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Abstract. This paper applies Whitney’s embedding theorem to the data reduction problem
and introduces a new approach motivated in part by the (constructive) proof of the theorem. The
notion of a good projection is introduced which involves picking projections of the high-dimensional
system that are optimized such that they are easy to invert. The basic theory of the approach is
outlined and algorithms for finding the projections are presented and applied to several test cases. A
method for constructing the inverse projection is detailed and its properties, including a new measure
of complexity, are discussed. Finally, well-known methods of data reduction are compared with our
approach within the context of Whitney’s theorem.
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1. The data reduction problem. Assume that the data set of interest, A, is
a discrete sampling of U , a compact m-dimensional submanifold of an ambient vector
space R

q, where minimally q > 2m + 1 but it is generally much larger. Given that
the q-dimensional ambient space is redundant and an overparameterization of the
data, the aim of reduction is to determine a new parameterization which more closely
reflects the intrinsic dimension of the data. Our basic approach is to find a mapping
G : A → B such that B ⊂ V and V is a submanifold of R

p with p < q. Thus, we
seek a diffeomorphism G : U → V which is an embedding of U in R

p. In practice
the mapping G will be determined by the data and specifically will be chosen such
that the inverse mapping H is especially well-conditioned. The resulting composition
of mappings H ◦G should closely approximate the identity mapping. The ability to
construct an inverse H is central to our approach in that it assures us that no data
have been lost in the procedure and that our embedded manifold V possesses all of
the information contained in U .

The approach to the reduction problem presented in this paper is motivated by the
(easy) Whitney embedding theorem [9]. This theorem demonstrates that generically1

a projection of any m-dimensional manifold is invertible provided the dimension of
the range of the projection is no smaller that 2m+1. Given this flexibility, we propose
to examine the issue of how to determine especially good projections. A projection is
acceptable according to Whitney if it is not along the direction of a secant connecting
any pair of points on the manifold. We will consider a projection to be good if it is far
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1That is, there is a set which is open and dense in the set of all projections for which the following
is true.
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A NEW APPROACH TO DIMENSIONALITY REDUCTION 2115

away from the set of all unit secants. Specifically, a good projection is based on the
idea that distinct points in the ambient space should not be mapped close together in
the reduced space. It is this quantity, i.e., the minimum distance between the reduced
data points, which we propose to optimize.

Determining good projections, as described above, has several significant bene-
fits. For example, optimizing the projection in this fashion can be shown to directly
improve the absolute condition number of the (nonlinear) inverse to the projection.
Consequently, the number of basis functions required to approximate this inverse is
significantly reduced and the accuracy of interpolation improved. In this investiga-
tion we present both theoretical and numerical results which strongly suggest that
the search for good projections is both purposeful and feasible.

This paper is organized as follows. In section 2 we describe the data sets used
to test the theory and algorithms proposed in the paper. In section 3 we present the
main motivating theorem and the basic idea of a good projection. In section 4 we
propose a basis derived from the SVD on the unit secant data as a candidate for con-
structing a good orthogonal projector. In addition, an iterative method for improving
upon this basis is proposed and tested. In section 5 the radial basis function (RBF)
approximation procedure is outlined and applied to the reconstruction problem; some
interesting properties of this inverse are also discussed. In section 6 we present a
general framework for the reduction problem and compare other standard methods
with the approach proposed in this paper. Lastly, in section 7, we conclude with a
summary of our results.

2. Test applications.

2.1. The Kuramoto–Sivashinsky equation. The Kuramoto–Sivashinsky (KS)
equation

∂u

∂t
+ 4

∂4u

∂x4
+ α

(
∂2u

∂x2
+
1

2

(
∂u

∂x

)2
)
= 0(2.1)

is an appealing model equation for studying the reduction problem given the fact that
its numerical solutions are attracted to (both smooth and fractal) sets of moderate
dimension; see [13, 11]. In addition, there is strong evidence that in many instances the
actual, or intrinsic, dimensionality of the numerical solutions is far smaller than the
ambient dimension of the simulation. This study extends our previous investigations
of the KS equation using linear reduction methods [17, 15] in addition to nonlinear
reduction methods in [18, 19, 20].

In this investigation the raw numerical data are generated by a 20-dimensional
Fourier Galerkin simulation (10 complex modes), as described in [15]. We test the
methodology proposed in this paper on several canonical problems for which the
dynamics are well understood.

For example, taking α = 84.25 in the KS equation results in a numerical solution
which corresponds to a limit cycle whose Fourier decomposition has significant energy
in at least seven Fourier modes. Topologically this attractor is 1-dimensional and in
fact it is diffeomorphic to the unit circle. The numerical experiments in this study
employ a data set representing the limit cycle solution at 500 points in R

20 sampled
uniformly in time over approximately 10 periods of the oscillation.

For α = 87 the numerical solutions to the KS equation are somewhat more com-
plex. The solution corresponding to the previous parameter value of α = 84 has
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2116 D. S. BROOMHEAD AND M. KIRBY

undergone a Hopf bifurcation to a traveling wave with the localized oscillation per-
sisting. Topologically this attractor is now 2-dimensional and is diffeomorphic to
the canonical torus. In this paper we examine a data set consisting of 1000 points
representing this torus in R

20 sampled over five periods. We remark that it is not
possible to (rigidly) rotate, i.e., via an orthogonal transformation, the whole torus
into a 3-dimensional subspace [20].

Taking α = 91 the spatiotemporal behavior has become chaotic and the solutions
have been estimated to reside on a roughly 5-dimensional set. This data set is distinct
from the previous two cases where the attractors were smooth manifolds. We collected
a data set consisting of 5000 samples evenly spaced in time.

2.2. Digital image reduction. In [26] and [21] we initiated the application of
optimal linear transformations to a collection of digital images of human faces. This is
a very interesting prototype problem given the large dimensionality of the input data
points. In the current investigation we examine a data set consisting of 200 images
each of size 256× 256. The data are initially projected to a 200-dimensional subspace
using the Karhunen–Loève decomposition subspace without loss of any information.
As a result of this preprocessing, in this study we examine a data set of 200 images
each residing in R

200. Our goal is to determine good projections for these data and to
establish the importance of finding such projections for facilitating the reconstruction
problem.

3. Good projections: Theory. The main tool for this analysis is the following
theorem from differential topology [9] (see also [8]).

WHITNEY’S (EASY) EMBEDDING THEOREM. Let U be a compact Haus-
dorff Cr m-dimensional manifold, 2 ≤ r ≤ ∞. Then there is a Cr

embedding of U in R
2m+1.

Paraphrasing, suchm-dimensional manifolds may be diffeomorphically mapped to the
Euclidean space R

2m+1. Hence the Euclidean space R
2m+1 is large enough to contain

a “diffeomorphic copy” of these m-dimensional manifolds [8].

The proof of Whitney’s theorem demonstrates that, generically, a projection
(which is, of course, a linear mapping) has an inverse, provided the dimension of the
target space is at least 2m+1. We propose that this projection should be constructed
such that its inverse—a potentially complicated nonlinear mapping—is especially easy
to find. We now make this more precise.

Define a projection πv̂ : R
q → R

q−1 which is parallel to the unit vector v̂ and acts
to eliminate any component in the direction v̂ (see Figure 3.1). We can write this
explicitly as the linear map

πv̂x = (I − v̂v̂T )x,

where v̂ ∈ Sq−1 = {v̂ ∈ R
q : ‖v̂‖ = 1}. Note that π−v̂ ≡ πv̂ so we will be better

off identifying the antipodes of Sq−1, i.e., we can think of v̂ ∈ Pq−1, the projective
(q − 1)-space.

If πv̂ restricted to U is an embedding of U in R
q−1, we know there is an inverse

π−1
v̂ : R

q−1 → R
q in the form π−1

v̂ x = (x, g(x)) where g : πv̂U ⊂ R
q−1 → R and we

think of R as {αv̂ |α ∈ R}, the null space of πv̂. In this picture U is the graph of g in
the space R

q−1 × R, i.e.,

U = {(x, g(x)) |x ∈ πv̂U ⊂ R
q−1}.(3.1)
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A NEW APPROACH TO DIMENSIONALITY REDUCTION 2117

πv̂x πv̂y

x

v̂ k̂

y

v̂

Fig. 3.1. The projection of the data along direction v̂.

In practice, we shall find this by fitting data, using, for example, radial basis functions
(RBFs), as described in section 5.

The ease with which this inverse can be computed is directly dependent on how
ill-conditioned the mapping is (see section 5.2 for more details). As a measure of how
singular the projection is we shall establish a strict lower bound on the proximity of
the images of distinct points under the projection πv̂. Specifically, we restrict the set
of admissible projections to be those which satisfy the inequality

‖πv̂x− πv̂y‖ ≥ κπ̂‖x− y‖(3.2)

for all x, y ∈ A and some fixed tolerance κπ̂. If κπ̂ > 0 the mapping is nonsingular;
the size of κπ̂ can be taken as a measure of how well-conditioned we expect the inverse
π−1
v̂ to be.

Lemma 3.1. For all x, y ∈ U , ‖πv̂x− πv̂y‖ ≥ κπ̂‖x− y‖ and κπ̂ > 0 except on a
set of singular v̂ which is nowhere dense in Sq−1.

We shall outline a proof of this result because it directly motivates our proposed
algorithm for reduction; the discussion follows that in [9]. We require the following
lemma which we state without proof.

Lemma 3.2. Let f : P → Q be any C1 map. If dimQ > dimP the fP is nowhere
dense in Q.

To begin, consider the set of normalized secants Σ consisting of the unit vectors

k̂ =
x− y

‖x− y‖ ,(3.3)

where x, y ∈ U , x �= y. It is also useful to define the set

∆ = {(a, b) ∈ U × U : a = b}
which is referred to as the diagonal of U × U .

In [9] it is shown that the map

σ : U × U −∆→ Σ ⊂ Sq−1,

where σ(x, y) = k̂ (see (3.3)), is a Cr map (assuming U is Cr). We note that in theory
the set Σ is the set of all unit secants of the manifold U . In practice our data are a
finite sampling of points on U and we only have access to a subset of Σ.
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2118 D. S. BROOMHEAD AND M. KIRBY

After projecting and computing the norm, it follows from (3.3) that

‖πv̂x− πv̂y‖ = ‖πv̂k̂‖‖x− y‖.
Now

‖πv̂k̂‖2 = ((I − v̂v̂T )k̂)T (I − v̂v̂T )k̂

= k̂T (I − v̂v̂T )(I − v̂v̂T )k̂

and since π2
v̂ = πv̂

‖πv̂k̂‖2 = k̂T (I − v̂v̂T )k̂

which implies

‖πv̂k̂‖2 = 1− (v̂ · k̂)2.
So we have

‖πv̂x− πv̂y‖ = (1− (v̂ · k̂)2)1/2‖x− y‖.
Using Lemma 3.2 it is shown in [9] that Σ = σ(U × U −∆) is nowhere dense in

Sq−1 if

q > 2m+ 1

but Σ is the set of secants of U , so v̂ such that (v̂ · k̂)2 �= 1 are dense in Sq−1. Hence
we can complete the proof by choosing

κπ̂ = min
k̂∈Σ

(1− (v̂ · k̂)2)1/2.(3.4)

A small extension of these arguments will allow us to show there exists an optimum
projection. Consider now the closure, Σ̄, of Σ. By considering Cauchy sequences of
points xi ∈ U and the corresponding sequences of images σ(xi, xj) ∈ Sq−1 we see
that Σ̄ contains, in addition to the unit secants, the unit tangent bundle of U .2 For
our purposes it turns out that Σ̄ is the natural object to study since if we choose a
projection with v̂ ∈ Σ̄, it fails to be an embedding of U either because it is not an
injection (v̂ is parallel to a secant) or because it is not an immersion (v̂ is parallel to a
tangent vector). Like Σ, Σ̄ is nowhere dense in Sq−1. In addition, it is a closed subset
of a compact manifold and is therefore itself compact.

If v̂ /∈ Σ̄ it follows (1− (v̂ · k̂)2)1/2 > 0, so we can redefine κπ̂ as

κπ̂ = min
k̂∈Σ̄

(1− (v̂ · k̂)2)1/2.(3.5)

We now need to study in a little more detail the geometry of Σ̄ as a subset of the
set of all projections. First, we introduce the relation ∼ such that

a ∼ b ⇔ (a · b)2 = 1,
2In practice, this means that in our finite sampling of U , nearby data points will give secants

that more or less approximate unit tangent vectors.
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A NEW APPROACH TO DIMENSIONALITY REDUCTION 2119

a, b ∈ Sq−1. In terms of this the set of projections is Pq−1 = Sq−1\ ∼, the projective
(q − 1)-space.

To make contact with the foregoing arguments we define a metric on Pq−1 ac-
cording to

d(a, b) = (1− (a · b)2)1/2.(3.6)

Clearly

(i) d(a, b) = 0 iff a ∼ b(3.7)

(ii) d(a, b) = d(b, a) for all a, b ∈ Sq−1(Pq−1)(3.8)

(iii) d(a, b) ≤ d(a, c) + d(c, b).(3.9)

Proof of (iii). Let the angle subtended by a, b be θab. Then d(a, b) = | sin θab|.
Assume that c is coplanar with a and b. Then θab + θbc + θca = 2πn, for some n ∈ Z,
implies

sin θab = − sin(θbc + θca) = sin(θac + θcb)

and hence

| sin θab| = | sin(θac + θcb)| = | sin θac cos θcb + sin θcb cos θac|,

| sin θab| ≤ | sin θac cos θcb|+ | sin θcb cos θac| ≤ | sin θac|+ | sin θcb|.
So (3.9) holds if c is in the same plane as a, b. But in that case it holds for all c since
d(a, c) + d(c, b) can only increase as c moves out of the a, b plane. So d is a metric on
Pq−1.

Having defined this metric we see that κπ̂ is just the distance from v̂ to Σ̄ (for a
definition of distances between points and sets and discussion of the various notions
of distance between sets, see [1]):

κπ̂ = min
k̂∈Σ̄

(1− (v̂ · k̂)2)1/2 = min
k̂∈Σ̄

d(v̂, k̂).(3.10)

So

κπ̂ = d(v̂, Σ̄).(3.11)

This argument can be developed further if we consider maximizing κπ̂, i.e., making
πv̂ as nonsingular as possible. Now we have

κopt = max
v̂∈Pq−1

d(v̂, Σ̄)(3.12)

but this is just the asymmetrically defined distance from Pq−1 to Σ̄,

κopt = d(Pq−1, Σ̄).(3.13)

Since Σ̄ ⊂ Pq−1, the asymmetric distance from Σ̄ to Pq−1 vanishes. It follows that
dH(Pq−1, Σ̄) = d(Pq−1, Σ̄) where dH is the Hausdorff metric defined on the set of
compact subsets of Pq−1. This gives a rather intuitive picture of how well we can do.
If Σ̄ were to be a large subset of Pq−1 in the sense that it is close to every point in
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2120 D. S. BROOMHEAD AND M. KIRBY
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Fig. 3.2. The image of S1 under the action of G.

Pq−1, its Hausdorff distance from Pq−1 would be small. Conversely, if Σ̄ is small and
localized, then its Hausdorff distance from Pq−1 would tend to unity, the diameter of
Pq−1.

We note that the compactness of Σ̄ implies that there actually are pairs of points,
say v̂∗ ∈ Pq−1 and k̂∗ ∈ Σ̄, such that

κopt = d(v̂∗, k̂∗)

= dH(Pq−1, Σ̄),

that is, we know that at least one optimum projection exists.
Example. We conclude this section with a simple example. Consider the following

map of the circle G : S1 → R
3 where θ �→ (sin θ, cos θ, sin 2θ). The set G(S1) ⊂ R

3,
which is shown in Figure 3.2, is an embedding of the circle and will be U in this
example.

The unit secants of G(S1) are the image of the map σ : S1 × S1 → S2 where

σ(θ1, θ2) = ± (cos
1
2Θ,− sin 1

2Θ, 2 cosΘ cos
1
2∆)

[1 + 4 cos2Θcos2 1
2∆]

1
2

.(3.14)

Here Θ = θ1+ θ2, ∆ = θ1 − θ2, and either choice of sign is valid since the unit secants
are really points in the projective plane. We have included the diagonal in the domain
of definition of σ and so the set σ(S1 × S1) plotted in Figure 3.3 is actually Σ̄, the
closure of the set of secants of G(S1). In this example we see explicitly that the
boundary of Σ̄ is given by the unit tangent bundle of G(S1) because, as θ1 → θ2 = θ,
we have the following limit:

σ(θ1, θ2)→ ± (cos θ,− sin θ, 2 cos 2θ)
[1 + 4 cos2 2θ]

1
2

= ± DθG

‖DθG‖ .(3.15)

This formula has been used to plot Figure 3.4 which can be compared with Figure 3.3.
As we have discussed, when considering the possible projections of G(S1) into R

2,
Σ̄ would correspond to bad projections. We cannot invoke the Whitney embedding
theorem here because the dimension of R

2 is too small; indeed Figure 3.3 indicates
that, rather than being nowhere dense, Σ̄ is a 2-dimensional subset of S2. Never-
theless, there are projections which are not in Σ̄ and are thus invertible. Some of
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Fig. 3.3. Σ̄, the image of S1 × S1 under the action of σ.
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Fig. 3.4. The unit tangent bundle of G(S1). Comparison with Figure 3.3 demonstrates that it
is the boundary of Σ̄.

the possibilities are shown in Figure 3.5. The figure shows projections of G(S1) into
planes plotted as 2-dimensional linear subspaces of R

3. In each case the vector along
which the projection is taken can be imagined as normal to the linear subspace in
which the curve lies. The top row of the figure shows two invertible projections. The
top left-hand plot shows a projection along the z-axis while the top right shows a pro-
jection closer to the boundary of Σ̄ showing that part of the image is rather tightly
pinched. The center image is of a projection taken from the boundary of Σ̄. Here we
see that the pinched part of the image has developed into a cusp, that is, the image
has no well-defined tangent at this point. The bottom row of the figure shows two
projections taken from within Σ—the left-hand plot shows a projection closer to the
boundary, while the right-hand plot shows a projection along the x-axis. Now we see
that both images selfintersect and hence that the projections are noninvertible.

Our example is sufficiently simple that we can find the optimum projection of
G(S1). Let’s look more closely at Σ̄ as shown in Figure 3.3. To find the optimum
projection we need the point in the projective plane3 which is furthest from Σ̄ in the

3We have been using S2 so far in this discussion. Because we have chosen a suitable metric, in
the following the optimization will actually take place on the projective plane.
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Fig. 3.5. Examples of projections of G(S1) onto 2-dimensional linear subspaces of R
3. The top

row of the figure shows two invertible projections. The center image is of a projection taken from
the boundary of Σ̄. The bottom row of the figure shows two noninvertible projections taken from
within Σ.

metric d defined by (3.6). As we described in the previous section this is a double
optimization problem. We first choose a point in the projective plane and then find
the point in Σ̄ which is closest. We then find the point in the projective plane where
this minimum distance is maximized. It is easy to see that the closest point in Σ̄ to any
external point must lie on the boundary. Moreover, a symmetry argument—or a brief
study of Figure 3.3—shows that the points furthest from the boundary must lie on a
great circle which passes through the pole and a point where the boundary crosses the
equator. (Actually, there are two different—but for these purposes, equivalent—great
circles which satisfy these conditions: one passing through the point parameterized by
θ = π

4 in (3.15), and the other through the point parameterized by θ =
3π
4 ). Figure 3.6

shows a contour plot of the distance, d, between points on one of these great circles (the
one corresponding to θ = π

4 ) and all the points on the boundary of Σ̄. The boundary
is parameterized by θ ∈ [0, 2π]—this coordinate is plotted horizontally—while the
position on the great circle—plotted vertically—is parameterized by an angle taking
values in the interval [0, π2 ] (0 corresponding to the pole and

π
2 corresponding to the

equator). Starting at the equator—the top of the figure—there are two minima at
θ = π

4 and θ = 5π
4 . These are the points where the great circle of interest intersects

the boundary of Σ̄. We now need to maximize the minima. Moving along the great
circle toward the pole corresponds to moving down the figure. The minima at θ = π

4
and θ = 5π

4 are at the ends of two valleys; as we move down the figure the horizontal
minimization keeps us in the valley bottom but the value of d at the minimum increases
until, as we approach the pole, it attains its maximum value of 1√

5 . Note that the

positions of the minima have changed to θ = 0 and 3π
2 when the point is at the pole.

In addition, two extra—equally deep—minima have formed at θ = π
2 and π. These

four angles parameterize points on the boundary which are closest to the pole. They
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Fig. 3.6. Contour plot of the distance, d, between points on the great circle described in the text
and points on the boundary of Σ̄. The abscissae parameterize the position on the boundary and the
ordinates parameterize the position on the great circle. The darker the shade the smaller the value
of d.

can be readily identified by looking at Figures 3.3 and 3.4. We conclude that the
optimum projection is along the z-axis. The effect of this on G(S1) is shown in the
top left-hand plot of Figure 3.5.

4. Good projections: Algorithms. The emphasis in this section will be more
pragmatic. Here we shall concentrate on finding “good”—as opposed to “optimum”—
projections based on data. Our basic premise is that we should find a projection which
is in some sense as far away as possible from any secant of the data. Since we are
dealing with a finite set of distinct data points it would be unnecessarily sophisticated
to speak of Σ̄, so from now on we shall refer to the set of secants constructed from
the data as Σ.

In the previous section we considered the particular case of a projection which
reduces the dimension of the space by one. In practice we seek to determine a single
projection which removes components which lie in an r-dimensional subspace which
has no direction colinear with a secant of U . We now denote this projection by
π : Rq → R

q−r and define it as

πx = (I − v̂1v̂
T
1 − v̂2v̂

T
2 − · · · − v̂rv̂

T
r )x.(4.1)

By induction, if q − r ≥ 2m+ 1, such a projection exists such that κπ > 0 (again, by
construction κπ ≤ 1) and

‖πx− πx′‖ ≥ κπ‖x− x′‖(4.2)

for all x, x′ ∈ U . Note that in the previous section we denoted this minimum by κπ̂ to
indicate its dependence on π̂, a 1-dimensional projection. Again, we seek to determine
a projection as defined by (4.1) which is good, i.e., such that κπ is relatively large,
e.g., κπ ∈ [0.1, 0.5].
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2124 D. S. BROOMHEAD AND M. KIRBY

We propose an approach to this problem based on the SVD. First, construct all
the unit secants

k̂j =
x− x′

‖x− x′‖ ,(4.3)

where x, x′ are the jth pair of data points in A. From these secants form the matrix
K which has k̂Tj as its jth row. K is N × q, where N is the number of distinct data
pairs, counting each pair only once, and q is the ambient dimension of the space in
which the data are found. We assume that q is finite but possibly large and further
that N > q. Also, given that the number of secant pairs grows as the square of the
number of points we propose that, for large data sets, a manageable number of cluster
points may be used in place of data points for estimating the secant set.

The SVD of this matrix will be written

K = UKV T ,

where U is an N×q matrix with orthonormal columns, V is a q×q orthogonal matrix,
and K is a q × q diagonal matrix containing the singular values of K. We note that
if rank(K)< q, then the projection along the unit vectors contained in ker(K) will

effectively result in κπ = 1 since such projections will leave the k̂j invariant. By
extension, projection along singular vectors of K which correspond to small singular
values might be expected to result in large values of κπ. In fact, there are potential
pitfalls here, since singular vectors give projections which are good in the L2 sense,
but we need to satisfy the pointwise criterion

κπ = min
k̂∈Σ

‖πk̂‖

so there might be a small number of secants that seriously reduce the minimum value
of ‖πk̂‖.

Let us proceed on the basis that the SVD of K is pointing us in the right direction
and determine the minimum rank of the projection such that for a given tolerance κπ

the inequality (4.2) is achieved. Now the columns of V , which we shall call {v̂j}qj=1,

will be candidate projections. So for each row k̂Tl of K (where k̂l ∈ Σ) we construct
the following partial sums:

s
(l)
d =

d∑
j=1

(v̂Tj · k̂l)2.

For any l the sequence s
(l)
d is clearly a nondecreasing function of d, and since the {k̂l}

are unit vectors we have s
(l)
q = 1 for any l.

We can interpret s
(l)
d as the squared norm of the lth secant projected onto the

space R
d spanned by the first d singular vectors of K. So we can, for a given κπ, look

through all k̂j and compute the corresponding s
(l)
d to determine the smallest d such

that

s
(l)
d ≥ (κπ)

2 for all k̂l ∈ Σ.

Let’s consider further how this procedure works in practice. Imagine that we plot,
as in Figure 4.1, the integer valued function dπ(l) which is defined as the minimum
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dπ(l)

dπ(lworst)

1 N
l

lworst

Fig. 4.1. A representative plot of the minimum dimension required to achieve tolerance as a
function of the secant pair index.
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Fig. 4.2. First four right singular vectors of the secant matrix (dashed) and the data matrix
(solid) from the KS equation at α = 84. The singular vectors are ordered according to the magnitude
of their singular values decreasing along top left, bottom left, top right, bottom right.

dimension d such that s
(l)
d ≥ (κπ)

2. In other words, the secant k̂l requires dπ(l)
dimensions for the projection π to be good. The secant indexed by lworst (which

we shall denote as k̂worst) is a barrier to projection since it must have a significant
projection onto a singular vector, v̂, which has a small singular value. By definition
of the SVD such occurrences should be rare (in the L2 sense), so we might expect

to improve the situation by weighting k̂worst more in the matrix K. If we weight

k̂worst to an extreme degree then evidently k̂worst will itself be a singular vector of
the weighted K and it will have a large singular value (by virtue of the large weight)
and hence we will have removed the peak in the graph dπ(l).

The above procedure for computing good bases is readily implemented. To begin,
a set of 4950 secants was computed from 100 points, each in R

20, sampled from the KS
equation limit cycle data set collected at α = 84. The resulting secant basis, i.e., right
singular vectors of the 4950 × 20 secant matrix K, were computed and compared to
the data SVD basis, i.e., the right singular vectors of the 100×20 raw data matrix; see
Figure 4.2. The coordinates of the eigenvectors are displayed with respect to the real
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Fig. 4.3. Tolerance achieved as a function of dimension for the face data set. For each
dimension the minimum projected secant norm is computed for several different bases. The lower
solid line corresponds to the SVD analysis on the data; the dot-dash line immediately above this
corresponds to a reordering of the data SVD basis based on directions which optimize the minimum
projected secant norm (note that an ordered random basis fits in between this and the preceding
curve); the dashed line is the result of projecting on the basis computed from SVD on the data
secants; the upper solid line is the secant basis adapted to κπ = .5.

Fourier basis so the domain value ranges from 1–20 and represents the index of the real
Fourier vector (cosx, sinx, . . . , cos 10x, sin 10x) while the range value corresponds to
the amplitude of the mode in the singular vector. Thus, we see that the eigenvectors
for both the data basis and secant basis have significant energy across many frequency
modes. However, when the secants are projected onto the 2-dimensional subspaces
corresponding to the two largest singular values in each basis, the minimum projected
secant norm for the secant basis is greater than 0.9 while for the data SVD basis is
less than 0.03. These results indicate that the distances between the raw data points
are not decreased significantly by the 2-dimensional projection onto the secant basis.
On the other hand, projection onto two dimensions spanned by the data SVD basis
significantly collapses for at least one pair of points. If the dimension of the projection
is augmented to three, then both minima are over 0.95 with the secant basis being
slightly better. As we see later, this significant difference in minimum projected secant
norm has important ramifications in the calculation of the inverse of the projection.

The larger minimum projected secant norm characteristic of the secant basis is
also readily demonstrated using our data set consisting of an ensemble of 200 digital
images of faces. Now the secant matrix K has size 19900× 200 and the secant basis
consisting of the right singular vectors of K spans R

200. For purposes of comparison
we also generated a random basis and the standard data SVD basis, i.e., the right
singular vectors of the data matrix. The minimum projected secant norms attained
as a function of the number of (ordered) dimensions of the projection are plotted in
Figure 4.3. It is clear from this figure that the secant basis provides a much better
projection than the data SVD basis according to the criterion (4.2). The superiority
of the secant SVD basis remains even if the data SVD basis is reordered such that
the vectors onto which the secants (rather than the data) have maximum projection
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A NEW APPROACH TO DIMENSIONALITY REDUCTION 2127

come first. Note that, by the criterion (4.2), a random basis performed as well as
the data SVD basis in this example. For any given dimension the minimum distance
separating the projected points is substantially greater for the secant basis than for
the other bases shown. This example demonstrates that the selection of the basis
is critical in distinguishing good projections from admissible projections in the sense
of Whitney’s theorem. As we have already suggested, the secant SVD basis my be
adapted to improve the reduction dimension. We will refer to this new basis as the
adapted secant SVD basis.

4.1. The adapted secant SVD basis. Here we develop the improvement on
the secant basis algorithm described above. Given that we seek to optimize a pointwise
value, as opposed to an average value, we propose an adaptive approach to give
additional weight to rare but problematic secants.

Assume that we are applying the SVD using a diagonalization routine on the
covariance matrix of secants Θ = KTK (q × q matrix). We use the fact that TrΘ =
Tr(KTK) = Tr(KKT ). Now TrΘ =

∑q
j=1 σ

2
j where the σj are the singular values of

K. However, the diagonal of KKT contains terms like k̂Tj · k̂j = 1. So since KKT is

N ×N we find that TrKKT = N . So we write

Θ′ = Θ
(
1− α

N

)
+ αk̂worstk̂

T
worst,(4.4)

TrΘ′ =
(
1− α

N

)
TrΘ + αTrk̂worstk̂

T
worst(4.5)

= N − α+ α,(4.6)

and hence

TrΘ′ = N,

and this weighting leaves the trace invariant.
So we perform a rank-1 update of Θ in such a way as to preserve the sum of

squared singular values and so as to increase the weighting of the vector k̂worst. The

parameter α determines how much the weighting of k̂worst is to be increased.
We could perform this process recursively choosing the secant index l each time

to be such that dπ(l) is largest (i.e., l = lworst) and continue the process until the
maximum value of dπ(l) starts to decrease. This will happen inevitably because as the
weight associated with a given secant increases, the secant will have more influence
on the basis and hence will tend to be projected better. However, numerical results
show that generally more than one secant will obstruct the projection, so we must
modify the argument to account for this.

We can use the function dπ(l) to put an equivalence relation on the set of secant
vectors Σ:

k̂j ∼ k̂l ⇔ dπ(l) = dπ(j).

Hence we partition the secants according to

Σ =
n∑

d=1

Σd,

where

Σd = {k̂l ∈ Σ|dπ(l) = d}.

D
ow

nl
oa

de
d 

04
/0

8/
14

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2128 D. S. BROOMHEAD AND M. KIRBY

Using this partition we can write matrices Kd which have rows k̂
T
j ∈ Σd and hence

Θ =

n∑
d=1

Θd where Θd = KT
d Kd.

Using similar arguments to those given above it is apparent that TrΘd = |Σd| so we
can, by analogy with the rank-1 update method, construct a new matrix Θ′:

Θ′ =
(
1− α

N

)
Θ+

α

|Σdmax |
Θdmax ,(4.7)

where dmax is the largest d such that Σd is nonempty.
In Figures 4.3, 4.4, and 4.5 we show the results of applying the adaptive secant

algorithm using the standard secant basis as an initial condition. We set κπ = 0.5
and compute the number of dimensions required to achieve this tolerance using the
eigenvectors of the covariance matrix—iterated according to (4.7)—as the basis. The
improvement in the minimum projected secant norm for the adapted secant basis
is shown in Figure 4.3. Note that the largest increase in the minimum projected
secant norm is in the neighborhood of 0.5, the imposed tolerance. The adapted
secant basis achieves this tolerance, i.e., all projected secant norms are greater than
0.5, using 13 dimensions, while 22 dimensions are required by the unadapted secant
basis to achieve the same tolerance. Note that the data SVD basis and the random
basis require on the order of 100 dimensions to achieve the prescribed tolerance.
In Figure 4.4 we observe that as the algorithm proceeds the number of bad secants
decreases (nonmonotonically) until all the secants are deemed good for that dimension.
The dimension is then reduced and newly bad secants are included in the additional
covariance matrix. As shown in Figure 4.5, the algorithm identifies secants which are
initially “bad,” i.e., their projected secant norm is less than 0.5 and improves them
to the point where they are now bad only for a much smaller dimension projection.
None of the secants projected onto 13 or more of the final adapted basis vectors are
bad, i.e., fail the tolerance criterion.

While the spirit of our approach does not require us to determine that absolutely
smallest basis to achieve a given tolerance, this adaptive scheme does appear to be
quite successful in improving the basis. Further applications of this adaptive algorithm
are presented in the next section.

4.2. Translational invariance. Each of the KS data sets we consider can be
thought of as a sequence of “snapshots” {xi} of the given time-dependent solution.
Each xi is a finite-dimensional vector obtained by sampling the spatial structure of the
solution uniformly in space and time. For this study we have used a periodic spatial
domain and so the KS equation together with boundary conditions is equivariant with
respect to both spatial and temporal translations. This symmetry can be reflected
directly in the symmetry of the solutions or—where a solution has less symmetry—in
the interrelationship of different solutions under the action of symmetry operations.
In particular, we have used some data sets which have a space-time translational sym-
metry (as in the case of, for example, a traveling wave of constant shape) and others
which do not. In the case of data having this translational invariance, computation
of the singular vectors based on the secants reveals an interesting fact: the singular
vectors are sinusoids just as in the better-known case where the computation is based
directly on the data.

This can be understood using the following argument. In matrix notation we
can consider the (rectangular) matrix X whose rows are the xT

i . There is a group
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Fig. 4.4. Results of adaptive secant algorithm on the face data for tolerance κπ = 0.5. The top
graph displays the dimension required to achieve the specified tolerance as a function of iterations of
the adaptive algorithm. The number of bad secants (associated with the limiting dimension above)
is plotted below as a function of the same iteration number.
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Fig. 4.5. Results of the adaptive secant algorithm on the face data after 2500 iterations. The
abscissae denote the dimension of the projection. The number of secants which are bad at the
given dimension but which become satisfactory, i.e., satisify the tolerance κπ = 0.5, at one greater
dimension is plotted as the ordinates. (To distinguish between one and zero the number of bad
secants is shifted up one before taking the log.)

of cyclic permutations of the columns of X—that is, the components of xT
i —which

we represent by {Ci}, i.e., the appropriately sized circulant matrices. Corresponding
to each of the Ci there is a permutation of the rows of X, denoted by Pi, which
rearranges the rows of XCi into their original order

PiXCi = X.

D
ow

nl
oa

de
d 

04
/0

8/
14

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2130 D. S. BROOMHEAD AND M. KIRBY

Note that P−1
i = PT

i . The right singular vectors of X may be determined by forming
XTX, i.e.,

XTX = CT
i X

TXCi,

hence

XTXCi = CiX
TX.

So the group of circulant matrices commutes with XTX. Given that the Ci and X
TX

are simple, it follows that they share the same eigenvectors [23]. Since the eigenvectors
of the circulant matrices are sinusoids we conclude that the right singular vectors are
also sinusoids.

Now we address the right singular vectors of the secant data. Let K be the matrix
whose rows consist of all the unit secants, i.e.,

k̂ =
xT
i − xT

j

‖xi − xj‖ ,

where i �= j. Since we are assuming K consists of all pairs of secants we have

k̂lCi = k̂l′

and we again find by permutation of the rows that

PiKCi = K.

Hence it follows that K has the same right singular vectors as X and that these are
the Fourier modes, the eigenvectors of the circulant matrix. We remark that this
analysis says nothing about the spectrum of singular values of either X or K, and in
particular, how they differ.

To explore these results further numerically we consider the data produced by a
simulation of the KS equation with α = 87. For this parameter value the solutions
consist of traveling beating waves, i.e., the solutions are translationally invariant and
reside on a 2-dimensional torus which requires many Fourier modes to describe it ac-
curately. Again, the data SVD basis for this case consists of Fourier modes. Similarly,
as predicted by the above analysis, the eigenvectors for the unit secant data Σ are also
sinusoids as shown by the dotted lines in Figure 4.6. Note that the double eigenvalues
of the secant and data covariance matrices, shown in Figure 4.7, indicate that each
complex Fourier mode forms a degenerate 2-dimensional eigenspace. Hence the basis
vectors consist of orthogonal combinations of sinusoids of the same frequency.

It is interesting to consider the effect of the adaptation of the secant basis along
the lines described in section 4.1. Now the action of the weighting is to break the
translational symmetry of the data set. Consequently, the adapted secant basis vectors
are no longer sinusoidal; see Figure 4.6. Another consequence of this adaptation is
that the spectrum of the iterated covariance matrix is converging such that there is an
eigenvalue of multiplicity eight; see Figure 4.7. The adaptation has weighted the data
such that there is no preferred direction in the resulting 8-dimensional eigenspace.

Another example of a numerical implementation of the adaptive secant basis is
provided by computing the adapted secant basis for the chaotic solutions of the KS
equation corresponding to α = 91. Similar to the above example for the traveling
wave, the adapted secant basis algorithm produces an 8-dimensional eigenspace with
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Fig. 4.6. First four eigenvectors of the secant covariance matrix (dashed) and the adapted
secant covariance matrix (solid) from the KS equation at α = 87. The eigenvectors are ordered
according to the magnitude of their singular values decreasing along top left, bottom left, top right,
bottom right.
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Fig. 4.7. Eigenvalue spectra for data from the KS equation at α = 87. The spectra are calculated
from covariance matrices consisting of raw data, data secants and weighted data secants.

equal variances in all directions; see Figure 4.8. Note that eight dimensions are
required by the adapted secant basis to achieve a minimum projected secant norm
greater than 0.5; see Figure 4.9. As is clearly indicated by this graph of minimum
projected secant norms, the most improvement occurs in dimension seven where the
minimum projected secant norm for the adapted basis is roughly twice that of the
calculated secant basis and the analytical Fourier basis.
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Fig. 4.8. Eigenvalue spectra for the secant and weighted secant covariance matrices for data
from the KS equation at α = 91. The solid line corresponds to the nonadapted secant basis while
the dashed line corresponds to the adapted secant basis. (Note that in this particular run we did not
employ the weighting that conserves the trace of the spectrum.)
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Fig. 4.9. Minimum projected secant norm for the data SVD basis, the secant SVD basis, and
the adapted secant SVD basis. The data consisted of chaotic solutions of the KS equation at α = 91.

5. Inverting the projection. Having constructed our good projection π :
R

q → R
2m+1, we are now interested in constructing the inverse π−1 which acts

to reconstruct the data. As described in section 3, Whitney’s theorem guarantees
that almost any projection π restricted to U is an embedding of U in R

2m+1. Hence
there must exist an inverse π−1 : πU ⊂ R

2m+1 → R
q. We can think of this as

π−1 = (id, g) where id denotes the identity map on R
2m+1 and g : πU → R

r. Here
r = q − 2m − 1 and R

r is the null space of π. In this setting U is the graph of g in
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the space R
q = R

2m+1 × R
q−2m−1, i.e.,

U = {(x, gx) |x ∈ πU ⊂ R
2m+1}.(5.1)

5.1. Radial basis function approximations. The basic problem that we have
to solve—that of constructing the graph of g from data—is known as the interpolation
problem. Specifically, we can state this as follows:

Given an ensemble of P input vectors {x(i)}Pi=1, with each x
(i) ∈ R

p, and an associated
ensemble of P output vectors, {y(i)}Pi=1, with each y(i) ∈ R

r, find a function y : Rp →
R

r such that the interpolation condition

y(x(i)) = y(i)(5.2)

is satisfied for all i = 1 . . . P .

It has been shown that an adaptive basis, in contrast with a fixed set of basis
functions, can overcome the curse of dimensionality [2, 3]. For adaptive bases the
number of functions required is proportional to the volume of space occupied by the
data; for fixed bases the number of required functions grows exponentially with the
dimension of the domain since essentially the entire space is covered.

RBF approximation [5] provides an adaptive basis given that the centers {ci} may
be modified to suit the data set. An RBF approximation is written

y = w0 +

Nc∑
j=1

wjφ(‖x− cj‖),(5.3)

where φ(·) is a fixed function centered at the point cj , Nc is the number of basis
functions employed in the expansion, and the wj are r-dimensional “weight vectors.”
In our investigation we restricted our attention primarily to the thin plate spline RBF

φ(r) = r2 ln r(5.4)

and the Gaussian RBF

φ(r) = exp(−r2/α).(5.5)

The thin plate spline RBF provides a global set of basis functions while the Gaussian
RBF is effectively local when α is small enough. In the case of the Gaussian RBF, the
size of the domain of each function is effectively determined by α. It can be shown
that every continuous function on a compact domain may be approximated uniformly
by a linear combination of RBFs with centers in the domain. General criteria for such
RBFs have been characterized [25].

A system of linear equations may be obtained by evaluating (5.3) at each of the P
data points. In particular, the domain values x(i) consist of the image of the original
data under the projection, i.e., x(i) ∈ πA, while the range values of g consist of the
associated points in the orthogonal complement y(i) ∈ (I−π)A. At the ith data point
we require

y(i) = w0 +

Nc∑
j=1

wjφ(‖x(i) − cj‖).(5.6)D
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2134 D. S. BROOMHEAD AND M. KIRBY

To determine the associated linear system we assemble the output data points in the

data matrix Y ≡ [y(1)|y(2)| · · · |y(P )]. If we also define φ
(i)
j ≡ φ(‖x(i) − cj‖), then the

interpolation matrix Φ may be defined as

Φ =




1 φ
(1)
1 φ

(1)
2 . . . φ

(1)
Nc

1 φ
(2)
1 φ

(2)
2 . . . φ

(2)
Nc

1 φ
(3)
1 φ

(3)
2 . . . φ

(3)
Nc

...
...

...
...

1 φ
(P )
1 φ

(P )
2 . . . φ

(P )
Nc




.

Thus we must solve the linear system

Y =WΦT(5.7)

for the unknown q × (Nc + 1) weight matrix

W = [w0|w1|w2| . . . |wNc ].

Formally, a solution may be obtained by computing the pseudoinverse of Φ giving

WT = Φ†Y T .(5.8)

This pseudoinverse Φ† is found by first computing the SVD of Φ

Φ = U∆V T

from which we obtain

Φ† = V∆†UT ,

where ∆† is a diagonal matrix which has nonzero elements equal to the inverse of the
significant singular values of Φ. To demonstrate the reconstructions obtained using
the RBF approach we used projected data from both the KS equation and the digital
faces. Our main objective was to determine the impact of the achieved tolerance κπ

on the quality of the reconstruction for a given number of centers. No attempt was
made to optimize the reconstructions; in fact the RBF centers were simply chosen
randomly from the data set. A particularly poor choice of centers may result in a
spike in the reconstruction error. This effect can be ignored in that the same set of
centers was used in all the expansions.

In our numerical experiments we do indeed observe a striking improvement in the
data reconstructions as the minimum tolerance κπ achieved is increased. For example,
as shown in Figure 5.1, a data set of 100 points sampled from the limit cycle solution
of the KS equation with α = 84 was accurately reconstructed from the 2-dimensional
secant basis but poorly reconstructed from the 2-dimensional data SVD basis. Again,
the data SVD basis achieved a tolerance of only κπ = 0.03 for 2 modes while the
secant SVD basis achieved a very favorable tolerance of over κπ = 0.9. This small κπ

is a significant impediment to the RBF’s ability to approximate the inverse to any
accuracy. In addition, the maximum reconstruction error over all the data points was
significantly worse for the data SVD basis than for the adapted secant basis.

Given the similar minimum projected secant norms for the case of α = 87 with
either the secant basis or the adapted secant basis, we employed the former in our
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Fig. 5.1. α = 84. A comparison of reconstruction errors as a function of the number of
centers for the 2-dimensional secant basis and 2-dimensional data SVD basis. Displayed on the left
is the relative error based on the Frobenius norm of the reconstructed data matrix. On the right the
maximum error is plotted. The radial basis function centers are selected randomly. All errors are
averaged over 25 different sets of centers. Thin plate splines were used as the radial basis functions.
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Fig. 5.2. α = 87. Left: Relative Frobenius error for reconstructed training data matrix. Right:
Relative Frobenius error for reconstructed test data matrix. The top dotted curve shows the large
errors associated with reconstructing a 1-dimensional projection. The reconstruction errors decrease
for projections onto two, three, and four dimensions. The generalization error is approximately 5%
for the test data set using 200 centers and a 4-dimensional domain.

reconstructions. The Fourier basis achieved a tolerance of 0.25 using four dimensions.
(Note that Whitney’s theorem states that generically no more than five dimensions are
required to embed a torus.) A data set of 500 points was collected for this experiment.
The first 400 points were used for approximating the inverse and the last 100 reserved
for testing the reconstruction error, i.e., they were used as a validation set. The results
of the RBF constructions using 1–200 centers for projection dimensions of one, two,
three, and four are shown in Figure 5.2.
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Fig. 5.3. Reconstruction errors of the training data as a function of dimension for Fourier
(sinusoidal) basis for KS data with α = 91.

The last reconstruction results we present correspond to the case α = 91. Now
4000 data points were used for constructing the radial basis function inverse as well
as a data SVD basis. In this example we contrast the results of using a basic linear
reconstruction for a given dimension with our method which fits the residual of the
linear reconstruction with radial basis functions. Thus, when the number of centers
in the reconstruction is zero, the error corresponds to that produced by the optimal
linear subspace only. For example, as shown in Figure 5.3, the reconstruction of the
data matrix after a projection onto five dimensions results in a relative Frobenius
error of 60%. Using 1000 centers to approximate the residual reduces the error to
about 10%. As the projection dimension is increased the error due to the truncating
in the best linear subspace is reduced, but the use of the radial basis functions always
significantly improves the errors.

5.2. The Lipschitz condition. An inverse is said to be well-conditioned if
small perturbations in its domain produce changes in the range which are, in some
sense, small. This issue arises here because we need to fit π−1 using discrete data. In
particular, we are interested in fitting an inverse projection which interpolates sensibly
between the known data points to give a good approximation to U . We observe
that, for this, it is not sufficient to require the mean square error or the maximum
error—computed over the data—to be attained to within a desired tolerance. For
good interpolation, or generalization, it is also necessary for the inverse to be well-
conditioned.

One of our primary goals in requiring that points in the high-dimensional space
be mapped such thatD
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A NEW APPROACH TO DIMENSIONALITY REDUCTION 2137

‖πx− πx′‖ ≥ κπ‖x− x′‖
is to improve the conditioning of the inverse mapping. We may draw the connection
as follows: let y = πx, y′ = πx′. It follows that

‖π−1y − π−1y′‖ ≤ κ−1
π ‖y − y′‖,

that is, the inverse projection is Lipschitz with constant κ−1
π . This condition captures

the idea of conditioning of the inverse projection. In particular, we shall treat the
Lipschitz constant, κ−1

π , as a condition number, L, for π−1:

L =
1

κπ
.(5.9)

There is, of course, a gap here between theory and practice. We have only an
estimate of the Lipschitz constant of π−1 based on the discrete data set at our disposal.
The expectation is that—given our assumption that U is smooth—a dense enough
sampling of data will lead to a reliable estimate for π−1—and hence L—extended to
the whole of πU .

Our proposal to use RBF models for estimating π−1 allows a comparison to be
made between models and the data. RBF models are generally Lipschitz—indeed,
for the choices of φ considered here, they are even smooth—so we can estimate the
Lipschitz constant for an RBF model. We write π−1x = (x, g(x)) where

g(x) =W ◦ φ̃(x) and φ̃ : Rp → R
Nc+1,

φ̃(x) = (1, φ(‖x − c1‖, . . . , φ(‖x − cNc
‖))T and W : R

Nc+1 → R
r is linear. It follows

that

‖π−1x− π−1x′‖2 = ‖(x, g(x))− (x′, g(x′))‖2

= ‖x− x′‖2 + ‖W ◦ (φ̃(x)− φ̃(x′))‖2

≤ ‖x− x′‖2 + ‖W‖2‖φ̃(x)− φ̃(x′)‖2

≤ ‖x− x′‖2 + ‖W‖2L2
φNc‖x− x′‖2;

then

‖π−1x− π−1x′‖ ≤ ‖x− x′‖
√
1 + L2

φ‖W‖2Nc.

Here Nc is the number of centers and Lφ is the Lipschitz constant for the selected
RBF φ. (Since it is usual to use smooth φ, e.g., thin plate spline, cubic, Gaussian,
multiquadric, we can estimate Lφ using the greatest magnitude of Dφ. In the case
of the RBF fucntions with global support we must restrict our interest to a bounded
domain.)

Because of our direct estimate from data of κ−1
π we can expect that there is a pair

x, x′ such that ‖π−1x− π−1x′‖ = κ−1
π ‖x− x′‖. It follows that a necessary condition

for the RBF to be able to model π−1 is that

κ−1
π < ν ≡

√
1 + L2

φ‖W‖2Nc ≈ Lφ‖W‖
√
Nc.(5.10)

The quantity ν is a characteristic of the RBF model. In particular, the above inequal-
ity can be interpreted as a lower bound on the norm of the weight matrix. Note that
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Fig. 5.4. α = 84. Left: Condition number of the interpolation matrix as a function of the
number of centers in the radial basis function approximation. Right: Complexity of the RBF ap-
proximation as computed by (5.10).
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Fig. 5.5. α = 87. Left: Condition number of the interpolation matrix as a function of the
number of centers in the radial basis function approximation. Right: Complexity of the RBF ap-
proximation as computed by (5.10).

if the inverse we hope to estimate is ill-conditioned in the sense that L is large, this
relationship shows that we need a weight matrix with large norm. Referring to (5.8),
we see that it may be necessary to achieve this by including small singular values
in the pseudoinverse of Φ, that is, by making the norm of ∆† large. If this is the
case, the resulting model is unlikely to be robust. Note that this analysis applies to
both the local and global representations. We anticipate its bound will be sharper in
estimating the complexity of RBFs with local receptive fields, such as the Gaussian.

Given that solving the least squares problem (5.7) for the weight matrix W is
generally ill-conditioned, the SVD approach is recommended. We observed in our cal-
culations that the condition numbers of the interpolation matrices generally increased
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A NEW APPROACH TO DIMENSIONALITY REDUCTION 2139

with the number of centers. However, the condition number appears to be inversely
proportional to the minimum projected secant norm of the RBF input data. See, for
example, Figure 5.4 corresponding to the RBF reconstructions calculated in Figure
5.1, i.e., the KS limit cycle data. Note that in this example the 2-dimensional pro-
jection onto the secant basis has a much larger minimum projected secant norm than
the projection on the data SVD basis. Another interesting side effect of increasing the
value of κπ achieved for a basis is the reduction of complexity in the reconstruction.
The measure of complexity ν, as defined by (5.10), is plotted for the RBF reconstruc-
tion of the limit cycle data on the right in Figure 5.4. In this example the Lipschitz
constant given in (5.9) is approximately L = 1.1 for the inverse of the adapted secant
basis projection and L = 33 for the data SVD projection. Thus, the bound ν is not
very sharp for this problem. It is interesting to observe that our measure of complex-
ity appears to level off with the secant basis but continue to increase as a function of
the number of centers for the ill-conditioned reconstruction.

The KS torus example shows the most dramatic improvement in condition number
going from a 1-dimensional projection to a 2-dimensional projection; see Figure 5.5.
This is not surprising given that the minimum projected secant norm is zero for
1-dimensional projections to either the Fourier basis or adapted secant basis and
improves to approximately 0.05 (Fourier basis) and 0.1 (adapted secant basis) for
the corresponding 2-dimensional projections. Further increases in κπ as a function of
dimension are correlated with a reduction in the complexity bound ν as well as the
condition number of the interpolation matrix; see Figure 5.5.

6. A comparison of reduction techniques. Whitney’s embedding theorem
permits a relative classification of reduction procedures according to their generally
attainable reduction dimensions

q > q′ ≥ d ≥ m′ ≥ m,(6.1)

where m is the topological dimension of the manifold U . The minimum reduction
dimension that can be attained generically, according to Whitney’s embedding the-
orem, for the procedure outlined in this paper is d = 2m + 1. If both G and H are
linear, the attainable reduction dimension will be designated q′ while if both G and
H are nonlinear then we will denote the reduction dimension by m′.

6.1. Global methods. We deem a reduction method to be global if the support
of the basis functions is the entire domain.

Global Case I. G linear, H linear. For global linear reduction and reconstruction
mappings it is generally not possible to attain the Whitney limit 2m+1. In fact, de-
pending on the distribution of the data set in the ambient space, the lowest attainable
reduction dimension q′ may be far greater than the Whitney limit.

Several well-known related techniques, including principal component analysis
(PCA), the Karhunen–Loève (KL) procedure, and the SVD, determine optimal map-
pings G and H over all orthogonal, or unitary, transformations. These linear methods
use bases which serve to encapsulate, or span, the data.

Global Case II. G linear, H nonlinear. This case is the main subject of this paper.
As described in section 3 Whitney’s theorem guarantees that, generically, a projection
π restricted to U is an embedding of U in R

2m+1, so we know there is an inverse
π−1 : πU ⊂ R

2m+1 → R
q. This nonlinear inverse affords reduction dimensions at least

as small as 2m + 1 where m is the topological dimension, a significant improvement
on using an optimal linear inverse. We may further distinguish this approach from
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Case I above, by observing that since the inverse is nonlinear the data are being
parameterized rather than spanned.

This approach is based on the concept of a “good projection.” Random projec-
tions, or even projections based on optimal bases, such as PCA, do not ensure in any
sense that the inverse map will be well-conditioned. Note also the reduction map-
ping, i.e., projection π, is determined independently of the inverse π−1. In practice
this leads to improved scalability over the case where both maps are nonlinear (see
below).

Global Case III. G nonlinear, H nonlinear. When both G and H are nonlinear
it may be possible to obtain a reduction dimension of m′ < 2m + 1 thus improving
upon the Whitney limit. For example, it may not be possible to embed a given circle
in the plane via a projection. (Whitney’s theorem gives an upper bound of dimension
d = 3.) However, every circle is homeomorphic to the unit circle and thus there always
exist nonlinear G and H which will achieve this embedding.

Nonlinear reduction may be implemented as a nonlinear autoassociative, or bot-
tleneck, neural network as proposed in [22, 24]. This network has also been applied
to the modeling and analysis of dynamical systems; see, e.g., [14, 18, 20]. The map-
pings G and H are represented by sigmoidal feedforward neural networks and are
trained such that the composition H ◦G approximates the identity mapping by min-
imizing the standard mean square error. Note that the range, or output, of G is not
specifically known during training and that the functions G and H are being adapted
simultaneously during the training phase (a nonlinear optimization problem). This
approach, while powerful in theory, appears to be ill-conditioned [16]. We note also
the inherent nonuniqueness of the solution, given that if H ◦ G minimizes the mean
square error, so does H ◦F ◦F−1 ◦G. Also, this method, often referred to as nonlin-
ear principal component analysis (NLPCA), typically only optimizes the mean square
error, although it is possible to incorporate user-defined constraints in NLPCA [20].

6.2. Local methods. Local methods are based on constructing an array of re-
duction and reconstruction mappings defined over local regions. For example, the
local regions may consist of Voronoi polyhedra which are determined via a variety of
clustering algorithms. Local methods are especially attractive given that the compu-
tations associated with creating models for each local region may be done in parallel.

Local Case I. G linear, H linear. In this case the SVD may be applied to the data
contained in each Voronoi region. The primary advantage is that the reduction to the
local topological dimension m may be achieved in theory. If the data lie on a smooth
manifold, the tangent space (and its dimension) may be determined by assessing which
of the singular values scale linearly with the radius of the ball as proposed in [6].

The primary advantage of the local linear-linear method is that it permits a very
fast reduction scheme once the Voronoi regions have been determined. The efficiency
of the method is due to the fact that the (linear) inverse mapping is immediately
available via the SVD. The main disadvantage of the method is that to actually achieve
the theoretical reduction to the topological dimension m, the linear reconstruction
requires a very dense partitioning of the ambient space to approach the accuracy
of reconstruction which is possible when a (local) nonlinear method is employed.
Examples of applications of local principal component analysis, or local SVD, include
[7, 6, 4, 12].

Local Case II. G linear, H nonlinear. Again, for locally defined mappings G
and H it is possible to obtain a reduction of the data to the topological dimension
[8]. The primary benefit of employing a nonlinear reconstruction mapping H is the
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significant reduction of the number of local regions required to reconstruct U to a
specified accuracy. The additional expense incurred by this procedure results from
the fact that the nonlinear mapping must be approximated, e.g., using RBFs. We
note that the methodology proposed in this paper for global reductions may also be
employed locally where G is linear and H is nonlinear.

An example of this class of local method, referred to as neural charts, was de-
veloped in [10]. It proposes an initial (tree-based) clustering of the data set. The
reduction space may be determined using the scaling laws proposed in [6]. The non-
linear inverse may be determined using multilayer perceptrons or using RBFs on the
locally defined regions.

7. Summary and future work. We have presented a new approach for dimen-
sionality reduction of data sets which exploits Whitney’s theorem from differential
topology. This theorem indicates the theoretically attainable reduction dimension to
be 2m+1 for the case that the data are sampled from an m-dimensional submanifold.
Motivated by the proof of this theorem, we propose an adaptive secant algorithm
which produces increasingly good projections. A consequence of this construction is
that the nonlinear inverse or reconstruction mapping is Lipschitz and the value of the
Lipschitz constant is inversely proportional to the quality, or tolerance, achieved by
the projection.

To put this work in context, a comparison of basic reduction procedures was made
based on the nature of the mappings G and H; the theoretically attainable dimensions
were indicated in each case. Given the differences in computational expenses among
the methods it is appropriate to combine the procedures to form hybrid methods. For
example, a global linear reduction may be used as a preprocessing stage to obtain
an initial reduction to dimension q′. Following this by the linear/nonlinear global
reduction, the subject of this paper, will result in a further reduction to dimension
2m + 1. To achieve even further reduction this could be followed either by a global
nonlinear reduction procedure, such as a bottleneck neural network to attain the
dimensionality m′, or a local reduction procedure, such as neural charts, to obtain a
parameterization in terms of the local intrinsic dimension m.

The reduction procedure presented here was developed as a global method. How-
ever, the basic approach may be applied locally to produce a reduction of the data.
In particular, locally defined good projections may be calculated such that the inverse
is especially easy to reconstruct. Furthermore, the number of points associated with
each locally defined region should be small enough to greatly speed up the search for
good projections. This work will be the subject of future investigations.
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