
Contents lists available at SciVerse ScienceDirect
Signal Processing

Signal Processing 93 (2013) 1079–1094
0165-16

http://d

n Corr

E-m

ebrevdo

nevensf

hauwu@
journal homepage: www.elsevier.com/locate/sigpro
The Synchrosqueezing algorithm for time-varying spectral
analysis: Robustness properties and new
paleoclimate applications

Gaurav Thakur a,n, Eugene Brevdo b, Neven S. Fučkar c, Hau-Tieng Wu d
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a b s t r a c t

We analyze the stability properties of the Synchrosqueezing transform, a time-frequency

signal analysis method that can identify and extract oscillatory components with time-

varying frequency and amplitude. We show that Synchrosqueezing is robust to bounded

perturbations of the signal and to Gaussian white noise. These results justify its

applicability to noisy or nonuniformly sampled data that is ubiquitous in engineering

and the natural sciences. We also describe a practical implementation of Synchrosqueez-

ing and provide guidance on tuning its main parameters. As a case study in the

geosciences, we examine characteristics of a key paleoclimate change in the last 2.5

million years, where Synchrosqueezing provides significantly improved insights.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Synchrosqueezing is a time-frequency signal analysis
algorithm designed to decompose signals into constituent
components with time-varying oscillatory characteristics.
Such signals f(t) have the general form

f ðtÞ ¼
XK

k ¼ 1

f kðtÞþeðtÞ, ð1Þ

where each component f kðtÞ ¼ AkðtÞcosð2pfkðtÞÞ is a
Fourier-like oscillatory mode, possibly with time-varying
amplitude and frequency, and e(t) represents noise or
measurement error. The goal is to recover the amplitude
Ak(t) at the instantaneous frequency (IF) f0kðtÞ for each k.
. All rights reserved.

(G. Thakur),
Signals of the form (1) arise naturally in numerous
scientific and engineering applications, where it is often
important to understand their time-varying spectral
properties. Many time-frequency (TF) transforms exist to
analyze such signals, such as the short-time Fourier
transform (STFT), continuous wavelet transform (CWT),
and the Wigner-Ville distribution (WVD) [19,2,11,38].
Synchrosqueezing is related to the class of time-
frequency reassignment (TFR) algorithms, used in the
estimation of IFs from the modulus of a TF representation.
TFR methods originate from a study of the STFT, which
‘‘smears’’ the energy of the superimposed IFs around their
center frequencies in the spectrogram. TFR methods apply
a post-processing ‘‘reassignment’’ map that focuses the
spectrogram’s energy towards the IF curves and results in
a sharpened TF plot. However, standard TFR methods do
not allow for reconstruction (synthesis) of the compo-
nents fk(t) [19,20,3].

Originally introduced in the context of audio signal
analysis [15], Synchrosqueezing was recently studied
further in [14] and shown to be an alternative to the
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Empirical Mode Decomposition (EMD) method [24] with a
more firm theoretical foundation. EMD has been found to
be a useful tool for analyzing and decomposing natural
signals and, like EMD, Synchrosqueezing can extract and
delineate components with time-varying spectrum.
Furthermore, like EMD, and unlike classical TFR techni-
ques, it allows for the reconstruction of these compo-
nents. Synchrosqueezing can be adapted to work ‘‘on top
of’’ many of the classical TF transforms. In this paper, we
focus on the original, CWT-based approach studied in
[15,14], although an STFT-based alternative was devel-
oped in [44] and other variants are also possible.

The purpose of this paper is threefold. First, in Section
2, we study the stability properties of Synchrosqueezing.
We build on the theory presented in [14] and prove that
Synchrosqueezing is stable under bounded, deterministic
perturbations in the signal as well as under corruption by
Gaussian white noise. This justifies the use of the algo-
rithm in real-world cases where different sources of error
are present, such as thermal noise incurred from signal
acquisition or quantization and interpolation errors in
processing the data.

Second, in Section 3, we explain how Synchrosqueez-
ing is implemented in practice and reformulate the
approach from [14] into a discretized form that is more
numerically viable and accessible to a wider audience. We
also provide practical guidelines for choosing several
parameters that arise in this process. A MATLAB imple-
mentation of the algorithm has been developed and is
freely available as part of the Synchrosqueezing Toolbox
[8]. In Section 4, we illustrate the algorithm on several
numerical test cases. We study its performance and
compare it to some of the well known TF and TFR
techniques.

Finally, in Section 5, we visit a key question in the
Earth’s climate of the last 2.5 million years (Myr). We
analyze a calculated solar flux index and paleoclimate
records of the oxygen isotope ratio d18O, an index of
climate state, over this period. We demonstrate that
Synchrosqueezing clearly delineates the orbital cycles of
the solar radiation and provides a greatly improved
representation of the projection of orbital signals in
d18O records. In comparison to previous spectral analyses
of d18O time series, the Synchrosqueezing representation
provides more robust and precise estimates in the time-
frequency plane, and contributes to our understanding of
the link between solar forcing and climate response on
very long time scales (on the order of 10 kyr to 1 Myr).

2. The stability of Synchrosqueezing

In this section, we state and prove our main theorems
on the stability properties of Synchrosqueezing. We first
review the existing results on wavelet-based Synchros-
queezing and some associated notation and terminology
from the paper [14]. We define a class of functions
(signals) on which the theory is established.

Definition 2.1 (Sums of Intrinsic Mode Type (IMT) Func-

tions). The space AE,d of superpositions of IMT functions,
with smoothness E40 and separation d40, consists of
functions having the form f ðtÞ ¼
PK

k ¼ 1 f kðtÞ with
f kðtÞ ¼ AkðtÞe

2pifkðtÞ, where for each k, the Ak and fk satisfy
the following conditions:

Ak 2 L1 \ C1, fk 2 C2, f0k,f00k 2 L1, inf
t
f0kðtÞ40,

8t 9A0kðtÞ9rE9f0kðtÞ9, 9f00kðtÞ9rE9f0kðtÞ9 and

f0kðtÞ�f
0
k�1ðtÞ

f0kðtÞþf
0
k�1ðtÞ

Zd:

Functions in the class AE,d are composed of several
Fourier-like oscillatory components with slowly time-
varying amplitudes and sufficiently smooth frequencies.
The IF components f0k are strongly separated in the sense
that high frequency components are spaced exponentially
further apart than low frequency ones.

We normalize the Fourier transform by bhðxÞ ¼R1
�1

hðxÞe�2pixx dx and use the notation ~E ¼ E1=3. Now for

a given mother wavelet c, the continuous wavelet trans-

form (CWT) of f at scale a and time shift b is given by

Wf ða,bÞ ¼ a�1=2
R1
�1

f ðtÞcððt�bÞ=aÞ dt. If f̂ is supported in

ð0,1Þ, then the inversion of the CWT can be expressed as

f ðbÞ ¼ ð1=RcÞ
R1

0 a�3=2Wf ða,bÞ da, where we let

Rc ¼
R1

0 x�1 bcðxÞ dx [14, p. 6]. We use the CWT to define

the phase transform of ða,bÞ by

of ða,bÞ ¼
@tWf ða,bÞ

2piWf ða,bÞ
: ð2Þ

of ða,bÞ can be thought of as an ‘‘FM demodulated’’

frequency estimate that cancels out the influence of the

wavelet c on Wf ða,bÞ and results in a modified time-scale

representation of f. We can use this to consider the
following operator.

Definition 2.2 (CWT Synchrosqueezing). Let f 2 AE,d and
h 2 C10 be a smooth function such that JhJL1 ¼ 1. The
Wavelet Synchrosqueezing transform with accuracy d and
thresholds ~E and M is defined by

Sd,M
f , ~E ðb,ZÞ ¼

Z
GM

f , ~E

Wf ða,bÞ

a3=2

1

d
h

Z�of ða,bÞ

d

� �
da, ð3Þ

where GM
f , ~E ¼ fða,bÞ : a 2 ½M�1,M�,9Wf ða,bÞ94 ~Eg. We also

denote Sdf , ~E ðb,ZÞ :¼ Sd,1
f , ~E ðb,ZÞ, with the condition a 2

½M�1,M� replaced by a40.

For sufficiently small d, this operator can be thought of
as a partial inversion of the CWT of f (over the scale a), but
only taken over small bands around level curves in the time-
scale plane (where of ða,bÞ � Z) and ignoring the rest of the
plane. As we let d-0, the domain of the inversion becomes
concentrated on the level curves fða,bÞ : of ða,bÞ ¼ Zg. The
idea is that this localization process will allow us to recover
the components fk more accurately than inverting the CWT
over the entire time-scale plane. The following theorem was
the main result of [14].

Theorem 2.1 (Daubechies, Lu, Wu). Let f ¼
PK

k ¼ 1

Ake2pifk 2 AE,d and ~E ¼ E1=3. Pick a function h 2 C10 with

:h:L1 ¼ 1, and pick a wavelet c 2 C1 such that its Fourier
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transform bc is supported in ½1�D,1þD� for some

Dod=ð1þdÞ. Then the following statements hold for each k:
1.
 Define the ‘‘scale band’’ Zk ¼ fða,bÞ : 9af0kðbÞ�19oDg. For

each point ða,bÞ 2 Zk with 9Wf ða,bÞ94 ~E, we have

9of ða,bÞ�f0kðbÞ9r ~E,

and if ða,bÞ=2Zk for any k, then 9Wf ða,bÞ9r ~E.

2.
 There is a constant C1 such that for all b 2 R,

lim
d-0

1

Rc

Z
fZ:9Z�f0

k
ðbÞ9r ~Eg

Sdf , ~E ðb,ZÞ dZ
 !

�AkðbÞe
2pifkðbÞ

�����
�����rC1 ~E:

This result shows how Synchrosqueezing can identify
and extract the components ff kg from f. The first part of
Theorem 2.1 says that the plot of 9Sdf , ~E 9 is concentrated
around the instantaneous frequency curves ff0kg. The second
part of Theorem 2.1 tells us that we can reconstruct each
component fk by completing the inversion of the CWT,
locally over small frequency bands surrounding f0k. In
particular, it implies that we can recover the amplitudes
Ak by taking absolute values. Theorem 2.1 also suggests that
components fk of small magnitude may be difficult to detect
(as their CWTs become smaller than ~E).

We can now state our new results on the robustness
properties of Synchrosqueezing. The following theorem
shows that the results in Theorem 2.1 essentially still hold
if we perturb f by a small (deterministic) error term e.

Theorem 2.2. Let f 2 AE,d and suppose we have a corre-

sponding E, h, c and D as given in Theorem 2.1. Suppose that

g ¼ f þe, where e 2 L1 is a small error term that satisfies

JeJL1rE=maxðJcJL1 ,Jc0JL1 Þ. For each k, let MkZ1 be the

‘‘maximal frequency range’’ given by

Mk ¼max
1

1�D
Jf0kJL1 ,ð1þDÞ

1

f0k

���� ����
L1

 !
:

Then the following statements hold for each k:
1.
 Assume a 2 ½M�1
k ,Mk�. For each point ða,bÞ 2 Zk with

9Wgða,bÞ9 4M1=2
k Eþ ~E, we have

9ogða,bÞ�f0kðbÞ9rC2 ~E,

for some constant C2 ¼ OðMkÞ. If ða,bÞ=2Zk for any k, then

9Wgða,bÞ9rM1=2
k Eþ ~E.
2.
 There is a constant C3 ¼OðMkÞ such that for all b 2 R,

lim
d-0

1

Rc

Z
fZ:9Z�f0

k
ðbÞ9rC2 ~Eg

Sd,Mk

g,M1=2

k
Eþ ~E
ðb,ZÞ dZ

 !
�AkðbÞe

2pifkðbÞ

�����
�����rC3 ~E:

Proof. It is clear that

9Wf ða,bÞ�Wgða,bÞ9rJf�gJL1a1=2

Z 1
�1

c t�
b

a

� ������
�����dtra1=2E:

ð4Þ

Similarly, we also have 9@bWf ða,bÞ�@bWgða,bÞ9ra�1=2E.
Now if ða,bÞ=2Zk for any k, then using Theorem 2.1
gives

9Wgða,bÞ9r9Wgða,bÞ�Wf ða,bÞ9þ9Wf ða,bÞ9rM1=2
k Eþ ~E:

ð5Þ

On the other hand, if for some k, ða,bÞ 2 Zk and
9Wgða,bÞ94M1=2

k Eþ ~E, then by (4) and Theorem 2.1,

9ogða,bÞ�f0kðbÞ9r9ogða,bÞ�of ða,bÞ9þ9of ða,bÞ�f0kðbÞ9

r
Wgða,bÞ�Wf ða,bÞ

Wgða,bÞWf ða,bÞ
@bWf ða,bÞ

����
þ
@bWf ða,bÞ�@bWgða,bÞ

Wgða,bÞ

����þ ~E
r

M1=2
k E

ðM1=2
k Eþ ~EÞ~E

M1=2
k Jf JL1Jc

0
JL1

� �
þ

M1=2
k E

M1=2
k Eþ ~E

þ ~E

rC2 ~E, ð6Þ

where C2 depends only on f, c and Mk. For the second part
of Theorem 2.2, we fix k and b and use the following
calculation [14, p. 12]:

lim
d-0

Z
9Z�f0

k
ðbÞ9r ~E

Sdf , ~E ðb,ZÞ dZ¼
Z

Dðb,f , ~E , ~E ,1Þ
a�3=2Wf ða,bÞ da,

ð7Þ

where

Dðb,f ,E1,E2,MÞ :¼ fa : 9Wf ða,bÞ94E1,9of ða,bÞ�f0kðbÞ9

rE2,a 2 ½M�1,M�g: ð8Þ

It is also shown in [14, p. 12] that if a 2 Dðb,f , ~E, ~E,1Þ,
then ða,bÞ 2 Zk, so M�1

k rarMk. This means that in (7),
we can replace Sdf , ~E ðb,ZÞ by Sd,Mk

f , ~E ðb,ZÞ and Dðb,f , ~E, ~E,1Þ by
Dðb,f , ~E, ~E,MkÞ. We can also get a result identical to (7) for g

by simply repeating the argument in [14]. First, note that
as d-0, the expressionZ
9Z�f0

k
ðbÞ9rC2 ~E

a�3=2Wgða,bÞ
1

d
h

Z�ogða,bÞ

d

� �
dZ, ð9Þ

converges to a�3=2Wgða,bÞwf9og ða,bÞ�f0
k
ðbÞ9oC2 ~EgðaÞ for almost

all a 2 ½M�1
k ,Mk�, where w is the characteristic function of a

set. This shows that

lim
d-0

Z
9Z�f0

k
ðbÞ9rC2 ~E

Sd,Mk

g,M1=2

k
Eþ ~E
ðb,ZÞ dZ

¼

Z
ða,bÞ2G

Mk

g,M
1=2

k
Eþ ~E

lim
d-0

Z
9Z�f0

k
ðbÞ9rC2 ~E

a�3=2Wgða,bÞ

1

d
h

Z�ogða,bÞ

d

� �
dZ da ð10Þ

¼

Z
Dðb,g,M1=2

k
Eþ ~E ,C2 ~E ,MkÞ

a�3=2Wgða,bÞ da: ð11Þ

We can justify exchanging the order of integrations and
limits in (10) by the Fubini and dominated convergence
theorems, since (9) is bounded by 9a�3=2Wgða,bÞ9 2 L1

ðfa :
9Wgða,bÞ94M1=2

k Eþ ~E,a 2 ½M�1
k ,Mk�gÞ for all d. We also note

that (4) and (6) show that in the set Dðb,f , ~E, ~E,MkÞ\

Dðb,g,M1=2
k Eþ ~E,C2 ~E,MkÞ, we have 9Wf ða,bÞ9r2M1=2

k Eþ ~E.
We can now use the result of Theorem 2.1 along with
(5), (7), and (11) to find that

lim
d-0

Z
9Z�f0

k
ðbÞ9r ~E

Sd,Mk

f , ~E ðb,ZÞ dZ

�����
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�lim
d-0

Z
9Z�f0

k
ðbÞ9rC2 ~E

Sd,Mk

g,M1=2

k
Eþ ~E
ðb,ZÞ dZ

�����
¼

Z
Dðb,f , ~E , ~E ,MkÞ

a�3=2Wf ða,bÞ

����
�

Z
Dðb,g,M1=2

k
Eþ ~E ,C2 ~E ,MkÞ

a�3=2Wgða,bÞ da

�����
r
Z

Dðb,g,M1=2

k
Eþ ~E ,C2 ~E ,MkÞ

9a�3=2ðWf ða,bÞ�Wgða,bÞÞ9 da

þ

Z
Dðb,f , ~E , ~E ,MkÞ\Dðb,g,M1=2

k
Eþ ~E ,C2 ~E ,MkÞ

9a�3=2Wf ða,bÞ9 da

r
Z Mk

M�1
k

a�1E daþ

Z Mk

M�1
k

a�3=2ð2M1=2
k Eþ ~EÞ da

rð2 log MkÞEþ2ðM1=2
k �M�1=2

k Þð2M1=2
k Eþ ~EÞ rC3 ~E:

Combining this with the result of Theorem 2.1 finishes the
proof. &

Theorem 2.2 shows that each component fk can be
recovered with an accuracy proportional to the perturba-
tion e and its maximal frequency range Mk, with mid-
range IFs (Mk close to 1) resulting in the best estimates. In
addition, Theorem 2.2 implies that we can replace a
continuous-time function f with discrete approximations
of it. In many applications, we only have a collection of
samples ff ðtnÞg available instead of the whole function f,
where ftng is a sequence of (possibly nonuniformly
spaced) sampling points. We can address this situation
in the following way.

Corollary 2.3. Let f s 2 C2 be the cubic spline interpolant

formed from ff ðtnÞg and define L¼ supn9t
0
nþ1�t0n9. Then the

errors in the estimating f0kðbÞ and fk(b) from fs are both

OðMkL
4=3
Þ for all b.

Proof. This follows from Theorem 2.2 and the following
standard estimate on cubic spline approximations [42, p.
97]:

Jf s�f JL1r
5

384
L4Jf ð4ÞJL1 : &

This means that we can work with the spline fs instead
of f, and as long as the minimum sampling rate L�1 is
high enough, the results will be close. In practice, we find
that the errors are localized in time to areas of low
sampling rate, low component amplitude, and/or high
component frequency (see, e.g., Section 4).

The second result of this paper is that Sychrosqueezing
is also robust to additive Gaussian white noise. We start
by defining Gaussian white noise in continuous-time. Let
S be the Schwartz class of smooth functions with rapid
decay (see [28]). A (real) stationary generalized Gaussian

process G is a random linear functional on S such that all
finite collections fGðf iÞg with f i 2 S are jointly Gaussian
variables and have the same distribution for all translates
of fi. Such a process is characterized by a mean functional
EðGðf 1ÞÞ ¼ Tðf 1Þ and a covariance functional EððGðf 1Þ�

Tðf 1ÞÞðGðf 2Þ�Tðf 2ÞÞÞ ¼/f 1,Rf 2S for some operators T :
S-S and R : S-S, where /f 1,f 2S¼

R1
�1

f 1ðtÞf 2ðtÞ dt is
the L2 inner product. Gaussian white noise N with power s2
is such a process with T¼0 and R¼ s2I, where I is the
identity operator. We refer to [28] for more details on
these concepts and to [21] for basic facts on complex
Gaussian variables that are used below.

Theorem 2.4. Let f 2 AE,d and suppose we have a corre-

sponding E, h, c, D and Mk as given in Theorems 2.1 and 2.2,
with the additional assumptions that c 2 S and

J/c,c0SJoJcJL2Jc0JL2 . Let g ¼ f þN, where N is Gaussian

white noise with spectral density E2þp for some p40. Then

the following statements hold for each k:
1.
 Assume a 2 ½M�1
k ,Mk�. For each point ða,bÞ 2 Zk with

9Wf ða,bÞ94 ~E, there are constants E1 and C02 such that

with probability 1�e�E1E�p
,

9ogða,bÞ�f0kðbÞ9rC02 ~E:

If ða,bÞ=2Zk for any k, then with probability 1�e�E2E�p
for

some constant E2, 9Wgða,bÞ9r ~Eþ 1
2 E.
2.
 There is a constant C03 such that with probability

1�e�E1E�p
, we have for all b 2 R that

lim
d-0

1

Rc

Z
fZ:9Z�f0

k
ðbÞ9rC0

2
~Eg

Sd,Mk

g,M1=2

k
Eþ ~E
ðb,ZÞ dZ

 !�����
�AkðbÞe

2pifkðbÞ
���rC03 ~E:
Proof. The CWT of g, Wgða,bÞ, is understood as the
Gaussian variable Wf ða,bÞþNðca,bÞ, where ca,bðxÞ ¼ a�1=2

cððx�bÞ=aÞ. We have EðNðca,bÞÞ ¼ 0,

EðNðca,bÞNðca,bÞÞ ¼
E2þp

a

Z 1
�1

c
x

a

� �
c

x

a

� �
dx

¼ E2þp/c,cS¼ E2þpJcJ2
L2 ,

and since suppðbcÞ is positive,

EðNðca,bÞ
2
Þ ¼ E2þp/c,cS¼ E2þp

Z 1
�1

ĉðxÞĉð�xÞ dx¼ 0:

Similarly, @bWgða,bÞ is the random variable @bWf ða,bÞþ
Nðc0a,bÞ, where c0a,bðxÞ ¼ a�3=2c0 ðx�bÞ=a

� 	
. By the same

arguments as before and noting that suppðcc0 Þ � suppðbcÞ,
we obtain the formulas

EðNðc0a,bÞÞ ¼ EðNðc0a,bÞ
2
Þ ¼ EðNðca,bÞNðc

0
a,bÞÞ ¼ 0,

EðNðc0a,bÞNðc0a,bÞÞ ¼ E
2þpa�2Jc0J2

L2 ,

EðNðca,bÞNðc0a,bÞÞ ¼ E
2þpa�1/c,c0S:

This shows that the Gaussian variables Nðca,bÞ and
ðNðca,bÞ,Nðc0a,bÞÞ 2 C

2 have zero pseudo-covariance
matrices, so they are circularly symmetric. If we define
the matrix

V ¼
JcJ2

L2 a�1/c,c0S

a�1/c0,cS a�2Jc0J2
L2

0@ 1A,
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then the distribution of ðNðca,bÞ,Nðc0a,bÞÞ is given by

e�1=ðE2þ pÞðw,zÞ�V�1
ðw,zÞ

p2E4þ2p det V
dw dz:

Since V is invertible and self-adjoint, we can write
V�1
¼UnDU, where D is diagonal and U is unitary. We

have D11D22 ¼ detðV�1
Þ ¼ detðVÞ�1 and D11þD22 ¼ trace

ðV�1
Þ ¼ ðJcJ2

L2þa�2Jc0J2
L2 ÞdetðVÞ�1.

For a point (a, b), we now define the events
G1 ¼ f9Nðca,bÞ9oE=2g, G2 ¼ f9Nðc0a,bÞ9oE=2g and Hk ¼

f9ogða,bÞ�f0kðbÞ9rC02 ~Eg for each k. We want to estimate
PðG1Þ and PðG1 \ G2Þ. Using the above calculations and
taking E2 ¼

1
4 JcJ

�2
L2 , we find that

PðG1Þ ¼
1

pE2þpJcJ2
L2

Z
9z9oE=2

e�ð9z9
2
=E2þ pÞJcJ�2

L2 dz

¼
2

E2þpJcJ2
L2

Z E=2

0
re�r2=ðE2þ pÞJcJ�2

L2 dr

¼ 2

Z ð4EpJcJ2

L2 Þ
�1=2

0
re�r2

dr ¼ 1�e�E2E�p

:

Let E1 ¼mina2½M�1
k ,Mk �

1
8 ðD11þD22Þ40. We note that any

rotated polydisk of radius r in ðw,zÞ 2 C2 contains a
smaller polydisk of radius 2�1=2r that is aligned with the
w and z planes, and use the transformation ðw0,z0Þ ¼Uðw,zÞ
to estimate

PðG1 \ G2Þ ¼

Z
f9w9oE=2,9z9oE=2g

e�1=ðE2þ pÞðw,zÞ�V�1
ðw,zÞ

p2E4þ2p det V
dw dz

¼

Z
f9ð0,1Þ�Un

ðw0 ,z0 Þ9oE=2,9ð1,0Þ�Un
ðw0 ,z0 Þ9o E=2g

�
e�1=ðE2þ pÞðD119w09

2
þD229z09

2
Þ

p2E4þ2p det V
dw0 dz0

Z

Z
f9w092

þ 9z092 oE2=4g

e�1=ðE2þ pÞðD119w09
2
þD229z09

2
Þ

p2E4þ2p det V
dw0 dz0

Z

Z
f9z09o2�3=2E,9w09o2�3=2Eg

e�1=ðE2þ pÞðD119w09
2
þD229z09

2
Þ

p2E4þ2p det V
dw0 dz0

¼
4

D11D22 det V

Z ð8EpD�1
22 Þ
�1=2

0

Z ð8EpD�1
11 Þ
�1=2

0
re�r2

se�s2

dr ds

¼ 1�e�ð1=8ÞE�pD11

� �
1�e�ð1=8ÞE�pD22

� �
41�e�E1E�p

:

Now let C02 ¼ 2M1=2
k Jf JL1Jc

0
JL1þ3. If ða,bÞ=2Zk for any k,

then Theorem 2.1 shows that G1 implies
9Wgða,bÞ9o ~Eþ 1

2 E. Conversely, if ða,bÞ 2 Zk for some k,
we follow the same arguments as in Theorem 2.2 to find
that

PðHkÞZPðHk9G1 \ G2ÞPðG1 \ G2Þ

ZP
1

9Wgða,bÞ9

@bWf ða,bÞ

Wf ða,bÞ
ðWgða,bÞ�Wf ða,bÞÞ

����
 
�ð@bWgða,bÞ�@bWf ða,bÞÞ

��þ ~ErC02 ~E
��G1 \ G2

	
PðG1 \ G2Þ

ZP
1

~E� 1
2 E

@bWf ða,bÞ

Wf ða,bÞ

���� ����EþE� �
þ ~ErC02 ~E

 !
PðG1 \ G2Þ

ZPð2M1=2
k Jf JL1Jc

0
JL1þ3rC02ÞPðG1 \ G2Þ

¼ PðG1 \ G2Þ:
The second statement in Theorem 2.4 can be shown in an
analogous way. Let C03 ¼ 2M1=2

k ððM
1=2
k þ1Þ~E2

þ1ÞþC1 and
recall the definition (8). We fix k and use the above result
to estimate

P lim
d-0

Z
9Z�f0

k
ðbÞ9rC0

2
~E
Sd,Mk

g, ~E�1
2E
ðb,ZÞ dZ�AkðbÞe

ifkðbÞ

�����
�����oC03 ~E

 !

ZP lim
d-0

Z
9Z�f0

k
ðbÞ9r ~E

Sd,Mk

f , ~E ðb,ZÞ dZ

�����
 

�lim
d-0

Z
9Z�f0

k
ðbÞ9rC0

2
~E
Sd,Mk

g, ~E�1
2E
ðb,ZÞ dZ

�����
þC1 ~EoC 03 ~E

��Hk \ G1 \ G2

	
PðHk \ G1 \ G2Þ

¼ P

Z
D b,g, ~E�1

2E,C
0

2
~E ,Mkð Þ

a�3=2Nðca,bÞ da

�����
 

þ

Z
Dðb,f , ~E , ~E ,MkÞ\D b,g, ~E�1

2E,C
0

2
~E ,Mkð Þ

a�3=2Wf ða,bÞ da

�����
þC1 ~EoC 03 ~E

��Hk \ G1 \ G2

	
PðHk \ G1 \ G2Þ

ZP

Z Mk

1=Mk

a�3=2 E
2

daþ

Z Mk

1=Mk

a�3=2 M1=2
k Eþ ~Eþ E

2

� �
da

 

þC1 ~EoC 03 ~E
��Hk \ G1 \ G2

	
PðHk \ G1 \ G2Þ

¼ Pð2ðM1=2
k �M�1=2

k ÞððM1=2
k þ1Þ~E2

þ1Þ

þC1oC03
��Hk \ G1 \ G2ÞPðHk9G1 \ G2ÞPðG1 \ G2Þ

¼ PðG1 \ G2Þ,

which completes the proof. &

Part (1) of Theorem 2.4 is saying that the noise power
gets spread out across the Synchrosqueezing time-
frequency plane instead of accumulating in a single
component instantaneous frequency, despite the fact that
the Synchrosqueezing frequencies are generally concen-
trated and are not directly comparable to conventional
Fourier frequencies (see [44]). Part (2) is the same state-
ment for the entire component Ake2pifk , including the
amplitude. Note that the above argument can also be
repeated for more general Gaussian processes such as
‘‘1=f ’’ noise. In this case, the covariances will change (to
e.g., EðNðca,bÞNðca,bÞÞ ¼ E2þp/c,RcS), but the pseudo-
covariances will still be zero by the translation-
invariance of the operator R, and the rest of the argument
will be identical.

3. Implementation overview

We now describe the Synchrosqueezing transform in a
discretized form that is suitable for efficient numerical
implementation. We also discuss several issues that arise
in this process and how various parameters are to be
chosen in practice. We are given a vector ~f 2 Rn, n¼ 2Lþ1,
where L is a nonnegative integer. Its elements,
~f m,m¼ 0, . . . ,n�1, correspond to a uniform discretization
of f(t) taken at the time points tm ¼ t0þmDt. To prevent
boundary effects, we pad ~f on both sides (using, e.g.,
reflecting boundary conditions). Fig. 1 shows a graphical
example of each step of the procedure outlined in this
section.



Fig. 1. Synchrosqueezing example for f ðtÞ ¼ ð1þ0:6 cosð2tÞÞ cosð4ptþ1:2t2Þ and additive noise eðtÞ 	N ð0,0:52
Þ. Panels in clockwise order: (a) f(t) and

f ðtÞþeðtÞ sampled, n¼1024 points. (b) CWT of f, 9Wf 9. (c) Phase transform of . (d) Synchrosqueezing transform 9Tf 9; with g¼ 10�5 (see Section 3.5).
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3.1. DWT of sampled signal: ~W ~f

We first choose an appropriate mother wavelet c. We
pick c such that its Fourier transform bcðxÞ (normalized as in
Theorem 2.1) is concentrated in absolute value around some
positive frequency x¼o0, and is small and rapidly decaying
elsewhere (i.e. lim9t9-1PðtÞcðtÞ ¼ 0 for all polynomials P).
Many standard mother wavelets satisfy these properties,
and we compare several examples in Section 4.4.

The DWT samples the CWT Wf at the locations ðaj,tmÞ,
where aj ¼ 2j=nvDt, j¼ 1, . . . ,Lnv, and the ‘‘voice number’’
nv [22] is a user-defined parameter that affects the
number of scales we work with (we have found that
nv ¼ 32 or 64 works well in practice). The DWT of ~f can be
calculated in Oðnvn log2

2 nÞ operations using the FFT. We
outline the steps below.

First note that Wf ða,�Þ ¼ a�1=2cð� � =aÞ%f , where %

denotes the convolution. In the frequency domain, this
relationship becomes cW f ða,xÞ ¼ a1=2bf ðxÞbcðaxÞ. We use this
to calculate the DWT, ~W ~f ðaj,tmÞ. Let F n (F�1

n ) be the
standard (inverse) circular Discrete Fourier Transform. Then

~W ~f ðaj,�Þ ¼F�1
n ððF n

~f Þ � bcj Þ: ð12Þ

Here � denotes elementwise multiplication and bcj is an n-
length vector with ðbcjÞm ¼ a1=2

j
bcðajxmÞ; xm are samples in

the unit frequency interval: xm ¼ 2pm=n, m¼ 0, . . . ,n�1.

3.2. The phase transform: ~o ~f

The next step is to calculate the phase transform (2).
We first require a slight modification of (2)

of ða,bÞ ¼
1

2pImððWf ða,bÞÞ�1@bWf ða,bÞÞ: ð13Þ
In theory Eqs. (13) and (2) are equivalent, and in practice
(13) is a convenient way to obtain a real-valued frequency
from (2). We denote the discretization of of by ~o ~f .

In practice, signals have noise and other artifacts due
to, e.g., sampling errors, and computing the phase of Wf is
unstable when 9Wf 9� 0. Therefore, we choose a hard
threshold parameter g40 and disregard any points where
9Wf 9rg . The exact choice of g is discussed in Section 3.5.
We use this to define the numerical support of ~W ~f , on
which of can be estimated

~Sg~f ðmÞ ¼ fj : 9 ~W ~f ðaj,tmÞ94gg for m¼ 0, . . . ,n�1:

The derivative in (13) can be calculated by taking finite
differences of ~W ~f with respect to m, but Fourier trans-
forms provide a more accurate alternative. Using the
property d@bWf ða,xÞ ¼ 2pixdWf ða,xÞ, we estimate the phase
transform, for j 2 ~Sg~f ðmÞ, as

~o ~f ðaj,tmÞ ¼
1

2pImðð ~W ~f ðaj,tmÞÞ
�1@b

~W ~f ðaj,tmÞÞ,

with the derivative of Wf estimated via (e.g. [43])

@b
~W ~f ðaj,�Þ ¼F�1

n ððFn
~f Þ � c@cjÞ,

where ðc@cjÞm ¼ 2pia1=2
j xm

bcðajxmÞ=Dt for m¼ 0, . . . ,n�1.
The normalization of ~o corresponds to a dominant,

constant frequency of a when f ðtÞ ¼ cosð2patÞ. This allows
us to transition from the time-scale plane to a time-
frequency plane according to the reassignment map
ða,bÞ-ðoða,bÞ,bÞ. Note that the phase transform is not
the instantaneous frequency itself except in some simple
cases, but contains requisite ‘‘frequency information’’ that
we use to recover the actual frequencies in the next step.
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3.3. Synchrosqueezing in the time-frequency plane: Tf ðo,bÞ

We now compute the Synchrosqueezing transform
using the reassigned time-frequency plane. Suppose we
have some ‘‘frequency divisions’’ fwlg

1
l ¼ 0 with w040 and

wlþ14wl for all l. Let the frequency bin W l be given by
fw0 2 R : 9w0�wl9o9w0�wl0 98l

0alg, or in other words, the
set of points closer to wl than any other wl0 . We define the
discrete-frequency Wavelet Synchrosqueezing transform
of f by

Tf ðwl,bÞ ¼

Z
fa:of ða,bÞ2Wl ,9Wf ða,bÞ94gg

Wf ða,bÞa�3=2 da: ð14Þ

This is essentially the limiting case of (3) as d-0 (note the
argument in (9) and see also [14, pp. 5–6]), but with the
frequency variable Z 2 R replaced by the discrete inter-
vals W l. Note that the discretization ~W ~f is given with
respect to na ¼ Lnv log-scale samples of the scale a, so we
correspondingly discretize (14) over a logarithmic scale in
a. The transformation aðzÞ ¼ 2z=nv , daðzÞ ¼ aðlog 2=nvÞ dz,
leads to the modified integrand Wf ða,bÞa�1=2ðlog 2=nvÞ dz

in (14).
To choose the frequency divisions wl, note that the

time step Dt limits the range of frequencies that can be
estimated. One form of the Nyquist sampling theorem
shows that the maximum frequency is w ¼wna�1 ¼ 1=2Dt.
Since f is discretized over an interval of length nDt, the
fundamental (minimum) frequency is w ¼w0 ¼ 1=nDt.
Combining these bounds on a logarithmic scale, we get
the divisions wl ¼ 2lDww, l¼ 0, . . . ,na�1, where Dw¼ 1=
ðna�1Þ log2ðn=2Þ.

We can now calculate a fully discretized estimate of
(14), denoted by ~T ~f . Since we have already tabulated ~o ~f

and ~o ~f ðaj,tmÞ lands in at most one frequency bin W l, the
integral in (14) can be computed efficiently by finding the
associated W l for each ðaj,tmÞ and adding it to the appro-
priate sum. This results in OðnanÞ computations for the
entire Synchrosqueezed plane ~T ~f . We summarize this
approach in pseudocode in Algorithm 1.

Algorithm 1. Fast calculation of ~T ~f for fixed m.
for l¼0 to na�1 do {Initialize ~T for this m}
~T ~f ðwl ,tmÞ’0

end for

for all j 2 ~S g~f ðmÞ do {Calculate (14)}

{Find frequency bin via wl ¼ 2lDww , and ~o ~f 2Wl}

l’ min max ROUND 1
Dw log2

~o ~f ðaj ,bm Þ

w

� �h i
,0

� �
,na�1

� �
{Add normalized term to appropriate integral; Dz¼ 1}

~T ~f ðwl ,tmÞ’ ~T ~f ðwl ,tmÞþ
log 2

nv

~W ~f ðaj ,tmÞa
�1=2
j

end for
We remark that as an alternative, the frequency divi-
sions wl can be spaced linearly, instead of the logarithmic
scale we use in keeping with the discretization of the CWT
in Section 3.1. Examples of this approach can be found in
[45], but in practice we find that there are no significant
differences either way. In principle, the CWT itself can be
discretized linearly as well, but the approach we took in
Section 3.1 is standard and is preferred for its computa-
tional efficiency (see [13,18]).

3.4. Component reconstruction

We can finally recover each component fk from ~T ~f by
inverting the CWT (integrating) over the frequencies wl

that correspond to the kth component, an approach
similar to filtering on a conventional TF plot. Let l 2

LkðtmÞ be the indices of a small frequency band around
the curve of kth component in the phase transform space
(based on the results of Theorems 2.2 and 2.4, part 2).
These frequencies can be selected by hand or estimated
via a standard least-squares ridge extraction method [9],
as done in the Synchrosqueezing Toolbox. Then, using the
fact that fk is real, we have

f kðtmÞ ¼ 2R�1
c Re

X
l2LkðtmÞ

~T ~f ðwl,tmÞ

0@ 1A, ð15Þ

where Rc is the normalization constant from (2.1).

3.5. Selecting the threshold g

The hard wavelet threshold g effectively decides the
lowest CWT magnitude at which o is deemed trust-
worthy. In an ideal setting wherein the signal is not
corrupted by noise, this threshold can be set based on
the machine epsilon (we suggest 10�8 for double preci-
sion floating point systems). In practice, g can be seen as a
hard threshold on the wavelet representation (shrinking
small magnitude coefficients to 0), and its value deter-
mines the level of filtering.

In [17], a nearly minimax optimal procedure was pro-
posed for denoising sufficiently smooth signals corrupted by
additive white noise. This algorithm consists of soft- or
hard-thresholding the wavelet coefficients of the corrupted
signal, followed by inversion of the filtered wavelet repre-
sentation. In [16], this estimator was also shown to be
nearly optimal in terms of root mean square error. The
asymptotically optimal threshold is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
� s, where n is

the signal length and s2 is the noise power. Following [17],
the noise power can be estimated from the Median Absolute
Deviation (MAD) of the finest level wavelet coefficients. This
is the threshold we suggest and use throughout our simula-
tions:

g¼ 1:4826
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
�MADð9 ~W ~f 91:nv

Þ,

where 1.4826 is the multiplicative factor relating the MAD
of a Gaussian distribution to its standard deviation, and
9 ~W ~f 91:nv

are the wavelet coefficient magnitudes at the nv

finest scales (the first octave).

4. Numerical simulations

In this section, we provide several numerical examples
that illustrate the ideas in Sections 2 and 3 and show how
Synchrosqueezing compares to a variety of other time-
frequency transforms in current use. The MATLAB scripts
used to generate the figures for these examples are
available at [8].
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4.1. Comparison of Synchrosqueezing with the CWT, STFT

and EEMD

We first compare the Synchrosqueezing time-
frequency decomposition to the continuous wavelet
transform (CWT) and the short-time Fourier transform
(STFT) [34]. We show its superior precision, in both time
and frequency, at identifying the components of compli-
cated oscillatory signals. We then show its ability to
reconstruct (via filtering) an individual component from
a curve in the time-frequency plane. We also compare the
recovered component with the results of the ensemble
empirical mode decomposition (EEMD) method (see [46]
for details).

In Fig. 2 we consider a signal sðtÞ ¼ s1ðtÞþs2ðtÞþ

s3ðtÞþNðtÞ defined on t 2 ½0,10� that contains different
kinds of time-varying AM and FM modulation. It is
composed of the following components:

s1ðtÞ ¼ ð1þ0:2 cosðtÞÞ cosð2pð2tþ0:3 cosðtÞÞÞ,

s2ðtÞ ¼ ð1þ0:3 cosð2tÞÞe�t=15 cosð2pð2:4tþ0:5t1:2þ0:3 sinðtÞÞÞ,

s3ðtÞ ¼ cosð2pð5:3tþ0:2t1:3ÞÞ:

The signal is discretized to n¼2048 points and corrupted
by additive Gaussian white noise N(t) with noise power
s2 ¼ 2:4, leading to an SNR of �2.6 dB.

To make the comparison consistent (as the g threshold
in Synchrosqueezing has a denoising effect), we first
denoise the signal using the Wavelet hard-thresholding
Fig. 2. Comparison of Synchrosqueezing with the STFT and CWT. (a) Synthetic

STFT of signal s(t). (c) CWT of signal s(t). (d) Synchrosqueezing plot Tsðo,tÞ.
methodology of Section 3.5. We then feed this denoised
signal to the STFT, CWT, and Synchrosqueezing trans-
forms. We use the shifted bump wavelet (see Section 4.4)
and nv¼32 for both the CWT and Synchrosqueezing
transforms, and a Hamming window with length 400
and overlap of length 399 for the STFT. These STFT
parameters are selected to have a representation visually
balanced between time and frequency resolution [34].

The component s3 is close to a Fourier harmonic and is
clearly identified in the Synchrosqueezing plot Ts (Fig.
2(d)) and the STFT plot (Fig. 2(b)), though the frequency
estimate is more precise in Ts. The other two components
have time-varying instantaneous frequencies and can be
clearly distinguished in the Synchrosqueezing plot, while
there is much more smearing and distortion in them in
the STFT and CWT. The temporal resolution of the CWT
and STFT is also significantly lower than for Synchros-
queezing due to the selected parameters. A shorter time
window or wavelet will provide higher temporal resolu-
tion, but lower frequency resolution and more smearing
between the three components.

Fig. 3 shows the component s2 reconstructed from the
TF plots in Fig. 2 by inverting each transform in a small
band around the curve of s2. All three time-frequency
methods provide comparable results and pick up the
component reasonably accurately, although the AM beha-
vior around t 2 ½5,7� is slightly smothered out as a result
of the noise. On the other hand, EEMD exhibits a poor
amplitude recovery and a drifting phase over time, even
signal s(t) (bold), corrupted with noise (dashed), shown for t 2 ½2,8�. (b)



Fig. 3. (a–c) Reconstruction of the component s2 on [2,8] performed by inverting Synchrosqueezing (a), CWT (b) and STFT (c), shown as dotted curves. (d–

e) The EEMD extraction of s2 with 50 ensembles performed on the signal s (d) and on the same signal without any noise and one ensemble (e). The

original component s2 is shown in solid curves for reference.
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when applied to the original signal without any noise. In
general, EMD/EEMD is sensitive to amplitude changes
over time that impose strong requirements on the fre-
quency separation between the components [37], while
Synchrosqueezing and the other time-frequency methods
produce good results as long as the bandwidth of the
mother wavelet or window is small enough, according to
Theorem 2.1.

4.2. Comparison of Synchrosqueezing with reassignment

techniques

We next compare the analysis part of Synchrosqueez-
ing to two of the most common time-frequency reassign-
ment (TFR) methods, based on the spectrogram and the
Wigner-Ville distribution (see [19, Chapter 4] for details).
We apply these techniques to s(t), the signal from the last
example, for t 2 ½2,8� and with the noise increased to
s2 ¼ 5 (�5.8 dB SNR). The results are shown in Fig. 4.

Synchrosqueezing can be understood as a variant of
the standard TFR methods. In TFR methods, the direc-
tional reassignment vector is computed in both time and
frequency from the magnitude of the STFT or WVD, which
is then used to remap the energies in the TF plane of a
signal. In contrast, the Synchrosqueezing transform can be
thought of as a reassignment vector only in the frequency
direction. The fact that there are no time shifts in the TF
plane is what allows the reconstruction of the signal to be
possible. We note that in Fig. 4, the Synchrosqueezing TF
plot contains fewer spurious components than the other
TFR plots. The other TFR methods exhibit additional
clutter in the TF plane caused by the noise, and the
reassigned WVD also contains traces of an extra curve
between the second and third components, a result of
the quadratic cross-terms that are characteristic of the
WVD [19].

4.3. Nonuniform samples and spline fitting

We now demonstrate how Synchrosqueezing analysis
and extraction works for a three-component signal that
has been irregularly sampled. For t 2 ½2,8�, let

f ðtÞ ¼ ð1þ0:5 cosðtÞÞ cosð4ptÞ

þ2e�0:1t cosð2pð3tþ0:25 sinð1:4tÞÞÞ

þð1þ0:5 cosð2:5tÞÞ cosð2pð5tþ2t1:3ÞÞ, ð16Þ

and let the sampling times be perturbations of uniformly
spaced times having the form t0m ¼Dt1mþDt2um, where
fumg is sampled from the uniform distribution on ½0,1�. We
take Dt1 ¼ 11=300 and Dt2 ¼ 11=310, which leads to
approximately 165 samples on the interval ½2,8� and an
average sampling rate of 27.2, or about three times the
maximum instantaneous frequency of 9.85. As indicated
in Corollary 2.3, we account for the nonuniform sample
spacing by fitting a cubic spline through ðt0m,f ðt0mÞÞ to get
the interpolant fs(t), discretized on the finer grid tm ¼mDt

with Dt¼ 10=1024 and m¼ 0, . . . ,1023. The resulting
vector, ~f s, is a discretization of the original signal plus a
spline error term e(t).

Fig. 5(a)–(e) shows the Synchrosqueezing TF plot ~f s

and the three reconstructed components. The spline



Fig. 4. (a) Synchrosqueezing ~T ~f of ~f . (b) Reassigned spectrogram/STFT of ~f (RSP). (c) Reassigned smoothed pseudo-WVD of ~f (RWVD).

Fig. 5. (a) Nonuniform samples of f, with spline interpolant ~f s (solid), and original signal f (dashed). (b) Synchrosqueezing TF plane ~T ~f s
. (c–e) Extracted

components ~f
n

k for k¼ 1,2,3 (solid) compared to originals ~f k (dashed).
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Fig. 6. Wavelet and Synchrosqueezing transforms of ~f s . Columns (a)–(c) represent choice of mother wavelet ca . . .cc . Top row: 92bcð4xÞ9. Center row:

9Wf s
9. Bottom row: 9Tf s

9.
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interpolant approximates the original signal closely,
except for a few oscillations for t47:3 where the highest
frequencies of f occur. The Synchrosqueezing results are
largely unaffected by the errors and have no spurious
spectral information in the TF plot. The effect of the
interpolation errors for t47:3 is also localized in time
and only influences the AM recovery of the third compo-
nent, which contains the highest frequencies and is the
most difficult to recover as indicated by Theorem 2.2.

In general, however, we find that components close to
the Nyquist frequency are picked up fairly accurately as
long as the mother wavelet is chosen according to
Theorem 2.1 and the components are spaced sufficiently
far apart (for cases where multiple high frequency com-
ponents are close together, see the STFT Synchrosqueez-
ing approach in [44]).

4.4. Invariance to the underlying transform

As a final example, we show the effect of the under-
lying mother wavelet on the Synchrosqueezing transform.
As discussed in [14], Synchrosqueezing is largely invariant
to the choice of the mother wavelet, and the main
differences one sees in practice are due to the wavelet’s
relative concentrations in time and frequency (in parti-
cular, how far away its frequency content is from zero), as
opposed to its precise shape.

Fig. 6 shows the effect of Synchrosqueezing on the
discretized spline signal ~f s from the last example, using
three different complex CWT mother wavelets. These
wavelets are

a: Morlet ðshifted GaussianÞbcaðxÞpexpð�2p2ðm�xÞ2Þ, x 2 R,

b: Complex Mexican HatbcbðxÞpx2expð�2p2s2x2
Þ, x40,

c: Shifted BumpbcdðxÞp expð�ð1�ðð2px�mÞ=sÞ2Þ�1
Þ,

x 2 ½sðm�1Þ,sðmþ1Þ�,

where for ca we use m¼ 1, for cb we use s¼ 1, and for cc

we use m¼ 5 and s¼ 1. These, respectively, correspond to
about D¼ 0:5, 0.25 and 0.16 in Theorem 2.1. We find that,
as indicated by Theorem 2.1, the most accurate represen-
tation is given by the bump wavelet cc , whose frequency
support is the smallest and exactly (instead of approxi-
mately) positive and finite.



Fig. 7. (a) Calculated June 21 TOA insolation flux at 651N: fSF. Climate

response as recorded by benthic forams d18O (b) in the DSDP607 core

fCR1, (c) in the LR05 stack fCR2, and (d) in the H07 stack fCR3.
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5. Aspects of the mid-Pleistocene transition

In this section, we apply Synchrosqueezing to analyze
the characteristics of a calculated index of the incoming
solar radiation (insolation) and paleoclimate records of
repeated transitions between glacial (cold) and intergla-
cial (warm) climates, i.e. ice age cycles, primarily during
the Pleistocene epoch (from � 1:8 Myr to � 12 kyr before
the present). The analysis of time series is crucial for
paleoclimate research becuase its empirical base consists
of a growing collection of long deposited records.

The Earth’s climate is a complex, multi-component,
nonlinear system with significant stochastic elements
[35]. The key external forcing field is the insolation at
the top of the atmosphere (TOA). Local insolation has
predominantly harmonic characteristics in time (diurnal
cycle, annual cycle and very long Milanković orbital
cycles) enriched by the solar variability. The response of
the planetary climate, which varies at all time scales [26],
also depends on random perturbations (e.g., volcanism),
nonstationary solid boundary conditions (e.g., plate tec-
tonics and global ice distribution), internal variability and
feedback (e.g., global carbon cycle). Various paleoclimate
records, called proxies, provide us with information about
past climates beyond observational records. These proxies
are biogeochemical tracers, i.e. molecular or isotopic
properties, imprinted into various types of deposits (e.g.,
deep-sea sediment, ice cores, etc.), and they indirectly
represent physical conditions (e.g., temperature) at the
time of deposition. We focus on climate variability during
the last 2.5 Myr (that also includes the late Pliocene and
the Holocene) as recorded by d18O The oxygen isotope
variations in seawater are expressed as deviations of the
ratio of 18O to 16O with respect to the present-day
standard. Carbonate shells of foraminifera plankton
(benthic forams) at the bottom of the ocean record d18O
changes in seawater during their growth. The benthic
d18O indicates changes in the global sea level, ice volume
and deep ocean temperature. During the buildup of land
ice sheets and the decrease in sea level in cold climates,
the lighter 16O evaporates more readily than 18O and
accumulates in ice sheets, leaving the surface water
enriched with 18O. At the same time, the inclusion of
18O during the formation of carbonate shells records the
ambient seawater temperature of the benthic forams [29].

We first examine a calculated element of the daily TOA
solar forcing field. Fig. 7(a) shows fSF, the mid-June
insolation at 651N at 1 kyr intervals [5]. This TOA forcing
index has been widely used to gain insight into the timing
of advances and retreats of ice sheets in the Northern
Hemisphere during this period, based on the classic
Milanković hypothesis that summer solstice insolation
at 651N paces ice age cycles (e.g. [23,4]). The CWT and
Synchrosqueezing spectral decompositions (using the
shifted bump mother wavelet as in the rest of the paper),
in Fig. 8(a) and (e), respectively, show the key time-
varying oscillatory components of fSF. Both panels confirm
the presence of strong precession cycles (at periodicities
t¼19 kyr and 23 kyr), obliquity cycles (primary at 41 kyr
and secondary at 54 kyr), and very weak eccentricity
cycles (primary periodicities at 95 kyr and 124 kyr, and
secondary at 400 kyr). However, the Synchrosqueezing
spectral structure is far more concentrated along the
frequency (periodicity) direction than the CWT.

We next analyze the North Altantic and global climate
response during the last 2.5 Myr as deposited in benthic
d18O in long sediments cores (in which deeper layers
contain forams settled further back in time). Fig. 7(b)
shows fCR1: benthic d18O, sampled at irregular time
intervals from a single core, DSDP Site 607, in the North
Atlantic [40]. Fig. 7(c) shows fCR2: the orbitally tuned
benthic d18O stack of [32] (LR05). It is an average of 57
globally distributed records placed on a common age
model using a graphic correlation technique [31].
Fig. 7(d) shows fCR3: the benthic d18O stack of [25]
(H07) calculated from 14 cores (mostly in the Northern
Hemisphere) using the extended depth-derived age
model free from orbital tuning [27]. The d18O records
included in these stacks vary over different ranges pri-
marily due to different ambient temperatures at different
depths of the ocean floor at core drill sites. Also, prior to
combining the cores in the H07 stack, the record mean
between 0.7 Myr ago and the present was subtracted from
each d18O record, so we have different vertical ranges in
Fig. 7(b)–(d). All d18O records are spline interpolated to
1 kyr intervals prior to the spectral analysis.

The Synchrosqueezing decomposition in the right
panels in Fig. 8 is a far more precise time-frequency
representation of signals from DSDP607 and the stacks
than the CWT decomposition in left panels in Fig. 8 or an
STFT analysis of the H07 stack [25, Fig. 4]. Noise due to



Fig. 8. The CWT time-scale decomposition of (a) the solar forcing index fSF, and the climate response in benthic d18O of (b) the DSDP607 core fCR1, (c) the

LR05 stack fCR2, and (d) the H07 stack fCR3. The Synchrosqueezing time-periodicity decomposition of (e) the solar forcing index fSF, and the climate

response in benthic d18O of (f) the DSDP607 core fCR1, (g) the LR05 stack fCR2, and (h) the H07 stack fCR3.
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local characteristics and measurement errors of each core
is reduced when we shift the spectral analysis from
DSDP607 to the stacks, and this is particularly visible in
the finer scales and higher frequencies. In addition, the
stacks in Fig. 8(g) and (h) show far less stochasticity above
the obliquity band (higher frequencies) compared to
DSDP607 in Fig. 8(f). This enables the 23 kyr precession
cycle to appear mostly coherent over the last 1 Myr,
especially in comparison to the CWT decompositions.
Thanks to the stability of Synchrosqueezing, the spectral
differences below the obliquity band (lower frequencies)
are less pronounced betweeen the stacks and DSDP607.
Overall, the stacks show less noisy time-periodicity evo-
lution than DSDP607 or any other single core due to the
averaging of multiple, noisy time series with shared
signals. The Synchrosqueezing decompositions are much
sharper than the corresponding CWT decompositions, and
a time average of the Synchrosqueezing magnitudes
delineates the harmonic components more clearly than
a comparable Fourier spectrum (not shown).

During the last 2.5 Myr, the Earth experienced a
gradual decrease in the global long-term temperature
and CO2 concentration, and an increase in mean global
ice volume accompanied with glacial-interglacial oscilla-
tions that have intensified towards the present (shown in
Fig. 7(b)–(d)). The mid-Pleistocene transition, occurring
abruptly or gradually sometime between 1.2 Myr
and 0.6 Myr ago, was marked by the the shift from



Fig. 9. Milanković orbital components extracted by inverting the Synchrosqueezing transforms of the insolation index fSF (a, e, and i), and the climate

response in benthic d18O from the DSDP607 core fCR1 (b, f, and j), the LR05 stack fCR2 (c, g, and k) and the H07 stack fCR3 (d, h, and l). The transforms are

inverted over the precession band from 17 kyr to 25 kyr (left column), the obliquity band from 40 kyr to 55 kyr (middle column), and the eccentricity

band from 90 kyr to 130 kyr (right column).
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41 kyr-dominated glacial cycles to 100 kyr-dominated
glacial cycles recorded in deep-sea proxies (e.g.
[39,33,12]). The cause of the emergence of strong
100 kyr cycle in the late-Pleistocene climate and incoher-
ency of the precession band prior to about 1 Myr (evident
in Fig. 8(g) and Fig. 8(h)) are still unresolved questions.
Both types of spectral analyses of selected d18O records
indicate that the climate system does not respond linearly
to external solar forcing.

The Synchrosqueezing decomposition precisely reveals
key modulated signals that rise above the stochastic
background. The gain (the ratio of the climate response
amplitude to insolation forcing amplitude) at a given
frequency or period, is not constant due to the nonlinear-
ity of the climate system. The 41 kyr obliquity cycle of the
global climate response is present almost throughout the
entire Pleistocene in Fig. 8(g) and (h). The most prominent
feature of the mid-Plesitocene transition is the initiation
of a lower frequency signal (� 70 kyr) about 1.2 Myr ago
that gradually evolves into the dominant 100 kyr compo-
nent in the late Pleistocene (starting about 0.6 Myr ago).
Finding the exact cause for this transition in the dominant
ice age periodicity is beyond the scope of our paper, but
the Synchrosqueezing analysis of the stacks shows that it
is not a direct cause-and-effect response to eccentricity
variability (very minor variation of the total insolation).

The precision of the Synchrosqueezing decomposition
allows us to achieve a more accurate inversion across any
limited frequency band of interest than the CWT spec-
trum. Inverting the Synchrosqueezing transform over the
key orbital periodicity bands (i.e. filtering) in Fig. 9
emphasizes the nonlinear relationship between the TOA
insolation and climate evolution. The top panels in Fig. 9,
left to right, show rapidly diminishing contributions to
the insolation from precession to eccentricity. However,
all of the panels below the top row in Fig. 9 show a
moderately increasing amplitude of variability, i.e. the
inverse cascade of climate response with respect to fSF

from the precession to the eccentricity band in the late-
Pleistocene (after � 0.6 Myr). On average, the obliquity
band contains more power than the precession band in
DSDP607 and both stacks. Internal feedback mechanisms,
most likely due to the long-term cooling of the global
climate, amplify the response of the eccentricity band
after the early-Pleistocence (after � 1.2 Myr). The cross-
band differences in Fig. 9 (rows 2–4) indicate that a
superposition of precession cycles can modulate the
climate response in lower frequency bands, particularly
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in the eccentricity band, as the climate drifts into a
progressively colder and potentially more nonlinear state
(e.g. [6,36]).

The Synchrosqueezing analysis of the solar insolation
index and benthic d18O records makes a new contribution
in three important ways. First, it produces sharper spec-
tral traces of a complex system’s evolution through the
high-dimensional climate state space than the CWT or
STFT (compare with, e.g. [7, Fig. 2] or [12, Fig. 2]). Second,
it better delineates the effects of noise on specific fre-
quency ranges when comparing a single core to a stack.
Low frequency components are mostly robust to noise
induced by local climate variability, deposition processes
and measurement techniques. Third, Synchrosqueezing
allows for a more accurate reconstruction of the signal
components within frequency bands of interest than the
CWT or STFT. Questions about the key processes govern-
ing large-scale climate variability over the last 2.5 Myr
can be answered using high-precision data analysis
methods such as Synchrosqueezing, in combination with
a hierarchy of dynamical models at various levels of
complexity that reproduce the key aspects of the
Pliocene-Pleistocene history. The resulting understanding
of past climate epochs may benefit predictions of the
future climate [41].

6. Conclusions and future directions

Synchrosqueezing can be used to spectrally analyze
and decompose a wide variety of signals with high
precision in time and frequency. An efficient implementa-
tion runs in Oðnvn log2 nÞ time and is stable against errors
in the signals, both in theory and in practice. We have
shown how it can be used to gain further insight into the
climate evolution of the past 2.5 million years.

The authors are also using the Synchrosqueezing
transform to study additional topics in climate dynamics,
meteorology and oceanography (climate variability and
change, and large-scale teleconnection), as well as topics
in ECG analysis (respiration and T-end detection [10]).
Synchrosqueezing is also being used by others to address
problems in the analysis of mechanical transmissions [30]
and the design of automated trading systems [1].
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