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Abstract
Of those things that can be estimated well in an inverse problem, which is
best to estimate? Backus–Gilbert resolution theory answers a version of
this question for linear (or linearized) inverse problems in Hilbert spaces
with additive zero-mean errors with known, finite covariance, and no
constraints on the unknown other than the data. This paper generalizes
resolution: it defines the resolution and Bayes resolution of an estimator,
intrinsic minimax and Bayes resolution, and intrinsic minimax and Bayes
design resolution. Intrinsic resolution is the smallest value of a penalty
across parameters that can be estimated with controlled (minimax or Bayes)
risk. Intrinsic minimax resolution includes Backus–Gilbert resolution and
subtractive optimally localized averages (SOLA) as special cases. Intrinsic
design resolution is the smallest value of a penalty among parameters that can
be estimated with controlled (minimax or Bayes) risk using observations with
controlled acquisition cost. Intrinsic resolution wraps the classical problem of
choosing an optimal estimator of an abstract parameter inside the problem of
choosing an optimal parameter to estimate. Intrinsic design resolution adds
another layer: optimizing what to observe. Equivalently, it wraps a problem
in information-based complexity inside the problem of choosing an optimal
parameter. The definitions apply to inverse problems with constraints, to
nonlinear inverse problems, to nonlinear and biased estimators and estimators
with controlled computational cost, to general definitions of risk (not just the
variance of unbiased estimators), to confidence set estimators as well as point
estimators, and to abstract penalties not necessarily related to ‘spread’. Simple
examples are given, including a definition of the resolution of ‘strict bounds’
confidence intervals.

1. Introduction

In a seminal series of papers, George Backus and Freeman Gilbert [1, 2, 3, 4, 7] studied the
problem of estimating an element θ = θ(r) of a separable Hilbert space H of functions of
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position r from a set of n < ∞ noisy observations {Xj }nj=1 related to θ through bounded linear
functionals. (They also addressed local linearizations of Fréchet-differentiable problems.)
Backus and Gilbert showed that no finite set of linear functionals determines θ , even if the
data are free of error. Hence, they advocated estimating properties of the model that the data do
constrain. Backus and Gilbert [7, section 5] showed how to select from the linear functionals
that can be estimated linearly with zero bias and controlled variance the linear functional that
comes as close as possible to measuring θ(r0), the value of the model at the point r0. They
quantify ‘as close as possible’ using several measures of spread.

The Backus and Gilbert approach to measuring resolution has been applied to many
problems, including geomagnetism [28], gravimetry [15], heat flow [17], helioseismology
[13], magnetotellurics [23, 27], optics [39], seismology [7] and signal processing [22, 24].
Backus–Gilbert theory has been generalized in several ways, including definitions of optimality
other than minimal spread [14, 18, 24, 29, 30] and the effect of nonlinearity [34]. Parts of the
theory have been generalized to Banach spaces [12]. And its symptotic properties have been
studied [16, 33].

This paper generalizes resolution in a number of different directions: the new definition
encompasses nonlinear problems; model constraints; nonlinear, biased and controlled-cost
estimators; set estimators as well as point estimators; new definitions of concentration; loss
functions other than squared error; and minimax and Bayes risk. It also introduces the notion
of design resolution to optimize the observations to make; this includes some problems in
information-based complexity as special cases.

Section 2 lays out the notation. Section 3 contains the new ideas. Section 3.1 reviews
Backus–Gilbert resolution. Section 3.2 defines two new generalizations of resolution: the
intrinsic minimax resolution and the minimax resolution of an estimator. Section 3.3 defines
two more new generalizations: the intrinsic Bayes resolution and the Bayes resolution of
an estimator. Section 3.4 shows how the definitions in sections 3.2 and 3.3 can be used
to quantify the resolution of confidence set estimators, a new notion. Section 3.5 defines
two more new quantities: the minimax and Bayes intrinsic design resolution. Section 4 has
some simple examples. Section 4.1 gives an example of computing the intrinsic resolution in
a constrained inverse problem. Section 4.2 gives an example of computing the resolution
of the ‘strict bounds’ approach to finding confidence intervals in constrained problems.
Section 4.3 illustrates optimal design resolution using a problem related to optimal quadrature.
Sections 5 and 6 contain discussion and conclusions.

2. Notation

The possible states of Nature (models) are elements θ of a set �, a nonempty subset of a
separable Banach space T . The set � is known, but the value of θ is not. The data X take
values x in a separable Banach space XK . For the moment, K is an abstract index and is
considered to be fixed. When we consider design resolution in section 3.5, K will index
forward operators. Typically, XK = R

n, but n can depend on K. The probabability distribution
of X depends on θ and on K: X ∼ Pθ,K . Assume that for fixed K all the probability distributions
PK ≡ {Pθ,K : θ ∈ �} are defined on a common σ -algebra F of subsets of XK . Throughout
the paper, I use the convention that inf∅(·) = ∞ and sup∅(·) = −∞.

A parameter is the value at θ of a mapping g : � → B, where B is a separable Banach
space. Sometimes the mapping g, rather than its value at θ , is called the parameter. A
parameter is real valued if B = R. The parameter g[θ ] is linear if g is a linear mapping.
For example, if � is a collection of mass density distributions within the Earth that satisfy
bounds a � θ(r) � b, and g is the average density in a volume within the Earth, then g[θ ] is a
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real-valued linear parameter. Similarly, if � is the collection of scalar potentials of magnetic
fields at Earth’s core–mantle boundary corresponding to fields with total energy less than some
bound, and g[θ ] is a single Gauss coefficient of the potential, then g[θ ] is a real-valued linear
parameter [5, 6, 36].

A parameter g is identifiable (for forward mapping K) if g[η] �= g[ζ ], η, ζ ∈ �, implies
Pη,K �= Pζ,K . If a parameter is not identifiable, two models can have different values of the
parameter and yet produce the same observations with the same probabilities, so data cannot
discriminate between them.

A forward problem is linear if � is a subset of a separable Banach space T with normed
dual T ∗, and for some fixed n-tuple (κj )

n
j=1 of elements of T ∗, the datum is X = (Xj )

n
j=1

where

Xj = κj [θ ] + εj , θ ∈ �, (1)

and ε = (εj )
n
j=1 is a vector of random errors with a probability distribution that does not

depend on θ . The functionals (κj )
n
j=1 are sometimes called ‘data kernels’ or ‘representers’. A

more compact notation is

X = K[θ ] + ε, (2)

where K : � → R
n; θ 	→ (κj [θ ])nj=1. Backus–Gilbert theory [1, 2, 3, 4, 7] addresses

estimating identifiable real-valued linear parameters when the forward problem is linear (or
linearized), the model space T is a Hilbert space, and there are no constraints other than
the data, i.e., � = T . Essentially, Backus and Gilbert show that a linear parameter g[θ ] is
identifiable if and only g[·] = ∑n

j=1 βjκj [·]. See [12] for a generalization of this result.
A (non-randomized) estimator ĝ(·) of a parameter g[θ ] is a measurable mapping from

XK to A, where A (the space of actions) is a measurable space. For point estimators the
action space is B, the space of possible parameter values. For set estimators the action space
is a collection of subsets of B. In general, A need not have any particular relationship to
B. For example, the parameter might be the depth to the top of a reservoir, so that B = R,
and the action space might be {0, 1}, where 0 means ‘do not drill’ and 1 means ‘drill’. The
crucial thing is that the risk of an estimator ĝ when the true parameter value is g[η] and the
model is η must be well defined. In this example, the cost of drilling might be polynomial
in the depth, and the cost of not drilling might be constant. An estimator would be a rule for
deciding whether to drill on the basis of an observation X. The risk would be the expected
cost of using that rule to make the decision. See [19] for a rigorous exposition. To each
possible observation x ∈ XK, ĝ assigns an element ĝ(x) ∈ A, in such a way that the pre-
image under ĝ of measurable subsets of A are Pθ,K -measurable subsets of XK for all θ ∈ �.
In Backus–Gilbert resolution, A = B = R.

There are also randomized estimators, which assign probability distributions on A to
elements of XK . See [12] or [11] for more detail and examples; see [19] for rigor. Often the
class EK of estimators considered is restricted to depend on the data in a specific way or to
have limited computational cost. For example, when A is a linear space, EK might contain
only estimators with linear or affine dependence on the data, or estimators that require at most
a given number of floating point operations. In Backus–Gilbert resolution, EK consists of
estimators with linear dependence on the data: ĝ(x) = β · x for some β ∈ R

n.
The expectation operator when the true state of Nature is η is denoted as Eη. Generically,

ρη(ĝ; g[η]), the ρ-risk at η of the estimator ĝ of the parameter g[η], denotes the expected cost
of estimating g[η] by ĝ when the true model is η. For fixed K, ρ maps EK × � × G into R

+,
where G is the set of parameters under consideration.
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Mean squared error (MSE) is an example of a risk function for a point estimator. The
mean squared error at η of the point estimator ĝ of the real-valued parameter g[η] is

MSEη(ĝ; g[η]) ≡ Eη(ĝ(X) − g[η])2. (3)

MSE can be decomposed into a sum of the variance of ĝ, Varη(ĝ) = Eη(ĝ(X) − Eη(ĝ(X)))2

and the square of the bias of ĝ, biasη(ĝ; g[η]) ≡ Eη[ĝ(X) − g[η]]:

MSEη(ĝ; g[η]) = Varη(ĝ) + (biasη(ĝ; g[η]))2. (4)

The MSE of an unbiased real-valued point estimator is thus equal to its variance. Backus and
Gilbert work with unbiased estimators; a bound on the variance of an unbiased estimator is the
same as a bound on its MSE. The MSE quantifies the average accuracy of ĝ(X) as an estimator
of g[η]. There are countless ways to define the accuracy of point estimators of real-valued
parameters; MSE is common.

One way to define the risk of randomized set estimators is the expected measure of the
set [11, 32], or a combination of expected size and coverage probability [8].

The maximum ρ-risk of ĝ (for estimating g) is

ρ�(ĝ; g) ≡ sup
η∈�

ρη(ĝ; g). (5)

The minimax ρ-risk for estimating g (over estimators in EK ) is

ρ�(EK; g) ≡ inf
ĝ∈EK

ρ�(ĝ; g). (6)

Because T is a separable Banach space, it is measurable with respect to its Borel σ -
algebra. Suppose that � is a measurable subset of T , and let π be a probability measure on
�. The expectation operator over the (prior) distribution π on � is denoted as Eπ . Thus, for
example,

Eπ ĝ(X) =
∫

�

∫
XK

ĝ(x)Pη,K(dx)π(dη). (7)

The (Bayes) ρ-risk of ĝ (for estimating g) for prior π is

ρπ(ĝ; g) ≡
∫

�

ρη(ĝ; g[η])π(dη). (8)

The (Bayes) ρ-risk (for estimating g) for prior π (over estimators in EK ) is

ρπ(EK; g) ≡ inf
ĝ∈EK

ρπ(ĝ; g). (9)

The notation is summarized in table 1.

3. Resolution

3.1. Backus–Gilbert resolution

Consider a linear forward problem X = K[θ ] + ε with Eε = 0 and Cov(ε) = �, where �

is a positive definite matrix. For the moment, suppose that � = T ; i.e., there are no extra
constraints on θ . In geophysical inverse problems, T is typically a space of functions of
position θ = θ(r), with r limited to some domain D ⊂ R

k . Restrict attention to real-valued
linear parameters g[θ ]. Backus and Gilbert [4, 7] showed that the only linear parameters that
can be estimated with finite bias whatever be θ ∈ T are of the form

g[θ ] = β · K[θ ] ≡
n∑

j=1

βjκj [θ ] (10)
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Table 1. Notation.

T A separable Banach space
� The possible states of the world, a subset of T
θ An element of �; the particular state the world is in
η A generic element of �

K An abstract index relating to the forward mapping
XK A separable Banach space of possible observations corresponding to

the forward mapping with index K
x A generic element of XK

X Data: a random variable that takes values in XK ; X ∼ Pθ,K

λ(K) The cost of observing X for the forward mapping with index K
L Maximum tolerable cost λ(K)

G A set of mappings from � → B, where B is a separable Banach space
g An element of G, a parameter
T (·) A figure of merit for parameters g. T : G → R

+

A A measurable space of actions
EK A set of estimators, measurable mappings from XK into A
ĝ An element of EK , an estimator
Eη Expectation operator when the true state of the world is η ∈ �

ρη(ĝ; g[η]) Risk of estimating g using ĝ when the world is in state η.
For fixed g and K, ρ : EK × � → R

+.
ρ�(ĝ; g) supη∈� ρη(ĝ; g): maximum risk of estimating g using ĝ

ρ�(EK ; g) infĝ∈EK
ρ�(ĝ; g): minimax risk for estimating g using an estimator in EK

π A prior probability distribution on �

ρπ(ĝ; g)
∫
�

ρη(ĝ; g[η])π(dη): average risk for prior π for estimating g using ĝ

ρπ (EK ; g) infĝ∈EK
ρπ (ĝ; g): Bayes risk for prior π for estimating g using an estimator in EK

M Maximum tolerable risk

with β ∈ R
n. Moreover, the estimator

ĝ(X) =
n∑

j=1

βjXj = β · X (11)

is unbiased for (β · K)[θ ] and has variance

βT · � · β. (12)

Since β · X is unbiased for (β · K)[θ ],

MSEη(β · K[η], β · X)) = Varη(β · X) = βT · � · β, η ∈ T . (13)

Suppose we are unwilling to tolerate mean squared error greater than M. Within the set of
linear functionals that are estimable with MSEη � M for all η ∈ T , we can choose to estimate
one that optimizes some criterion. Because T is a Hilbert space of functions of position r ∈ D,
the linear functionals κj [·] have ‘representers’ κj (r) that are themselves elements of T . Let
K(r) denote the vector of functions (κj (r))

n
j=1, and for γ ∈ R

n, define

γ · K(r) ≡
n∑

j=1

γjκj (r). (14)

In Backus–Gilbert theory, the vector of coefficients β is chosen so that the function β · K(r)

satisfies
∫

β · K(r) dr = 1. That is, the average of the model given by β · K[θ ] is the integral
of θ against an ‘averaging kernel’ β · K(r) that has unit area or volume. Backus–Gilbert
resolution theory shows how to find β to minimize the spread of β · K(r) around some target
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point r0, for several definitions of ‘spread’. The heuristic is that we can almost estimate θ(r0)

if we can estimate an average of θ that is spatially concentrated near r0. A definition of the
spread of β · K(r) about r0 for models with one spatial dimension is

Sr0(β · K) ≡ 12
∫

(r − r0)
2(β · K(r))2 dr. (15)

The factor of 12 makes the spread of a unit-area boxcar function centred at r0 equal to its
width.

Generally, there is a tradeoff between spread and variance: picking β so that gβ[θ ] has
small spread—i.e., so that β ·K[θ ] is an average of θ concentrated near r0—typically requires
Varθ (β · K) = βT · � · β to be large. See [28] for examples. The smallest value of the
spread among the linear functionals that can be estimated with zero bias and variance �M is
the Backus–Gilbert resolution at variance M.

The coefficients β can be chosen to optimize a penalty other than ‘spread’. For example,
one might try to make β · K approximate integration against a boxcar function centered at r0,
a step function at r0, or some other target function, depending on the scientific goal. See, e.g.,
[14, 24, 29].

Backus–Gilbert resolution is intrinsic to the inverse problem: it quantifies the spread
of the most concentrated linear estimator whose MSE is not too big. A related notion, the
resolution of a linear estimate, is a property of both the inverse problem and the linear estimate.
In a linear inverse problem, any linear estimator ĝ(X) = β · X is an unbiased estimator of
an average of the model, namely,

∫
β · K(r)θ(r) dr . One can calculate the spread of the

averaging kernel β · K(r) around any given point r0. For example, when T is a Hilbert space,
a norm-regularized least squares estimate with a fixed tradeoff parameter χ is

θ̂RLS = arg min
η∈�

{(K[η] − X)T · �−1 · (K[η] − X) + χ‖η‖2}. (16)

At each r, θ̂RLS(r) is of the form
∑n

j=1 βj (r)Xj , so the expected value of the estimate at r0

is β(r0) · K[θ ], the variance is β(r0)
T · � · β(r0), and the spread about r0 is Sr0(β(r0) · K).

That spread is the resolution of the estimate β(r0) · X. The MSE of β(r0) · X as an estimate of
β(r0) ·K[θ ] could exceed M—the spread of this estimator is not quite the same as the intrinsic
resolution at a given MSE.

3.2. Minimax resolution

Backus–Gilbert resolution finds the functional with smallest spread among those linear
functionals that can be estimated by a linear estimator with MSE � M for all η ∈ T .

The intrinsic minimax resolution just replaces some of the ingredients of Backus–Gilbert
resolution with more abstract ingredients. LetG be a set of parameters on �. In Backus–Gilbert
resolution, G are linear functionals corresponding to averages with weights that integrate to
unity. Let EK be a class of estimators; in Backus–Gilbert resolution, EK is the class of linear
estimators. More generally, we might consider arbitrary measurable estimators. Or we might
restrict EK to estimators whose computational cost does not exceed a given constant. Let
T : G → R

+ be a cost function on G; T plays the role of ‘spread’ in Backus–Gilbert resolution.
Let ρη(ĝ, g) be the risk of using the estimator ĝ to estimate g[θ ] when in fact θ = η; ρ plays
the role of MSE.

Definition 1. The (intrinsic minimax) T-resolution for parameters in G and estimators in EK

at ρ-risk M is

R�(M; T ,K, ρ,G, EK) ≡ inf
g∈G:ρ�(EK ;g)�M

T (g). (17)
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That is, R�(M; T ,K, ρ,G, EK) is the smallest value of T (g) among parameters g ∈ G
that can be estimated with maximum ρ-risk not exceeding M over models in � by some
estimator ĝ in EK . It is implicit that the estimator ĝ uses XK -valued data X that are a sample
from some Pη,K ∈ PK and that G are B-valued functions; R also depends on XK and PK .

Whether the optimization problem (17) can be solved—and whether the solution is
scientifically useful—depends on T ,K , �, EK,B,G and PK = {Pη,K : η ∈ �}, but the
abstract problem makes sense even if

• the model space T is not a Hilbert space;
• there are constraints, so � �= T ;
• the set of possible data values X is not R

n;
• the forward problem is nonlinear;
• the set G of parameters includes nonlinear parameters;
• the possible parameter values B are not real numbers;
• the elements of G do not have unbiased estimators;
• the set EK of estimators includes nonlinear estimators and biased estimators;
• the penalty T is not a measure of spread;
• the measure of risk is not mean squared error.

Definition (17) coincides with the Backus–Gilbert resolution at r0 if T is a Hilbert space of
functions of position, � = T ,X = R

n, Pη,K ∼ K[η] + ε where K = (κj )
n
j=1 ⊂ T , Eε = 0,

E(εε′) = �,B = R,G = T , EK is the class of linear functionals on XK (β · X,β ∈ R
n),

ρ(ĝ; g) = MSE(ĝ; g), and T (g) is one of the Backus–Gilbert measures of spread around
r0. The definition also reproduces some existing extensions of Backus–Gilbert resolution,
including those in [14, 24, 29, 30], which amount to taking T (g) ≡ ‖g − g0‖2, for a fixed
function g0.

Definition (17) also leads to an alternative definition of the resolution of an estimator:

Definition 2. The T-resolution of the estimator ĝ for parameters in G at ρ-risk M is

R�(ĝ,M; T ,K, ρ,G) ≡ inf
g∈G:ρ�(ĝ;g)�M

T (g). (18)

The intrinsic minimax resolution R�(M; T ,K, ρ,G, EK) is related to the resolution of
ĝ, R�(ĝ,M; T ,K, ρ,G), through

R�(M; T ,K, ρ,G, EK) = inf
ĝ∈EK

R�(ĝ,M; T ,K, ρ,G). (19)

3.3. Bayes resolution

We can also define measures of resolution using Bayes risk rather than maximum (or minimax)
risk.

Definition 3. The intrinsic Bayes T-resolution for parameters in G and estimators in EK at
ρ-risk M for prior π is

Rπ(M; T ,K, ρ,G, EK) ≡ inf
g∈G:ρπ (EK ;g)�M

T (g). (20)

Definition 4. The Bayes T-resolution of the estimator ĝ for parameters in G at ρ-risk M for
prior π is

Rπ(ĝ,M; T ,K, ρ,G) ≡ inf
g∈G:ρπ (ĝ;g)�M

T (g). (21)
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The intrinsic Bayes resolution and the Bayes resolution of ĝ for prior π are related through

Rπ(M; T ,K, ρ,G, EK) = inf
ĝ∈EK

Rπ(ĝ,M; T ,K, ρ,G). (22)

3.4. Confidence-based resolution

The new definitions of resolution do not require EK to be a collection of point estimators. For
example, EK could be a collection of confidence interval estimators. The new definitions thus
encompass new measures of the resolution for confidence sets, by picking ρη(ĝ; g) suitably
when ĝ is a confidence set.

Let EK be a collection of randomized set-valued estimators and for fixed α ∈ (0, 1) define

ρη(ĝ; g[η]) ≡
{

∞, Pη,K{ĝ(X)  g[η]} < 1 − α

Eηµη(ĝ(X)), Pη,K{ĝ(X)  g[η]} � 1 − α.
(23)

Here µη(S) is the measure of the set S, and the expectations and probabilities are with respect
to the distribution of the data X and the distribution of ĝ(x) for each fixed x when the model is
η. It is possible—and sometimes scientifically desirable—to allow the measure µη to depend
on η [32]. Then the intrinsic minimax resolution R�(M; T ,K, ρ,G, EK) is the smallest value
of T (g) among parameters g ∈ G that can be estimated by a randomized confidence set in the
class EK that has coverage probability at least 1 − α for all η ∈ � and has maximum expected
µη-measure not larger than M. There is an analogous definition of intrinsic resolution based
on Bayesian credible regions, and a definition based on a Bayesian average size of frequentist
confidence regions with respect to a prior.

Techniques for finding confidence intervals for one or more parameters of the model,
such as ‘strict bounds’ [12, 21, 35, 37] and ‘funnel functions’ [25], fit into this framework.
Moreover, the framework suggests how those techniques might be generalized and optimized
to provide sharper inferences.

Strict bounds find simultaneous confidence intervals for a collection of pre-specified
parameters of the model, {gj [θ ]}j∈J . The confidence intervals are projections of a confidence
region for the whole model θ . Suppose we observe X = K[θ ] + ε where the forward mapping
K : � → R

n can be nonlinear, θ ∈ �, and the observational errors {εj }nj=1 are modeled
as independent zero-mean Gaussian random variables with unit variance. Let χ2

α,n denote
the 1 − α critical value of the χ -square distribution with n degrees of freedom. Then the
ball

{
x ∈ R

n : ‖X − x‖2
2 � χ2

α,n

}
is a 1 − α confidence set for K[θ ]. Its pre-image,

D ≡ {
η ∈ � : ‖X − K[η]‖2

2 � χ2
α,n

}
is a confidence set for θ . The intervals{[

inf
η∈D

gj [η], sup
η∈D

gj [η]
]}

j∈J (24)

are simultaneous 1 − α confidence intervals for {gj [θ ]}:
Pν,K

{∩j∈J
{[

inf
η∈D

gj [η], sup
η∈D

gj [η]
]  gj [ν]

}}
� 1 − α, ∀ν ∈ �. (25)

However, they are not typically the smallest (in expectation) 1 − α confidence sets, because
D is not tailored to the set G and the information θ ∈ � is used in a crude way.

The resolution of strict bounds can be defined as follows. Let G be a collection of
parameters on �; let T : G → R

+. For example, G could be normalized boxcar averages
centered at r0 and T (g) could be the width of the boxcar. Fix α ∈ (0, 1). Let �g(X) be the
lower endpoint of the strict bounds confidence interval for g[θ ], and let ug(X) be the upper
endpoint. Define

ρη([�g, ug], g[η]) ≡ Eη(ug(X) − �g(X)), (26)

8
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the expected Lebesgue measure of the strict bounds confidence interval for g[θ ] when the
true model is η ∈ �. Then the T-resolution of strict bounds for parameters in G at maximum
expected length M (using confidence level 1 − α) is

R�(strict bounds,M; T ,K, ρ,G) ≡ inf
g∈G:ρ�(ĝ;g)�M

T (g). (27)

In this cartoon, R is the width of the narrowest boxcar average centered at r0 for which the
expected length of a strict bounds 1 − α confidence interval is at most M, whatever be θ ∈ �.
We could also define a ‘conditional resolution’ for strict bounds using attained length of the
confidence intervals after the data are collected, rather than using the minimax expected length
before the data are collected.

3.5. Design resolution

Another layer of optimization can be added to the definitions of intrinsic resolution: optimizing
the set of observations to make. (See, e.g., [9, 31, 38].) Suppose we can control some aspect
of the forward problem, for example, where on Earth’s surface to place instruments or sources,
the spectrum of a source wavelet for exploration seismology, the shape of an antenna for
observing the cosmic microwave background, the shape of the ‘galactic cut’ for estimating
the spectrum of the cosmic microwave background, the signal-to-noise ratio of a transducer,
the integration time of a CCD collector, or the number of observations to make. Each such
‘experimental design’ K has a cost λ(K) in time, money and other valuables. Changing the
design K can change the space XK of possible observations and the probability distribution of
the data, Pθ,K .

Let K denote the set of experimental designs K we are willing to consider. For each
experimental design K, there is a set EK of estimators we are willing to use (for example, those
with computational cost not greater than a given constant, or those with a specific kind of
functional dependence on the data); we assume that all take values in the same action space A.
The risk ρ depends implicitly on K, but I make no notational distinction. Let E ≡ {EK}K∈K.

Definition 5. The minimax intrinsic design T-resolution for parameters in G, estimators in E
and designs in K at ρ-risk M and λ-cost L is

R�(M,L; T , ρ,G, E,K) ≡ inf
K∈K:λ(K)�L

inf
g∈G:ρ�(EK ;g)�M

T (g). (28)

Definition 6. The Bayes intrinsic design T-resolution for parameters in G, estimators in E and
designs in K at ρ-risk M and λ-cost L for prior π is

Rπ(M,L; T , ρ,G, E,K) ≡ inf
K∈K:λ(K)�L

inf
g∈G:ρπ (EK ;g)�M

T (g). (29)

These definitions treat λ(K) as deterministic. But the cost of K could also be random,
with a distribution that could depend on unknown parameters. Indeed, the cost might depend
on θ . If the cost is random, we might work with the Bayes expected cost or the minimax
expected cost.

These definitions can also be adapted to find, for example, the lowest (fixed-, expected- or
maximum-) cost design that would yield a given resolution at a given risk. The definitions of
design resolution are related to quantities in information-based complexity (IBC) [38]. IBC
seeks to find the optimal information (essentially, K) and optimal estimator (essentially, the
best element of E) to estimate a fixed parameter gθ within some error (usually a deterministic
measure of risk). Design resolution adds an additional layer to the IBC problem: selecting
the parameter g optimally. See section 4.3.
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4. Examples

Consider a very simple inverse problem with a single datum linearly related to the unknown.
The model space is T = L2[−1, 1], Lebesgue square-integrable functions on the interval
[−1, 1]. We observe

X =
∫ 1

−1

1

2
θ(r) dr + ε, (30)

with ε ∼ N(0, σ 2). Because T = L2[−1, 1] is its own dual, there is an isometry between
bounded linear functionals on T and elements of T : for any bounded linear functional
g : T → R, there is an element g(r) ∈ T such that for all η ∈ T ,

g[η] =
∫ 1

−1
g(r)η(r) dr. (31)

Identify g[·], the linear functional, with g(r), the element of T that ‘represents’ g[·]. For
g ∈ T , define

T0(g) ≡ 12
∫ 1

−1
r2g2(r) dr. (32)

The functional T0(g) measures the spread of g(r), the representer of g, around r = 0; it is
one of the measures of concentration Backus and Gilbert consider. Let G be the set of linear
functionals for which T0(g) is finite and

∫ 1
−1 g(r) dr = 1. Use MSE to measure risk, and take

EK to consist of estimators that are linear in X—that is, estimators of the form βX, β ∈ R.
There are no constraints, so Backus–Gilbert theory says the only linear parameters that

can be estimated with finite MSE are linear combinations of the measurement functionals.
The only linear combination of the measurement functionals that corresponds to an average
with unit area is g1(r) = 1

2 1[−1,1](r). Thus, G is the singleton set {g1}. The spread of g1 about
r = 0 is

T0(g1) = 12
∫ 1

−1
r2(1/2)2 dr = 2. (33)

The corresponding unbiased estimator is ĝ(X) = X; its MSE as an estimator of g[θ ] is equal
to its variance, σ 2. If σ 2 � M , the resolution at r = 0 for MSE � M is 2; otherwise, the
resolution is infinite.

Define gδ(r) = 1
2δ

1[−δ,δ](r) for δ ∈ (0, 1], and let gδ[θ ] ≡ ∫ 1
−1 gδ(r)θ(r) dr . The spread

of gδ about r = 0 is

T0(gδ) = 12
∫ δ

−δ

r2

(
1

2δ

)2

dr = 2δ � 2. (34)

For δ < 1, gδ[θ ] is not identifiable and there is no estimator of gδ[η] that has finite MSE for
all η ∈ �.

4.1. Constraints

Define ‖η‖∞ ≡ ess sup|η(r)|, η ∈ T , where ess sup denotes the essential supremum. Suppose
we have the additional constraint θ ∈ � ≡ {η ∈ T : ‖η‖∞ � τ }. Then |gδ[θ ]| � τ , so the
bias of estimators of gδ[θ ] can be controlled. Let G be the set {gδ : δ ∈ (0, 1]} and let EK

be the set of affine estimators, EK = {βX + γ : β, γ ∈ R}. Let T (gδ) = δ, the half-width of
the boxcar function gδ . (Note that for boxcar functions, T (gδ) = S(gδ)/2.) We seek

R�(M; T ,K, MSE,G, EK) = inf
β,γ∈R

inf
δ�0:sup‖η‖∞�τ MSE(gδ [η],βX+γ )�M

δ. (35)

10
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Note that this resolution problem has a constraint on the model, a restriction on the class of
estimators EK , a restriction on the class of target parameters G, and a different penalty measure
(the half-width δ).

For δ ∈ (0, 1],

g1[η] = δgδ[η] +

(∫ −δ

−1
+
∫ 1

δ

)
1

2
η(t) dt. (36)

Thus

sup
η∈�

|g1[η] − δgδ[η]| = τ(1 − δ). (37)

Estimating gδ[θ ] from X is thus equivalent to estimating ν from the observation X ∼
N(δν + ε, 1) where |ν| � τ and |ε| � τ(1 − δ). (Identify ν = gδ[θ ] and ε = g1[θ ] − δgδ[θ ].)
We can find the minimax MSE affine estimator by calculus.

By symmetry, the optimal additive constant γ in the affine estimator is zero, so the optimal
affine estimator is linear. Let Z ∼ N(0, 1). The MSE of the linear estimator ĝδ(X) = βX of
ν is

Eη[βδν + βδ + βZ − ν]2 = ((βδ − 1)ν + βδ)2 + β2. (38)

For fixed β, this is largest when (βδ − 1)ν and βδ have the same sign. When β < 0 or
β > 1/δ, the maximum is attained at ν = τ, δ = τ(1 − β); for 0 � β � 1/δ, the maximum is
attained at ν = −τ, δ = τ(1 − β). Thus

sup
η∈�

MSEη(gγ [η], βX) =
{

τ 2(β − 1)2 + β2, β < 0 or β > 1/δ

τ 2[1 + β(1 − 2δ)]2 + β2, 0 � β � 1/δ.
(39)

We need to minimize this maximum MSE (which is continuous in β) by choosing β well. The
top expression on the right-hand side of (39) is monotone decreasing for β < 0 and monotone
increasing for β > 1/δ. The second expression is monotone increasing on [0, 1/δ] if γ < 1/2,
and has a minimum in (0, 1/δ) if δ > 1/2. The optimal β, β∗, is thus 0 if δ � 1/2, or the
unconstrained minimum of τ 2[1 + β(1 − 2δ)]2 + β2 if δ > 1/2:

β∗ =

⎧⎪⎪⎨
⎪⎪⎩

0, δ � 1

2
τ 2(2δ − 1)

τ 2(2δ − 1)2 + 1
, δ >

1

2
.

(40)

The corresponding affine minimax risk is

MSE�(gβ, βX) =

⎧⎪⎪⎨
⎪⎪⎩

τ 2, δ � 1

2
τ 2

1 + τ 2(2δ − 1)2
, δ >

1

2
.

(41)

We can find the resolution by solving (41) for the smallest δ for which the minimax affine
MSE is at most M:

R�(M; T ,K, MSE,G, EK) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∞, M < min

(
τ 2,

τ 2

1 + τ 2

)
0, M � τ 2

1

2

(
1 +

√
1

M
− 1

τ 2

)
,

τ 2

1 + τ 2
� M < τ 2.

(42)

11
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Take M = 1, corresponding to the MSE of the linear estimator of g1, In the units we have
been using in this example, the Backus–Gilbert resolution is 1. But because of the constraint,

the resolution of affine estimators is 0 if τ 2 � 1, or
(
1 +

√
1 − 1

τ 2

)
/2 < 1 if τ 2 > 1.

4.2. Resolution of ‘strict bounds’

We shall calculate the resolution of the strict bounds 1−α confidence procedure—a nonlinear
set estimator—for this inverse problem.

We first find the strict bounds confidence intervals as a function of the observation x and
the half-width δ of the boxcar. Let z be the 1 −α/2 quantile of the normal distribution, so that
if Z ∼ N(0, 1), P(|Z| > z) = α. Under the assumptions, the confidence set for θ is

D = {η ∈ � : |g1[η] − X| � z}. (43)

The strict bounds confidence interval for gδ[θ ] is[
inf
η∈D

gδ[η], sup
η∈D

gδ[η]
]
. (44)

This interval is empty if |X| > τ + z; to simplify things, we shall take the confidence interval
to consist of the point −τ if X < −τ − z and to consist of the point τ if X > τ + z. This does
not change the expected length of the interval, and—if gδ[θ ] happens to be ±τ—increases the
coverage probability.

As noted before, estimating gδ[θ ] is equivalent to estimating ν from the observation
X ∼ N(δν + ε, 1) where |ν| � τ and |ε| � τ(1 − δ). When X = x, the lower endpoint of the
strict bounds confidence interval for gδ[θ ] is

�δ(x) =
⎧⎨
⎩

−τ, x � τ(1 − 2δ) + z

(x − z − (1 + δ)τ )/δ, τ (1 − 2δ) + z < x � τ + z

τ, x > τ + z.

(45)

The upper endpoint is

uδ(x) =
⎧⎨
⎩

−τ, x � −τ − z

(x + z + (1 + δ)τ )/δ, −τ − z < x � −τ(1 − 2δ) − z

τ, x > −τ(1 − 2δ) − z.

(46)

The length of the confidence interval is

wδ(x) = uδ(x) − �δ(x) (47)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x � −τ − z

(x + z + (1 + 2δ)τ )/δ, −τ − z < x � τ(1 − 2δ) + z

2(z + (1 + δ)τ )/δ, τ (1 − 2δ) + z < x � −τ(1 − 2δ) − z

(−x + z + (1 + 2δ)τ )/δ, −τ(1 − 2δ) < x � τ + z

0, x > τ + z.

(47)

(The third condition can be met only if δ > (z + τ)/2τ > 1/2.) The length decreases
monotonically with |x|, so the expected length is maximized when δν + ε = 0. In that case,

E0wδ(X) = 2[φ(τ + z) − φ(τ(1 − 2δ) + z(1 + 2δ)τ/δ(�(τ + z) − �(−τ(1 − 2δ)))

+ 1δ>(z+τ)/2τ (z + (1 + δ)τ )/δ(2�(−τ(1 − 2δ) − z) − 1)]. (48)

The resolution is the smallest value of δ such that E0wδ(X) � M . (That problem
needs to be solved numerically, but the expected length is monotonic in δ, so the search
is straightforward.) For illustration, the resolution is 0.697 for τ = 1, α = 0.05, and
M = 2 × 1.96—the length of a naive fixed-length confidence interval for g1[θ ]. That is, for

12
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τ = 1 we can estimate g0.697[θ ] with a 95% confidence interval whose expected length does
not exceed 2×1.96, whatever be θ ∈ �. Without the prior information θ ∈ �, we would only
be able to estimate g1[θ ], and the length of the 95% confidence interval would be 2 × 1.96.

4.3. Design resolution: quadrature of Lipschitz functions

This section finds the minimax design resolution in a deterministic problem: numerical
integration of a Lipschitz function over the shortest possible interval for which the spacing
between samples is not too small and the maximum possible error is not too large.

Let � be the set of functions η = η(r) on the interval [0, 1] that satisfy the Lipschitz
condition |η(r) − η(r ′)| � C|r − r ′| for a known constant C. For η ∈ � and δ ∈ (0, 1],
define gδ[η] ≡ δ−1

∫ δ

0 η(r) dr . Let G ≡ {gδ : δ ∈ (0, 1]}, and define T (gδ) = δ. Let r be
any finite set {rj } ⊂ [0, 1]; let n ≡ #r; and assume that the points rj are ordered so that
r1 < r2 < · · · < rn. Define Kr[η] = (η(rj ))

n
j=1, that is, Kr samples η at the points in r.

Let K denote the set of all such forward mappings Kr. We can observe X = K[θ ] for any
K ∈ K—at a price. The cost of observing Kr[θ ] is

λ(Kr) ≡ n
max
j=2

(rj − rj−1)
−1. (49)

This is a qualitative model for a situation where technology for sampling faster or on a finer
scale costs more, but for any given technology, each observation has negligible cost.

Since there is no observational error in this model, Pη,K is a point mass at (η(rj ))
n
j=1.

Define

ρη(ĝ; g[η]) ≡ Eη|ĝ − g[η]| = |ĝ − g[η]|. (50)

We consider the set E of estimators with arbitrary functional dependence on the data. From
the development in [26, 38], it is clear that the worst-case data are X = 0 and that the optimal
estimator is linear, a modified trapezoid rule with the points {rj } chosen non-adaptively.

For a given set of points {rj }, let nδ ≡ max{j : rj < δ} and r̄δ = (rnδ
+ rnδ+1)/2. The

maximum risk of the modified trapezoid rule for data X = 0 is

sup
η∈�:η(rj )=0

δ−1
∫ δ

0
η(r) dr = C

δ

⎡
⎢⎣ r2

1

2
+

nr∑
j=2

(rj − rj−1)
2

4

+

⎧⎪⎨
⎪⎩

(δ − rnδ
)2

2
, δ � r̄δ

(rnδ+1 − rnδ
)2

4
− (rnδ+1 − δ)2

2
, δ > r̄δ

⎫⎪⎬
⎪⎭
⎤
⎥⎦ . (51)

The maximum risk decreases as the spacing between observations shrinks. There is no
cost for taking more samples at the minimum spacing L, so: (1) the observations might as well
be equally spaced by L, (2) the first sample is at r1 < L, and (3) unless there is a sample at δ,
there might as well be a sample at a point rj > δ if δ − rnδ

> L/2 (but taking more than one
does not help). Thus the optimal r is of the form rj = r1 + (j − 1)L, j = 1, . . . , n. Moreover,
one can show that for the optimal r, n = ⌊

δ
L

⌋
and r1 = (δ − nL)/2. The maximum risk of

the modified trapezoid rule for the optimal r is thus

sup
η∈�

|ĝδ − gδ(η)| = C

4δ

[
4r2

1 + (n − 1)L2
]
. (52)
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The minimax design resolution in this problem is therefore

R�(M,L; T , ρ,G, E,K) = min

{
δ ∈ (0, 1] :

CL2

4δ

[(
δ

L
−
⌊

δ

L

⌋)2

+

⌊
δ

L

⌋
− 1

]
� M

}
.

(53)

5. Discussion

The definitions of intrinsic resolution wrap minimax or Bayes estimation of a parameter g

inside an additional optimization problem to pick g: find the parameter g with smallest T (g)

in the class G that can be estimated with minimax or Bayes ρ-risk not exceeding M using an
estimator in EK . So, results on minimax or Bayes estimation can help find the intrinsic minimax
or Bayes resolution. (For example, see [10] on minimax estimation of linear functionals in
inverse problems in Hilbert spaces with convex constraints. Reference [36] gives an example
in geomagnetism.) When G is a singleton set, calculating the resolution reduces to a classical
minimax or Bayes estimation problem.

The definitions of intrinsic design resolution wrap minimax and Bayes estimation in a third
layer: picking the set of observations to make, subject to a bound on their cost. Equivalently,
they wrap information-based complexity problems [38] in an extra layer of optimization to
select the parameter to estimate. When G is a singleton set, calculating the design resolution
reduces to an information-based complexity problem.

For fixed g, subject to some technical conditions on ρ, � and EK , minimax risk and Bayes
risk are related: the minimax risk is the Bayes risk for the ‘least favorable prior’. That is,

ρ�(EK; g) = sup
π∈�

ρπ(EK; g). (54)

See, e.g., [11, 12, 19, 20]. Reference [32] give a numerical algorithm for building minimax
estimators by constructing a least-favorable prior iteratively using numerical optimization and
Markov Chain Monte Carlo (MCMC).

In the definitions developed here, ‘resolution’ might have nothing to do with estimating a
local property of θ , depending on the class G, the possible parameter values B and the penalty
T. For example, estimating a difference in averages in two parts of the model [14] fits the
definition.

5.1. Systematic errors

The new definitions can incorporate systematic errors, including uncertainties in the forward
problem, by introducing nuisance parameters into the stochastic model. (Nuisance parameters
are parameters that affect the probability distribution of the data, but are not themselves of
interest.) This can be helpful when the forward problem involves a numerical simulation,
for example. Here is a cartoon that incorporates errors in the forward model. Suppose the
observations are

X = K[θ ] + ε ∈ R
n, (55)

where K might be nonlinear. We know a priori that θ ∈ � and that K ∈ K, but we do not
know which element of K was used to take the measurements. The n-vector ε of additive
errors has a known distribution that does not depend on the value of θ or K. Let K0 be a fixed
element of K. For η ∈ � and K0 ∈ K, define

σ(K0,K, η) ≡ {K ′[η] − K0[η] : K ′ ∈ K}. (56)

14
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This lets us embed the problem into the current formalism by extending the model η to include
an n-vector of nuisance parameters, the differences between K[η] and K0[η]. The set �

expands to be the set �∗
K0

≡ {(η, η′) : η ∈ �, η′ ∈ σ(K0,K, η}. The new forward model is

X = K∗[θ∗] + ε, (57)

where θ∗ ∈ �∗ and for η∗ = (η, η′) ∈ �∗,K∗[η∗] = K0[η] + η′. This treats the set K as
deterministic; it is straightforward to treat it as stochastic instead. Other sources of systematic
error can be treated similarly.

5.2. Application notes

To use the new definitions in practice, one must specify a number of sets and functions. For
example, the intrinsic minimax resolution depends on the class G of target parameters, the
penalty T, the set EK of estimators, the risk function ρ, and the tolerable risk M. Science and
taste are involved in choosing all of these. Both G and T relate most closely to the science: G
should contain parameters that are scientifically interesting, and T imposes a preference order
on those parameters. Choosing the risk function ρ determines the sense in which one wants
to estimate those parameters well, and M specifies just how well. The choice of the set EK

of estimators might be driven by the theoretical and computational tractability of the resulting
optimization problem, or by the cost of calculating the estimators.

Finding the minimax risk and Bayes risk for estimating each fixed g ∈ G are standard
problems in statistical decision theory. Similarly, for fixed g, finding optimal information
K ∈ K and an optimal estimator ĝ ∈ EK are standard problems in information-based
complexity. So, there is a body of theory that can be drawn upon to solve some of the
optimization problems in the definitions of resolution and design resolution. However,
specific results depend on properties of the sets and functions involved: linearity, convexity,
boundedness, and so on. For many combinations of T ,G,K, EK , ρ and PK , the optimization
problems will be intractable.

6. Conclusions

The Backus–Gilbert notion of resolution can be generalized to apply to nonlinear inverse
problems, inverse problems with constraints, measures of optimality other than spatial
concentration, parameters other than local averages, nonlinear and biased estimators, set
estimators (and others) in addition to point estimators, systematic as well as stochastic errors,
and measures of risk other than variance of unbiased point estimators. There are both minimax
and Bayesian versions of the resolution. The minimax version reproduces Backus–Gilbert
resolution, SOLA and some other measures of resolution as special cases, but also allows
some interesting new measures, such as resolution based on confidence sets for restricted
parameters. The generalization of resolution wraps classical optimal estimation problems—
minimax or Bayes estimation of a parameter—within another optimization problem of
selecting the parameter to estimate. The generalized resolution problem is to select the
optimal parameter to estimate, among parameters that can be estimated with minimax or Bayes
risk bounded by M.

One can also define minimax and Bayesian ‘design resolution’ problems. These embed
the generalized resolution problem within another optimization problem: selecting the best
observations to make, subject to a constraint on the cost of making the observations. That is, the
design resolution problem is to select the optimal parameter to estimate, among parameters that
can be estimated with minimax or Bayes risk bounded by M, using observations whose total
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cost is bounded by L. This amounts to wrapping a problem in information-based complexity
within the problem of selecting an optimal parameter to estimate.
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