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Reflection seismology seeks to determine  the  structure of  the 
earth  from seismic records obtained at the surface.  The processing 
of these data by digital computers is aimed at rendering  them  more 
comprehensible  geologically. Seismic migration is one of these 
processes.  Its purpose is to "migrate" the recorded events to their 
correct spatial positions by backward projection or depropagation 
based on wave theoretical considerations. During  the last 15 years 
several methods have appeared on  the scene.  The purpose of this 
paper is to  provide an overview of  the major advances in this field. 
Migration  methods examined here fall in three major categories: I )  
integral  solutions, 2) depth extrapolation methods, and 3) time 
extrapolation  methods.  Within these categories, the  pertinent equa 
tions  and  numerical techniques are  discussed in some detail. The 
topic  of  migration  before stacking is treated separately with an 
outline of two different approaches to this important  problem. 

I .  INTRODUCTION 

The purpose of  migration is to reconstruct the reflectivity 
map of the earth from the seismic  data recorded at the 
surface.  The  seismic  signal recorded by a receiver (geo- 
phone) is a superposition  of seismic waves originating  from 
all possible directions in the subterrain. Thus the recorded 
events most often are not from reflectors directly below the 
receiver but  from geological formations far  away from  the 
point  of recording. The term migration refers to the move- 
ment  of the observed events to their true spatial positions. 
Migration is  an inverse process, in  which the recorded 
waves are propagated back to  the corresponding reflector 
locations. The concept of  migration can be summarized in 
the  following terms. In the process of seismic  data acquisi- 
tion the upward traveling waves  are recorded at the surface. 
In  the  migration process  these recorded waves  are used 
either as initial conditions or boundary conditions for a 
wavefield governed by the wave equation. As a result, these 
waves  are propagated backward and in reverse time, from 
the surface to the reflector locations. 

Until the 196Os, migration was achieved by graphical 
methods. This was followed by diffraction summation and 
wavefront migration based on ray theoretical considera- 
tions. In the 197Os, several important developments took 
place. Based on the  pioneering  work  of Jon Claerbout, 
migration methods based on wave theory were developed. 
Efficient  algorithms developed from  simplified finite-dif- 
ference approximations of the wave equations for down- 
ward  extrapolation. Another important processing advance 
was made by the introduction of Fourier transform meth- 
ods. These frequency-domain approaches proved to be 
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more accurate than  finite-difference methods in the 
space-time coordinate frame. At the same time, the  diffrac- 
tion summation  migration was improved and modified  on 
the basis of the  Kirchhoff integral representation of  the 
solution  of  the wave equation. The resulting  migration 
procedure, known as Kirchhoff migration, compares favor- 
ably with other methods. A relatively recent advance is  
represented by reverse-time migration, which is related to 
wavefront  migration. 

The aim of this paper is  to present the fundamental 
concepts of migration.  While it represents a  review of the 
state of the art, it is intended to be of tutorial nature. The 
reader is assumed to have no previous knowledge  of seismic 
processing.  However, some familiarity  with Fourier 
transforms and  their applications is  assumed.  The  organiza- 
tion  of the paper is as follows. First, the basic concepts of 
seismic data representation are introduced. Next, migration 
schemes  based on integral or summation methods are dis- 
cussed. Section IV deals with the derivation of the one-way 
wave equations. This is followed by the numerical aspects 
of  migration methods. Migration in object space, known as 
reverse-time migration, is presented in Section VI, and Sec- 
tion VI1 is devoted to migration before stacking. 

The effect of migration on a seismic section depends on 
the velocity and the  reflectivity structure of the subterrain. 
Flat, horizontal reflectors in a medium that has no signifi- 
cant velocity variations may not need to be migrated. On 
the other hand, seismic  sections from media having steeply 
dipping reflectors and strong lateral velocity variations need 
to be migrated  for correct interpretation. In the latter case, 
migration can have a profound impact on the image, as we 
shall see in the example of  model 2 (Figs. 11-14) to be 
discussed in Section V. 

11. REPRESENTATION OF SEISMIC DATA 

A.  Data Acquisition 

Reflection seismology is an echo-ranging technique. An 
acoustic source (shot) emits a short pulse and a set of 
recorders (geophones) register the reflected waves  at the 
surface. The time series (sampled)  data  associated with a 
single shot and receiver is known as a trace. In typical 
marine  exploration (Fig. I), a boat tows a source and a 
streamer of receivers. As it moves one-half receiver interval 
along a seismic line, it fires a shot and records the pressure 
at each receiver location. A trace is  associated with each 
shot  and receiver point. 

Let r be the horizontal coordinate of  the receiver and s 
be the  horizontal coordinate of the source. Both are mea- 
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Fig. 1. Relationship among the horizontal coordinates r,  5 ,  
x ,  and h.  All axes represent distances measured along the 
seismic line. Each dot  on the surface  corresponds to a 
seismic trace. 

sured along the seismic line. However, for mathematical 
reasoning, it is helpful to represent the receiver coordinate 
rand  the source coordinate s on orthogonal axes,  as shown 
in Fig. 1. We also define  the midpoint coordinate between 
source and receiver as x = ( r  + s)/2, and the source/re- 
ceiver half-offset coordinate as h = ( r  - s)/2. From  these 
equations we see that x and h are another set of axes 
rotated 45" with respect to the axes r and s. 

To understand the reason for migration  let us consider 
the ray paths associated with  two  point reflectors shown in 
Fig. 2. Each trace includes two wavelets at times t measured 
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Fig. 2. The seismic concept illustrated with  two point re- 
flectors. The recorded traces form a common-shot gather. 
The loci  of  the recorded wavelets represent two-way travel 
time as indicated. 

along  the raypaths from source to object and from there to 
the receiver. This  example clearly demonstrates that a trace 
consists of a superposition of seismic waves propagating 
from all possible directions. Consequently, the information 
regarding the cross section of  reflectivity must be  inferred 
from the  interrelationships among an ensemble of traces. 
To do this, we need efficient and accurate computational 
techniques to map the wavelets onto the  location of the 
reflecting objects. This mapping can  also be viewed as a 

reconstruction  of the wavefield at the  time  when  the reflec- 
tion  took place. In this process,  wave energy is being 
"migrated" over the ( r ,  s) plane shown in Fig. 1 .  

For practical and economical reasons, conventional 
seismic processing techniques have been developed for 
groups of traces, called gathers, aligned parallel with one of 
the four axes shown in Fig. 1. A set of traces with the same 
source ( s  = constant) form  a common-shot gather.  The 
traces are also  rearranged into common-midpoint (CMP) 
gathers  or common-offset gathers as shown in Fig. 1. The 
reason is that  the two standard operations that are responsi- 
ble  for the transferring of wave  energy to its proper position 
are stacking of the CMP  gathers  and migration of  the 
resulting stacked CMP section. Stacking shifts energy with 
respect to  the offset axis, and migration shifts energy with 
respect to  the  midpoint axis.  The  reason for performing 
these operations separately is economic. Ideally, they should 
be  performed together as discussed in Section VII. 

B. Stacking 

Stacking consists of the summation of the traces of each 
CMP gather after correcting them to compensate for the 
offset  between source and receiver.  This is known as the 
normal  moveout (NMO) correction. The NMO process is 
illustrated on  the idealized model shown in Fig. 3. The 

L 

Fig. 3. Illustration of NMO correction and stacking. The 
traces of the CMP gather are summed along the NMO 
hyperbola as indicated. The normalized stacked  trace is 
plotted at h = 0. 

wavelets indicate reflected events from the horizontal plane. 
Their two-way travel time is given by 

t2( h) = t: + - 4h2 
l,J 

assuming that  the velocity of wave propagation v i s  con- 
stant. This equation is  the NMO hyperbola. The difference 
between  the  reflection time observed for an offset 2h and 
that  corresponding to h = 0 is the NMO correction, i.e., 

AtNMo t( h) - to 

When this  amount  of  time shift is  applied to the wavelets 
shown in Fig. 3, apart from a  minor  distortion effect, they 
appear as if they were recorded with coincident source  and 
receiver, i.e., h = 0. The NMO corrected traces  are then 
summed, or stacked. The ensemble of stacked  traces along 

CAZDAC  AND  SCUAZZERO:  MlCRATlON O F  SEISMIC DATA 1303 



the  midpoint axis is referred to as the CMP stacked section. 
A very important benefit of this operation is the significant 
improvement  in the signal-to-noise ratio of the CMP sec- 
tion  in comparison with the unstacked  data. 

C. The  Exploding  Reflector Model 

A CMP section may  be  regarded as data obtained  from 
coincident sources  and  receivers ( h  = 0), as shown in Fig. 
qa).  In this zero-offset model, the energy travel path from 
source to reflector is identical to that from reflector to 

lX 
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Fig. 4. (a)  The CMP section may be regarded as data ob- 
tained  with  coincident (zero-offset) sources and receivers. 
(b) The exploding reflector model of the CMP data for 
migration. 

receiver. The assumption is  that all sources  are activated 
simultaneously, but each  receiver  records  signals originating 
from the same source-receiver point. 

Such zero-offset data do not correspond to any wavefield 
resulting  from a single experiment. As a result, it i s  helpful 
to create a hypothetical physical experiment to provide an 
intuitive  picture of zero-offset migration. Such  an experi- 
ment is known as the “exploding reflector model” [I]. In 
this model, shown in Fig. qb), the energy sources  are not at 
the surface, but they are distributed along the  reflecting 
surfaces. In other words, the reflectors are represented by 
buried sources, which are activated at the same time t = 0. 
Therefore, one needs to be concerned only  with upward 
traveling waves.  Since the record section involves two-way 
travel time, it needs to be converted to oneway travel 
time.  In practice, the  time scale of CMP  sections is kept 
unchanged. Instead, the velocity of wave propagation is  
scaled down  by a factor of two. 

I\\. INTEGRAL METHODS FOR MGRATION OF CMP DATA 

With the help of  the  exploding reflector model outlined 
above, migration of CMP  data  can be defined as the map- 
ping of the wavefields recorded at the surface back to their 
origin at t = 0. The  basic theory of wavefield reconstruction 
is  due to Hagedoorn [2]. Based on his  ideas, graphical 
methods were developed, which were later implemented 
on  digital computers. Our objective is to describe two 
simple classical methods followed by that of  the  Kirchhoff 

method, which is based on an integral representation of the 
solution of the wave equation. First, however, a geometric 
view of  wavefield reconstruction is studied in some detail, 
though at  an introductory level. Our  guiding  principle is  to 
convey  the concepts of  migration in a simple descriptive 
manner. The specific techniques used to implement these 
ideas in the  form of practical and efficient computer pro- 
grams  are not considered in this paper. 

A. Geometric  View of Wave  Reconstruction 

Let us consider the space-time distribution of energy in a 
simple seismic experiment shown in Fig. 5. The (x ,z )  object 
plane represents the cross section of the earth, and the 
( x ,   t )  image plane is the record section. In the example 
shown, there is one point diffractor in the  object plane. 
When such a point diffractor is excited by a surface  source, 
it sets off  outgoing waves in all directions. Using the ex- 
ploding reflector model, such a diffractor can  be approxi- 
mated by a buried  point source. Using v/2 as the  velocity 

Fig. 5. The space-time distribution of the energy of a  point 
source activated at t = 0 forms a cone. The intersection of 
this  cone with the image plane z = 0 defines the diffraction 
hyperbola. 

of wave propagation, the waves observed  and recorded at 
z = 0 result in a zero-offset image of the diffractor. 

Assuming that v = constant, after the point source is set 
off at t = 0, the resulting wavefronts are concentric circles, 
which expand with increasing time, as shown in Fig. 5. 
From this diagram it is seen that the space-time ( x , z , t )  
distribution  of the wave  energy lies on a cone.  The intersec- 
tion  of this cone with the z = 0 plane is a hyperbola 
expressed by 

The upward propagating part of  the energy from  the point 
source lies along a hyperbola in the record section. The 
objective of migration is to recreate from  the observed data 
in the image plane the  situation that existed in the  object 
plane at t = 0. In other words, migration may be regarded 
as a  procedure of mapping  the wave  energy distributed 
along  diffraction hyperbolas into the loci of the correspond- 
ing  point sources. 

Another way to establish the relationship between  the 
recorded image and the  object i t  represents is to examine 
the significance of a point, say a delta function,  in  the 
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inout t r a c e s  

Fig. 6. The space-time distribution of the energy of an 
inward propagating  circular wavefront (centered at z = 0) 
lies on a cone. At  time Tall the energy is focused in the 
neighborhood of a point. The reverse of this  process  forms 
the  basis of wavefront migration. 

image space. Consider the  half-circle centered at z = 0 
shown  in Fig. 6. The initial conditions at t = 0 are arranged 
so that  the acoustic energy distributed uniformly along the 
half-circle propagates inward, forming smaller concentric 
semicircles, until at t = T the energy is focused in one 
point. Thus the energy  observed at  some t = T on the 
image  plane may be thought of as being  originated from a 
wavefront lying  on a half-circle centered at z = 0 and 
having  a radius r = vT/2, as shown in Fig. 6. Consequently, 
in the process of reconstructing the wavefront of t = 0, a 
point  of the image plane must be mapped onto a half-circle 
in  the  object plane. This  means that a point diffractor in the 
subsurface would cause a hyperbolic seismic  event, but a 
point  on a seismic section must have been caused  by a 
half-circle  reflector in the subsurface. 

B. Classical Methods  of  Migration 

We have  seen that for a constant-velocity medium the 
zero-offset  record section of a point reflector is char- 
acterized by a diffraction hyperbola. Thus to account for all 
the energy due to the point source in estimating its in- 
tensity, we  perform  the following summation. For  each 
( x , z )  point  of the  object plane, we construct a diffraction 
hyperbola in the image plane. We determine where the 
hyperbola intersects each  trace. Then we take the value of 
each trace at the  point of intersection and sum all these 
values together. The result of this summation is taken as the 
value of  the migrated section at (x,z), and this value is 
placed in the object plane at that point. This method is 
called diffraction summation (or diffraction  stack) migra- 
tion and represents a straightforward, albeit not theoreti- 
cally sound, approach. Fig. 7 shows how, in diffraction 
summation  migration, an output trace is generated from  the 
input traces.  The input traces  represent the stacked section, 
whereas the  output traces define the  depth section. 

It  should  be  noted that, in practice, depth is  most often 
measured in units  of the two-way vertical travel time, 
T = 2z/v. Under the constant velocity assumption, T corre- 
sponds to  the apex of  the diffraction hyperbola. Thus dif- 
fraction summation  migration amounts to summing wave 
amplitudes  along  the  diffraction hyperbola and mapping 
the result at the apex of  the same hyperbola. 

Fig. 7. Diffraction summation migration.  The input traces 
are summed  along  the diffraction hyperbola  corresponding 
to a single scatterer at location x to produce an output trace 
at  each location x .  

A counterpart  of  diffraction  migration is wavefront inter- 
ference migration, which can  be understood from  the geo- 
metrical view shown in Fig. 6. This approach to migration is 
based on  the observation that each point  in the image 
plane must be mapped into a semi-circle in the object 
plane. Thus the wavefront method [3] is  a “one to many” 
mapping. For the constant velocity case, the procedure is  
the  following. We take a sample of a seismic  trace in the 
record section and distribute it over a semi-circle (equal 
travel times) in the object plane as illustrated in Fig. 8. 

i npu t t races 

output  t races 
Fig. 8. Wavefront  migration. Each input trace is mapped 
onto a semi-circle corresponding  to  the proper wavefront. 

The diffraction summation and the wavefront inter- 
ference methods had notable success in the late 1960s and 
early 1970s [4].  They also  have a number of undesirable 
characteristics [3, p. 1241.  The  reason for their shortcomings 
is rooted in  the fact that while these migration procedures 
make good sense and are intuitively obvious, they are not 
based on a completely sound theory. 

C.  The Kirchhoff Method 

The Kirchhoff integral theorem expresses the value of the 
wavefield at an arbitrary point  in terms of the value of  the 
wavefield and its normal derivative at all points on an 
arbitrary closed surface surrounding the point [5, p.  3771. In 
practice, measurements are  made only at the surface, there- 
fore, instead of a closed surface, the integration must be 
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limited  to  the surface of  the earth. furthermore, in seismic 
practice, only the wavefield is recorded, and its normal 
derivative is not axtailable.  The Kirchhoff integral can  be 
expressed more easily for three-dimensional data,  i.e., where 
the pressure wavefield is defined over some area of the 
earth’s surface rather than along a line as we assumed in the 
two-dimensional case. Let p(x, y,z = 0, t )  be the recorded 
data, where  x and yare surface coordinates, z is depth, and 
t is time. Then the migrated wavefield at  some point 
(xl, y,, z,, t) is obtained  from the following expression [6], 
VI, [8, P. 1251, PI, as: 

P(xly,,zl,t= 0) 

=jj=?g (x,y,z= O , t =  r/c)dxdy (4) 

where 

r = [(x, - x)’ +( y, - y)2 + z:] 1 /2 

c =. v/2 is the half velocity (assuming that t is  the  two-way 
travel time), and 9 is the angle between  the  z axis and the 
line  joining (xl,  y,,zl) and (x,y,z= 0). 

To obtain  the two-dimensional version of (4), one must 
assume that p i s  independent of y. After integrating with 
respect to y, one obtains the following asymptotic ap- 
proximation [8, p. 1261: 

p ( x , , ~ ~ , t = O ) - / - ~ a : / ~ p ( x , z = O , t = ~ / c ) d x  cos 9 G 
(5) 

where a:/2 denotes the half derivative with respect to t. A 
simple expression for the operator a:/’ can be given in the 
frequency domain, where the transfer function of is  
given by 

It should be observed that, apart from the half-derivative 
operator and a weighting factor, (5 )  represents an integra- 
tion along  the diffraction hyperbola. In this respect it is 
quite similar to the  diffraction summation method. It is  
important to note, however, that the Kirchhoff  method 
yields  significantly higher quality  migration than the  diffrac- 
tion summation approach discussed earlier. 

When  the propagation velocity  c varies with the space 
coordinates x, y, and z, (4) and (5) must  be suitably gener- 
alized. for instance, in  two dimensions we  obtain [IO] 

P(Xl,Zl,t = 0) 

= jWa; /*p(x ,z=O,t= T(x, ,z , ,x ,z=~))~x (7) 

where W i s  a weighting factor, and T( x,, z,, x ,  z)  represents 
the  two-way travel time measured along a raypath that 
connects the  points ( xl,zl) and (x,z) obeying Fermat’s least 
time  principle [ 5 ,  p. 1281. 

arranging these traces into some kind of gathers  or con- 
stant-offset sections. The computer generation of seismic 
data calls for the solution of the equations governing the 
wave propagation in the medium  defined in the  model 
under consideration. It is  important, however, to ensure 
that  the modeling is  not simply an inverse of the migration 
from the  numerical and algorithmic point of view. Other- 
wise, errors in the forward process  may  be partially canceled 
in  the inverse process, which can lead to incorrect error 
estimates. To avoid these pitfalls, the synthetic seismic 
records presented in this paper are obtained by means of an 
algorithm that permits the computation of two-way reflec- 
tion times with precision limited  only by roundoff error. 

In our approach to forward modeling, the  reflecting ob- 
jects are represented by scattering surfaces in three dimen- 
sions,  or lines in two-dimensions. The utility of approximat- 
ing a  continuous  reflecting sheet  by discrete scattering 
points.in a scaled  seismic  test tank was shown by Gardner 
et a/. [ I l l .  The computer  implementation of this method is 
based upon  the ray theory of  diffraction and the superposi- 
tion  principle. The modeling of a complex subsurface re- 
flectivity structure is done by representing it as a set of 
independent  point scatterers. To obtain the zero-offset sec- 
tion  of an elementary diffractor, .following the exploding 
reflector  principle, rays  are traced in every direction  through 
the  medium  up  to the surface. A wavelet whose amplitude 
is proportional to the strength of  the  diffractor is  assigned 
(after taking into account geometrical spreading) to the grid 
point of the  time section corresponding to the arrival of  the 
ray  at the surface.  The contributions  of all point diffractors 
are then summed to obtain the zero-offset section of  the 
structure. 

An example of this modeling approach is Model 1 repre- 
senting a syncline shown in  fig. ?a).  The synthetic zero-off- 
set section of  Model 1 is shown in Fig. yb), assuming a 
uniform velocity  of  v = 3 km/s. Fig. 10 illustrates the same 

0 2 4 6 8 1 0 1 2  
r 

x (km) 

:j 3 v 

0. Synthetic Seismic  Records 

As we have  discussed  earlier, migration is an inverse 
process. To test a  migration scheme  and  evaluate its perfor- 
mance, we need a set of seismic data,  e.g., a zero-offset 
section obtained from an idealized model with  known Fig. 9. (a) Schematic of representing a sync,ine in 
reflectivity and velocities. This is usually done by simulating a constant velocity medium, (b) Synthetic zero-offset time 
the forward process, collecting  the results into traces, and section of Model 1. 

( 4  
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Fig. 10. Migrated section obtained from the zero-offset 
section of Model 1 (Fig. 9(b)) by  means  of the Kirchhoff 
method. 

section after migration using the Kirchhoff summation 
method.  We  note that all the wave  energy is  distributed 
along the syncline, which demonstrates the  high accuracy 
that can be expected from the Kirchhoff  migration ex- 
pressed by (4) and (5). 

Iv. WAVE-EQUATION MIGRATION IN IMAGE SPACE 

Since we are dealing with wave phenomena, as one can 
reasonably expect, migration can  also be described as a 
method of obtaining the numerical solution  of some par- 
tial-differential equation. These partial-differential equa- 
tions can be solved numerically either in the image  space 
or in the  object space. For historical and practical reasons, 
migration schemes formulated in image space  are consider- 
ably more popular  than those defined in object space. A 
variety of  migration techniques based on solving a wave 
equation over a computational  grid in image space  has 
evolved in the last  decade  or so. These methods are gener- 
ally  referred to as wave-equation  migration. This  name  can 
be  misleading since it seems to suggest that the  Kirchhoff 
method is not based on wave theory. To be sure, all 
migration methods with solid theoretical foundation must 
be, by  definition, wave-equation methods. 

In what follows we shall derive the equations for wave 
extrapolation  under the simplifying assumption that the 
velocity  of  the medium has no lateral dependence. The 
treatment of laterally varying media will be presented in  the 
latter part of  the paper.  The equations under consideration 
are for extrapolation  of seismic  data obtained from  multiple 
sources and multiple recorders as illustrated in Fig. 1. 

A. Equations for  Wavefield Extrapolation 

We shall follow the  notation used in describing the data 
acquisition illustrated in Fig. 1. We let r and s be the 
horizontal coordinates of the receiver and the source, re- 
spectively. We also define  the midpoint coordinate x = 
( r  + s)/2 and the half-offset h = ( r  - s)/2.  The variable z 
represents depth  into the ground. We let p(r,  s, t, z,,z,) 
represent the wavefield, where z, and z, are depth coordi- 
nates for recorder and sources, respectively. For fixed 
sources, the waves  seen by the recorders are governed by 
the scalar wave equation 

in  which v stands for the velocity  of wave propagation. The 
reciprocity  principle permits the interchange of sources and 
receivers. Using this principle and fixing  the receivers we 

can  express the behavior of the waves in terms of 
source coordinates as 

the 

Assuming that the velocity function has no lateral L 

tions, that is, i t does not depend on r and s, we 
Fourier-transform (8) and (9) with respect to r ,  s, and t. 
operation gives 

faria- 
may 
This 

and 

where k ,  and k,  are the wavenumbers (or spatial frequen- 
cies) with respect to r and s, respectively, and w is the 
temporal frequency. P ( k , ,  k,, w ,  zr,  z,) i s  the Fourier trans- 
form of p( r ,  s, t, z,, z,). 

Equations (IO) and (11) have two independent solutions 
that propagate in opposite senses in ( r ,  s, t) space. One 
moves in  the positive t-direction, the other in the negative 
t-direction. These  pairs of solutions are generally referred to 
as upgoing and downgoing waves  [12, p. 1691, [13, p. 4281. 
We reconstruct the wavefield by lowering the source and 
recorder coordinates to the  location  of  a reflector under 
consideration [14]. Coincident source and recorder posi- 
tions  imply t = 0. Therefore, the only meaningful solution 
is the one that returns to zero time, the one that represents 
regressing waves when  moving  downward. The one-way 
wave equations that govern these  regressive  waves  are 

and 

where  we have introduced 

to  simplify  the notation. 
When recorders and  sources  are lowered simultaneously, 

their  position may  be denoted by a common depth coordi- 
nate z, i.e., one may let 

z, = z and z, = z. (1 5) 

This permits us to write 

Substituting (12) and (13) into (16) we obtain 

which expresses the simultaneous downward extrapolation 
of recorders and sources.  This  expression is  known as the 
doublesquareroot equation [15]. The solution  of (17) can 
be expressed as 
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v. NUMERICAL METHODS FOR ZERO-OFFSET MIGRATION IN 

IMAGE SPACE 

Migration  of zero-offset seismic  data in image space can 
be summarized as follows. The zero-offset data are  ex- 
trapolated from  the surface downward  to some depth z = 
nAz  in n computational steps.  The  wave extrapolation calls 
for  the numerical  solution of (26) or some approximation 
thereof. The computations are performed in the image 
space, using the zero-offset section as initial  condition.  In 
this process, as z increases, recorded events are shifted 
laterally toward thier correct position as they move in the 
negative t direction.  Downward extrapolation to depth  z 
results in a  wavefield that would have been recorded, i f  
both sources and recorders  had been located at depth z. 
Thus events appearing at t = 0 are  at their correct lateral 
position. Therefore, the extrapolated zero-offset data  at 
t = 0 are taken as being  the correctly migrated data at the 
current  depth. These data ( t  = 0) are then mapped onto the 
depth section at  z, the  depth  of extrapolation. This map- 
ping process is also referred to as imaging. Since imaging is 
a standard procedure, migration schemes differ from each 
other  in  their approach to wave extrapolation, the  complex- 
ity  of  which depends largely on  the migration  velocity 
function. 

If  the migration  velocity has no horizontal dependence, 
the extrapolation of zero-offset seismic  data  can  be ex- 
pressed by the exact wave-extrapolation equation (26) in 
the wavenumber-frequency domain. This equation has a 
simple analytic solution, whose implementation calls for  a 
phase shift  applied to the Fourier coefficients of the zero- 
offset section. In the presence of lateral velocity variations, 
the exact wave-extrapolation equation (26) is no longer 
valid. To circumvent this problem, the exact  expression  can 
be approximated by truncated series expansions [16],  [18], 
which can accommodate horizontal  velocity variations. 
These equations are then solved numerically, either in the 
space-time domain or in the space-frequency domain. 

+(I - K:)~’~] Az) 

If  the data are defined in the (x, h )  domain, it is desirable to 
express K, and K, as functions of k, and k,, which are the 
wavenumbers with respect to x and h, respectively. Using 
the relationship among receiver and source coordinates r 
and s, and midpoint and half-offset coordinates x and h, 
that is 

x = ( r + s ) / 2  h= ( r - s ) /2  (1 9) 

we  find 

Once  the surface  data  have been extrapolated by means 
of (18) to  the entire half-space z > 0, migration can be 
accomplished by imaging the wavefield at t = 0, r = s. 
Thus the correctly migrated zero-offset data are given by 

p ( x , h = O , t = O , z ) = ~ ~ ~ P ( k , , k h , w , z ) e x p ( i k , x ) .  
k z  k h  * 

(21) 

B. Wave Equation for Zero-Offset  Data 

In current seismic practice, chiefly for economic reasons, 
migration is performed after NMO and stacking on CMP 
sections. The NMO correction transforms data into zero- 
offset under the assumption that 

p ( x , h , t ’ , z = O ) = p ( x , h = O , t , z = O )  (22)  

in  which t’ differs  from t by the amount of  the NMO 
correction, i.e., 

t’ = t + AtNMo (23) 

where AtNMo i s  defined by (2) and illustrated in Fig.  3. If 
we  let p denote  the NMO corrected version of p, then in 
view  of (22), p can be regarded as being  independent of h 

P ( x , h , t , z = O ) = p ( x , h = O , t , z = O ) .  (24) 

Therefore, i ts Fourier transform is zero for all nonzero 
wavenumbers kh, i.e., 

~(k , ,kh,w,Z=O)IO,   fOrkh#o.  (25) 

Note that (17) is still the correct extrapolation equation  for 
F. Substituting (20) into (17) and using (25) we obtain 

The one-way wave equation (26) is  the fundamental equa- 
tion  for  downward extrapolation of zero-offset data. It is 
expressed in the wavenumber-frequency domain (k,,o), 
and does not have  an explicit representation in the mid- 
point-time  domain ( x ,  t ) .  We have obtained it as a special 
case of a general extrapolation equation for multioffset 
data. It can also  be  easily derived by making use of  the 
exploding reflector model of zero-offset data as shown 
elsewhere [16],  [19]. It should be  observed that the  velocity 
variable that figures in (26) is the half velocity, as one would 
expect, from  the exploding reflector model for zero-offset 
data. 

A. Migration  in the (k,, 0 )  Domain 

Letting p(x, t,z = 0) represent the zero-offset section and 
P(k,,u,z = 0) its double Fourier transform, the wave- 
extrapolation  equation (26) becomes 

The problem is to reconstruct the wavefield p(x ,  t = O,z), 
which existed at t = 0 from  the  wavefield p(x ,  t , z  = 0) 
observed at z = 0. We shall assume that within one ex- 
trapolation step, say from  depth z to z + Az, the  velocity is 
constant, i.e., 

v(S) = constant, z g S < z + Az. (28) 

Then the  solution of (27) can be expressed as 

P(k,,o,z+ Az) = P(k,,o,z) 

( 29) 
in which P( k,, a, z) is the zero-offset section extrapolated 
to  depth z. This analytic solution states that P is extrapo- 
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lated from z to z + Az by simply rotating its phase by a 
specified  amount. Therefore, migration schemes  based on 
this  principle are referred to as phase-shift methods [19], 
[20]. From P( k,, o, z) we obtain p ( x ,  t = 0,z)  by inverse 
Fourier transform with respect to k, and a summation with 
respect to o, i.e., 

p (x , t  = 0 ,z )  = ~ ~ P ( k , , w , z ) e x p ( i k , x ) .  (30) 
k 0 

Although (29) i s  valid only under the assumption expressed 
in (28), the velocity can  vary from one Az step to another. 
Thus the phase-shift method can accommodate media with 
vertical velocity variations, i.e., in  which v = v(z). 

Under  certain circumstances, it may be acceptable to 
migrate with a velocity that is constant over the  entire 
domain (object plane) of interest. This uniform migration 
velocity assumption, if properly exploited, enables one to 
develop a very efficient migration  algorithm. This migration 
scheme, often referred to as the F-K method, was first 
reported  by Stolt [21]. Essentially, it is  a fast “direct”  method 
for the evaluation  of (29) and (30). Let us rewrite (29) using 
z  and  z = 0 in place of z + Az and z, respectively, i.e., 

P(k,,o,z) = P(k,,o,z=O)exp(ik,z) (31) 
where 

which represents the dispersion relations of  the one-direc- 
tional wave equation (27). The migrated section p(x ,  t = 
0,z) can be obtained  from P(k,, o , z  = 0) as follows: 

p ( x , t = O , ~ ) = / / d o d k , P ( k , , w , z = O )  

eexp { i [  k,( w ) z  + k,x]} (33) 

which corresponds to (30), except that the summations are 
replaced by integrations. In order to take advantage of  the 
fast Fourier transform (FFT) algorithm, we want to integrate 
(33) with respect to k, instead of a. Using (32) we can 
rewrite (33) as 

p( x ,  t = 0 ,z )  = // dk,  dk, i( k,,  k,) exp { i [  k,z + k,x]} 

(34) 
where 

4k,,k,) = 
Vk, 

2[ k t  + k:]’” 
P(kx,w,z= 0). (35) 

In summary, the F-K method consists of three steps: 

1) the Fourier transformation of p(x ,  t ,z  = 0) to obtain 

2) the  interpolation and scaling of the Fourier coeffi- 

3) the inverse FFT of the interpolated results as expressed 

P(k,,w,z = O), 

cients as expressed in (35), 

in (34). 

Migration  with this fast method is  limited  to homogeneous 
media with constant velocity. To overcome this limitation, 
Stolt [21] suggested coordinate transformations to cast the 
wave equation in a form that is  approximately velocity 
invariant. 

8. Migration in the (x, w )  Domain 

As we have seen, in the absence of horizontal velocity 
dependence, the set of independent ordinary differential 
equations (27) governs the extrapolation of the zero-offset 
seismic data in the (k,,w) domain. The simple analytic 
solution expressed by (29) i s  not valid for velocity fields 
with lateral variations. In this case, the square-root expres- 
sion in (27) must be approximated in some form, for in- 
stance, by a quadratic polynomial (Claerbout’s [22] para- 
bolic approximation). The expansion can then be formally 
converted into a numerical method in the ( x , o )  domain. 
After  the approximation, the  velocity v is allowed to vary 
with x as well as with z, and a wave-extrapolation equation 
for general media is obtained. 

Another alternative is rational approximation by trun- 
cated continued fractions [23]. In this latter approach, an 
approximation  of (27) is 

(36) 
A practical approach to solving extrapolation equations like 
(36) is by Marchuk  splitting. This is done by decomposing 
(36) into  two extrapolators 

which is known as the thin lens term, and 

(37) 

which is the Fresnel diffraction term. Advancing to greater 
depths i s  done by applying (37) and (38) alternately in small 
Az steps. Equation (38) can  be  expressed in the ( x , ~ )  
domain first eliminating fractions and then Fourier trans- 
forming  it  with respect to k,. The result is 

At each step Az, (37) advances P through the multiplication 
by a phasor corresponding to a shift backward in time of 
magnitude AT = 2Az/v. To  advance P with (39), for 
numerical  stability considerations, an implicit Crank- 
Nicolson difference scheme is most often used. 

The approximation  of the square-root operator in (27) 
with  the rational operator appearing in (36) and the 
finite-difference implementation  of (39) alter the dispersion 
relations of  the wave equation and  generate numerical 
errors increasing with the expansion parameter sin9 = 
vkX/2w,  where 9 represents the angle with respect to  the 
vertical axis of the wavefront under consideration. When 
the dip of  the imaging  wavefield exceeds 40“-45’, disper- 
sion effects separate the low frequencies from  the  high 
frequencies during the wavefront depropagation. As a re- 
sult, the image of steeply dipping reflectors may  be accom- 
panied  by “ghosts.” The phenomenon is  demonstrated 
through a numerical example, the  model of  which is  
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depicted  in Fig. 11. The synthetic zero-offset section of the 
model is shown in Fig. 12. The migrated depth section 
obtained  by a finite-difference  implementation  of (37) and 
(39) i s  illustrated in Fig. 13. Note that the non-steeply 
dipping events are  clear, but the steeply dipping event has 
“ghosts.“ 

Better dispersion properties can be  obtained including 
higher order terms in the formal expansion [16]. An alterna- 
tive approach to wavefield extrapolation in general media is 
described in [24]. A t  each Az step, the wave extrapolation is 
accomplished in  two stages. In the first stage the  wavefield 
P( x, w ,  z) given at depth z is extrapolated to z + Az by the 
phase-shift method using G reference velocities v,, y;.., v, 
spanning the velocity range  at depth z. This  stage  generates 

0 L 4 6 8 10 12 9 

x (km)  

2 r >  

v = 2 . 0  

v = 3 . 0  

41 v - 4.0 
2 r >  

v = 2 . 0  

v = 3 . 0  

41 v - 4.0 
i 

6 %-( km) 

Fig. 11. Schematic of model 2, representing a dipping  mul- 
tilayer  example.  The thick-line segments  indicate  where  the 
reflector segments have been ”turned  on.” 
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Fig. 14. Depth  migration section obtained from the time 
section shown in Fig. 12 using  the  phase  shift plus interpola- 
tion method. All reflectors are migrated  correctly. 

G reference extrapolated wavefields at z + A z ,  namely, 
4,  e , - - - ,  P(. in the second stage, the  definitive  wavefield 
P ( x ,  w,z  + A z )  i s  constructed by  interpolation  of the G 
reference wavefields. This  phase shift plus interpolation 
(PSPI) method is unconditionally stable and has good dis- 
persion  relation properties worth its relatively high compu- 
tational cost (for each frequency w ,  and for each  step in 
depth, G+ 1 Fourier transforms in the x direction are re- 
quired). The synthetic zero-offset section of Fig. 12 migrated 
with  the PSPI method is shown in Fig.  14. One can notice 
significant  improvement in the  migration of the steeply 
dipping reflector in comparison with the one shown in 
Fig. 13. 

C. Migration  in the (x, t )  Domain 

Migration as a wave depropagation process is best de- 
scribed in the “transformed” domains ( k , , w )  and ( x , @ ) .  It 
was introduced, however, in the early 1970s using paraxial 
wave equations in the “physical” space-time ( x , t )  [22], 
[14]. We  will reproduce here  those equations, deriving  them 
from their  frequency-domain counterparts. 

An inverse Fourier transform of the wavefield P ( x , o , z )  
in (37) and (39) results in the following  two equations in 
terms of p ( x ,  t ,z):  

Fig. 12. Zero-offset  time section of  model 2 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 
x(krnl 

w z + - - = 0 .  a Z p  a z P  
4 a 2  

Fig. 13. Depth  migration  obtained from the  zero-offset time 
section of model 2 shown in Fig. 12. The ( x , o )  domain 
finite-difference migration method  used  in  this  example 
corresponds to (37) and (39). Note that  the steeply dipping 
reflector is not imaged  correctly. 

a+--=--. v a 3 p  v2 a 3 p  
at2az 4 ax2& 16 a x 2 a z  

(41) 

For gentle dips, the  right-hand side of (41)  can be ne- 
glected, and it becomes 

Equations (40) and (41) or (40) and (42) are specialized wave 
equations  that depropagate wave  energy only within a 
small angle about the vertical axis, hence are called paraxial 
approximations: details on their numerical integration with 
finite-difference methods can  be found  in [12, pp. 211-2121. 

Seismic interpreters often  find  it useful to  work  with 
subsurface migrated sections with depth measured in units 
of time,  for ease of comparison with unmigrated CMP 
sections. Such  maps  are obtained by introducing a pseudo- 
depth r (vertical travel time) which is related to true depth 
z by 
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( 43) 

where V(z) i s  an approximation, independent  of x ,  of  the 
velocity v ( x , z ) .  With the introduction  of the vertical coor- 
dinate T and the  help of an additional approximation, (40) 
and (42) become 

Wavefield  extrapolation with (44) and (45) lead to time 
migration as opposed to depth migration obtained with 
(40) and (42). Time migration schemes depropagate the 
wavefield as i f  the  medium were horizontally layered and 
do  not correctly refract rays at the  velocity interfaces, but 
constitute a viable and economic tool in most practical 
situations. An excellent example of  finite-difference (time) 
migration  of a CMP  stack section is illustrated in Figs. 1 5  
and 16. Notice the decrease in  width of the diffractions on 

8 8 

stack TraceSpacing=33m 

Fig. 15. CMP stacked section from data recorded in  the 
Santa  Barbara channel. Steepest dips are approximately 25”. 
(From Hatton et a/. [17]; courtesy of Western Geophysical.) 

M(g- TraceSpacing=33rn 

Fig. 16. Finite-difference  time  migration of the CMP sec- 
tion illustrated in  Fig. 15. (From Hatton et a/. [17]; courtesy of 
Western Geophysical.) 

the  right  hand of the migrated section and the develop- 
ment  of synclines at the  left.  When a better  positioning is 
required, after time migration, a correction is made using 
Hubral’s image ray time-to-depth conversion, [25, p. 1031, 
[26],  [27].  The solution of (44) can be written as p( x ,  t ,  T + 
AT) = p ( x ,  t + A7,7) which represents a uniform translation 
of the  wavefield p along the negative t axis as T increases. 
There is no need to perform this time shift explicitly. 
Equation (44) can  be accounted for by imaging the data  at 

t = T ,  rather than at t = 0. Time migration methods based 
on this  imaging  principle are often described as being 
solved in a “downward moving” coordinate frame. 

VI. WAVE-EQUATION MIGRATION IN OBJECT SPACE 

Migration  of zero-offset data p ( x ,  t ,z  = 0) is  accom- 
plished by the methods described in Sections IV and V 
through a downward extrapolation of surface  data.  Advanc- 
ing  in depth, image plane sections p ( x ,   t , z  = const) are 
computed and the final migrated section is  given by the 
extrapolated  wavefield at time zero p ( x ,  t = 0,z). An alter- 
native approach calls for a reversetime extrapolation of  the 
wavefield  using  the CMP section as a boundary condition. 
Marching backward in time, object plane sections (time- 
slices) p ( x ,  t = const, z )  are computed. Calculations begin 
at time T, which defines the last  sample of  the record 
section, and continue  in the negative t direction until  time 
zero. At that time the amplitudes in object space are con- 
sidered as the final migrated section. 

In this section, dealing with reverse-time migration, for 
the sake of clarity, we shall deviate slightly from the nota- 
tions used throughout this paper.  We  shall let 9 ( x ,  t )  repre- 
sent the stacked CMP  data,  and p ( x , t , z )  the wavefield. 
Consequently, p( x ,  t = 0, z )  will represent the migrated 
CMP section. 

In object space, just as in image space, migration schemes 
differ  from each other only in the type of wave equations 
being used for wave extrapolation. For example, Hemon 
[28] and McMechan [29]  suggested the “full” wave equation 

which corresponds to our (8)  or  (9)  expressed in the mid- 
point variable x .  This equation is  then integrated numeri- 
cally with  the  following  initial conditions: 

p ( x , t =   T , z )  = 0 ,  f o r z t o  ( 47) 
and 

q x , t  = T,z) = 0. 
at (4.8) 

p ( x , t , z = O )  = q ( x , t ) .  ( 49) 

The boundary  conditions at the surface  are given by 

The problem  with (46) is that it allows for reflections from 
interfaces where  the velocity changes rapidly. We recall 
that the  exploding reflector model shown in Fig. 4 assumes 
that  the surface record includes only upward propagating 
waves. Therefore, in the depropagation phase all wave 
components  should move downward  in reverse time, and 
no  upward reflected waves are admissible. This problem 
can be easily avoided if one uses, instead of (46), a one- 
directional wave equation. Baysal et a / .  [30] and Loewenthal 
et a/. [31] used an equation for downward propagating 
waves 

* at  = ‘ ( ~ ’ i k , [ l  2 +( kx/k , )2 ]1 ’2 .F)p  (50) 

where 9 and 9-’ are operators representing the double 
Fourier transform from the ( x , z )  domain to the ( k , , k , )  
domain and its inverse. Unfortunately, (50) cannot be writ- 
ten  without the transform operators 9 and s-’, since the 
multiplication  in the Fourier space by ik,[l + ( k x / k , ) 2 ] 1 / 2  
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cannot  be expressed in the (x , z )  space. Further details 
regarding (50) and its numerical solution are found  in [32] 
and [33]. The initial and boundary conditions for reverse- 
time  migration  with (50) are given by (47) and (49), respec- 
tively.  Using  a  third-order Runge-Kutta algorithm, for ex- 
ample, to solve (50) on the zero-offset section shown in Fig. 
12 generates the migrated depth section illustrated in Fig. 
17. 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 
d k m l  

0.0 

20 

4.0 

6.0 

Fig. 17. Depth  migration section obtained  from the time 
section  shown in Fig. 12  using reverse-time migration based 
on (50). 

Another approach to reducing reflections was reported 
by Baysal et  al. [35], who propose the use of  a two-way 
nonreflecting wave equation. Their approach begins consid- 
ering  the general wave equation [34, p. 1711 

where p is the density of the medium. Since p does not 
play any role in migration, its  value  may  be chosen to 
minimize reflection. This is done by setting p so that the 
‘acoustic impedance 

K( x,z )  = p(  x,z)   v(x,z)  = constant (52) 

over the entire  object plane. 
The basic concept  of using CMP data as a boundary 

condition and computing its “response” in the  object plane 
is not new. The heuristic method called wavefront inter- 
ference migration discussed in Section Ill is based on  the 
same principle. The only important difference is that the 
reverse-time migration methods are  based on a wave-equa- 
tion  solution rather than  the intuitive approach depicted in 
Fig. 8. 

VII. MIGRATION BEFORE STACKING 

The task of imaging the subsurface in conventional 
seismic data processing is  partitioned in  two steps: the 
stacking of the CMP  gathers,  and the migration of  the CMP 
stacked section. This procedure, however, is  correct only for 
a simplified subsurface model consisting of  horizontal layers 
of laterally uniform velocity and of  horizontal reflectors. 
Levin [36] has shown that the stacking velocity depends not 
only  on the  propagation velocity of the overburden but also 
on the  dip angle of the reflectors. in structurally complex 
formations, the correction for all dip angles  becomes im- 
possible, and stacking loses its effectiveness. Under these 
circumstances, it may be advantageous to consider migra- 
tion before stacking. 

The theoretical basis for migration  of unstacked (multi- 
offset) data  was  discussed in Section IV. in this process, the 
multioffset data are converted (see, for example, (17) and 
(21)) into a migrated zero-offset section. This is  a relatively 
costly process and does not provide any intermediate re- 
sults. To overcome these shortcomings of the “one-step” 
migration  of unstacked data, a number of special-purpose 
before-stack migration techniques were developed. For  ex- 
ample, the prestack partial migration [IS] and the offset 
continuation algorithm [37],  [38]  are applied to common- 
offset sections after they have been NMO corrected. These 
stack-enhancement [39] techniques share the advantage of 
yielding an unmigrated CMP stack section that helps the 
interpreter in resolving spurious  events generated on the 
final migrated section by inaccurate velocity estimates.  They 
are computationally more expensive than the conventional 
processing since they introduce an additional process be- 
tween NMO and stacking but leave the  migration cost 
unchanged. 

The methods described in this section belong  to the 
former category in  which the separate components of  the 
conventional processing (NMO, stacking, zero-offset migra- 
tion) are merged into a unified process.  They  represent the 
best methods available for imaging the subsurface in a 
variable velocity medium. They  are, unfortunately, also the 
most expensive in terms of  computation and data handling. 

A. Migration  of  Multioffset Data 

The theoretical considerations for  migration of  multioff- 
set data were presented in Section IV. The wavefield ex- 
trapolation is governed by (13, and the imaging is accom- 
plished  by  implementing (21). The solution by phase shift 
of (13, expressed by (18), can accommodate only vertical 
velocity variations from one Az step to another. In the 
presence of lateral velocity variations, (17) needs to be 
generalized as follows [15]: 

- =  ap -(I 1 - I C y 2  + -(I 1 - IC:) P 
az v(r,z) v( st.) l’*I 

(53) 

where IC, and IC, are given by (14). This implies  that  we 
distinguish between the  velocity  along the shot axis and the 
velocity along the shot axis and the  velocity along the 
receiver axis. We hasten to  point out, however, that in (53) 
the algebraic expressions in the operators IC, and I C ~  are not 
immediately  defined when v(r ,z)  and v( s,z) have lateral 
variations. This is the same limitation as the one we have 
encountered with the single-square-root equation (27).  For- 
tunately, most of  the  solution methods for zero-offset 
migration are applicable to (53). In other words, multioffset 
data can be extrapolated by the PSPl method or by  finite- 
difference  methods developed in the ( r ,  s , ~ )  domain or in 
the ( r ,  s, t )  domain. 

Having decided  on a suitable extrapolation scheme, be- 
fore-stack migration can  be summarized as follows [ a ] .  The 
algorithm operates on the entire data volume p(r ,  s, t ,z = 0) 
processing i t   in the alternating directions rand s. For  each 
depth level z, in increments of Az, beginning with z = 0, 
the  following steps are executed: 

1) Order the data into common-shot gathers p(r, so, t , z )  
and extrapolate downward  from z to z + Az each com- 
mon-source gather s = so using (12). 

2) Reorder the data obtained  from step 1 into  common- 
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receiver gathers r = ro and extrapolate downward by Az 
each common-receiver gather r = r, using (13). 

3) Perform the imaging m( x, z) = p( r = x, s = x, t = 0, z), 
where m(x,z) is the migrated CMP section. 

6. Migration of Common-Shot Gathers 

Migration before stacking can  also be accomplished by 
migrating the individual  common-shot gathers and sum- 
ming these migrated gathers.  The downward extrapolation 
of  the recorders is  governed by (12) or  some approximation 
thereof. The extrapolated wavefield is  focused at the reflec- 
tor location, not at time zero, but at the propagation time 
between  the shot and the reflector. To simplify matters, let 
us consider a single point reflector, for example Pl in Fig. 2, 
whose position (r',z') is specified in the receiver-depth 
coordinate system.  The event corresponding to  the  point 
reflector 6 is observed at t = t, + t2 ,  where tl(s; f , f )  is 
the travel time between  the source  and the reflector, and 
t2 (c  t',z') is the travel time  between  the reflector and the 
receiver. Under these  assumptions, the downward extrapo- 
lation focuses the recorded wavefield in the  neighborhood 
of  the  point ( r ' , ~ ' )  at time r,(s;r',z'), which is the correct 
time for  imaging. 

We are now in a position  to set forth an algorithm  for 
migration before stack. For  each common-shot gather 
p(r, F, t,z = 0) we execute the following steps: 

1) Compute  the arrival time of the primary wavefield 
tl = tl($ I ' ,  z') at all points ( r ' , ~ ' )  of the subsurface. 

2) Extrapolate downward (for instance with (12)) in depth 
the common-shot data p(r, F, t,z = 0), thus regenerating for 
each point  of  the subsurface the scattered field p ( / ,  5, t,z'). 

m ( f , f ; < )  = p ( t , 5 , t 1 ( 5 ; t , f ) , f ) .  (54) 

Then sum over a set of migrated common-source gathers, 
that is, 

rn(f,f) =xm(r',z';<). (55) 

The procedure is illustrated in the following example.  Fig. 
18 shows a model consisting of  four layers  separated by 
reflecting interfaces: the velocity of the medium ranges 
from 2.0 to 3.5 km/s. Fig. 19 shows the common-shot 
gather that is obtained  setting s = 1.5 km. There  are 96 
traces with a spacing of Ax = 25 m, the sampling time is 
A t  = 10 ms, and 256  samples define a trace.  Finally, Fig.  20 

3) Perform the imaging 

E 
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1 . 5  v - 3 . 0  
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Fig. 18. Schematic  of model 3, representing  a multilayer 
example with a gentle dip in the second reflector. The 
thick-line segments denote reflectors. 
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Fig. 19. A synthetic  common-shot  gather obtained from 
model 3 with source location s = 1.5 km. 

0.0 1.0 2.0 30 
x(km) 

Fig. 20. Depth section obtained by  migration before stack. 
First, the common-source gathers of model 3 with source 
locations ranging from 1 to 2 km are migrated.  The  section 
shown is the result of the superposition  of 40 migrated 
gathers. 

shows the superposition of 40 migrated common-shot 
gathers spanning the interval between s = 1 km and 5 = 
2 km. 

C Relative Merits of the Two Approaches 

The treatment of the multioffset seismic  data in the 
source-receiver coordinate system, as described above,  has 
a rather good theoretical foundation. Unfortunately, it  in- 
volves very  large amounts of data, the repeated transfer of 
which  from primary storage to secondary  storage, together 
with the necessary  data transpositions, can become rather 
burdensome and taxing on the computing system.  The 
migration  of individual common-shot gathers, on the other 
hand, requires relatively little storage space and the  compu- 
tations are simpler in comparison with the former approach, 
which call for the simultaneous migration of a large set of 
common-shot gathers.  The only serious problem for which 
one must be prepared is related to imaging. The imaging of 
the extrapolated wavefield, expressed by (54), requires the 
knowledge  of  the arrival time of the primary wavefield. So 
long as this arrival time rl( s; r ,  z) i s  a single-valued function 
of r and z, there is no problem. If, however, there are 
multiple raypaths between the source s and some points  of 
the ( r , z )  domain, t, may  assume multiple values, and there 
is no longer a  uniquely  defined imaging time. In this case, 
following [14], the primary wavefield must also  be com- 
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puted and the imaging must  be performed  deconvolving 
the scattered wavefield by the primary wavefield. 

VIII. CONCLUDING REMARKS 

We have presented an overview of the major advances in 
seismic migration. Our aim was to provide a logical se- 
quence of development rather than a historical one. We 
have put emphasis on the fundamental concepts of migra- 
tion and have carefully avoided passing judgement or  ap- 
praising value based upon their current populatiry. The 
merit of a migration  method is largely decided by economic 
factors. These factors change rapidly with the advancement 
of recording technology, computer architecture, and cost- 
performance indices of data processing systems. 

Mainly for reasons of cost, migration in the 1970s was 
applied  to stacked CMP sections, and lateral velocity 
changes were not correctly taken into account in routine 
migration programs. With the continuing trend  toward  lower 
cost-performance ratio in advanced computer architec- 
tures, high-accuracy migration methods can be expected to 
gain acceptance in the near future. Another area that will 
receive increased attention is migration before stacking. In 
addition  to better migration, a major benefit  resulting from 
migration  before stacking can be derived from  improved 
velocity information. Ideally, we would  like  to have a pro- 
cess that simultaneously images velocities and migrates 
data to correct subsurface locations. This  calls for imaging 
part of the subsurface recursively step  by  step, using migra- 
tion and velocity analysis procedures [41],  [42). 

Seismic exploration methods and processing techniques 
are growing rapidly. Innovations can be observed  over a 
broad range from recording techniques to displays.  Record- 
ing techniques have been developed to provide areal cover- 
age. Acquisition and migration  of seismic  data in three 
dimensions are becoming widespread. These methods are 
particularly  useful in the presence of complex structures. 
Migration algorithms for three-dimensional data are natural 
extensions of those used for two-dimensional data [43], [MI. 

Increasing demand for oil and  decreasing availability of 
hydrocarbon deposits are the motivating forces behind most 
innovative techniques which have one thing  in common: 
they are aimed at improving resolution. A decade ago, 
geophysicists might have been satisfied with mapping  the 
gross structure of  the subterrain. Today, they hope to de- 
termine  rock parameters, hydrocarbon content, as well as 
entrapment structure. These demands have stimulated re- 
search in more general and theoretically appealing inverse 
methods [45]-[52]. These works, when developed into prac- 
tical processing tools, have the potential of providing in- 
sight into long-standing unsolved geophysical problems. 
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