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Conventional algorithms for synthetic aperture radar (SAR)
data fe tched filfer pt and convolve the
data with a reference phase signal which changes with range. The
resulting algorithm is space variant and its frequency domain
implementation is cumbersome.
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to those used in geophysics. The
frequency-wavenumber approach is extremely efficient: it attains
almost the ultimate results in performance, with the efficiency
of frequency d in impl tation. The method is exact when
the sensor flies along a rectilinear path, but even with a spherical
Earth and a circular sensor trajectory the results are extremely
good. Terrestrial swaths as wide as 100 km can be focused
simultaneously with no serious degradation, at least with the
spatial resolution at present used or envisaged in SAR missions.
The algorithm has been tested with synthetic data, with
SEASAT-A data and with airplane data (NASA-AIR). The
experimental results fully support the theoretical analysis.
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l. INTRODUCTION

The remote sensing of resources of the Earth
can be carried out using electromagnetic waves at
optical frequencies and microwaves in the 3-30 cm
wavelength range [1]. The spatial resolution of the
survey is dependent upon the bandwidth of the source,
upon the width of the beams of the receiver and
transmitter antennae, and upon the distance between
the observation platform and the surface. The platform
can be placed on an airplane or on a satellite [2-5].
For reasons of continuous availability, satellites are
preferable.

Despite the very large distance entailed by a
satellite borne sensor, it is still possible to achieve a
satisfying spatial resolution using synthetic aperture
radar (SAR) techniques. These methods are shown to
be substantially identical to the techniques used for
seismic surveying [6-8], though SAR uses different
waves. The resolution achieved in the published
experiments is on the order of 20 m from 800 km.

This high resolution is obtained if the scattered
wavefield is processed so that a wide receiving antenna
is simulated. This corresponds to an extremely narrow
antenna beam. In the case of SAR data, the processing
has been carried out optically first, then using digital
techniques, but adopting algorithms that require
unnecessary approximations, or being overloaded by
unnecessarily lengthy calculations, as it is shown in
detail in Section IID.

In effect, it is easy to show that there are no
differences with respect to seismic migration for
bandpass data, both in the temporal as well as in the
spatial domain. Thus, the same revolution experienced
in seismics with the introduction of wave equation
migration [8] is now possible in radar, with all the
consequent advantages in processing precision and in
decreased costs.

The applications of SAR sensing are very
relevant to all kinds of remote sensing since radiation
penetrates clouds and foliage. If the terrain is arid,
radiation penetrates the upper layers of the terrain
and reaches either the water level or the rocks buried
below [10] that reflect microwaves.

Since penetration increases with wavelength,
it is interesting to work toward lower frequencies.
However, this approach has prohibitive computing
costs if the classical techniques are used. With
the introduction of wave equation, the cost of the
processing is virtually independent of the surveying
wavelength. New opportunities are thus found for an
increased use of this type of surveys in a wide range of
applications.

A. SAR Basics

The theory of SAR systems has been worked out in
detail elsewhere, so the preliminaries will be kept at a
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minimum,; just the basics will be presented to make the
paper self-consistent.

The SAR system is a conventional pulsed radar
which takes advantage of the relative motion between
sensor and target to synthesize a very long antenna
and to achieve a high cross-range resolution. How
range resolution is obtained is not relevant; as long
as the SAR principle is concerned, it can likewise be
obtained through extremely short transmitted pulses, or
with longer coded (e.g., linearly frequency modulated
or “chirp”) pulses that, after reception, are compressed
into shorter waveforms. What is basic is that each
echo retains both its amplitude and its phase. It is
usual to adopt the complex envelope representation
in which the received signal is complex, with its real
and imaginary parts obtained through quadrature
demodulation [3] from the incoming bandpass signal.

Notice that from here on we indicate with the
angular frequency (w) the variable conjugate to the
arrival time (¢) and with the wavenumber (k) the
variable conjugate to the along track space variable
(x). In the future, we also indicate the across-track
spatial coordinate with (z), and its conjugate variable
as (k). The key of the method is in the change
of variable from (w) to (k.), that we call Stolt
interpolation [7].

Let us consider the radar sensor flying over the
back-scattering Earth as shown in Fig. 1. A single
scatterer, as long as it stays within the antenna
footprint, produces a series of echoes with arrival
times and phase delays that are functions of the sensor
position with respect to the elementary scatterer.

In SAR, the relative motion between sensor and
target is supposed known. Conventional focusing
algorithms estimate the back scattering coefficient of
an clementary cell by picking up from the received
data the samples with the right sequence of time delays
and correlating them with the corresponding sequence
of phase delays [2, 3]. The change from scan to scan in
the echo time delay is known as “range migration”,
while the sequence of phase delays of the echoes
coming from a single scatterer is the “target Doppler
history”.

An implementation of the focusing algorithm in
the time (range)-space (azimuth) domain can get the
ultimate resolution out of the received data, but at the
cost of a very poor computational efficiency. Other,
more efficient techniques, based on the polyphase
algorithm have been recently proposed by the authors
[L1]. Other algorithms [3] take into account only the
linear and the quadratic terms of range migration
(respectively “range walk” and “range curvature”) and
approximate the phase history r(x) of the point target
with a linear frequency modulated signal. Obviously,
the resolution of the focused image is poorer.

Time-wavenumber domain implementations
are particularly appealing, due to the efficiency
of fast Fourier transform (FFT); up to now, they

antenna
footprint

sensor
position

Ax=v/f
(b)

Fig. 1. SAR system geometry. (a) Echoes from a point scatterer.
(b) Envelopes of RF returns.

prf

have suffered the limitations due to an approximate
range migration correction and to the necessity of
accommodating the variations of the Doppler signature
with range by a segmentation of the range swath into
shorter segments [3].

The algorithm presented here works in the w —k,
domain and therefore time delays can be easily
accommodated with phase shifts that increase linearly
with w. Thus range migration poses no problem at all

Framing the SAR focusing problem into the
framework of wavefield migration, an algorithm can
be derived that overcomes most of the aforesaid
problems. This algorithm is known to geophysicists
as the w — k migration method, even though a few
modifications are necessary to adapt it to the new
problem [6, 7]. A good tutorial can be found in [8].

Section 1I describes the algorithm in plane
geometry first, where range migration and phase
history can be exactly matched. The effects of the
sphericity of the Earth, of the earth rotation, and of
the satellite trajectory curvature are taken into account
in Section III, showing that the theoretically achievable
spatial resolution is well within the requirements of
present day and near future SAR missions.

. Q— K MIGRATION IN PLANE GEOMETRY

A. Radiating Reflector Model

The electromagnetic pulse, radiated from the
antenna, impinges on the ground and is scattered
back toward the radar antenna. The reflected field
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(a) reflector ® reflector
Fig. 2. (a) Real SAR situation. (b) The “radiating reflectors”
model.

can, however, be thought to originate from the
scatterers and to propagate towards the antenna. The
contributions from different point scatterers should
arrive at different times, with delays proportional to
their distances from the antenna. If all elementary
scatterers radiate simultaneously and the propagation
velocity in the medium is supposed to be one half of
the true value, the kinematics of the actual wavefield
are well reproduced. This is the exploding reflectors
model used in geophysics [7] and in this context the
w — k focusing technique is easily understood. The
solution to the inverse problem which is obtained using
this model produces an estimate of the field radiated
back by the reflecting bodies; small corrections

are required to determine thereafter the reflection
coefficients.

There are differences between the model and the
real situation (Fig. 2), and it is useful to state them
clearly. First of all, notice that the sensor motion
during the pulse time of flight has been neglected. In
other words we have supposed that the satellite moves
in a “stop and go” manner. In this ideal situation,
transmission and reception of the chirp are performed
during the halting period. This is obviously in contrast
with the real situation since 1) the platform transmits
and receives the radio frequency chirp at different
orbit positions (the sensor travels a short distance
h during the pulse traveltime), and 2) the platform
moves during the transmission and the reception of
RF chirp and the Doppler effect changes the linear
frequency modulation of the reflected signal (train
whistle effect).

A complete mathematical description of this effect
can be found in [9]. For satellite geometry, however,
this effect can be neglected because of the large
bandwidth of the radar. Furthermore, if we consider
just the traveltimes, in all practical cases the offset A
(42 m in the case of SEASAT') between transmitter
and receiver can be neglected, since the sensor velocity
v is small compared with the propagation velocity that,
for radar, is the velocity of light c. In the SEASAT
case, as an example, the length of the effective ray
path is 0.235 mm longer than that computed with
the radiating reflector model. Thus, the traveltimes
(phases) of the radiating reflector model can be taken
as correct. Passing to amplitudes, the backscattered

19%

wavefield is proportional to

exp(—j4nR/))
R2
where R is the sensor-target distance and A is the
radiation wavelength.

However, the amplitude in the model is
different, being proportional to 1/R due to the
one way propagation path, while in the real case it
is proportional to 1/R?. Nonetheless, the largest
sensor-receiver distance variation during the interval of
observation (for the SEASAT case) is about 58 m that
must be compared with the closest approach distance
of about 850Km. Thus, the amplitude variation due to
the 1/R? term (the real situation) is 0.999863 whereas
that due to the term 1/R (the model) is 0.99993. The
difference can be neglected with respect to the antenna
pattern. Obviously, there is still a range varying gain to
be compensated as usual.

M

B. Focusing Through Wave Migration

Accepting the radiating reflector model, it is
possible to consider the operation of the pulsed radar
in motion as the sampling of the radiated (in effects,
backscattered) field on a set of points along the sensor
trajectory. The geometry of the system is again that
of Fig. 1. The sampling distance Ax depends on the
satellite velocity v, and on the constant transmitter
pulse repetition frequency fy:

. 2
- ®
The problem is linear and, therefore, the superposition
principle applies and we can consider a single point
source. If the sampling is along a straight line, the
problem has a cylindrical symmetry. Whichever

the source position around the line of sensors, the
measured field strengths will always be the same, as
long as the source is located at the same distance

from and at the same position along the line. All
sources can be thought to lie on a conceptual plane
that contains the sensor trajectory, with no loss of
generality. Henceforth x will identify the position
along the line of sensors and z the distance in that
conceptual plane in the direction orthogonal to x.

The coordinate along the crossing spatial axis will be
denominated y.

A point source radiates, at time ¢ = 0, a spherical
wave that reaches the sampling points after different
time intervals. If the source is placed in (xo,2o) the
time ¢(x, xo,20) at which the wavefront arrives at the
sampling point in x is

2
t(x,x0,20) = E\/(x —x0)2 +23.

(This is the Doppler history).

©)
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The arrival times relative to the same source
(echoes relative to the same scatterer), if displayed in
the x —¢ plane (see Fig. 1(b)), cluster along a curve
which is a hyperbola with apex in x¢o (the along track
position of the point source), £y = 2zp/c. The field
due to a distribution s(x,z) of sources emitting at
time ¢ = 0, as measured along the sensor path, can be
expressed in terms of time delays (3):

¥(x,y =0,z =0,w)

= [[[ser-000)

e— i@/ N=x Pty T4z

' \/(x — x/)2 + y12 + 272

_ i//s . e—jwt(x,x',z:) i ds .
= 41r ( ’ ) R x z. ( )

The information on the amplitude and location of
the point source, is distributed along this hyperbolic
curve. Now, if zy was zero, i.e., with a hypothetical
sensor flying at ground level over the scatterer, the
received wavefield would contain, at time ¢ =0, a spike
in xo with an amplitude proportional to the reflectivity
of the scatterer. Therefore, one way to invert (4) is to
“downward continue” the wavefield along the z axis,
and then to determine the amplitudes of the wavefield,
after downward continuation, at time ¢ = 0 at the
sources location.

Downward continuation here stands for the
operation with which the wavefield at level zg can be
computed, given the wavefield at level z. Downward
continuation can be easily carried out by decomposing
the received wavefront in a sum of planar waves,
downward continuing each of them separately, and
then recombining them at the proper time. This
sequence of operations can be efficiently performed
in the frequency-wavenumber domain.

-dx'dy'dz'

C. Focusing in Frequency-Wave Number Domain

Let the complex function d(x,z = 0,r) represent
the received data, after the proper compression of the
transmitted pulse waveform. It can be expressed as a
weighted sum of complex exponentials:

d(x,z=0,0) = E%)Z/ D(ky,z = 0,w)

el gy dic, )

where D(k,,z = 0,w) is the two-dimensional Fourier
transform of the data:

D(ky,z =0,w) = // d(x,z = 0,1)- e /W2 dx gy,
(6)

Any scalar monochromatic plane wave, with wavefront
orthogonal to the x — z plane, can be described by

the expression D(k,,w)exp[j(wt + k.x + k,z)]. The
measured field values can, therefore, be considered
to be the result of the superposition of plane waves
with different wavelengths and wavenumbers, whose
amplitudes are expressed, for z = 0 and as a function
of w and k,, by D(k,,z =0,w).

A proper backpropagation of the measured field
can bring back the source values. Once the field has
been decomposed into monochromatic plane waves,
its downward continuation consists simply in the
application of the proper phase rotation to each plane
wave.

As is well known, wavelength A and wavenumbers
k. and k, (k, is supposedly zero) are linked together

.04 27 27
A= o k, = —/\-smo, k, = Tcoso @)
so that
w=%~ K2 + k2. ®)

The angle 6 is the angle of incidence of the
radiation. The phase delay due to propagation over
a distance R is 2rR/A. The phase operator required
to back propagate, from z = 0 to z = z, a plane wave
with given w and k, is e/#, where:

kg X k2c?
pElato= T\ T g0

2p. ©)

The wavefield at depth z can, therefore, be expressed,
in the w — k, domain, as

D(ky,2,w) = D(ky,z = 0,w)e*==. 10)
A much faster way to obtain (10) is to exploit
directly the two-dimensional wave equation:
D  8°D _#D 1
—t 5 =555 11
ox2 = 9z2 9 ¢ (D

Equation (10) provides a solution of the wave
equation after Fourier transform along spatial and
temporal axes and use of the separation equation (8).
The wave equation (11) applies to seismic as well as
SAR. We chose the other way in order not to bypass
the intrinsic spatial 3-dimensionality of the problem as
further analyzed in the appendix. We have to handle
point sources in 3-D space and not line sources as
implied by (11).

Since in this section the origin of time is placed
when the collection of data starts, the measured field
is considered to be produced by sources exploding
at a time ¢ = —#g. A map of the “sources” can then
be obtained by propagating the wavefield at depth z
backward in time by an amount ¢, i.e., by computing
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d(x,z,t = —tg):
d(x,z,t = —tg)

1 wotw, /2 Kx max
@) /-wo-u./zdw krmin Dl z=00)
'ejk,zej[k,x'&u(—to)] dkx. (12)
Formula (12) gives the focusing and can be
modified to improve the computational efficiency. It
can be noted that the w variable (the data frequency)
ranges between —wg — w;/2 and wg + w, /2, where wy
represents the radar carrier frequency (in the order
of 1 GHz for practical applications) and w; represents
the transmitted signal bandwidth (tens of MHz). Since
SAR signals are narrowband and their spectrum is
originally centered around the radar carrier frequency
wo there is no reason to integrate on a wide band (i.c.,
the spectrum is symmetric and the integral between
—wo +ws/2 and wo— w,/2 is null). In fact it is easy
to realize that the same result of formula (12) can be
achieved by limiting the above said integral between
~w,/2 and +w,/2 provided that the variable w, inside
the integral, is changed into w' + wp.
Thus, the following equation holds

d(x,z,t = —tp)

1 +w,/2 , Ky max
= — dw /
@m)? -/—w,/Z k

x min

D'(ky,z =0,u0")

. glksz gilkxx+ (W' +wo)(=t0)] g . 13)
where D'(k,,z = 0,w’) represents the Fourier
transform of the data after frequency shift.

D'(kx,z2 =0,0') =2 D(ky,z = 0w —wg). (14)

The factor 2 accounts for the superposition of
positive and negative frequency side bands.

Formula (13), however, does not have the
expression of a 2-D Fourier transform and the
computation of the double integral would take too
much computer time to be of practical interest.
Nevertheless, it can be noted that this double integral
can be transformed into a 2-D Fourier transform by
applying the change of variables from w to k. defined

in (8)
w=§-,/k3+k§. (15)
This can be written as a function of two new
variables w’ = w —wp and k., =k, — ko as
wo+w' = % k2 + (a0 + KLY2. (16)

198

The following expression of (13) then holds, and
can be recognized as a 2-D Fourier transform:

1 +w, fe kx max
d(x,z,t = —to) = (27)5/ dk;/;

—w, fe x mia
x D’ (k,,z = 0,% k% + (ko + ki) — wo) .
. e— 0 (€I U0+
cl(kao + k)|

—_—.dk
2\/kZ + (ko + kL)

17

. kx4 ke kp)2) |

Furthermore, it is of no use to get all the results
from z = 0 up to a maximum value Zma. The radar
pulse must travel from the sensor down to the ground
to meet the first scatterer; it is useless to search for
scatterers at zs smaller than zg = cfp/2. In order to
shift the origin of the z variable to this new value (a
necessity when implementing (17) on a computer) the
change of variable z = 2o + { must be introduced in
amn:

1 B +w, [c ky max
d(x,(t = —to) = W-e’("“") / / dk; /
—w, [c k.

xmis

x D' (kavz = 0,5 /R F (o + K2 )
el (Cctor v/ R+ g+~ kyo20~K} 20)

etk
VEE + (koo + kL)

The focused data are therefore acquired with the
following sequence.

IO g

(18)

1) 2-D FFT of the range focused data;

2) Change of variables (from w to k; as in (8), the
so-called Stolt interpolation);

3) Multiplication times the complex exponential
term of (18);

4) Inverse 2-D FFT.

D. Connection With Conventional Doppler
Compression Techniques

So far, we have shown that the focusing process
is described exactly by (18). It is interesting to notice
that, with the introduction of some approximation,
(18) reduces to the conventional Doppler compression
technique.

Let us, first, neglect the obliquity factor
|k.|//(k2 + k2) which has little importance due to
the small relative bandwidth of SAR signals. Then,
since k2> k2, let us approximate the square root term
k2 + k2 with the first two terms of its Taylor series.
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The first exponential term inside the double
integral of (18) can be approximated as follows:

exp [—f (Czﬁ\/ k2 + (k0 + k.Y — k020 - kélo)] ~

Zokz

= [‘f (m)} =

 Zok?  zok2k!
= - x_ 207z 19
cxv[ ](Zkzo A7 (19
Let us consider again the change of variables
W' = -;- K2 + (ko + kLY2 — wo (20)

It can be approximated as

cki _ckik
4ko 4 k2,

2 ¢ k2 k2
! ~ = /_____x . X
ka2 [“’ 4k,0] [l+2k30]

2, [ k2 ] k2 [ k2 ]
=—w |1+ S| -=1+F| @
c WG| "ok |tz @D
Furthermore, it can be noted that in practical
SAR systems the term &2/ (2k120) is always small with
respect to 1. However, its effect is not negligible when
multiplied times the signal frequency as in the first

term of (21). Thus, the following approximation of (21)
is adopted

W=

€.
2kz+

and

2 k2 k2

'L x | _ x
k., ~ cw [l + ————Zkzo] T (22)

Eventually, since k.o = 2/c - wg, (22) can be
transformed as follows:

2 ck? ck?

' ~ = / + X, — X .
k., cw ——gw " (23)

Eventually, by exploiting (23) and (19), by defining
T = 2(¢/c and taking into consideration phase and delay
components up to the second order, (18) transforms
into the following:

d(x, Tyt = -—to)

— 1 Jjwor /2 7 cmas / !
—W»e 2 dw A D'(ky,z =0,w")

xmin

. e— I3 [Bw)to+T) | ki /By’ (fo+T)

272
2 [1 + i] et g

o't ez @

After these manipulations, it is easy to recognize
in (24) that for values of T (or ¢ as written above) that
are close to zero the change of variables w’,k has no
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effects on the focused image. In this case it is easy to
recognize the conventional range-Doppler compression
technique:

1) the range migration compensation up to the
second order (this is done by the second complex
exponential term);

2) the compensation of the phase Doppler history
(this is done by the first complex exponential term).

On the contrary, when the value of T becomes
greater and greater (far range) the effect of the
Stolt interpolation assumes a fundamental role since
(24) shows that it implies the compensation of the
parameters variation with range.

E. Practical Considerations On Focusing Technique

SAR data are two-dimensional and can be
organized into a matrix in which, e.g., the sampled
returns from the transmission of successive pulses
are stored in successive columns. Row and column
indices represent, therefore, the slant range and the
along-track variables, respectively, (this is the so-called
X —t domain).

The compression of the transmitted waveforms can
be efficiently performed computing the FFT of each
column and multiplying it by the FFT of the reference
waveform. Usual care must be paid to the circularity
of the resulting convolution. This leaves the data
range compressed and the columns FFT transformed
(w — x domain). The two-dimensional transform of the
range focused data D(k,,z = 0,w) is finally obtained
by FFT transforming the matrix rows. In this w — k,
domain the two-dimensional operator expressed by
(18) must be applied. The operations to perform are
the following.

1) Change of variable w — k,: To transform
D(ky,z = 0,w) into D(k,,z = 0,k.) the data values for
w' = c/2-/k2 + k2 —wq must be interpolated. The
selection of the interpolator is critical for the final
image quality and no simple and cheap interpolator
will do. However, the very small relative bandwidth of
SAR signals reduces the change of variable to a simple
shift in the w direction, which is a function of &,
only. This shift in the w domain can be implemented
with no loss of precision if the proper shift operator
(exp(jb,?) to shift by é,,) is applied to each row of the
data matrix in the time domain, i.e., prior to taking
their FFTs. In other words the interpolator is a k,,?
operator that removes the range varying character of
the focusing operator.

2) Multiplication by \/|k.|/(kZ + k2): Itis the
obliquity factor [7] and, due to the small relative
bandwidth of SAR signals, it is almost constant and
has, therefore, little importance.

3) Multiplication by the complex exponential: This
performs the azimuth compression of SAR data using
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Fig. 3. Geometrical scheme that explains the relationship between
wavelength A and wavenumbers k, and k. for monochromatic
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Fig. 4. Frequency-wavenumber data domains for broadside and
squinted antenna. (a) Effect of frequency conversion and azimuth
sampling of echo data. (b) 7 is antenna squint angle, a is width of
antenna radiation lobe.

the parameters corresponding to the closest approach
point.

A final 2-D inverse FFT brings back the data in the
x — z domain where modulus detection can be carried
out. The multilook techniques, used to reduce speckle
noise can be easily implemented: it is enough to
partition the matrix of the focused data in the k, — k.
domain and perform multiple, smaller, inverse FFTs.
The images obtained after detection can be added
together to improve the signal to noise ratio.

F.  Effect of Antenna Squint

Equation (18) shows that the only parameters
whose values must be accurately known to carry out
the data focusing are #y and the velocity of the sensor.

The angle of incidence of a plane wave is uniquely
determined by w and k. (see Fig. 3). The width of the
antenna radiation pattern identifies an angular sector
within the w — k, plane; all plane waves represented
by points (w,k,) outside of this sector are rejected by
the antenna. Therefore, the data domain is limited in
w by the bandwidth of the transmitted pulse and in k,
by the constraint due to the antenna radiation pattern.
The angular sector rotates if the antenna lobe changes
its direction and the data domain changes accordingly
(see Fig. 4(a)). Equation (18), however, still retains its
full validity and is independent from squint.

This simplicity is somehow obscured by the
sampling of the returns at the pulse repetition
frequency of the radar. The result of this sampling
is the folding in k, of the signal spectrum as shown

in Fig. 4(b). For the processing to be correct, the

spectrum must be properly unwrapped and this

requires the knowledge of the antenna effective

squint, i.., the angular amount by which the antenna

lobe deviates from exact broadside direction. Any

uncertainty in the knowledge of the squint angle

produces errors: their effect will be unacceptable if

the replica of the sampling frequency is missed [12].
Referring to Fig. 4, if 7 is the squint angle, and a is

the antenna beam width, the following relations hold:

Hesin(1+5)-

and
(25)

Kymax =

Equations (25) allow to compute the minimum fi
necessary to avoid alias, when the transmitted pulse
bandwidth and the geometrical parameters of the
SAR mission are known. Other constraints on fyf
are equally important and cannot be overlooked, but
they are not considered here. The aliased data, as
usual, appear as ghosts of the image displaced along
the azimuth direction. Due to the sphericity and the
rotation of the Earth this alias slightly changes with
range.

G. Effect of the Spherical Spreading

The radiating reflector model and its related
approximations are necessary to obtain a migration
algorithm which is extremely efficient. The effect of
the spherical spreading of the incident radiation can
be taken into account rather easily [17]. The Appendix
explains how.

lll.  MIGRATION IN SPHERICAL GEOMETRY

A. Travel Times in Spherical Geometry

It is shown in the Appendix that the migration
technique of the previous section is effective in
providing the solution to the SAR inverse problem
when the sensor trajectory is a straight line. Satellite
borne sensors do not fit this scheme, and the
application of migration techniques in such cases
requires a careful analysis.

A rigorous treatment of migration in spherical
coordinates is not attempted here. A simpler approach
will be followed, that allows to extend the results of
the previous section.

Equation (2) shows that, when the sensor trajectory
is linear, the measured ficld can be expressed in terms
of the disturbance arrival times. The same concept
holds whatever the geometry of the problem. When
the sensor flies in a circular orbit over a spherical
motionless Earth (see Fig. 5), the travel times, from
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sensor
trajectory

Fig. 5. Geometric layout for sensor flying circular orbit around
spherical Earth. Tangent rectilinear trajectory is shown for no
sensor antenna squint.

point source to points where the field is sampled, can
be expressed as

%\ﬂR, + ;)2 + R2 — 2R, (R, + h,)cospcosty  (26)

where R, is the radius of the Earth, A, is the altitude
of the satellite, and ¢, 1 are, respectively, the elevation
angle, with respect to the orbit plane, and the azimuth
angle, referred to the direction corresponding to the
minimum distance between sensor and point source.
The angle v spanned by each scatterer is very small (a
few degrees), as it depends on the antenna beamwidth
and on the system coherent integration time. This
allows the expansion of the cosine function into a
power series truncated to the quadratic term:

source, travel times become

é\/zg +2R, cospsinty - x, + x? (28)
where x, is now the position along the rectilinear path
(the origin being in the point where the two paths

are tangent). Equation (28) is just (3) adapted to the
geometrical layout of Fig. 5.

Travel times have, therefore, the same functional
dependence on the sensor position, both if the true
curvilinear path, or the tangent rectilinear one is
considered, on condition that the power expansion in
(27) is valid. The technique of the previous paragraph
applies whenever a rectilinear path can be assumed
for the sensor, and it can still be used when the path is
curvilinear if the differences between (27) and (28) can
be compensated in some way.

Equations (27) and (28) differ only for a factor
that multiplies x in the quadratic term. This is enough
to forbid exact matching of the proposed migration
technique to the circular orbit geometry. However,
if squint is moderate and/or integration time is short
enough, the resulting aberration of the system is well
below the resolution limit posed by the sounding signal
bandwidth. If the aforesaid conditions are satisfied, it
is possible to approximate (27) as

” +2R¢cos<psim/)ox R.cospcosipy 5
’ z R+ )z

2
c

where x is the curvilinear coordinate along the sensor
trajectory and 1o identifies the position of the point

29
1/)2
(R. + hs)2 + R2—2R.(R. + hs)cosp(costpo — Psino — ) cosg)

=2 [z i R. -cosp 2

= C\/;+2R,cos<psm¢o-x+ R +h, cosyp- X 27
and (28) as
i 2

Zo+wx+i+..., (3())

source when it intersects the center of the beam at a
distance 2o from the sensor antcnna:

0= \/(R, +h,)2 + R2 — 2R.(R. + hs)cos pcoso.

Angle 9y is zero for no antenna squint, i.e., when the
antenna beam points exactly broadside from the sensor
path. However, when the radar antenna is squinted,
the value of 19 changes as a function of the antenna
squint and of the source position (i.e., ).

If a rectilinear path is considered instead, and it is
tangent to the circular orbit where the sensor is located
when the center of the beam passes through the

20 20

The first term does not change with x and contributes
a constant delay. The other terms express the change
of the propagation delay with the sensor motion, and
are the ones which allow the focusing. The linear term,
that produces a shift in k,, is exactly the same in both
situations; it is just another way to observe that the
antenna squint moves the signal spectrum in the k,
direction. Once the value of the shift in k, is known, it
can be used to correctly evaluate the focusing operator
in (18).

The quadratic terms, however, are different and
the only way to force the circular orbit case into a
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Fig. 6. Example of SAR data focused with proposed technique:
Goldstone site is shown (SEASAT data taken in 1978).
Dimensions: 25 Km in azimuth (horizontal) by 12 Km in range
(vertical). Resolution: 25 m by 25 m (4 looks).

rectilinear path one, is to compress the x scale by a
factor \/R./(R. + h)- \/cospcosiy. As the sensor
position along its trajectory can be expressed as the
product of the sensor velocity and time, this amounts
to using an “effective” sensor velocity.

The correction factor, however, is range dependent
(it changes with ¢). Stated in other words, this means
that when the sensor moves along a circular path the
hyperbolas generated by point sources have shape
variations with range different from the ones that
would be experienced with a sensor flying along a
straight line.

The quadratic term in (29), however, depends on
2, to0o. It is possible to modify the value of the scale
factor while using a fictitious shift in z (the value of
2g is properly changed), so that the circular path case
coincides, at its best, with a linear path one. One
possible move is to achieve exact correspondence at
two predefined range values, so that the error can be

kept very small at all ranges of interest. This procedure

allows to compensate the effects of the earth rotation
too, as it has been seen on real SEASAT data of the
comner reflectors array of Goldstone site where the
antenna (see Fig. 6) is located in the middle of the
range swath focused simultaneously.

IV. EXAMPLES OF Q — K FOCUSING OF SAR DATA

An example of SAR data focused with the
proposed technique of downward continuation or
migration, as usually done in seismics, is shown in Fig.
6. The data were taken in 1978 during the SEASAT
mission and show the Goldstone site. Four looks have
been averaged to reduce speckle; the spatial resolution
is about 25 by 25 m. The bright spot clearly visible on
the image is the parabolic antenna of Goldstone. Also
visible in the upper part of the image is the corner
reflectors array.

We said that the quality of the SAR images
focused with the proposed w — k algorithm is high
because of the exact compensation of the data range
migration. The experimental evidence of this fact
is demonstrated by the comparison of a one look
image of the Goldstone area obtained using both
a commercially available processor (sec the upper

Fig. 7. Upper) Goldstone antenna and the comer reflectors array

as focused by a commercially available processor (1 look). Notice

ghost azimuth side lobes near antenna. Lower) The same area as

focused by the w —k processor (1 look). Notice absence of ghost
side lobes.

Fig. 8. Perspective views of Goldstone antenna data as processed
by commercial processor (upper) and by w — k processor (lower).

part of Fig. 7) and the w — k one (see the lower part
of Fig. 7). Notice the two azimuth sidelobes (ghost
images) near the Goldstone antenna that have been
introduced by block correction of the range migration
performed by the commercially available processor.
The difference between the two results is also visible
in the perspective views of the focused Goldstone
antenna data shown in Fig. 8, clipped at the same level.
Fig. 9 shows also the perspective views of the corner
reflectors array as focused with the two techniques.
As a second example, Fig. 10 shows a focused
SAR image of the area of Ventura (Los Angeles)
taken from the NASA DC-8 airplane (courtesy of Jet
Propulsion Laboratory). These data has been focused
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Fig. 9. Perspective views of the corner reflectors array processed
by commercial processor (upper) and by w — k processor (lower).

Fig. 10. Example of SAR data focused with proposed technique:
area of Ventura (Los Angeles) is shown (L band NASA DC-8 data
taken in 1988). Dimensions: 3 Km in azimuth (horizontal) by 3 Km
in slant range (vertical). Resolution: about 10 m in azimuth by 7 m

in slant range (8 : 1 presumming).

with the same software that has been used for the
SEASAT data (here the high flexibility) on a PC-AT
with 150 lines Fortran-77 code (here the simplicity) in
1 h (here the efficiency).

The effect of the Stolt interpolation of the data
is clear by comparing Fig. 10 with Fig. 11 where the
same raw data have been focused without the Stolt
interpolation. Notice that the near range of the picture
(on the top of Fig. 11) is well focused whereas the
far range (on the bottom of the picture) shows data
that are still to be migrated to take into account the
differential phase shift between near range and far
range. In other words it is possible to notice the small
hyperbola chunks that characterize the migration that
still has to be carried out.
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Fig. 11. Same example of Fig. 10. Here the Stolt interpolation has
not been used: the near range on the top of the image looks
almost completely focused, but the far range shows incomplete
focusing.

V. WHY PROCESSING WITH THE WAVE
EQUATION?

All the considerations presented up to now could
just be another, maybe futile, exercise in transposition
of a concept from the ficld where it was invented
into another field where it perhaps was not needed.
However, the huge amount of data that have to be
processed in SAR surveys makes it very relevant to
study techniques that can reduce the computational
burden. The wave equation processing will allow the
attainment of the highest resolution without the added
costs that today limit the exploitation of full resolution
imagery.

Up to now, SAR data have been focused with
different techniques which all amount to using filters
matched to the diffraction patterns of the point target
[13]. The squint of the antenna beam is equivalent
to a radial velocity component and can be corrected
through a proper relative shifting of data range lines.
The problems with this type of processing start when
the curvature of the hyperbola cannot be neglected.
Then, some sort of frequency-dependent interpolation
in the time-wavenumber domain has been attempted
but with limited results, at least from the viewpoint of
the precision obtainable with limited computational
costs [14].

When high resolution was considered necessary,
space domain algorithms have been mandatory, with
the enormous resulting costs. In fact, the diffraction
pattern may well be more than 1000 points long, and
each point corresponds to a complex multiplication.
The problems increase still as the aperture angle gets
larger and larger.

Summarizing, with the classical focusing techniques
that have been used up to now for SAR data
processing, the hyperbolic traveltime has been
approximated with a parabolic phase shift, without
attempts to follow precisely the actual time shifts.

Wave equation focusing will allow practically
perfect results with minimum cost, i.e., just that
of the interpolation in the 2-D Fourier domain.
Moreover, it is possible to lump the operations of
range migration correction and chirp focusing. An
interesting by-product of the proposed method is

203




that it shows how SAR and seismic data processing

are substantially equivalent [6]. Both fields can,
therefore, benefit from the possibility of synergy.

SAR processing can draw ideas from the pool of
sophisticated processing algorithms developed in a field
where the cost of careful processing was negligible with
respect to the benefits that could ensue. Autofocusing
techniques using statistical indicators and residual
migration [21] with, e.g., finite difference equations
processing could be easily borrowed, if and when the
processing precision they can allow could be of any
use. Seismic data processing, on the other hand, could
greatly benefit from the use of hardware developed

for real-time SAR data focusing. In fact seismic data
gathering is complex enough to allow for delayed
processing. Planned SAR missions will be pouring
down a continuous, huge amount of raw data, so that
real time focusing will become (and already is) a major
research effort.

Another, added feature of frequency domain
focusing is the logarithmic dependence of the
computing costs upon the radiation wavelength. In
fact, for a given resolution, the hyperbola occupies
more pixels if the wavelength is increased (same
resolution — same antenna size, so that longer
wavelength — wider radiation lobe), and the data
windows should be made larger. The number of
operations, however, increases logarithmically and does
not involve real difficulty.

Such decoupling allows the use of lower
frequencies (say in the 5-600 MHz range) that means
better penetration of the atmosphere, the foliage,
and even the Earth surface. Moreover, one might
use the same concept to increase the resolution
at a given wavelength, rather then using longer
wavelengths at a given resolution. Again, a wider
antenna beamwidth would be implied and more pixels
should be considered in the diffraction pattern.

This extended resolution case is named SPOT SAR
[15, 16]. The antenna beam cannot be widened too
much without reducing the signal-to-noise ratio by
spreading the irradiated energy on too large a surface.
Therefore, to increase signal gain, an antenna that
is steered so that it points continuously towards the
region to be imaged has been proposed. Hence, the
name of SPOT SAR.

If frequency domain focusing is used, no big
problems appear. However, the alias is now time
varying, and should be kept under close control. In
fact, the alias depends on the mutual angles between
scatterer and satellite, and it increases with the squint
of the antenna beam. The limited beamwidth of
the antenna can allow the avoiding of confusion,
provided that the direction of the antenna is known
with sufficient precision at all times.

Finally, we remind another important application:
interferometry for digital terrain mapping and for
measurement of small terrain motion [22, 23].

VI. CONCLUSIONS

The technique for SAR data focusing presented
in this paper can lead to considerable savings in the
sizable computer time needed up to now. In fact only
what is needed for quick look focusing, i.c., a cascade
of range and azimuth 1-D FFT, two multiplications
per sample and two inverse 1-D FFTs are needed for
correct focusing. Moreover, the extreme precision
of the processing, substantially exact, can lead to
higher resolution with lower carrier frequencies. The
crossbreeding of seismic and SAR techniques will
continue and will be fruitful to both fields.
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APPENDIX. 2D SURVEYS IN 3D SPACE

The scatterers in the SAR situation are 3-D
scatterers located on a nonplanar surface. The
discussion of Section IIB makes it possible to flatten
the scatterers on a conceptual plane, but leaves
unaltered the 3-D nature of the direct problem. It is
rather simple to show that this fact does not imply
relevant changes with respect to the seismic cases.

The radiating reflector approach allows the
expression of the ficld measured by the satellite as
[17}:

P(x,y,z,w) = i—:]//S(X',ZI)~6(y')ej“’°

=i [N G+ o=y +a—2 TR

VE—EP o -yY + G- 27

dx'dy'dz
@3

where x, z are the axes in the plane defined by the
orbit. In this section we take that as a straight line. The
scatterers are described by a distribution of sources
s(x,z) lying on the x — z plane, all emitting at time
t = 0. The third coordinate y, is orthogonal to this
plane. Scalar wave equation is used [18].

If we could measure the data for all ys, we could
Fourier transform, and for k, = 0 we would get

P(x,ky,2z,w)

=—f‘-'%//s(x', P ) ¢ 1

2
x ( 4% -k} (x—x'R +(z— z’)2) dx'dz'

(32)
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P(x,ky =0,z =0,w)
=-jog / / s(x',2)en HY

X (%\ J(x—x'y2+ z’2) dx'dz' (33)

P(ky,ky =0,z = 0,w)

exp (—1'2’

= a_;//' s(x',z)efen
2 w

e~k gyl ay!. (34

Using the change of variables (8) we would then

get the migrated data [19]. However, we only measure
P(x,y =0,z = 0,w) while we need P(x,y,z = Q,w). We

also have [20] that

P(ky,y =0,z =0,w) = —ng// s(x',2")e/ " H®

’ w? 2 —jkex! g1 4t
x|z 4?—k, e T dx'd2.

@35)

If we approximate the Hankel function with its

expansion for high values of the argument (and they

are high indeed, since they might be of the order of
several millions), we get

P(kxvy = 0,2 = O,UJ)

zw@e"”“/fs(x’,z')ejwm
)
exp (—jz’\ / 4‘:—2 —k§>
' 2
\/?{/4‘:—2 —k2

Change of variable (8) now produces the final
equation, in a slightly different form than in (17):

5(x,2) _ j1r/4\/2// ( =0.z2=05/k2+ k2
————ﬁ =e T P k,,,y—O,z—O,2 kZ+k?

emitael/FRE | _WKel jerin) g g

k2 + k2
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