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This article introduces a new architecture and associated algorithms ideal
for implementing the dimensionality reduction of an m-dimensional man-
ifold initially residing in an n-dimensional Euclidean space where n � m.
Motivated by Whitney’s embedding theorem, the network is capable of
training the identity mapping employing the idea of the graph of a func-
tion. In theory, a reduction to a dimension d that retains the differen-
tial structure of the original data may be achieved for some d ≤ 2m + 1.
To implement this network, we propose the idea of a good-projection,
which enhances the generalization capabilities of the network, and an
adaptive secant basis algorithm to achieve it. The effect of noise on this
procedure is also considered. The approach is illustrated with several
examples.

1 Data Parameterization

The application of analytical transforms, such as the Fourier or wavelet
transform, is an established technique for investigating low-dimensional
data sets. Analogously, constructing custom empirical transforms (and their
inverses) is an attractive means for extracting and manipulating informa-
tion in large, high-dimensional data sets. The subject of this investigation
concerns the construction of (invertible) dimensionality-reducing tranfor-
mations of data sets for the case where the initial, or ambient, dimension is
much greater than its intrinsic (topological) dimension.

There are two fundamental approaches for representing data in a re-
duced coordinate system: data parameterization and data encapsulation.
The distinction between the two approaches lies in the differing assump-
tions concerning how the data set A occupies the data space. Data encap-
sulation is based on the assumption that the data are a subset of a linear
subspace and seek a coordinate change that makes this apparent. Data pa-
rameterization, on the other hand, assumes that the data set is produced by
a discrete sampling of an m-dimensional submanifold M; in this case, we
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seek to represent the data as a graph from a suitable linear subspace to its
orthogonal compliment.

The parameterization of a data setA ⊂ Rn may be achieved by determin-
ing a new coordinate system that is the result of a dimensionality-reducing
mapping y = G(x) ∈ B ⊂ Rd where d < n. The associated reconstruction
mapping x = H(y) ∈ A ⊂ Rn takes the data and maps them back to the
original ambient coordinates. Thus, H provides a global d-dimensional pa-
rameterization of the data. By contrast, data encapsulation seeks to map,
typically via a unitary transformation, the data into a subspace of reduced
dimension. If the reduced data may be reconstructed via another linear
transformation, then the new coordinate system may be viewed as encap-
sulating the entirety of the data. In this setting, every data point in A lies
in the span of the encapsulating basis; if a component of a data point does
not lie in this span, it appears as the residual, or error, when the data are
reconstructed. For data that reside on a submanifold M, the number of
parameters required to encapsulate, or span, the data set is typically sig-
nificantly larger than the number of dimensions required to parameterize
it nonlinearly. Therefore, except in special cases, even an optimal linear pa-
rameterization (i.e., data encapsulation) will not produce a representation
of the data that reflects the intrinsic dimensionality of M.

This article presents a new method for determining nonlinear parameter-
izations of data sets, which are subsets of high-dimensional spaces. At the
center of our approach is Whitney’s theorem, which motivates the architec-
ture of what we will refer to as the Whitney reduction network (WRN). In
this architecture, the reduction mapping G is a projection designed to retain
the (differential) structure of the data. In addition, this projection is empiri-
cally constructed to be good in the sense that its inverse will be well condi-
tioned, a critical feature of networks with good generalization properties.
A natural way to quantify the idea of a well conditioned nonlinear inverse
is to require that H is Lipschitz with a small Lipschitz constant. Since G is
also Lipschitz by virtue of being a projection, a useful consequence of this is
that the topological dimension of A and its reduced form B are equal since
bi-Lipschitz mappings are dimensionality preserving (see Falconer, 1990).
Since the choice of G determines the Lipschitz constant of the inverse, we
propose an adaptive basis algorithm that optimizes this. (Note that if the
data set is not smooth but fractal, then it is necessary to replace the topolog-
ical dimension by the Hausdorff dimension in the preceding discussion.)

In section 2 a discussion of Whitney’s embedding theorem is presented;
in section 3 the network architecture and implementation are presented;
in section 4 the distinguishing features of the WRN are summarized; in
section 5 we analyze the effects of noise on the procedure; in section 6 we
present three illustrative examples of the methodology. Finally, in section 7,
the main results are summarized, and some future work is outlined. More
details concerning the mathematical theory of the reduction network pro-
posed are presented in Broomhead and Kirby (2000).



Whitney Reduction Network 2597

2 Whitney’s Embedding Theorem

This article is motivated by the Whitney embedding theorem, which shows
that it is always possible to represent a compact, finite-dimensional, differ-
entiable manifold as a submanifold of a vector space (Hirsch, 1976). Roughly
speaking, given an m-dimensional differentiable manifoldM, we can find a
mapping to the Euclidean space R2m+1, which is diffeomorphic onto its im-
age. (A diffeomorphism is a differentiable map with a differentiable inverse.)
In this sense it might be said that R2m+1 is large enough to contain a “diffeo-
morphic copy” of every m-dimensional differentiable manifold (Guillemin
& Pollack, 1974).

The proof given in Hirsch (1976) has two stages. The first, and prelim-
inary, stage shows that there is some sufficiently large q for which there
exists an embedding in Rq. So we concentrate on the situation where we
have an m-dimensional submanifold, M, of Rq and note that here q may
be very large. The central idea of the rest of the proof is to show that there
exists an “admissible” projection from Rq to Rq−1 and then apply this ar-
gument recursively until we reach a value of q, beyond which the argu-
ment fails. Since we are dealing with compact manifolds, “admissible” here
means that the projection is an injective immersion when restricted to M.
A projection that is an injective immersion has a smooth inverse when re-
stricted to its image; it is this that is interesting to us since it suggests the
possibility of a lossless data compression technique. This proof of the Whit-
ney embedding theorem demonstrates that for each q > 2m + 1, there is
an open dense set of such projections, which is to say that in a suitable
topology, every neigborhood of a projection that is not admissible con-
tains a projection that is (the dense part); and, moreover, every sufficiently
small perturbation of an admissible projection is also admissible (the open
part).

There is an appealing way to visualize these ideas. Imagine M as a sub-
manifold of Rq and connect each pair of points in M with a straight line
segment. We shall refer to these as the secants of M. Now consider �, the
set of unit vectors parallel to the secants—the unit secants. These can be
thought of as points on the q − 1–dimensional unit sphere since this is the
set of all unit vectors in Rq. We can also associate projections from Rq to
Rq−1 with points on the q − 1–dimensional unit sphere by labeling each
projection with the unit vector, which it maps to zero. Clearly, the set of
unit secants constitutes the set of inadmissible projections in the sense that
a projection that is also a unit secant must identify at least two distinct
points in M and consequently is not invertible. The method of proof is
then to show that the set of unit secants is nowhere dense in the q − 1–
dimensional unit sphere provided that q > 2m + 1. A set that is nowhere
dense has no subsets that are open, so that any point in a nowhere dense
set must have neighboring points not in the set. This is enough to estab-
lish the existence of a projection that is an injection. A similar approach
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is adopted to establish a similar result for the set of projections parallel
to tangents of M. These correspond to projections that are not immer-
sions.

A subset that is nowhere dense is, from a topological point of view, a very
small set. Although this remark should be treated with some caution—there
are well-known examples of nowhere dense sets with positive measure—
it suggests our approach to compression, since it says that an arbitrarily
selected projection from Rq to Rq−1 will have a smooth inverse whenever
q > 2m + 1.

3 The WRN Architecture

The architecture of our network is driven by the decomposition of a data
point x ∈ A ⊂ M under the action of a projector P,

x = Px + (I − P)x, (3.1)

where, by definition, P2 = P. If we let p = Px and q = Qx (where Q = I−P),
then we view any element x as being the sum of the portion of x in the
range of P, that is, p ∈ R(P) and the portion in the null space of P, that
is, q ∈ N (P). If the rank of P is d where d > 2m, then Whitney’s theorem
ensures the existence of a global map from the range of the projector to its
null space, that is,

q = f (p).

This provides a parameterization of the data set A in terms of p as

x = p + f (p). (3.2)

The inverse of P takes a projected data point Px ∈ PA and maps it back to x.

3.1 The Reduction Mapping. To begin, we need a good projector P of
rank d. This will parameterize the data. The corresponding orthogonal pro-
jector Q gives the residual of the linear approximation and hence provides
the target data for the nonlinear function approximation of f .

Given an appropriate orthonormal basis for Rn, U = [u1|u2| · · · |un]. The

rank d projector is defined by P = Û1Û1
T

where the reduced n × d matrix
Û1 = [u1|, . . . , |ud]. Similarly, the complementary projector is defined Q =
Û2Û2

T
where Û2 = [ud+1|, . . . , |un]. We note that the quantity Px ∈ R(P) is

an n-tuple in the ambient basis, that is, Px = (uT
1 x)u1 +· · ·+ (uT

d x)ud. It is the
expansion coefficients that provide the d-dimensional representation, and
these are given as p̂ = ÛT

1 x ∈ Rd.
We eschew principal component analysis (PCA) because it is based on

minimizing mean-square projection residuals rather than achieving a well-
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conditioned inverse. Rather, we propose to optimize our projector P by
requiring that the inequality

‖Px − Py‖ ≥ k∗‖x − y‖ (3.3)

be satisfied for all x, y ∈ A and some fixed tolerance k∗ > 0. Note that this
criterion is applied pointwise, whereas PCA is based on optimizing an av-
erage quantity. The tolerance k∗ is a measure of the maximum permissible
shortening of the distance between any two projected data points. Equiv-
alently, as shown below, k∗ is a lower bound on the norm of the projected
secants. Note that by construction, 0 < k∗ ≤ 1 with k∗ = 1 when P represents
a unitary transformation.

Thus, the goal of the first learning phase is to determine a basis that is
good in the sense that the dimension d of the range of P is as small as possible
for a given tolerance k∗. We employ the fact that given a projector P and a
data set A, the minimum projected interpoint distance k∗ may be calculated
directly from

∥∥∥Pk̂
∥∥∥ = ‖Px − Py‖

‖x − y‖ , (3.4)

where a unit secant is defined as k̂ = (x − y)/‖x − y‖ for any x, y ∈ A;
(see Broomhead & Kirby, 2000, for details). Given an n-dimensional basis,
we may use the above formula for the minimum projected secant norm to
determine the number of dimensions d required to satisfy the condition

∥∥∥Pk̂
∥∥∥ ≥ k∗ (3.5)

for all k̂ ∈ �, which is equivalent to the criterion of equation 3.3.
We now propose a procedure for determining a good projection in the

sense of equation 3.3 or 3.5. Our approach is adaptive and is initialized using
the principal components of the matrix of secants K. This is an n × N matrix
where N = P(P − 1)/2 is the total number of secants and n is the ambient
dimension (in practice, a subset of the secants is sufficient). We project the
columns of K onto d-dimensional subspaces spanned by the principal com-
ponents of K and look for the smallest value of d for which equation 3.5 is
satisfied for all the secants. We denote the set of secants that do not satisfy
equation 3.5 for d − 1 as “bad” secants. The matrix S whose columns con-
sist of bad secants is used iteratively to update the initial covariance matrix
	 = KKT. The update involves reweighting the bad secants by an amount
proportional to an adjustable parameter α:

	′ =
(

1 − α

N

)
	 + α

m
SST, (3.6)
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where m is the number of columns in the matrix S. This iteration acts to
reduce the number of dimensions d required such that ‖Pdk̂‖ ≥ k∗ for all
k̂ ∈ �. (Here, for clarity, we have indicated the dimension d of the projector
as Pd.)

Adaptive Basis Algorithm

1. Compute the initial basis via PCA of secants.

2. Determine the smallest dimension d such that ‖Pdk̂‖ ≥ k∗ for all k̂ ∈ �.

3. Find the matrix S of bad secants defined by {k̂ ∈ �: ‖Pd−1k̂‖ < k∗}.
4. Update the covariance matrix via equation 3.6.

5. Compute the new basis consisting of the eigenvectors of 	′.

6. Stop if basis satisfactory; else return to 2.

3.2 The Reconstruction Mapping. Given that the data have been pa-
rameterized via a good projection, the problem is now to determine a map-
ping for reconstructing the data. The need for an inverse mapping is in
analogy with analytical transform methods. Our objective is the construc-
tion of an empirical dimension preserving transform of the data to facilitate
its analysis. The existence of a (Lipschitz) inverse assures us that the projec-
tion has preserved the dimension of the data.

The reconstruction phase rebuilds a data point x ∈ Rn from its projection
p = Px by learning the associated value q = Qx, that is, the projection onto
the orthogonal complement. The superposition of these values then rebuilds
a data point; the identity mapping is I = P + Q or

x = Px + Qx.

It is most natural to do these computations in the appropriate bases; the
representations

p̂ = ÛT
1 x, q̂ = ÛT

2 x

have dimensions d and n − d, respectively.
The (strictly) nonlinear portion of the reconstruction involves fitting a

function f with the projected data set {p̂} as the input and the orthogonal
complement data set {q̂} as the output. (It is this function f that is guaran-
teed to exist by Whitney’s theorem.) This mapping f is approximated by f̃ ,
providing an estimate ˜̂q for q̂:

p̂ → ˜̂q = f̃
(
p̂
)
.

During the training phase, the target points {q̂} are required for the second
internal layer. The dotted connections from the input layer to the second
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internal layer represent the mapping

x → q̂ = ÛT
2 x ∈ Rn−d.

This portion of the network is required for training purposes only.
Finally the data are reconstructed (i.e., transformed to the original ambi-

ent coordinates) in two parallel stages x = p + q. A mapping from the first
internal layer to the output layer accomplishes the strictly linear reconstruc-
tion:

p = Û1p̂.

This mapping is not learned by the network but comes from the linear
inversion of the projection. The nonlinear component of the reconstruction
is the result of the parameterization, which produces an approximation
to q̂, that is, ˜̂q = f̃ (p̂). Thus, the desired reconstruction q = Û2q̂ is now
approximated by a mapping from the second internal layer to the output
layer:

q̃ = Û2
˜̂q.

Hence, x is approximated as x ≈ x̃ = p + q̃. In summary, the network
approximates the identity mapping as

P̃−1 ◦ P: x → x̃,

where this mapping may be written

x̃ = Û1p̂ + Û2 f̃
(
p̂
)
. (3.7)

The (well-conditioned) inverse q̂ = f (p̂) may be fit using the radial basis
function approach (Broomhead & Lowe, 1988). Here we employed the thin
plate spline radial basis function (RBF) φ(r) = r2 ln r with randomly selected
centers. The least-squares problem was solved using the singular value
decomposition.

4 Features of the Whitney Reduction Network

Various features of the WRN that distinguish it from other techniques, such
as linear and nonlinear principal components.

4.1 Decomposition of Reconstruction into Linear and Nonlinear Parts.
The reconstruction of the data achieved via equation 3.2 is a decomposition
into separate linear and nonlinear pieces. The term p is the linear recon-
struction, while q = f (p) is the nonlinear term fit by RBFs. Note that p is
immediately available once a basis has been selected for projection since it
is just the linear reconstruction of the projected data. In other words, it is
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not necessary to use a neural algorithm to learn the weights associated with
the linear component of the reconstruction.

Another interpretation of this decomposition is that the WRN automat-
ically identifies dependent and independent variables in the function ap-
proximation process. This approach is distinct from nonlinear (as well as
linear) PCA, which uses the original data as the target for the reconstruc-
tion. Note also that in nonlinear PCA, the bottleneck variables may change
during the course of training the inverse, while the independent variables
produced by the WRN are found and then fixed before the nonlinear inverse
is approximated.

4.2 Projection Optimized for Producing Good Generalization. A map-
ping is said to be ill conditioned if small perturbations in the domain lead
to large changes in the range. If an ill conditioned map is approximated
(say, using RBFs or multilayer perceptrons) on a fixed training set, it will
not generalize well to nontraining data.

The inverse mapping of the WRN is well conditioned as a result of the
requirement that the projection P satisfy the optimality criterion given by
equation 3.3, from which it follows that

‖P−1x − P−1y‖
‖x − y‖ ≤ 1

k∗ ; (4.1)

that is, P−1 is Lipschitz with constant 1/k∗. Since the left-hand side of equa-
tion 4.1 is exactly that ratio of the change in the image to the associated
change in the domain, we conclude that the absolute condition number κ̂

(this is defined in Trefethen & David Bau, 1997) is bounded by our k∗ as

κ̂ ≤ 1
k∗ . (4.2)

Hence by designing the projection such that equation 3.3 is satisfied for a rea-
sonably large k∗ the inverse mapping will be well conditioned. In addition it
can be shown (see Broomhead & Kirby, 2000) that the RBF approximation is
also Lipschitz. Neither standard nor nonlinear PCA constrains the inverse
mappings to be well conditioned. Indeed, our examples show that the mea-
sure of conditioning k∗ attained by the data PCA basis can be significantly
inferior to that for secant bases.

4.3 Linear Optimization Problem. We fit the nonlinear portion of the
inverse mapping using RBFs since this leads to a linear optimization prob-
lem for determining the unique weights. By contrast, the model parameters
of the bottleneck network require nonlinear optimization methods, which
are inherently nonunique.
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4.4 Estimate for Dimension of Data Set. Our approach provides an
objective means for estimating the dimension of the manifold from which
the data are sampled. Standard PCA measures the distribution of data in
a subspace of the ambient space and is thus an unreliable estimate of the
manifold dimension. Also, the bottleneck, or autoassociative, network ar-
chitecture for implementing nonlinear PCA does not provide a direct means
to estimate the dimension of a data set.

4.5 Estimate for Complexity of the Approximation. The number of pa-
rameters required by the network may be estimated as a function of k∗. To
this end, it can be shown (see Broomhead & Kirby, 2000) that

ν
def=

√
1 + k2

φ‖W‖2(nc + 1) >
1
k∗ ,

where kφ is the Lipschitz constant of φ, nc is the number of RBF centers,
and ‖W‖ is the two-norm of the weight matrix W. This quantity ν is a
characteristic of the RBF and may be a useful measure of the complexity of
the network.

4.6 Application to Problems of Very High Dimension. Given that the
reduction mapping P is linear and the nonlinear component of the inverse is
approximated when P has been fixed, it follows that the size of ambient di-
mension that this network can reduce is far greater than fully nonlinear bot-
tleneck networks. In addition, the nonlinear mapping has a d-dimensional
domain and an r − d dimensional range where r is the rank of the data
matrix.

5 Projecting Noisy Data

Depending on the application, it can be the case that the data set to be
compressed has been corrupted by noise. Noise that perturbs data points
so that they are no longer on their manifold leads to uncertainty in the
directions of the secants. As a result, direct application of the methodology to
data with noise needs some care. Here we propose an approach for dealing
with noise that amounts to filtering the smallest secants, the ones most
affected by the noise.

The motivation for this approach is made clear by analyzing the effect of
noise on a given secant. If we assume that the noise is isotropic with compact
support (as would be the case with quantization noise, for example), then
each point may be associated with a hypersphere of radius ε, which defines
the region within which the point with the noise added is assumed to lie.
Joining two points, each of which has added noise, forms a set of possible
secants consisting of all lines between the hyperspheres associated with each
point. For example, in two dimensions, the secant may now be visualized
as being generated by a “dumbell” configuration, as shown in Figure 1.
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k
ε

a

k + b − a

b

Figure 1: Let k be the secant between two data points. If the points have uni-
formly distributed added noise, they may be displaced in the directions a and
b, respectively. The new vector k + a − b represents the noise-perturbed secant.
The points a, b may be any points in the corresponding hyperspheres, drawn
here in two dimensions.

To determine the potentially destructive effect of the noise on our good
projection, we estimate the maximum angle between possible secants in
the dumbbell. Writing α = b − a, we have the unit secant (k + α)/‖k + α‖.
The largest possible angle between two secants would arise if α = 2εε̂ and
α′ = −2εε̂, as shown in Figure 2; here ε̂ is a unit vector perpendicular to k.
From elementary trigonometry, it follows that

sin θ = 4ε‖k‖
‖k‖2 + 4ε2 . (5.1)

For the small noise case we may assume ε � ‖k‖ and hence θ is near zero;
there is essentially no uncertainty concerning the true direction of the secant.
As the magnitude of the noise increases (i.e., the radius of the hypersphere
about each data point gets larger), we see that the maximum angle between
potential secants increases (see Figure 3). We conclude from equation 5.1

2ε

2ε

α

α′

‖k‖θ

Figure 2: Maximum perturbation of the secant results may be represented geo-
metrically as a triangle where the added noise vectors α and α′ are in opposite
directions.
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Figure 3: The two pairs of concentric circles represent differing levels of noise for
two data points. The smaller noise level, represented by the solid lines, produces
a maximum angle θ1 between extreme secants. The dotted lines correspond to
a larger noise level and show a greater uncertainty for the true direction of the
secant. Here the noisy secant could differ from the actual by an angle of θ2.

that in the worst case, that is, when ‖k‖ = 2ε, the secants could actually be
perpendicular.

It is apparent from the above arguments that the orientation of the short-
est secants generated by the data is most sensitive to additive noise. Thus,
we propose a filtering procedure, which amounts to removing the secants
shorter than a cutoff value from the set of secants �. One might anticipate
that as long as it is large enough, the actual value of the cutoff parameter is
not critical given our goal is a good projection rather than an optimal one.

6 Illustrative Examples

6.1 Data on the Boundary of a Pringle. We begin with a simple, easily
visualizable problem for which the PCA basis produces a bad (not one-to-
one) projection of the data set. The boundary of a pringle, as shown in the
left of Figure 4, is an embedding of the circle in R3 and is defined as the
triplet (sin θ, cos θ, sin 2θ). It may be argued analytically that the projection
onto the two most energetic secant PCA basis vectors produces the circle in
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Figure 4: (Left) Example of a one-dimensional manifold embedded in R
3. (Mid-

dle) Projection on the best two secant basis vectors, along the z-axis. (Right)
Projection onto the best two data PCA vectors, along the y-axis.

the middle of the figure, while the projection onto the two most energetic
data PCA vectors produces the lemniscate on the right (Broomhead & Kirby,
2000). Although the PCA projection is not invertible, the secant basis gives
an embedding of the pringle in two dimensions.

Now we add uniform noise with compact support—points from the in-
terval [−0.1, 0.1], to the pringle (see top left of Figure 5). The top-right figure
shows the set of unit secants for the pringle data with no added noise. These
are confined to four segments, the complement of which—the region where
permissible projections can be found—consists of two four-fold stars cen-
tered at the north and south poles. The bottom-left figure shows the set of
unit secants for the noisy pringle data. The effect of adding noise is to spread
the unit secants over the whole sphere, filling in the admissible regions for
projections in the neighborhood of the poles. Our analysis in section 5 sug-
gests that these troublesome unit secants are derived from secants with small
norm. We filter the data by removing all secants with length smaller than
1.8. This number was determined empirically to ensure that the effect—the
north and south poles becoming significantly devoid of secants—was visi-
ble in Figure 5. The principal component basis constructed from the filtered
unit secants produced an admissible projection in the polar region that was
skewed away from the pole due to nonuniformity in the distribution of the
unit secants.

Next we applied the adaptive secant basis algorithm to determine an
improved projection for this data. The adaptation procedure rotated this
direction until it was essentially colinear with the z-axis. In this case, the
adaptive algorithm actually found the optimum projection.

6.2 Case Study: A Noisy Circle in 32 Dimensions. In this section we
present the results of applying the WRN to a synthetic data set consisting of
a narrow pulse moving with unit velocity on a circle: g(x − t) where g(θ) =
g(θ + 2π). In the absence of noise, these data are topologically a circle—that
is, a one-dimensional manifold—in a high-dimensional function space. If
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Figure 5: (Top left) Uniform noise on interval [−.1, .1] added to curve. (Top
right) Unit secant set for noise-free data. (Bottom left) Associated secants for
curve with uniform noise added. (Bottom right) Filtered secant set.

we approximate g as a traveling gaussian pulse and add a noise term, we
get a set of functions whose space-time translational symmetry has been
broken:

g(x, t) = e−(t−x)2/γ + η(x, t).

The noise term η(x, t) has been added to test the robustness of the WRN
for data that do not reside exactly on a manifold. For this purpose, two
data sets (labeled I and II) were generated by adding normally distributed
noise with variances 0.025 and 0.05 (and zero mean) to the traveling pulse
(see Figure 6). Taking γ = 25, the function was sampled at 32 points in
the x-direction at half-integer intervals and at 128 points in the t-direction
at integer intervals. The resulting data matrices have size 32 × 128. Thus,
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Figure 6: (Top) Right traveling wave data corrupted with normally distributed
noise with zero mean and variance 0.025. (Bottom) Right traveling wave data
corrupted with normally distributed noise with zero mean and variance 0.05.

the ambient space for the data is R32, and the data matrix has full rank
n = 32, regardless of the level of the added noise. The noisy data sit only
approximately on a one-dimensional manifold (m = 1), and we propose
to determine the actual number of dimensions required in the WRN for
reconstruction to within the level of the noise.1

6.2.1 Learning Phase I: Finding a Good Basis. The application of PCA to
translationally invariant data produces sinusoidal eigenvectors. In addition,
it has been shown that the principal components of the secants of translation-
ally invariant data are also sinusoidal (Broomhead & Kirby, 2000). Hence,
for translationally invariant data, the bases produced by PCA on the data
and the secants are identical.

1 In the absence of noise, these data reside on a one-dimensional manifold (m = 1),
which may be reduced to R

3 (and possibly R
2, although now we cannot expect that suitable

projections are open dense) and reconstructed without loss by Whitney’s theorem.
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When noise is added to translationally invariant data, the result is data
that are no longer translationally invariant. As a result, the adaptive secant
algorithm now produces basis vectors that differ significantly from the si-
nusoids. (Note that the unadapted secant basis is still essentially sinusoidal
until mode 7, and the PCA on the data produces similar eigenvectors.)

To compare the results of the adapted secant basis algorithm, with mini-
mum secant norm filtering and without, see Figure 7a. This plot shows the
smallest dimension for which the minimum norm of the projected secants
is above the selected tolerance k∗ = 0.5 as a function of the adaptation it-
eration. The secant basis was adapted with no secant filtering (top curve)
and with a secant cutoff of 0.25 (bottom curve) for data set I. The adapted
secant algorithm with filtering reduces the reduction dimension from 14
to 3. Without filtering, the adaptation reduces the required dimension only
to 12. The results for data set II (not shown) show a similar improvement
through adaptation. The filtering of the secants produced a 5-dimensional
basis, while the unfiltered data set produced a 12-dimensional adapted ba-
sis. Thus, while added gaussian noise appears to increase the reduction
dimension, the proposed secant filtering procedure does greatly mitigate
this problem. Indeed, the 3-dimensional reduction suggested by Whitney’s
is obtained with tolerance to k∗ = 0.3.

The performances of the PCA data basis, the PCA secant basis, and the
adapted PCA secant bases are compared in Figure 7b. The adapted secant
basis is clearly superior at maximizing the minimum projected norm. Thus,
the projection onto this basis will produce the best-conditioned inverse.
The basis produced by the PCA of the data actually will lead to a seriously
ill-conditioned inverse with poor generalization capabilities.

To examine geometrically the difference between the adapted secant basis
and the PCA data (and secant) basis of Fourier vectors, we have plotted
the time evolution of the first four one-dimensional subspaces, or space-
time modes, for the adapted secant basis. Specifically, Figure 8 shows the
discrete space-time modes obtained by projecting the data onto the one-
dimensional subspaces associated with the most important adapted secant
basis vectors. These adapted space-time modes are seen to have markedly
different profiles from those obtained with PCA on the data or secants (i.e.,
Fourier modes).

6.2.2 Learning Phase II: The Well-Conditioned Inverse. In this section, we
examine the results of data reconstructions for several different projection
dimensions and bases. According to equation 3.7, the reconstruction of the
data consists of the sum of two components: the linear inverse, or demap-
ping, p = Û1p̂, which is accomplished by reverting the projected data back
to their original coordinates, and the nonlinear inverse, which approximates
q by the RBF as q̃ = Û2 f̃ (p̂). The results presented here serve to illustrate
this linear-nonlinear decomposition, as well as to highlight the difference
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Figure 7: (a) Minimum projection dimension that achieves tolerance k∗ = 0.5
as a function of adaptation iteration for data set I. (b) Minimum norm of the
projected unit secants of data set I as a function of dimension for several bases,
For secant bases, a minimum secant cutoff = 0.25 was used. The results were
similar for data set II.
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Figure 8: Projection of the right traveling wave onto the one-dimensional sub-
spaces of the first four adapted secant singular vectors.

between the parameterization and encapsulation of the data set. The exam-
ples that follow pertain to data set I, as described above.

Adapted secant PCA basis d = 2. This example employs the adapted secant
basis for which the minimum projected secant norm onto two dimensions
is approximately 0.4. Thus, by construction, the dimensionality of the data
will be preserved and the inverse mapping will be well conditioned with
a Lipschitz contant less than 2.5. The linear reconstruction term p = Û1p̂ is
displayed at the top of Figure 9. Given the large deviation from the original
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Figure 9: (Top) Two-dimensional linear demapping of the right traveling wave.
Variance 0.025, secant basis with cutoff = 0.025. (Middle) Two-dimensional non-
linear demapping (only) of the right traveling wave. (Bottom) Two-dimensional
full reconstruction of the right traveling wave, that is, the superposition of the
linear and nonlinear demapping layers.

data, we see that two dimensions will not span, or encapsulate, the data
without significant residual. The nonlinear component of the inverse—the
RBF approximation to q defined as q̃ = Û2 f̃ (p̂)—is shown in the middle of
Figure 9. Here the RBF is a mapping from PX ∈ R2 → R30, so the non-
linear component of the reconstruction is not to the full original ambient
space, but rather to the smaller null space of the projector P. The full re-
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construction x̃ = p + q̃ is shown at the bottom of Figure 9, and the relative
error ‖x − x̃‖/‖x‖ was approximately 0.03, suggesting the data have been
reconstructed roughly to the noise level. In fact, for data set I, ‖η‖/‖g‖ was
approximately 0.024. No attempts were made here to optimize the location
of the centers in the RBF reconstruction. In fact, 12 centers were simply
selected at random from the data.

Data PCA data basis d = 3. Our second example employs a basis pro-
duced by the PCA of the data matrix. Retaining three dimensions results
in a linear reconstruction with a 38% relative error. However, the minimum
projected secant norm onto this basis is approximately 0.04 (see Figure 7b)
and significantly worse than for the adapted secant basis. This relatively
poor conditioning manifested itself in the approximation of the nonlinear
term, which was much more difficult to compute than for the adapted secant
basis, and considerable effort was needed to achieve an error comparable
to that obtained above.

6.3 The Rogues Gallery Problem. As another illustrative example, we
consider the application of the WRN to the Rogues Gallery problem, the
low-dimensional characterization of snapshots of human faces. The appli-
cation of the Karhunen-Loève (KL) procedure, or data PCA, for the repre-
sentation of digital images of faces was introduced in Sirovich and Kirby
(1987). Since this time, this basic work has been extended in several di-
rections, for example, the construction of symmetric eigenpictures (Kirby
& Sirovich, 1990), three-dimensional eigenfaces (Atick, Griffin, & Redlich,
1996), and eigenpictures with incomplete data (Everson & Sirovich, 1995).
The implicit assumption in these investigations is that the data reside in a
subspace of significantly lower dimension than the ambient space. The pur-
pose of (data) PCA is then to find an optimal set of spanning eigenvectors,
or eigenpictures, to represent the data such that the mean square error is a
minimum.

It is possible, however, that the points associated with a family of images
lie on a submanifold rather than a subspace. In this situation, the repre-
sentation of the data may be achieved via the WRN. Again, the goal is to
construct a nonlinear parameterization for the images by computing a graph
of the surface on which the data lie. To test the effectiveness of the Whitney
architecture to the problem of the representation of high-dimensional im-
ages, we applied the procedure to an ensemble of 200 faces. Note that since
we seek to represent the faces as the graph of a function, our approach is
fundamentally different from the fully nonlinear approach in Cottrell and
Metcalfe (1993).

The images were normalized for lighting as in Sirovich and Kirby (1987)
and Kirby and Sirovich (1990), and the background was eliminated par-
tially by constructing 310 × 380 pixel cameos. In Figure 10, we have shown
the results, in terms of the original image coordinate system, of the lin-
ear, nonlinear, and full reconstruction, and compare them to the original
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Figure 10: (Top left) Linear reconstruction p using a 10-dimensional secant basis
projection. (Top right) Nonlinear RBF reconstruction q̃ from the 10-dimensional
secant subspace to its 190-dimensional orthogonal complement. (Bottom left)
Total reconstruction x̃ = p + q̃. (Bottom right) Original mean-subtracted image.
The data in this example came from the Vail schoolchildren data set (provided
by Walter Bender of MIT). This figure origininally appeared in Kirby (2001) and
is reprinted with permission.

image. Here the data are all mean subtracted. It is clear that a 10-dimensional
projection onto the secant basis when linearly reconstructed is visually a
poor approximation to the original data (this statement remains true for
the projection onto the first 10 KL eigenpictures—data PCA). However, by
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virtue of the fact that we have imposed the constraint equation 3.3 on the
projection, we are assured of a lossless reconstruction. Indeed, the nonlinear
mapping, again constructed using RBFs, provides the detail as the image of
this projection (see the top right of Figure 10). The success of the full recon-
struction confirms that the projection is indeed invertible (see the bottom
left of Figure 10). The secant PCA basis performs only slightly better than the
data PCA basis when compared in terms of the minimum projected secant
norm criterion. The minimum projected secant norm for a 10-dimensional
projection was 0.30 for the secant PCA basis and and 0.18 for the data PCA
basis. These numbers indicate that 10 is a reasonable number of dimensions
for the projection, as invertibility is guaranteed for the entire data set. The
similar performance of these two bases is very likely due to the fact that
such a small data set (200 images) was used. A 10-dimensional subspace
is very large for just 200 points, and thus it is easy to find a projection that
is invertible. Significantly more data are required to compare the perfor-
mance of the different methods as well as to establish firmly whether the
face data actually lie on a surface. Nonetheless, this example successfully il-
lustrates the goal of obtaining an invertible projection in a high-dimensional
setting.

7 Conclusion

We propose the WRN as a method for data reduction especially suited to
problems where the data are sampled from an m-dimensional manifold
residing in an high-dimensional ambient space. Theoretical insight is pro-
vided by Whitney’s theorem, and the architecture is motivated by its con-
structive proof. A key idea is that a linear reduction mapping coupled with a
nonlinear inverse is mathematically all that is required to compress the data
on a manifold of dimension m to dimension 2m + 1, although the ambient
dimension may be very large.

In addition, a projection that optimizes the conditioning of the inverse
mapping is proposed. This approach ensures good generalization proper-
ties of the inverse. The examples demonstrate that the method is effective
for globally representing data on a manifold, even in the presence of noise.
The preliminary results on digital images of faces indicate that this archi-
tecture scales well to problems of higher dimension but that, as expected,
correspondingly large amounts of data are required.
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