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A Mathematical Tutorial on
Synthetic Aperture Radar∗

Margaret Cheney†

Abstract. This paper presents the foundations of conventional strip-mode synthetic aperture radar
(SAR) from a mathematical point of view. In particular, the paper shows how a simple
antenna model can be used together with a linearized scattering approximation to predict
the received signal. The conventional matched-filter processing is explained and analyzed
to exhibit the resolution of the SAR system.
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1. Introduction andBackground. In conventional strip-mode synthetic aperture
radar (SAR) imaging, a plane or satellite flies along a straight track, which we will
assume is in the direction of the x2 axis. The antenna emits pulses of electromagnetic
radiation in a directed beam perpendicular to the flight track (i.e., in the x1 direction).
These waves scatter off the terrain, and the scattered waves are detected with the same
antenna. The received signals are then used to produce an image of the terrain. (See
Figure 1.)

The data depend on two variables, namely, time and position along the x2 axis,
so we expect to be able to reconstruct a function of two variables.

The correct model for radar is, of course, Maxwell’s equations, but the simpler
scalar wave equation is commonly used:

(
∇2 − 1

c2(x)
∂2
t

)
U(t, x) = 0.(1)

This is the equation satisfied by each component of the electric and magnetic fields
in free space and is thus a good model for the wave propagation in dry air. When
the electromagnetic waves interact with the ground, their polarization is certainly
affected, but if the SAR system does not measure this polarization, then (1) is an
adequate model.

We assume that the earth is roughly situated at the plane x3 = 0 and that
for x3 > 0, the wave speed is c(x) = c0, the speed of light in vacuum (a good
approximation for dry air).
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Fig. 1 The geometry of an SAR system.

In free space, the field G0(t− τ, x− y) at x, t due to a delta function point source
at position y and time τ is given by [16]

G0(t− τ, x− y) =
δ(t− τ − |x− y|/c0)

4π|x− y| .(2)

This field satisfies the equation
(
∇2 − 1

c2
0
∂2
t

)
G0(t− τ, x− y) = −δ(t− τ)δ(x− y).(3)

2. The Incident Wave. We assume that the signal sent to the antenna is

P (t) = A(t)eiω0t,(4)

where the frequency ω0/2π is called the carrier frequency and A is a slowly varying
amplitude that is allowed to be complex.

If the source at y has the time history (4), then the resulting field Uy(t, z − y)
satisfies the equation

(
∇2 − 1

c2
0
∂2
t

)
Uy(t, z − y) = −P (t)δ(z − y)(5)

and is thus given by

Uy(t, z) = (G0 ∗ P )(t, z − y) =
∫

δ(t− τ − |z − y|/c0)
4π|z − y| P (τ)dτ

=
P (t− |z − y|/c0)

4π|z − y|

=
A(t− |z − y|/c0)

4π|z − y| eiω0(t−|z−y|/c0).(6)

The antenna, however, is not a point source. Most conventional SAR antennas
are either slotted waveguides [6, 7, 10] or microstrip antennas [15], and for either type,
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a good mathematical model is a rectangular distribution of point sources [17]. We
denote the length and width of the antenna by L and D, respectively. We denote the
center of the antenna by x; thus a point on the antenna can be written y = x + q,
where q is a vector from the center of the antenna to a point on the antenna. We
also introduce coordinates on the antenna: q = s1ê1 + s2ê2, where ê1 and ê2 are unit
vectors along the width and length of the antenna, respectively. The vector ê2 points
along the direction of flight; for the straight flight track shown in Figure 1, this would
be the x2 axis. For side-looking systems as shown in Figure 1, ê1 is tilted with respect
to the x1 axis so that a vector perpendicular to the antenna points to the side of the
flight track.

We consider points z that are far from the antenna; for such points, for which
|q| << |z − x|, we have the approximation

|z − y| = |z − x| − (ẑ − x) · q + O(L2/|z − x|),(7)

where the hat denotes a unit vector. We use this expansion in (6):

Uy(t, z) ∼ A(t− |z − x|/c0 + ẑ − x · q/c0 + · · ·)
4π|z − x| eiω0(t−|z−x|/c0)eikẑ−x·q,(8)

where we have written k = ω0/c0. This expansion is valid because we also have
kL2 << |z − x|. We now make use of the fact that |z − x| >> ẑ − x · q and that A is
assumed to be slowly varying to write

Uy(t, z) ∼ P (t− |z − x|/c0)
4π|z − x| eikẑ−x·q.(9)

Far from the antenna, the field from the antenna is

U inx (t, z) =
∫ L/2

−L/2

∫ D/2

−D/2
Ux+s1ê1+s2ê2(t, z)ds1ds2

∼
∫ L/2

−L/2

∫ D/2

−D/2

P (t− |z − x|/c0)
4π|z − x| eikẑ−x·(s1ê1+s2ê2)ds1ds2

∼ P (t− |z − x|/c0)
4π|z − x|

∫ D/2

−D/2
eiks1ẑ−x·ê1ds1

∫ L/2

−L/2
eiks2ẑ−x·ê2ds2

∼ P (t− |z − x|/c0)
4π|z − x| w(ẑ − x),(10)

where

w(ẑ − x) = 2Dsinc(kẑ − x · e1D/2) 2Lsinc(kẑ − x · e2L/2)(11)

is the antenna beam pattern and where sinc β = (sinβ)/β. The sinc function has its
main peak at β = 0 and its first zero at β = π; this value of β gives half the width of the
main peak [14]. Thus the main beam of the antenna is directed perpendicular to the
antenna. The first zero of sinc(kẑ − x · e2L/2) occurs when kẑ − x · ê2L/2 = π. Using
the fact that 2π/k is precisely the wavelength λ, we can write this as ẑ − x · ê2 = λ/L.
To understand this condition, we write ẑ − x · ê2 ≈ cos(π/2 − θ) = sin θ ≈ θ, an
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Fig. 2 This diagram shows that if p = ẑ − x is a unit vector, then p̂ · ê2 = p2 ≈ sin θ and p̂ · ê1 =
p1 ≈ sinφ. Here θ is the angle between the vector normal to the antenna and the projection
of ẑ − x on the e1-e3 plane. In this figure, the antenna lies on the e1-e2 plane.

approximation that is valid for small angles θ. (See Figure 2.) Thus when λ << L
and thus θ is small, the condition ẑ − x · ê2 = λ/L reduces to θ ≈ λ/L. In this
case, the main lobe of the antenna beam pattern has angular width 2λ/L in the ê2
direction. Similarly, the angular width in the ê1 direction is 2λ/D. We note that
smaller wavelengths and larger antennas correspond to more tightly focused beams.

3. A Linearized Scattering Model. From classical scattering theory we know
that a scattering solution of (1) can be written

Ψ(t, x) = Ψin(t, x) + Ψsc(t, x),(12)

where Ψin satisfies (1) with c(x) = c0 and where (see the appendix)

Ψsc(t, x) =
∫ ∫

G0(t− τ, x− z)V (z)∂2
τΨ(τ, z)dτd3z(13)

and

V (z) =
1
c2
0
− 1
c2(z)

.(14)

For commonly used carrier frequencies ω0, the waves decay rapidly as they penetrate
into the earth. Thus the support of V can be taken to be a thin layer at the earth’s
surface. Thus we assume that V is of the form V (z) = V (z1, z2)δ(z3).

A commonly used approximation [12, 13], called the Born approximation or the
single scattering approximation, is to replace Ψ on the right side of (13) by the incident
field Ψin:

Ψsc(t, x) ≈ ΨB(t, x) =
∫ ∫

G0(t− τ, x− z)V (z)∂2
τΨin(t, x)dτd3z

=
∫

V (z)
4π|x− z|∂

2
tΨin(t− |x− z|/c0, z)d3z.(15)

The value of this approximation is that it removes the nonlinearity in the inverse
problem: it replaces the product of two unknowns (V and Ψ) by a single unknown
(V ) multiplied by the known incident field.
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Another linearizing approximation that can be used at this point is the Kirch-
hoff approximation, in which the scattered field is replaced by its geometrical optics
approximation [12]. Here, however, we consider only the Born approximation.

In the case of SAR, the antenna emits a series of fields of the form (10) as it
moves along the flight track. In particular, we assume that the antenna is located at
position xn at time nT , and there emits a field of the form (10). In other words, the
incident field is

Ψin(τ, z) =
∑
n

Ψin
n (τ, z),(16)

where

Ψin
n (τ, z) = U inxn(τ − nT, z) =

∫ ∫
antenna

Uxn+q(τ − nT, z)d2q

∼ P (τ − nT − |z − xn|/c0)
4π|z − xn| w(ẑ − xn)(17)

is the nth emission. We use this expression in (15) to find an approximation to the
scattered field due to the nth emission. The resulting expression involves two time
derivatives of P (t, x). In calculating these time derivatives, we use the fact that A is
assumed to be slowly varying to obtain

∂2
t P (t, x) ≈ −ω2

0P (t, x).(18)

Thus the Born approximation to the scattered field due to the nth emission, measured
at the center of the antenna, is

Sn(t) ≈ ΨB
n (t− nT, xn)

≈ −
∫

ω2
0P (t− nT − 2|z − xn|/c0)

4π|z − xn|
V (z)

4π|z − xn|w(ẑ − xn)d3z.(19)

In (19), we note that 2|z − xn|/c0 is the two-way travel time from the center of the
antenna to the point z. The factors 4π|z − xn| in the denominator correspond to the
geometrical spreading of the spherical wave emanating from the antenna and from
the point z.

In practice, the received signal is not measured at a single point in the center of
the antenna; rather, the signal is received on the entire antenna. This means that the
received signal is subject to the same weighting as the transmitted signal. Thus w in
(19) should be replaced by w2. We continue to write simply w.

In (19), we approximate the factors of |z − xn| in the denominator by R0, the
distance from z to the flight track (see Figure 3), an approximation which is justified
because |z − xn|−1 is a slowly varying function of n.

4. Matched Filter Processing. To form an image [2, 3, 4, 8, 9, 11], first a matched
filter is applied to the received signal Sn(t):

In(y) =
∫

P (t− nT − 2|y − xn|/c0)Sn(t)dt,(20)

where the bar denotes a complex conjugate. This is called a matched filter because
one “matches” the received signal against a signal proportional to that due to a “point
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Fig. 3 The geometry for computation of the azimuthal resolution.

scatterer” at position y (i.e., take V (z) = δ(z − y) in the Born approximation). A
matched filter is used because it is the optimal linear filter in the sense of providing
the best signal-to-noise ratio [3].

If we use expression (19) (with |z − xn| replaced by R0) in (20) and interchange
the order of integration, we find

In(y) ≈
∫

Wn(y, z)
−ω2

0V (z)
(4πR0)2 dz,(21)

where

Wn(y, z) = w(ẑ − xn)
∫

P (t− nT − 2|y − xn|/c0)P (t− nT − 2|z − xn|/c0)dt(22)

represents the point spread function of this single-look imaging system: if V (z) =
δ(z − z0), then In(y) = Wn(y, z0) would be proportional to the resulting image of V .
Our goal is to make this point spread function as close to a delta function as possible.
The key idea of SAR is that this point spread function can be improved by summing
over n, i.e., by combining information from multiple looks. We thus consider

I(y) =
∑
n

In(y) ≈
∫

W (y, z)
−ω2

0V (z)
(4πR0)2 dz,(23)

with the point spread function

W (y, z) =
∑
n

Wn(y, z).(24)

This point spread function is called the generalized ambiguity function of the SAR
system. We want to choose P so as to make W as close to a delta function as
possible.
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5. Resolution. Resolution of the system [4] can be determined by an investigation
of the generalized ambiguity function (24). Under the assumption (4) we write W as

W (y, z) =
∑
n

w(ẑ − xn)
∫

A(t− nT − 2|y − xn|/c0)e−iω0(t−nT−2|y−xn|/c0)

· A(t− nT − 2|z − xn|/c0)eiω0(t−nT−2|z−xn|/c0)dt.(25)

In (25), we make the change of variables t − nT → t and then use the fact that A
is slowly varying. In this approximation, the As no longer depend on n and can be
pulled out of the sum. The time dependence in the exponentials cancels out, and thus
the ambiguity function factors as

W (y, z) ≈WR(y, z)WA(y, z),(26)

where

WR(y, z) =
∫

A(t− 2|y − xn|/c0)A(t− 2|z − xn|/c0)dt(27)

and

WA(y, z) =
∑
n

ei2k(|y−xn|−|z−xn|)w(ẑ − xn),(28)

where k = ω0/c0. The first factor of (26), WR, expressed in the “fast time” t by (27),
controls the range resolution. The second factor of (26), WA, is expressed via (28) in
terms of the position variable xn, which is sometimes called “slow time” because it
corresponds to the relatively slow movement along the flight track. The factor WA

controls the azimuthal (along-track or “Doppler”) resolution.

5.1. Azimuthal Resolution. To study the azimuthal resolution, we consider two
points y and z at the same range, i.e., at the same distance R0 from the flight track.
In particular, we write y = (r, 0, 0) and z = (r, z2, 0). We assume that the range R0
is much greater than the distances along the flight path, so that |xn2 | << R0 and
|xn2 − z2| << R0. (See Figure 3.)

We use the Pythagorean theorem, factor out R0, and then expand the remaining
square roots to obtain large-R0 asymptotic expansions for the distances appearing in
(28):

|xn − y| =
√
R2

0 + (xn2 )2 = R0
√

1 + (xns /R0)2 = R0 + (xn2 )2

2R0
+ · · · ,

|xn − z| =
√
R2

0 + (xn2 − z2)2 = R0 + (xn2−z2)2

2R0
+ · · · .

(29)

We use these expansions in the exponentials of (28). When we do this, the two terms
that come from |xn − y| cancel, and we are left with

WA(y, z) ∼
∑
n

eik(2xn2 z2−z2
2)/R0w(ẑ − xn).(30)

The second term in the exponent is independent of n and can be taken outside the
sum. In the first term, we use the fact that xn2 = nvT , where v is the speed with
which the antenna moves along the flight track. Thus (30) can be written

WA(y, z) ∼ e−ikz
2
2/R0

∑
n

(
e2ikz2vT/R0

)n
w(ẑ − xn).(31)
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The range of n values in this sum is effectively determined by the width of the
antenna beam pattern w (11). To determine the limits, we approximate the relevant
sinc function by a characteristic function whose width is the same as that of the main
lobe of the sinc: sincβ ≈ χ[−π,π](β), where χ[−π,π] denotes the function that is one
in the interval [−π, π] and zero outside. By doing this, we find that w is effectively
nonzero only when

−π <
kL

2
(z2 − xn2 )
|z − xn| < π.(32)

In (32) we use the large-R0 approximation (29) and then solve for xn2 :

z2 − λR0/L < xn2 < z2 + λR0/L,(33)

where we have used the fact that λ = 2π/k. We see from (33) that the antenna moves
a distance of

Leff = 2λR0/L(34)

while the point z remains in the beam. This is thus the effective length of the synthetic
array. It is the same as the width of the footprint, at range R0, due to an antenna
with angular beamwidth 2λ/L.

When we use xn2 = nvT in (33) and solve for n, we find that

1
vT

(
z2 −

λR0

L

)
< n <

1
vT

(
z2 +

λR0

L

)
.(35)

Using this in (31), we find that

WA(y, z) ∼ eikz
2
2/R04LDsinc((kD/2) sinφ)

N/2∑
n=−N/2

(
e2ikz2vT/R0

)n
,(36)

where N is the greatest integer less than 2λR0/(vTL) and ẑ − xn · ê1 ≈ sinφ. The
sum of exponentials in (36) is calculated in the appendix. We obtain

WA(y, z) ∼ eikz
2
2/R04LDsinc((kD/2) sinφ)

sin(kz2vT (N + 1)/R0)
sin(kz2vT/R0)

.(37)

The argument of the sine function in the denominator of (37) is small, so the denomi-
nator is approximately kz2vT/R0. The argument in the numerator, on the other hand,
involves the synthetic array length vT (N + 1) ≈ vT2λR0/(vTL) = 2λR0/L = Leff .
Thus (37) is approximately

WA(y, z) ≈ eikz
2
2/R04LDsinc((kD/2) sinφ)

sin(kz2Leff/R0)
kz2vT/R0

.(38)

The exponential in (38) has modulus 1; the remaining factor is proportional to a sinc
function with argument involving z2. The azimuthal resolution is therefore determined
by the value of z2 for which the argument of the sine function is equal to π, namely,

z2 =
πR0

kLeff
=

λR0

2Leff
.(39)
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This is half the width of the main lobe. The full width is thus

2z2 =
λR0

Leff
= L/2,(40)

where we have used (34).
Expression (40) is the azimuthal resolution of the SAR system. It is a very

surprising result, for 3 reasons: (1) it is independent of range; (2) it is independent of
λ; and (3) it is better for small antennas. The explanation for all three of these features
lies in the effective length of the synthetic array. When a scatterer is farther away,
it stays in the beam longer, so for such a point, the effective length of the synthetic
array is greater. Longer wavelengths and smaller antennas give rise to broader antenna
beam patterns, so that, again, the synthetic array is effectively larger.

5.2. Range Resolution. At this point, our only assumption about P has been
(4). Thus we still have freedom to choose A to improve the range resolution.

Consider the problem of resolving two point scatterers whose positions differ by
a range ∆r. To get perfect resolution, we would like to use a delta function pulse;
then the time separation of the return pulses would be ∆t = 2∆r/c0. A system in
which the time sampling is finer than this would be able to determine that the two
scatterers were located at different ranges.

Unfortunately, it is not practical to transmit an infinite-energy pulse such as a
delta function. If one uses instead a wave that is zero outside a time window of length
τ , then the return waves don’t overlap if τ < 2∆r c0. Thus a wavetrain of length τ
can resolve two scatterers if their ranges ∆r differ by ∆r > τc0/2. Thus, to get good
resolution, we would like to use a very short wavetrain.

Unfortunately, because any transmitted field is necessarily limited in amplitude,
short wavetrains also have very low energy. This means that little energy is reflected
from the target, and these low-energy scattered waves will get drowned out by noise.
Thus short pulses cannot be used.

To circumvent this difficulty, SAR systems use pulse modulation, in which one
transmits a complex waveform and then compresses the received signal, generally
by matched filter processing, to synthesize the response from a short pulse. The
most commonly-used modulated pulse is a chirp, which involves linear frequency
modulation. The idea is to label different parts of the wave by their frequency and
then superimpose these different parts in the compression process.

5.2.1. Instantaneous Frequency. The notion of instantaneous frequency of a
wave F (t) = eiφ(t) derives from a stationary phase analysis of the usual Fourier
transform integral: we think of the integrand of the Fourier integral

f(ω) =
∫

F (t)e−iωtdt =
∫

ei(φ(t)−ωt)dt(41)

as being written in the form exp(iλ(φ(t) − ωt)), where λ = 1. The usual large-λ
stationary phase calculation shows that the leading order contribution comes from
the values of t at which the phase is not changing rapidly with respect to t. This
occurs when 0 = (d/dt)(φ(t)− ωt), or in other words, when ω = dφ/dt. Thus we call
dφ/dt the instantaneous frequency of F .

5.2.2. Chirps. A chirp is a finite wavetrain P (t) = χτ/2(t) exp(iφ(t)) in which
the instantaneous frequency changes linearly with time. Here χτ/2 denotes the char-
acteristic function of the time interval [−τ/2, τ/2], which is 1 in this time interval
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Fig. 4 The chirp sin(.3t2).

and 0 outside. In an upchirp, the instantaneous frequency increases linearly with time
as dφ/dt = ω0 + Bt/τ , where ω0/2π is the carrier frequency and B/2π is called the
bandwidth. To determine φ, we simply integrate to obtain φ(t) = ω0t + Bt2/(2τ).
Thus an upchirp is a wavetrain of the form

P (t) = χτ/2(t)eiαt
2
eiω0t,(42)

where α = B/(2τ). We note that such a pulse is of the form (4), where

A(t) = χτ/2(t)eiαt
2
.(43)

An example of an upchirp can be seen in Figure 4.

5.2.3. Range Resolutionwith Chirps. We use (43) in (27) and use the shorthand
notation Ry = |x− y|, Rz = |x− z|:

WR(y, z) =
∫

χτ/2(t− 2Ry/c0)eiα(t−2Ry/c0)2
χτ/2(t− 2Rz/c0)eiα(t−2Rz/c0)2

dt.(44)

We expand the squares in the exponentials and find that the t2 terms cancel. We are
left with

WR(y, z) = eiα4(R2
z−R2

y)/c20

∫ τ/2+2 min(Ry,Rz)/c0

−τ/2+2 max(Ry,Rz)/c0
eiα4(Ry−Rz)t/c0dt.(45)

The t integral here gives rise to a sinc function of the form

sinc(4α(Ry −Rz)τ/(2c0)) = sinc(B(Ry −Rz)/c0).(46)

The main lobe of this sinc function has a half-width determined by setting the argu-
ment equal to π: B(Ry −Rz)/c0 = π. This shows that two scatterers can be resolved
if their range difference is Ry − Rz = 2πc0/B. In other words, better resolution is
obtained by using a broadband wavetrain, as expected.

Many other pulse compression techniques are also possible [8, 5].
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Appendix. Technical Details.

A.1. Classical Scattering Theory. To verify (13), we first write U = Ψ = Ψin +
Ψsc in (1) and use the fact that Ψin satisfies (1) with c(x) = c0; this gives us

(∇2 − c−2
0 ∂2

t

)
Ψsc + V ∂2

tΨ = 0.(47)

We see from applying (3) to (13) that (13) reduces to (47).
We note that (13) shows that the notion of a point scatterer is problematic. If

we take V (y) = δ(y − y0) in (13), we obtain

Ψsc(t, z) =
∫

G0(t− τ, z, y0)∂2
τΨ(τ, y0)dτ =

∂2
tΨ(t− |z − y0|/c0, y

0)
4π|z − y0| ,(48)

which shows that the scattered field at the point y0 is singular (unless ∂2
tΨ(t, y0) is

zero for all time). But the product of a delta function with a singular function has no
conventional meaning. The issue of point scatterers was studied in [1].

In the Born approximation, however, the field scattered from a point scatterer is
well defined and nonzero.

A.2. Sums of Exponentials.

N/2∑
n=−N/2

eian = e−iaN/2
N∑
n=0

(
eia

)n

= e−iaN/2
1− eia(N+1)

1− eia

=
eia/2(e−ia(N+1)/2 − eia(N+1)/2)

eia/2(e−ia/2 − eia/2)

=
sin(a(N + 1)/2)

sin(a/2)
.(49)

A.3. Example: The ERS-1 SAR. The first European Remote Sensing satellite
[10], ERS-1, was launched in 1991. Its SAR antenna is a slotted waveguide array
of dimensions L = 10m by D = 1m. This corresponds to a beamwidth of .288◦

in azimuth and 5.4◦ in elevation. The carrier frequency is 5.3 GHz, so that ω0 =
2π · 5.3 · 109 radians/sec. The system sends out upchirps with bandwidth B/2π of
15.5 MHz and a pulse duration τ of 37.1 µs, with a pulse repetition frequency 1/T of
1680 Hz. The look angle (i.e., the angle between vertical and the vector normal to the
antenna) is 23◦. It orbits at an altitude of 785 km and interrogates a 100-km swath
whose near and far edges are 200 km and 300 km, respectively, from the projection
of the track on the ground.
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