
As I will illustrate in later chapters, the crucial part of data regularization prob-
lems is in the choice and implementation of the regularization operator D or the
corresponding preconditioning operator P. The choice of the forward modeling oper-
ator L is less critical. In this chapter, I discuss the nature of forward interpolation,
which has been one of the traditional subjects in computational mathematics. Wol-
berg (1990) presents a detailed review of different conventional approaches. I discuss
a simple mathematical theory of interpolation from a regular grid and derive the main
formulas from a very general idea of function bases.

Forward interpolation plays only a supplementary role in this dissertation, but it
has many primary applications, such as trace resampling, NMO, Kirchhoff and Stolt
migrations, log-stretch, and radial transform, in seismic data processing and imaging.
Two simple examples appear at the end of this chapter.

INTERPOLATION THEORY

Mathematical interpolation theory considers a function f , defined on a regular grid
N . The problem is to find f in a continuum that includes N . I am not defining
the dimensionality of N and f here because it is not essential for the derivations.
Furthermore, I am not specifying the exact meaning of “regular grid,” since it will
become clear from the analysis that follows. The function f is assumed to belong to
a Hilbert space with a defined dot product.

If we restrict our consideration to a linear case, the desired solution will take the
following general form

f(x) =
∑
n∈N

W (x, n)f(n) , (1)

where x is a point from the continuum, and W (x, n) is a linear weight function that
can take both positive and negative values. If the grid N itself is considered as
continuous, the sum in formula (1) transforms to an integral in dn. Two general
properties of the linear weighting function W (x, n) are evident from formula (1).

Property 1
W (n, n) = 1 . (2)

Equality (2) is necessary to assure that the interpolation of a single spike at some
point n does not change the value f(n) at the spike.

Property 2 ∑
n∈N

W (x, n) = 1 . (3)

This property is the normalization condition. Formula (3) assures that interpolation
of a constant function f(n) remains constant.
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Fomel 2 Forward interpolation

One classic example of the interpolation weight W (x, n) is the Lagrange polyno-
mial, which has the form

W (x, n) =
∏
i6=n

(x− i)

(n− i)
. (4)

The Lagrange interpolation provides a unique polynomial, which goes exactly through
the data points f(n)1. The local 1-point Lagrange interpolation is equivalent to the
nearest-neighbor interpolation, defined by the formula

W (x, n) =

{
1, for n− 1/2 ≤ x < n+ 1/2
0, otherwise

(5)

Likewise, the local 2-point Lagrange interpolation is equivalent to the linear interpo-
lation, defined by the formula

W (x, n) =

{
1− |x− n|, for n− 1 ≤ x < n+ 1
0, otherwise

(6)

Because of their simplicity, the nearest-neighbor and linear interpolation methods
are very practical and easy to apply. Their accuracy is, however, limited and may be
inadequate for interpolating high-frequency signals. The shapes of interpolants (5)
and (6) and their spectra are plotted in Figures 1 and 2. The spectral plots show
that both interpolants act as low-pass filters, preventing the high-frequency energy
from being correctly interpolated.
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Figure 1: Nearest-neighbor interpolant (left) and its spectrum (right).

The Lagrange interpolants of higher order correspond to more complicated poly-
nomials. Another popular practical approach is cubic convolution (Keys, 1981). The
cubic convolution interpolant is a local piece-wise cubic function:

W (x, n) =


3/2|x− n|3 − 5/2|x− n|2 + 1, for 0 ≤ |x− n| < 1
−1/2|x− n|3 + 5/2|x− n|2 − 4|x− n|+ 2, for 1 ≤ |x− n| < 2
0, otherwise

(7)
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Figure 2: Linear interpolant (left) and its spectrum (right).
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Figure 3: Cubic-convolution interpolant (left) and its spectrum (right).

The shapes of interpolant (7) and its spectrum are plotted in Figure 3.

I compare the accuracy of different forward interpolation methods on a one-
dimensional signal shown in Figure 4. The ideal signal has an exponential amplitude
decay and a quadratic frequency increase from the center towards the edges. It is sam-
pled at a regular 50-point grid and interpolated to 500 regularly sampled locations.
The interpolation result is compared with the ideal one. Figures 5 and 6 show the
interpolation error steadily decreasing as we proceed from 1-point nearest-neighbor
to 2-point linear and 4-point cubic-convolution interpolation. At the same time, the
cost of interpolation grows proportionally to the interpolant length.

FUNCTION BASIS

A particular form of the solution (1) arises from assuming the existence of a basis
function set {ψk(x)}, k ∈ K, such that the function f(x) can be represented by a

1It is interesting to note that the interpolation and finite-difference filters developed by Karren-
bach (1995) from a general approach of self-similar operators reduce to a localized form of Lagrange
polynomials.
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Fomel 4 Forward interpolation

Figure 4: One-dimensional test
signal. Top: ideal. Bottom: sam-
pled at 50 regularly spaced points.
The bottom plot is the input in a
forward interpolation test.

Figure 5: Interpolation error of
the nearest-neighbor interpolant
(dashed line) compared to that of
the linear interpolant (solid line).

Figure 6: Interpolation error
of the linear interpolant (dashed
line) compared to that of the cu-
bic convolution interpolant (solid
line).
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Fomel 5 Forward interpolation

linear combination of the basis functions in the set, as follows:

f(x) =
∑
k∈K

ckψk(x) . (8)

We can find the linear coefficients ck by multiplying both sides of equation (8) by one
of the basis functions (e.g. ψj(x)). Inverting the equality

(ψj(x), f(x)) =
∑
k∈K

ckΨjk , (9)

where the parentheses denote the dot product, and

Ψjk = (ψj(x), ψk(x)) , (10)

leads to the following explicit expression for the coefficients ck:

ck =
∑
j∈K

Ψ−1
kj (ψj(x), f(x)) . (11)

Here Ψ−1
kj refers to the kj component of the matrix, which is the inverse of Ψ. The

matrix Ψ is invertible as long as the basis set of functions is linearly independent. In
the special case of an orthonormal basis, Ψ reduces to the identity matrix:

Ψjk = Ψ−1
kj = δjk . (12)

Equation (11) is a least-squares estimate of the coefficients ck: one can alterna-
tively derive it by minimizing the least-squares norm of the difference between f(x)
and the linear decomposition (8). For a given set of basis functions, equation (11)
approximates the function f(x) in formula (1) in the least-squares sense.

SOLUTION

The usual (although not unique) mathematical definition of the continuous dot prod-
uct is

(f1, f2) =
∫
f̄1(x)f2(x)dx , (13)

where the bar over f1 stands for complex conjugate (in the case of complex-valued
functions). Applying definition (13) to the dot product in equation (11) and approxi-
mating the integral by a finite sum on the regular gridN , we arrive at the approximate
equality

(ψj(x), f(x)) =
∫
ψ̄j(x)f(x)dx ≈

∑
n∈N

ψ̄j(n)f(n) . (14)

We can consider equation (14) not only as a useful approximation, but also as an
implicit definition of the regular grid. Grid regularity means that approximation
(14) is possible. According to this definition, the more regular the grid is, the more
accurate is the approximation.
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Fomel 6 Forward interpolation

Substituting equality (14) into equations (11) and (8) yields a solution to the
interpolation problem. The solution takes the form of equation (1) with

W (x, n) =
∑
k∈K

∑
j∈K

Ψ−1
kj ψk(x)ψ̄j(n) . (15)

We have found a constructive way of creating the linear interpolation operator from
a specified set of basis functions.

It is important to note that the adjoint of the linear operator in formula (1) is the
continuous dot product of the functions W (x, n) and f(x). This simple observation
follows from the definition of the adjoint operator and the simple equality(

f1(x),
∑
n∈N

W (x, n)f2(n)

)
=
∑
n∈N

f2(n) (f1(x),W (x, n)) =

((W (x, n), f1(x)) , f2(n)) . (16)

In the final equality, we have assumed that the discrete dot product is defined by the
sum

(f1(n), f2(n)) =
∑
n∈N

f̄1(n)f2(n) . (17)

Applying the adjoint interpolation operator to the function f , defined with the help
of formula (15), and employing formulas (8) and (11), we discover that

(W (x, n), f(x)) =
∑
k∈K

∑
j∈K

Ψ−1
kj ψ̄j(n) (ψk(x), f(x)) =

∑
j∈K

ψ̄j(n)
∑
k∈K

Ψ−1
jk (ψk(x), f(x)) =

∑
j∈K

cjψj(n) = f(n) . (18)

This remarkable result shows that although the forward linear interpolation is based
on approximation (14), the adjoint interpolation produces an exact value of f(n)!
The approximate nature of equation (15) reflects the fundamental difference between
adjoint and inverse linear operators (Claerbout, 1992).

When adjoint interpolation is applied to a constant function f(x) ≡ 1, it is natural
to require the constant output f(n) = 1. This requirement leads to yet another
general property of the interpolation functions W (x, n):

Property 3 ∫
W (x, n)dx = 1 . (19)

The functional basis approach to interpolation is well developed in the sampling
theory (Garcia, 2000). Some classic examples are discussed in the next section.

INTERPOLATION WITH FOURIER BASIS

To illustrate the general theory with familiar examples, I consider in this section the
most famous example of an orthonormal function basis, the Fourier basis of trigono-
metric functions. What kind of linear interpolation does this basis lead to?
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Fomel 7 Forward interpolation

Continuous Fourier basis

For the continuous Fourier transform, the set of basis functions is defined by

ψω(x) =
1√
2π
eiωx , (20)

where ω is the continuous frequency. For a 1-point sampling interval, the frequency
is limited by the Nyquist condition: |ω| ≤ π. In this case, the interpolation function
W can be computed from equation (15) to be

W (x, n) =
1

2π

∫ π

−π
eiω(x−n)dω =

sin [π(x− n)]

π(x− n)
. (21)

The shape of the interpolation function (21) and its spectrum are shown in Figure 7.
The spectrum is identically equal to 1 in the Nyquist frequency band.
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Figure 7: Sinc interpolant (left) and its spectrum (right).

Function (21) is well-known as the Shannon sinc interpolant. According to the
sampling theorem (Kotel’nikov, 1933; Shannon, 1949), it provides an optimal interpo-
lation for band-limited signals. A known problem prohibiting its practical implemen-
tation is the slow decay with (x−n), which results in a far too expensive computation.
This problem is solved in practice with heuristic tapering (Hale, 1980), such as tri-
angle tapering (Harlan, 1982), or more sophisticated taper windows (Wolberg, 1990).
One popular choice is the Kaiser window (Kaiser and Shafer, 1980), which has the
form

W (x, n) =


sin [π(x− n)]

π(x− n)

I0

(
a

√
1−

(
x−n
N

)2
)

I0(a)
for n−N < x < n+N

0, otherwise
(22)

where I0 is the zero-order modified Bessel function of the first kind. The Kaiser-
windowed sinc interpolant (22) has the adjustable parameter a, which controls the
behavior of its spectrum. I have found empirically the value of a = 4 to provide a
spectrum that deviates from 1 by no more than 1% in a relatively wide band.
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Fomel 8 Forward interpolation

While the function W from equation (21) automatically satisfies properties (3)
and (19), where both x and n range from −∞ to ∞, its tapered version may require
additional normalization.

Figure 8 compares the interpolation error of the 8-point Kaiser-tapered sinc inter-
polant with that of cubic convolution on the example from Figure 4. The accuracy
improvement is clearly visible.

Figure 8: Interpolation error of
the cubic-convolution interpolant
(dashed line) compared to that of
an 8-point windowed sinc inter-
polant (solid line).

The differences among the described forward interpolation methods are also clearly
visible from the discrete spectra of the corresponding interpolants. The left plots in
Figures 9 and 10 show discrete interpolation responses: the function W (x, n) for a
fixed value of x = 0.7. The right plots compare the corresponding discrete spectra.
Clearly, the spectrum gets flatter and wider as the accuracy of the method increases.

Figure 9: Discrete interpolation
responses of linear and cubic con-
volution interpolants (left) and
their discrete spectra (right) for
x = 0.7.

Discrete Fourier basis

Assuming that the range of the variable x is limited in the interval from −N to N ,
the discrete Fourier basis (Fast Fourier Transform) employs a set of orthonormal
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Fomel 9 Forward interpolation

Figure 10: Discrete interpola-
tion responses of cubic convolu-
tion and 8-point windowed sinc in-
terpolants (left) and their discrete
spectra (right) for x = 0.7.

periodic functions

ψk(x) =
1√
2N

eiπ k
N

x , (23)

where the discrete frequency index k also ranges, according to the Nyquist sampling
criterion, from −N to N . The interpolation function is computed from equation (15)
to be

W (x, n) =
1

2N

N−1∑
k=−N

eiπ k
N

(x−n) =
1

2N
e−iπ(x−n)

[
1 + eiπ x−n

N + · · ·+ eiπ 2N−1
N

(x−n)
]

=

1

2N
e−iπ(x−n) e

2iπ(x−n) − 1

eiπ x−n
N − 1

=
1

2N
e−iπ x−n

2N
eiπ(x−n) − e−iπ(x−n)

eiπ x−n
2N − e−iπ x−n

2N

=

e−iπ x−n
2N

sin [π(x− n)]

2N sin [π(x− n)/2N ]
. (24)

An interpolation function equivalent to (24) has been found by Muir (Lin et al.,
1993; Popovici et al., 1993, 1996). It can be considered a tapered version of the sinc
interpolant (21) with smooth tapering function

π(x− n)/2N

tan [π(x− n)/2N ]
.

Unlike most other tapered-sinc interpolants, Muir’s interpolant (24) satisfies not only
the obvious property (2), but also properties (3) and (19), where the interpolation
function W (x, n) should be set to zero for x outside the range from n−N to n+N .
The form of this function is shown in Figure 11.

The development of the mathematical wavelet theory (Daubechies, 1992) has
opened the door to a whole universe of orthonormal function bases, different from the
Fourier basis. The wavelet theory should find many useful applications in geophysical
data interpolation, but exploring this interesting opportunity would go beyond the
scope of the present work.
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Figure 11: The left plots show the sinc interpolation function. Note the slow decay
in x. The middle shows the effective tapering function of Muir’s interpolation; the
right is Muir’s interpolant. The top is for N = 2 (5-point interpolation); the bottom,
N = 6 (13-point interpolation).

The next section carries the analysis to the continuum and compares the mathe-
matical interpolation theory with the theory of seismic imaging.

CONTINUOUS CASE AND SEISMIC IMAGING

Of course, the linear theory is not limited to discrete grids. It is interesting to consider
the continuous case because of its connection to the linear integral operators com-
monly used in seismic imaging. Indeed, in the continuous case, linear decomposition
(8) takes the form of the integral operator

f(y) =
∫
m(x)G(y;x)dx , (25)

where x is a continuous analog of the discrete coefficient k in (8), the continuous
function m(x) is analogous to the coefficient ck, and G(y;x) is analogous to one of
the basis functions ψk(x). The linear integral operator in (25) has a mathematical
form similar to the form of well-known integral imaging operators, such as Kirchhoff
migration or “Kirchhoff” DMO. Function G(y;x) in this case represents the Green’s
function (impulse response) of the imaging operator. Linear decomposition of the data
into basis functions means decomposing it into the combination of impulse responses
(“hyperbolas”).

In the continuous case, equation (15) transforms to

W (y, n) =
∫ ∫

Ψ−1(x1, x2)G(y;x1)Ḡ(n;x2)dx1 dx2 , (26)
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where Ψ−1(x1, x2) refers to the inverse of the “matrix” operator

Ψ(x1, x2) =
∫
G(y;x1)Ḡ(y;x2)dy . (27)

When the linear operator, defined by equation (25), is unitary,

Ψ−1(x1, x2) = δ(x1 − x2) , (28)

and equation (26) simplifies to the single integral

W (y, n) =
∫
G(y;x)Ḡ(n;x)dx . (29)

With respect to seismic imaging operators, one can recognize in the interpolation
operator (29) the generic form of azimuth moveout (Biondi et al., 1996), which is
derived either as a cascade of adjoint (Ḡ(n; y)) and forward (G(x; y)) DMO or as
a cascade of migration (Ḡ(n; y)) and modeling (G(x; y)) (Fomel and Biondi, 1995;
Biondi et al., 1998). In the first case, the intermediate variable y corresponds to the
space of zero-offset data cube. In the second case, it corresponds to a point in the
subsurface.

Asymptotically pseudo-unitary operators as orthonormal bases

It is interesting to note that many integral operators routinely used in seismic data
processing have the form of operator (25) with the Green’s function

G(t,y; z,x) =

∣∣∣∣∣ ∂∂t
∣∣∣∣∣
m/2

A(x; t,y)δ (z − θ(x; t,y)) . (30)

where we have split the variable x into the one-dimensional component z (typically
depth or time) and the m-dimensional component x (typically a lateral coordinate
with m equal 1 or 2). Similarly, the variable y is split into t and y. The function
θ represents the summation path, which captures the kinematic properties of the
operator, and A is the amplitude function. In the case of m = 1, the fractional

derivative
∣∣∣ ∂
∂t

∣∣∣m/2
is defined as the operator with the frequency response (i ω)m/2,

where ω is the temporal frequency (Samko et al., 1993).

The impulse response (30) is typical for different forms of Kirchhoff migration
and datuming as well as for velocity transform, integral offset continuation, DMO,
and AMO. Integral operators of that class rarely satisfy the unitarity condition, with
the Radon transform (slant stack) being a notable exception. In an earlier paper
(Fomel, 1996), I have shown that it is possible to define the amplitude function A for
each kinematic path θ so that the operator becomes asymptotically pseudo-unitary.
This means that the adjoint operator coincides with the inverse in the high-frequency
(stationary-phase) approximation. Consequently, equation (28) is satisfied to the
same asymptotic order.
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Using asymptotically pseudo-unitary operators, we can apply formula (29) to find
an explicit analytic form of the interpolation function W , as follows:

W (t,y; tn,yn) =
∫ ∫

G(t,y; z,x)G(tn,yn; z,x) dz dx =∣∣∣∣∣ ∂∂t
∣∣∣∣∣
m/2 ∣∣∣∣∣ ∂∂tn

∣∣∣∣∣
m/2 ∫

A(x; t,y)A(x; tn,yn) δ (θ(x; t,y)− θ(x; tn,yn)) dx . (31)

Here the amplitude function A is defined according to the general theory of asymp-
totically pseudo-inverse operators as

A =
1

(2π)m/2

∣∣∣F F̂ ∣∣∣1/4
∣∣∣∣∣∂θ∂t

∣∣∣∣∣
(m+2)/4

, (32)

where

F =
∂θ

∂t

∂2θ

∂x ∂y
− ∂θ

∂y

∂2θ

∂x ∂t
, (33)

F̂ =
∂θ̂

∂z

∂2θ̂

∂x ∂y
− ∂θ̂

∂x

∂2θ̂

∂y ∂z
, (34)

and θ̂(x; t,y) is the dual summation path, obtained by solving equation z = θ(x; t, y)
for t (assuming that an explicit solution is possible).

For a simple example, let us consider the case of zero-offset time migration with
a constant velocity v. The summation path θ in this case is an ellipse

θ(x; t,y) =

√
t2 − (x− y)2

v2
, (35)

and the dual summation path θ̂ is a hyperbola

θ̂(y; z,x) =

√
z2 +

(x− y)2

v2
. (36)

The corresponding pseudo-unitary amplitude function is found from formula (32) to
be (Fomel, 1996)

A =
1

(2π)m/2

√
t/z

vmzm/2
. (37)

Substituting formula (37) into (31), we derive the corresponding interpolation func-
tion

W (t,y; tn,yn) =
1

(2π)m

∣∣∣∣∣ ∂∂t
∣∣∣∣∣
m/2 ∣∣∣∣∣ ∂∂tn

∣∣∣∣∣
m/2 ∫ √

t tn
v2mzm+1

δ(z − zn) dx , (38)

where z = θ(x; t,y), and zn = θ(x; tn,yn). For m = 1 (the two-dimensional case), we
can apply the known properties of the delta function to simplify formula (38) further
to the form

W =
v

π

∣∣∣∣∣ ∂∂t
∣∣∣∣∣
1/2 ∣∣∣∣∣ ∂∂tn

∣∣∣∣∣
1/2 √

t tn√
[(y − yn)2 − v2(t− tn)2] [v2(t+ tn)2 − (y − yn)2]

. (39)
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The result is an interpolant for zero-offset seismic sections. Like the sinc interpolant in
equation (21), which is based on decomposing the signal into sinusoids, equation (39)
is based on decomposing the zero-offset section into hyperbolas.

While opening a curious theoretical possibility, seismic imaging interpolants have
an undesirable computational complexity. Following the general regularization frame-
work of Chapter ??, I shift the computational emphasis towards appropriately cho-
sen regularization operators discussed in Chapter ??. For the forward interpolation
method, all data examples in this dissertation use either the simplest nearest neighbor
and linear interpolation or a more accurate B-spline method, described in the next
section.

INTERPOLATION WITH CONVOLUTIONAL BASES

Unser et al. (1993) noticed that the basis function idea has an especially simple
implementation if the basis is convolutional and satisfies the equation

ψk(x) = β(x− k) . (40)

In other words, the basis is constructed by integer shifts of a single function β(x).
Substituting expression (40) into equation (8) yields

f(x) =
∑
k∈K

ckβ(x− k) . (41)

Evaluating the function f(x) in equation (41) at an integer value n, we obtain the
equation

f(n) =
∑
k∈K

ckβ(n− k) , (42)

which has the exact form of a discrete convolution. The basis function β(x), evaluated
at integer values, is digitally convolved with the vector of basis coefficients to produce
the sampled values of the function f(x). We can invert equation (42) to obtain the
coefficients ck from f(n) by inverse recursive filtering (deconvolution). In the case of
a non-causal filter β(n), an appropriate spectral factorization will be needed prior to
applying the recursive filtering.

According to the convolutional basis idea, forward interpolation becomes a two-
step procedure. The first step is the direct inversion of equation (42): the basis
coefficients ck are found by deconvolving the sampled function f(n) with the factorized
filter β(n). The second step reconstructs the continuous (or arbitrarily sampled)
function f(x) according to formula (41). The two steps could be combined into
one, but usually it is more convenient to apply them separately. I show a schematic
relationship among different variables in Figure 12.
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Figure 12: Schematic relationship
among different variables for inter-
polation with a convolutional ba-
sis.
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B-splines

B-splines represent a particular example of a convolutional basis. Because of their
compact support and other attractive numerical properties, B-splines are a good
choice of the basis set for the forward interpolation problem and related signal pro-
cessing problems (Unser, 1999). According to Thévenaz et al. (2000), they exhibit
superior performance for any given order of accuracy in comparison with other meth-
ods of similar efficiency.

B-splines of the order 0 and 1 coincide with the nearest neighbor and linear inter-
polants (5) and (6) respectively. B-splines βn(x) of a higher order n can be defined
by a repetitive convolution of the zeroth-order spline β0(x) (the box function) with
itself:

βn(x) = β0(x) ∗ · · · ∗ β0(x)︸ ︷︷ ︸
(n+1) times

. (43)

There is also the explicit expression

βn(x) =
1

n!

n+1∑
k=0

Cn+1
k (−1)k(x+

n+ 1

2
− k)n

+ , (44)

which can be proved by induction. Here Cn+1
k are the binomial coefficients, and the

function x+ is defined as follows:

x+ =

{
x, for x > 0
0, otherwise

(45)

As follows from formula (44), the most commonly used cubic B-spline β3(x) has the
expression

β3(x) =


(
4− 6|x|2 + 3|x|3

)
/6, for 1 > |x| ≥ 0

(2− |x|)3/6, for 2 > |x| ≥ 1
0, elsewhere

(46)

The corresponding discrete filter β3(n) is a centered 3-point filter with coefficients
1/6, 2/3, and 1/6. According to the traditional method, deconvolution with this fil-
ter is performed as a tridiagonal matrix inversion (de Boor, 1978). One can, however,
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accomplish the same task more efficiently by spectral factorization and recursive filter-
ing (Unser et al., 1993). The recursive filtering approach generalizes straightforwardly
to B-splines of higher orders.

Both the support length and the smoothness of B-splines increase with the order.
In the limit, B-splines converge to the Gaussian function. Figures 13 and 14 show the
third- and seventh-order splines β3(x) and β7(x), respectively, and their continuous
spectra.
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Figure 13: Third-order B-spline β3(x) (left) and its spectrum (right).
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Figure 14: Seventh-order B-spline β7(x) (left) and its spectrum (right).

It is important to realize the difference between B-splines and the corresponding
interpolants W (x, n), which are sometimes called cardinal splines. An explicit compu-
tation of the cardinal splines is impractical, because they have infinitely long support.
Typically, they are constructed implicitly by the two-step interpolation method out-
lined above. The cardinal splines of orders 3 and 7 and their spectra are shown in
Figures 15 and 16. As B-splines converge to the Gaussian function, the corresponding
interpolants rapidly converge to the sinc function (21). Good convergence is achieved
with the help of the implicitly-generated long support, which results from recursive
filtering at the first step of the interpolation procedure.

In practice, the recursive filtering step adds only marginally to the total interpola-
tion cost. Therefore, an n-th order B-spline interpolation is comparable in cost with
any other method that uses an (n+1)-point interpolant. The comparison in accuracy
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Figure 15: Effective third-order B-spline interpolant (left) and its spectrum (right).
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Figure 16: Effective seventh-order B-spline interpolant (left) and its spectrum (right).

usually turns out in favor of B-splines. Figures 17 and 18 compare interpolation errors
of B-splines and other similar-cost methods on the example from Figure 4.

Similarly to the comparison in Figures 9 and 10, we can also compare the discrete
responses of B-spline interpolation with those of other methods. The right plots in
Figures 19 and 20 show that the discrete spectra of the effective B-spline interpolants
are genuinely flat at low frequencies and wider than those of the competitive methods.
Although the B-spline responses are infinitely long because of the recursive filtering
step, they exhibit a fast amplitude decay.

2-D example

For completeness, I include a 2-D forward interpolation example. Figure 21 shows a
2-D analog of the function in Figure 4 and its coarsely-sampled version.

Figure 22 compares the errors of the 2-D nearest neighbor and 2-D linear (bi-linear)
interpolation. Switching to bi-linear interpolation shows a significant improvement,
but the error level is still relatively high. As shown in Figures 23 and 24, B-spline
interpolation again outperforms other methods with comparable cost. In all cases, I
constructed 2-D interpolants by orthogonal splitting. Although the splitting method
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Fomel 17 Forward interpolation

Figure 17: Interpolation error of
the cubic-convolution interpolant
(dashed line) compared to that
of the third-order B-spline (solid
line).

Figure 18: Interpolation error of
the 8-point windowed sinc inter-
polant (dashed line) compared to
that of the seventh-order B-spline
(solid line).

Figure 19: Discrete interpolation
responses of cubic convolution and
third-order B-spline interpolants
(left) and their discrete spectra
(right) for x = 0.7.
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Figure 20: Discrete interpolation
responses of 8-point windowed
sinc and seventh-order B-spline in-
terpolants (left) and their discrete
spectra (right) for x = 0.7.

Figure 21: Two-dimensional test function (left) and its coarsely sampled version
(right).
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reduces computational overhead, the main cost factor is the total interpolant size,
which is squared when the interpolation goes from one to two dimensions.

Figure 22: 2-D Interpolation errors of nearest neighbor interpolation (left) and linear
interpolation (right). The top graphs show 1-D slices through the center of the image.
Bi-linear interpolation exhibits smaller error and therefore is more accurate.

Beyond B-splines

It is not too difficult to construct a convolutional basis with more accurate inter-
polation properties than those of B-splines, for example by sacrificing the function
smoothness. The following piece-wise cubic function has a lower smoothness than
β3(x) in equation (46) but slightly better interpolation behavior:

µ3(x) =


(
10− 13|x|2 + 6|x|3

)
/16, for 1 > |x| ≥ 0

(2− |x|)2(5− 2|x|)/16, for 2 > |x| ≥ 1
0, elsewhere

(47)

Blu et al. (1998) have developed a general approach for constructing non-smooth
piece-wise functions with optimal interpolation properties. However, the gain in ac-
curacy is often negligible in practice. In the rest of the dissertation, I use the classic
and better tested B-spline method.
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Figure 23: 2-D Interpolation errors of cubic convolution interpolation (left) and third-
order B-spline interpolation (right). The top graphs show 1-D slices through the
center of the image. B-spline interpolation exhibits smaller error and therefore is
more accurate.

Figure 24: 2-D Interpolation errors of 8-point windowed sinc interpolation (left) and
seventh-order B-spline interpolation (right). The top graphs show 1-D slices through
the center of the images. B-spline interpolation exhibits smaller error and therefore
is more accurate.
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SEISMIC APPLICATIONS OF FORWARD INTERPOLA-
TION

For completeness, I conclude this section with two simple examples of forward inter-
polation in seismic data processing. Figure 25 shows a 3-D impulse response of Stolt
migration (Stolt, 1978), computed by using 2-point linear interpolation and 8-point
B-spline interpolation. As noted by Ronen (1982) and Harlan (1982), inaccurate in-
terpolation may lead to spurious artifact events in Stolt-migrated images. Indeed, we
see several artifacts in the image with linear interpolation (the left plots in Figure 25).
The artifacts are removed if we use a more accurate interpolation method (the right
plots in Figure 25).

Figure 25: Stolt-migration impulse response. Left: using linear interpolation. Right:
using seventh-order B-spline interpolation. Migration artifacts are removed by a more
accurate forward interpolation method.

Another simple example is the radial trace transform (Ottolini, 1982). Figure 26
shows a land shot gather contaminated by nearly radial ground-roll. As discussed by
Claerbout (1983), Henley (1999, 2000), and Brown and Claerbout (2000a,b), one can
effectively eliminate ground-roll noise by applying a radial trace transform followed
by high-pass filtering and the inverse radial transform. Figure 27 shows the result
of the forward radial transform of the shot gather in Figure 26 in the radial band
of the ground-roll noise and the transform error after we go back to the original
domain. Comparing the results of using linear and third-order B-spline interpolation,
we see once again that the transform artifacts are removed with a more accurate
interpolation scheme.
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Fomel 22 Forward interpolation

Figure 26: Ground-roll-
contaminated shot gather used in
a radial transform test

Figure 27: Radial trace transform results. Top: radial trace domain. Bottom: resid-
ual error after the inverse transform. The error should be zero in a radial band from 0
to 0.65 km/s radial velocity. Left: using linear interpolation. Right: using third-order
B-spline interpolation.
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ACKNOWLEDGMENTS

A short conversation with Dave Hale led me to a better understanding of different
forward interpolation methods. Tamas Nemeth helped me better understand the
general interpolation theory.

REFERENCES

Biondi, B., Fomel, S., and Chemingui, N., 1996, Azimuth moveout for 3-D prestack
imaging in SEP-93. Stanford Exploration Project, 15–44.

—, 1998, Azimuth moveout for 3-D prestack imaging: Geophysics, 63, 574–588.
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