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T
 his article provides a general overview of time-
frequency (T-F) reassignment and synchrosqueezing 
techniques applied to multicomponent signals, cov-
ering the theoretical background and applications. 
We explain how synchrosqueezing can be viewed as 

a special case of reassignment enabling mode reconstruction 

and place emphasis on the interest of using such T-F distribu-
tions throughout with illustrative examples. 

Introduction
Over the last 30 years, numerous methods have been pro-
posed to extend Fourier analysis to nonstationary signals, 
resulting in a body of work that is referred to (at large) as T-F 
methods [1]–[3]. Broadly speaking, generalizing Fourier anal-
ysis to take into account possible variations in the frequency 
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content of a signal can be understood in two complementary 
ways. The first attempts to make the Fourier transform time 
dependent, while the second focuses on the associated spectral 
density. The main difference is that the first approach is linear, 
with a complex-valued frequency description that involves 
magnitude and phase contributions, whereas the second is 
quadratic and leads to real-valued transforms in most cases. 

Linear T-F methods include short-time Fourier transforms 
(STFTs) and wavelet transforms (WTs), while most quadratic 
methods can be seen as variations of the celebrated Wigner–
Ville distribution (WVD), with squared STFTs (spectrograms) 
and WTs (scalograms) as special cases. Perhaps the key point is 
that none of these approaches allow for the definition of one and 
only one transform. This follows in some sense from the uncer-
tainty relation that links time and frequency, with the conse-
quence that the result of any transform depends not only on 
intrinsic characteristics of the analyzed signal, but also on the 
specific properties of the chosen transform; i.e., the transform 
should be viewed as a measurement device. In the case of linear 
methods, this entanglement between the measured quantity 
and the measuring device takes on a special importance when, 
e.g., the signal under study is almost as elementary (in terms of 
Heisenberg–Gabor uncertainty) as the window or wavelet used 
for its analysis: in such a situation, one could think of the signal 
analyzing the window as much as the window analyzing the 
signal! Something similar occurs for AM–FM signals: while the 
idealized picture of such signals would correspond to perfectly 
localized trajectories associated with the instantaneous frequen-
cies in the T-F plane, values of linear transforms are spread over 
a ribbon whose geometry depends jointly on the signal and the 
window (see Figures 1 and 2). 

To overcome this difficulty, in the late 1970s, Kodera et al.  
pioneered an approach aimed at “modifying” the “moving win-
dow method” (i.e., the STFT) [4], [5]. Their analysis pointed 
out that the spreading of the STFT magnitude (the quantity 
that is usually displayed in graphical representations) can be 
compensated by taking into account the phase information 
that is usually discarded. This offered a dramatic improvement 
in terms of readability, but because no inversion formula 
exists, this approach did not receive much attention. 

Subsequently, in the 1980s, came the development of 
Wigner-type distributions that could be tailored to guarantee 
perfect localization of signals with specific FM laws (linear for 
the Wigner distribution and, e.g., hyperbolic for some of its 
generalizations), though at the expense of new difficulties, 
e.g., cross-terms that hampered readability in the multicom-
ponent case. Nevertheless, this new way of interpreting 
squared linear transforms permitted a revisit of Kodera’s 
approach and an extension of its applicability beyond the 
STFT. Moreover, Auger and Flandrin (who coined the term 
reassignment) showed in the early 1990s that the explicit use 
of the STFT phase can be efficiently replaced by a combination 
of STFTs with suitable windows [6]. This was the starting 
point of its use in a variety of new domains, such as audio [7], 
physics [8], or ecology [9]. 

In parallel (and independently), Maes and Daubechies 
developed another phase-based technique that they termed 
synchrosqueezing [10]. Its purpose was very similar to that 
of reassignment (indeed it is a special case), with the 

[fig1]  An illustration of the Heisenberg uncertainty principle: a 
spectogram of a saxophone sound computed with Gaussian 
windows (a) v=9 ms and (b) v=15 ms. (c) WVD of the 
saxophone sound.  
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additional advantage of allowing 
for reconstruction. 

The late 1990s saw the intro-
duction of a radically different pro-
posal with empirical mode 
decomposition (EMD) [11], 
designed to extract AM–FM com-
ponents in a data-driven manner. 
Though attractive due to its simplicity and effectiveness, EMD 
lacked solid mathematical foundations. In this context, synch-
rosqueezing has recently resurfaced as a more formalized alterna-
tive [12] as well as an appealing technique [13]. Reassignment 
has, in turn, received new attention [14], and the purpose of this 
article is to offer a brief guided tour emphasizing key features of 
both techniques, clarifying their relationships, and illustrating 
them with some example applications. 

Notation and Multicomponent  
Signal Definition
Let us first define the notation that will be used throughout the 
article. Given a signal ( ),f L R1!  the space of integrable func-
tions, and taking a window g in the Schwartz class, the space of 
smooth functions with fast decaying derivatives of any order, 
the STFT of f  is defined by 

	 ( , ) ( ) ( ) ,V t f g t e d*
f
g i

R
~ x x x= - ~x-# 	 (1)

where ( )g t*  is the complex conjugate of ( ) .g t  The spectrogram 
( , )S tf

g
~  is then usually defined as | ( , ) | .V tf

g 2~  One of the most 
popular cases is when g  is the Gaussian window 
/ .e1 2 /t 22 2

r v v-  Multicomponent signals f  to be considered in 
either reassignment or synchrosqueezing techniques in the 
STFT framework are defined by  

	 ( ) ( ), with ( ) ( )f t f t f t a t e ( )
k

k

K

k k
i t

1

k= = z

=

/ 	 (2)

for some finite ,K  where ( )a t 0k 2  
is a continuously differentiable 
function, kz  is a two times con-
tinuously differentiable func-
t ion  satisfying ( )t 02kzl  and 

( )t( )tk k1 2z z+l l  for all .t  In the 
following, fk  will be referred to as 
an AM–FM component or a mode 

of .f  In that context, ideal T-F (ITF) representations can be 
defined as  

	 ( )),t( , ) ( ) (t a tITFq k
k

N
q

k
1

~ d ~ z= -
=

l/ 	 (3)

where q  is a positive integer depending on the chosen T-F distri-
bution (TFD), the STFT (respectively spectrogram) being associ-
ated with q 1=  (respectively ) .q 2=  In that context, ( )tkzl  is 
called the instantaneous angular frequency (IAF) of the kth  mode 
at time .t  

Uncertainty Principle for  
Multicomponent Signals
The most significant issue in T-F signal analysis is the uncer-
tainty principle, which stipulates that one cannot localize a sig-
nal with an arbitrary precision both in time and frequency. T-F 
representations often include parameters to allow for the bal-
ance between frequency resolution and time localization. In the 
case of the STFT (or spectrogram), this can be achieved by vary-
ing the size of the analysis window. As an illustration, we display 
the spectrogram of a saxophone’s sound (i.e., a succession of 
several notes) for two sizes of the window g  in Figure 1(a) and 
(b): a small window localizes the transients well (the beginning 
of each note), while a large one gives precise frequency informa-
tion. There have been many attempts to optimize this tradeoff, 
among which are the WVD, other quadratic representations 
from the Cohen’s class [1], [2], and multilinear distributions 
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[fig2]  (a) A three-component signal STFT modulus. (b) Blue (respectively red) arrows symbolizing how the reassignment is performed 
with RM (respectively SST) on a small patch (delimited by the red segments) extracted from representation (a). (c) Reassignment carried 
out with RM for the signal STFT depicted in (b). (d) The same as (c) but using the SST.
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(see [15], for instance). However, improvements in terms of T-F 
resolution brought about by these techniques usually rely on 
strong assumptions so that each method is suited only for a spe-
cific class of signals. 

Time-Frequency Representation Enhancement 
with Reassignment
Reassignment techniques offer an alternative approach. They 
aim to sharpen the T-F representation while keeping the tempo-
ral localization and are particularly well adapted to multicom-
ponent signals. Starting with the definition (1) of the STFT, the 
spectrogram can be written as [1]  

	 ( , ) ( , ) ( , ) ,S t W t W d d2
1

f
g

g f
R2

~
r

x o ~ x o x o= - -## 	 (4)

where ( , )W tf ~  is the WVD, defined for any f  in ( )L R2  by 

	 ( , ): ( / ) ( / ) .W t f t f t e d2 2f
i

R
~ x x x= + - ~x-*# 	 (5)

The spectrogram is thus the two-dimensional (2-D) smoothing of 
the WVD of the analyzed signal by the WVD of the analyzing win-
dow. This alternative formulation allows for a simple understand-
ing of the main features of a spectrogram when compared to a 
WVD. On the one hand, a WVD is 
known to sharply localize individ-
ual linear chirps in the T-F plane 
but the 2-D smoothing involved in 
the spectrogram computation 
results in a smearing of their 
energy distribution. On the other 
hand, the quadratic nature of the 
WVD is known to create oscillatory 
interference between individual components ([3, Ch. 3] [see Fig-
ure 1(c) for an illustration], which can be removed by the 2-D 
smoothing used in the spectrogram computation. The analysis is 
therefore faced with a tradeoff between T-F localization and the 
interference level. 

From (4), it follows that the value of the spectrogram at 
( , )t ~  is the sum of all WVD signal contributions within the T-F 
domain over which the WVD of the window is essentially non-
zero. The principle of the reassignment method (RM) illus-
trated here on the spectrogram is to compensate for the T-F 
shifts induced by the 2-D smoothing defining the spectrogram. 
To do so, a meaningful T-F location to which to assign the local 
energy given by the spectrogram is first determined. It corre-
sponds to the centroid of the distribution (4), whose coordinates 
are defined by 
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Both quantities, which define locally an instantaneous fre-
quency and a group delay, enable perfect localization of linear 
chirps, i.e., .( ( , )) ( , )t t t~ ~ ~=f fzl t t  RM then consists of moving 

the value of the spectrogram from the point of computation to 
this centroid [6] 
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where d  stands for the Dirac distribution. Due to the above 
mentioned property of ( ( , ), ( , )),t t tf f~ ~ ~t t  RM perfectly local-
izes linear chirps while removing most of the interference. 
However, in practice, the centroid ( , )tf f~t t  is not evaluated as 
above. A more efficient [6] procedure computes it according to 

	 ( , )
( , )
( , )

t
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f
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f
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1~ ~ ~
~

~
= -

l

t ) 3	 (7)
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f
g
f
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~
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where tg  stands for the function ( )tg t  and Z0" , (respectively  
Z1" ,) is the real (with respect to an imaginary) part of the 

complex number .Z  Compared to the standard spectrogram, its 
reassigned version can thus be computed with a moderate 
increase in the computational cost since three STFTs are evalu-
ated (and combined) instead of one. An illustration of RM is 

given in Figure 2(c). In this 
regard, when the analysis window 
is Gaussian, the centroid can also 
be computed from the STFT mag-
nitude [16] or alternatively be 
defined by means of time and fre-
quency partial derivatives of the 
phase of ( , )V tf

g
~  [4], [5]. 

The advantage of revisiting 
RM is that it enables the extension of the principle of reassign-
ment defined here on the spectrogram to any distribution that 
results from some form of smoothing applied to a “mother-
distribution” that has localization properties for specific chirps 
[3]. Indeed, the above presentation can be easily generalized 
by replacing in (4) Wg  by some other kernel P  attached to a 
distribution within Cohen’s class to obtain 

	 ( , ) ( , ) ( , ) .S t t W d d2
1

f
g

f
R2

~
r

x o ~ x o x oP= - -u ##

The general requirements imposed on such TFDs is that they 
preserve the signal energy, their local extrema in frequency 
are good estimates of the IAF of the components, robust to 
noise, and the signal energy is mainly concentrated in the 
vicinity of these local extrema. A potentially interesting TFD 
is given by the modified B-distribution defined as above with 

( )) ( )cosh t d o( , ) ( / ,kt 2oP = b  k being a normalization con-
stant. When b  is optimally chosen, this technique may out-
perform other TFDs in terms of T-F resolution and 
cross-terms suppression when used to represent signals with 
closely spaced components in the T-F domain [17]. Other 
distributions like the S-method generalizes the spectrogram 
by considering ( , ) ( ) ( , ),t p t W tgo oP =  where p  is some time 

While RM provides a direct  
and powerful representation  

of a multicomponent signal in the 
T-F plane, no mode reconstruction 
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transform is straightforward.



	 IEEE SIGNAL PROCESSING MAGAZINE  [36] no vember 2013

window whose choice deter-
mines the quality of the repre-
sentation [18]. 

Multicomponent Signal 
Reconstruction with 
Synchrosqueezing
While RM provides a direct and powerful representation of a 
multicomponent signal in the T-F plane, no mode reconstruc-
tion technique using the reassigned transform is straightfor-
ward. In contrast, the synchrosqueezing transform (SST), 
introduced by Maes and Daubechies in [10], enhances the TFD 
given by the STFT in a manner similar to RM with the spectro-
gram, but it still enables mode retrieval as in EMD [11]. This 
property is of great importance since the understanding of a 
multicomponent signal as defined in (2) is tightly related to the 
analysis of its constituent modes. Furthermore, in contrast to 
EMD, mode reconstruction using SST is carried out in a conve-
nient mathematical framework. Indeed, a recent result [12] 
shows that the SST is a good approximation to the ITF repre-
sentation of the signal f  [with ;q 1=  see (3)] and enables mode 
reconstruction when f  is made of weakly modulated modes. We 
now present the SST in the STFT framework with the emphasis 
on the differences with RM providing insights into some theo-
retical results. 

SST in a Nutshell
In contrast to RM, which enhances the TFD given by the spec-
trogram, the SST operates directly on the STFT. The construc-
tion of the SST is closely related to the synthesis formula 

	 V( )
( )

( , ) ,f t
g

t e d
2 0

1
* f

g i t

Rr
~ ~= ~# 	 (9)

which sums the STFT in frequency for each time .t  However, 
when f  is made of separate components fk  in the T-F plane, 
i.e., verifying (2) and conditions (13) and (14), the main part 
of the STFT of fk  is localized in the vicinity of the ridge 

( ))t ,( ,t kzl  which can be seen as the T-F trajectory associated 
with component .k  The interesting angular frequencies 
(AFs) ~  used to reconstruct fk  are then selected as those 
such that ( , )tf~ ~t  is a good approximation of ( )tkzl  [19]. 
Based on this idea, the synchrosqueezing operator reassigns 
the STFT as follows: 

	 ( , )
( )

( , ) ( ( , )) .T t
g

V t e t d
2 0

1
*f

g
f
g i t

f
R

~
r

o d ~ ~ o o= -~ t# 	 (10)

Note that this definition is similar to that used by RM, except 
that time reassignment is not considered and V f

g  is used instead 
of the spectrogram [an illustration of what the operator T f

g  does 
is given in Figure 2(d)]. It is interesting to note that a dual 
operator was introduced in [18] by considering time reas-
signment instead of frequency reassignment. However since 
this was carried out on the spectrogram rather than on the 
STFT it did not allow for mode reconstruction. 

Having computed the synch-
rosqueezing operator ,T f

g  the kth 
mode is then reconstructed by 
integrating T f

g  in the vicinity of 
the corresponding ridge  

	
( ) | }t d1

( , ) ,T t d~ ~( )f t
{ , |

k f
g

k

.
~ ~ z- l
# 	 (11)

for some small parameter .d  Since ( )tkzl  is unknown and needs 
to be estimated in practice, this local averaging of T f

g  in fre-
quency ( t  being fixed) is compulsory to retrieve .fk

Given T f
g  and assuming the number K  of components is 

known, a ridge extraction technique can be used to estimate 
the kzl s before proceeding with mode retrieval. For this, there 
exists a variety of methods [20], [21], but those based on ridge 
estimation are particularly well adapted to the SST case. 
Briefly, the principle of the latter techniques is to minimize 
the following energy functional initially proposed by Carmona 
et al. [22]: 

	
( )t .dt( )t b{+

2( ) | ( , ( )) |E T t t dtf
k

K

f
g

k

k k

1

2 2

R

R

{ {

m

= -
=

{+ l m

/ #

# 	 (12)

Doing so, one finds smooth curves k{  along which the magni-
tude of T f

g  is maximal, m  and b  enabling a tradeoff between 
smoothness of the curve and energy maximization. Although 
this general variational formulation looks very appealing, it is 
hard to implement. Heuristic algorithms such as simulated 
annealing [22] or the crazy climbers algorithm [23], which are 
particularly appropriate in a noisy context, have to be used. 
Another simple yet efficient approach related to the resolution 
of (12) was developed in [24] and consists of a local determina-
tion of the ridges starting from different initializations and 
then in an averaging of the results obtained. All these three 
methods behave very similarly on the examples studied, and 
the illustrative examples that follow will use the last method 
as ridge estimator. A summary of how the SST performs mode 
retrieval is given in Figure 3. To conclude, it is worth noting 
here alternative approaches that assume a polynomial phase 
for the modes [25], whereas the SST does not require such an 
assumption. 

Mathematical Foundations of the SST
The discussion above on mode retrieval is reinforced by some 
theoretical results mostly derived in the wavelet framework in 
[12] and then adapted to the STFT context in [19]. Our goal 
here is not to delve too deeply into the derivation of these 
results, but to focus on what type of signals for which they are 
valid. They are obtained under the following assumptions on 
the signal ,f  assuming the window g  is Gaussian: 

A1)	the fks have weak frequency modulation, implying the 
existence of a small f  such that for each ,t  one has  

	 ( ),t( ) | and | ( ) |t a t# #f fz| k k k
2v zm ll 	 (13)

Separation of components with 
close IAF is a common problem  

in time series or biomedical  
signal analysis.
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where v  is the size of the Gaussian window. 
A2)	The modes are well separated in frequency, which corre-
sponds, assuming the frequency bandwidth of g  (in rad/s) is 
[ , ]D D-  ( ( ) /log2 2 vD =  since g  is the Gaussian win-
dow), to an inequality of type 

	 ( ) |t 2$ D( )t z-| k lzl l 	 (14)

for each t  and k l! .
Note that because the modes fk  are such that 
( ) ( )t t1 zk k 1z +l l  for all ,t  (14) can always be satisfied by choos-

ing a Gaussian window with the appropriate size. A mode fk  sat-
isfying A1) will be called an Af  signal later in the article. Under 
these hypotheses, one has that 

1)	for any ( , )t ~  in ( ) | }t # D = ,{( , ); | Bt
k kkk~ ~ z- l' '  

there exists a k  such that ( ) | ,t C# f| ( , )tf k~ ~ z- lt  where C  
is some constant  
2)	the reconstruction error associated with the retrieval of fk  
by summing the coefficients around ( ))t( ,T tf

g
kzl  following 

(11) tends to zero as f  goes to zero.
This clearly establishes, on one hand, the relation between the 
amplitude of f  and the quality of the modes retrieval and, on 
the other hand, the role played by the window’s size in the sepa-
ration of the components.

Illustrations of the SST

Denoising Multicomponent Signals using SST
Here we here illustrate how the SST provides us with a 
naive denoising procedure that can outperform a state-of-
the-art method based on wavelets. To do so, we consider the 
signal whose STFT is shown in Figure 2(a) to which we add 
white Gaussian noise with varying standard deviation, lead-
ing to different SNR (SNR in). Then we denoise this signal 
with the block-thresholding (BT) method developed in [26], 
a T-F technique designed for audio recordings, and also 
with the SST, by simply selecting three ridges as explained 
in the section “SST in a Nutshell” (with 0m =  and 

. ;0 02b =  these parameters, though not optimal, lead to 
good results in practice). The results displayed in Figure 4 

in terms of the SNR before and after denoising (SNR in and 
out, respectively,  the SNR out being computed as 

/ ,f f f2 -
2u  where fu  is the denoised signal) show a much 

better denoising performance of the SST over BT on this 
particular example, provided v  is appropriately chosen. As 
soon as the ridges are detected, the SST thus enables signal 
denoising in a straightforward manner. However, when the 
signal contains highly modulated modes, as in the studied 
case, the use of too large a window should be proscribed, as 
is reflected by the first inequality of (13). In this regard, we 
will later try to go beyond this limitation by taking into 
account the modulation in the synchrosqueezing operator. 
It is also noteworthy that, as the modes are not perfectly 
monochromatic, their SST is not perfectly reassigned onto 
the ridges. In this regard, the parameter d  introduced in 
the reconstruction formula (11) enables compensation for 
the lack of accuracy in the estimation of ( )tkzl  by means of 

( , ) .tf~ ~t  It has to be chosen all the larger that the modula-
tion is important ( d 8=  rad/s being satisfactory in the 
studied case). Finally, we remark that by considering modi-
fied versions of the spectrogram one could obtain better 
ridge estimations than with the SST in such a noisy context 
[18]. However, in doing so, the reconstruction properties 
inherent to the SST would be lost. 
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Mode Separation: SST versus EMD
Separation of components with close IAF is a common prob-
lem in time series or biomedical signal analysis. EMD, intro-
duced in [11], aims at decomposing a multicomponent signal 
s  into modes ,h j  ,j J1 # #  ( ) ( ) ( ),f t h t r t

j

J
j1

= +
=
/  where 

the h j s oscillate decreasingly with increasing ,j  and r  is a 
monotonic residue. In this context, h j  is defined as a locally 
oscillating function having a symmetric envelope and is com-
puted by subtracting to m j 1-  its mean envelope, m j 1-  being 
defined by  

	
( ) ( ), .f t t j 12- h

j
i

i

j1

1

1
-

=

-

( ),f t j 1=

( )m t =

Z

[

\

]]

]] /

The separation power of EMD was studied in [27] and depends 
on the amplitude and frequency ratio between the modes: if 
they are too close, EMD cannot separate them. In the case of the 
SST, by choosing the bandwidth of g  appropriately, one can 
obtain mode separation in instances where the EMD cannot, 
which confers a greater flexibility. As an illustration, we con-
sider a bat echolocation call containing two modes with close 
IAFs .kzl  We display in Figure 5(a) the modulus of the STFT 
(computed using a Gaussian window with .0 08v =  ms) and 
the two extracted components using SST [Figure 5(b)]. The Hil-
bert–Huang spectrum [11] corresponding to the first mode 
obtained with EMD and that mode are displayed in Figure 5(c) 
and (d), respectively. While SST shows two distinct components 
that are well detected and reconstructed using formula (11), 
EMD instead considers the signal as a single modulated mode. 

New Developments and Perspectives on 
Reassignment and Synchrosqueezing

Adjustable Reassignment
Since the initial publications, many extensions and applications 
of RM have been proposed. Recently, a variant of RM, referred to 

as the Levenberg–Marquardt reassignment, was presented in 
[14]. This technique gathers the values of the spectrogram 
around the ridges of the signal, which are viewed as the zeros of 
the relative displacement operator 

	 ( , ) : ( , ), ( , ) ,R t t t t tf
g

f f
T

~ ~ ~ ~ ~= - -t t^ h 	 (15)

where XT  is the transpose of vector .X  To find out an approxi-
mation ( ( , ), ( , ))t t tf f~ ~ ~u u  of the centroid ( ( , ), ( , )),t t tf ~ ~ ~t t  a 
root-finding algorithm known as the Levenberg–Marquardt 
method is used  

( ( , ), ( , )) ( , ) ( ) ( , ) ( , ),t t t t J R t I R tf f
T T

f
g

f
g

2
1

~ ~ ~ ~ ~ n ~= - +
-u u ^ h  

� (16)

where ( ) ( , )J R tf
g

~  is the Jacobian matrix of ( , )R tf
g
~  and I2  the 

2 2#  identity matrix. Note that this algorithm can be inter-
preted as an iteration of a Newton-like method (when 0n =  the 
true Newton method is obtained, which corresponds to a first-
order approximation of the ridge). Then, by using the new cen-
troid ( ( , ), ( , )),t t tf f~ ~ ~u u  a new reassigned spectrogram can 
then be defined following the framework of (6). The main char-
acteristic of this new reassigned representation is the extra 
parameter n  allowing the user to tune the representation to its 
own needs. 

Adapting the SST to a Stronger Modulation
Our goal here is to propose a new development where mode 
modulation is better taken into account by the SST. For a mode 
( )f t a e ( )i t= z  such that ( )t 0=zm  for all ,t  one has exactly 
( ) ( , )t t~ ~= ,fzl t  so that when zm  is small compared to zl in 

the vicinity of ,t  the approximation of ( )tzl  by ( , )tf~ ~t  is fully 
justified. However, when it is not the case, e.g., when the signal 
f  is a linear chirp ( ) ,f t ae ae ( )i t i t2

= =a z  and when a Gaussian 
analysis window is used, then  

	 ( ) ( ( , ) ) .t tv ~ ~ ~-( ) ( , ) : ( , )t t t~ ~ ~ ~ z= = +f
c

f f
2 4zl mt t t 	 (17)
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[fig5]  (a) The modulus of the STFT of a bat echolocation call. (b) Modes computed using the SST from representation (a). (c) Hilbert 
spectrum of the mode displayed in (d). (d) Mode computed with the EMD. 
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This expression a posteriori 
explains why the denoising perfor-
mance of the method based on the 
SST introduced in the section 
“Denoising Multicomponent Sig-
nals Using SST” deteriorates when 
a too-large v  is chosen. Indeed, when dealing with strongly mod-
ulated components the factor ( )t vk

2 4zm  is no longer negligible, 
making the approximation of ( )tzl  by ( , )tf~ ~t  very inaccurate. 

For a linear chirp, one has (1 +( )) /t( , ) (t t tf
4~ v z= + mt   

( ))t ,( )t v ) (~ z-2 4zm l  therefore using (17) one obtains ( )t =zm

),~( ( , )t~ ~ -( , ) /t t t~ - )/ ) (1 v-( f f
4 t t  and finally the follow-

ing  closed form for ( , )tf
c~ ~ : ( , ) ( / ) ( ( , ) ) /t t t t1f f

4 2~ ~ v ~+ -t t

( ( , ) ) .tf~ ~ ~-t  Defining a new synchrosqueezing operator Tf
gu  

by replacing ( , )tf~ ~t  by ( , )tf
c~ ~t  leads to a sharper representa-

tion. Finally, the reconstruction formula (11) is less sensitive to 
its parameter .d  An illustration of this is given in Figure 6(a). 
The reconstruction of the high-frequency mode in Figure 2(a),  
carried out using only the coefficients on the ridge associated 
with that mode, shows that the signal energy is much more 
concentrated around the ridge when Tf

gu  is used instead of Tf
g  

[for an illustration, see Figure 6(d) and (b), respectively], resulting 
in an SNR after reconstruction equal to 40 dB (respectively 10 dB) 
in the first (respectively second) case [we display part of the recon-
structed signal along with the original one in both cases of Figure 
6(c) and (d)]. 

Considering the ridge estimation based on ( , )tf
c~ ~t  rather 

than ( , )tf~ ~t  not only improves the quality of the recon-
struction of strongly modulated modes but also impacts the 
denoising performance of the SST-based technique. Indeed, 
the denoising algorithm obtained by selecting the coeffi-
cients around the ridges obtained from Tf

g  was found to be 
sensitive to the choice for the window’s size. On the contrary, 
because of relation (17), ( , )tf

c~ ~t  leads to a stable approxi-
mation of ( )tzl  in the case of a strong modulation when v  
varies. This has the following consequence: the denoising 
results obtained with the SST-based technique are improved 
with this new estimator when v  increases [see the compari-
son between Figures 4 and 6(a)]. 

Applications of SST to Physiological Signals
Particular applications of SST are related to the study of ECG 
signals [28] of which we give an illustration hereafter. Dur-
ing anesthesia, the anesthetic agents exert differential effects 
on the neural activity of different regions of the brain. While 
the cortical activity is commonly recorded by electroenceph-
alography (EEG), this technique is not adapted to assist in 
the control of the essential components of anesthesia includ-
ing motor suppression, analgesia, and autonomic activity, 
which are largely governed by the subcortical regions, such 
as the autonomic nervous system (ANS). It is well known 
that the ANS regulates the vital physiological functions and 
controls emergency responses [29, Ch. 12]. A noninvasive and 
common technique is to assess the ANS activity using ECG 
recordings [see Figure 7(a)] by measuring the variability of 

the time intervals between 
sequential heart beats, called the 
heart rate variability (HRV). This 
analyzed measurement using 
SST may be able to provide 
information of use in anesthesia. 

In clinical practice, the heartbeat rate is assessed by comput-
ing the number of beats (or R peaks) in a minute. However, it 
is likely that information is hidden in the measurement, 
which can be uncovered by analyzing the R-to-R peak signal 
by means of the RRI signal, defined as the cubic-spline inter-
polant of , ( / ( )) ,t t t1i i i1-+^ h  the R peaks being located in { } .ti i

N
1=  

The RRI signal of an anesthetized patient changes drastically 
at the time of waking as illustrated by Figure 7(b) around the 
time 800 s. 

Our concern is to show how to use SST to study RRI signals 
of patients waking up from anesthesia with spontaneous breath-
ing [30], by studying the RRI signal of Figure 7(b). To start with, 
we compute a detrended RRI, called RRID , by subtracting to the 
original RRI signal its local mean ( )m t  computed using a 
median filter, i.e., ( ) ( ) ( ) .RRI RRIt m t tD= +  We then apply the 
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[fig6]  (a) Denoising results using the algorithm in the section 
“Denoising Multicomponent Signals Using SST” but using Tf

gu  
(the parameter d being still fixed to 8 rad/s). (b) Tf

g
; ; of the 

signal in Figure 2(b). (c) Reconstructed mode from (b) (solid line) 
and the ground truth f3  (dashed line), with rad/s.d 1=  (d) The 
same as (b) but using Tf

gu   instead of .Tf
g  (e) Reconstructed mode 

from (d) (solid line) and the ground truth f3   (dashed line), with 
rad/s.d 1=   

Our goal here is to propose  
a new development where mode 
modulation is better taken into 

account by the SST.
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SST to RRID  (computed using a Kaiser window )g  to finally 
obtain the representation of Figure 8. 

To analyze Figure 8, we consider a signal in the Af  class 
rhythmic (see the section “Mathematical Foundations of the 
SST”), otherwise nonrhythmic. In Figure 8, a transition from 
rhythmic to nonrhythmic dynamics in the RRI signal is visible: 
before 800 s, there are two dominant curves corresponding to 
two Ae  functions—from 0 to 200 s and from 0 to 800 s, while 
after 800 s, no such behavior persists. In other words, RRID  can 

be written in the form ( ) ( ) ( ( ))RRI cost a t t
kD k k1

2
z=

=
/  with 

,ak kz  satisfying (13) before 800 s (one of the component van-
ishing after 200 s), whereas it is irrelevant after this time. Fur-
thermore, this change of behavior also corresponds to the 
transition from deep to light level of anesthesia as corroborated 
by the objective anesthetic depth index, the bispectral index 
(BIS) (the red curve superimposed in Figure 8). BIS is evaluated 
from the simultaneously recorded EEG; the higher the BIS 
index, the lighter the anesthetic depth. We also superimpose in 
Figure 8 the anesthetic drug concentration for comparison 
(blue curve). 

Cortical activity is known to become nonrhythmic when 
the anesthetic level decreases. Combined with the physio-
logical fact that HRV is mainly controlled by the subcortical 
level, the above results show that the same phenomenon 
exists in RRI signals, which in turn suggests that the sub-
cortical activity becomes nonrhythmic when the anesthetic 
level decreases. 

Conclusions
T-F analysis has traditionally been concerned with two comple-
mentary purposes: 1) providing a graphical display that eases 
signal interpretation, in particular in exploratory data analysis, 
and 2) enabling signal manipulation (separation, reconstruc-
tion, denoising), thanks to a representation in a space that is 
well adapted to nonstationarity. The situation today is that reas-
signment is one of the most effective methods with respect to 
1), and synchrosqueezing, while being almost as powerful in 
terms of display, permits 2) to be addressed in an effective way. 
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[fig7]  (a) A small portion of an ECG signal (the blue curve); the red circles indicate the R peaks. (b) RRI signal associated with an ECG 
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