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ON SOLUTIONS OF ELLIPTIC EQUATIONS SATISFYING
MIXED BOUNDARY CONDITIONS*

A. AZZAM? AND E. KREYSZIG"

Abstract. We consider the mixed boundary value problem for linear second order elliptic equations
in a plane domain lq whose boundary has corners, and obtain conditions sufficient for the solution to be
in C2+(), where 0< a < 1. This result means that under those conditions, solutions are as smooth as
they would be in the absence of corners, so that, in this sense, the present result is best possible.

1. Introduction. We shall be concerned with the mixed boundary value problem
for second order linear elliptic equations in a two-dimensional domain whose boundary
has corners. More specifically, we shall study the effect of these corners on the H/51der
smoothness of solutions. To motivate this investigation, we first give a general orienta-
tion about the development and present situation in this field, beginning with mixed
problems in domains with a smooth boundary and then turning to the case of domains
with corners on the boundary.

Early results on the regularity of solutions of boundary value problems concern
domains with a smooth boundary, first for the Laplace and Poisson equations and
corresponding Dirichlet and Neumann problems, and later for general second order
elliptic equations as well as general boundary conditions. In particular, the mixed
problem was first considered by Zaremba [54], and is often called Zaremba’s problem.
Further work on the mixed problem in domains with a smooth boundary up to about
1970 is reviewed by Miranda [32] (and a few additional references are given n [18]
and [30]), so that it will suffice to mention some of the major contributions during
that period and add an outline of some more recent basic results not yet included in
any monograph. Of course, we shall be able to select only a small number of articles
from the very extensive literature in the field.

Work by Signorini [41], almost contemporary with that of Zaremba, and similar
results by Keldysh and Sedov [24] concern the mixed problem for harmonic functions
in a half-plane. Slightly earlier than the latter two authors, Giraud [19] proposed a
method of solving the mixed problem by first converting it to a Neumann problem
on some Riemannian manifold. In 1949, Fichera [14] (cf. also [15]) proved a general
existence theorem by transforming the problem into a system of Riesz-Fischer
equations; this is known as Picone’s method and is also of interest in numerical
analysis. Direct methods of the calculus of variations were applied to the mixed
problem by Stampacchia [45], whose results are particularly important since they also
concern nonlinear equations. The existence of H61der continuous solutions was proved
by Miranda [31], using Schauder type estimates. The method of integral equations
was first applied successfully to the mixed problem by Vekua [47]. See also Muskhelish-
viii [33], whose references reflect the development of that method until about 1955.

Beginning with a paper by Schechter [40], some of the work on (interior and
boundary) regularity of solutions of the mixed problem is based on the Sobolev space
approach and the use of coercive quadratic forms. For the general idea and setting
(which also apply to other "non-Dirichlet problems"), we refer to Agmon [1]. An
important contribution specifically devoted to the mixed problem is the thesis by
Purmonen [37], which also contains numerous references. Purmonen’s work concerns
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rather general mixed problems for linear elliptic equations in n variables, and his
results include conditions sufficient for a priori regularity of strong solutions as well
as for the existence and some regularity properties of weak solutions. Subsequently,
Purmonen [38] studied the well-posedness of the two-dimensional mixed problem in
Sobolev spaces. Another approach is the conversion of mixed problems to Wiener-
Hopf type problems; this is known as Peetre’s method and has recently been extended
by Pryde [36].

It is clear that mixed problems in domains with smooth boundary are of great
interest in physics, and there also exists an extensive literature on corresponding
numerical methods. We cannot go into details, but want to mention that some of the
references on domains with corners given below also include the case of domains with
a smooth boundary; for further applications we refer to Sneddon [43] and a recent
paper by Wendland, Stephan and Hsiao [52] on harmonic functions in two variables,
in which two Fredholm equations resulting from the integral equation method are
solved constructively, using finite element functions augmented by singular functions,
an approach which would be difficult to extend to equations with variable coefficients,
as is known (cf. Grisvard [20, p. 215] and Kawohl [23]).

We now turn to boundary value problems for domains with corners on the
boundary. The interest in those problems and in regularity properties of corresponding
solutions has several sources. The earliest impetus came from conformal mapping and
boundary value problems for harmonic functions; see, for instance, Carleman [11],
Kellogg [25] or Warschawski [51]. More recent results of importance, pertaining to
the Laplace and Poisson equations in domains .with corners, are those by Fufaev [17],
Nikol’skii [34] and Volkov [49]. Just as in the case of a smooth boundary, in addition
to methods related to H61der classes, as employed in the present paper, there are
other approaches; we mention in particular Sobolev space methods as considered in
the reviews by Grisvard [20], [21], then Kondratiev’s extension [26] of the Sobolev-
Slobodeckii space method by Eskin [13] and Vigik [48] (cf. also [3]), furthermore
a function theoretic approach by Lewy [29] and his school (see, for instance, Wigley
[53]) and, finally, a recent method by Simon [42] based on geometric measure theory.

As a second source for the interest in regularity properties of solutions of boundary
value problems in domains with corners we mention physical applications. In fact, it
was recognized early that those investigations are important in connection with
practical problems in heat conduction, fluid flow and elasticity theory; examples can
be found in [12], [44] and other standard monographs. See also [43] and [52].

Thirdly, those problems play a role in numerical analysis, particularly in the study
of the accuracy of finite element and finite difference approximations, acceleration of
convergence, general convergence analysis, subtraction of singularities and other
numerical techniques. Here, in error estimates and other tasks, one often experiences
great difficulties caused by the presence of corners, since there may not exist an
adequate theory covering such cases. Moreover, in this area there are various traps
for the unwary; for a typical example, see [49, p. 157]. For the finite element method,
a general characterization of the situation is given by Strang and Fix [46, Chap. 8].
More details are discussed by Fix, Gulati and Wakott [16] as well as Babuska and
Aziz [9, Chaps. 8, 9]; seealso Babuska [8] and Babuska and Rosenzweig [10], who
use the weighted Sobolev space approach. For the finite difference method, conver-
gence in domains with nonsmooth boundary is studied in basic papers by Laasonen
[27], [28]. For a combination of that methQd with the integral equation method and
conformal mapping in the case of the two-dimensional Laplace equation, see
Papamichael and Symm [35]. In accelerating convergence, rather natural ideas seem
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to be the refinement of meshes near corners where convergence becomes poor and
the choice of a net that confines slow convergence to small neighborhoods of corners,
instead of "polluting" the whole domain; cf. Volkov [50] for finite differences, and
the recent work of Schatz and Wahlbin [39] for finite elements in the case of the
Poisson equation in the plane. Ref. [39] includes local estimates of convergence rates
up to the boundary, estimates of the effect of systematic refinements and calculation
procedures for stress intensity factors as well as the location of the maximum error.

Before we start on our actual problem, let us add a few words about the case of
a smooth boundary as compared to that of a boundary with corners. The smoothness
of solutions depends on that of the coefficients of the equation, of the boundary of
the domain and of the boundary data. It is well known that if in a domain II with
sufficiently smooth boundary, the regularity properties of the coefficients of the
equation and of the boundary data improve, so do the regularity properties on fl of
the solution of the first, second and third boundary value problems. This was first
shown for special equations (Laplace and Poisson) and later for general elliptic
equations; see Agmon, Douglis and Nirenberg [2]. However, the situation changes
drastically in the case of corners at the boundary. Then the smoothness of solutions
also depends on the interior angle at the corners. Roughly speaking, small angles are
favorable with respect to smoothness of solutions. In addition, there also exist "excep-
tional angles" for which the smoothness is "exceptionally good", that is, is better than
for values of the angle close to those exceptional ones. Our result will be typical in
that respect, since it will illustrate this general pattern. We shall find conditions
sufficient for the solutions to be as smooth as they would be in the absence of corners,
the other conditions remaining the same; hence our conclusion will be strongest possible.

Problem and main result. We shall consider linear elliptic equations of the form

2 2 2

(2.1/ Lu E Y aij(xlux,x, + , ai(xlux, + a(xlu =f(x)
i=1/’=1 i=1

in a plane domain II whose boundary 01) has corners. Here, x (x l, x2). We assume
that II is simply connected and bounded and L is uniformly elliptic in ft. The boundary
conditions are of mixed type; we write them in the form

(2.2) xl(x)u(x)+x2(x)u.(x)=xl(X)(x)+x2(x)(x) on Oil;

here, the subscript n denotes the outer normal derivative.
The following result in the "regular case" is well known. If 01) is smooth of class

C2+, where 0 < a < 1, and if
(A) aii, ai, a, f C (12), L uniformly elliptic in f,
(B) X1, & e C+(Ol2), X, O e

then

(2.3) u CZ+(l).

See Agmon, Douglis and Nirenberg [2].
We now turn to the case when 0II is not smooth, a case which we also considered

in [5] and [7]. Then [2] implies that in a compact subregion 1)1 of fi with positive
distance from the corner points, u is smooth as before. More precisely we have the
following. Without loss of generality we may assume that 0II has a single corner,
which is located at the origin x 0, the interior angle being y, 0 < y < 27r. Let F1 and
1-’2 denote the two arcs of Oil that form the corner at x O. Suppose that 012\{0} is
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smooth of class C2+. Let u be a solution of (2.1) satisfying the boundary conditions
(2.2). Further, assume that conditions (A) and

(B*)
x, C+(0n\{0}),

x, c+(f\{0}),
as well as

(C)
/’2 0, b 0 on

Xl 0, 0 0 on F2,

hold true. Then, by [2],

(2.4)

with fl as indicated before.

u c:+(n) f c(fi),

To characterize the smoothness of u near the corner point, we introduce

[all (0) a22(0) a2 (0)]1/2
(2.5) o arctan

a22(0) cot y a 12(0)

This is the angle obtained from y in the transformation of the equation

2 2

E E agi(O)u,,,x, 0

to normal form. In [7] we proved that, under assumptions (A), (B*), (C) and w < zr/2,
we have

/r \
(2.6) uC’(), u min2-:: )--e, 2

with arbitrarily small e > 0. Substantially improving that result, we shall now obtain
sufficient conditions in order that even (2.3) be valid; those conditions will concern
small angles as well as an exceptional angle (rr/4). Note well that (2.3) refers to the
"regular case" of a smooth boundary. Accordingly, despite the presence of corners,
our result to be obtained is as strong as that in the case of the absence of corners; in
that sense, this result is best possible.

Our main result can be stated as follows.
THEOREM 1. Let u be a bounded solution of (2.1), (2.2) in lq. Suppose that (A),

(B*), (C) hold true and o in (2.5) satisfies the condition
(D1) o < 7r/(4 + 2a)

or the condition
(D2) w zr/4.

Then

(2.7) u

From the statement involving (2.4), we conclude that it suffices to prove Theorem
1 in

U {x Ix fi, Ix l< ro}, ro > 0.

Furthermore, by [7] it is sufficient to consider the case of a circular sector and impose
the additional condition

ai,;(O) i], i, j 1, 2.
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Indeed, the transition from this special setting to the general case is the same as in
[7] (and is relatively simple), so that we need not reproduce it here.

At this point, we should notice that [7] concerns arbitrary n, whereas here we
take n 2 because later (near the end of the paper) we have to use a result by Volkov
which is known to hold for n 2 only. Actually, we need Volkov’s result only in
connection with condition (D2), so that the assertion of Theorem 1 under condition
(D1) could be proved for any n by an argument similar to the present one.

3. The ease of a sector. Let r, 0 be polar coordinates defined by xl r cos 0, x2
r sin 0 and consider the sector

’2,r {(r, 0)10< r <2r, 0< 0 <w},

where r const > 0. Let

FI"0=0, r<2r, F2:0=00, r<2m

A theorem analogous to Theorem 1 but referring to the present setting can be stated
as follows.

THEOREM 2. Let u be a bounded solution of the mixed boundary value problem
for the equation

(3.1) Lu=f in

with L as in (2.1) and a,(O) &, and assume that u satisfies the conditions

(3.2) (a) Ulrl 0, (b) u, lr2 0.

Suppose that (A) with f replaced by f2 and (D1) or (D2) hold. Then

(3.3) u e C2+

By what has been said, in order to obtain Theorem 1, it suffices to prove Theorem
2. The proof of the latter theorem will result from two lemmas.

In the first lemma, we obtain bounds for u and its first and second partial
derivatives as well as a statement on the HSlder smoothness of u. Here, Dku denotes
any kth partial derivative of u.

LEMMA 1. Under the assumptions of Theorem 2 we have in

a) [Du (x)l <= MrV,
(3.4) b) [Dku(x)l <-Mr-, k 1, 2,

c) u e C(),

where

e, 2+c

Proof. a) We consider in 2 the function

w(x) Mr cos a (00 0),

with u defined as in the lemma, h (zr- 26)/200 and 6 > 0 so small that h > u. Using
the method developed in [7], one can show that w may serve as a barrier function
for u, provided M is taken sufficiently large. In this way we obtain (3.4a).

b), c) From [5] it can be seen that in the case of the Dirichlet problem, the proof
of the statements corresponding to our present (3.4b) and (3.4c) depends mainly on
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the analog of our present (3.4a) and on a Schauder estimate of the form

Ilu 112+,-<- ,, I-Ilu IIo / Ilfll +
where *c 1 and F 01q fq all* is of class C2+a. Such an estimate also holds for the
mixed boundary value problem, the only difference being the absence of the last term.
In this way, following the general idea in [5], we obtain (3.4b) and (3.4c). This
completes the proof.

From (3.4c) it follows that Theorem 2 with condition (D1) holds. Finally, we must
prove Theorem 2 under condition (D2). If (D2) holds, then (3.4b) yields

[D2u(x)l<=Mr in fi
and (3.4c) gives

u C-(fi).

To prove Theorem 2 in the present case, we first investigate the nature of singular
behavior of the second derivatives of u near the corner point.

LEMMA 2. Let v be a solution of (3.1) in f2 satisfying (3.2), and suppose that
the assumptions of Theorem 2 hold true. Suppose further that in

[D2v(x)l <- Mlr-", 0_-<r/<l.

Let h C (f), where 1 > " >- rl and h (0) O. Then

(3.5) hD2v C (), /x min (a, z rt).

Proof. In 1 consider any two points Pj’(ri, 0i), j 1, 2. By abuse of notation,
we write h(Pi) for h(ri, 0) and so on. We must show that there exists a constant H >0
such that

(3.6) d (P1, P2)- [h (P,)Dv(P,) h (P)D;v(P)[ <-_ H.

Let 0 <-_ r2 _-<_ rl N ty, without restriction. If r2 N rl, then d(P1, P2) - rl, and from

]h(Pi)l <-_M2r;, j 1, 2,

we can obtain (3.6).
We consider the case r2 > 1/2rl. Let

2rl

This transformation maps

f0 {(r, O)11/2rl <= r < rl, 0 < 0 < 1/47r}
onto

’1 {(0, 0)11/40" 0 1/20" 0 < 0 <

where p r/. As in [6], it can be shown that in fa the function V(y)= v(y) satisfies

VlI +o<=M r 
Now, for any/. <_-a,

c2+,H2 (O2v) Ha, (/2 V) <= M4r-’,

where /2V denotes the partial derivative corresponding to D2v and H is the
H61der coefficient. Hence,

H (D2v <- Msr-’-..
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We now obtain (3.6) in the case r2 > 1/2rl as follows, writing 8 d(P1, P)"

[h(PI)Dv(P) h(P)Dv(P)[8-
<-Ih(P)l IDv(P1) Dev(P)IS-"
+ [D:zv(P2)[ {[h (Pa) h (P2)16-’}"/lh (P1) h (P2)[a-"/

< M2raMsr - +MIr]nM6(2M2r)x-g/

H.

This proves Lemma 2.
We can now prove Theorem 2 under assumption (D2). We remember that by

Lemma 1, under the assumptions of the theorem [with (D1) or (D2)] we have

u C-(fi)

and in

IOu(x)l Mr-,
as was stated above. Equation (3.1) can be written

2 2 2

(3.7) au f f- au E aiux, E E (aii ii)Ux,xi.
i=1 i=1 ]=1

Since [, a, age C (fi) and u e Ce- (fi), the first three expressions on the right-hand
side of (3.7) are of class C (). Using Lemma 2 with

we have

(a )u,, e C (fl).

Hence, f e C (fi). From this and [49, p. 128], it follows that u s C+-(fi). Using
this in the last term of (3.7) and applying again Lemma 2, with r a and 0, we
obtain (3.3). This completes the proof of Theorem 2.

From Theorem 2, our main result (Theorem 1) follows as indicated in 2.

Acknowledgment. We want to thank the referee for helpful comments, in par-
ticular, for bringing basic literature to our attention and suggesting it for inclusion in
the Introduction; this has led to a substantial improvement of the latter.
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