  kernel I-‘ is usually  some form of the Green’s 
function  such as in (1.12) or something related to these. For 
some  general  and important results it is not necessary to 
specify the  exact  form of the integral equation. 

For numerical solution of these integral equations the 
method of moment (MOM) is often used [ 101. If f is expanded 
in a set of N basis functions  with coefficients J, @ving a 
numerical vector ( J , )  with n = 1, 2, - - , N, and if I is ex- 
panded it~ a set of testing functions to give a similar numerical 
vector ( I , )  then a set-of linear s@ultaneous equations can  be 
fgrmed relating the J,  to  the I ,  thereby defining a matrix 

N + 

V n , m  with 

<i;,,m(s>> * (%(SI> = (c(s)). (1.15) 
Besides the direct utility of MOM for solution of (Tn(s)) it is 
also useful for  understanding  (with  due  caution) some of the 
general properties of the solution and thereby developing  new 
methods.  The MOM form of the integral equation can also be 
referred to as the matricized integral equation. 

Besides in  frequency domain the integral equations can  be 
written in time domain  which  could be quite useful for  under- 
standing transients. In time domain we  have 

+(r, r f ; ’r)  t ~ ( r ,  t ) )  = ~ ( r ,  r)  (1.16) 

where integration over time is indicated by convolution. 
Alternately one  can write 

--+ (r (r, r‘; r, t’)  ; ~ ( r ’ ,  t ’ ) )  = z(r, t )  (1.17) 

for rcatterinq problem 
incident fields 

or receiving  antenno  problem 

coordinate 
wigin 

volume V with 
surface S 
(contains sources for 
transmitting antenna 
problem) 

Fig. 1. Radiation and scattering of ekctromagnetic field8 by an object. 

The  time variable can also be discretized and  absorbed into  the 
vector and matrix indices or  kept as a separate summation 
index.  Note that  the response must be zero  before the forcing 
function is f i t  nonzero. Since the operators are convolution 
operators  with respect to  time  they can also be written as 
functions of t - t’ as 

<i$r, r’; r - t‘) ; ~ ( r ‘ ,  t’)) = ~ ( r ,  t )  

L (r,,m(t - t‘)) - (Jn(t‘)) dt‘ = (I,(r)). (1.20) 

E. Approaches to Solution of the lYansient/Brwd-Band 
Problem 

Let us consider  for  a  moment  a  more general approach to 
the question of how to solve electromagnetic problems. 
Starting from Maxwell’s equations in differential or integral 
forms (plus other general representations of  Maxwell’s equa- 
tions such as combined  fields, four vectors, quaternions, etc.) 
together  with  boundary  conditions and general,theorems such 
as reciprocity, conservation  of energy, etc., one can look  for 
various mathematical  concepts  for representing the solution 
of some type of electromagnetic  problem. Such approaches 
are illustrated in Fig. 2. Some  such approaches are numerical 
from  the start in a sense that some direct simulation  of dif- 
ferential and/or integral equations is attempted by direct 
numerical approximation of the equations.  Other  approaches 
attempt to split  up the problem  according to various mathe- 
matical properties of the solution; ultimately  the various 
parts of the  “factored” solutions must be numerically  evaluated. 
In the process of “factoring”  the solution more  physical  in- 
sight is gained  and the  dependencies of the solution on various 
physical  parameters are reduced to dependencies of certain 
parts of the solution on those  parameters. In addition  the 
“factorizations” can  be  used  in  some  cases to define quantities 
which are experimentally  determinable; such concepts can 
then give experimental as  well  as theoretical procedures. 

Fig. 2 shows  some of the  approaches which  may be taken 
in attempting to split  up the solution to electromagnetic 
problems according to fundamental  mathematical properties 
of the solution. Some of these mathematical properties such 
as those in the  complex  frequency plane  and those of operator 
diagonalization  have  already  proved to be quite important  for 
both analysis  and synthesis of electromagnetic devices.  These 
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Fig. 2. Approache8 to solution of Maxwell's equationa. 
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intermediate and low frequencies 
modes or intermediate  and Iote time 

chorocteristic 

S E M  

low frequency or 
late  time asymptotics 

LFM 

Fig. 3. Division of some  approaches  into  methods. 

approaches can be further subdivided into methods as illus- 
trated in Fig. 3; some of these methods are later considered in 
some detail. The future of transientbroad-band electro- 
magnetics  may  well  consist in  the investigation  of  new ap- 
proaches and the resulting methods  under such approaches, 
as well as the detailed techniques  for  actual calculations under 
each method. This paper reviews approaches which  have  been 
investigated to an extensive  degree to date. Some  of the less 
investigated ones such as differential geometry for transient 
lens design [ 171, [28], topological properties of complicated 
scatterers [70],  [89], and group theoretic  properties (sym- 
metries) [ 411, all appear to  have  some  significant potential 
for  future development. 

11. NUMERICAL INVERSE FOURIER TRANSFORM 
OF FREQUENCY -DOMAIN SOLUTIONS 

Except  for special transient problems leading to closed  form 
solutions, transient scattering and antenna problems for more 

general structures were f i t  treated by numerical inverse 
Fourier transforms of frequencydomain solutions. While 
this  type of solution sheds little physical  insight into the 
characteristics of the transient response it was  still  used to  
obtain some of the early numerical calculations of transient 
responses. It should be noted that inspection of the resulting 
waveforms as well  as experimental transient waveforms played 
a role in developing methods which do exhibit greater physical 
insight into  the scattering process. 

It is not our intent to dwell here on  the techniques of 
numerical Fourier analysis.  The  common  algorithm for such 
numerical transforms is often referred to as the fast Fourier 
transform (FFT) [ 12, ch. 71 which  has  been  applied to  many 
fields. An important  feature of the  FFT is that  it uses uni- 
formly spaced  samples  of frequency and time to take advantage 
of the periodicity of the  function e ' iwr  with period  of 2n  for 
ut. For some problems such uniform spacing  may not be 
optimum because  of the relative importance of various por- 
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tions of a  frequency  spectrum in constructing  a transient 
waveform.  Some  success for  broad-band transients has  been 
obtained using frequency samples  spaced Aw where Aw/o is 
approximately  constant [ 7 1 ] . Special- difficulties are encoun- 
tered when the function to be transformed has  singularities 
on or near  the integration contour  (the iw~axis in  the s plane); 
these can be handled but special attention is required. 

In its commonly applied form numerical Fourier  transforms 
have  been  used in  conjunction  with MOM numerical solutions 
in frequency  domain. Assuming that the scattering or  antenna 
problem as in Fig. 1 is cast in MOM form (1.1 5 )  we have the 
formal solution in complex  frequency domain as 

(G(s>> = (Fn,m(S))-l * (Tn(s>> (2.1) 
which is specialized to s = iw as 

( 7 n ( i ~ ) )  = (Fn,m ( i ~ ) ) - l  ( ? n ( i ~ ) ) .  (2.2) 

The  inverse  Laplace transform (1.1) is then  obtained as' 

where the integral over w is o b t e e d  numericallx. Note that 
3 there are  any  singularities of (I'n,m(s))-l or (In($)) on  the 
io axis of the s plane (or to  the right of the iw axis) then  the 
integration over w must be suitably modified. 

A closely related procedure which  could be  used is to first 
compute 

1 
W 

(In 0)) = I, (Fn (iw))eiw' dw 

Then use the convolution  theorem 

(Jn(t)) = ( A n , m ( t ) )  ' ( I n ( t ) ) -  (2.5) 

In the  commonly applied form (2.3) the  numerical inverse 
Fourier  transform  has some  significant limitations. Specifically 
the solution ( J n ( t ) )  must  be  largely recomputed for many 
changes in  the  input  parameters of the  probles. Such changes 
can be introduced in the forcing function (In(iw)) via direc- 
tion of incidence, waveform or  other zharacteristics of the 
incident or source field. The  matrix (rn,m(iw)) (operator) 
accounts  for changes in object shape  and impedance loading. 
The solution contains  the effects of these changes in a  compli- 
cated  manner and it is difficult to uniquely identify particular 
aspects of the solution with specific input  parameters. 

The  convolution  extension of the numerical  inverse Fourier 
transform (2 .5 )  has the added  advantage of separating the 
effects on the solution due to the  operator  from  those  due to 
the forcing function, at least to some  degree.  Note that (a4n.m 
( t ) )  is  an N X N matrix  with each element being a function of 

time and  numerically characterized by  say M time samples. 
This allows the object shape andimpedance characteristics to 
enter  the  computation and be stored while the forcing func- 
tion is changed, but imposes a significant storage requirement 
intheformofaniVXNXMarray. 

An advantage of the numerical  inverse Fourier  transform 
approach is the  better  understanding of the convergence criteria 
for numerical Fourier integrals than  for some of the expan- 
sions to be  discussed later. This technique can then be  used to 
compare against the solution of the same problem  obtained 
by other means to check validity, say in a few  cases,  as  re- 
quired. For  problems limited to only  one set of input param- 
eters and  say a single frequency or a single forcing transient 
waveform this approach is still quite efficient in comparison 
to  other methods of solving the matricized integral equation 
(MOM) in  frequency or time  domain. 

Numerical  inverse Fourier  transform solutions or those 
using other  expansions have a  common limitation if they use 
MOM as their numerical  basis.  Specifically MOM imposes a 
high-frequency (or fast-time) limitation associated with  the 
accuracy  of the MOM approximation.  The limitation is as- 
sociated with the ratio of wavelength to zone size or similar 
characteristic dimension in the basis  and testing functions. 
One  can  increase the  number of  zones  (decrease zone size) 
to go to higher frequencies to obtain more accurate early time 
response, but one is limited in this regard  by practical compu- 
tational capability. 

III. ANALYTIC s PLANE APPROACH 

One approach to  the solution of transient/broad-band  prob- 
lems centers around the properties of the solution in  the 
s(= 52 + iw) or  complex  frequency plane.  Using concepts 
from  complex variables the sources, operators, and solutions 
may  be expanded  in various kinds of series to give greater 
physical  insight into  the behavior  of the response for certain 
time  and/or  frequency regimes, to simplify the parametric 
representation (display) of the response characteristics, and to 
reduce the  amount of  numerical computation  required for ob- 
taining sets of solutions. 

There are several types of  series one can construct in the s 
plane.  Power (Taylor) series  can  be defied about  a  point of 
analyticity in the s plane.  More  generally  negative integer 
powers (poles) can  also be included  in such  series (Laurent) if 
the center of the expansion is at  a pole  singularity. This type 
of series is particularly useful  when centered at s = 0; this type 
of series expansion constitutes the low-frequency method 
(LFM) with powers of s becoming  derivatives in  time  domain. 
Singularity  series  (sums  of  poles, branch integrals,  essential 
singularities, and entire functions) can be defied based on  the 
s plane  singularities  which is useful for expressing the transient/ 
broad-band  response for cases that  important wavelengths  are 
of the  order of the physical  dimensions  of interest or larger; 
this is the singularity expansion  method (SEM) which  has  re- 
ceived much  recent  attention.  Asymptotic series for s + m 
form the basis  of the high-frequency method (HFM);  such 
asymptotic series  give  series of time domain functions applic- 
able to  the early-time  response. 

While the s plane approach starts from  the  problem  formula- 
tion in frequency domain  (in  general complex), the resulting 
series  are  expressible in both  frequency and time domain 
forms via the term-by-term application of the Laplace trans- 
form (including its inverse).  Both frequency- and timedomain 
forms are thus implied in the methods discussed. 



BAUM: ANALYSIS AND SYNTHESIS OF ANTENNAS  AND SCATTERERS 1603 

A .  Low-Frequency  Method 
Little has  been done in the way  of  developing a  systematic 

transient representation based on low-frequency properties, 
but such a representation is at least conceptualiy rather 
straightforward. For finite size objects in free  space the fre- 
quencydomain  representation has  been  considered  by  Ray- 
leigh [771 and more recently by  Stevenson [ 801,  Kleinman 
[ 8 4 ] ,  and Kleinman  and Senior [ 8 5 ] .  This results  in the 
response  being represented  by  a power  series in the complex 
frequency  with  a radius of convergence  governed  by the loca- 
tions of the singularities  of the response  in the complex fre- 
quency plane. 

In this paper, let us consider the leading terms in the low- 
frequency response for finite size objects in free  space. Pro- 
vided the  observation position is sufficiently far from the ob- 
ject (say  several times the maximum dimension or greater), 
and  provided the radian wavelength is large compared to the 
object then  the dipole moments of the object govern the 
scattered fields (or  total fields in  the case  of a  transmitting 
antenna). Let us write the induced electric and magnetic 
dipole moments  for  a scatterer approximated as located at r' 
as 

~ ( t ' , s ) = ~ ( ~ ) ~ ~ ~ ~ ~ ( ~ ' , ~ ) = - M ( s ) . ~ ~ ~ ( r ' , s )  (3.1) 

where ?(s) and 30) are the electric and  magnetic  polarizabil- 
ity dyads, respectively, with dimensions  of cubic  meter. These 
are  allowed to  be functions of frequency in the general  case to 
account  for  impedance  loading of the object. For perfectly 
conducting objects and within  the  aforementioned  frequency 
restrictions the polarizability dyads can be considered as 
constants. 

The radiated or scattered fields  associated with  such dipole 
moments are computed as [ 81 , [ 231 

... 1 1  

cco ..,  .., 

bronch  branch 

X I  I 
oole I I 

I I c a 

branch 
contour Co: 
R e  [s) = O0 

cut  point 

Fig. 4. s plane with some singularities and the inversion contour C,. 

Hence for waveforms with  dominantly  only low-frequency 
components so as to  require only  the dipole moments  for dis- 
tant scattered fields, the scattered waveform  can  be thought of 
as the sum  of 3 simple  waveforms found as proportional to  the 
original  waveform  and its first and  second time derivatives 
with a  time shift (retarded time). If the polarizability dyads 
are  also frequency  independent of the low frequencies of inter- 
est then the scattered fields are related to the  incident fields in 
this same manner (incident waveform  plus its f i t  and  second 
time derivatives). 

This result then is readily  physically interpretable in time 
domain  and  provides a simple way to view low-frequency- 
dominated transient scattering for finite-size objects in free 
space if the observer is not  too close to the scatterer. These 
results can  be extended to more complicated higher order 
terms in the  multipole  expansion if desired. Note  that (3 .3)  
can also have the  operators in convolution  form as discussed in 
Section I-D; however, the  time derivative form provides an al- 
ternate form as well as simple  physical interpretation. 

B. Singularity Expansion Method 

where the Green's functions are  discussed in Section I-C. In 
going to time  domain we can write 

+ 
+ R - ' [ - I  + 1 R 1 R ] -  

sponse is a real-valued time function. Consider a  contour CO 

Moving up into  the resonance  region we are led to  the SEM 
concerning which  extensive  work  has  already  been done. This 
author has written  a  more extensive  review  of this topic in- 
cluding many  more  examples in  a  recent  book [ 13, ch. 31 ; 
this also contains  a  more detailed development and  more 
references. 

The general SEM formalism  began from  experimental obser- 
vations concerning  the transient electromagnetic response  of 
complicated scatterers such as missiles and aircraft [ 4 5 ] .  It 
was observed that damped  sinusoids  were dominant features of 
typical transient responses.  Such  damped  sinusoids  corre- 
sponded to pole  pairs in the complex frequency (or s) plane. 
Poles  were one  type of singularity in the s plane  and this led 
to the  concept  of using all the s plane  singularities to form a 
description of the transient and frequencydomain responses. 
It was  also noted that  the poles corresponded to the natural 
frequencies which had been  discussed in some  of the older 
literature as referred to  in some texts [ 4 ] .  

The basic concept  then involves taking the Laplace trans- 
formed response  and finding all the s plane  singularities  such  as 
poles, branch  points (and  associated cuts), essential singulari- 
ties,  and  singularities at infinity (or the entire function) as the 
description of the response. As illustrated in Fig. 4 we have a 
set of singularities in the left half of the s plane (for stability 
of a passive antenna  or scatterer). The singularities  are located 
symmetrically  with respect to  the Re [ s ]  axis since the re- 
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to invert the Laplace transform back into time  domain. De- 
form this contour  into the left-half  plane to obtain  the contri- 
butions associated  with each singularity and  thereby define the 
terms in a singularity  series  (including  any  singularity at 
infinity). 

While  in  principle  several types of  singularity terms may 
appear in the response, pole  terms have  proven to be  most 
important  for certain types of antennas  or scatterers. In par- 
ticular it can be  shown that  the inpulse response  of a finite 
size object in free  space  has only  pole singularities in the finite 
s plane  provided the object is perfectly conducting or is made 
of suitably simple  media [451,  [461,  [481. A simple  way  of 
observing this property is to consider the inverse  of the ma- 
t+ in the moment  method (1.1 5) .  Since the elements of 
(r,, (s)) are singe valued malytic  functions of s with at most 
poles  (since the r,,m are typically the Green's function for 
two  points  on the object with R finite)  then  the  determinant 
has  at  most  poles in the finite plane  and the inverse matrix has 
at most  poles in the finite plane. 

If a is an  index set for  the natural frequencies sq let us write 
the response (current) of the object (Laplace transformed) to a 
delta function excitation as [451,  [461, [511 

q p ( r ,  s) = Ga(1 f , s)@ (rXs - S p Q  
CY 

+ entire function  contributions 

mu = a positive integer (3.4) 

where the equations for the factors in the pole terms are given 
below.  The pole  order mu may  be greater than 1 in some  spe- 
cial  cases but we will concentrate on mu = 1. The direction of 
incidence (if required) is l1  and the polarization is indicated 
by the  index p .  The superscripts identify the  quantity (cur- 
rent, charge, etc.)  under consideration; often this superscript 
will  be  suppressed  in the case  of current. 

From the integral equation for the delta function response 
I 

I 

( r q ( r )  ; r (r,  r'; s q ) )  = o (3.6) 
i 

which in MOM form reduces to  

@ ,  m (sa 1) . ( ~ n  )a = (0, 

tee,), * ( i ;n,m(su))  = (0,) (3.7) 

with a resulting equation  for  the natural frequencies as 

det <<fn,m(sq)))  = 0.  (3.8) 

For subsequent discussion  only the  operator  form is normally 
listed; as above the matrix  form is quite similar. 

Expand terms  in the integral equation  near s = s, as 

r(f, r' ;s)  = - s,)l r lq(r, 
7 OD -b 

1=0 

S'SQ 

C(r, 3) = G U ( l 1 ,  sa) ru(r)(s - sa)-' 

+ vector  function analytic near so. (3.9) 

Substituting these expansions into  the integral equation (3.5) 
and collecting according to powers  of s - sq we  have for the 
(s - sU)-l term 

-t 

( r oq(r, r f )  ; GJI 1 ,  sa) va(r)) = o (3.10) 

consistent with  equations (3.7). The (s - sq)O term gives 

(r  oq(r, rf) ; vector  function ofr') 
+ 

-b 

+ ( r ~ ~ ( r , r ' )  ~ ~ q ( l l , ~ q ) ~ u ( ~ ' ) ) = ~ ~ ~ ( ~ ) .  (3.11) 

Left  operate by pq(r )  to  remove the fmt term (via (3.6)) and 
rearrange the results to  give 

(r&) ; z o p  

( ra ( r )  ; l q k  r') ; vq(r')) 
G u ~ l l r ~ u ) =  

= coupling coefficient at sq. (3.12) 

Having  developed the  equations  for the natural frequencies 
and the residues of the corresponding poles one  should  note 
that  the coupling coefficients ijq(ll ,  s) are only  constrained 
by these equations at s = sq. For s # so various functional de- 
pendencies on s are possible.  Two  classes  of  coupling  coeffi- 
cients have  been  used  successfully. Class 1 is the simpler  and 
isgivenby [451,  [511 

(cqW ;Zoq(r)) 
Gq(ll ,s)=exp [(x, -s ) t ' ]  

; r l q ( ~ ~ r ' )  ; vq(rf)) 
+ 

(3.13) 

while  class 2 is 

iia(11,s)= + . (3.14) 

Class 1 corresponds to a direct pole  expansion of the response 
with  frequency  independent "residues" for  a  turn  on  time t ' (a 
simple shift of zero time); these  coupling coefficients can  be 
considered as constants  (other than  the possible  simple  shift). 
Class 2 corresponds to  the direct pole expansion of the inverse 
operator (a dyadic) as 

(r&) ;&,s)) 

( ra ( r )  ; 1& r') ; *&'N 

+ entire function  contributions (3.15) 

and then operation onto the forcing function;  note  the  dyadic 
residues in (3.1 5) .  Observe that  at s = sq both class 1 and  class 
2 coupling coefficients reduce to the same thing (3.12); they 
differ by  an entire function which  can then be included in the 
additional entire function  contributions where required. Both 
forms of coupling coefficients have  been  used with good  re- 
sults [321,  [401,[451,  [481,  [491,  [521-[561. 



BAUM: ANALYSIS AND SYNTHESIS OF ANTENNAS AND SCATTERERS 160s 

In the case  of the perfectly conducting  sphere it has  been 
shown that, with t' chosen as the time  a  plane wave first 
reaches the surface, the class 1 coupling coefficients give the 
exact response with  no additional entire function [45 1. For 
this same  problem it has also been shown that  the class 2  cou- 
pling coefficients also require the inclusion of no additional 
entire function [491. The class 1 form is much  simpler  and 
requires much less information  for specifying it over the range 
of variation of the  incident wave parameters;  except  for  a de- 
lay it is not  frequency  dependent. Even if an additional entire 
function is required  in some  cases, it may be useful to keep the 
entire function as a separate term. On the  other hand,  the 
class 2  form makes each  pole  term rise smoothly  for early 
times, perhaps giving better convergence at early times.  Even 
for class  2,  however, it is not  yet established whether an addi- 
tional entire function is needed in the general case. 

It would appear that  the question of the entire function  and 
its relation to the classes  of coupling coefficients (including 1 
and 2  and  others  that might be proposed [ 5 1 I ) is an important 
topic  for  future research. While  all coupling coefficient classes 
must  be consistent with (3.1 2) (for firstader poles) one can 
add an entire function  with  a  zero at su to obtain  another 
form satisfying (3.12). This corresponds to adding  an entire 
function to  the pole  term 5 ~ 1  l ,  ,>viJ) (r)(s - su)-'. 

One  promising approach to pinning down the entire function 
contribution is based on  the imposition of causality require- 
ments, or more stringently, passivity requirements  on the ob- 
ject response. Note that  the individual pole terms need not be 
causal, but the  total solution must  be  causal.  More signifi- 
cantly certain types of  responses are positive  real (PR) func- 
tions in the usual circuit theory sense.  Such  cases correspond 
to  the impedance or admittance at  the gap of an antenna, as 
well as eigenimpedances (4.20) and eigenadmittances (4.21). 
The PR property constrains the solution in  the right-half s 
plant including  the  asymptotic behavior as s + 00 and s + 0. 
Using these and  other  considerations  for high and  low fre- 
quencies  one  can restrict the class  of  allowable entire functions 
in the  total response to some  degree [ 901 , [ 9 1 ] . In effect this 
corresponds to imposing  some  necessary conditions, but  does 
not necessarily  give sufficient conditions. 

Another promising approach involves the  expansion of the 
response in eigenmodes  discussed in  Section IV, followed  by 
the singularity expansion of  each term in the resulting  series. 

Having found the delta function response  of the object the 
current density response  can  be found from 

&,s) = Q r , s )  
p=2,3 

jp(r ,  s) = Eo $&(s) (r, s) (3.16) 

where Eo is a convenient  source electric-field amplitude, $ is a 
scaling constant used in d e f i i g  the delta function response. 
Where needed p = 2, 3 corresponds to  polarizations_l~ and 13 
which with l1 are mutually  orthogonal. Here f p ( s )  is the 
Laplace transform of the sour_ce  waveform. 

Noting that  the waveform f p ( s )  itself  has a singularity expan- 
sion one can separate the effects of the object and  waveform 
singularities in the response. The normalized  response  can be 
written as 

Vf' (r ,  s) = &(s) C$J)(r, s) 
% 

= ?'':)(r, s) + vP, - ( I )  ( r ,  s) (3.17) 

where the object and waveform parts, respectively, are 

= (singularities of&)) t?ja(r, s) 
J at fp 
s i n g u l a r i t i e s  

(3.18) 

with e n 9  function  contributions neglected. The  introduc- 
tion of fp(su)  in the object part of the response  shows  how the 
incident waveform  scales the residues of the object poles (nat- 
ural frequencies). For simple incident waveforms such as step 
functions the waveform part of the response  becomes the low- 
frequency (s + 0 or  static) response times a pole at s = 0 (step 
in time  domain).  Other  incident waveforms give more compli- 
cated  contributions t o  the waveform part of the response. 

In time domain the class 1 coupling coefficients give simple 
formulas as 

~j'+r, t = u ( t  - tl) ~ ~ ( 1  1, s,>vA%> esur 
4 

U 

(3.19) 

The class 2  coupling coefficients give convolutions in time  do- 
main as 

(3.20) 

where * indicates convolution  with respect to time. The en- 
tire function  contributions have  been  neglected.  The  wave- 
form part of the response is in  general  more complicated. 

The charge density  on the object can  be found  from the con- 
tinuity equation be defining charge natural modes  as 

where a, is a convenient scaling constant. The factor of s-l in- 
troduced by the divergence equation is removed in the usual 
partial-fraction-expansion manner. 

In the above formulas the summation over the natural fre- 
quency  index set Q can  be reduced by about half  by the use  of 
conjugate  symmetry in the s plane.  Since we are dealing with 
real  valued time  functions  then  for each s the corresponding 
term at s ( a  bar  over a quantity meaning  complex conjugate) is 
found by conjugation.  For each s u , p u ,  vu, iju,etc., there are 
corresponding vu, qu, etc., except  for the special  case of 

- -  



1606 PROCEEDINGS OF THE IEEE,  NOVEMBER 1976 

i 7.0 

i4 .0  

i E  

i3.0 

i2 .0  

i 1.0 

-5.0 - 4 . 0  -3.0 -2.0 -1.0 

- Oa 
C 

Fig. 5. Exterior natural frequencies S ~ , ~ , ~ ’ ( U / C )  of the  perfectly  con- 
ducting sphere for use with  exterior  incident wave 1 < n 4 6. 

real s. Because  of this property  attention is usually  given to 
the upper half (o 2 0) of the s plane. 

Using the foregoing results numerous responses for specific 
objects have  been calculated. The excitation has typically 
been  plane waves with  step  function  time  dependence.  About 
10-pole  pairs  have been  required for good  convergence for 
graphical  display  of  waveforms. As one might expect initial 
consideration was  given to  the sphere [451 of radius a with 
natural frequencies as given in Fig. 5. For this case it was 
shown that class 1 coupling coefficients gave a solution requir- 
ing no additional entire function.  The  index n denotes which 
term in the Bessel function  expansion gives the natural fre- 
quency and n‘ denotes which  zero of that Bessel function. 
Another  study [491 by Marin showed that class 2 coupling 
coefficients also resulted in a solution requiring no additional 
entire function. 

An  example  of a numerically computed response  using 
MOM is the thin wire due to Tesche [471 illustrated in Figs. 6 
through 10.  Here due to the  symmetry the natural modes are 
divided into two kinds, symmetric and antisymmetric,  accord- 
ing to  the reflection of  scalars  (such as charge) through the 
symmetry plane perpendicular to  the wire with plus and minus 
signs, respectively. The natural modes are normalized to have 
a maximum  magnitude  of unity and to be  real and positive at 
that point. The  coupling coefficients are  in  relative units 
merely to display their dependence on 8 .  Fig. 10 shows the 
convergence  of the response at a typical point as the number 
of pole  pairs is increased. Note that layers of poles  are often 
identified (Figs. 5 and 7) according to  the distance from the 
iw axis. Arcs of  poles as in Fig. 5 are identified according to 
eigenvalues to be  discussed later. 

There are numerous  other numerical  examples  and for these 
the  reader is referred to  the literature. An interesting point is 
that  for late times  only  one or a few  pole  pairs are required 

2 = L  

7. = O  

Fig. 6. Geometry  of  the wire scatterer and incident  field. 

t 

symmetric - 
I = 3  

I 
I 

I 
I 
I 
I 

I 

1 . 2  
I 

1: I I 
layer :I 

12 

II 

IO 

9 

8 

7 

6 s  
C I  

5 

4 

3 

2 

I 

n L 
-8 -7 -6 -5 -4 -3 -2 -I 0 

OL 
c r  
- 

Fig. 7. Pole locations  in  the  complex  frequency plane for  the  thin- 
wire of d/L = 0.01. 

to accurately characterize the response. This has  been  used  by 
Barnes [52] for efficient but  approximate characterization of 
the transient response  of cylindrical antennas. 

An important  extension of the SEM object response is to 
the radiated or scattered fields for which a formalism is devel- 
oped by extending the natural modes to  the associated scat- 
tered fields [ 3 1 ]. ’These are 

with cq as a convenient  normalizing constant. Since,  however, 
the field natural modes  increase exponentially  with  distance 
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Fig. 8. Real and imaginary parts of the  natural  current  mode (and 
the coupling vector)  for  the I = 1 layer  poles  (near the Iw axis) of 
the unloaded antenna, d/L = 0.01, n denotes  the individual poles 
in this layer. 
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Fig. 10. Convergence of the transient response of the  thin wire to a 
step-function incident  plane wave. The  ande of incidence is 0 = 30' 
and d/L = 0.01. Only the I = 1 poles are used. (a) One-pole pair 
used. (b) Two-pole pain used. (c) Fourier inversion solution or 
large number of poles. 

fore it is singularity expanded) of the form 

O k  

I I  I l l  I I I  
0 IO 20 30 40 50 60 70 80 90 

Fig. ,9. Plots of the normalized coupling  coefficients as a function of 
the angle of  incidence 0 for  the fvst three poles in the I = 1 layer for 
the  thin wire, d/L = 0.01. 

from the scatterer it is convenient to introduce  retarded  natu- 
ral modes 

'&a 
( X )  (r) = era, #)(r) (3.23) 

with r = 0 appropriately  centered  on the object. This corre- 
sponds to  the  introduction of a  time shift in  the response ( b e  

tw = t - TIC.  

Carrying this over to  the far field, we  have 

(3.24) 

(3.25) 

with 2, as a convenient scaling constant of  dimension  meters. 
Continuing the thin-wire numerical  example of Tesche [ 301 

in Figs. 11 through  13  the  thin wire is treated as an antenna. 
Fig. 12 shows the far natural modes  and  Fig. 13 shows an ex- 
ample  of a far-field  waveform computed using the far natural 
modes. 

There are various  aspects  of SEM which  need further explo- 
ration. In particular extension is needed to cases  of a general 
nature involving branch cuts. Some  work  has been  done  but it 
is fairly limited to date. In addition more  rigorous properties 
for  the entire function are needed; It appears that  the impe- 
dance eigenmodes (Section IV) will  shed  some  insight here. 
Numerical procedures  for pole location have  relied on Newton- 
Rhapson  and  Muller iterative procedures  [721.  Currently 
work is in progress to utilize contour integral methods to make 
the pole locating more efficient [731-[751. One  of the most 
appealing  aspects  of SEM is the manner  in which the pole 
terms factor to give terms which depend on some,  but  not all, 
of the parameters of the problem.  With greater theoretical 
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Fig. 11. Linear impedance  loaded EMP simulator. 

insight this type of factorization may  be further  extended 
(such as by  eigenmode considerations in Section N). 

Utilizing the SEM form in time  domain one can  analyze 
transient scattering data to  find SEM parameters, such as s 
plane  poles  and  residues, from the recorded time-domain 
waveform. An algorithm  due to Prony  which represents a 
waveform  by a sum  of complex  exponentials can  be  used for 
decomposing a transient waveform (or a  portion thereof) if it 
is sampled at uniformly spaced time intervals.  Van  Blaricum 
and Mittra [69 J have shown that this technique can obtain 
natural frequencies  from the measured transient response  of 
a thin-wire scatterer, and that these natural frequencies agree 
very well with  those  computed by  Tesche [471.  Perhaps such 
transient data-analysis techniques can  be extended. It would 
be useful to develop techniques for obtaining SEM parameters 
from frequency-domain (iw axis) data  obtained  from CW ex- 

pear to have  some application for radar target discrimination mode for I = 1 poles of an unloaded  antenna. 
[@I, [861. 
C. High-Frequency Method we have some excitation (source fieid), as for  example an  inci- 

Going  now to  the regime  where the wavelength is small corn- dent plane wave characterized by  some polarization, with 
pared to characteristic dimensions  of the object we are  led to a  timedomain wavefcrm f p ( t ) .  In complex  frequency  domain 
high-frequency method (HFM). This encompasses asymptotic one can factor  out fp ( s )  and consider  the early-time character- 
expansions of various electromagnetic quantities as s + 0 in istics of  the delta function  (impulse) response. The high- 
the  right&& plane including the iw axis. In frequency do- frequency form  of the impulse  response often  takes  the  form 
main  much  has  been done in this area. The  literature is quite ~ e-stP 
large  and beyond any detailed review here. A recent issue of Up(r, s) - dp  p, as s +. 00, Re [SI 3 0, p 2 0. 
this PROCEEDINGS [76] has  been entirely devoted to this P 
problem  and is suggested to  the interested reader. (3.26) 

frequency  asymptotic series,  including the geometrical theory This type -of expansion covers direct reflected waves-and edge- 
of diffraction (GTD),  physical theory of diffraction (PTD), diffracted waves as commonly used in GTD.  While Up is writ- 
and  equivalent currents. By means  of various “canonical prob- ten as a scalar it can  be a  vector (as the electric field) or  a dya- 
lems” terms in the high-frequency expansion are associated  dic (as would be used in constmcting the Green’s Function). 
with various  localized features of the object geometry such as The coefficients dp  can also be vectors and dyadics;  they  can 
surface curvature, edges, etc. be referred to as diffraction coefficients. The t p  are delays for 

Following the discussion  of  Lee et al. [SO] let us start with the various diffraction terms to reach the observer at position 
some common  forms of  high-frequency asymptotic series as- r.  One  can let p < 0 (down to - 1) to account  for  focusing as 
sociated with  antenna and scattering problems.  Assume that in a reflector dish. 

90 90 

0 

p&ents covering  some frequency  band. These concepts a p  Fig. 12. Polar plots of the  magnitude of the  normalized far field 
E 

Various detailed techniques are available for generating high- 
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The  property of  linearly independent eigenvectors, or equiva- 
lently of diagonalizability, is of great importance in construct- 
ing these convenient  results. This method is referred to as the 
eigenmode expansion  method (EEM). 

One  of the  purposes  for  constructing such  eigenmodes is 
their relations to  the singularity expansion quantities, thereby 
exhibiting more properties of SEM. Starting with the eigen- 
values note  that we have 

det ((Fn,~(s))) = n ip(s). (4.1 1) 

At a natural frequency so! this determinant is zero, requiring at 
least one eigenvalue Xp(s,) to be zero. Neglecting  cases  of  de- 
generacy we can relabel the a index set then as 

N 

B = 1  

a E (8,8’) 
=‘B,@‘ 
- (4.12) 

indicating that each-natural frequency sp, .~’  “belongs” to a par- 
ticular eigenvalue X p ( s p , p l ) ,  where $ differentiates amongst 
the various natural frequencies belonging to  the  6th eigenvalue. 
As an illustration of this  concept refer back to Fig. 5. showing 
the exterior natural frequencies  for the sphere. As noted pre- 
viously SEM investigations  have found “layers” of natural fre- 
quencies  with  that layer nearest the iw axis in the s plane 
being quite important.  The eigenvalues  of the sphere (from 
the E or H equation [49]) give what  might  be referred to  as 
“arcs”  of natural frequencies as shown in Fig. 5 .  The eigen- 
values then  order the natural frequencies providing a further 
decomposition of the singularity expansion by  grouping the 
terms. This indicates that eigenmode terms can  be singularity 
expanded to give them  representations in terms of  an appro- 
priate subset  of the natural frequencies. 

The eigenmodes are similarly  related to the natural modes at 
the natural frequencies as 

&(I., sp,p’) = * p , p W  

i p k  sg,p‘) = r g , p W  (4.13) 

provided the arbitrary scaling coefficients in front of the 
modes are adjusted to achieve this equality. Using the rela- 
tionship for the eigenvalue 

&(s) = ( & ( I ,  s) ; h r ,  r ‘ ; s )  ; ?p(r’,s)) (4.14) 
... 

the derivative with respect to s can  be  shown to reduce to 

giving an expression for  the coupling coefficient at an SEM 
pole (3.12) as 

Having connected the EEM to  the SEM, at least for  pole 
terms, let us  show how the EEM can  be  used with SEM con- 
cepts for transient synthesis. To begin with let us  specialize 
our general integral equation to  the impedance  (or E field) 
integral equation by d e f i i g  

Z(r,  r’; s) = s p o  &(r,  r’; 8 )  

5 - + 
(4.17) 

where the free-space dyadic Green’s function is given  by 
(1.12). In the limit as r + I‘ the integral over this kernel  must 
be  carefully evaluated; this  often gives  special correction  terms 
at r = r’ such as discussed by Van  Blade1 [391, [ 811. These 
need not  concern us here  and are assumed included  in the ker- 
nel or  operator definition. The  impedance integral equation 
then  takes the form 

(Z(r, r‘; s) ; f(r‘, s)) = &(r, s) 
- 

(4.18) 

where is is some  “source” electric field whether  an  incident 
field or some specified  field  such as at an  antenna gap (feed). 
The  object of interest can  be  considered in a volume sense,  or 
it can  be a surface-type body  (noting  that  only  components 
tangential to  the surface are considered). 

The eigenvalues-of such  an  operator are appropriately called 
eigenimpedances Zp(s) ,  and  have considerable physical  signifi- 
cance. If the-source electric field is chosen to have spatial de- 
pendence as Rp(r, s) then the response current has the same 
dependence giving 

i S ( r ,  s) = .&(s)f(r, s) (for eigenmode  fields). (4.19) 

Hence we  have for eigenmode  fields,  and for the  impedance 
integral equation in a larger  sense, a generalized Ohm’s law. 
These  eigenimpedances for passive objects must  be  positive 
real functions  (due to conservation of energy)  in the sense 
applied in circuit theory,  thereby  implying 

Re [ i?p(s)] 2 0, for Re [s] 2 0. (4.20) 

In a similar fashion, we  have 

?p(s) .?p(s)-’ (eigenadmittances).  (4.21) 
Consider  now the object with  impedance loading so that  the 

electric field  has the form - 
E(r ,  s) =is + isc = &(r, 8 )  f(r, 8 ) .  

- 
(4.22) 

The scattered (or radiated) field is given by 
5 

2&, s) = -(&, r‘; s) ; f(r‘, s)). (4.23) 

Combining these equations gives - - 
(Z(r ,  r ’ ; s )  + &(r, s)S (r - r’) ; f(/, s)) = i s ( r ,  s) (4.24) 

which  can  be  applied in surface or volume  forms. The  kernel 
of the integral equation is then modified  by the addition of 
the impedance loading. 

Consider a loading  of the general factored  form - 
ZLr, s) = Z&r) (4.25) 

(4.26) 
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Defining  modified  eigenimpedances  and  modes as - 
( 2 ( r ,  r ) ;  s) ; ii; (rl, s)) = 2; ( 3 ) i p  (r ,  s) - 
( ~ $ ( r , s )  ; ?(r, r ’ ; s ) )   = i b ( s ) i ; ( r ’ , s )  (4.27) 

we observe on substituting  such  modes into  the modified inte- 
gral equation  (with impedance loading) that these modekare 
eigenmodes  of the new equation  with eigenvalues .?b(s) + Z,(s) 
which  we  summarize  symbolically as 

ir; ( r ,  s) impedance i; (r,  $1 
loading - i&, s) -q#, s) 

“;,0%r 

mpedance 
loading 

q3 ( 8 )  - 2; ( 8 )  + i , ( s ) .  (4.28) 

For the case of 7 = (uniform loading) the unmodified eigen- 
modes and eigenimpedances appear in (4.28). 

For synthesis now suppose we  have computed z;(s) for 
some set of /3 values  and plotted these in  the complex s plane. 
The zeros of these eigenimpedances  are natural frequencies 
sp,p’ of the  antenna o r  scatterer. Suppose we wish to change 
the natural frequencies to some  new  values to increase the 
damping, make the response more broad band, critically damp 
the  dominant pole, or whatever. The basic synthesis equation 
is to choose Z,(s) such that 

zl (s0,p’)  = - Z b ( s p , p ’ )  
- 

(4.29) 

at  the desired set of s0,p’. Note that  this is a set of explicit re- 
quirements on  the loading to give certain desired features to 
the response. 

As an example  Tesche (in a private communication) has ap- 
plied this  method  in MOM to  form to synthesizing the tran- 
sient  response of a thin-wire antenna  or  scatterer. Fig. 14 
shows the first two eigenimpedances for a uniformly loaded 
thin wire corresponding to  the example  case in  Section 111-B. 
Note the  natural frequencies (zeros) of the first eigenimped- 
ance.  Resistme loading corresponds to movement of the nat- 
ural frequencies in  the s plane along  real  negative (phase =br) 
values of the eigenimpedance.  Note that  the first conjugate 
pair of natural frequencies can be  made to coalesce to give a 
secondader pole in the response on  the negative_ s axis for 
critical damping  by appropriate explicit choice of Z, as a posi- 
tive  resistance.  These results are consistent with those ob- 
tained on a cut and try basis in a previous  work [30] but give 
much  more  physical  insight  and a direct  method. Note that 
for  this wire  problem the eigenimpe+ws luwa&saf ohms/ 
meter and are normalized by using Zo(s)L with units of ohms. 
This gives a result which is independent of  wire length L if d/L 
is held constant. 

Another  type of frequencydomain modes is weighted  eigen- 
modes  of the form used by Garbacz and Turpin [ 571, [ 581 
and  by Harrington and  Mautz [ 601. These are refeerred to  as 
characteristic modes to  distinguish them  from the eigenmodes 
defined  in (4.2). They  have  been  shown to be useful for 
frequencydomain (CW) design  and  analysis  of antennas and 
scatterers. These characteristic modes  have  some  similar  rela- 
tions to  the SEM quantities  but  appear to be more complicated 
for this purpose [ 881. More  work is needed to further explore 
these relations. 

900. 

-4.0 -3.0 -2.0 -1.0 0 
OL /c 

z , ( s )  L ( in  ohms) 
(a) 

-4.0 -3.0 -2.0 - 1.0 0 
rLL/C 

Z p ( s ) L  ( in  ohms) 

(b) 
Fig. 14. Lowest order,eigenimpedances zp(s) in the s plane for thin 

wire, d /L  = 0.01 (Tesche). p &dicates pole, z indicates-zero, and 
Z indicates saddle point. (a) Z, (s)L (in ohms). (b) Z,(s )L (in 
ohms). 

V. FINITE-DIFFERENCE TIME-DOMAIN SOLUTIONS 
Previous sections have some ways to obtain  transient infor- 

mation from frequencydomain formulations. One might at- 
tempt to  proceed directly in time domain without going 
through frequency domain. In particular Maxwell’s equations 
(1.4) are formulated as timedomain differential equations. 
Given  some appropriate  set of medium properties  (permittivity, 
permeability, and conductivity), boundary conditions, initial 
conditions, and sources the problem can be  numerically  solved 
on large computers by the replacement of differential equa- 
tions by corresponding difference equations. 

While this  approach is somewhat “brute  force”  in  nature it 
does have  some  advantages. In particular it allows for the pres- 
ence of nonlinearities of the medium, boundaries, etc. which 
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are  described  by differential equations  and/or integrals over 
various quantities at times previous to  the time the properties 
are required. The medium  and boundaries can even  be in 
somewhat arbitrary relative motion. 

The typical procedure involves setting up  some spatial grid 
of discrete points which  may or may not be uniformly spaced 
and  will typically conform to some convenient  orthogonal 
curvilinear coordinate  system. At  some discrete time t ,  the 
electromagnetic  and  other quantities (such as electron  density 
or whatever) are stored in  the spatial array in  the computer. 
The entries are updated to  time t,,, = t ,  + At via the differ- 
ence  equations  and other equations involving the previous val- 
ues. This can be thought of as a time-marching  process 
throughout the volume  of interest. Various sophistications 
can be introduced  such as converting the equations to  retarded 
time and taking advantage of  symmetries in the source and 
medium  geometries. 

This approach has  been quite extensively  applied to  nonlin- 
ear  plasma  physics. In particular it has been the mainstay of 
studies of the generation of the nuclear  electromagnetic pulse 
(EMP). In this problem there are compton and photoelectron 
source currents with electron trajectories determined by the 
fields, air conductivity  from ionization and air chemistry reac- 
tion rates (involving electrons, ions, and neutrals), field depen- 
dent electron mobility, and  various geometries  such as proxim- 
ity  to  the  earth surface  and  various scatterers. Numerous 
investigators  have  developed these calculations over more  than 
the past decade and there is an extensive literature in  the EMP 
theoretical notes on this subject. Some  of the more prolific 
contributors  to this area  have  been C. L. Longmire, W. J.  
K m a s ,  R. Latter, W. R. Graham, R. R. Schaefer, G. Schlegel, 
I. S. Malik, B. R. Suydam, J. H. Darrah, W. T. Wyatt, M. A. 
Messier, W. A. Radasky, H. J.  Longley, E. D. Dracott, D. A. 
Moody,  and J.   J .  Hill. 

One  of the significant problems  with this approach is that  of 
numerical errors which are often considered in the  context of 
stability and  convergence. It is very difficult to perform rigor- 
ous numerical  analysis on these numerical  schemes. Some at- 
tempts have  been  made in this direction, for  example by 
Richtmyer  1381. In order to obtain good solutions at  late 
time large amount of computation  time is required. 

Another problem this approach has  been  applied to is the 
penetration of high intensity magnetic fields (as in some EMP 
situations) through  ferromagnetic shields.  Some  work  of 
Merewether 1 43) , [ 441 is an example of this. 

The  finitedifference  timedomain  approach  sheds  little di- 
rect  insight into  the properties of the solution, such as by  ex- 
hibiting various separate factors or  terms  in  summations. 
However, for  nonlinear  problems such decomposition would 
appear to be  much  more limited. For such problems the finite- 
difference timedomain  approach may not impose additional 
restrictions that are not  inherent in the nature of the problem; 
this requires more investigation. 

It may  be  possible to combine this approach  with  other ap- 
proaches, such as time domain integral equations,  with each 
approach handling a separate part of the problem. This would 
be analogous to the  uni-moment  method  introduced by  Mei 
[ 6 1 ] in frequency  domain. 

VI. TIME-DOMAIN INTEGRAL EQUATIONS 

One of the recently developed approaches is the numerical 
solution of  an appropriate  timedomain integral equation de- 
scribing the response  of  an antenna or scatterer. As discussed 

in Section I timedomain integral equations  (integrodifferential 
equations) have the form 

This can be converted into numerical  form  by MOM procedures 
noting that  both space  and time  coordinates are to be 
discretized. 

Since the operation over time is a  convolution, involving  cur- 
rent for previous time, the numerical  solution considerably 
simplifies. If the time is sampled at some uniform At then we 
can write symbolically 

+ I @ ,  t n )  (6.2) 

where the term  for tn involves evaluation of the  operator  with 
r ZL r' (i.e., a small  space zone pound  the point of obsemation) 
since the causal operator  only  perqits such a small zone to  in- 
fluence I at t = t,. Inversion  of r (r, r'; 0)  gives the desired 
I(r, t )  in terms of  its previous  (and  hence  known) values. The 
detailed numerical  procedures are somewhat more complicated 
and the reader is referred to various works which  give detailed 
considerations to this numerical approach. Specifically  nu- 
merous works of Bennett et al. 1621-1641, [66]-1681 and 
Liu I271 have  developed this approach  in detail. The  reader 
may also consult  books  with review this subject, including the 
chapter by Poggio and  Miller [ 12, ch. 41 and the chapter  by 
Mittra 1 13, ch. 2) .  

An interesting application of this type of  numerical solution 
is to inverse scattering. As shown  by Bennett (in a private 
communication) the shape of a perfectly conducting scatterer 
can  be generated  from the  backscattefid signal for the case  of 
axial incidence on an assumed body of revolution. While lim- 
ited in  scope this result does  point in the direction of explicit 
inverse-scattering algorithms associated with a transient wave 
form  detected at some point in space. 

It would  be interesting to know  some of the inherent  proper- 
ties of the  timedomain integral equations analogous to  the 
singularity expansion and the eigenmode expansion developed 
for  frequencydomain integral equations. Once can defiie an 
eigenmode equation  corresponding to (4.1) where  now inte- 
gration is over  space and time. The resulting  eigenmodes  and 
eigenvalues appear to  be related to SEM and EEM quantities, 
but this is a subject for  future investigations. 

VII. APPROXIMATE TRANSMISSON-LINE MODELS 
OF THIN ANTENNAS AND SCATTERERS 

It is sometimes useful to formulate  crude physical models of 
antennas  and scatterers that are not very accurate  but give sig- 
nificant physical  insight  and simplicity. If simple explicit for- 
mulas for  the response are obtained these formulas can be used 
in a synthesis or design sense to obtain desired performance. 

One  such approximation applies to thin antennas and 
scatterers in the  form of a one dimensional approximation 
which  can  be thought of as a transmission-line form. This 
type of approximation  has been shown to be useful for tran- 
sient thin-wire radiators of the form in Fig. 11 1 191, [33]. 
However, other thin-wire structures can also be  analyzed  by 
such  an approach. 
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E (5,s) incident or source field 

i ( C . s )  impedance  loading 
per  unit  length 

(a) 

C'(C 1 dC 

- - -  T--- postulated  reference  surface 

(b) 
Fig .  15. Transmission-line model of antenna. (a) Wire antenna or 

scatterer. (b) Incremental section of transmission-line model. 

For this purpose an incremental section of the wire structure 
is assumed to be  modeled  by a series inductance pEr unit 
length L '( f )  and loading  impedance  per unit length A( f ,  s) 
and by a transverse capacitance  per  unit  length C'({) as 
illustrated in Fig. 15. There may also be a distributed source 
ig the  form of an incident electric field with component 
E , ( { ,  s) parallel to the wire. In order to define L' and C' one 
postulates some imaginary reference surface  which  serves as 
the outer conductor  for  a coaxial  transmission  line. The 
center  conductor is the wire  (say  of radius u )  with some 
position variable f which  varies  along the wire. Note  that 
radiation resistance is not included in this model. 

In terms of these parameters  one can define a characteristic 
impedance  for  the wire as 

with the constraint that the propagation velocity along the 
wire (in free space) in the absence of loading be the speed of 
light as 

1 
c=d-' 

In determining L' and C' it is often  more  convenient to con- 
sider Z ,  using  some  assumed outer  conductor radius (coaxial 
model) or the characteristic (pulse) impedance of  an appro- 
priate biconical antenna which approximates  the wire [6].  
As an  example the thin-wire antenna of radius u and half- 
length h driven at  the  center (see  Fig. 11) has a characteristic 
impedance  (for smaUu/h) [ 191 

z,==%(F). 277 (7.3) 

Using this formalism one  -.obtain cbaa&hm solutions 
for currents  on  the wire an teqa  or scatterer for special 
variations of Z,(f) (shape)  and A({, s) (impedance loading) 
such as one  might  be concerned  with in the study of non- 
uniform transmission-line transformers. King, Wu, and Shen 
[82],  [83] have  discussed a particular form of impedance 
loading which  gives a  nonreflecting  type of current wave on 

a thin cylindrical antenna. Using that  type of resistive loading 
distribution with a simplified  transmission-line model  one can 
obtain  a simple solution for the current and radiated fields if 
the coefficient of the resistance function is appropriately con- 
strained [ 191. For  other values of the resistance (but  the 
same ( h  - z)-' spatial dependence)  more complicated for- 
mulas are obtained [331. 

One  deficiency of this transmission-line model is its lack of 
damping of transient response  waveforms if there is no resis- 
tive impedance loading. This illustrates the  importance of 
the wire  being thin which  has small damping in fact. For 
cases of significant  resistive loading (say to achieve critical 
damping) the model is somewhat better. For more accurate 
estimates of  thin-wire  response  one  can  use  an asymptotic 
theory ( a  + 0) which  has  transmission-line characteristics 
only as the leading term [ 591 . 

VIII. CLOSED FORM TRANSIENT SOLUTIONS 
FOR SPECIAL GEOMETRIES 

There are  some  special types of geometries  which admit 
of exact  and explicit transient solutions. Consider first some 
usual  geometries  which admit of separation-of-variable solu- 
tions for  electromagnetic scattering in frequency domain. 
By inverse  Laplace transformation the series of terms in the 
solution can be converted into  a series  of time-domain terms. 
For example scattering of a plane wave  by a perfectly con- 
ducting sphere [45] and  by a perfectly conducting cylinder 
[42], [ 871  have  been treated this way.  An infinite cylindrical 
antenna driven  by a delta (slice)  gap also admits  a closed form 
transient solution [ 181, [ 201 -[ 221, [ 781 . One can also solve 
scattering by a perfectly conducting wedge in explicit form 
[13,ch. 1 1 , ~ 1 6 1 , ~ 2 4 1 , ~ 3 5 1 , ~ 7 8 1 .  
For transient field production for testing of  various objects, 

as in the case  of the nuclear electromagnetic pulse [ 141, [ 151, 
[26], the TEM mode of cylindrical and  conical  transmission 
lines is used  extensively to produce fields with a  constant 
waveform  (dispersionless) throughout some  volume  of  space. 
A cylindrical transmission  line as illustrated in Fig. 16(a) has 
a TEM mode characterized by an electric-field distribution 
[71, [ 141, [251. 

E(r ,  t )  = E o  [Vt@(x,v)l f(t * z / c )  (8.1) 

where fz is the direction of propagation, f is the waveform, 
Vi- is the transverse gradient, and Eo is a scaling constant. 
Similarly a conical  transmission line has a TEM mode (trans 
verse  with respect to r )  as [ 151 

~ ( r ,  t )  = - [ V t W ,  @)I f ( t  f r k ) .  V O  
r (8.2) 

Conical  transmission lines as in Fig. 16(b) with small taper 
angles (conductors within a small angle  based on the apex, 
r=.fl) can be approximately  matched to  cylindrical trans 
mission lines to launch  and/or  terminate  the TEM mode 
thereon [ 151 . This  important  property of such structures 
allows the  construction of EMP simulators with  very  con- 
venient field properties as in (8.1) over  an extremely wide 
band of frequencies  (including  down to dc or s = 0). 

Objects such as cylindrical (or conical) transmission  lines 
also have  higher order (E and H )  modes (leaky modes) which 
have  more complicated properties in that they are  dispersive 
and do  not maintain  a transient waveform independent of z ,  
the longitudinal coordinate. These modes have  been  com- 
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(b) 
Fig. 16. TEM transmiasion lines. (a) Cylindrical transmission  line. 

(b)  Conical trammission line. 

puted  for  open cylindrical transmission lines and used to 
&e transient propagation  thereon [ 291,  [34] , [37]. These 
modes are similar to  the classical modes for closed  waveguides 
except  that  they decay in the direction of propagation and 
grow in  the transverse direction away from the transmission 
line. 

IX. SUMMARY 
While transient and  broad-band electromagnetics has  seen 

some  considerable recent interest and development and  has 
developed a considerable literature, it would appear to  still 
be somewhat in its infancy as far as what  technology is needed 
and  likely to be  developed. The results currently available 
range from simple but  approximate  formulas which give con- 
siderable  physical  insight 1361 to sophisticated analytical 
tools of a more  exact  nature [ 131. 

Both analytical and  numerical  methods have been developed 
but  one  should not look at these as being completely disjoint. 
Analytical and numerical methods  can be hybrided  together 
for  better physical insight as well as numerical efficiency and 
accuracy. 

The  interim  nature of the current  technology should  be 
emphasized, but already  some of the ideas for  a  more com- 
plete technology are coming forward. More  ideas are yet to 
be developed and  implemented  but it would  seem that some 
of the -likely sources of these can  be identified including 
adaptation of  various CW concepts, application of concepts 
from physics (quantum mechanics),  and development of 
concepts  from  the early sources of electromagnetic  theory 
which  have laid  dormant for lack  of applications in the past. 
The field is moving  rapidly  ahead  and it appears that one or 
more synthesis procedures for transient antennas and scatterers 
will be  thoroughly developed, thereby  converting  the subject 
into a  true engineering  discipline.  Already numerous special 
types of antennas  for radiating or controlling eansient/broad- 
band fields and other  types for measuring them have  been 
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developed.  However, the  consideration of the details of these 
various  designs is beyond  the  scope of this paper. Already 
some of the new methods are  leading to equivalent circuit 
representations for  antennas and scatterers [ 901 , [ 9 1 ] . 

This paper  has dealt primarily  with concepts in the field 
of transient and broad-band electromagnetics. The detailed 
application of these can be quite involved and  for this and for 
the numerical details the  reader is referred to the literature. 
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