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Abstract Ultrasound tomography is modelled by the inverse problem of a ZD Helmholtz 
equation at fixed frequency with plane-wave irradiation. It is assumed that the field is measured 
outside the suppoLf of the unknown potential f for finitely many incident waves. S m i n g  
out from an initial guess f o  for f we propagate the measured field through the object f o  to 
yield a computed field whose difference to the measurements is in fum backpropagated. The 
backpropagated field is used to update f O. The propagation as well as the backpropagation 
are done by a finite difference marching scheme. The whole process is carried out in a single- 
step fashion, i.e. the updating is done immediately after backpropagating a single wave. It 
is very similar to the well known ART method in x-ray tomography, with the projection and 
backprojection step replaced by propagation and backpropagation. 

1. Description of the method 

We consider the following inverse problem for the Helmholtz equation. Find the potential 
f !tom 

(1.1) 
where eikCsue satisfies the Sommerfeld radiation condition. The positive number k is fixed, 
and 0 runs through all unit vectors in R'. It is assumed that f = 0 and us = go outside 
Q = { x  = 1x1 < p )  with ge a given function. In fact, it suffices to know g on a circle 
containing Q. 

The uniqueness has recently been settled by Nachman 191. In this paper we give a 
numerical algorithm which computes an approximation to f from finitely many directions 
80,. . . ,6&1. Most of the existing algorithms use the Born or Rytov approximation 
(diffraction tomography). The algorithms of diffraction tomography are of the filtered 
backpropagation type (Devaney [3]) or simply inverse Fourier transforms, see Kak and 
Slaney [6]. Methods which avoid the Born and Rytov approximation have been given, e.g. 
by Borup et al [I], Kleinman and van den Berg [7], Colton and Monk [Z] and Gutman 
and Klibanov [5].  These algorithms are iterative in nature. They suffer from excessive 
computing times and from their apparent inability to handle problems with large values of 
k. A novel approach which has yet to be tested numerically has been suggested by Stenger 
and O'Reilly 1131. 

The method of the present paper is iterative, too. It differs from existing ones in 
two respects. First, we avoid the computation~of large Jacobians by considering only 
one wave at a time, solving a vastly underdetennined problem with the help of an 
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approximate generalized inverse. This generalized inverse can be computed very efficiently 
by backpropagation. Second, we make use of a novel and highly efficient finite difference 
method for doing the propagation step. It is essentially a method for solving the Cauchy 
problem for the Helmholtz equation. Conbary to general belief, this problem is perfectly 
stable as long as only spatial frequencies below k are sought for. Since we do not expect 
to be able to determine frequencies larger than k, this restriction is quite natural. 

On a more formal level, ow algorithm is as follows. Consider a square Qj circumscribed 
to Q with two edges rj parallel to 0, and with edges r:, r,: orthogonal to e,, with 
r,' lying in the direction of e,, see figure 1. Let R j :  L2(Qj) + Lz(r;) be the (nonlinear) 
operator which associates with each potential f E Lz(Q) the solution uj = ue, of (1.1) 
on r;. the values of uj on rj U r,: and the values of &U] (U the interior normal on a Q j )  
on rJ: being given by the data function go,. Thus, if uj is the solution to 

Auj + 2ikej . Vuj - k'uj f = k2 f in Qj 
a a (1.2) 

--U' - -go, on rJ: 
av au 

uj = goJ on rj U r,: 

then Rj f = uj on r;. With gj the function goJ restricted to r;, we have 

R j ( f )  = g j  j = 0 ,  . . . , p  - 1.  (1.3) 

This nonlinear system is solved for f in the following way. Let f o  be an initial 
approximation. Once f' is determined, put f'+' = f' + od' where d' is an approximation 
to the minimal norm solution of 

Rj(d'+ f') = g j  j = rmodp  (1.4) 

where o is a relaxation factor. Thus our algorithm is simply a nonlinear version of the 
Kaczmarz method which has become known as ART (algebraic reconstruction technique) 
in x-ray tomography, see Herman [4], Natterer [lo]. As in ART, we call the successive 
computation of p iterates a complete sweep. 

For the approximate solution of (1.4) we linearize (1.3), writing 

R j ( d + f )  = R j ( f ) + A j ( f ) d + O ( d 2 ) .  
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Here, A j ( f )  : L,(Q) -+ LZ(r7) is the linear operator defined by solving 

Aw + 2ik0, . V u  - k’wf - kZ(l + uj)d = 0 

w = o on rj U r; - = 0 on r; 
in Q j  

a w  (1.5) 
.av 

and uj is the solution of ( U ) ,  and putting A j ( f ) d  equal to the~resiiiction of w to r7. 
In 1111 we used a simpler version of A j ( f ) ,  omitting the term k2wf in (1.5). Meanwhile 

numerical experiments showed that the gain in simplicity thus obtained does not make up 
for the loss in accuracy. 

In order U) compute an approximate minimal norm solution d‘ in (1.4) we make use 
of the adjoint operator A;(f) : LZ(r7) --f Lz(Qj). For g E L2(rT) this operator can be 
evaluated by solving 

AZ -+ 2ik4 . V z  - k’7z = 0 ’ in Qj  

z = o  on rjur,t - =  g on r; 
av 

for z and putting 

A?(f)g = k2(1 +Vj)z (1.7) 
with vj fiom (1.2). In fact, for sufficiently smooth functions w, z, Green’s formula and an 
integration by parts show that 

1 { ( A w  + Zik0j. V w  - k’fw)T- w(Az  + Zik0j. V z  - k2Tz)}  dr 
QJ 

where U is the interior normal and s the arc length on aQj. Applying this to w from (1.5) 
and z from (1.6) yields 

k ’ ~ d ( l + u j ) ~ d r =  s wzds 

QI r; 
or 

k2(d ,  (1 + T ~ ) Z ) L ~ ( Q , )  = ( A j ( f ) d ,  g)h(r;) 

hence equation (1.7). 
We now define d‘ to be 

d‘ = Aj(f’)*Cj(Rj(f‘) - g j )  (1.8) 
with some operator C,. If Cj = (A j ( f ’ )A j ( y )* ) - ’ ,  then d‘ is the minimum norm solution 
of the linearized,system. Since the computation of this operator is very time consuming we 
simply replace it by its value for large k, namely Cj = pk-*I.  We found that this choice 

This describes our algorithm apart from discretization and filtering which ak discussed 
later. The algorithm consists of the propagation step, in which the measured field is 
propagated from r; to r;, assuming f’ to be the potential, to yield the function R j ( f ’ )  
on I‘? Then the function g = R,(f’) - gj is backpropagated from rT to Q j  by solving 
the initial-value problem (1.6). Finally, the backpropagated field is used to update f’. 

’ of Cj yields good convergence to the solution of the fully nonlinear problem. 

I ’  
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We call Aj(f’)* the backpropagation operator and the whole method the propagation- 
backpropagation algorithm (PBP). 

The similarity of PBP to the ART algorithm of computerized tomography is obvious. 
The propagation and backpropagation step of PBP corresponds to the projection and 
backprojection step, respectively of ART. It seems that much of the well understood theory 
of ART (see, for example, Natterer [lo]) also applies to PBP. For instance, reordering of the 
equations (1.3) has a decisive influence on the behaviour of the iterates. 

2. Discretization and filtering 

The implementation of PBP is very easy. All we need are subroutines for the initial-value 
problems (1.2) and (1.6). In [12,14] it is shown how to solve these initial-value problems 
in a stable way by a straightforward finite difference method. A similar method has been 
suggested by Knightly and Mary [SI. We give the details only for (1.2). 

In Qj we introduce the grid QT = = he6j + hme:: 2 ,  m = -q , .. . ,q} ,  h = l /q .  
On Qj” we define the approximation Ut,, to uj(x&.,) by 

ue+l.m + ve-i., + ue.m-1 + Ue.m+l - 4ue.m 
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2 +is(uei.i., - Ue-1.A - E  (1 + ~e.m)f(xe,m)~i.m = 0 
121 < q  Iml < q  & = h k .  (2.1) 

Ue., = gs,(xe.d for Iml = q. I l l  < q 

These equations are complemented by the boundary conditions 

and by the initial conditions 

u-q.m =gq(Xe.m) Iml < 4 

U1-q.m = h ( l  - is)-gs,(x-q,m) - qgel(x-q,m+l) - ygs,(x-q,m-i)  +2gs,(x-,.,) 1 1 a 
av 

Iml < q .  
The latter expression has been derived by using central differences in the discretization of 
a / a v  and (2.1) for e = -4. 

Equation (2.1) can be solved recursively for Ue+l,m, 2 = -q + 1, . . . , q - 1,  yielding 
the approximation uq.,,, to Rjf(xq.,), Iml < q. According to 1121, the recursion is stable if 
h > r r / k m .  If a smaller stepsize is chosen, stability can be restored by filtering the 
vector ut.,,, as a function of m after each step 8 -+ 2 + 1. This can be done by the discrete 
Fourier transform. Putting 

the filtered version of is 
u ; , ~  = e+imnx/qGe,n 

I n l W  

where N < $ k m .  The filtering can be done by the fast Fourier transform (m). For 
details see ‘[12,14]. After each complete sweep of the algorithm we perform a ZD filtering 
of the current approximation which annihilates frequency components > k which come in 
during the iteration. 

The number of operations one needs for each initial-value problem is q2 or q2 logq if 
filtering is used. For a whole sweep of PBP 2 p  initial-value problems have to be solved. 
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Thus a complete sweep needs pq2 or pq2 logq operations. Apart from the logarithm this is 
the complexity of one completesweep of the ART algorithm in x-ray tomography. Thus PBP 
does ultrasound tomography with almost the same speed as ART does x-ray tomography. 

3. Numerical experiments 

In a first experiment we reconstructed the rotationally symmetric function 

fork = 50 from p-= I00 directions. The scattered waves can be computed exactly for this 
potential. Thus we have exact data. The reconstmction region is the square of side length 
2 with the midpoint at the origin. The reconstruction is done on a 129 x 129 grid. 

This example has been chosen in such a way that the Born approximation, which is the 
basis of difiaction tomography, is not valid. The condition for the Born approximation to 
hold is (for real potentials) 

where R is the Radon transform (i.e. Rf stands for the set of all line integrals of f). This 
is a slight extension of the condition given in [6], p 214. In our case we have 

2ir 
- = 0.126 k lRf[ < 0.160 

hence equation (3.2) is not satisfied. 
We did the reconstruction with fo =~$f and w = 1. The choice of fo is such that 

2K 
IWf - fO)l < k.  (3.3) 

Thus, while the Bom approximation is not valid for f, it does hold for f - f o .  This 
condition for the initial approximation seems to be necessary for convergence, see [ 141 for 
a discussion. 

The results after three sweeps are displayed in figure 2. The reconstructed potential 
differs from the exact potential in 'the interior by only 3%, but at the boundary a loss in 
resolution is noticeable. However, one has to bear in mind that the wavelength A = 2 z / k  
of the irradiating wave is 0.126. which sets a l i t  to the achievable spatial resolution. 

In a second numerical test we created an elliptical phantom, see figure 3. On an elliptical 
base of density 0.15 sits-slightly misalligned-a smaller ellipse with semi axes 0.8, 0.6 
and density 0.2, which contains two circles with density 0.21, 0.19, respectively, and a 
square with side length 0.12 and density 0.25. So far the real part of the potential. The 
imaginary part is 0.02 in the base and zero elsewhere. The size of the square comesponds 
to the wavelength A = 2 z / k ,  k = 50, of the irradiating wave. Thus the square semes as a 
test for the spatial resolution, while the two circles serve as a test for the density resolution. 

The PBP reconstruction after three sweeps with w = 1 is shown in figure 3. The elliptical 
base has been used as fo. We see that the spatial resolution is exactly as expected, and 
the density resolution is better than 5%. The cross section of  the reconstruction may look 
disappointing to someone who is used to look at CT pictures with the same amount of data. 
But, in fact, the reconstructed cross section in figure 3 is virtually indistinguishable from 
the corresponding cross section of the low-pass filtered elliptical phantom, the cut-off being 
put at k = 50. 
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Figure 2. Reconsmctian of pntential (3.1) from exact 
data for wavenumber k = 50 and p = 100 directions. 
Top: scattered field u ~ e - ~ ~ ~ ’ ”  for the incident wave 
coming from the top. Real pan left, imaginary part Cght. 
Backscarter is clearly visible. Bottom: cmss section 
through original and reconstmction. 

Figure 3. Reconstruction of elliptical phantom. Values 
of k, p as in figure 2. Top: original. Middle: PBP 
reconstruction after three complete sweeps. Bottom: 
cross Section through original and reconstructinn. 

We computed the data by our forward solver. This is usually considered as ‘inverse 
crime’. But we repeated the calculation after having added 5% white noise to the d a t e  
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Figure 4. Reconstruction of ‘finger’ with k = 7 and 53 
waves. Top: original. Middle: PBP reconsrruuion after 
three sweeps. Bottom: cross section thmugh original and 
reconstruction. 

without much change in the reconstruction. The computations took only a few minutes on 
a SUN workstation Sparc Station SS20. 

For a third numerical test we chose the ‘finger’ from [2]. In our notation, 

-2 ( x  -xo( GO.1 
1 f t x )  = { ;l 1x1 < 1 and Ix -xoI > J 

otherwise 

where xg = (4,  O)T, see figure 4. As in [Z] we chose k = 7 and used p = 53 waves, and we 
work on a 65 x 65 grid. The result of PEP after three complete sweeps, again with o = 1, 
is displayed in figure 4. As in  [Z] we used f o  = -0.5 as an initial approximation. This 
example shows that PBP can well recover details below the resolution limit of 2n/k = 0.90, 
even though it has not been designed to do so. Of course, in order to achieve this, one has 
to drop the filtering after each sweep which has been mentioned in section 2. 

All these examples have been done with a random ordering of the directions. This has 
been suggested by our experience with ART, see [IO], p 165. 

To conclude, PBP is a simple and very efficient algorithm. Efficiency is achieved by 
avoiding the computation of Jacobians and by using a marching scheme as forward solver. 
Of course this forward solver can be replaced by any other efficient Helmholtz solver. 
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