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Avoiding interpolatior artifacts in Stolt migration

William Harlan

Introduction

Stolt migration requires a frequency-domain interpolation that can be the source of a
great many numerical artifacts, Two common interpolators, linear and geometric, both gen-
erate strong, incorrectly migrated events which can entirely replace the correctly migrated
events. Some programmers attempt to diminish the problem by padding their section again
and again with zeros. One can improve on the results of endless padding by using an effi-

cient algorithm based on the sinc function.

Again, these artifacts are not minor. Figure 1 shows the results of migrating an unpad-
ded time section with linear, geometric, and sinc interpolators. The time section contains
five "spikes," which should migrate into upward-turning semicircles. For linear and geometric
interpolation, many additional semicircles appear, replacing approximately one half the
energy of the correct events. The sinc-based algorithm, to be described later, takes little
additional computation time and yet does not produce these foreign events. To appreciate
best the assumptions implicit in the sinc interpolation, we shall first examine the sources of

these bad events for the linear and geometric interpolators.

Linear Interpolation Errors

Linear interpolation in the frequency domain may be reduced to two operations. The
frequency function has first been multiplied by a sampling function and has then been con-
volved by the triangle function. The effect of these operations is to introduce spurious time
events in the time domain. To see the eguivalence, assume that the point to be interpolated

lies at a point n +dn, where 0=<én <1. Let (, and ,,, be the two adjacent samples. Then
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FIG. 1. Stolt migration of five ''spikes' using various interpolation schemes: (a) Linear inter-
polation, unpadded section; (b) Linear interpolation, 100% padding; (c) Geometric interpola-
tion, unpadded section; (d) Sinc-based interpolation, unpadded section. One expects cnly
five upward-turning semicircles such as seen in (d). But (a), (b), and (c¢) include additional,
incorrect, downward-turning events, with a loss in the energy of the lower, correct events.
Padding with zeros reduces the energy of these incorrect events in (b) but does not remove
them. The sinc algorithm (d), with no visible artifacts, still runs 25% faster than the padded
algorithm (b).
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linear interpolation gives
Coion =(1-61)C, + (6n)C, ., (1)

Now consider the triangle function:

_f1-1z] Jz|=t
A(x)‘{o |z|>1

Lay the triangle function A(f / Af ) over the sampled function with the triangle's peak over
F=(n+6n)Af as shown in Figure 2. The height of the triangle over C, and C,., is 1-dn
and én, respectively, the same as the linear weighting factors in (1). This operation may be
expressed as

[ ] oo
p’(f) = A(Z_if—) * _I_LL(—AJ}—)'p(f)J' where ! | |(z) = )] 8(z-n)

n=—w=

The FFT gives us the sampled function. With the above operation we are constructing an
approximation of the original continuous p(f). In Stolt migration we simultaneously resample
along a new stretched grid k, = vk, = (4n°f?—wRE2)/2

But what are we doing to the time section by changing p(f) into p’{f)? We are
adding a great many time events, which will be migrated just as the original ones. Taking the
Fourier transforms of J | {(f/Af) and A(f / Af) and using the convolution theorem, we find

that we are altering each time axis to

. ; ] sin(nz)
() = sinc® (2| LLI(zDsp ()] where sinc (z) = e E7O
1 z=0

T =1/ Af is the length of the time axis. Figure 3 illustrates what happens. The convolu-
tion by || |(t/ T) replicates the time section at time intervals of T. The wavefoim values
for times fg, £y, ..., ty are duplicated at times n7+t, nT+f, ,..., nT+{, for all
integer n. The multiplication by sinc?(f/ T) attenuates most of these extra events, but a
very poor selection of them. Good events falling in the interval T/2<t=<7T are actually
attenuated more than the unwanted events at negative times —7/ 2<f<0. When we return
to the 7 domain, we find that these unwanted events lie over our correct events but with
incorrect curvatures and orientations. The downward-turning events near the bottom of the
section are stronger than the correct upward-turning events. At higher gain, many other

semicircles corresponding to greater times and depths can be seen.

One may improve the attenuation of these unwanted events by a ""demodulation” before
interpolation. Multiplying the frequency axis by e #7247 pefore linear interpolation effec-

tively shifts the peak of the sinc? over the time events at 7/ 2: the greatest migrated
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FIG. 2. Linear interpolation of sampled data is equivalent to convolution by a triangle func-
tion. The samples are indicated by (,'s, and the interpolated point by (, ,5,.- The two adja-~
cent points, (, and (, ;,, receive the linear weighting factors of 1—-0n and én, the respec-
tive heights of the triangle over the sample points.
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FIG. 3. Linearly interpolating in the frequency domain equivalently multiplies the time domain
by the above sinc®(t/ T) function. Sampling in the frequency domain first replicates the
time axis, 0<t=<T, at intervals of T. The multiplication by the sinc?{(t/ T) leaves much of
this replicated information, which appears after migraticn as artifacts. In addition, much of
the original, correct information is greatly reduced. One prefers to multiply by a near rectan-
gle such as in Figure 5.

energy will now be from the correct events. However, correct events away from 7/ 2 and
toward O and 7 now will be strongly attenuated. One desires instead of the sinc? an
attenuating function which is as flat as possible in the regicn 0<f<7. The demodulated
linear interpolator poorly satisfies this condition. In fact, a two-point interpolator based on

the sinc greatly improves the results.
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Geometric Interpolation Errors

The geometric interpolator is defined by
IN(C, 462) = (1 =67In(C,) + (6n)In( Gy y)

By taking logarithms, we unwrap circles in the complex f domain into vertical lines. If p(f)
can be approximated well by successive points on a complex circle, then we may interpolate
the unwrapped Inp(f) linearly. Specificaily, the sampled values of p(f) must allow the

approximation
G, = Ce ™8 for O<Ap=<m (2)

The trouble is that for an arbitrary p(£), p(f) may behave nothing like this exponential
function. If p(w) poorly resembles a circle, then we are linearly interpolating a non-linear

Inp(f ), adding additional events in the time domain just as for linear interpolation.

Geometric interpolation was originally proposed because the above relationship exactly

suits the transform of a single spike at time £;:
p(t) = 8(t—tg) > p(f) =

When the upper half of the section contains more than one spike, however, p(f) begins to

look very unlike a complex circle. Assume two spikes are at times L, and t,. Then

p(t) = 6(t—t ) +6(t ~t5) >

—ienfty | —iRnfty

p(f) =g zcos{ﬂf(tl—tz)}-e_iﬂf(t1+tz) (3)

Here we have our desired exponential, as for (2), but with an important cosine mecdulation
added. As long as £;,—I; is small, this modulation will have a much lower frequency than the
exponential cycle, and the circular approximation will be fairly good. But assume that L, is
substantially smaller than f,. Then this cosine oscillates nearly as rapidly as the exponen-
tial, and the error of approximating a circle will be very substantial. Figure 4 shows the
effect of increasing the number of spikes from one to two in the input time section of the

geometric-interpolation migration.

If we look for a general relationship, we find that the exponential of equation (3)
appears because our time section is centered away from zero. We can shift a function cen-
tered at zero time to one centered at positive time by convolving with a delta function. That

is,

p(t) =p(t+Tcenter) * 5(t'—Tcenter)
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FIG. 4. Geometric interpolation, though ideal for migrating a single 'spike" (left), produces
strong downward turning artifacts when a second "'spike’ is added near the top of the right
section. Geometric interpolation must fail for an arbitrary superposition of spikes, that is, for
an arbitrary sampled function.

where p{f + T onter) is our time function centered about zero. In the frequency domain this
convolution is the equivalent of multiplying by exp(—i27f T onter), the exponential we were
looking for. The previous cosine modulation of (3) is just the Fourier transform of two spikes
centered about zero time. Since p(f) can be very arbitrary, so can the modulation of the
exponential. Even if one were to pad indefinitely, strong artifacts such as appear in Figure

4 could not be avoided.

Sinc Interpolation

By examining the problems of the linear and geometric interpolators, we understand
more clearly what an ideal interpolator should accomplish. Because the frequency domain is
sampled, an event at time £, in our time section is replicated at an infinite number of posi-
tions nT +£, for all integers n. The replicated events begin with the same strength as the

original ones and must be attenuated.

The act of interpolation amounts to a convolution by some chesen function and then a
resampling in a new distorted grid -- k. in our case. This chosen function should have an
inverse Fourier transform which will remove as many of the unwanted events as possible. In
addition, one should not attempt to predict the functional form of p(f), if one desires p(f)

to be as arbitrary as possible.
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If we multiply the replicated time function by the following rectangle function

t=7/2 11 |t]<ivz
H[—%T where Il(z) = { O |t]>12

then we suppress all the unwanted events and leave the correct ones, for 0<{<T, at full

strength. In the frequency domain this operation amounts to convolution by the following:

. f
1 ”TAf " J = 1 -1 o
——eAf s.,'nc(Af) = _eAf sinc(n)

Expressing this convolution in terms of the interpolated point, we get

N-=1 .
C'nson = 2, Cpe i ren)mlgine [(n+6n)-m]

m=0

N-1
- :T_e_iﬂansm(ﬂdn) Y, Cn/[(n+6n)-m] (cf. Rosenbaum)

m =0
In this form all samples contribute something to the interpolated value. Assuming that the
programmer would prefer to use fewer samples for each interpolated value, we may taper
this sequence to a few terms about n+6n. An easily applied taper is the triangle function.

A ten point sinc interpolator would have the form

C'nisn = —élr—r—e“iﬂansin(ﬂdn)m§_4cn+m'(6—] dn-m|)/ (dn-m) (4)
This tapering by a triangle function means that we are no longer attenuating with a perfect
rectangie in the time domain. Instead, the rectangle is first rounded by convolution with a
sinc® function whese narrowness depends directly on the broadness of the triangie func-
tion. Figure 5 displays the appropriately rounded rectangle for a triangle enclosing ten sam-
ple points in the frequency domain. This function remains very flat over the correct time
events and drops sharply to small values over the incorrect events; it preserves the reiative
strengths of the correct events but virtually eliminates replications. A slight amount of pad-
ding, say 5%, will move data from under the rounded corners of the rectangle, reducing the

number of points necessary for interpolation.

Padding the data of a linearly interpolating program 100% with zeros more than doubles
our run time, whereas using a ten point sinc interpolator increases the run time by only a
factor of 1.5. Even after padding, the linearly interpclating program still produces strong
artifacts on the lower events (Figure 1). The artifacts of the ten-point sinc interpolator are

visible only under a very high gain.
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FIG. 6. Interpolating the frequency axis with the 10 point sinc interpolator of equation (4)
equivalently multipiies the time domain by the above rounded rectangle function. Because
the frequency axis is sampled, the time axis 0<{<7 is replicated at the adjacent intervals.
The above function largely removes the effect of these replications and leaves all correct
events at nearly equal strength. This selection greatly improves the resulis of linear inter-
polation (Figure 3) which leaves many incotrect events at greater strength than correct
ones.

Concdiusions

Linear and geometric interpolation both produce serious numerical artifacts when used
in Stolt migration. Linear interpolation allows substantial improvement only by expensive
padding of the time section. Geometric interpolation makes incorrect assumptions about the
form of the time function, so even endiess padding cannot help. The sinc-based interpcla-

tion reduces these artifacts to negligible magnitudes with a minimum of expense.
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