Detecting strange attractors in turbulence. .

Floris Takens.

1. Introduction.

Since [19] was written, much more accurate experiments on the onset of
turbulence have been made, especially by Fenstermacher, Swinney, Gollub and Benson
[6,8,9,10]. These new experimental data should be interpreted according to [19] in terms
of strange attractors, or they should falsify the whole picture given in that paper. For
such interpretations one uses in general the so-called power spectrum. It is however not
at all clear how to reconstruct the "strange attractors’ from a power spectrum (with continuous
parts); even worse : how can one see whether a given power spectrum (with continuous

parts) might have been "generated' by a strange attractor? In this paper I present

procedures to decide whether one may attribute certain experimental data, as in the onset
of turbulence, to the presence of strange attractors. These procedures consist of
algorithms, to be applied to the experimental data itself and not to the power spectrum;

in fact, I doubt whether the power spectrum contains the relevant information.

In order to describe the problems and results, treated in this paper, in
more detail, I shall first review the ideas of [19], also comparing them with those
eposed by Landau and Lifschitz [13], in relation with the flow between two rotating
cylinders. It was this same experiment which was carried out to great precision by

Swinney et.al. [6,8,10].

It should be noted that the discussion in [19] is not restricted to this
situation but should also be applicable to other situations where an orderly dynamic
changes to a chaotic one; see [8) for a discussion of some examples. Also, our

present discussion should be applicable to these cases.

The Taylor-Couette Experiment.

We consider the region D between two cylinders as indicated in figure 1.
In this region we have a fluid. We study top c in
its motion when the outer cylinder, the @
top and bottom are at rest, while the inner
cylinder has an angular velocity . p is - G out
some fixed point in the interior of D. For

a number of values of §, one component

bottom
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of the velocity of the fluid at p is measured as a function of time. In [19] the idea was
the following : for each value of §} the set of all "possible states" is a Hilbert space Hﬂ
consisting of (divergence free) vector fields on D satisfying the appropriate boundary

conditions (these vector fields represent velocity distributions of the fluid). For each £

there is an evolution semi-flow

Q
{wt- Ho ™ Q}EIR - {t€ R|t=z0},

R Q
such that if X € HQ represents the state at time t = 0 then <pt (X) represents the state at
0

time tO We assume that for all values of Q under consideration, there is an "attractor"
Aﬂ < HQ to which (almost) all evolution curves <p (X) tend as t = ®, (At this

point we don't want to specify the term "attractor'.) A and © IAQ then describe the

Q
asymptotic behaviour of all evolumon curves @ X). Roughly the main assumptions in

[19] could be rephrased as : |A behaves just as an attractor in a finite dimensional

&
differentiable dynamical system. In more detail, the assumption was that for all values
of {§ under consideration there is a smooth finite dimensional manifold Mn < Hn, smoothly

depending on £, such that :

i) MQ is invariant in the sense that for X € MQ, <p?(X) €M

Q 4

(ii) MQ is attractive in the sense that evolution curves (pt(X), starting outside MQ tend
to Mn fort = o ;

(iii) the flow, induced in MQ by (psz, is smooth, depends smoothly on §} and has an

attractor A
Q

Some justification for this assumption was given by Marsden [15,16]. Apart
from this we used genericity assumptions : if ZQ denotes the vector field on MQ which is
the infinitessimal generator of <0t IMQ, we assume (MQ’ZQ) to be a generic one-parameter
family of vector fields. (If however the physical system under consideration has
symmetry, like the case of the Couette flow, then a same type of symmetry must hold
for MQ, (p? , and hence for Zn. In this case genericity should be understood within the

class of vector fields having this symmetry; see [18].)

In the Landau-Lifschitz picture, one assumes that the limiting motion (or

attractor) is quasi-periodic, i.e. of the form
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2wt 2miw,t
@?(X) = fn(X,ale ,aze 2 yees )

where W, and 2, depends on §) and where for each I only a finite number of a is

non-zero. One can imagine that, as more and more a; become non-zero, the motion

gets more and more turbulent.

Also in this last description we have a smooth finite dimensional manifold as

attractor, namely an n-torus, but such attractors do not occur for generic parameter

values of generic one-parameter families of vector fields. It should be noted however

that for generic one-parameter families of vector fields there may be a set of parameter

values with positive measure for which quasi periodic motion occurs; see [11].

This n-torus attractor has topological entropy zero and its dimension is an
integer. On the other hand "strange attractors™ have in general positive entropy and
often non-integral dimension. Hence it would be important to determine entropy and

dimension of attractors from 'experimental data".

In view of the experiment just described, we have to add one more point to
out formal description, namely we have to add the function (observable) from the state
space to the reals giving the experimental output (when composed with (p‘:(X) ). In the
present example of the Taylor-Couette experiment, this function yn:HQ - IR assigns to
each X € Hﬂ the measured component of X(p). As far as the asymptotic behaviour is
concerned, we only have to deal with yQ|Mﬂ (or with yﬂlAﬂ)' Since Mﬂ depends

smoothly on £ all MQ are diffeomorphic and so we may drop the € .

Sumnmarising, we have a manifold M with a smooth one-parameter family of
vector fields Zﬂ and a smooth one-parameter family of functions ye: For a number of
values of € the function ya(qo?(x)) is known by measurement (for some X in or near
M which may depend on §; t,otn'denotes here the flow on M generated by ZQ. The point is
to obtain information about the attractor(s) of Z a from these measurements, i.e. from
the functions t » yn(¢‘:(x)). For this we shall allow ourselves to make genericity

assumptions on (M’Zﬂ’ ,X).

'
We shall prove that under suitable genericity assumptions on (M’ZQ’ Vey X)
the positive limit set L+(x) of x is determined by the function yn(<P t(x)). In our "main

theorem" in section 4 we describe algorithms which, when applied to a sequence
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{ai' = yﬂ«oé}, i(x))}iljl , N sufficiently big, will give an approximation for the dimension
of L (x), respectively for the topological entropy of ¢2|L+(x). This leads in principle
to a possibility of testing and comparing the hypothesis made by Landau-Lifschitz [13]
and Ruelle-Takens [19]; see the observation at the end of section 4. The author
wishes to acknowledge the hospitality of the department of mathematics of Warwick
University and the many discussions with participants of the turbulence and dynamical

systems symposium there during the preparation of this paper.

2. Dynamical systems with one observable.

Let M be a compact manifold. A dynamical system on M is a diffeomorphism
©M — M (discrete time) or a vector field X on M (continuous time). In both cases the
time evolution corresponding with an initial position XO € M is denoted by (pt(xo) . in the
case of discrete time t € IN and Cﬁi = ((p)i; in the case of continuous time t € R and

tr qot(xo) is the X integral curve through XO.

An observable is a smooth function y:M ~ R. The first problem is this :
if, for some dynamical system with time evolution (,Dt, we know the functions tw y((Pt(X)),
x € M, then how can we obtain information about the original dynamical system (and
manifold) from this. The next three theorems deal with this problem. (After the
research for this paper was completed, the author was informed that this problem, or at
least parts of it, was also treated by other authors, see [1,17]. Since out results are
in some sense somewhat more general we still give here a treatment of the problem

independent of the results in the above papers.)

Theorem 1. Let M be a compact manifold of dimension m. For pairs ©@,y), 2 M~ M
a smooth diffeomorphism and y:M = R a smooth function, it is a generic property that
2m+1

the map tIﬁ((p y):M - R , defined by

B,y = GO0 YOE) -, v )

2
is an embedding; by "smooth” we mean at least C".

Proof. We may, and do, assume that if x is a point with period k of ¢, k < 2m + 1,
all eigenvalues of (d(Pk)X are different and different from 1. Also we assume that no two
different fixed points of ¢ are in the same level of y. For ¢(<p to be an immersion near a

fixed point x, the co-vectors (dy)x, d(yq))x, . ,d(y(pzm)X must span T;(M). This is the case
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for generic y if dp satisfies the above condition at each fixed point.

In the same way one proves that @ is generically an immersion and even

@,y)

an embedding when restricted to the periodic points with period <2m + 1. So we may

assume that for generic (0, 3—7) we have : <P((£’ 3—7), restricted to a compact neighbourhood V

of the set of points with period <2m + 1 is an embedding; for some neighbourhood U of

-’ y 1¢
@y @,y -
(©,vy) € U, arbitrarily near (o,y), @(

)|V is an embedding whenever (p,y) € U. We want to show that for some

is an embedding.
©,y) &

For any point x € M, which is not a point of period <2m + 1 for o, the
co-vectors (d§)x,d(§@)x,d(§¢2)x, . ..,d(5_7<pzm)x € T*(M) can be perturbed independently by
perturbing 3_1 Hence arbitrarily near 3—7 there is 3:7 such that (<;J,§:7) € U and such that

47@ ;) is an immersion. Then there is a positive € such that whenever 0 < p(x,x') < €,
d- =(x)#P- = (') pis some fixed metric on M. There is even a neighbourhood
©,y) gp’ Y)( s P g

U< U of (¢,y) such that for any (@,y) € U', ¢<p 9 is an immersion and ¢(¢ y)(x) #

y)(x') whenever x # x' and p(x,x') = €. From now on we also assume that each

¢
(@,
component of V has diameter smaller than €.

Finally we have to show that in U' we have a pair (¢,y) with <I>(<p 9) injective.
For this we need a finite collection {Ui}ii\]l of open subsets of M, covering the closure of
2m -

M\ {jQO (pJ(V)}, and such that :

(i) for eachi=1,...,Nand k = 0,1...,2m, diameter ((;)-k(Ui)) <€

(i) for each i,j = 1,...,N and k,1 = 0,1,...,2m, é'k(Ui) N U # 0 and J:Z(Ui)n U 9

L;

imply that k

(iii) for <E>J(X) €M\ (U Ui)’ j=0,...,2m,x' € V and p(x,x') > €, no two points of the
i

- _2 - -
sequence X,P(X), ..., m(x),x',go(x'), . ,<P2m(x‘) belong to the same Ui'

Note that (ii) implies, but is not implied by

(ii)' no two points of the sequence X,(Z)(x), . ..,(;'sz(x) belong to the same Ui .

We take a corresponding partition D\i} of unity, i.e., ?\i is a non-negative function with

N

=1

support [ji and ; ki(x) =1 for all x € M \ V. Consider the map
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2 2mt
M x M x RS+ RZPT xR Ghich is defined in the following way

¥(x,x, € e ) =(@- = )(x),CP -’;E)(x‘)), where ¢ stands for (61,...,8N) and

ry’N @y, @
=y+ I Eiki . We define WC M X Mas W = {(x,x) € M xM|p(x,x') 2 ¢ and not
i=1

<1

€

N
both x and x' are in int(V)}. ¥, restricted to a small neighbourhood of Wx{0} in (MxM) xR ,

2m+1 X 2m+l

is transverse with respect to the diagonal of R R . This transversality

. . . . . N .
follows immediately from all the conditions imposed on the covering {Ui}i—l' From this
transversality we conclude that there are arbitrarily small € € R such that

YWx{e}) N A =@. If also for such an s—,(g—o,;é) € U’ then <P((5 ; ) is injective and hence
an embedding. £

This proves that for a dense set of pairs (¢,y), @ is an embedding.

@,y)
Since the set of all embeddings is open in the set of all mappings, there is an open and
dense set of pairs (¢,y), for which ¢(<p 9 is an embedding. This proves the theorem.

Remark. This theorem also works for M non-compact if we restrict our observables to

be proper functions.

Theorem 2. Let M be a compact manifold of dimension m. For pairs (X,y), X a
2
smooth {i.e., C) vector field and y a smooth function on M, it is a generic property that
2m+l
QX,y M ~ R“™ , defined by q)X,y(X) = (y(x),y((pl(x)), . ..,y(gozm(x)) is an embedding,
where (pt is the flow of X.

Proof. The proof of this theorem is almost the same as the proof of theorem 1. In

this case we impose the following generic properties on X :

(i) if X(x) = O then all eigenvalues of (d(pl)X : TX(M) - TX(M) are different and different

from 1;
(ii) no periodic integral curve of X has integer period S2m + 1.

In this case @ satisfies the same conditions as (;-J in the previous proof. The rest of

the proof carries over immediately,

The next theorem is only included for the sake of completeness; it will not

be used in the sequel of this paper.
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Theorem 3. Let M be a compact manifold of dimension m. For pairs (X,y),X a smooth
vector field and y a smooth function on M, it is a generic property that the map
. 2m+1

@’X’y:M - R , defined by

2m
d d
& 0 = Ge.q 0@ Ml g 7 e, Ml _o)

is an embedding. Here (Dt again denotes the flow of X; this time, smooth means at least
2m+l
C .

Proof. Also this proof is quite analogous to that of theorem l. First we may, and do,
assume that a generic vector field X has the property that whenever X(x) = 0, all
eigenvalues of (dX)X are different and different from zero. Sing(X) denotes the set of

points where X is zero; this set ig finite.

As in the proof of theorem 1, for such a vector field X the set of functions
y:M = R such that EX is an immersion and, when restricted to a small neighbourhood

of Sing(X), an embedding, is residual.

Finally, to obtain an embedding for (X, y), 3—/ near y, we don't need an open
covering in the present case. One can construct directly a map VoV in some finite

dimensional vector space V, which is the analogue of Ve with the following properties :

(ii) for x € Sing(X), the l-jet of v, is independent of v;

(iii) for x,x' & Sing(X), x # x' the map
2m  2m | L 2m 2m
SRR (VRS g%

L L . 2m .
has a surjective derivative for all (x,x") in v = 0; ] X(M) is the vector space of

2m-jets of functions on M in x; jim(v) is the 2m-jet of yV in x.

Using y, one defines a map

2m+1
m « IRZmH

M xMx V- R as before .

The rest of the proof of theorem 1 now carries over to the present situation.
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From the last three theorems it is clear how a dynamical system with time
evolution <pt and observable y is determined generically by the set of all functions
t - y((pt(x)). In practice the following situation may occur : we have a dynamical system
with continuous time, but the value of the observable y is only determined for a discrete
set {0, &, 20, ...} of values of t; @ > 0. This happens e.g. in the measureménts of the
onset of turbulence [6,8,9,10]. Also instead of all sequences of the form
{y((pia(x))};o , x € M, we only know such a sequence for one, or a few values of x
(depending on the number of experiments) and these sequences are not known entirely
but only for i =1, ,I\_J for some finite but big N (in [6], N = 8192 = 213). In this
light we should know whether, under generic assumptions, the topology of, and dynamics

in the positive limit set

Lix) = (x' € MlEt == with @ (0 = x')
i

[=+]
of x is determined by the sequence {y((,oi a(x))}i—o . This question is treated in the next
, =
theorem and its corollary; in later sections we come back to the point that these

sequences are only known up to some finite N.

Theorem 4. Let M be a compact manifold, X a vector field on M with flow (,ot and p

a point in M. Then there is a residual subset CX,p of positive real numbers such that
for a € CX,p’ the positive limit sets of p for the flow @, of X and for the diffeomorphism
¢pa are the same. In other words, for o € CX,p we have that each point q € M which
is the limit of a sequence ¢pt.(p), lti € R, ti - +=, is the limit of a sequence (pn..a(p),

i i
niélN, ni—~°°.

+
Proof. Take q € L (p). For £ a (small) positive real number define

Ce q = {a>0 |¥n€ N, such that p((pIl a(p)’ q) <e}, p is some fixed metric on M.

Clearly Ca q is open; it is also dense. To prove this last statement we observe that for
- 2 - - - -

any o > 0 and € > 0, there is a point of Ce q in (&, + ¢) if and only if there is a

’

t € (n.&,n.(o_t-i-s_)) with p((pt(p), q) < ¢ for some integer n. The existence of such t follows
from the fact that for big n the intervals (n.&,n.(& + é)) overlap (in the sense that for
big n, n.(& +8)> (u+1).a and the fact that there are arbitrary big values of t with

p<<pt(p). q) <e.

Since C is open and dense we can take for C

- -
:, IR+Jr the following

Xp

q
residual set CX,p = i,?;l Cl q. where {qj} is a countable dense sequence in L+(p).
P
i
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Corollary 5. Let M be a compact manifold of dimension m. We consider quadruples,
consisting of a vector field X, a function y, a point p, and a positive real number «.
For generic such (X,y,p,a) (more precisely : for generic (X,y) and a satisfying generic
conditions depending on X and p), the positive limit set L+(p) is "diffeomorphic’ with

2m+l
the set of limit points of the following sequence in R o

{(y(¢k’a(p)), Y@ t1y.q @ y((p(k+2m).a(p)))}k=0

The meaning of "diffeomorphic” should be clear here : it means that there is a smooth

2m+l1 +
embedding of M into R m mapping L (p) bijectively to this set of limit points.

For further reference we remark that the metric properties of

@
{<Pi a(p)}i:O < M, with {(Di oz(p)} as a sequence of distinguished points are the same as

© 2m+l
ibi}. <R with ibi} as a sequence of distinguished points :

2m+1

b, = (y(wi_a<p)),~--,y(<o PN €R

(1+2m). o
These metric properties are the same in the sense that distances in M and

. . . 2m+1 . . . .
the corresponding distances in R have a quotient which is uniformly bounded and

bounded away from zero.

3. Limit capacity and dimension.

There are several ways to define the notion of dimension for compact metric
spaces. The definition which we use here gives the so-called limit capacity. Some
information on this notion can be found in [14]. Since this limit capacity is not well

known we treat here some of its basic properties.

Let (S,p) be a compact metric space. For & > 0 we make the following definitions
s(S,e) is the maximal cardinality of a subset of S such that no two points have

distance less than €; such a set is called a maximal €-separated set;

r(S,e) is the minimal cardinality of a subset of S such that S is the union of all

the €-neighbourhoods of its points; such a set is also called a minimal

£ -spanning set.

Note that
T(S,€) € S(5,8) S £(5,5) cevruariniin 1)
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The first inequality follows from the fact that a maximal €-separated set is €-spanning.

3 .
The second inequality follows from the fact that in an 3 -neighbourhood of any point (of

s . -
a minimal 3 ~spanning set) there can be at most one point of an €-separated set.

Next we define the limiting capacity D(S) of S as

i inginlES.e)
D(S>711g50mf e = lim, inf

1n (s(8,¢) .
-ln ¢ !

the fact that the last two expressions are equal follows from (1). The notion of capacity,
or rather €-capacity, was originally used for s(S,¢). This limit capacity is strongly
related to the Hausdorff dimension, see [5 or 12], which is clear from the following
equivalent definition. Let U be a finite covering {Ui}iél of S. Then for a > 0

Da’u =i5 (diam (Ui))a. Next we define D as the infinum of D where U runs over

a,t a,u
all finite covers of S each of whose elements has diameter €. Notice that

Da,s € [r (S,e).sa,r(S,-E—).aa]. It is not hard to see that there is a unique number,
which is in fact the limit capacity D(S), such that for a > D(S), resp. a < D(S),

él_zlil) inf Da,e is zero, resp. infinite. This last definition of limit capacity goes over in
the definition of Hausdorff dimension if we replace "each of whose elements has diameter

€" by "each of whose elements has diameter Se.

For later reference we indicate a third definition of limit capacity. Let
{bi}iio be some countable dense sequence in S. For £ > 0 we define the subset ]E NN
by :

OGJE; for i > 0 :

i€ Jg if and only if for all j with 0 < j < i and j € Jg» we have p(bi’bj) 2 ¢,

Cs denotes the cardinality of Je' From these definitions it easily follows that whenever
0<e<eg',

r(S,e") = Ca < s(S,¢).
In C

Hence we may also define D(S) by D(S) = %:151(1) inf From the literature, see [12],

-In €
we know that the Hausdorff dimension is greater than or equal to the topological dimension
and from the above considerations it is clear that the limit capacity is greater than or equal to

the Hausdorif dimension. Both the Hausdorff dimension and the limit capacity depend on the metric
(and not only on the topology). If however p and p' are metrics on S such that for some constant
Cand any x,y €S, C.p{x,y) 2 p'(x,y) 2 C_l.p(x, y), then the limit capacity and the Hausdorff
dimension are the same for the metrics p and p'. In this case the metrics p and p'

are called metrically equivalent. Finally if S is a compact manifold with a metric p
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which is metrically equivalent with a metric induced by a Riemannian structure, then the

limit capacity equals the topological dimension.

Examples where the Hausdorff dimension is different from the limit
capacity were given by Mané [14]. It seems to be an open question whether a
difference between Hausdorff dimension and limit capacity can occur for positive limit
sets of smooth vector fields on compact manifolds; if the answer is no then for all our

purposes the Hausdorff dimension and the limit capacity are the same.

Contrary to the topological dimension, the Hausdorff dimension and the limit
capacity need not be integers. If we take for example for § a Cantor set in R, define

S = ﬁ 15 = ; < S, Ly 1 i
as S i=OSi where 0 f0,1]; Si+1 Si, Si has 2 intervals of length &, o < 3; and

Sth is obtained fron Si by removing in the middle of each segment of Si a segment of

length al.(l-Za). We takeas countable dense subset S the union of the left endpoints of

the intervals of Si for all i. If we compute Ce for € = al, we find C | = 2'. From

s e s o
this it is not hard to deduce that

In 2
ln &

D(S) = -

In determining the limit capacity of a closed subset of a compact manifold
it is important to note that there is only ome metric equivalence class on the manifold
which contains a metric induced by a Riemannian structure. Limit capacity is always

assumed to be defined with respect to a metric in this class.

4. Determination of dimension and entropy.

We consider the following situation : M is a compact manifold with a smooth
vector field X, a smooth function y:M = R and a point p € M. We assume that p is
part of its own positive limit set L+(p); also we assume that for some fixed o > 0, the
sequence {goia(p)}:o is dense in L+(p) and that (%z’ y) is generic in the sense of theorem
1; @, denotes the flow of X. Note that the only non-generic assumption we made on
M, X,y,p,0) is p € L+(p). This assumption can in some sense be justified : if the orbit
<pt(q) goes to an "attractor for t — «", then if we replace q by goT(q) =q, T>1, it is
almost true that q € L+(Ei). So the assumption p € L+(p) can be seen as a way to
include in the description (see the introduction) the fact that we can only start measuring

after the experiment is already going for quite a time (with fixed §).
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©
In this situation we have the sequence {ai = y(<{3i a(p))}i:O which represents
the experimental output (so for the moment we assume the experiment has been carried
out for an infinite amount of time). From this sequence we obtain subsets ]n e < IN by

the following inductive definition (see also the end of section 3) :

0€] ;fori>0:
n,e

ié€ ]n,s if and only if for all 0 < j < i, with j € ]n,s s
h=ze .

max(lai»aj], ]ai+l —aj+1 ], P lai+n_a}m

C denotes the cardinality of ]
n,t n,&g

H

-+
Main theorem. The limit capacity of L (p) equals

InC
n,€&

+ L e
D(L (p)) = 1lm (lim jnf —==)),

where IllhIE) reaches the limit value for every n 2 2(dim(M)).

. +
The topological entropy of @, IL (p) equals

InC
n, £

HL o)) = Jigp (im gup (—75))

+
where lim often (e.g. if L (p) is an expansive basic set [3]) reaches the limit value for
€

every 0 <& < 50 for some 80.

Proof. We take some N 2 2.dim(M). The map &:M - ]RNH, defined by

q+ (y@),yle @) -, y@y (D)

is an embedding. On ®(M) we use the metric

p((xO, . ..,xN), (xo, .. .,xN)) = mziix Ixi-xi

This metric is equivalent in the metric sense to any metric on ®(M) derived from a

Riemannian metric. Se we may use p to compute D(L+(p)) = D(¢(L+(p))).

The first statement in the main theorem now follows by applying section 3 to
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+
to the sequence {(Pi a(p)},:l in L (p).

+
Next we come to the determination of the topological entropy of ma\L (p)-
For this we have to find the cardinality of a minimal €-spanning set of orbits of
length n, see Bowen [2]. A minimal €-spanning set of orbits of length n of (pa is a

+
finite set {qi}iél in L. {(p) such that :

(i) for every q € L+(p) there is some 10 € I such that p(go_1 C‘(q),(pi a(qi ) <& for all

0si=n; 0

(ii) among all subsets of L+(p) satisfying (i), {qi}iEI has minimal cardinality.

Let r(n,e) be this cardinality. There is also a maximal cardinality of &-separated orbits
of length n, denoted by s(n,e) (see [1]). The entropy can now be defined as

in r(n,&)

HL ) = Limy (tim, sup 2 In(s(n, )

) = limy (lim, sup ¢ =)

If we use the metric p, defined above, we can replace s(m,€) or r(n,e) by Cn+

N E; see
»

section 3. From this we obtain :

1n(C ) In(C_ )
HL ) = lim (lim sup ey lei_r}b(lirrrll_’osoup(———l;rl*—s— ) .

Observation.  Application of this main theorem to the output of the Taylor-Couette
experiment, described in the introduction, gives some complications due to the fact that

{ai}i—l is finite in this case. For such a finite sequence one should proceed as follows:

for n,e, m with n + m £ N we define subsets Jn e m C N as follows :
s s

(i) Oé]n,s,m; fori>0:
(ii) i€ ]n,s,m if and only if both :
(a) i s m;
(b) for all j <i, j & Jn,a,m’OE}as)fq ]ai+k ) ajJrk) = e
c denotes the cardinality of J . For N = =, one would have }imC =C
n,£,m n,e,m m-® n,e,m n,g
C is non-decreasing in m. Hence it seems reasonable to take C 5 . as an
n,e,m n,&,N-n
approximation of Cn,s provided the difference between Cn,E,I\_I-n and say, Cn, E,[%(l\_l-n)]
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is sufficiently small, say of the order of 1 or 2%. In this way we have the possibility
of calculating Cn e in a certain region of the (n,&)- plane; also one should consider these

H

values for Cn e only reliable if ¢ is well above the expected errors in the measurement.
I

From these numerical values for C one should decide, on the basis of the main

+
theorem what the values of D(L (p)) and H(L (p)) are or whether the limits defining these

values "do not exist numerically”.

If, in the calculation of D(L+(p)), the %11-% would have the tendency of going
to infinity, this would imply that representing the evolution on a finite dimensional
manifold is a mistake. If on the other hand this limit would go to a non-integer, this
would be evidence in favour of a strange attractor. Namely, as we have seen in
section 3, for a Cantor set C we may have D(C) a non integer, and strange attractors

have in general a Cantor set like structure, e.g. see [3].

If the experimental data do not clearly indicate the limits in the calculation
+ +
of D{L (p)) and H(L (P)) to exist and to be finite, then both the Landau-Lifschitz and the

Ruelle-Takens picture are to be rejected as explanation of the experimental data.

Final remarks.

1. It does not seem to be known whether, for differentiable dynamical systems
the "inf' and "sup" in the definition of limit capacity and entropy can be omitted. If
they can omitted, one has a better test on the validity of the assumptions "finite

dimensional and deterministic” : also the first limit has "to exist numerically”.

2. Yorke pointed out to the author that he and others had made calculations of
limit capacities in relation with a conjecture on Lyapunov numbers and dimension for
attractors, see [7]. His calculating scheme is different from ours and probably faster.
The calculations indicate that the computing time rapidly increases with dimension, which

probably also holds for our computing scheme.

3. It should be noticed that the defining formulas for dimension and entropy

become more alike when we write them in the following form .

+ lnCn €
DL (p)) = L (lim dnf (572
lnC
H(L (o)) =lm (llm Suwp Gt £y .

lnE
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InC
n,&
n-1n €
one can see from a few examples (Anosov automorphisms on the torus and horseshoes)

If we denote by Z(n, -1n ¢) and regard both n and -ln € as continuous variables

that often &i 1 Z(a,B) exists for all positive y, forming a one-parameter family of
a/B-~y

"topologically invariants” connecting entropy with limit capacity. It would be interesting

to investigate the existence of these limits for more general attractors. This might be

connected with the above mentioned conjecture of Yorke.
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