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Abstract. A metrized graph is a weighted graph whose edges are viewed as
line segments, or alternatively, it is a singular Riemannian 1-manifold. In this
expository paper, we study the Laplacian operator on a metrized graph and
some important objects related to it, including the “j-function”, the effective
resistance, and the “canonical measure”. We discuss the relationship between
metrized graphs and electrical networks, which provides some physical intu-
ition for the concepts being dealt with. We also explain the relation between
the Laplacian on a metrized graph and the combinatorial Laplacian matrix.
Finally, we obtain a new proof of Foster’s network theorem.

1. An informal discussion

The basic idea of a metrized graph is simple: identify each edge of a weighted
graph with a line segment and define the distance between two points of the graph
to be the length of the shortest path connecting them. We will provide more details
on this definition in §2.

Metrized graphs appear in the literature of several areas of science and mathe-
matics. For example: in number theory, they are used to study arithmetic intersec-
tion theory on algebraic curves (see [CR], [Zh]); in algebra, a certain moduli space
of metrized graphs is used to study the automorphisms of free groups (see [Vo]); in
mathematical biology, they are used to study neuron transmission (see [Ni]); they
are also used in physics, chemistry, and engineering as wave-propagation models
(see [Ku] and [QG]). These objects are called different names depending on the
context in which they arise; they seem to have been discovered independently by
several disparate groups of researchers. A metric graph is the same as a metrized
graph. A c2-network is a metrized graph along with a piecewise C2-embedding into
some Euclidean space

� m. A quantum graph is a metrized graph together with a
self-adjoint differential operator (such as a Laplacian).
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In §3 we define a Laplacian operator on a metrized graph which is closely re-
lated to the Laplacian matrix (or Kirchhoff matrix) associated to a weighted graph
— see §5 for precise statements about this connection. Metrized graphs can be
viewed as one-dimensional Riemannian manifolds with singularities, and from this
point of view the Laplacian on a metrized graph is a nontrivial but computationally
accessible variant of the Laplacian on a higher-dimensional Riemannian manifold.
The theory of harmonic analysis on metrized graphs provides an interesting gener-
alization of Fourier analysis on the circle; see [BR] for one account.

There is a well-known and useful interplay between the theories of finite graphs
and resistive electrical networks (see e.g., [Bo, Ch. II,IX]). This relationship extends
beautifully to the setting of metrized graphs (cf. §4,6). For example, a theorem of
Foster from 1949 (see [Fo]) asserts that

∑

edges e

r(e)

Le
= #V − 1,

where r(e) is the effective resistance in the electrical network between the endpoints
of the edge e, Le is the resistance along the edge e, and #V is the number of nodes
(vertices) in the network. In §7 we give a proof of Foster’s theorem using the
“canonical measure” on a metrized graph.

The theory of electrical networks is itself closely related to the theory of random
walks on graphs. We will not touch upon the connection with random walks in this
paper, but we refer the interested reader to the delightful monograph [DS]. There is
a nice proof of Foster’s theorem using random walks in [Te] (see also [Bo, Theorem
25, Exercise 23, Chapter IX]).

This article is a follow-up to the 2003 summer REU on metrized graphs held
at the University of Georgia and run by the first author and Robert Rumely. The
participating students’ enthusiasm for the subject convinced us that a broader
audience might appreciate a gentle introduction to the ideas involved. Further
information about the REU, its organizers and participants, and the research they
performed can be found at http://www.math.uga.edu/~mbaker/REU/REU.html

In keeping with the spirit of discovery that spawned this article, we have in-
cluded a number of exercises to clarify the text or extend the ideas presented. We
have also strived to keep the exposition as self-contained as possible with the hopes
that it will inspire further students toward this subject.

2. Metrized graphs versus weighted graphs

There is a bijective correspondence between metrized graphs and equivalence
classes of weighted graphs. In this section we give an overview of this correspon-
dence, leaving many of the details to the reader. See [BR] for more detailed proofs
of the assertions made in this section.

Definition 1. For the purposes of this paper, we define a weighted graph
G to be a finite, connected graph with vertex set V (G) = {v1, . . . , vn}, edge set
E(G) = {e1, . . . , em}, and a collection of positive weights {we1

. . . , wem
} associated

to the edges of G. Further, we require that G have no loop edges or multiple edges.
The length of the edge e is defined to be Le = 1/we.

In classical graph theory, one associates weights to the edges of a graph. When
studying metrized graphs, it makes more sense to work with lengths, since distance
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np = 6

np = 1 np = 2

Figure 1. Three examples of star-shaped sets and their valences.

is the fundamental notion in a metric space. We will always indicate lengths in our
figures (e.g., Figure 2).

A weighted graph G gives rise to a metric space Γ in the following way. To
each edge e, associate a line segment of length Le, and identify the ends of distinct
line segments if they correspond to the same vertex of G. The points of these line
segments are the points of Γ. We call G a model for Γ. The distance between two
points x and y in Γ is defined to be the length of the shortest path between them,
where the length of a path is measured in the obvious way along the line segments
traversed. (A path between distinct points always exists because G is connected.)

Exercise 1. Show that this notion of distance defines a metric on Γ (which
we call the path metric).

The space Γ, endowed with the path metric, is called a metrized graph. Here is
a more abstract definition, taken from [Zh]:

Definition 2. A metrized graph Γ is a compact, connected metric space such
that each p ∈ Γ has a neighborhood Up isometric to a star-shaped set of valence
np ≥ 1, endowed with the path metric (see Figure 1). To be precise, a star-shaped
set of valence np is a set of the form

S(np, rp) = {z ∈ � : z = tek·2πi/np for some 0 ≤ t < rp and some k ∈ � }.

Exercise 2. Check that the metric space Γ arising from a weighted graph G
satisfies the abstract definition (Definition 2) of a metrized graph.

The points p ∈ Γ with valence different from 2 are precisely those where Γ fails
to look locally like an open interval, and the compactness of Γ ensures that there
are only finitely many such points. Let V (Γ) be any finite, nonempty subset of Γ
such that:

• V (Γ) contains all of the points with np 6= 2. (This implies that Γ \ V (Γ)
is a finite, disjoint union of subspaces Ui isometric to open intervals.)

• For each i, the topological closure U i of Ui in Γ is isometric to a line
segment (as opposed to a circle). We call ei = U i a segment of Γ.

• For each i 6= j, ei ∩ ej consists of at most one point.

Any finite set V (Γ) satisfying these conditions will be called a vertex set for Γ,
and the elements of V (Γ) will be called vertices of Γ.

Exercise 3.
(a) Prove that a vertex set for Γ always exists.
(b) Let Γ be a circle. Show that any set consisting of only one or two points

of Γ cannot be a vertex set.
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Figure 2. Each of the three weighted graphs displayed is a model
of the metrized graph Γ, a segment of length 1. These weighted
graphs are all distinct, but they lie in the same equivalence class.
The lower left weighted graph is a common refinement of the upper
left and upper right graphs.

It should be remarked that V (Γ) is not unique. For example, if Γ is a circle,
then any choice of three distinct points of Γ is a vertex set. The choice of a vertex
set V (Γ) determines a finite set {ei} of segments of Γ. The endpoints of each
segment ei are vertices of Γ. We emphasize that the segments of Γ depend on our
choice of a vertex set.

Given a metrized graph Γ, our next task will be to find a weighted graph G
that serves as a model for Γ as above. Pick a vertex set V (Γ) for Γ. Define a graph
G with vertices indexed by V (Γ), and join two distinct vertices p and q of G by an
edge if and only if there exists a segment of Γ with endpoints p and q. (So edges of
G correspond to segments of Γ.) Define the length of the edge joining p to q to be
the length of the segment e. Then G is a weighted graph, with weights given by the
reciprocals of the lengths; our definition of V (Γ) guarantees that G has no multiple
edges or loop edges. Moreover, if we construct the metrized graph associated to G,
it is easily seen to be isometric to Γ.

Different choices of a vertex set V (Γ) yield distinct weighted graphs in the above
construction. Write G ∼ G′ if the two weighted graphs G, G′ admit a common
refinement, where we refine a weighted graph by subdividing its edges in a manner
that preserves total length (see Figure 2). This provides an equivalence relation on
the collection of weighted graphs, and one can check that two weighted graphs are
equivalent if and only if they give rise to isometric metrized graphs.

Having established this correspondence, we are now free to fix a particular
model of a metrized graph, without worrying that we’ve lost some degree of gener-
ality in doing so.

3. The Laplacian on a metrized graph

Our goal in this section is to motivate and define the Laplacian of a function
on a metrized graph. The Laplacian on a metrized graph is a hybrid between
the Laplacian on the real line (i.e., the negative of the second derivative) and the
discrete Laplacian matrix studied in graph theory (cf. §5).

Choose a vertex set V (Γ) for the metrized graph Γ. Let p be a non-vertex
point of Γ, and suppose e is a segment of length L containing p. Parametrize e by
an isometry se : [0, L] → e so that we have a real coordinate t ∈ [0, L] to use for
describing points of the segment. We say that f is differentiable at p if the quantity
d
dtf(se(t))|se(t)=p exists. There is precisely one other parametrization of this sort,
namely ue(t) = se(L − t). The chain rule shows that

d

dt
f(ue(t))

∣

∣

∣

ue(t)=p
= −

d

dt
f(se(t))

∣

∣

∣

se(t)=p
.
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Hence the value of the derivative of f at p depends on the parametrization, but
only up to a sign. Picking one of the two parametrizations for a segment can be
thought of as choosing an orientation for the segment, and we will use the two
concepts interchangeably.

We can similarly determine if f is n times differentiable at p by looking at the
existence of the quantity dn

dtn f(se(t))|se(t)=p.

Exercise 4. Show that the second derivative f ′′(p), when it exists, is well-
defined independent of the choice of an orientation for the segment containing p.

We also require a notion of differentiability that makes sense at the vertices.
The abstract definition of a metrized graph tells us that each point p ∈ Γ has a
neighborhood isometric to a star-shaped set with np ≥ 1 arms. Thus there are np

directions by which a path in Γ can leave p. To each such direction, we associate
a formal unit vector ~v, and we write Vec(p) for the collection of all np directions
at p. We make this convention so that we can write p + ε~v for the point of Γ at
distance ε from p in the direction ~v for sufficiently small ε > 0.

Definition 3. Given a function f : Γ →
�
, a point p ∈ Γ, and a direction

~v ∈ Vec(p), the derivative of f at p in the direction ~v, written D~vf(p), is given by

D~vf(p) = lim
ε→0+

f(p + ε~v) − f(p)

ε
,

provided this limit exists. This will also be called a directional derivative.

Exercise 5. Given a function f : Γ →
�

and a point p 6∈ V (Γ) at which f is
differentiable, show that the two directional derivatives of f at p exist and sum to
zero.

Here is the class of functions on which we intend to apply our Laplacian1:

Definition 4. Define S(Γ) to be the class of all continuous functions f : Γ →
�

for which there exists a vertex set Vf (Γ) (with corresponding segments ei) such that

(i) D~vf(p) exists for each p ∈ Γ and each ~v ∈ Vec(p),
(ii) f is twice continuously differentiable on the interior of each segment ei,

and
(iii) f ′′ is bounded on the interior of each segment ei.

We call S(Γ) the class of piecewise smooth functions on Γ. (This is, of course, a
small abuse of terminology as these functions need not be infinitely differentiable
away from the vertices.)

Exercise 6. Show that hypotheses (ii) and (iii) imply hypothesis (i), and that
hypothesis (i) already implies that f is continuous.

We now define the Laplacian operator on a metrized graph. In order to make
the Laplacian on a metrized graph compatible with the Laplacian matrix on a
weighted graph (see §5), we will define the Laplacian of a function f ∈ S(Γ) to be
a bounded, signed measure rather than a function on Γ.

1There exists a much larger class of continuous functions on which the Laplacian can be
defined; we have restricted our attention to this particular class for simplicity. See [BR, §4,5] for
details.
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Segment parametrizations:

PQ ↔ [0, 1/2]
QS ↔ [0, 1/2]
RQ ↔ [0, 1]

Figure 3. A model of a metrized graph and its segment param-
etrizations. The arrows in the diagram indicate the directions in
which the segment parametrizations increase.

Choose a model for the metrized graph Γ and parametrize each segment e of
Γ by se : [0, Le] → e. For a function f : Γ →

�
, we define fe : [0, Le] →

�
by

fe = f ◦ se. This notation will be used without comment for the rest of the paper.
For our purposes, a measure on Γ will be an expression of the form

µ =
∑

segments e

ge(t)dt|e +
n
∑

i=1

ciδpi
,

where ge : (0, Le) →
�

is continuous and bounded, ci ∈
�
, and p1, . . . , pn are points

of Γ. A measure of the form
∑

e ge(t)dt|e will be called a continuous measure, and
a measure of the form

∑n
i=1 ciδpi

will be called a discrete measure. If g : Γ →
�

is
a function such that g ◦ se(t) = ge(t) for all segments e of Γ and all t ∈ (0, Le), we
will usually write g(x)dx instead of

∑

e ge(t)dt|e. The total mass of a measure µ is
defined to be

∫

Γ

�
(x)dµ(x), where

�
denotes the constant function with value 1.

Definition 5. The Laplacian of a function f ∈ S(Γ) is given by the measure

∆f = −f ′′(x)dx −
∑

p∈Γ

σp(f)δp,

where σp(f) =
∑

~v∈Vec(p) D~vf(p), dx denotes the Lebesgue measure on Γ, and δp

is the Dirac measure (unit point mass) at p.

By Exercise 5, the sum
∑

p σp(f) is actually finite as σp(f) = 0 for any p not

in Vf (Γ). Also, ∆f is independent of segment orientations by Exercise 4.

Example. Consider the metrized graph Γ modelled in Figure 3. Define a
function on Γ by

fe(t) =











t + 1 if e = PQ,

3(t + 1
2 ) if e = QS,

t2 + 1
2 if e = RQ.

Then ∆f = −2dx|RQ − δP + 3δS. Note that ∆f has total mass zero; we will see
shortly that this is not an accident.

Now we give an alternate formulation of the Laplacian which will be easier
to use for computations. For a function f ∈ S(Γ) write f ′

e(0) for the right-hand
derivative of fe at 0 (as the limit only makes sense from one side). Similarly, write
f ′

e(Le) for the left-hand derivative at Le if it exists. If p and q are the endpoints
of the segment e, with se(0) = p and se(Le) = q, we’ll say that e begins at p and
ends at q. If ~v ∈ Vec(p) and ~w ∈ Vec(q) are the directions pointing inward along e,
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then D~vf(p) = f ′
e(0) and D~wf(q) = −f ′

e(Le). Observe that −σp(f) counts −f ′
e(0)

for each segment e beginning at p, and it counts f ′
e(Le) for each segment e ending

at p. Thus ∆f can be written

(∗) ∆f =
∑

segments e

{

−f ′′
e (x) dx|e + f ′

e(Le)δse(Le) − f ′
e(0)δse(0)

}

.

The contribution of the segment e to the Laplacian is independent of the choice
of parametrization of e, but it is necessary to choose a parametrization to write it
down.

Theorem 1 (Symmetry of ∆). Suppose f, g ∈ S(Γ). Then
∫

Γ

f∆g =

∫

Γ

g∆f =

∫

Γ

f ′(x)g′(x) dx.

Proof. Choose a model for Γ with vertex set V (Γ) = Vf (Γ)∪Vg(Γ). Then f ′′

is continuous on the interior of each segment of Γ, and the directional derivatives
of f and g exist for all vertices in V (Γ) (see Definition 4). Choose parametrizations
for each segment of Γ and define fe and ge as before. Using integration by parts,
we obtain:

∫

Γ

g∆f =
∑

e

{

f ′
e(Le)ge(Le) − f ′

e(0)ge(0) −

∫ Le

0

ge(t)f
′′
e (t) dt

}

=
∑

e

∫ Le

0

f ′
e(t)g

′
e(t) dx =

∫

Γ

f ′(x)g′(x) dx.

The rest of the result follows by symmetry. �

Corollary 1. If f ∈ S(Γ), then ∆f has total mass 0.

Proof. Set g =
�

in the statement of Theorem 1. Then
∫

Γ

�
· ∆f =

∫

Γ

f ′(x)
� ′(x) dx =

∫

Γ

0 dx = 0.

�

Before stating the next result about the Laplacian, we need to define another
useful class of functions:

Definition 6. Define A(Γ) to be the subclass of functions f ∈ S(Γ) such
that for each oriented segment e of Γ, there exist real constants Ae, Be so that
fe(t) = Aet + Be for t ∈ [0, Le]. A function in A(Γ) is called piecewise affine.

Exercise 7. Show that a function f ∈ A(Γ) is completely determined by its
values on a vertex set Vf (Γ) for f .

Exercise 8. Show that if f ∈ S(Γ), then f is piecewise affine if and only if ∆f
is a discrete measure.

The next result is a graph-theoretic analogue of the second derivative test from
calculus.

Theorem 2 (The Maximum Principle). Suppose f ∈ A(Γ) is nonconstant.
Then f achieves its maximum value on Γ at a vertex p ∈ Vf (Γ) for which σp(f) < 0.
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Proof. It is easy to see that the function f must take on its maximum value
at a vertex p ∈ Vf (Γ). Moreover, since f is nonconstant, we may select p so that
f decreases along some segment e0 having p as an endpoint. (This uses the fact
that Γ is connected.) Re-parametrize each segment e having p as an endpoint, if
necessary, so that se(0) = p, where se : [0, Le] → e. Then σp(f) =

∑

f ′
e(0), where

the summation is over all segments e beginning at p. Each of the slopes f ′
e(0)

must be non-positive; otherwise f would grow along e, violating the fact that f is
maximized at p. We know f ′

e0
(0) < 0 since f decreases along e0. Hence σp(f) < 0,

which completes the proof. �

Theorem 3. Suppose f, g ∈ S(Γ). If ∆f = ∆g and f(p) = g(p) for some
p ∈ Γ, then f ≡ g.

Proof. If h = f − g, then ∆h = 0. By Exercise 8, h ∈ A(Γ). As ∆h = 0,
it follows from the Maximum Principle that h is constant. The hypothesis that
f(p) = g(p) for some p now implies that h ≡ 0, so that f ≡ g as desired. �

Note in particular that if f ∈ S(Γ) is harmonic (i.e., ∆f = 0), then f must be
constant.

4. Metrized graphs versus electrical networks

We now take a moment to give some physical intuition about the Laplacian
coming from the theory of electrical networks. (For a more detailed account of
the theory of electrical networks, see [Bo], [DS], and [CR].) For our purposes, a
(resistive) electrical network is a physical model of a metrized graph Γ obtained by
viewing the vertices of Γ as nodes of the network and the segments of Γ as branches
(wires), each with a resistance given by its length.

Using an external device (such as a battery), one can force current to flow
through the network; for simplicity, we consider only the case where a quantity
I > 0 of current enters the circuit at some point a and exits at some point b. At
all other points of Γ, we have Kirchhoff’s current law: The total current flowing
into any node equals the current flowing out of any node. Mathematically, current
is a function which assigns to each oriented segment e of Γ a real number ie, the
current flow across e. Kirchhoff’s node law says that it is possible to define an
electric potential function φ(x) ∈ A(Γ) such that for every oriented segment e,
φ′

e(x) = −ie. (The minus sign is due to the convention that current flows from
high potential to low potential.) In particular, if p is the initial endpoint and q the
terminal endpoint of an oriented segment e, then Ohm’s law φ(p) − φ(q) = ieLe

holds. The potential function φ(x) is only determined up to an additive constant;
one needs to pick a reference voltage at some point of Γ in order to define the
potential at other points.

In our language of directional derivatives, if p is a point of Γ and ~v ∈ Vec(p)
is any direction at p, then the current flowing away from p in the direction ~v is
−D~vφ(p). Mathematically, Kirchhoff’s current law states that for p 6∈ {a, b}, we
have −σp(φ) = −

∑

D~vφ(p) = 0. We have −σa(φ) > 0, which says that a is a
current source, and −σb(φ) < 0, which says that b is a current sink. The current
entering the network at a is −σa(φ); the current exiting the network at b is σb(φ);
and we have −σa(φ) = σb(φ) = I .

Taken together, Kirchhoff’s node and potential laws say that given I > 0,
there is a function φ ∈ A(Γ) such that ∆φ = I · δa − I · δb. (This will be proved
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mathematically as a consequence of Corollary 3 in §6.) Note that φ is determined
up to an additive constant by Theorem 3. Note also that we initially required
−σa(φ) = σb(φ) = I (conservation of current), which is demanded mathematically
by Corollary 1.

In accordance with physical intuition, the Maximum Principle (Theorem 1)
implies that the electric potential in the network is highest at a (where current
enters) and lowest at b (where it exits). By convention, one often sets the potential
at b to be zero, in which case we say that the node b is grounded.

5. The Laplacian on a weighted graph

In this section, we explain some connections between the classical Laplacian
matrix on a weighted graph and the Laplacian on a metrized graph.

Suppose G is a weighted graph with vertex set V (G) = {vi}, edge set E(G) =
{ek}, and weights {wek

}. If the edge ek has endpoints vi and vj , then we will
use the notation wij = wek

= wji to show the dependence of the weights on the
vertices. For convenience, we set wij = 0 if vi and vj are not connected by an edge.
In particular wii = 0 for all i.

Definition 7. The Laplacian matrix associated to a weighted graph G is the
n × n matrix Q with entries

Qij =

{

∑

k wik if i = j,

−wij if i 6= j.

We should note that in the literature, our Q is often called the combinatorial
Laplacian or Kirchhoff matrix (see e.g., [Bo]).

The Laplacian matrix encodes interesting information about the graph G (see
e.g., [Mo], [GR, §13], [CDS], [CDGT], [Ch], [CdV]). For example, zero appears
as an eigenvalue of Q with multiplicity equal to the number of connected compo-
nents of G (so exactly once in our case). Kirchhoff’s famous Matrix-Tree Theorem
(see [Bo, Corollary 13, Chapter II]) equates the weighted number of spanning trees
of the graph with the absolute value of the determinant of the matrix obtained by
deleting any row and column from Q.

Returning to metrized graphs, we’ve already noted in Exercise 7 that a function
f ∈ A(Γ) is completely determined by its values on the finite set Vf (Γ). Thus, a
piecewise affine function on Γ yields a function on the vertices of a certain model
for Γ, and conversely, given a model G and a function on V (G), we can linearly
interpolate to obtain a piecewise affine function on Γ. Our two notions of Laplacian
honor this correspondence:

Theorem 4. Suppose Γ is a metrized graph, f ∈ A(Γ), and G is a model of

Γ with vertex set Vf (Γ) = {v1, . . . , vn}. Let ~f be the n × 1 vector with ~fi = f(vi).
Then

∆f =
∑

i

[

Q~f
]

i
δvi

.

Proof. We already know that ∆f is discrete if f is piecewise affine, so it

suffices to show that
[

Q~f
]

i
= −σvi

(f) for any vertex vi. We parametrize each

segment e having vi as an endpoint so that se(0) = vi. As f is piecewise affine, the
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directional derivatives of f at vi are given by f ′
e(0) = [fe(Le) − fe(0)]/Le. Recall

that the weight of an edge is the reciprocal of its length. Conclude that

σvi
(f) =

∑

segments e
adjacent to vi

fe(Le) − fe(0)

Le
=
∑

j

wij {f(vj) − f(vi)}

= −







(

∑

k

wik

)

f(vi) −
∑

j 6=i

wijf(vj)







= −
[

Q~f
]

i
.

�

As a bonus, one can use results about ∆ to deduce two standard facts about
the Laplacian matrix:

Corollary 2. If G is a weighted graph with n × n Laplacian matrix Q, then

(i) The kernel of Q is 1-dimensional with basis [1, . . . , 1]t.
(ii) If x ∈

� n is a vector, then
∑

i [Qx]i = 0.

Proof. Identify
� n with the n-dimensional vector space spanned by the ver-

tices of G. A vector x ∈
� n can be interpreted as a function on the vertices of G,

and this function can be linearly interpolated to yield a piecewise affine function
f on the associated metrized graph Γ. If Qx = 0, then Theorem 4 implies that
∆f = 0. The Maximum Principle shows f must be constant, so x = [c, . . . , c]t for
some real number c. This proves (i). For (ii), use Corollary 1 and Theorem 4 to
get

∑

i

[Qx]i =

∫

Γ

∆f = 0.

�

Now we know the relationship between the Laplacian operator acting on A(Γ)
and the Laplacian matrix. In fact, one can prove that the Laplacian of a piecewise
smooth function f is a limit of Laplacians of piecewise affine approximations of f .
To state the result, we introduce the following notation. If f ∈ S(Γ) and GN is
a model of Γ whose vertices contain Vf (Γ), define fN to be the unique piecewise
affine function with fN(p) = f(p) for each vertex p of GN (restrict f to the vertices
of GN and linearly interpolate).

Theorem 5. Suppose f ∈ S(Γ). There exists a sequence of models {GN} for
Γ such that for all continuous functions g on Γ, we have

∫

Γ

g ∆fN −→

∫

Γ

g∆f as N → ∞.

That is, the sequence of measures {∆fN} converges weakly to ∆f on Γ. By
Theorem 4 the discrete measures ∆fN can be computed using the Laplacian matrix.

A complete proof can be found in [Fa]. We mention the theorem in order to
display the very close connection between the Laplacian matrix on a weighted graph
and the Laplacian operator on a metrized graph.
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6. The j-function

In this section, we introduce a three-variable function jz(x, y) on the metrized
graph Γ which allows us, in a sense to be made precise, to invert the Laplacian
operator. Let Meas0(Γ) denote the space of measures of total mass zero on Γ. We
know from Corollary 1 that if f ∈ S(Γ) then ∆f ∈ Meas0(Γ). The following result
is a partial converse to this fact.

Theorem 6. Let ν =
∑

ciδpi
∈ Meas0(Γ) be a discrete measure. Then there

exists a piecewise affine function f on Γ such that ∆f = ν.

Proof. Let S = {p1, . . . , pk}, and fix a model G for Γ with vertex set V (G)
containing S. Let n = #V (G), and let W be the n-dimensional real vector space
spanned by the vertices of G, which we identify with

� n. If Q is the Laplacian
matrix associated to G, then we know Ker(Q) is 1-dimensional by Corollary 2(i).
The rank-nullity theorem implies that Im(Q) is (n − 1)-dimensional.

By Theorem 4, solving ∆f = ν is equivalent to finding a vector x ∈ W with
Qx = [c1, . . . , cn]t. Let W0 be the (n− 1)-dimensional subspace of W consisting of
vectors [a1, . . . , an]t such that

∑

ai = 0. Corollary 2(ii) shows Im(Q) is contained
in W0. As these two spaces have the same dimension, they must be equal. The
condition ν ∈ Meas0(Γ) says

∑

ci = 0, so [c1, . . . , cn]t lies in the image of Q. �

We now single out a special case of this result which is of particular interest. In
what follows, we write ∆x instead of ∆ if we wish to emphasize that we are taking
the Laplacian with respect to the variable x.

Corollary 3. For fixed y, z ∈ Γ, there exists a unique piecewise affine function
j(x) = jz(x, y) satisfying

∆xjz(x, y) = δy(x) − δz(x), jz(z, y) = 0.

Proof. The existence of j(x) follows from Theorem 6, and uniqueness follows
from Theorem 3. �

We now justify our assertion that the j-function allows us to “invert the Lapla-
cian” on the space Meas0(Γ). Recall from Theorem 6 that given a discrete measure
ν ∈ Meas0(Γ), there exists a function f ∈ A(Γ) (unique up to an additive constant)
that satisfies the differential equation ∆f = ν. The next result shows that we can
explicitly describe such a function f using the j-function:

Theorem 7. Let ν =
∑

ciδpi
∈ Meas0(Γ) be a discrete measure. Then for any

fixed z ∈ Γ, the function

f(x) =

∫

Γ

jz(x, y)dν(y) =
∑

i

cijz(x, pi)

is piecewise affine and satisfies the equation ∆f = ν.

Proof. The condition ν ∈ Meas0(Γ) means that
∑

ci = 0. Therefore

∆f =
∑

i

ci (δpi
− δz) = ν.

Since the j-function is piecewise affine, f is as well. �
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We mention (see [BR] for a proof) that Theorem 7 admits the following gener-
alization to arbitrary (not necessarily discrete) measures ν ∈ Meas0(Γ): For fixed
z ∈ Γ, the function f(x) =

∫

Γ
jz(x, y)dν(y) is in S(Γ) and satisfies the equation

∆f = ν. In particular, if ν is a measure on Γ, then we can solve the differential
equation ∆f = ν if and only if ν ∈ Meas0(Γ).

The function jz(x, y) has an interpretation in terms of electrical networks. Re-
calling our description of the electrical network associated to a metrized graph given
in §4, the function jz(x, y) is the electric potential at x if one unit of current enters
the network at y and exits at z, and the node z is grounded.

Exercise 9. Physical intuition suggests that the j-function should be nonneg-
ative; prove more precisely that

0 ≤ jz(x, y) ≤ jz(y, y)

for all x, y, z ∈ Γ. [Hint: Apply the Maximum Principle.]

The three-variable function jz(x, y) satisfies a magical four-term identity, which
will be used in various guises throughout this section and the next.

Theorem 8 (Magical Identity). For all x, y, z, w ∈ Γ, we have the identity

jz(x, y) − jz(w, y) = jw(y, x) − jw(z, x).

Proof. Fix x, y, z, w ∈ Γ. On one hand, we have
∫

Γ

jz(u, y)∆u (jw(u, x)) =

∫

Γ

jz(u, y) {δx(u) − δw(u)} = jz(x, y) − jz(w, y).

By Theorem 1, this is equal to
∫

Γ

jw(u, x)∆u (jz(u, y)) =

∫

Γ

jw(u, x) {δy(u) − δz(u)} = jw(y, x) − jw(z, x).

�

The Magical Identity allows us to prove two useful symmetries for the j-
function.

Corollary 4. For x, y, z ∈ Γ, the j-function satisfies

(i) jz(x, y) = jz(y, x)
(ii) jz(x, x) = jx(z, z)

Proof. For (i), if we set w = z in the Magical Identity, we obtain

jz(x, y) − jz(z, y) = jz(y, x) − jz(z, x).

Since jz(z, x) = jz(z, y) = 0, the result follows.
For (ii), substitute x = z, y = w into the Magical Identity to get

jz(z, w) − jz(w, w) = jw(w, z) − jw(z, z).

Since jz(z, w) = jw(w, z) = 0, the result follows by swapping w for x. �

In passing, we mention that jz(x, y) has a very strong continuity property: it
is jointly continuous in x, y, and z. That is, the value of the j-function varies con-
tinuously if we make small variations to x, y, and z simultaneously. Our electrical
network interpretation makes this statement quite plausible: the value on our volt-
meter should vary continuously when we move the battery terminals and the point
at which we’re reading the voltage. A mathematical proof is outlined in the next
exercise (see [CR] for a different approach).
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Exercise 10.
(a) Let I, I ′ be closed intervals in

�
. Suppose f : I × I ′ →

�
has the property

that f(x, y) is affine in x and y separately. Then f(x, y) = c1 + c2x +
c3y + c4xy for some c1, . . . , c4 ∈

�
.

(b) Use (a) to show that for fixed z ∈ Γ, jz(x, y) is jointly continuous as a
function of x and y.

(c) Use Theorem 3 to prove the five-term identity

jz(x, y) = jw(x, y) − jw(x, z) − jw(z, y) + jw(z, z).

(d) Deduce from (b) and (c) that jz(x, y) is jointly continuous in x, y, and z.

We now define another useful function motivated by the theory of electrical
networks:

Definition 8. The effective resistance between two points x, y of a metrized
graph is given by

r(x, y) = jy(x, x) = jx(y, y).

The fact that jy(x, x) = jx(y, y) is just a restatement of the second symmetry of
the j-function in Corollary 4. In terms of electrical networks, the effective resistance
between two nodes x and y is the absolute value of the potential difference between
x and y when a unit current enters the network at x and exits at y.

We now introduce some useful techniques for calculating the j-function and
the effective resistance function. Rules (ii) and (iii) in Theorem 9 below are essen-
tially the familiar series and parallel transforms from circuit theory. The proofs of
Theorems 9 and 10 are adapted from [Zh].

A subgraph of the metrized graph Γ is a subspace of Γ which is a metrized graph
in its own right. In the statement of Proposition 9, Γ1 and Γ2 will always denote
subgraphs of Γ. We let jz(x, y) (resp. jz,1(x, y), jz,2(x, y)) denote the j-function on
Γ (resp. on Γ1, Γ2), and similarly we let r(x, y) (resp. r1(x, y), r2(x, y)) denote the
effective resistance function on Γ (resp. on Γ1, Γ2).

Theorem 9. Let Γ be a metrized graph, and let Γ1 and Γ2 be subgraphs.

(i) Suppose e is a segment in Γ of length L with endpoints x, y, and assume
that Γ = Γ1 ∪ Γ2 ∪ e with Γ1 ∩ e = {x}, Γ2 ∩ e = {y}, and Γ1 ∩ Γ2 = ∅.
(Compare Figure 4(i).) Then r(x, y) = L.

(ii) Suppose Γ = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = {z}. (Compare Figure 4(ii).) Then
for all x ∈ Γ1 and y ∈ Γ2, we have r(x, y) = r1(x, z) + r2(z, y).

(iii) Suppose Γ = Γ1 ∪ Γ2 with Γ1 ∩ Γ2 = {x, y}. (Compare Figure 4(iii).)
Then

1

r(x, y)
=

1

r1(x, y)
+

1

r2(x, y)
.

Proof. For (i), we pick a parametrization se : [0, L] → e such that se(0) = x
and se(L) = y. Let t : e → [0, L] be the inverse of se. We claim that

jx(z, y) =











0 if z ∈ Γ1,

t(z) if z ∈ e,

L if z ∈ Γ2.
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e

x y

Γ1 Γ2 Γ2
Γ1

Γ2Γ1

x

y

z

x

y

(i) (ii) (iii)

Figure 4. These three figures illustrate the three parts of Propo-
sition 9. The solid lines (resp. dashed lines) indicate the segments
of the diagram belonging to Γ1 (resp. to Γ2).

Indeed, it is easily verified that the Laplacian of the right-hand side with respect
to z is δy−δx, and that the two sides agree when z = x. The claim therefore follows
from Theorem 3, and the desired result follows by setting z = y.

To prove (ii), we claim that

jx(w, y) =

{

jx,1(w, z) if w ∈ Γ1,

r1(x, z) + jz,2(w, y) if w ∈ Γ2.

For the right-hand side is continuous at w = z, has Laplacian equal to (δz − δx) +
(δy − δz) = δy − δx, and is zero when w = x. The result follows by setting w = y.

The proof of (iii) proceeds in the same way by verifying the identity

jx(z, y) =

{

r2(x,y)
r1(x,y)+r2(x,y)jx,1(z, y) if z ∈ Γ1,

r1(x,y)
r1(x,y)+r2(x,y)jx,2(z, y) if z ∈ Γ2.

We leave the details to the reader. �

Exercise 11. Show that the function r(x, y) is jointly continuous in x and y,
and that for fixed y ∈ Γ, r(x, y) is continuous and piecewise quadratic in x. [Hint:

Use Exercise 10.]

Using Theorem 9, we can derive an explicit description of the function r(x, y)
when x varies along a single segment of Γ having y as an endpoint. To state the
result, we define a quantity Re associated to a segment e of Γ as follows. Let e◦

denote the interior of the segment e, and let Γe be the complement of e◦ in Γ. If
Γe is connected, then Γe is a subgraph of Γ, and we define Re to be the effective
resistance r(y, z) between the endpoints y and z of e, computed on Γe. If Γe is not
connected (i.e., if e is not part of a cycle), we define Re to be ∞. Loosely speaking,
Re is the effective resistance between the endpoints of e in the subgraph obtained
by deleting e.

The next result is motivated by the following intuition: to calculate r(x, y) on
the segment e, we can think of e and its complement Γe as being connected in
parallel, and x splits e into two segments connected in series. We can then use the
parallel and series transforms to calculate r(x, y).

Theorem 10. Let e be a closed segment of Γ of length Le, let y, z be the
endpoints of e, and parametrize e by se : [0, Le] → e with se(0) = y and se(Le) = z.
Suppose t : e → [0, Le] is the inverse of se. Then for x ∈ e, we have

r(x, y) = t(x) −
1

Le + Re
t(x)2,

where 1
Le+Re

= 0 if Re = ∞.
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Proof. If Γe is not connected, then Γ = Γ1 ∪ Γ2 ∪ e, with Γ1 ∩ e = {y},
Γ2 ∩ e = {z}, and Γ1 ∩ Γ2 = ∅. Then r(x, y) = t(x) by part (i) of Proposition 9.

Now suppose that Γe is connected. Then x breaks e into two closed segments
Γ1 = [t(y), t(x)] and Γ2 = [t(x), t(z)], and Γ = Γ1 ∪ Γ2 ∪ Γe. Letting Γ3 = Γ2 ∪ Γe,
we have (with the obvious notation):

1

r(x, y)
=

1

r1(x, y)
+

1

r3(x, y)
by Prop. 9(iii),

=
1

r1(x, y)
+

1

r2(x, z) + Re
by Prop. 9(ii),

=
1

t(x)
+

1

Le − t(x) + Re
by Prop. 9(i).

The desired formula now follows because of the simplification
(

1

t(x)
+

1

Le − t(x) + Re

)−1

= t(x) −
1

Le + Re
t(x)2.

�

Exercise 12. Let Γ be a metrized graph of total length L. Fix a, b ∈ Γ,
and choose a vertex set V (Γ) containing a and b. Let e be an oriented segment
of Γ beginning at p and ending at q. For x ∈ Γ, let φ(x) = jb(x, a), and define

ie = φ(p)−φ(q)
Le

= −φ′
e. (In terms of electrical networks, ie is the current flowing

across e when a unit current enters the network at a and exits at b.) Also, define
r(e) = r(p, q).

(a) Show that r(e) ≤ Le. [Hint: Use Prop. 9.]
(b) Show that r(x, y) is a metric on Γ. [Hint: For the triangle inequality, use

Exercise 10.]
(c) Deduce that r(a, b) is bounded above by the length of any path from a to

b, and conclude that 0 ≤ r(x, y) ≤ L for all x, y ∈ Γ.

7. The canonical measure and Foster’s Theorem

Calculating the Laplacian of the effective resistance function r(x, y) for fixed y
is not so easy just from the definitions, but our explicit description in Theorems 10
and 11 below will allow us to do it indirectly. The first half of this section will be
devoted to figuring out ∆xr(x, y), and in the second half we reap the benefits of
this calculation by proving some interesting results from graph theory, including
Foster’s theorem. The method presented here is a simplified version of §2 of [CR].

Example. If Γ = [0, 1], then Theorem 9(i) shows that r(x, y) = |x − y|, and
a simple calculation shows that ∆xr(x, y) = δ0(x) + δ1(x) − 2δy(x). Interestingly,
we see that ∆xr(x, y) + 2δy(x) is independent of y. This simple example actually
illustrates a general phenomenon.

Theorem 11. For any metrized graph, ∆xr(x, y) + 2δy(x) is a measure which
is independent of y.

Proof. Let z, w ∈ Γ be arbitrary. Set x = y in the Magical Identity of §6 to
get

jz(y, y) − jz(w, y) = jw(y, y) − jw(z, y).
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Applying Corollary 4, we obtain

r(y, z) − jz(y, w) = r(y, w) − jw(y, z).

Taking the Laplacian of both sides with respect to y and recalling that ∆yjz(y, x) =
δx − δz, we get

∆yr(y, z) − δw + δz = ∆yr(y, w) − δz + δw.

Rearranging, we see that ∆yr(y, z) + 2δz = ∆yr(y, w) + 2δw. As w and z were
arbitrary, the result follows. �

Definition 9. The canonical measure on a metrized graph Γ is given by

µcan =
1

2
∆xr(x, y) + δy(x),

where y ∈ Γ is arbitrary. Theorem 11 shows that µcan is independent of the choice
of y.

Recall from Corollary 1 that ∆xr(x, y) is a measure of total mass zero, so we
see from Definition 9 that µcan has total mass 1.

Exercise 13. Use Theorem 1 to show that the quantity

τ(Γ) =
1

2

∫

Γ

r(x, y)dµcan(x)

is a positive real number which is independent of the choice of y ∈ Γ.2

We now give an explicit description of the measure µcan.

Theorem 12. Let np denote the valence of a vertex p ∈ V (Γ). Then

µcan =
∑

vertices p

(

1 −
1

2
np

)

δp +
∑

segments e

1

Re + Le
dx|e.

Proof. We compute the discrete and continuous parts of µcan separately.
Continuous part: Let e be an oriented segment of Γ which begins at y and ends

at z. If x lies on e, then we’re in the situation of Theorem 10, and we calculate
that

(†) ∆x {r(x, y)|e} =
2

Le + Re
dx|e + δz − δy.

Since µcan = 1
2∆xr(x, y) + δy is independent of our choice of y, (†) shows that the

continuous part of µcan along e must be 1
Le+Re

dx|e.

Discrete part: If y is an endpoint of a segment e, then r(x, y) is quadratic
along the interior of e by Theorem 10. It follows that the discrete part of µcan

is supported on V (Γ). Let p ∈ V (Γ) be a vertex. Using (∗) in §3, we calculate
from Equation (†) that 1

2∆xr(x, p) contributes − 1
2δp to the discrete part of µcan at

p for each segment e beginning at p. Recalling that µcan = 1
2∆xr(x, p) + δp, the

coefficient of δp in µcan must therefore be 1 − 1
2np.

�

Example. If Γ is a circle of length 1, then every vertex has valence 2, so µcan

has no discrete part. For the continuous part, divide the circle into three segments
e1, e2, e3, each of length 1/3. Then we get µcan = dx |e1

+dx |e2
+dx |e3

= dx.

2An interesting and difficult problem is to determine whether or not τ(Γ) can be arbitrarily
small for a metrized graph Γ of total length 1. (See §14 of [BR] for a discussion of this problem.)
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Example. Let Γ be the star of Figure 3. Then µcan has no continuous part
because Re is infinite for all edges. Therefore µcan = 1

2δP − 1
2δQ + 1

2δR + 1
2δS .

Theorem 12 has some interesting consequences for weighted graphs. For exam-
ple, we have the following result from [CR]:

Corollary 5. Let G be a weighted graph with vertex set V (G) and edge set
E(G). Then

∑

edges e

Le

Re + Le
= 1 + #E(G) − #V (G).

Proof. Integrating both sides of the formula in Theorem 12 over Γ, we obtain:

1 =
∑

vertices p

(

1−
1

2
np

)

+
∑

edges e

Le

Re + Le
.

As each edge in G connects exactly 2 vertices, we have
∑

p∈V (G) np = 2 {#E(G)}.
Therefore

1 = #V (G) − #E(G) +
∑

edges e

Le

Re + Le
,

which is equivalent to the desired formula. �

It is a well-known fact from graph theory that 1 + #E(G) − #V (G) is the
number of linearly independent cycles on G (see [Bo, Theorem 9, Chapter II]).
This topological invariant depends only on the associated metrized graph Γ.

The above corollary was first proved in [Fo] as a consequence of “Kirchhoff’s
Rule” (a relation similar to the Matrix-Tree Theorem). The next statement, which
was also proved in [Fo], has become known more widely as Foster’s Theorem.

Corollary 6 (Foster’s Theorem). For an edge e in a weighted graph G, let
r(e) denote the effective resistance r(x, y) between the endpoints x and y of e on
the associated metrized graph Γ. Then

∑

edges e

r(e)

Le
= #V (G) − 1.

Proof. If Re = ∞, then r(e) = Le by Proposition 9(i). Otherwise, by Theo-
rem 10, we have

r(e) = Le −
L2

e

Le + Re
=

LeRe

Le + Re
.

Combining these observations, we see that

∑

edges e

r(e)

Le
=

∑

edges e
with Re=∞

1 +
∑

edges e
with Re 6=∞

Re

Le + Re

= #E(G) +
∑

edges e
with Re 6=∞

{

Re

Le + Re
− 1

}

= #E(G) −
∑

edges e

Le

Le + Re
.

The result follows immediately from Corollary 5. �
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Example. If G is a tree, then we have r(e) = Le for all e by Proposition 9(i),

and #E(G) = #V (G)− 1. Therefore
∑

e
r(e)
Le

= #E(G) = #V (G)− 1 as predicted
by Foster’s theorem.

More generally, for arbitrary G it follows from Exercise 12(a) that 0 ≤ r(e)
Le

≤ 1

for each edge e, so that a priori we have
∑

e
r(e)
Le

≤ #E(G). Foster’s theorem is

equivalent to the assertion that the difference #E(G) −
∑

e
r(e)
Le

is equal to the
number of independent cycles in G.

Example. Foster’s theorem can be a useful tool for calculating effective resis-
tances, especially in the presence of symmetry. For example, let G = Kn be the
complete graph on n ≥ 2 vertices, with all edge weights equal to 1. By symmetry,
the effective resistance r(x, y) between distinct points x, y ∈ V (G) is independent
of x and y; let r denote the common value. Foster’s theorem gives

∑

edges e

we r(e) =

(

n

2

)

· r = n − 1,

so that r = 2/n.
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