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In this paper we present results on the stability of perturbation methods for the
evaluation of Dirichlet-Neumann operators (DNO) defined on domains that are
viewed as complex deformations of a basic, simple geometry. In such cases, geo-
metric perturbation methods, based on variations of the spatial domains of defini-
tion, have long been recognized to constitute efficient and accurate means for the
approximation of DNO and, in fact, several numerical implementations have been
previously proposed. Inspired by our recent analytical work, here we demonstrate
that the convergence of these algorithms is, quite generally, limited by numerical
instability. Indeed, we show that these standard perturbative methods for the cal-
culation of DNO suffer from significant ill-conditioning which is manifest even
for very smooth boundaries, and whose severity increases with boundary rough-
ness. Moreover, and again motivated by our previous work, we introduce an al-
ternative perturbative approach that we show to be numerically stable. This ap-
proach can be interpreted as a reformulation of classical perturbative algorithms
(in suitable independent variables), and thus it allows for both direct comparison
and the possibility of analytic continuation of the perturbation series. It can also be
related to classical (preconditioned) spectral approaches and, as such, it retains,
in finite arithmetic, the spectral convergence properties of classical perturbative
methods, albeit at a higher computational cost (as it does not take advantage of
possible dimensional reductions). Still, as we show, an alternative approach such
as the one we propose may be mandated in cases where substantial information
is contained in high-order harmonics and/or perturbation coefficients of the solu-
tion. (© 2001 Academic Press

Key Words:Dirichlet-Neumann operators; geometric perturbation methods; nu-
merical stability.

276

0021-9991/01 $35.00
Copyright(© 2001 by Academic Press
All rights of reproduction in any form reserved.



COMPUTING DIRICHLET-NEUMANN OPERATORS 277

1. INTRODUCTION

Classical models of mathematical physics typically involve equations for volumetric fie
guantities supplemented by relations on their restrictions and those of their normal der
tives at boundaries and interfaces. In many instances, moreover, the governing differe
equations in “bulk” are simple (e.g., linear, homogeneous) and the analytical and numei
difficulties related to the model actually arise from geometrical complexity (e.g., irregul
or unbounded domains) or from interfacial nonlinearities (as in classical moving bound
problems). In such cases, the dimensionality of the problem can conveniently be redt
by formulating it entirely in terms of surface quantitipspvidednormal derivatives can be
related to these quantities. These relations, in turn, can be realized by simply introducing
notion of a Dirichlet-Neumann operator (DNO), and its higher order analogues, associ:
with the governing differential operator, and which is defined precisely so as to prodt
normal derivatives from boundary values. In this manner, the DNO has been brough
bear on problems (direct and inverse) relating to a wide variety of applications that inclt
electromagnetic and acoustic scattering, nondestructive evaluation, and boundary valug
free boundary problems from solid and fluid mechanics; see (13, 21), (16, 28), and (9,
respectively, and the references therein. Within this framework then, a successful treatr
of the corresponding models hinges on a thorough understanding of the mathematical f
erties of DNO and on the design of accurate and efficient numerical algorithms for tr
evaluation; these issues are the subject of the present discussion.

Among the myriad of methods that can be envisioned to evaluate DNO, methods base
boundary perturbations constitute an appealing alternative. These algorithms are base
the derivation of (low- or high-order) series representing the DNO in powers of a parame
measuring deviations from a separable, easily solvable geometry (e.g., planar, sphel
ellipsoidal) for which the DNO can be found explicitly. As has been demonstrated (9, 11, .
27), perturbation methods can lead very efficiently to accurate results within their dom
of applicability. More importantly perhaps, and in contrast with alternative methods (e.
finite elements or surface potentials), the implementation and performance of perturbe
approaches do not depend strongly on the spatial dimension, a feature that makes
particularly attractive for three-dimensional calculations.

In fact, different versions of such schemes have been used in a variety of contexts;
e.g., (9, 11, 17-24, 27, 29) and the references therein. Interestingly, however, rigorous
tification and numerical analysis of these methods have been lacking, resulting in unc
domains of validity and rather arbitrary implementations; see, e.g., (11). Here we st
that the main factor limiting the convergence of perturbative approaches of this type is
ill-conditioning inherent in the algorithmic formulation. We demonstrate that instabilitie
arise even when dealing with very smooth boundaries, and that their severity incree
with boundary roughness. Finally, we show that an alternative perturbative method cal
devised which is numerically stable, albeit with a somewhat higher computational cost tl
that associated with the classical (unstable) methods.

The examples and procedures we present were motivated by our recent developme
a theoretical framework designed to shed light on the subtle issues underlying the justif
tion of classical boundary variation algorithms (26). Specifically, we considered two m¢
implementations of these methods which include the well-known Operator Expansion (C
Method used by Mildeet al. (17, 19-24, 29) in the context of the boundary value problem
of electromagnetic and acoustic scattering, and by a number of authors (9, 15, 18, 27
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in the study of the classical free boundary model of gravity water waves (see Section
We also considered a different scheme, which we will refer to as the Field Expansion (|
Method, that was proposed by Dommermuth and Yue (11), again in the context of we
wave simulations, and that is based on the expansion of the full field quantities in bulk (
Section 2). For these implementations, our main findings of (26) relate to the realizat
that the corresponding algorithms rely mostlyeamcellationgo produce the perturbation
series, and that these can be avoided with a reformulation of the problem in suitable inde|
dent variables. The possible numerical implications of these results, namely the poter
for ill-conditioning and for a stabilized method, are rather evident and constitute the subj
of this paper. For this, we first review in Section 2 the theoretical background and numeri
implementation (i.e., the corresponding recursions) of the standard FE and OE method
particular, in Section 2.3, we provide both a detailed explanation and illustrative calcu
tions of the nature of the underlying cancellations and resulting ill-conditioning. In Sectior
then, we describe our new perturbative method which, as we show with a variety of tv
and three-dimensional numerical examples in Section 4, exhibits a very stable behavior
thus allows for a substantial enhancement in the accuracy and applicability of perturba
methods when compared to earlier approaches.

As we explain in Section 3, our new scheme can be related to classical (preconditior
spectral algorithms. Our choice of a particular implementation that preserves the pertu
tive nature of the classical methods, leading to a series expansion, is two-fold. On one h
it allows us to perform a direct comparison (of stability, domain of applicability, and so fortl
with the more classical methods. On the other hand, it opens the possibility for incorporat
analytic continuation mechanisms to accelerate and/or enhance the convergence of th
ries; see, e.g., (2, 3). The study of this latter possibility, and of its potential impact on arat
general setting of preconditioned spectral approximations (to accelerate the converge
of the underlying Neumann series), entails a further investigation of the analy
structure of the solution as a function of the perturbation paraneetisidethe disk of
convergence of the series (see (1, 2)), and will therefore be left for future work. Here
concentrate on the comparison with prior implementations—on stability, accuracy, and
plicability. As we said, and in the spirit of spectral approximations in irregular domains, tl
method we propose does not take advantage of possible dimensional reductions, whicl
inherent in the OE and FE schemes and which result in their lower operation count. As
lows from our discussion in Sections 3 and 4, this is due to the new “source terms” that apj
in our recursion and which make a fully explicit evaluation of the higher order terms of tl
perturbation series difficult to achieve. This is in contrast with the homogeneous proble
that arise in OE and FE methods and which admit relatively simple (closed-form) solutio
We expect however that a future study of the structure of the specific source terms in oul
cursion may suggest an accelerated scheme for the evaluation of the corresponding solu
(e.g., better adapted basis functions). In any case, and as we show, an alternative app
such as the one we introduce here may be mandated in cases where substantial inform
is contained in high-order harmonics and/or perturbation coefficients of the solution.

2. PERTURBATIVE CALCULATION OF DNO

As we said, our focus will be the numerical approximation of DNO through a (high-orde
boundary perturbation scheme. Of course, the relevant DNO for a specific mathemat
model will depend on the governing differential operators and the relevant geometri
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arrangements. As will be evident, our results apply quite generally to perturbations of :
exactly solvable problem. For definiteness, however, we shall concentrate on the D
associated with Laplace’s equation, and we shall work on a geometry motivated by cla
cal problems in hydrodynamics (9, 11) where the basic unperturbed geometry is a *
ocean”; the precise description follows in Section 2.1. There we also briefly review t
theoretical background underlying boundary perturbation approaches, and in Sectior
we describe their numerical implementation as realized in the Operator Expansion ({
and Field Expansion (FE) methods. The numerical instabilities associated with these
finally discussed in Section 2.3, leading the way to the introduction of our new algorith
in Section 3.

2.1. Formulation and Theoretical Background

To define the Dirichlet—Neumann operator, we consider a domain
S ={x,y) eRV*xR|-1<y <o), @

and an arbitrary functio (“the Dirichlet data”) defined ory = o (x). For simplicity
we shall assume that bothandé are periodic with respect to a lattid® However, the
theoretical formalism that follows in this and subsequent sections can be easily ada
to deal with general (e.g., compactly supported) surfaces upon replacing Fourier serie
Fourier transforms; see, e.g., (20) and the references therein. On the other hand, addit
difficulties arise in this latter case that are associated with the implementation of numer
methods (specifically related to sampling and aliasing). Although a number of strateg
of varying degrees of sophistication and success, have been proposed to deal with 1
complications (see, e.g., (6, 17)), we have chosen to work within a periodic context bece
our main conclusions should be largely independent of these details. Indeed, we expec
a similar discussion will apply in the case of nonperiodic surfaces, provided all relev:
numerical methods are uniformly implemented following, for instance, the prescriptions
(6).

Associated with the domai§,, we shall thus define the DN@ (o), as the operator
G(0)E = d,v = Voly—y - (=Vxa, DT, 2)

wherev solves the (periodic) Dirichlet problem with boundary valgethat is

Av(x,y) =0 inS, (3a)
dyv(x,—1) =0 (3b)
v(X, o (X)) = &§(X) (3c)
v(X+y,y) =v(x,y) forally eT. (3d)

We note that the DNO can also be defined for a domain of infinite extent by replaci
Eqg. (3b) with the condition

dyv(X,y) — 0 asy — —oo. (4)

The accurate numerical evaluation of DNO in irregular domains is evidently a nontriv
matter as it entails, directly or indirectly, the approximation of (nonconvolution) singul;
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integrals; see, e.g., (10). There is, however, one exception: For a separable geometry
operator (of convolution-type in this very special case) can be explicitly found. In o
framework, such a geometry is provided by a “flat ocean,” corresponding=d. In this
case, we have

G(0)¢ = |D|tanh(DD&(x) = > _ [K| tanh(k])é (k). (5)
kel
whereD = —i V, andI'’ is the conjugate lattice tB (i.e., wavenumbers). In view of this, a

perturbative approach is suggested whereby a general surface is viewed as a deviation
a plane. More precisely, a family of surfaces= ¢f, |¢| < &, gives rise to DNOG(ef),
and a perturbation series

Gef)e = (Gn(F)E)e" (6)

n=0

could be used for their approximation. The feasibility of such an approach obviously hing
on two main factors: (1) the convergence of the series (6), and (2) the development o
algorithm for the efficient evaluation of its coefficients.

The question of convergence of the series (6) has a long history and, for two-dimensic
domains (i.e.N = 2), an affirmative answer can be derived from the work of Cald¢4)
and Coifman and Meyer (7). Indeed, it follows from these that for any Lipschitz pfofile
there exists a constaBt > 0 such that

IGa(F)EllLz < ClIg 2B, (7)

which implies that the series (6) converges fifor sufficiently small values of. Extensions
of these results to higher dimensions were recently established by Craig, Schanz, and S
(10) and Craig and Nicholls (8); see also Nicholls and Reitich (26).

As for the numerical evaluation of the Taylor coefficie@®g( f) in (6), the perturbative
nature of the series implies that, at least formally, they carebarsivelyobtained. In the
next section, we review two implementations of these recursions that have been previo
proposed. As we explain in Section 2.3 (and further demonstrate numerically in Section |
these algorithms, though very efficient, are limited by their conditioning properties.

2.2. The Field Expansion and Operator Expansion Methods

A natural approach to the perturbative approximation of DNO, which we shall refer
as the Field Expansions (FE) Method, consists of simply expandirfgetde = v(x, vy, ¢)
solving Egs. (3a)—(3d) (or (3a), (3c), (3d), and (4)) in the form

(X, Y, 8) =Y (X, y)e" (8)
n=0

and, a posteriori, of computing the DNO based on this expansion via the formula

n-1 n
f! f!
Gn(f)g = =Vuf - Y -8y Vavn14 (X, 0) + Y -8y vn-1(x, 0) ©)
=0 ° =0 °
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(see (11)). For instance, in the case of infinite depth (cf. (4)) it is easy to show that
functionsvn (X, y) must satisfy

Avp(X,y) =0 inS (10a)
dyvn(X, y) = 0 asy — —oo (10b)
un(X,0) = Hy(x) (10c)
X+ y,¥) = vn(X,y) forally e T, (10d)
where
n—-1 n—I
Ha00) = =) mac—' v (X, 0) + 84,08 (X), (11)

1=0
ands; i is the Kronecker delta. A spectral representation of the solution of Egs. (10a), (1€
and (10d) is given by

Un(Xv y) = Z dn.keik'xﬂkly, (12)

kel
whered, « are Fourier coefficients. Equation (10c) then translates into the recursion

n-1

dn,k = - Z Z Cnfl,qudl,q|Q|n_I + an,Oé (k)a (13)

1=0 geI”
where the number§, i are the Fourier coefficients of the functidiix)' /1!, that is
f(x)' k.
T = ZCLkeIkX- (14)

kel

Equation (13) can be used to recursively evaluate the coefficigptand these, in turn,
allow for the calculation of the Fourier representatiorGgf f) by means of Eq. (9).

An alternative and elegant scheme for the calculation of the oper@trk) has been
used by a number of authors in various applications, including the study of gravity wa
waves (9, 15, 18, 27, 30) and ocean scattering (17, 19-24, 29). The method works dire
with the DNO without reference to the bulk potential and has thus been termed the Oj
ator Expansion (OE) Method. To review this approach, let us assume again that the k
geometry is of infinite extent ig, in which case the unperturbed DNO is given by

GO =DIE =) _ [KIEX). (15)
kel
Since the function
wp(X, y) = PPy (16)

is a solution of Egs. (3a), (3d), and (4) we have

G(ef) [¢PHPIET) = (3 — eVy - V) (EP*HP)| s, (17)
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that is
G(ef) [€PHPEM] = (|p| — eV f - ip)dP 1Pl (18)

Thus, expanding the equality (18) in the form of a seriesamd equating like powers, we
obtain the recursion

. fn . fn-1
Ga(1)eP* = —[p|" e — xh) gy APIPI™ e
n—-1
_ n—I |px
Za( ){(n rlpTe ] (19)

or, symbolically,

n-1 ne

— fr n—1 _
Gn(f)E(x) = D~ DIDI" (%) ;e.m{( i

|D|"™ 'S(X)] (20)

Finally, using the self-adjoint nature &, (f) and|D|, we may rewrite (20) in the form

n—-1

Gn(f)&(0) = [D|" lD Dé(x) > o ,
— (n—="Dn!

Gi(H)EX), (21)

which gives a direct recurrence for the operaiBrg f).

2.3. Cancellations and Ill-Conditioning

It is important to note that the above derivations of (13) and (21) are formal in natu
Indeed, although the resultsin (4, 7, 8, 10, 26) do guarantee the convergence of the expal
(6), the validity of these recursions demands more careful consideration. In fact, at f
glance the formulas would seem to require a high degree of regularity on the frofile
as is most evidently displayed in Eq. (21). On the other hand, the theoretical results
analyticity of DNO apply to general “rough” (Lipschitz @) perturbations of a plane. As
conjectured in (26), this apparent contradiction is at the heart of the unstable behavio
the OE and FE algorithms in high-order calculations. Indeed, as argued there, substa
cancellationsoccur in (13) and (21) so that the overall sums in their respective right-hat
sides give rise to finite quantities in spite of possible singularities in the individual term:s

Infact, substantial insightinto the nature of these cancellations can be garnered by exr
consideration of the recursion (21) to second order. Indeed, it follows from (15) and (-
that

Got = |D|¢ (22a)

Gt = Df D& — |D|fGot (22b)
f2 f2

GzE=|D|D7DE—|D|27Go€—ID|fG1§‘, (22¢)

whereG; = G;(f). In particular, the definition oB,£ appears to entail second derivatives
of the profilef and third derivatives of the Dirichlet data On the other hand, we know
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(cf. Eq. (7)) thatG,¢ is guaranteed to be square integrable under the sole assumptibn tt
is Lipschitz and thag is in H* (a single derivative is square integrable). As we shall nov
see, these apparently contradictory remarks can in fact be reconciled, as the most sin
part of Go& can be shown to exactly cancel out. For this, we shall make use of a kind
“product rule” for Go = |D| that can be easily verified. More precisely, we shall use th
fact that for any given functiong andy, the functionGg(¢y) can be written as

Go(@¥) = Go(P)¥ + dGo(¥) + R, (23)

where the “remainderRis more regular than each of the other terms. In the present perioc
context, the higher regularity @& can be readily verified by considering the decay of its
Fourier coefficients.
Next, we note thaG,&¢ = |D|n where, using (22a) and (22b),
f2 f2
n=D—-D§ —|DI-Got — fGaé

f2 f2
= D~ D¢ — |D|-|DJ — f Df D& + f|D| f|Dl¢

and we shall show that the most singular pagt,of n (i.e., that involving first derivatives
of f and second derivatives ) does in fact vanish. Indeed, using (23), and the equalit
|ID|?2 = D2, we find

f2 f2
ns = | f(Df)(D&) + EDZs] - [f(|D| f)(IDI&) + 7|D|Zs

—[f(Df)(D&) + f2D%] +[f(ID|f)(ID|§) + f2D|%]
=0

as predicted.

The effect of this type of cancellations on the conditioning of the OE and FE metho
shall be thoroughly exemplified in Section 4 through a variety of two- and three-dimensio
numerical experiments, as we compare their performance to that of a new stable algor
that we introduce in Section 3. Here, and to further motivate the need for a better conditio
approach, let us simply consider the caseraboth(one-dimensional) perturbations of the
planey = 0 with

f(x) = cogx),
and let us take, for definiteness, the Dirichlet data
&(Xx) = cogXx).

In this case, a calculation iexact(rational) arithmetic can be performed by resorting
to a symbolic manipulator (Maple, in our case) with rather modest memory and tir
requirements. In this manner, the precise values of the Fourier coefficigntsf the
periodic function

Gn(F)E = an ke (24)

kel
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TABLE |
Significant Digits in Real Part of ap 1;
Smooth Profile (2D)

n FE OE
2 16 16
6 15 16

10 13 15

14 13 13

18 10 12

22 7 9

26 5 6

30 2 5

34 0 1

can be obtained and compared to the outcome of spectral implementations OE anc
in double precision arithmetic. The results of such an exercise are reported in Table |
the Fourier coefficient, x corresponding to wavenumbkr= 1; the behavior for other
coefficients is qualitatively similar, and it deteriorates with increasing wavenumber. We ¢
that even in this most favorable case of analytic, low-frequency perturbations and Dirict
data, there is a substantial loss of accuracy in the calculation of the coeffigignésn
increases: Approximately one digit is lost every time the number of derivatireseases
by two beyondn = 6. We remark that the OE and FE results were computed with 12
Fourier modes so that no aliasing errors are incurred; the loss of accuracy is solely
to ill-conditioning. As we show in Section 4, these instabilities become more pronounc
for more irregular perturbations, and they may actually pose significant limitations on 1
applicability of these algorithms.

3. ANEW NUMERICAL ALGORITHM

The example above shows that the OE and FE approaches may be inappropriate
high-order calculations. On the other hand, in the context of perturbative methods, hi
order approximations may be mandated by accuracy requirements, particularly for lar
surface deformations. In this section we introduce an alternative algorithm that allows
the accurate evaluation of higher order terms in the perturbation series. The algorithr
inspired by our recent work (26), where we showed that a simple change of indepenc
variables leads to a perturbative scheme that, in contrast with the OE and FE mdtesds,
not rely on cancellationsThis characteristic allowed us in (26) to use the correspondin
recursion to provide an alternative proof of analyticity of DNO. And, moreover, it als
suggested that a numerical implementation should result in a well-conditioned proced
thus enabling high-order approximations. As we shall see (Section 4) this is indeed the «
and, in fact, our new algorithm can be used to substantially enhance the applicability
geometric perturbation approaches.

As we said, the method we propose is a modification of the FE approach that inclu
a change of independent variables. This change of variables has the effect of transforr
the perturbed domain onto the basic, unperturbed geometry, and we shall therefore ref
it as the method of Transformed Field Expansions (TFE). In particular, the transformat
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simplifies the geometry and thus makes it amenable to a spectral collocation technique;
e.g., (5) and the references cited therein. As is well-known, however, a directimplementa
of such generally leads to inefficient and poorly conditioned algorithms, and a varit
of iterative and preconditioning mechanisms have been proposed; see, e.g., (5, 25)
the other hand, and as we describe below, our solution procedure for the transfor
problem will be chosen so as to retain the perturbative nature on the size of the boun
variation. As we mentioned in Section 1, this allows for a direct comparison (of stability a
applicability) with the OE and FE implementations, and it also provides a stable mechan
for the evaluation of a perturbation series whose structure could be further exploited
analytic continuation (2, 3). Moreover, the technique we propose is closely related to
aforementioned iterative preconditioned spectral methods and, in fact, it would reduce
version of these if the transformed equation depended linearly on the size of the perturba
To see this, consider the change of variables

X =X (25a)
/o y— ef (X)
T l4efx)’ (25b)

mapping the irregular domai.s onto the stripS. Then, the field
ux,y', &) = v(x, y' (1 +ef (X)) +ef (), ) (26)

will satisfy (cf. Eq. (3a)—(3d))

Au—eQu) =0 ing (27a)
dyu(x,=1) =0 (27b)
u(x’, 0) = &(x) (27¢)

ux' +y,y) =ux,y) forally eT, (27d)

where the operatd® is given by

(Ve HA+Y) 1+Y) e[V F 2L+ y)?
=divy | ————— =79, Oy Vo f-VoU — ————— 77 9
QW) W [ 1+ef Y Y ld4ef xd (1+ef)? Y
2f +ef? 1 eV 121 +Y)
- duul———V. -V, - Ty 28
1+ ef)? yu} 1+ef * Ut 1+ ef)2 Y (28)

Next, note that, since the transformation (25a) and (25b) coincides with the identity wt
¢ = 0, the coefficientsl, in an expansion

ux',y,e) = Z un(x', y)e" (29)
n=0

can still be recursively obtained. In particularQfwere independent of, the recursion
would simply read

A'up = £Q(Up-1) (30)
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with appropriate boundary conditions or, in terms of the partial sufhs- > p_, ukeX,
AU" = EQ(U nfl)
sinceQ depends linearly on. This last equation can be equivalently written as
AU" = A'U n-1__ [A/U n-1__ EQ(U n—l)]7
which coincides with a (Richardson) iteration scheme associated to the solutidn ef
£Q(u) = 0 upon preconditioning with the Laplacian (5).
Inthe case of Egs. (27a)—(27d), of cou@eloes depend an so that a direct perturbative

treatment leads to a somewhat more complicated recursion than that in (30). Indeed, in
case and upon dropping the primes, the recursion reads

Aup(X,y) = (1 =8no)Fa(X,y) InS (31a)
dyUn(x, —1) =0 (31b)
Un(X, 0) = 8n,05(X) (31c)
Un(X+7,Y) = Un(X,y) forally €T, (31d)

where
Fa(X, y) = divk [FP(x, )] + 3y F2(x, y) + FP(x, y), (32)

and
n-1

FP0GY) = A+ Y)(Vx )Y (=) dyun -1 (332)

1=0
n—1

FP0GY) = A+ Y)(VxF) D> (= H!'Vatn 1y — @+ y)? Vi f?
1=0

n-2 n—1
Y 0+ D= oyun o+ > (1 +2(=FH'dyun1  (33b)
1=0 1=0
n—-1

FO0Y) = =(Vif) - D> (=)' Vo + A+ W)V P
1=0
n—-2
x> (1 + D= ) dyun—2-y (33c)

1=0

(see (26)). The TFE approach will therefore be based on the solution of this recurrence
on the relation

1+ 2| Vy f|?

G(ef) € = —eVyf - V4u(x,0,¢) + 11 of

ayu(x, 0, ¢), (34)
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satisfied by the DNO in the new variables (primes dropped), from which a new formula c
be derived for the-th term in its Taylor series expansion
n
Gn(f) & = (= H)dytn1(X, 0) = 0.1V F - Vi&(X)
1=0
n-2
IV FPD (= Hloyun21(x, 0). (35)
1=0
As was shown in (26), the formulation above allows for dlirect recursiveestimation of
the functionsu,, (in appropriate Sobolev norms) indicating that, in contrast with (13) an
(21), this new recurrence does not entail significant cancellations. In the next section,
present a variety of two- and three-dimensional numerical examples that clearly show
beneficial effect that this has on the stability, accuracy, and applicability of the method
we compare its performance to that of the OE and FE implementations.

4. NUMERICAL IMPLEMENTATION AND RESULTS

In order to substantiate the theoretical predictions that suggested the unstable behav
OE and FE and the improved numerical properties of TFE, we have conducted a thorc
study of the three algorithms in their two- and three-dimensional versions. Here we rej
on the implementation details and on the outcome of this comparison, showing that ind
instabilities invariably arise in OE and FE implementations and that substantial precis
can be gained from use of TFE in high-order approximations.

4.1.Numerical Implementation

The implementation of OE is based upon the evaluation of Eq. (21) (or its analoc
in finite depth). The periodic boundary conditions in theariable and the conspicuous
appearance of Fourier multipliers in the formula naturally suggest a Fourier spectral mett
In this scheme, the unknowns are represented by Fourier series of a fixedNgy@gmwith
Nx collocation points), and all products are evaluated using fast (de-aliased) convoluti
via the FFT algorithm.

The FE approximation, on the other hand, is constructed from the recurrence (13)
its analogue in finite depth) and the representation (9). Once again, a Fourier basis is
natural, and we thus use a Fourier spectral approach with fast convolutions.

The implementation of the TFE approximation is somewhat different from that of the C
and FE methods. Indeed, both the OE and FE approaches rely on the homogeneity o
differential equation (10a) to express the solutionslosed formas linear combinations of
suitable basis functions (exponentials in this case, cf. (12), (16)). In contrast, the “soL
terms” in (31a) preclude the use of a standard basis for the exact representation of solut
which we therefore approximate numerically. As we said, the consequent increase in ¢
putational cost may be compensated by a substantial increase in accuracy that can, in
allow for computations beyond the reach of the OE and FE algorithms (see Section 4.:

For the numerical solution of (31a)—(31d) we have chosen a spectral Fouri
Chebyshev tau method which posits an approximate solution of the form

Ny

UnOGY) = Y Y Oak,NETy + 1), (36)

keI, [k|<Ny/2 1=0
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whereT, (2) is thel-th Chebyshev polynomial. The resulting set of equations can be ef
ciently solved via the use of fast Fourier and Chebyshev transforms in conjunction with
fast elliptic solve outlined in (14, Section 10). Finally, the DNO is approximated from thi
representation through Eq. (35).

4.2.Convergence and Conditioning Tests

A standard approach to the measurement of convergence properties of a numerical me
is by comparison to an easily evaluated exact solution. In the context of DNO, such soluti
can be produced for any surface profilx) by considering the particular solutions to
Egs. (3a), (3b), and (3d) given by

vk (X, y) = coshk|(y + 1)) cogk - x). (37)
For these, we obviously have
G(F) (X, (X)) = Vuly—t - (=Vx f, DT (38)

for any functionf. Then, for the outcome of a numerical simulation, the defect in thi
relation (e.g., in the discrete? norm) can be used as an error estimate. As we show belo
the results of such experiments are directly relevant to the determination of the accul
and applicability of the different methods. However, they provide only indirect evidence
to the ill-conditioning of the OE and FE schemes.

To garner more immediate insight into the nature and effects of these instabilities,
shall also present the results of a different set of tests. In these tests, a direct comparis
made of thevaluesof the coefficients, k (cf. (24)) in the Fourier series of the DNO applied
to a particular Dirichlet datum (see Section 2.3). To compute the “exact” values of the
coefficients, we resort to a symbolic manipulator (e.g., Maple) with rational arithmet
or, when such calculations exceed memory or time constraints, to quadruple precis
simulations. In this manner, a clear picture emerges of the degradation of the numet
results as the approximation order is increased.

4.3.Numerical Results

We have performed numerical convergence and conditioning tests on the TFE, FE,
OE methods using several sample profiles in two and three dimensions. For the sak
definiteness, all computations were performed on domains of finite extetdiresponding
to Egs. (3a)—(3d).

4.3.1. Two-dimensional computationsThe discussions above indicate that, overall, the
performance of TFE should improve over that of FE and OE, and that this improvems
should be enhanced for rougher boundaries. To confirm this predicted behavior we F
selected two-dimensional domains whose upper boundaries are shaped by the profile:

fs(X) = cogx) (39a)
fr(x) = (2 x 10H%x*2r — x)* — co (39b)

f —2x+1 0<x=<m 20
X) = c
L0O 2x-3 m=x<2n (39¢)
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intended to be prototypical of “smooth,” “rough” (finite smoothne8$4), and Lipschitz
boundaries, respectively. The constegiin (39b) was chosen so th#t has zero mean (as
do fs and f.). To facilitate a comparison, the scaling of each of the profiles was chos
so that they all have approximate amplitudes of 2, and maximum slopes of about 1.
Fourier series representation ffand f_ are given by

. 96(2k?72 — 21)

=1
- 8

fLog =" kD cos(2k — 1)x), (40b)
k=1

and in order to minimize the effects of aliasing errors, we approximate them by th
truncated Fourier series

P 96(2k272 — 21)
fip0) =Y ——— —“~ cogkx) (41a)
2.~ 80
P/2
fLpX) = ————co9(2k — 1)x). (41b)
kZ:; 722k — 1)2

If P <« Ny/2,the number of modes in our numerical approximation, the effects of aliasil
will be minimal (in fact, no aliasing occursifP + F < Ny/2 wheren is the degree of the
perturbation series arféis the number of Fourier modes in the Dirichlet data).

In the first set of experiments, we explore the conditioning of the methods as descri
in Section 4.2. via computations of the Fourier coefficients (see (24)) corresponding to
each of the profileds, f; p, and f_ p(P = 40), and for the fixed Dirichlet datum

£(X) = cosx) (42)

(F = 1). This choice of is taken so as to simplify the “exact” calculation of g, which
was performed in rational arithmetic in the casefgfind in quadruple precision fdf p
and f|_ p. We have measured the outcome of these comparisons by the number of “digit
accuracy” which, for an approximatignto an exact valug*, is defined to be the largest
integert such that

lp— P
Pl

Theresults of these experiments for the real paaj @fare given in Tables I1-1V; the behavior

for other modes is qualitatively similar and deteriorates with increasing wavenumber.
each case, the choice Nf was taken so as tuptimizethe results of OE and FE: sufficiently

large to avoid significant aliasing but small enough so as to minimize the effects of numer
ill-conditioning. As a result we observe in Table Il for instance, that while, as discussed
Section 2.3 (Table 1), the accuracy of the OE and FE methods degenerates at a rate o
digit per two terms beyond = 6, that of TFE remains virtually constant throughout the
range of orders; the precise value of this constant s, of course, determined by our resolt
of the vertical dependence of the fie,(= 64 in all three cases). The results in Tables I

<5x 10" (43)
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TABLE Il
Significant Digits in Real Part of a, 1; Smooth Profile (2D, N, = 128)

n TFE FE OE
2 11 16 16
6 10 15 16

10 10 13 15
14 10 13 13
18 9 10 12
22 9 7 9
26 9 5 6
30 9 2 5
34 9 0 1

and IV are similar, with the OE and FE results deteriorating at a faster rate as the prc
becomes less regular.

Next, we compare the convergence behavior of the three methods in this two-dimensi
context. For this, we consider the exact solution (37) With 3. The algorithms were given
such exact Dirichlet data on each of the profiles= fs, f, p, fL p (P = 40) scaled by a
particular valuesyp and were made to compute the corresponding Neumann data throt
the evaluation of the Taylor series@fcf) in ¢ ate = g¢. The results witiN, = 256 and
Ny = 64 are given in Figs. 1-3. These figures display relative mean-squared errors :
function of n, the number of terms retained in the Taylor series, for each of the profil
whengp = 0.3. The effect of the ill-conditioning of the OE and FE formulas is evidence
here in the form of an explosive divergence of the series beyond a few terms whose o
is precipitated by a profile’s roughness. Indeed, the figures show that as the profile is va
from smooth to rough to Lipschitz, the onset of divergence for the OE and FE methc
changes froom = 9to 8to 4 and fronm = 20 to 13 to 5, respectively. In contrast, the results
of TFE are consistently stable and only limited by the numerical resolublgr=(64). A
further refinement of the discretization in tkalirection (toNy = 512), results in a loss

TABLE 11l
Significant Digits in Real Part of a, 1; (Truncated)
Rough Profile (2D,Ny, = 256)

n TFE FE OE
2 11 15 15
4 11 14 14
6 11 14 14
8 10 13 14

10 10 12 13
12 10 10 12
14 10 8 10
16 10 7 8
18 10 5 7
20 10 3 5
22 10 1 3
24 9 -1 1
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TABLE IV

Significant Digits in Real Part of a, 1; (Truncated)

Lipschitz Profile (2D, Nk = 512)

n TFE FE OE
2 11 16 16
4 10 12 16
6 10 10 12
8 10 7 10

10 9 4 6

12 9 1 3

14 8 -1 0

201

of accuracy in the OE and FE results for both the smooth and rough profiles, indicat
that conditioning errors overcome those that may arise from aliasing. For the Lipscl
profile, on the other hand, a discretization wih = 512 actually produces slightly better
results (for both OE and FE), but they again deterioratdl,at= 1024; see Figs. 4 (FE
results) and 5 (OE results). For comparison, these figures also include the results of
with Ny = 256 which demonstrate a further and unexpected advantage of TFE over
OE and FE implementations, as the latter appear to contain more substantial informe
at high wavenumbers in each term of the perturbation series. Indeed, these figures ¢
that at a resolution oNy = 256, the calculation of terms beyond= 5 with FE and OE
are significantly aliased, while that of TFE is not (as demonstrated by the higher resolu
results of FE and OE).

As we said, the results above were chosen to exemplify the performance of the mett
over arange of roughness and spatial discretizations. Of coursiz#oéthe perturbations
also plays an important role, as it determines the rate of convergence. As we have fo

=)
10’
—8— ETFE
_e_e‘ EFE
OE
10°~
T
£
w
)
S
Ll
8
]
c h
10° -
1 L 1 1 I L L L L L 1 1 1 L 1 ]
0 10 30 40

FIG. 1. Plot of relativeL? errors versus: smooth profile in 2D withe, = 0.3, N, = 256,
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—8— ETFE
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_e_ EQE
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L 1 L ] I L L 1 L St s 'I
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FIG. 2. Plot of relativeL? errors versus: rough profile in 2D witheq = 0.3, N, = 256.

the results we have presented are qualitatively general with regard to a change in
magnitude of the modulations. Indeed, convergence studies for other sizes reveal, as
be expected, a change in the convergence rate but otherwise similar results for the nui
of terms ) that are accurately computed by each method. This, of course, implies that
larger perturbations the inability of FE or OE to accurately produce high-order terms m
conspire against their resolution of the corresponding problem within an acceptable el

Relative L? Error

FIG. 3. Plot of relativeL? errors versus: Lipschitz profile in 2D withs, = 0.3, N, = 256.
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—&— E,.(256)
—a— E,, (256)
|| —6— Ex(512)
10°F | —&— E.(1024)

jury
o
S
1

Relative L2 Error
=)

10° |

n

FIG. 4. Plot of relativeL? errors in FE versus: Lipschitz profile in 2D withs, = 0.3, N, = 256, 512, and
1024.

To illustrate such a situation we display in Fig. 6 the results for a larger (rough) surfe
deformation £y = 0.8), where a calculation with = 9 — 13 (the highest order terms that
can be accurately computed with OE and FE) delivers an error of onf; 10

4.3.2. Three-dimensional computationsin three dimensions we once again carried ou
illustrative computations based on three canonical geometries. On the dom2ir] [0

10"}

10°}
]
£
w ot —8— E,(256)
Bl e B (256)
o —6— E(512)
£ —<&— E.(1024)
<10’
(3

10

FIG. 5. Plot of relativeL? errors in OE versus: Lipschitz profile in 2D withe, = 0.3, N, = 256,512, and
1024.
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Relative L Error

FIG. 6. Plot of relativeL? errors versus: rough profile in 2D witheq = 0.8, N, = 256.
[0, 2], we chose the smooth, rough (finite smoothn&33, and Lipschitz profiles

Os(X1, X2) = COS(X1 + X2) (44a)

2
O (X1, X2) = (9 X 103> X221 — X1)? X5 (21 — %2)? — €1 (44b)
—14 2% {(x1, %) € [0, 27]% [ %1 < X < 27 — 1)

3— 2%,  {(X1, %) €[0,27)%| Xz > X1, X2 > 21 — 11
(44c)

3—2x;  {(x1,%) €[0,27]2]| 21 — X1 < X < X1}
-1+ ng {(x1, X2) € [0, 27'[]2 | X2 < X1, X2 < 2 — X1},

gL (X1, X2) =

where, as before, scalings were chosen so that maximum amplitudes and maximum sl
are approximately 2 and 1, respectively, @ndo thatg, has mean zero. The Fourier series
representation of the two latter profiles are given by

OO, X) =Y Y a0 pa 0ostko 1 i) + costkg — pio)]

p=1 k=1
< 3274 > 3274
_ kz:; Seoad cogkx) — ; 56250 cog pxo) (45a)

1 2
0L (X %) = = + kZ:; —lcostkia +2))

4 cogk(X; — X2)) — 2cogkx) — 2 cogkxo)]. (45b)
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FIG. 7. Plot of relativeL? errors versus: smooth profile in 3D withe, = 0.3, Ny, = Ny, = 64.

Again here, and in the interest of excluding aliasing errors, we approxingatadd
gL by their truncated Fourier representatignp andg, p with P = 40. In Figs. 7-9 we
present the results of calculations corresponding to the normal derivative of the funct
v3(X1, X2, Y) in EQ. (37) as computed with each method through the expansi@{«gf)
evaluated at a specific valae= gq. The figures show the relatie? errors in the Neumann
data forgs, gr p, andgy p(P = 40) for o = 0.3, Ny = 64, and several values &4, and
Ny, As in the two-dimensional case, the instability of the OE and FE procedures le:

—B— E,(128)
10 —&A&— E. (128)
—— E,, (256)
otk —O— E,_(128) )

—&— E (256)

Relative L? Error
3
)

-
o
&
1

-
o
&
1

FIG. 8. Plot of relativeL? errors versus: rough profile in 3D withg, = 0.3, Ny, = Ny, = 128 and 256
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10*

ot
| = gy == gy 3

20
FIG.9. Plotof relativeL? errors versus: Lipschitz profile in 3D withey = 0.3, N,; = N,, =512

to divergence at a critical value of the ordeof the Taylor expansion which depends on
the smoothness of the underlying profile. For the smooth profile, Fig. 7 displays rest
corresponding tdN,, = Ny, = 64 (andNy = 64, as in all cases); higher resolution in the
horizontal variables leads to aloss of accuracy in the outcome of OE and FE. Figures 8 a
show the results for the rough and Lipschitz profiles, respectively. Here, however, res
with Ny, = Ny, = 64 are substantially underresolved (e.g., only three terms of the pe
turbation series can be accurately computed for the Lipschitz modulation). The figu
show the results corresponding to the optimal values for the FE and OE implementatic
Ny, = Nx, = 256 forthe rough surface amd, = Ny, = 512 for the Lipschitz perturbation.
Figure 8 also displays the results of all methods for a coarser discretizhfjpe; Ny, =
128, which again demonstrate the additional effect of the change of variables (25a)
(25b) of reducing the high-frequency content of higher order terms in the perturbation se
(cf. Section 4.3.1). For the Lipschitz profile, in turn, the results in Fig. 9 show that a coar:
TFE calculation Ny, = Ny, = 256) suffices to resolve almost twice as many terms in th
corresponding Taylor series as those that can possibly be computed with OE and FE
which, in this case, are no more than 6 and 8, respectively.

Finally, and as in the two-dimensional case, results for larger surface deformations
qualitatively similar, as the size only influences the rate of convergence (see Fig. 6). Tt
as anticipated, we conclude that an alternative approach, such as TFE, may be necess
cases that demand the resolution of high-order harmonics (rough profiles) or higher ol
terms in the perturbation series (moderate to large perturbations).
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