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Abstract. In previous papers we have developed an approach to the data reduction problem which is based on a well-known,
constructive proof of Whitney’s embedding theorem [Broomhead, D. S. and Kirby, M., SIAM Journal of Applied Mathematics
60(6), 2000, 2114–2142; Broomhead, D. S. and Kirby, M., Neural Computation 13, 2001, 2595–2616]. This approach involves
picking projections of the high-dimensional system which are optimised in the sense that they are easy to invert. This is done by
considering the effect of the projections on the set of unit secants constructed from the data. In the present paper we discuss the
implications of this idea in the case that the high-dimensional data is generated by a dynamical system. We ask if the existence
of an easily invertible projection leads to practical methods for the construction of an equivalent, low-dimensional dynamical
system. The paper consists of a review of the secant-based projection method and simple methods for finding good representations
of the (nonlinear) inverse of the projections. We then discuss two variants of a way to find the dynamical system induced by a
projection which lead to quite distinct numerical approximations. One of these is developed further as we describe various ways
in which knowledge of the full dynamical system can be incorporated into the approximate projected system. The ideas of the
paper are illustrated in some more or less simple examples, which range from a simple system of nonlinear ODEs which have
an attracting limit cycle, to low-dimensional solutions of the Kuramoto–Sivashinsky equation which need many Galerkin modes
for their description.
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1. Introduction

We are interested in dynamical systems which are defined on high-dimensional spaces, but which have
low-dimensional attractors. As this volume will attest, there has been considerable activity directed
towards finding reduced descriptions of such systems. The motivation for this research is due, at least
in part, to the observation that many apparently complicated physical phenomena exhibit a tendency
towards self-organization (see, e.g., [1, 2] and also [3] for an interesting biological perspective). For
example, the existence of coherent structures is thought to be a direct consequence of such organizing
tendencies [4]. Mathematically, we may examine the situation from a geometric viewpoint and imag-
ine that the data representing a given process resides in (or traverses) a high-dimensional vector space.
The effect of the self-organization is to limit the volume of space occupied by the data of the process.
This being the case, it is possible that the restricted region of state space might be approximated by a
subspace or a submanifold within which intrinsically low-dimensional descriptions may be sought –
and found.

The existence of inertial manifolds for dissipative partial differential equations has given a sound
mathematical foundation to the dynamical system reduction problem [5]. Moreover, this work sug-
gests that nonlinear extensions to reduction methods may provide the key for extracting optimal inertial
forms. Analytical approaches for the construction of approximate inertial manifolds have been proposed
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see, e.g., [6–10]. Such approaches are distinguished by the fact that they employ analytical approxima-
tions such as gaps in the distribution of eigenvalues of linear operators for determining the number of
parameterizing modes.

This paper, in contrast, deals with what we refer to as a semi-analytical approach in that we directly
incorporate information about the geometry of the solution sets into the model. To illustrate this idea,
consider the example of the Navier–Stokes system of nonlinear partial differential equations. These
equations possess the blueprint for fluid motion, yet are intractable and have no known analytical
solution [11]. It is through the acquisition of data associated with a specific parameter, via simulation
or experiment, that the geometry of the solution space is revealed. However, general techniques of
numerical simulation for such problems – finite difference methods and spectral methods, for example
– do not exploit this knowledge of phase space; in fact, they are designed to model the whole space
at every time-step. Thus, even low-dimensional phenomena, e.g., periodic solutions, may require the
evolution of millions of equations.

It is not widely known, but research on the semi-analytical, or empirical–analytical, reduction of
dynamical systems using Empirical Orthogonal Eigenfunctions (EOFs) was apparently initiated in
[12]. The lack of citations of this paper may be due in part to the negative conclusions it drew; hardly
surprising given the then limited availability of the computer resources essential to such investigations.
Despite this early pessimism, a significant amount of successful effort has now been expended in the
empirical computation of reduced systems. The series of seminal papers by Sirovich nicely illustrate
these ideas [13–15] and still serve as an excellent introduction to the field. Additional papers in this
vein include [16–18]. The optimal linear methods employed in these investigations were referred to
as the Karhunen–Loève (KL) Decomposition – originally proposed in [19] – or, alternatively, as the
Proper Orthogonal Decomposition – described in [20, 21]. Note also the independent work of Lorenz
who proposed the technique of EOFs that motivated Sellers [22]. These methods are all well-known to
be related to the singular value decomposition where the left or right singular vectors are computed as
the eigenvectors of the appropriate covariance matrix,1 see, e.g., [23]. Given the nature of this volume,
we stop short here, and will not attempt a broad review of the literature, but will focus on outlining the
work that directly influenced this current investigation.

Following the early successes in the construction of reduced dynamical systems, many interesting
questions arose. For example, there is the deceptively simple question concerning how such reduced
models characterize limit cycles. Ignoring issues concerning transients, the matter is rather straight-
forward if the limit cycle resides in a two-dimensional linear subspace, i.e., a plane. On the other
hand, if the limit cycle has energy in many different modes as observed in the Kuramoto–Sivashinsky
equation [24], then linear approaches for the reduction of the dynamics are essentially doomed to
failure as no linear transformation can transport the dynamics to a plane. Such one-dimensional man-
ifolds can, however, be transported nonlinearly and globally to planes [25]. Nonlinear transforma-
tions are very effective but equally hard to calculate, especially for more complicated dynamics [26,
27]. Thus, one may appeal to local theory and construct an atlas of charts for representing dynamics
[28, 29].

The approach we take in this investigation is based on Whitney’s theorem which states that m-
dimensional manifolds may be parameterized by (2m + 1)-dimensional linear subspaces. Thus, this
paper proposes a new approach for constructing optimal global models of dynamical systems that are
evolved in the parameterisation subspace for the attracting set. Further, we demonstrate that a reasonable
level of sophistication may be obtained by the incorporation of dynamical features of the original model

1 It is worth noting that computation via such products can reduce the numerical accuracy [32].
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using a set of constraint equations. Like all of the reduced order models, we propose that this geometric
view, which exploits the intrinsic dimension of the data set, has many significant advantages which
center on the fact that low-dimensional representations are considerably easier to investigate than their
high-dimensional counterparts.

2. Whitney’s Theorem and Empirical Reduction

Our main tool will be global projection onto a linear subspace. Our motivation for taking such a simple
approach is that there are a variety of results which ensure the existence of faithful – in various senses –
projections of low-dimensional sets. In the case that the low-dimensional set is (a subset of) a compact
submanifold, say M (dimM = m), of some ambient space, the Whitney embedding theorem [30]
(see also [31]) provides the necessary foundation by asserting the existence of an embedding of M in
R

2m+1.
The basis of the proof of Whitney’s theorem is a recursive argument about the (n − 1)-dimensional

set of projections πv̂ : R
n → R

n−1 for suitably large n. Here the projections are parameterised by the
unit vector v̂ which can be thought of as spanning the kernel of πv̂ (see Figure 1). The set of possible v̂s
which correspond to distinct projections is the projective (n − 1)-space, Pn−1. The proof demonstrates
that – given M is a submanifold of R

n (this can always be arranged, given a large enough n) – there is an
open dense subset of Pn−1 for which the corresponding projections of M are invertible. This property
holds – and, therefore, successive projections can be found – while n > 2m + 1. The theorem ensures
that the inverse of any such projection is as smooth as the manifold itself.

This result has implications about the way that M can be represented in the ambient space, R
n .

Imagine decomposing R
n into two parts by writing a general point in R

n as (x, y) were x ∈ R
n−1 and

y ∈ ker πv̂ . In the case that πv̂ is an embedding of M, then for each x ∈ πv̂M there is unique value
y such that (x, y) ∈ M. In fact, the manifold can be thought of as the graph of a smooth function
g : πv̂M ⊂ R

n−1 → R

M = {(x, g(x)) | x ∈ πv̂M ⊂ R
n−1} (1)

This simple argument provides the foundation of the approach we shall take: it will be assumed
that there is data restricted to a low-dimensional submanifold of a higher-dimensional ambient space;
a projection of this which is smoothly invertible will be sought; and the function g will be found by

Figure 1. The projection of the data along direction v̂. Here k̂ represents the unit secant associated with the points x and y.
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some suitable fitting method. In principle, the projection process can be done recursively, reducing the
dimensionality by one at each step. However, as we shall describe in Section 3, it is generally more
convenient to find the projection in one step. The argument can clearly be generalised to this case. We
denote the chosen projection as πd : R

n → R
d for some d < n and the corresponding inverse as

π−1
d := (id, g) where g : πdM → R

(n−d).
The Whitney Embedding Theorem gives conditions for the existence of a large (open dense) set of

projections which are embeddings of M. Our approach is to search this set for projections which are
particularly easy to invert. In this semi-analytic approach, finding the inverse of a projection is a matter
of fitting the mapping from projected data to unprojected data. The ease with which this can be done
can be related to how ill-conditioned the mapping is. Since we are dealing with smooth manifolds, we
know that the inverse function – and, therefore, the function g : πdM → R

(n−d) – is Lipschitz; that is,
there exists a finite constant Kπd such that

‖(x, g(x)) − (y, g(y))‖ ≤ Kπd ‖x − y‖

for all x, y ∈ πdM ⊂ R
d . This can readily be rewritten as an inequality condition on the corresponding

projection

‖πd x − πd y‖ ≥ κπd ‖x − y‖ (2)

for all x, y ∈ M. For our purposes κπd = K −1
πd

≤ 1 will be taken as a measure of how well-conditioned
the inverse of the projection is; the larger that κπd is, the more slowly varying is the inverse, and the
easier it is to fit the function g.

3. Secant-Based Projection Methods

The set of bad projections is the set of projections which are not injective. (The set of non-immersive
projections is also bad, but can be thought of as the boundary of this set.) For simplicity, let us return
to the case of finding a good projection πv̂ : R

n → R
n−1. The set of non-injective projections consists

of those which are parameterised by unit vectors, v̂, which are members of �, the set of unit secants of
the manifold

� =
{

x − y

‖x − y‖ : ∀x, y ∈ M, x 	= y

}

If we introduce the equivalence relation v̂ ∼ −v̂ then we can consider that � ⊂ Pn−1. The central plank
of Whitney’s theorem is a proof that – given the hypotheses of the theorem – � is actually nowhere-
dense in Pn−1. In fact, taken with the immersive part of the proof, the closure of this set, �̄, is shown
to be nowhere dense in Pn−1.

Let us choose a projection πv̂ where v̂ /∈ �̄, and consider its effect on the unit secants of M. Since
�̄ is compact we can define the following quantity for any v̂ /∈ �̄

κv̂ = mink̂∈�̄ ‖πv̂ k̂‖ > 0 (3)

Given the value of κv̂ for a particular projection, we have

‖πv̂x − πv̂ y‖ ≥ κv̂‖x − y‖ (4)
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for all x 	= y ∈ M. This is (a special case of) the inequality given in Equation (2); by considering the
effect of the projection on the unit secants of M we have a direct approach to estimating the Lipschitz
constant of the inverse of the projection. In practise, we will look for orthogonal projections from R

n

to R
d . In this case the kernel of each projection is an (n − d)-dimensional linear subspace of R

n . The
generalisation to this case is then a matter of looking for a good – or optimal – kernel. In the following
we describe two approaches to this problem.

3.1. A MAXIMIN ALGORITHM

The first approach is a search for good projections rather than the unique optimum. This relies on
satisfying a point-wise criterion

‖πd k̂‖2 ≥ κπd (5)

for some suitable choice of κπd . (For this purpose we use, ‖ · ‖2, the usual Euclidean norm.) Satisfaction
of this criterion is necessary for the projection to be admissible in the sense of Whitney’s theorem and
has the added feature of ensuring an inverse mapping that is Lipschitz with constant Kπd ≤ 1/κπd . Thus,
for example, picking κπd = 0.1 makes Kπd ≤ 10. This point-wise criterion has, therefore, considerable
appeal from the point of view of our general approach. It allows us to impose a constraint on the steepness
of the inverse map that we have to fit when reconstructing the dynamics in the full, high-dimensional
state space of the system.

Adaptive Basis Algorithm

– Compute the initial basis by applying KL to the data set of unit secants.
– Determine the smallest dimension d such that ‖πd k̂‖2 ≥ κπd for all k̂ ∈ �.
– Find the set S of all bad secants defined by

S = {k̂ ∈ � : ‖πd−1k̂‖2 < κπd }.
– Update the covariance matrix via Equation (6) above and find new basis: repeat.

We have proposed in [33, 34] an adaptive basis algorithm that seeks to optimise the pointwise
criterion given by Equation (5). The foundation of this algorithm is the KL expansion of the set of unit
secants. Assume that we have N secants which we think of as n-dimensional vectors. Formally, the KL
method uses the diagonalisation of the covariance matrix of these N n-dimensional vectors to find a
d-dimensional orthogonal basis such that the projection of all N vectors onto this basis minimises the
mean square projection error. Actually, our algorithm simply uses this least squares solution as a starting
point. The norms of all of the projected unit secants are computed and those secants whose lengths are
reduced to less than κπd are treated as a bad set. A new covariance matrix is computed which weights
the secants of this bad set more strongly; in this way the method iteratively improves the projection
by rotating its kernel to increase the projected norm of the secants that failed the test. This iteration
proceeds according to

�k+1 =
(

1 − α

N

)
�k + α

|S| SST (6)
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where �k is the weighted covariance matrix at the kth step, and S is a matrix whose columns are the unit
secants which failed the test at the kth step. The notation |S| indicates the number of columns of S and α

is a positive parameter which scales the weighting given to the bad secants in the new covariance matrix.
Note that the test for bad secants occurs at the maximum rank of the projection for which Equation (5)
is violated.

3.2. OPTIMIZATION OVER GRASSMAN MANIFOLDS

Here we2 propose a new approach for finding optimal projection matrices that employs some relatively
recent developments in geometric optimization theory on Stiefel and Grassman manifolds [35].

Orthogonal projectors of rank d are built on matrices whose columns are a set of orthonormal basis
vectors, U = [u(1)|u(2)| · · · |u(d)], so that πd = UU T. We have described above how a point-wise cost
function may be associated with the quality of the projection that produces our reduced system. Here we
propose an alternative approach that employs a smooth cost function, F(U ), where we seek an optimum
U which is constrained such that U TU = Id×d . Using the terminology of Edelman et al. [35] we are
looking for a minimum of F over the set of orthonormal matrices U . This set of constraints actually
forms a surface named the Stiefel manifold that consists of all the n × d orthonormal matrices.

In fact, we are interested in a subspace of dimension d = 2m + 1 (or less), rather than a particular
orthonormal basis. The actual mathematical object of interest is therefore the Grassman manifold
obtained from the Stiefel manifold by equivalencing all the orthonormal matrices whose columns span
the same linear space. (The Grassman manifold, let us call it G(n, d), can be thought of as the set of
d-dimensional linear subspaces of R

n . Using this notation, the projective space, Pn−1, introduced in
Section 2 is G(n, n − 1).) For the purposes of parameterizing our manifold, M, we may employ the
homogeneity assumption that

F(U ) = F(U Q)

where Q is any d × d orthogonal matrix.3 This builds in the fact that we are interested in the subspace
and are not directly concerned with the coordinate system up to a rotation.

Thus we propose to minimize the smooth cost function

F(U ) = 1

|�|
∑
k̂∈�

1

‖UU Tk̂‖2
(7)

Like the point-wise optimization criterion given by Equation (5), small projections of unit secant norms
are heavily penalized.

It has been shown in Edelman et al. [35] that geodesics on the Grassman manifold have a closed
analytic form that is convenient for computation, i.e., the geodesic for orthonormal matrices is

Y (t) = (Y (0)V U )

(
cos �t

sin �t

)
V T

2 The work of this section was done in collaboration with J.P. Huke and will be described in more detail in a forthcoming
paper.

3 Recall that orthogonal matrices, unlike orthonormal matrices, are assumed to be square so U TU = I implies UU T = I .
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where

Ẏ (0) = U�V T

and U�V T is the compact singular value decomposition of the horizontal component of (in this case)
the gradient of F(U ). We refer the reader to [35] for details of this derivation.

We employ the conjugate gradient algorithm described in [35] in our calculations. However, to
illustrate the elegance of these ideas we have included a sample code for implementing a simple steepest
decent with line search algorithm using Matlab. Note that although the conjugate gradient method is
faster, the steepest descent version of the algorithm performed respectably.

Matlab Code for Steepest Descent on Grassmanians

for i = 2:number_iterations

[FY] = deriv_FY(Y,S);

%returns the derivatives of the cost function.

T = -(eye(size(Y,1)) - Y*Y’)*FY;

%computation of the tangent vector.

[UH, DD, VH] = svd(T,0);

best_eps = fminbnd(’fncerr’,0.0001,1)

%Matlab line search code.

%line search via call to cost function subroutine.

DH = best_eps*diag(DD);

DC = diag(cos(DH));

DS = diag(sin(DH));

Y = Y*VH*DC*VH’+UH*DS*VH’;

%evaluation of basis on geodesic.

end

3.3. EXAMPLE

We conclude this section with a simple example. Consider the following map of the circle P : S1 → R
3

where θ �→ (sin θ, cos θ, sin 2θ ). The pringle set P = P(S1) ⊂ R
3, which is shown in the upper left of

Figure 2, is an embedding of the circle and will beM in this example. If we imagine the projection of this
set into a plane, then since 2 < 2m + 1 = 3, we note that �̄ is not nowhere dense in P2 (see the bottom
of Figure 2). There are, however, projections which are not in �̄ and are thus invertible. Some of the
possibilities are shown in the upper part of Figure 2. In the upper middle of the figure, we have the optimal
projection in the sense of Equation (5) with the largest possible choice of κπd , while to the right of this the
minimum projected secant norm is clearly zero. This example originally appeared in [33] and additional
pathologies of improperly picked projections are illustrated there, including the loss of immersivity.

4. The Induced Dynamics in the Projected System

4.1. BASIC FORMALITIES

Let us assume that we are given data which represents a dynamical process in some high-dimensional
state space. Given that this data can be considered to lie in a low-dimensional submanifold of the
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Figure 2. Examples of projections of P = P(S1) onto two-dimensional linear subspaces of R
3. Left: An example of a one-

dimensional manifold embedded in R
3, i.e., the image of S1 under the action of P. Middle: The invertible projection onto the

vectors that maximize the minimum projected secant norm, i.e., along the z-axis. Right: The non-invertible projection onto the
best two vectors in the KL or POD sense, i.e., along the y-axis. Bottom: A sample of the set of unit secants.

state space, we want to describe here how it may be used to estimate an equivalent low-dimensional
dynamical system. We shall describe two variants of a basic approach to this, which – for our purposes
– differ in the way that numerical approximation enters the result.

Assume that we have direct access to, let us say, an ODE which is the governing equation for a
process:

u̇ = F(u(t))

where F : R
n → R

n describes analytically the vector field generating trajectories defined on the
high-dimensional space. Assume also that we have a (good) projection

πd : R
n → R

d

which has been derived from the data, or may be known a priori. Then, there is a well-established
method by which an equivalent low-dimensional dynamical system can be obtained. This is based on
using the projection to decompose a state u ∈ R

n (for the rest of this section we shall drop the subscript
from πd )

u = πu + (In×n − π )u
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and to separate the ODE to give

dπu

dt
= π ◦ F(πu + (In×n − π )u) (8)

and

d(In×n − π )u

dt
= (In×n − π ) ◦ F(πu + (In×n − π )u).

Given the assumption that the data lies in an m-manifoldM and that, suitably restricted, the projection
is invertible:

π−1 : πM ⊂ R
d → M ⊂ R

n

it is possible to close Equation (8). In this slightly generalised situation the smooth function correspond-
ing to that used in Equation (1) is

g : πM ⊂ R
d → (In×n − π )M

such that π−1x = (x, gx). Using this in Equation (8) gives

dπu

dt
= π ◦ F(πu + g ◦ πu). (9)

In practice, the application of this formula requires that there is an explicit expression for the function
g. This is likely to be obtained by fitting the relationship between the projected and the unprojected data
using, for example, a radial basis function expansion [23, 36]. When integrating the resulting ODE in
R

d , we see that everything is known explicitly except the function g which is given approximately by
the data fitting procedure. It is implicit in this formulation that each time the vector field of the projected
dynamical system is evaluated it is by means of an evaluation of F where the argument is obtained by
lifting to R

n using g.

4.2. A MODIFIED APPROACH

In this section we propose a modification to the procedure described in the previous section. In
Equation (9) the vector field induced by the projection has the form

π ◦ F ◦ π−1 (10)

Here the explicit appearance of the inverse projection indicates the lifting into R
n . As a practical issue,

this involves doing calculations in R
n on each occasion that the numerical algorithm for integration

has to evaluate the vector field. Here we suggest an alternative approach which makes this lifting step
unnecessary by evolving the trajectories completely within the projected space. To this end, we introduce
the mapping f which has the property

π ◦ F = f ◦ π
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where f : R
d → R

d is the vector field transported to the projected space. Mathematically, since we
are assuming that the projection is smoothly invertible, we recognise that Equation (10) could be taken
as a definition of f . However, by writing f in this way we see that Equation (9) can now be recast in a
form which makes no explicit reference to R

n

dπu

dt
= f (πu). (11)

Of course, the problem now is that, although we know F , we do not know f explicitly. It turns out
in this case that we need to find a fitted approximation for f ; this can be done because we do know f
explicitly at the projected data points. Assuming that we have data {uk ∈ R

n : k = 1, . . . , K } on the
attractor, we know F(uk). Given the good projection π then

f (πuk) = π ◦ F(uk).

We are, therefore, in a position to construct an interpolation of f in R
d , using, for example, radial basis

functions [23, 36].
In the examples given later, the class of models we actually use consists of radial basis functions

augmented with global linear terms

f̂ (x) = Lx +
J∑

j=1

w jφ(‖x − c j‖) (12)

Here the set of points {c j ∈ R
d : j = 1, . . . J } is a set of suitably chosen fixed centres which give the

basis functions for the expansion by translation of the argument of a suitable, real-valued function φ.
The coefficients of the d × d matrix L and the w j ∈ R

d are disposable parameters, chosen to give the
least squares solution of the equations

f̂ (πuk) = π ◦ F(uk)

where the index k, which runs from 1 to K , labels the data on the attractor.
This problem may be summarised as follows

y = A1w (13)

Here y is a K × d matrix whose rows are the vectors π ◦ F(uk). The structure of A1 takes account of
the fact that we have a mixture of a polynomial and radial basis function fit; A1 is a K × (d + J ) matrix
which has composite rows consisting of the concatenation of a vector πuk with a vector (φ(‖πuk −
c1‖, . . . , φ(‖πuk − cJ ‖)). Similarly, w is a (d + J ) × d matrix which has the coefficients of LT as its
top d × d block and the rest consisting of J rows which are the vectors w j . Standard numerical linear
algebra routines can be used to solve this problem.

4.3. INCLUDING MORE INFORMATION

In principle, we have much more information about the projected vector field than simply the values
f (πuk). Is it possible to incorporate this into the fitting process? For example, the time-ordered positions
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of the projected points should be consistent with the projected vector field; we might like to require that
the integration of the projected vector field would have a trajectory that passed through – or, at least,
close to – the projected data points in the correct order. Can we find a fit, f̂ , that takes account of this
requirement?

If the model data is initially generated via a numerical integration scheme (or may be approximated
as such) then we may impose this assumption in the reduced space. For example, in [37] it was assumed
that the data could be produced by a Runge-Kutta algorithm. Here it is more convenient to restrict our
attention to multi-step methods that use the projected vector field in a linear manner

pk+1 =
T −1∑
t=0

αt f (pk−t ).

Here the αt are known parameters which characterise the particular algorithm being used. Replacing f
with the radial basis function interpolation f̂ , and inserting the known projected points {πuk} we obtain

πuk+1 = L
T −1∑
t=0

αtπuk−t +
J∑

j=1

w j

T −1∑
t=0

αtφ(‖πuk−t − c j‖) (14)

which we interpret as a linear equation for the coefficients of L and the weight vectors w j ; the same
quantities as appeared in Equation (13). Therefore we have a second linear least squares problem

ỹ = A2w (15)

where, as before, w is a (d + J ) × d matrix which has the coefficients of LT as its top d × d block and
the rest consisting of J rows which are the vectors w j . In this case, ỹ is a K × d matrix whose rows
are the vectors πuk+1. The structure of the matrix, A2 can be inferred from Equation (14). (As with the
case of A1, its form takes account of the mixture of basis functions used for the fit.)

A further, potentially useful, source of information about the projected vector field is the derivative
DF(x). The importance of this is that it can provide local information in the neighbourhood of the
attractor. If, for example, the attractor of F were to be a limit cycle we would see a circle in the reduced
space and hope to be able to interpolate the vector field, f , based on points on the circle. In principle,
the f̂ so constructed would have an invariant circle; there would be nothing, however, to ensure that
this would be attracting, and hence the integration in the reduced space would not necessarily be stable.
Incorporating knowledge of DF could resolve this problem.

The fitting of the derivatives in this example is equivalent to another least squares problem. In this
case we require the derivative of the radial basis function model f̂

D f̂ (x) = L +
J∑

j=1

w j Dφ(‖x − c j‖) (16)

(where the derivatives can be calculated explicitly before doing any numerical work). We can now set
up a new linear least squares problem:

D f̂ (πuk) = π ◦ DF(uk)
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where the right-hand side can be found from knowledge of F and the data points. Again, the index k
runs from 1 to K labelling the data on the attractor, and we can write the whole problem in the familiar
form:

ȳ = A3w (17)

In summary we have proposed that three interpolation problems be solved simultaneously, namely a
radial basis function fitting of
– the low-dimensional vector field f ,
– the numerical integrator, and
– the derivative of the vector field.
These conditions may be simultaneously satisfied by solving a set of equations of the form

Aiw = ai

where the Ai are the matrices appearing in Equations (13), (15) and (17), and a1 = y, a2 = ỹ and
a3 = ȳ.

To set up the simultaneous solution of these problems we introduce a weighted objective function
defined as follows:

E2(w) =
∑

i

βi E2
i (w)

where

E2
i (w) = ‖ai − Aiw‖2

and the βi are parameters representing the importance we attach to the different pieces of information
being incorporated in the final model. Formally we may derive normal equations from this, the solution
of which may be written

w =
( ∑

i

βi AT
i Ai

)−1 ∑
i

βi AT
i ai .

Let us define wi to be the weights that would be obtained by solving the individual normal equations

AT
i Aiwi = AT

i ai .

Introducing these above we get

w =
( ∑

i

βi AT
i Ai

)−1 ∑
i

βi AT
i Aiwi .

This result suggests that we can solve the individual fitting problems separately to obtain the wi and
then compute w by interpolating between these values using weightings based on the βi . If we define

Pi =
( ∑

i

βi AT
i Ai

)−1 ∑
i

βi AT
i Ai
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then we may write the solution for the weights which satisfy the fitting problems simultaneously as

w =
∑

i

Piwi .

Note that

∑
i

Pi = 1.

5. The Dynamical Pringle Example

This section contains a very simple example which illustrates many of the issues discussed earlier. It is
based on a skew product system of ODEs which has a limit cycle attractor in the form of the pringle set
considered earlier. We show how the base dynamics can be obtained by projection and the application
of a suitable fitting procedure to the data.

The system of equations we shall consider is:

dx

dt
= y (18)

dy

dt
= −x − (x2 + y2 − 1)y (19)

dz

dt
= −λz + 2(λxy + ω(x2 − y2)) (20)

where λ > 0 and ω are parameters. This system is in the form of a skew product where the base dynamics
are in the (x, y)-plane. It is easy to prove that this system has an attracting limit cycle which is the pringle
set P . The basin of attraction of this is the whole of R

3 \ {0}. In Figure 3, a numerically integrated

Figure 3. The convergence of a trajectory to the pringle attractor.
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trajectory of this system is shown. The transient behaviour, showing convergence of the trajectory to P
is evident.

5.1. NUMERICAL RESULTS

For these computations, Equations (18)–(20) were integrated numerically (using the Mathematica
NDSolve function). The differential equation was integrated initially for 1500 time units to ensure
that sufficient convergence to the attractor. The data consisted of 700 points in R

3 sampled uniformly
in time (sampling interval 0.01 time units); this time interval corresponds to just over one period of the
pringle limit cycle. In addition, numerical values of the Jacobian at each sample point were computed.

In Example 3.3, we established that the secant method finds the optimum projection of data distributed
on the pringle set (see also [33]). For the purposes of this calculation, therefore, this optimum projection
was used (it corresponds to taking the first two components of each of the data points). The values of
the projected vector field were computed at each of the data points and these used in a least squares
radial basis function estimation of the projected vector field. The radial basis function fit used a model
of the form shown in Equation (12); the linear part L is a 2 × 2 matrix. The centres were placed on a
regular lattice in the plane which extended beyond the region occupied by the projected data.

In Figure 4, we see the results of integrating a simple radial basis function fit – using the model given
in Equation (12) with cubic functions (φ(r ) = r3) – of the projected vector field. In this case the centres
were distributed on a 7×7 lattice as shown in the figure and the fitted model gives a good representation
of f , the vector field induced by projecting Equations (18)–(20). The fitted vector field has an attracting

Figure 4. Numerical integrations of the fitted projected vector field corresponding to Equations (18)–(20). In this case the radial
basis function model fitted consisted of cubic functions (φ(r ) = r3) and a 7 × 7 square lattice of centres (positions marked by
crosses in the figure), as well as a 2 × 2 linear part L . The solid dots indicate two integrated trajectories with initial conditions
inside and outside the projected limit cycle. We see that the vector field has an attracting limit cycle which is indistinguishable
from the projected pringle data.
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Figure 5. Numerical integrations of the fitted projected vector field corresponding to Equations (18)–(20). In this case the radial
basis function model fitted consisted of cubic functions (φ(r ) = r3) and a 6 × 6 square lattice of centres (positions marked by
crosses in the figure), as well as a 2 × 2 linear part L . The solid dots indicate an integrated trajectory with initial conditions
inside the projected limit cycle. It is clear that the convergence to the limit cycle is very weak here – and may even be due to
numerical artifact. The open circles correspond to integrated trajectories for a vector field obtained by including information
about the Jacobian (see text) in the radial basis function fit. In this case we see that the vector field has an attracting limit cycle
which is indistinguishable from the projected pringle data.

limit cycle solution which clearly has a substantial basin of attraction and is very close to (on the scale
of the figure, indistinguishable from) the projected pringle data.

Figure 5 shows the results of two kinds of computation. In the first case the standard fit of the projected
vector field was carried out but this time using a 6×6 square lattice of centres. Here the fit fails to capture
adequately the fact that the vector field should have an attracting limit cycle. However, when the Jacobian
data is allowed to have a small weighted contribution to the fit, the resulting vector field again has an
attracting limit cycle. Like that shown in Figure 4, the attracting limit cycle solution has a substantial
basin of attraction and is, on the scale of the figure, indistinguishable from the projected pringle data.

6. A Kuramoto–Sivasinsky Limit Cycle Example

The Kuramoto–Sivashinsky (K–S) equation

ut + 4uxxxx + α

(
uxx + 1

2
(ux )2

)
= 0 (21)

is an appealing partial differential equation for the study low order models as it has been shown to
possess finite dimensional dynamics [38–40]. Furthermore, the parameter α essentially serves as a
dimensionality control, in the sense that the larger the α the larger the dimension of the phase-space of
the solution.
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We generate data for this problem in the usual manner, i.e., by decomposing the velocity field using
the expansion

u(x, t) =
∞∑

−∞
an(t)einx . (22)

Figure 6. Numerical integrations of Equations (25)–(27) in physical coordinates u(x, t) for α = 84.25. The transients corre-
sponding to t = 0, . . . , 0.04 are shown on the left sampled every 0.0002 units. The stable limit cycle is shown on the right for
t = 0.4, . . . , 0.42. In graphical units time goes from 0, . . . , 2000 and the interval 2π is divided into 64 intervals.
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The Fourier coefficients an are found by employing the standard orthogonality relationship∫ 2π

0 eikx e−i j x dx = 2πδ j,k . Carrying out this procedure gives

∞∑
n=−∞

(ȧn(t) + (4n4 − αn2)an(t))einx − α

2

( ∞∑
n=−∞

nan(t)einx

)2

= 0 (23)

Applying the orthogonality condition and truncating the expansion results in

ȧl(t) = (αl2 − 4l2)al(t) + α

2

N∑
n=−N+l

(l − n)nal−nan (24)

where −N ≤ l ≤ N . Making use of the reality condition al = ā−l and the fact that the a0 term decouples
from the system gives

ȧl = l2(α − 4l2)al + α

2

l−1∑
n=1

(l − n)nal−nan − α

2

N−l∑
n=1

(l + n)nal+nān + α

2

N∑
n=l+1

(l − n)nān−lan (25)

where 2 ≤ l ≤ N − 1 and for l = 1

ȧ1 = (α − 4)a1 + α

2

N∑
n=2

(1 − n)nān−1an − α

2

N−1∑
n=1

(1 + n)nānan+1 (26)

and l = N

ȧN = N 2(α − 4N 2)aN + α

2

N∑
n=1

(N − n)naN−nan (27)

Figure 7. The two-dimensional optimized projection of the Fourier coefficients associated with the numerical integrations
displayed in Figure 6. This integration corresponds to t = 0, . . . , 0.5.
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6.1. NUMERICAL RESULTS

The 10-dimensional complex Fourier–Galerkin approximation to the Kuramoto–Sivashinsky equations
(25)–(27) was integrated in this study using Matlab’s variable order integration routine ODE113. The
initial conditions a1(0) = a2(0) = 1 + i were employed and the solution integrated for t = 0, . . . , 0.5
which resulted in 50000 samples in C

10 or, equivalently, R
20. The routines for computing the 20 × 20

Jacobian matrix were also implemented in Matlab in terms of the 20-dimensional real system generated
by the complex coefficients. Results of this integration are show for both transient (left) and limit cycle
(right) segments in physical coordinates in Figure 6.

6.1.1. The Projected Dynamics
We now propose to determine a reduced order model of the 20-dimensional dynamics of the Kuramoto–
Sivashinsky equation displayed in Figure 6. If we restrict our attention to data that has converged

Figure 8. Top: the solid dots represent data on the limit cycle projected from R
20 to R

3. The ‘×’ mark the locations of the 88
centers of the scattered basis functions covering both transient and cycle data. Bottom: The results of numerically integrating
the three-dimensional reduced system using Gaussian radial basis functions. We see that the field is faithfully reproduced for an
initial condition off the limit cycle.
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to the limit cycle (as shown in right of Figure 6) we obtain a two-dimensional projection with a
minimum projected secant norm κπd = 0.98. Note this norm has been maximized using the conjugate
gradient optimization algorithm over Grassman manifolds as discussed in Section 3.2. While this two-
dimensional linear subspace captures the limit cycle the transients now intersect as shown in Figure 7.

Given the intersection of the projected transient trajectories in two dimensions we seek to model
the radial basis function ODE in three dimensions. Here we obtain a minimum projected secant norm
κπd = 0.1 where the transient data has now been included. Certainly the inverse mapping, if needed,
will be more difficult to fit on the transient data but a Lipschitz constant of 10 is still reasonable. We
emphasize that this inverse is not required for the evolution of our reduced order model dynamical
system.

One advantage of radial basis function models as that they are appropriate for mapping scattered data
where the domain is a subset of a high-dimensional space. In this example the radial basis function
mapping is f : R

3 → R
3. Rather than use a potentially large three-dimensional lattice we have opted

to place the centers of the functions on the limit cycle as well as at points in the transient data. See the
top of Figure 8 where the solid dots represent actual data and the crosses show the placement of the
radial basis function centres. In this example the conditioning of the problem was also improved by
employing Gaussian radial basis functions φ(y) = exp(−y2) in contrast to the previous example where
cubic functions were employed. At the bottom of Figure 8, we see the result of integrating the dynamical
system starting with a point off of the limit cycle. Note that the transient here is well modelled in that
the trajectory converges to the appropriate limit cycle.

7. Conclusion

We have presented an essentially new empirical approach for the dimensionality reduction of dynamical
systems. Our approach is motivated by Whitney’s theorem for representing data on (possibly subsets of)
manifolds. We show a general algorithm for constructing a bilipschitz mapping such that the Lipschitz
constant of the nonlinear inverse is optimally small. We present alternatives for computing the projection
of the model based on maximin and smooth optimization criteria.

The power of the data reduction method presented here is that the resulting model is defined completely
in terms of the parameterization space and lifting the data back to the ambient space is not required as
in other approaches for computing approximate inertial manifolds. One novel aspect of the approach
presented here is that we demonstrate how dynamical information such as the Jacobian of the original
analytical system may be built into the reduced system. We demonstrate the effect on our pringle model
system as well as a high-dimensional limit cycle associated with the Kuramoto–Sivashinsky equation.
These examples serve to illustrate variations in the method including lattice based versus cluster based
RBF models for the vector field.

Note that the reconstruction of the dynamical models back to their original ambient coordinate systems
is certainly possible using methods such as radial basis functions and has been described elsewhere [23,
33, 34].

In future work we propose to explore larger systems with more complicated attracting sets. In instances
where we undertake the reconstruction of the dynamics, it will be possible to envision combining our
approach with the actual lifting of the trajectories to form a hybrid predictor corrector integrator. This
paper is the result of the evolution of many algorithms for computing reduced order models and has
several theoretical and algorithmic features that we feel make it an approach of potentially significant
interest.



66 D. S. Broomhead and M. J. Kirby

Acknowledgements

This research has been partially supported by the National Science Foundation award DMS 9973303
and DOD USAF Office of Scientific Research, Contract # FA9550-04-1-0094.

References

1. Kohonen, T., Self-Organization and Associative Memory, Springer, Berlin, 1984.
2. Linsker, R., ‘Self-organization in a perceptual network’, Computer 21, 1988, 105–117.
3. Kelso, J. A. Scott, Dynamic Patterns : The Self-Organization of Brain and Behavior, MIT Press, Boston, MA, 1995.
4. Peitgen, H.-O., ‘Hartmut Jürgens, and Dietmar Saupe’, Chaos and Fractals: New Frontiers of Science, Springer, New York,

1992.
5. Constantin, P., Foias, C., Nicolaenko, B., and Temam, R., Integral Manifolds and Inertial Manifolds for Dissipative Partial

Differential Equations, Springer, Berlin, Heidelberg, New York, 1989.
6. Jauberteau, F., Rosier, C., and Temam, R., ‘The nonlinear Galerkin method in computational fluid dynamics’, Applied

Numerical Mathematics 6, 1989/1990, 361–370.
7. Jolly, M. S., Kevrekidis, I. G., and Titi, E. S., ‘Approximate inertial manifolds for the Kuramoto-Sivashinsky equation:

Analysis and computations’, Physica D 44, 1990, 38–60.
8. Marion, M. and Temam, R., ‘Nonlinear Galerkin methods’, SIAM Journal of Numerical Analysis 26, 1990, 1139–1157.
9. Foias, C., Sell, G. R., and Temam, R., ‘Inertial manifolds for nonlinear evolutionary equations’, Journal of Differential

Equations 73, 1988, 309–353.
10. Sirovich, L., Knight, B. W., and Rodriguez, J. D., ‘Optimal low-dimensional dynamical approximations’, Quarterly of Applied

Mathematics XLVIII, 1990, 535.
11. Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon Press, New York, 1959.
12. Sellers, W. D., ‘A statistical-dynamic approach to numerical weather prediction’, Science Report No. 2, Statistical Forecasting

Project 2, MIT, Cambridge, MA, 1957.
13. Sirovich, L., ‘Turbulence and the dynamics of coherent structures, Part I: Coherent structures’, Quarterly of Applied Mathe-

matics XLV(3), 1987, 561–571.
14. Sirovich, L., ‘Turbulence and the dynamics of coherent structures, Part II: Symmetries and transformations’, Quarterly of

Applied Mathematics XLV(3), 1987, 573–582.
15. Sirovich, L., ‘Turbulence and the dynamics of coherent structures, Part III: Dynamics and scaling’, Quarterly of Applied

Mathematics XLV(3), 1987, 583–590.
16. Aubry, N., Holmes, P., Lumley, J. L., and Stone, E., ‘Models for coherent structures in the wall layer’, Journal of Fluid

Mechanics 192, 1988, 115–172.
17. Rodriguez, J. D. and Sirovich, L., ‘Low-dimensional dynamics for the complex Ginzburg–Landau equation’, Physica D 43,

1990, 77.
18. Berkooz, G., Philip, H., and Lumley, J. L., ‘The proper orthogonal decomposition in the analysis of turbulent flow’, Annual

Review on Fluid Mechanics 25, 1993, 539–575.
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