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1 Introduction

Over the last two decades, increasingly easier access to high frequency data has
offered a magnifying glass to study financial markets. Analysis of these data
poses unprecedented challenges to econometric modeling and statistical analysis.
As for traditional financial time series (e.g. daily closing prices), the most criti-
cal variable at higher frequencies is arguably the asset return: from the pricing
of derivatives to portfolio allocation and risk-management, it is a cornerstone
both for academic research and practical applications. Because its properties
are of such utmost importance, a vast literature sparked to find high-frequency
models consistent with the new observed features of the data.
Among all characteristics of the return, its second moment structure is empir-
ically found as preponderant, partly because of its power to asses market risk.
Therefore, its time-varying nature has received a lot of attention in the literature
(see e.g. Andersen et al. (2003)). While most low frequency stylized features
find themselves at higher frequencies, an empirical regularity referring to season-
ality is left unaddressed by most models designed to capture heteroskedasticity
in financial time series. It is now well documented that seasonality, namely
intraday patterns due to the cyclical nature of market activity, represents one
of the main sources of model misspecification for GARCH-like or many other
stochastic volatility models (see e.g. Guillaume et al. (1994); Andersen and
Bollerslev (1997, 1998)).
More specifically, some periodicity in the volatility is inevitable, due, for in-
stance, to market openings and closings around the world, but is unaccounted
for in the vast majority of econometrics models. To avoid bias due to misspeci-
fied models, one possibility is to explicitly take into account the seasonality in
traditional models (e.g. with the periodic-GARCH of Bollerslev and Ghysels
(1996)). Alternatively, a pre-filtering step combined with a non-periodic model
can be used as in Andersen and Bollerslev (1997, 1998); Boudt et al. (2011);
Müller et al. (2011); Engle and Sokalska (2012). Even though an explicit in-
clusion of seasonality is advocated as more efficient (see Bollerslev and Ghysels
(1996)), the resulting models are at the same time less flexible and computa-
tionally more expensive. While they may potentially propagate errors, two-step
procedures are more convenient and often consistent if each step is consistent
(see Newey and McFadden (1994)).
As a result, pre-filtering of high-frequency financial time series has received a
considerable amount of attention in the literature dedicated to high-frequency
financial time series. In this context, an attractive approach is to generalize
the removal of weekends and holidays from daily data and use the “business
clock” (see Dacorogna et al. (1993)); a new time scale where time goes faster
when the market is inactive and conversely during “power hours”, at the cost of
synchronicity between assets. The other approach, which allows researchers to
work in physical time (removing only closed market periods), is to model the pe-
riodic patterns directly, either non-parametrically with estimators of scale (e.g.
in Martens et al. (2002); Boudt et al. (2011); Engle and Sokalska (2012)) or us-
ing smoothing methods (e.g. splines in Giot (2005)) or parametrically with the
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Fourier Flexible Form (FFF) (see Gallant (1981)), introduced by Andersen and
Bollerslev (1997, 1998) in the context of intraday volatility in financial markets.

Until now, the standard assumption in the literature is to consider a constant
seasonality over the sample period. However, it is seldom tested in practice and
few empirical studies acknowledge this issue. Notably, Deo et al. (2006) uses fre-
quency leakage as evidence in favor of a slowly varying seasonality. Furthermore,
Laakkonen (2007) observes that smaller sample periods yield improved season-
ality estimators. In this paper, we argue that the constant assumption can only
hold for arbitrary small sample periods, because the entire shape of the market
(and its periodic patterns) evolves over time. Contrasting with seasonal adjust-
ments usually considered in the literature, we relax the assumption of constant
seasonality and suggest a non-parametric framework to obtain “instantaneous”
estimates of trend and seasonality.

From a time-frequency decomposition, the proposed method extracts the in-
stantaneous trend (estimated from the lowest frequencies) and seasonality (es-
timated from the highest frequencies). In fact, it is comparable to a “dynamic”
combination of realized-volatility (RV) and Fourier Flexible Form (FFF). In this
case, the instantaneous trend and seasonality can be estimated respectively us-
ing rolling moving averages (for the RV part) or rolling regressions (for the FFF
part). Nonetheless, our model differs in three aspects. First, it disentangles in
a single step the trend from the seasonality. Second, it yields naturally smooth
pointwise estimates. Third, it is data-adaptive in the sense that there are less
parameters to fine tune.

There is a major reason why dynamic seasonality models are important when
modeling intraday returns, concerning practitioners and academics alike: non-
dynamic models may lead to severe underestimation/overestimation of intraday
spot volatility. Hence there are possible implications whenever seasonality pre-
filtering is used as an intermediate step. From a risk management viewpoint,
intraday measures such as intraday Value-at-Risk (VaR) and Expected-shortfall
(ES) under the assumption of constant seasonality may suffer from inappropriate
high quantile estimation. In other words, the assumption may lead to alternate
periods of underestimated (respectively overestimated) VaR and ES when the
seasonality is higher (respectively lower) than suggested by a constant model.
In the context of jump detection, the assumption may induce an underestima-
tion (respectively overestimation) of the number and size of jumps when the
seasonality is higher (respectively lower).

The rest of the paper is organized as follows. In Section 2, we describe
our model for the intraday return, from a continuous-time point of view to the
discretized process. To relax the constant seasonality assumption, we define
a class of seasonality models which includes the Fourier Flexible Form (FFF)
as a special case. Indeed, a non-dynamic model such as the combined FFF
and GARCH can usually be solved parametrically and we use the generalized
method of moments (GMM) framework to derive asymptotic properties of a
two-step estimation procedure. However, the conditions required to obtain con-
sistent estimates highlight the technical difficulties encountered by traditional
econometrics tools such as the GMM when applied to less trivial cases with time-
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varying periodicities. In Section 3, we provide a detailed exposition of a method
aimed at studying the class of models defined in Section 2. We start by recalling
the link between the FFF and the Fourier transform and we conclude that nei-
ther the FFF nor the Fourier transform helps understanding the dynamics of the
seasonality. We then sketch the theoretical basics of time-frequency analysis,
that was introduced to overcome this limitation (see Daubechies (1992); Flan-
drin (1999)). Finally, we introduce the Synchrosqueezing transform, which is
specially aimed at studying the class of models defined in Section 2, and we pro-
vide associated estimators of instantaneous trend and seasonality. In Section 4,
we conduct a realistic simulation to study the properties of the estimators from
Section 3. We show that they are essentially unbiased, have low variance and
high signal-to-noise ratio. In Section 5, we estimate the model using 8 months
of high-frequency foreign exchange data. To obtain confidence intervals for the
estimated trend and seasonality, we develop tailor-made resampling procedures.
We conclude in Section 6.

2 Intraday seasonality

Suppose the log-price follows the usual Brownian Semimartingale (BSM) diffu-
sion model:

dp(t) = µ(t)dt+ σ(t)dW (t) , (1)

where p(t) is the log-price, dp(t) consists of conditionally normal random pro-
cess with mean µ(t)dt and variance σ(t)2dt and W (t) the standard Brownian
motion which is independent of σ(t). It is common (see Boudt et al. (2011)
and references therein) to assume a multiplicative decomposition of the spot
volatility σ(t) such as

σ(t) = σ1(t)σ2(t), (2)

where σ1(t) is slowly varying and σ2(t) is fast varying. For example, defining a
window of length w1 around time t, a popular choice of σ1(t) is the square root
of the quadratic covariation over the window around t,

σ2
1(t) =

∫ t+w1/2

t−w1/2

σ2(s)ds (3)

which is the so-called integrated volatility in Barndorff-Nielsen and Shephard
(2002). In this case, and provided that σ(t) is smooth enough, we obtain an
approximation of the multiplicative decomposition of σ as

σ(t) = σ1(t)σ2(t) +O(w1),

However, this specification for σ1(t) is only one of the many possibilities for
the “trend” part of the volatility, which is intuitively a very “low-frequency”
function.
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As for the second component, it is can be specified as an exponential form

σ2
2(t) = es(t), (4)

where s(t) is a periodic function over an interval w2 (i.e. s(t+ w2) = s(t)) and
a normalization condition is then needed for σ2(t) to make this decomposition
unique. As noted for example in Deo et al. (2006); Müller et al. (2011), the
exponential frees s(t) from being restricted to R+, allowing additional modelling
possibilities. To be more precise, s can be modeled as

s(t) = Af(ξ0t), (5)

where f ∈ C([0, 1]) is a 1 periodic continuous function called the wave shape
function (Wu, 2013), A is the amplitude and ξ0 > 0 the frequency of the peri-
odic function. One particular example of f is the cosine function. Essentially,
under this model, the signal s(t) oscillates ξ0 times every unit of time, and each
oscillation follows the wave-shape f . Then assuming a constant daily pattern
implies ξ0 = 1 and a natural estimator of s(t) can be defined as the time-of-
day conditional expectation of the log-squared and demeaned return (up to a
normalization condition).

2.1 The adaptive harmonic model

As useful as the periodicity model (5) may be, both the amplitude and the shape
function itself might vary according to time, due to the inherited dynamics of
the natural system. In this case, (5) is mis-characterized and model bias may be
inevitable. To alleviate this limitation, we consider a different approach, based
on a time-frequency decomposition of the signal.

Intuitively, to capture the dynamics, we may write

s(t) =

K∑
k=1

ak(t) cos(2πφk(t)), (6)

where K ∈ N, ak(t) > 0 and φ′k(t) > 0. The function ak(t) is called the am-
plitude modulation (AM), φk(t) the phase function and φ′k(t) the instantaneous
frequencies (IF) of the k-th component. The model is therefore a sum of Am-
plitude Modulated-Frequency Modulated (AM-FM) periodic components. If
the phases are linear (2πxikt + ηk with xik > 0 and ηk ∈ R) and amplitude
modulations are constant (ak > 0), then the model reduces to the well-known
harmonic model (see section 3). Furthermore, model (5) is a special case of (6)

with f(t) =
∑K
k=1 ak cos(2πkξ0t+ ηk).

When the phases are non-linear, IF generalizes the concept of frequency,
capturing the number of oscillations one observes during an infinitesimal time
period. The same reasoning applies to the amplitude modulation, which rep-
resents the “instantaneous” magnitude of the oscillation. While those time-
varying quantities allow to capture momentary behavior, there is in general no
unique representation for an arbitrary s satisfying (6), even if K = 1.
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Indeed, there exists an infinity of smooth pairs of functions α(t) and β(t) so
that cos(t) = (1 + α(t)) cos(t + β(t)), 1 + α(t) > 0 and 1 + β′(t) > 0. This is
known as the identifiability problem studied in Chen et al. (2013). To resolve
this issue, it is necessary to restrict the functional class and we borrow the
following definition from Chen et al. (2013):

Definition 2.1 (Intrinsic Mode Function Class Ac1,c2ε ). For fixed choices of
0 < ε � 1 and ε � c1 < c2 < ∞, the space Ac1,c2ε of Intrinsic Mode Functions
(IMFs) consists of functions f : R→ R, f ∈ C1(R) ∩ L∞(R) having the form

f(t) = A(t) cos(2πφ(t)), (7)

where A : R→ R and φ : R→ R satisfy the following conditions for all t ∈ R:

A ∈ C1(R) ∩ L∞(R), inf
t∈R

A(t) > c1, sup
t∈R

A(t) < c2,

φ ∈ C2(R), inf
t∈R

φ′(t) > c1, sup
t∈R

φ′(t) < c2,

|A′(t)| ≤ ε |φ′(t)|, |φ′′(t)| ≤ ε |φ′(t)|.

This definition describes functions composed of a single AM-FM function,
referred to as IMF, mainly satisfying two requirements. First, the AM and
IF are both continuously differentiable and bounded from above and below.
Second, the rate of variation of both the AM and IF are small compared to the
IF itself. As these conditions exclude jumps in AM and IF, we make the working
assumption that the market evolves slowly over time and we do not try to model
abrupt structural changes. In fact, because usual tests for structural breaks are
aimed at detecting if and where a break occurs, they do not help for the class
Ac1,c2ε that does not feature any. To asses its validity when modelling financial
data, we will assume the model and resort to confidence interval estimation.

The identifiability theorem for Ac1,c2ε is stated in the following way (Chen
et al., 2013, Theorem 2.1). Suppose f(t) = a(t) cosφ(t) ∈ Ac1,c2ε can be repre-
sented in a different form, that is, f(t) = A(t) cosϕ(t), which also satisfies the
conditions of Ac1,c2ε . Define α(t) = ϕ(t) − φ(t) and β(t) = A(t) − a(t), then
α ∈ C2(R), β ∈ C1(R) and |α′(t)| ≤ Cε, |α(t)| ≤ Cε and |β(t)| < Cε for all
t ∈ R for some universal constant C depending only on c1. In a nutshell, if a
member of Ac1,c2ε can be represented in two different forms, then the differences
in its phase function, AM and FM between the two forms are controllable by
the small model constant ε.

Note that the dynamic model from equation (6) was a sum of more than one
IMF. To resolve the identifiability problem in this case, further conditions are
necessary and we borrow another definition from Chen et al. (2013):

Definition 2.2 (Superposition of IMFs Ac1,c2ε,d ). Fix 0 < d < 1. The space

Ac1,c2ε,d of superpositions of IMFs consists of functions f having the form

f(t) =

K∑
k=1

fk(t) (8)

6



for some finiteK > 0 such that for each k = 1, . . . ,K, fk(t) = Ak(t) cos(2πφk(t)) ∈
Ac1,c2ε and φk(t) satisfies

φ′k(t) > φ′k−1(t) and φ′k(t)− φ′k−1(t) ≥ d
[
φ′k(t) + φ′k−1(t)

]
(9)

for all t ∈ R.

Functions in the class Ac1,c2ε,d are composed of more than one IMF satisfying
the condition (9), which has the following natural interpretation: to be resolved
simultaneously, different IMFs of the superposition must be well-enough sepa-
rated in their IFs, but no further restriction on the AM is required. In this case,
an identifiability theorem similar to the one for Ac1,c2ε exists (Chen et al., 2013,
Theorem 2.2): if a member of Ac1,c2ε,d can be represented in two different forms,
then the two forms have the same number of IMFs, and the differences in their
phase function, AM and FM for each IMF are small. To summarize, with the
Ac1,c2ε,d model and its identifiability theorem, the IFs and AMs are well defined
up to an uncertainty of order ε and we refer the reader to Chen et al. (2013) for
precise statements of the theorems and more discussions.

Using s(t) ∈ Ac1,c2ε,d and the multiplicative decomposition from equation (2),
we consider the adaptive harmonic model

log σ2(t) = 2 log σ1(t) + s(t), (10)

to capture the dynamics of the spot volatility σ2(t), where

T (t) = 2 log σ1(t) (11)

is called the trend function and satisfies the following technical condition:

(T1) Fix a smooth function ψ ∈ C∞(R) which decays faster than any poly-
nomial at infinity, as do all its derivatives. Denote by Fψ its Fourier
transform and suppose that suppFψ ⊂ [1 −∆, 1 + ∆], where 0 < ∆ < 1.
Assume that T (t) : R→ R is in C1(R) so that its Fourier transform exists,

and
∣∣∣∫ T (t) 1√

a
ψ( t−ba )dt

∣∣∣ ≤ CT ε,
∣∣∣∫ T ′(t) 1√

a
ψ( t−ba )dt

∣∣∣ ≤ CT ε for all b ∈ R
and a ∈ (0, 1+∆

c1
], for some CT ≥ 0.

As we ideally want a trend to be slowly time-varying, the intuition behind the
technical condition (T1) is as a bound on how fast a function oscillates locally.
A special case satisfying (T1) is a continuous function T for which its Fourier
transform FT exists and is compactly supported in

(
− 1−∆

1+∆c1,
1−∆
1+∆c1

)
.

There are two well-known examples of such trend functions; the first is the
polynomial function s(x) =

∑L
l=1 αlx

l, where αl ∈ R, which is commonly ap-
plied to model trends. By a direct calculation, its Fourier transform is supported
at 0. The second is a harmonic function s(x) = cos(ξ0x) with “very low” fre-
quency (i.e. with |ξ0| < 1−∆

1+∆c1), as its Fourier transform is supported at ξ0.

More generally, one can verify using Plancheral theorem that
(
− 1−∆

1+∆c1,
1−∆
1+∆c1

)
implies

∫
T (t) 1√

a
ψ( t−ba )(t)dt = 0 for all a ∈ (0, 1+∆

c1
] and all b ∈ R. In our case
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however, the trend is non-parametric by assumption and its Fourier transform
might in all generality be supported everywhere in the Fourier domain. Then the
conditions in (T1) describe a trend that essentially captures the slowly varying
features of those models (i.e. its local behavior is similar to that of a polynomial
or a very low frequency periodic function) but is more general.

2.2 A special case: the Fourier Flexible Form

A special case of the adaptive harmonic model (10) is the popular Fourier Flex-
ible Form (FFF) (see Gallant (1981)), introduced by Andersen and Bollerslev
(1997, 1998) in this context. Using Fourier series to decompose any periodic
function into simple oscillating building blocks with an arbitrarily small predic-
tion error, a simplified version of the FFF without additional dummy variables
reads

log σ1 = s0/2, s(t) =

K∑
k=1

[ak cos (2πkt) + bk sin (2πkt)] . (12)

The model (12) contains two terms: a constant trend s0 and a sum of sines
and cosines with integer frequencies, designed to capture the daily oscillations
around the base level. For d ≤ 1/(2K − 1), we can view s(t) as a superposition
of IMFs (i.e. a member of Ac1,c2ε,d ) with φk(t) = 2πkt + ηk and ak(t) = ak for
k = 1, . . . ,K.

It should be noted that in Andersen and Bollerslev (1997, 1998), the au-
thors consider the addition of dummy variables to capture weekday effects or
particular events such as holidays in particular markets, but also unemploy-
ment reports, retail sales figures, etc1. While the periodic model captures most
of the seasonal patterns, their dummy variables allow to quantify the relative
importance of calendar effects and announcement events.

In the following, we build on FFF for several reasons. First, it is empirically
found to be a better in-sample estimator of seasonality than scale estimators and
smoothing methods (Laakkonen (2007)) and also provides better out-of-sample
forecasts (Martens et al. (2002)). Second, the parameters can be conveniently
interpreted and/or used in tests for structural breaks (i.e. violation of the
constant seasonality assumption). Third, as Ac1,c2ε,d is its natural generalization,

it can be readily extended to more complicated continuous-time models Ac1,c2ε,d of
seasonality. Before we move on to illustrate how such a model can be estimated
using traditional statistical methods and how those are inadequate for more
involved models from the Ac1,c2ε,d class, it is necessary to fill the gap between this
continuous-time construction and discrete-time processes.

1In fact, it is also possible to add a dependence on the daily volatility level but it is
discarded here because empirically insignificant both in equity and spot foreign exchange
data (see Andersen and Bollerslev (1997, 1998).
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2.3 Discrete-time approximation

Although trading happens in continuous time, the price process is only collected
at discrete points in time. Hence, it is natural to consider a sampling of the BSM
model (1) at discrete time stamps. Excluding overnights and week-ends, we
assume that our sample contains D trading days of P equally-spaced intraday
observations. With a sampling interval defined as τ = 1/P and letting p ∈
{1, · · · , P} and d ∈ {1, · · · , D}, there is a unique correspondence between each
index n = P (d− 1) + p ∈ {1, · · · , N} with N = PD, and the sampling time
t = nτ (in daily units).

At the sampling time t = nτ , we therefore denote the return, mean return,
spot volatility and diffusion term by

rn = log p(nτ)− log p((n− 1)τ), µn = µ(nτ), (13)

σn = σ(nτ) and wn = W (nτ)−W ((n− 1)τ),

where n = 1, . . . , N . Clearly, the sampling effect leads to

rn 6= τµn + σnwn.

Ideally, if the full information of the process was observable, we might discretize
it by

µ̃n =

∫ nτ

(n−1)τ

µ(u)du and σ̃dWn =

∫ nτ

(n−1)τ

σ(u)dW (u), (14)

where n = 2, . . . , N . By direct calculation, we obtain

rn = µ̃n + σ̃dWn,

for all n = 2, . . . , N . To fill the gap between the sampling scheme (13) and the
discretization scheme (14), we show in Appendix A that

rn ≈ µnτ + σnwn (15)

holds uniformly in probability.
In the following, we further assume a constant mean return2, that is µ(t) = µ

for all t ∈ R. We mention that under this assumption, when τ is small enough,
the term µnτ is negligible. Putting all the above facts together, we define the
(spot) log-volatility process yn as

yn = log(rn − µτ)2 = Tn + sn + log
(
w2
n

)
, (16)

where T (t) = 2 log σ1(t) for all t ∈ R, Tn = T (nτ) and sn = s(nτ). In other
words, yn is the discretized version of a noisy adaptive harmonic model (10),

2This assumption for the mean return is reasonable as both its value and variability are
usually small for financial data sampled from a few minutes to hours.
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that is, a sum of an well separated IMFs and a trend satisfying (T1), plus a
disturbance term3.

Within this framework, every specific choice of trend T , seasonality s and
noise w yields a different model. Due to their non-parametric nature, estimating
T , s or the AM and IF inside s for a generic σ satisfying the adaptive harmonic
model (10) is non-trivial. In the next subsection, we solve the special case where
s is an FFF and w is a GARCH(1,1), which we can reduce to a parametric
problem. Finishing with a critique of the models with constant seasonality, we
motivate the need for a generalized approach that we expose in the remainder
of this paper.

2.4 Fourier Flexible Form-GARCH asymptotics and lim-
itations

Without loss of generality, we assume a window length of one day (w1 = 1).
From the daily GARCH in Andersen and Bollerslev (1997, 1998) to commercial
factor models in Engle and Sokalska (2012), various alternatives have been pro-
posed for the trend Tn. Referring to the growing literature on realized volatility
measures (see e.g. Andersen et al. (2007) and Barndorff-Nielsen and Shephard
(2007) for surveys), another natural estimator for Tn is obtained by discretizing
of equation (3).

As for any linear model with known predictors, the Fourier Flexible Form
(FFF) from (12) can be easily estimated by regressing the predictors on yn− T̂n.
In the BSM model, the diffusion process is assumed to be the standard Brow-
nian motion. Then although wn is i.i.d. Gaussian, the disturbance logw2

n that
appears in the regression is not. While Boudt et al. (2011) propose a trun-
cated maximum likelihood estimator (MLE) of the FFF under the assumption
that wn is Gaussian, empirical evidence suggests that the residual noise pro-
cess is heteroskedastic (see Andersen and Bollerslev (1997, 1998); Martens et al.
(2002); Engle and Sokalska (2012)). Hence we propose a two-step approach
that combines the ordinary least-squares (OLS) to estimate the FFF and the
maximum likelihood estimator of a common model to capture heteroskedastic-
ity, namely the Gaussian GARCH(p,q) (Engle (1982); Bollerslev (1986) or see
Bollerslev et al. (1992, 1994) for surveys). As usual standard errors at each
step are asymptotically inconsistent and must be revised, we explicitly take this
issue into account.

Instead of an i.i.d. Gaussian process for the underlying noise wn, we write

wn = vnηn with

{
v2
n = ω +

∑p
i=1 aw

2
n−i +

∑q
j=1 b v

2
n−j

ηn ∼ N(0, 1),
(17)

where ω > 0, ai, bj ≥ 0 for all i ∈ {1, · · · , p} and j ∈ {1, · · · , q}. While the
GARCH(p,q) has been generalized in various ways to capture different proper-

3Under the BSM model assumption and the discretization (13), wn is an i.i.d. Gaussian
process, but it can be modified to further capture the properties of financial data and is
discussed in the following sections.
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ties of financial returns (see Bollerslev et al. (1992, 1994) for surveys), we restrict
ourselves to the GARCH(1,1), parametrized only by (ω, a, b). The reason is that
it is parcimonious, easy to estimate and that it also performs reasonably well
both at lower (Lunde and Hansen (2005)) and higher (see Giot (2005); En-
gle and Sokalska (2012)) frequencies; the latter after correcting for seasonality.
However, our derivation of the consistency and asymptotic normality of this
two-step estimation holds for more complex GARCH models.

In the remainder of this Subsection, we use

zn = (rn − µ̂τ)e−T̂n/2, (18)

as the “data”, where µ̂ is the sample mean and T̂n a previously estimated trend.
In all generality, the estimation of those two quantities also influences the the
asymptotic standard errors that we derive below, which are in fact lower bounds.
For the seasonality, we use β and xn as the vectors of parameters, respectively
predictors, that is,

β = (a1, b1, . . . , aK , bK)> ∈ R2K

xn = (cos(2πnτ), sin(2πnτ), . . . , cos(2πKnτ), sin(2πKnτ))
> ∈ [−1, 1]2K ,

where n = 1, . . . , N . Then the FFF-GARCH(1,1) likelihood is

L(z1, · · · , zN ;β,θ) = ΠN
n=1

e
− w2

n
2v2n√

2πv2
n

with

{
wn = zne

−xn
>β
2

v2
n = ω + a ε2n−1 + b v2

n−1,
(19)

with a new vector of parameters θ = (ω, a, b). In the two-step case, θ is es-
timated by replacing the true parameter β by a first step estimate and the
GARCH MLE standard errors also need to be revised.

To derive asymptotically valid standard errors for the two-step procedure
described above, the generalized method of moments (GMM) is a natural frame-
work (see Chapter 6 of Newey and McFadden (1994)). We closely follow Engle
and Sokalska (2012), where the same approach is carried out for the time-of-
day seasonality estimator. Stacking all 2K FFF and 3 GARCH parameters in
Θ = (β,θ), we define the vector of moments conditions as

g (Θ) =

(
E [g1]
E [g2]

)
with

{
g1 = xn ◦ (yn 1− xn ◦ β)

g2 = ∇θ
(

log v2
n +

z2n
v2n
e−x

>
nβ
)
,

(20)

where ◦ represents an element-wise multiplication and 1 is a 2K vector of ones.
As for g1 and g2, they represent respectively estimates at the first and second
optimization steps cast in terms of moment conditions, namely predictors and
residuals that are orthogonal for the OLS and the log-likelihood’s gradient that
equals zero for the MLE. Including the dummy variable part of the FFF does
not change the derivation that follows, because non-linear least squares can also
be cast in term of moments conditions.
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To obtain Θ̂, we replace g (Θ) by its sample sum counterpart ĝ (Θ). Fur-
thermore, we use the identity as GMM weighting because the system is just-
identified (i.e. the number of parameters and estimation equations is equal). In
this case, the estimator is

Θ̂ = argmin ĝ (Θ)
>
ĝ (Θ) . (21)

In other words, Θ̂ minimizes the Euclidean distance between the sample mo-
ments and their population counterpart, that is zero. Under some mild regular-
ity conditions for g (Θ) and with Θ0 = (β0,θ0) the true vector of parameters,
Theorem 6.1 of Newey and McFadden (1994) establishes the consistency and
asymptotic normality of (21) as a special case of Theorem 3.4 in Newey and
McFadden (1994):

√
N
(
Θ̂−Θ0

)
d−→ N

(
0, G−1ΩG−1>) , (22)

with G = E
(
∇βg1 0
∇βg2 ∇θg2

)∣∣∣∣
Θ0

and Ω = E
(
g2

1 g1g2

g1g2 g2
2

)∣∣∣∣
Θ0

For this theorem to apply, the main requirement is the consistency of both β̂
and θ̂, inherited in this case from the OLS and MLE, respectively. Because the
predictors xn are exogeneous and orthogonal to each other (no collinearity),

consistency of β̂ is inherited from the OLS. As for the GARCH part, compact-
ness of the parameter space and stationarity of the process (Bollerslev (1986))
imply consistency of the MLE. Finally, It should be noted that the matrices G
and Ω can be estimated consistently using the sample sum and Θ̂ (see Hansen
(1982)).

In practice, this two-step construction is mainly useful if all its assump-
tions hold. While the heteroskedasticity of the data is undeniable, the constant
seasonality part is more puzzling, as it is arguably challenged by empirical evi-
dence. In Laakkonen (2007), the author observes that an FFF estimated yearly,
then quarterly and finally weekly performs increasingly better at capturing pe-
riodicities in the data. Whereas this sub-sampling is interpretable as a varying
seasonality, it is still piecewise constant. Because a piecewise constant function
implies that the system under study undergoes structural changes (i.e. shocks)
at every break point, it is an unlikely candidate for the market’s seasonality.
We take the point of view of Deo et al. (2006), where the authors use fre-
quency leakage in the power spectrum of the absolute return to argue that the
seasonality is not (piecewise) constant but slowly varying. While they allow
non-integer frequencies, their “generalized FFF” parameters are still constant
for the whole sample. In other words, they correct for frequency leakage, but do
not allow for potential slowly varying frequencies and amplitude modulations
(i.e. time-varying FFF parameters).

Dynamic alternatives include either arbitrarily small intervals or a rolling
version of their “generalized FFF”. In the first case, an arbitrarily increase in
the estimator’s variance (as in the issue of testing for a general smooth member
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of Ac1,c2ε,d ) is expected. In the second case (that we compare to our method in
Section 5), it is not clear a priori how one would choose the optimal window
size.

In the next Section, we propose an alternative framework to study the time-
frequency properties of the volatility. Allowing the trend and seasonality to
evolve dynamically over time, we are able to obtain T and s in the adaptive
harmonic model in a single step. In fact, if the log-volatility process {yn} is
stationary or close to stationary in some sense, a transform called the Syn-
chrosqueezing transform (SST) theoretically helps to obtain accurate pointwise
estimates of T satisfying (T1) and s ∈ Ac1,c2ε,d (Daubechies et al. (2011); Chen
et al. (2013)).

3 From Fourier to Synchrosqueezing

In this Section, we start by recalling the relationship between the harmonic
model and the Fourier transform. Then we discuss the adaptive harmonic model
and sketch the theoretical basics of time-frequency analysis. Finally, we present
the Synchrosqueezing transform (SST), which is specially aimed at studying the
adaptive harmonic model. Its theoretical properties are discussed in the end.

3.1 Fourier transform and the harmonic model

Oscillatory signals are ubiquitous in many fields. Seasonality is a synonym of
oscillation broadly used in finance, econometrics, public health, biomedicine,
etc. There are several “characteristics” one can use to describe an oscillatory
signal (see Flandrin (1999)): for example, how often an oscillation repeats itself
on average, how large an oscillation is on average, etc. To capture these features,
the following harmonic model is widely used:

x(t) =

K∑
k=1

ak cos(2πξkt+ ηk), (23)

where
∑
a2
k < ∞, ak > 0, ξk > 0 and ηk ∈ R. The quantities ak, ξk and

ηk are respectively called the amplitude, the frequency and the initial phase
of the k-th component of x. As we stated in Section 2, both the FFF and its
generalized version from Deo et al. (2006) are based on this model. When a given
signal satisfies model (23), the Fourier transform is helpful in determining the
oscillatory features ak and ξk. For x(t) defined in (23), we recall (see (Folland,
1999, Chapter 9)) that its Fourier transform is

Fx =
1

2

K∑
k=1

ake
iηkδξk +

1

2

K∑
k=1

ake
−iηkδ−ξk ,

where δ is the Dirac measure. Thus, if a signal satisfies the harmonic model,
the frequency ξk and the amplitude ak can be read directly from its Fourier
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transform. For more details on the property of the Fourier transform Fx(ω) of
a function x(t) with t, ω ∈ R, we refer the reader to (Folland, 1999, Chapter 9).

As useful as the harmonic model can be, it does not fit well many real signals.
Indeed, due to the nonlinear nature of many systems, the oscillatory pattern
might change over time. For instance, the signal may oscillate more often in the
beginning but less in the end, or oscillate stronger in the beginning but weaker
in the end. We call these time-varying patterns the dynamics of the seasonality,
and it is well known that capturing the dynamics is beyond the scope of the
harmonic model. Unfortunately, when departing from static models such as (23)
to consider dynamic models such as the whole class Ac1,c2ε,d , the usefulness of the
Fourier transform is also limited due to the loss of time localization of events.
In other words, because of its incapacity to capture momentary behavior, we
cannot use the Fourier transform to analyze the dynamics of seasonality.

3.2 Time-frequency analysis

To overcome the limitation of the Fourier transform, time-frequency analysis was
introduced (see Daubechies (1992); Flandrin (1999) and the references inside
for the historical discussion). Heuristically, to capture the dynamics of the
oscillatory signal, we take a small subset of the given signal x(t) around a given
time t0, and analyze its power spectrum. Ideally, this provides information
about the local behavior of x(t) around t0. We repeat the analysis at all times,
and the result is referred to as the time-frequency (TF) representation of the
signal. Mathematically, this idea is implemented by the short-time Fourier
transform (STFT) and continuous wavelet transform (CWT). The STFT is
defined by

Gx(t, ω) =

∫
x(s) g(s− t) e−i2πωsds , (24)

where ω > 0 is frequency, and g is the window function associated with the
STFT which extracts the local signal for analysis. g has to be smooth enough
and such that

∫
g(t)dt = 1. The CWT is defined by

Wx(t, a) =

∫
x(s) a−1/2 ψ

(
s− t
a

)
ds , (25)

where a > 0. We call a the wavelet’s scale and ψ the mother wavelet which
is smooth enough and such that

∫
ψ(t)dt = 0. In a nutshell, we select a sub-

set of the whole signal by the window function or the mother wavelet, and
study how the signal oscillates locally. From the viewpoint of frame analysis,
the STFT and CWT are defined as the inner products between the signal to
be analyzed and a pre-assigned family of “templates”, or atoms – which are

{g(·− t)e−i2πω·}ω∈R+,t∈R in STFT and {a−1/2 ψ
( ·−t
a

)
}a∈R+,t∈R in CWT. Fur-

thermore, this inner product provides a way to resolve events simultaneously
in time (by translation) and frequency (by modulation and dilatation respec-
tively), but the properties of their respective templates yield different trade-offs
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between temporal and frequency resolution due to the Heisenberg uncertainty
principle. Take the high frequency region for example. The STFT offers a bet-
ter frequency resolution in frequency events but an inferior resolution in time.
In contrast, the CWT provides an inferior resolution in frequency but a better
resolution in time.

To further understand the time-frequency (TF) analysis, we consider the con-
tinuous wavelet transform (CWT) of a purely harmonic signal x(t) = A cos(2πωt),
and the same reasoning follows for the short-time Fourier transform (STFT).
From the Plancheral theorem, the CWT of x becomes

Wx(t, a) = Aa1/2Fψ(ωa)ei2πωt. (26)

We observe that if Fψ(ω) is concentrated around ω = 1, then Wx(t, a) is con-
centrated around a = 1/ω.

In the remainder of this section, we focus on the CWT, and assume x = T+s,
where T satisfies (T1) and s ∈ Ac1,c2ε,d , and take its discretization x = {xn}n∈Z,
where xn = x(nτ) and τ > 0 is the sampling interval. In other words, we
assume the model (16) without log

(
w2
n

)
. As discussed in Section 2.3, we only

have access to the discretized sample data. We thus discretize the CWT for
a > 0 and n ∈ Z by

Wx(nτ, a) := τ
∑
m∈Z

xm
a1/2

ψ̄
(mτ − nτ

a

)
.

In Figure 1, we show a simulated dataset to be used in the remainder of this
section. The contaminated signal is the sum of a trend, an amplitude modulated-
frequency modulated-periodic component and an additive GARCH(1,1) noise.
More precisely, we consider the following functions

T (t) = 1 + 0.2t+ 2 exp
[
−(t− 20)2

]
,

s(t) =
(
1 + cos(t/(2π))2

)
cos(2πφ(t)),

φ(t) = t+ t2/40,

and obtain the sampled time series

xn = T (nτ) + s(nτ) + wn,

where n ∈ {1, · · · , N}, N = 2000, τ = 1/100 and wn is the GARCH(1,1)
equation (17) with parameters a = 0.1, b = 0.85 and ω = 1/(1 − a − b). Note
that the instantaneous frequency is φ′(t) = 1 + t/20 which increases linearly
with t (i.e. in this case, the number of oscillations per unit of time is twice
higher at the end).

Although one may suspect the existence of a trend and of some periodic com-
ponent in the right column of Figure 1, both the amplitude modulations and the
increasing frequency are rather difficult (if not impossible) to see. Furthermore,
although the power spectrum of the contaminated signal that we display in the
right column of Figure 1 suggests events localized both at very low frequencies
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Figure 1: Toy data. Left column, from top to bottom: the trend, the seasonal-
ity (thin line) with the amplitude modulation (thick line) and the noise; Middle
column: the contaminated signal, that is the sum of the three components.
Right column: the power spectrum of the contaminated signal.

and in the [1, 2] interval, the information displayed is insufficient to understand
the dynamics of the system.

In Figure 2, we show the CWT4 of x based on two different mother wavelets:
the left panel is based on the Morlet wavelet and the right panel is based on
the Meyer wavelet. Unlike with the Fourier transform, it is now possible to
observe the time-varying frequency properties of the signal: the large increasing
band on both CWT corresponds to the periodic component. Nonetheless, both
pictures are blurred because the resolution in the time-frequency plane is limited
by Heisenberg’s uncertainty principle. Furthermore, Figure 2 illustrates the
fact that different mother wavelets lead to different results. As we observe
by comparing the left and right panels, the choice of template “colors” the
representation and therefore influences the interpretation from which properties
of the signal are deduced.

3.3 The Synchrosqueezing transform

In Kodera et al. (1978); Auger and Flandrin (1995); Chassande-Mottin et al.
(2003, 1997); Flandrin (1999), the reassignment technique was proposed to im-
prove the time-frequency resolution and alleviate the “coloration” effect of the
time-frequency analysis. The synchrosqueezing transform (SST) is a special
case of the reassignment technique originally introduced in the context of audio

4For more details about the matlab implementation of the CWT, available upon request
from the authors, we refer to Appendix B.
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Figure 2: Continuous wavelet transform of the toy data. On the left:
Morlet wavelet. On the right: Meyer wavelet.

signal analysis in Daubechies and Maes (1996). Its theoretical properties are
analyzed in Daubechies et al. (2011); Thakur et al. (2013); Chen et al. (2013),
where it is shown that the SST allows to determine T (t), ak(t) and φ′k(t) in
the adaptive harmonic model (10) uniquely and up to some pre-assigned ac-
curacy. In brief, by reallocating the CWT coefficients, the resolution of the
time-frequency plane is increased so that we are able to accurately extract the
trend, the instantaneous frequencies and the amplitude modulations.

The SST for x satisfying the adaptive harmonic model (10) plus some noise
can be summarized as follows. Suppose the mother wavelet in equation (25)
is such that suppFψ ⊂ [1−∆, 1 + ∆], where ∆ � 1 and evaluate the CWT of
x. According to Daubechies et al. (2011), we extract information about the IF
φ′(t) by

ωx(t, a) =

{
−i ∂tWx(t,a)

2πWx(t,a) Wx(t, a) 6= 0

−∞ otherwise
. (27)

The motivation for (27) can be easily seen from the following example. For
the purely harmonic signal x(t) = cos(2πωt), where ω > 0, by (26) and the
derivative of (26) with respect to time, one obtains

ωx(t, a) =

{
ω a ∈

[
1−∆
ω , 1+∆

ω

]
−∞ otherwise

,

which is the desired information about its IF. In this case, the SST is defined
by

Sx(t, ω) =

∫
a ; |Wx(t,a)|>Γ

Wx(t, a) a−3/2 δ(ωx(t, a)− ω )da, (28)

where Γ > 0 is the threshold chosen by the user, ω > 0 is the frequency and
ωx(t, a) is defined in (27). Keeping in mind that the frequency is reciprocally
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Figure 3: Synchrosqueezed transform of the toy data. On the left: Morlet
wavelet. On the right: Meyer wavelet.

related to the scale, then (28) can be understood as follows: based on the IF
information ωx, at each time t, we collect the CWT coefficients at scale a where
a seasonal component with frequency close to ω is detected. This additional
step allows to mitigate the coloration due to the choice of template.

In this case, we discretize the SST. First, ωx is discretized by

ωx(nτ, a) :=


−i∂tWx(nτ, a)

2πWx(nτ, a)
when |Wx(nτ, a)| 6= 0;

−∞ when |Wx(nτ, a)| = 0,

where ∂tWx(nτ, a) is the discretization of ∂tWx(t, a), which is defined as

∂tWx(nτ, a) := τ
∑
m∈Z

xm
a3/2

ψ̄′
(mτ − nτ

a

)
.

Similarly, Sx(t, ω) is discretized as

Sx(nτ, ω) :=

∫
a: |Wx(nτ,a)|≥Γ

δ(|ωx(nτ, a)− ω|)Wx(nτ, a)a−3/2da.

We now illustrate the analysis result of the toy data x by SST in Figure 35.
Whether we use the Morlet wavelet or the Meyer wavelet, it is visually obvious
that the Synchrosqueezed transform of the noisy signal, with a darker area
that seems to form a straight line from 1 to 2 in both cases, is close to the
instantaneous frequency φ′(t) = 1 + t/20. Compared with the CWT, it is

5For more details about the matlab implementation of the SST, available upon request
from the authors, we refer again to Appendix B.
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visually obvious that Sx is concentrated in narrower bands around the curves
in the TF plane defined by (t, φ′k(t)) (here with k = 1).

Using any curve extraction technique, it is possible to estimate IF with
high accuracy. We denote the estimated IF of the k-th component as φ̂′k.
Furthermore, the restriction of Sx to the k-th narrow band suffices to reconstruct
the k-th component of x. More formally, the k-th (complex) component at time
nτ is estimated by

f̂Ck (nτ) :=
1

Rψ

∫
|φ′k(nτ)−ω|≤∆

Sx(nτ, ω)dω, (29)

where Rψ :=
∫ Fψ(ω)

ω dω. The estimator of the k-th component fk at time nτ is

f̂k(nτ) := <f̂Ck (nτ), where <z denotes the real part of z ∈ C. We then estimate
the amplitude modulations ak at time nτ by

âk(nτ) :=
∣∣∣f̂Ck (nτ)

∣∣∣ . (30)

Finally, the trend at time nτ can be estimated by setting a low-frequency thresh-
old ωl and writing

T̂ (nτ) := x(t)− 1

Rψ

∫ ∞
ωl

Sx(nτ, ω)dω. (31)

The theoretical properties of the above estimators have been shown in (Chen
et al., 2013, Theorem 3.2), and will be summarized later.

In Figure 4, we show the reconstructed component for the toy data using
a Morlet mother wavelet, where integration bands in (29) are the dashed red
lines from Figure 3. Because the reconstruction is not dependent on the chosen
mother wavelets6, it is not shown here for the Meyer wavelet. Usually, while the
instantaneous frequency is recovered precisely, the estimated amplitude modu-
lations are less ideal. Although this is important when the goal is forecasting,
it can be dampened by further smoothing the amplitude (here with a simple
moving average filter of length 1/τ).

Before closing the section, we summarize the theoretical properties of the
SST when it is applied to analyze the adaptive harmonic model (16) for the
sampled log-volatility process y = {yl}l∈Z. Suppose y satisfies the following
additional condition – Ak(t) ∈ C2(R) and supt∈R |A′′k(t)| ≤ εc2 for all k =
1, . . . ,K, and T ∈ C2(R) so that |T ′′(ψa,b)| ≤ CT ε for all b ∈ R and a ∈ (0, 1+∆

c1
].

If the sampling interval τ satisfies 0 < τ ≤ 1−∆
(1+∆)c2

and var
[
logw2

n

]
<∞, then

it is highly probably that the estimators f̂k, φ̂′k and âk evaluated from y are
accurate up to Cτ (σ+ ε), where Cτ is a constant depending on C ′ and τ which

decreases when the sampling rate increases, that is, τ decreases. Moreover, T̂

6This statement is correct up to the moments of the chosen mother wavelet ψ. The re-
construction error depends on the first three moments of the chosen mother wavelet and its
derivative but not on the profile of ψ (Daubechies et al. (2011); Chen et al. (2013))
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Figure 4: Reconstruction of the components. Left column, from top to
bottom: the trend, the instantaneous frequency and the seasonality (thin line)
with the amplitude modulation (thick line) with the true underlying function
(black) and reconstructed result (red); Right column: the true signal, that is
the sum between the trend and the seasonality, (black) and the reconstructed
function (red).

is accurate up to Cτ,T (σ + ε), where Cτ,T is a constant depending on C ′ τ and
CT which decreases when τ decreases. We refer the reader to Chen et al. (2013)
for the precise statement of the theorem and more discussions.

In summary, for the harmonic model (23), the Fourier transform allows us
to extract the features of interest about the oscillation. When it comes to the
adaptive harmonic model (10), we count on the synchrosqueezing transform to
extract the oscillatory features of a given signal.

4 Simulation study

In this section, we present a simulation study that uses a realistic setting rele-
vant to the empirical application in Section 5. To study the properties of the
estimators proposed in Section 3, we directly sample 1000 times 170 days of
data (i.e. 48960 observations) from the discretized log-volatility from equation
(16), that is

yn := Tn + sn + log
(
w2
n

)
,

where Tn and sn are deterministic functions and wn is noise. Using the EUR/USD
sample (cf. Section 5, for more details), we estimate trend and seasonality used
in the simulation study:

• Tn is the trend obtained using the SST estimate from equation (31),

• sn is the seasonality with 4 periodic components obtained either using an
FFF or the SST estimator described in Section 5,
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• wn is either a student-t or a GARCH(1,1) with student-t innovations.

The noise processes is generated from processes estimated with the residuals
obtained using the corresponding sn: for example, we use the FFF version of
sn to remove seasonality from the EUR/USD sample, we fit a student-t for the
residuals and use the estimated parameters to generate the noise.

In Figures 5 and 6, we show the results of the simulation study. We use f as
a quantity to be estimated (either the trend or one of the periodic components)

and f̂ as the SST estimator. The left panels of Figures 5 and 6 show the true
f . The first line corresponds to the trend. In the lines below, “Am i” denotes
a periodic component whose frequency equals i. In each sub-figure the plain
and dashed lines correspond respectively to student and GARCH(1,1) (with
student innovations) noises. In both cases of constant seasonality (Figure 5)
and amplitude modulated seasonality (Figure 6), the resulting estimated biases
(middle left panels) for either student or GARCH(1,1) noises are close to 0 (even
though slightly positive for the trend but below 0.2), suggesting unbiased SST
estimators of trend and amplitudes.

−19

−18

−17

T
re

n
d

True function

−0.2

0

0.2

Bias

0.02

0.03

0.04

Variance

100

120

140

SNR

0.2

0.6

1

A
m

 1

0.2

0.6

1

A
m

 2

0.2

0.6

1

A
m

 3

20 60 100 140

0.2

0.6

1

A
m

 4

−0.05

0

0.05

−0.05

0

0.05

−0.05

0

0.05

20 60 100 140

−0.05

0

0.05

0.005

0.01

0.015

0.005

0.01

0.015

0.005

0.01

0.015

20 60 100 140

0.005

0.01

0.015

5

10

15

5

10

15

5

10

15

20 60 100 140

5

10

15

Figure 5: Simulation using constant seasonality. We use f as a quantity
to be estimated (either the trend or one of the periodic components) and f̂ as
the SST estimator. Left: the true f ; Middle left: the estimated bias of the

estimator, i.e. Ê
[
f̂
]
− f ; Middle right: the estimated variance of the estimator,

i.e. v̂ar
[
f̂
]
; Right: the estimated signal-to-noise ratio, i.e.

∣∣∣Ê [f̂]∣∣∣ /√v̂ar
[
f̂
]
.

The first line corresponds to the trend. In the lines below, “Am i” denotes a
periodic component whose frequency equals i and in each sub-figure the plain
and dashed lines correspond respectively to student and GARCH(1,1) noises.
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Figure 6: Simulation using amplitude modulated seasonality. We use f
as a quantity to be estimated (either the trend or one of the periodic compo-

nents) and f̂ as the SST estimator. Left: the true f ; Middle left: the estimated

bias of the estimator, i.e. Ê
[
f̂
]
− f ; Middle right: the estimated variance

of the estimator, i.e. v̂ar
[
f̂
]
; Right: the estimated signal-to-noise ratio, i.e.∣∣∣Ê [f̂]∣∣∣ /√v̂ar

[
f̂
]
. The first line corresponds to the trend. In the lines below,

“Am i” denotes a periodic component whose frequency equals i and in each
sub-figure the plain and dashed lines correspond respectively to student and
GARCH(1,1) noises.

Overall, the estimated variances (middle right panels) for the student noises
are lower than those for the GARCH(1,1) cases. This can be explained by
the fact that the heteroskedasticity represents an additional disturbance for the
SST estimator. For student noises, the estimated variances are almost constant
(around 0.005) for all the different amplitudes considered, both in the case of
constant seasonality (Figure 5) or amplitude modulated seasonality (Figure 6).

The right panels show the estimated signal-to-noise ratio (ŜNR), i.e.
∣∣∣Ê [f̂]∣∣∣ /√v̂ar

[
f̂
]
.

Obviously, the higher the true amplitude the higher the SNR. Furthermore, the
SNR for the trend is undoubtedly very high. Finally, because the GARCH(1,1)
variances are slightly higher than the student variances but estimators are es-
sentially unbiased, we consistently find a higher SNR for the student.

Note that, as seen in Figure 5 using the constant FFF, the bias and the
variance strongly increase near the boundaries of the data. To alleviate this
effect, simulations from Figure 6 are performed by “padding” the equivalent of
50 days of data on both sides. In other words, we take the 50 times 288 first/last
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simulated observations, flip them and add them back at the beginning/end of
the data before running the SST estimation.

5 Application to foreign exchange data

As an empirical application, we study the foreign exchange (FX) market. Be-
cause it is open continuously from Sunday 10:00 pm GMT to Friday 10:00
pm GMT, our instantaneous trend and seasonality model constitutes a conve-
nient framework for FX market study. Although they operate over-the-counter
(OTC), market-makers post bid and ask quotes {pBID(t), pASK(t)} in real time
to data providers for all major currency pairs.

Because activity is not homogeneous during trading days/weeks, quotes are
usually asynchronous and preprocessing is required to obtain regularly spaced
observations. From {pBID(t), pASK(t)}Nn=1, we define the (log)-price

p(t) =
log (pBID(t)) + log (pASK(t))

2
.

Furthermore, several quotes may share the same time stamp and tick-by-tick
data users often need to take this into account; for example by taking an average.

In what follows, we avoid the preprocessing work by using data graciously
made available by Dukascopy Bank SA7, an electronic broker holding a Securi-
ties Dealer License issued by the FINMA. It contains 5 minute spaced bid-ask
pairs for the EUR/USD and the USD/JPY from March 11, 2012 to November
2, 2012. This specific time-period was chosen to avoid dealing with daily saving
time in the US, as the activity pattern in FX markets has been shown to differ
in winter and in summer (see e.g. Andersen and Bollerslev (1998)). Hence in
a total of 34 trading weeks, we obtain 48960 observations (170 days) excluding
weekends.

In the top row of Figure 7, we show the return rn for the two considered ex-
change rates for the first week of trading, that is from March 11, 2012 (Sunday)
at 21:05 pm GMT to March 16, 2012 (Friday) at 20:55 pm GMT (1439 observa-
tions). As usual with financial data, the heteroskedasticity is obvious. However,
it is arguably easier to discern the periodicity by looking at the log-volatility
yn := 2 log |rn − µ̂| in the bottom row of Figure 7; the smallest observations cor-
respond to the case where the price does not move during the 5 minute interval
(i.e. rn = 0 and yn = 2 log |µ̂|).

In Figure 8, we show the autocorrelation and the power spectrum of the
log-volatility yn. While the autocorrelation and power spectrum of the return
process are usually flat for all lags and frequencies (white noise property), the
two curves indicate strong periodicities in the log-volatility. Although the au-
tocorrelation and power spectrum are different for the two exchange rates, we
observe that they yield essentially two versions of the same information: on av-
erage, the seasonality is composed of periodic components of integer frequency.

7http://www.dukascopy.com/
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Figure 7: Return and log-volatility. Top: the EUR/USD (left) and
USD/JPY (right) return rn (left) sampled from March 11, 2012 (Sunday) at
21:05 pm GMT to March 16, 2012 (Friday) at 20:55 pm GMT (1439 obser-
vations); Bottom: the EUR/USD (left) and USD/JPY (right) log-volatility
yn := 2 log |rn − µ̂| for the same period;

Note that we used “on average” to emphasize the fact that both representa-
tions are only part of the picture. This representation misses the “dynamics”
of the signal: for example, some of the underlying periodic components may
strengthen, weaken or even completely disappear at some point, as illustrated
in Section 3.

In Figure 9, we display |Sy(t, ω)|, the absolute value of the Synchrosqueezed
transform, in shades of gray for frequencies 0.5 ≤ ω ≤ 4.5. For both exchange
rates, we observe much darker curves (indicating higher values of |Sx(t, ω)|) at
integer frequencies (although the curve at 2 daily oscillations for the EUR/USD
is very thin and sometimes fading). The apparent linearity of the instantaneous
frequency at integer values lends support for an amplitude-modulated version
of the FFF or, in other words, a member of Ac1,c2ε,d such that d ≤ 1/(2K − 1)
and |φ′k(t)| = k for all k ∈ {1, . . . ,K} and t ∈ R. Although this kind of constant
frequency/amplitude modulated model can be estimated in different ways, we
carry the analysis within the SST framework. For the reconstruction using the
estimator from equation (29), we display the dashed red lines, which are the
selected integration bands at k ±∆ with k ∈ {1, 2, 3, 4} and ∆ = 0.05.

In Figure 10, we show the reconstruction results and compare them to more
traditional estimators. In the first row, we show the reconstructed trend (plain
dark line) with bootstrapped 95% confidence intervals (dotted lines) and a
rolling version of the realized log-volatility (in gray). In the second to fifth
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Figure 8: Autocorrelation and power spectrum. Top: autocorrelation
function γy(l) = Ê((yn − Ê(yn))(yn−l − Ê(yn))) with lags l up to 1440 (the x
axis ticks are divided by 288) for the EUR/USD (left) and USD/JPY (right);
Bottom: power spectrum Py(ω), with frequency ω up to 5 for the EUR/USD
(left) and USD/JPY (right).
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Figure 9: Synchrosqueezed transform of the EUR/USD and
USD/JPY. The Synchrosqueezed transform of the log-volatility’s absolute
value, that is |Sy(t, ω)| with yn := 2 log |rn − µ|, is displayed in shades of gray
for the EUR/USD (left) and and the USD/JPY (right). The dashed red lines
are the integration bands selected for the reconstruction.
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rows, we show the reconstructed amplitude modulations (plain dark line) with
95% confidence intervals (dotted lines) and a rolling version of the FFF (in
gray). We use “Amplitude k” to denote the amplitude of a component whose
frequency equals k (i.e. the main daily oscillation corresponds to “Amplitude
1”).

In what follows, we give more details on how those results are obtained and
comment on them:

• We reconstruct the trend with a frequency threshold chosen at 0.95 daily

oscillations, that is using a discretized version of T̂ (nτ) := yn−Re 1
Rψ
∫ 144

0.95
Sy(nτ, ω)dω

where the upper integration bound corresponds to the highest frequency
that can be resolved according to the Nyquist theorem (i.e. half of the
sampling frequency which is equal to 288 for 5 minute spaced observa-
tions). As for the realized log-volatility, it is simply computed as a rolling
moving average of yn with 288 observations included (except near the
borders) and maximal overlap. Our trend estimator quite visibly consti-
tutes a smoothed version of the usual volatility measure, which we find
well inside the 95% confidence interval except for rare and short lived
upward/downward spikes.

• We reconstruct the periodic components using the discretized version of
f̂k(nτ) := 1

Rψ
∫
|k−ω|≤∆

Sy(nτ, ω)dω described in B. It is noteworthy that

when a unique FFF is estimated for the whole sample, the corresponding
amplitude is very close to the mean amplitude from the SST. In fact, we
extend this analogy between the FFF and the SST by dividing the sam-
ple into (possibly overlapping) smaller intervals (e.g. monthly or weekly),
estimate an FFF for each of them and show that the corresponding ampli-
tudes get closer and closer to the SST, which is essentially an instantaneous
version of the FFF.

Here, the rolling FFF parameters are computed using the OLS estimator
using a two-week rolling window (say w = 288 × 5 × 2). The corre-
sponding amplitude, which closely “tracks” the SST amplitudes, is found
using the relation

√
a2
k(nτ) + b2k(nτ) where the observations yj for j ∈

{n− bw/2c, . . . , n+ bw/2c} are used in the estimation.

• In Chen et al. (2013), the authors give theoretical bounds on the error
committed when reconstructing the trend and seasonality with the SST.
However, those bounds have two disadvantages: firstly they are very rough
and secondly they are fairly impractical to implement. To obtain the con-
fidence intervals displayed in the Figure, we use the following procedure:

(a) Use T̂ (nτ) and f̂k(nτ) to recover the residuals

zn := rn exp

[
−
T̂ (nτ) +

∑K
k=1 f̂k(nτ)

2

]

for n ∈ {1, · · · , N}.
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(b) Bootstrap B samples, say zbn for b ∈ {1, · · · , B} and n ∈ {1, · · · , N}.

(c) Add back T̂ (nτ) and f̂k(nτ) to zbn in order to obtain

rbn := zbn exp

[
T̂ (nτ) +

∑K
k=1 f̂k(nτ)

2

]

for b ∈ {1, · · · , B} and n ∈ {1, · · · , N}.

(d) Define ybn := 2 log |rbn − µ|, estimate T̂ b(nτ) and f̂ bk(nτ) for b ∈
{1, · · · , B} and n ∈ {1, · · · , N} to compute pointwise confidence in-
tervals.

As the residuals zn are found to be heteroskedastic, a naive bootstrapping
scheme is not appropriate. To deal with this dependency issue, we use
automatic block-length selection procedure from Politis and White (2004)
along with circular block-bootstrap.

Figure 10 suggests that, for all components and the two exchange rates, both
the FFF parameters and SST amplitude (and hence the seasonality) evolve dy-
namically over time: in this example using only an eight months sample, the
amplitude of the dominant component (i.e. the main daily oscillation) for the
EUR/USD is roughly comprised between 0.6 and 1.4 whereas the constant FFF
estimate is 1.01. In more concrete terms, using 1.01 instead of 0.6, respectively
1.4, corresponds to a 30.7% overestimation, 35.7% underestimation, of the peri-
odic component of volatility. In a risk-management context where the volatility
is the determinant time-varying feature, the implications are serious.

Figure 11 represents two diagnostic checks: the residuals autocorrelation
and the estimated seasonality for a whole trading week. On the left of Figure
11, we show the log-volatility autocorrelation (dark line), the autocorrelation of

yn −
∑K
k=1 f̂k(nτ) (dark gray line), the autocorrelation of yn −

∑K
k=1 f̂k(nτ)−

T̂ (nτ) (light gray line) and approximate 95% confidence intervals at ±2/
√
N

(dashed line) for the EUR/USD (top) and USD/JPY (bottom). In the autocor-

relation of yn−
∑K
k=1 f̂k(nτ) (dark gray line), we observe that the periodicity is

removed but that the process still seems to exhibit long-memory properties (ar-
guably easier to spot on the USD/JPY data). As it becomes negligible beyond
the first 30-50 lags (or equivalently between 2.5 and 4.2 hours), the autocorre-

lation of yn −
∑K
k=1 f̂k(nτ)− T̂ (nτ) (light gray line), i.e. the residual intraday

heteroskedasticity, suggests that the persistence is captured in the trend com-
ponent.

On the right of Figure 11, we show the seasonality estimated by a constant
FFF (plain line), the rolling FFF (dashed line) and the SST (dotted line) for
the EUR/USD (top) and USD/JPY (bottom). Although they are very similar,
the Figure helps to further explain our earlier statement that the SST allows
to extract an instantaneous version of the FFF: the plain line represents the
average daily oscillation, the dashed line is a wiggly estimate of the dynamics
and the dotted line is our smooth instantaneous seasonality estimate.
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Figure 10: Reconstruction results. Top row: reconstructed trend (plain
dark line) with 95% confidence intervals (dotted lines) and rolling realized log-
volatility (in gray) for the EUR/USD (left) and USD/JPY (right). Bottom
four rows: reconstructed amplitude modulations (plain dark line) with 95%
confidence intervals (dotted lines) and rolling FFF (in gray) for the EUR/USD
(left) and USD/JPY (right), with“Amplitude k” corresponding to the amplitude
of a component of frequency k.In summary, those results show that the SST is adaptive to the data. Al-
though similar estimates of trend and seasonality can be obtained with moving
averages and rolling regressions respectively, the SST provides smooth estimates
and does not require an arbitrary choice of the length of the window or the rolling
overlap. One could argue that the choice of mother wavelet is also an arbitrary
choice, but as we showed in Section 2, the influence of this choice on the SST
estimators is negligible. In any case, the main message is that dynamic methods
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Figure 11: Diagnostic checks. Left: the log-volatility autocorrelation (dark

line), the autocorrelation of yn−
∑K
k=1 f̂k(nτ) (dark gray line), the autocorrela-

tion of yn −
∑K
k=1 f̂k(nτ)− T̂ (nτ) (light gray line) and approximate 95% confi-

dence intervals at ±2/
√
N (dashed line) for the EUR/USD (top) and USD/JPY

(bottom). Right: the constant FFF (plain line), the rolling FFF (dashed line)
and the SST (dotted line) for the EUR/USD (top) and USD/JPY (bottom).

are necessary to properly take the influence of seasonality into account, as static
models can lead to severe underestimation/overestimation of the intraday spot
volatility.

6 Discussion

The non-parametric estimation of intraday spot volatility by disentangling in-
stantaneous trend and seasonality is an important extension of classical intraday
models for situations where adaptivity to ever changing markets may be essen-
tial. The proposed method provides a realistic framework for the high frequency
time series behavior. First, it lets the realized volatility be modelled as an “in-
stantaneous” trend which evolves in real time within the day. Second, it allows
the seasonality to be non-constant over the sample. In a simulation study using
a realistic setting, numerical results confirm that the proposed estimators for
the trend and seasonality components are unbiased and have a low variance (or
equivalently a high signal-to-noise ratio). We show that this result holds even
in the presence of heteroskedastic and heavy tailed noise.

Using 170 days of EUR/USD and USD/JPY exchange rates sampled every
5 minutes, we confirm empirically that the oscillation frequency is constant,
as suggested originally in the FFF model from Andersen and Bollerslev (1997,
1998). In the two exchange rates, we show that the amplitude modulations
of the periodic components evolve dynamically over time. In the EUR/USD,
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neglecting those modulations in the periodic part of the volatility would imply
either a 30.7% overestimation (when the periodic components are lower than
their mean value) or a 35.7% underestimation (when the periodic components
are higher than their mean value). Furthermore, we show that the SST estimator
gives results comparable to a smooth version of a rolling OLS using the FFF
predictors. However, the adaptivity of SST should still be emphasized, as it
does not require ad-hoc choices neither of the rolling overlapping ratio nor of
the length of each window as for a parametric regression.

While we illustrated our model by simultaneously disentangling the low and
high frequency components of the intraday spot volatility in the FX market,
it is possible to embed the new methodology into a forecasting exercise. Al-
though this is beyond the scope of the present paper, which is rather aimed
at presenting the modelling framework, the exercise may be useful in the con-
text of an investor’s optimal portfolio choice or for risk-management purposes.
Further research directions include the extension of the framework to both the
non-homogeneously sampled (“tick-by-tick”) as well as multivariate data. We
will return to these questions and related issues in future works.
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A Proof of convergence for the discretization
scheme

Lemma A.1. Using the notations in (13) and (14), µ ∈ C1(R) and σ satisfying
the adaptive harmonic model (10), the error terms R1,n,τ := µ̃n − µn and

R2,n,τ := σ̃dWn − σnwn are such that

|R1,n,τ | ≤
‖µ′‖L∞

2
τ

|ER2,n,τ | = 0, |varR2,n,τ | ≤
‖σ′‖2L∞

3
τ.

Furthermore, since Nτ is finite and σ and µ are assumed to be continuous over
R, we know that ‖µ′‖L∞([0,Nτ ]) <∞ and ‖σ′‖2L∞([0,Nτ ]) <∞. Hence we obtain
that rn ≈ µnτ + σnwn holds uniformly in probability.

Proof. Since µ(t) ∈ C1(R), By Taylor’s expansion, we directly have

R1,n,τ =

∣∣∣∣1τ
∫ t

t−τ
µ(u)du− µ(t)

∣∣∣∣ ≤ 1

τ

∫ t

t−τ
|µ(u)− µ(t)|du ≤ ‖µ

′‖L∞
2

τ.

Similarly, we have

R2,n,τ =

∣∣∣∣1τ
∫ t

t−τ
σ(u)dW − σ(t)(W (t)−W (t− τ))

∣∣∣∣
≤ 1

τ

∫ t

t−τ
|σ(u)− σ(t)|dW.

Since σ is smooth, the integration and expectation are interchangeable, and
hence we have

ER2,n,τ = 0

and

var(R2,n,τ ) =
1

τ2

∫ t

t−τ
|σ(u)− σ(t)|2du ≤ ‖σ

′‖2L∞
3

τ,

where the first equality holds due to the definition of the stochastic integration.
We thus conclude the proof.

B Implementations details

In this section we provide the numerical SST implementation detail. The Matlab
code is available from the authors upon request and we refer the readers to
Thakur et al. (2013) for more implementation details.
Let us recall that each of the D days in the data set is divided into P equal
periods for a total of N = DP observations. Equivalently, a unique index
n = P (d− 1) + p ∈ {1, · · · , N} identifies observation p ∈ {1, · · · , P} of day
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d ∈ {1, · · · , D}. This index corresponds to time t = n τ (in days) where τ = 1/P
is the sampling interval. We fix a discretely sampled time series x := {xn}Nn=1,
where xn ≡ x(t), x satisfies (6) and N = 2L for L > 0. Note that we use the bold
notation to indicate the numerical implementation (or the discrete sampling) of
an otherwise continuous quantity.

Step 1: numerically implement Wx(t, a). We discretize the scale axis a by

aj = 2j/nvτ , j = 1, . . . , Lnv, where nv is the “voice number” chosen by the
user. In practice we choose nv = 32. We denote the numerical CWT as a
N × na matrix W x. This is a well studied step and our CWT implementation
is modified from that of wavelab8.

Step 2: numerically implement ωx(a, t).
The next step is to calculate the IF information function ωx(a, t) (27). The

∂tWx(a, t) term is implemented directly by finite difference at t axis and we
denote the result as a N × na matrix ∂tW

x. The ωx(a, t) is implemented as a
N × na matrix wx by the following entry-wise calculation:

wx(i, j) =

{
−i∂tW x(i,j)
2πW x(i,j) when W x(i, j) 6= 0

NaN when W x(i, j) = 0.
,

where NaN is the IEEE arithmetic representation for Not-a-Number.
Step 3: numerically implement Sx(t, ω).
We now compute the Synchrosqueezing transform Sx (28). We discretize

the frequency domain [ 1
Nτ ,

1
2τ ] by equally spaced intervals of length ∆ω = 1

Nτ .
Here 1

Nτ and 1
2τ are the minimal and maximal frequencies detectable by the

Fourier transform theorem. Denote nω = b
1
2τ−

1
Nτ

∆ω
c, which is the number of the

discretization of the frequency axis. Fix γ > 0, Sx is discretized as a N × nω
matrix Sx by the following evaluation

Sx(i, j) =
∑

k:|wx(i,k)−j∆ω|≤∆ω/2, |W x(i,j)|≥γ

log(2)
√
aj

∆ωnv
W x(i, k),

where i = 1, . . . , N and j = 1, . . . , nω. Notice that the number γ is a hard
thresholding parameter, which is chosen to reduce the influence of noise and
numerical error. In practice we simply choose γ = 0.1. If the error is Gaussian
white noise, the choice of γ is suggested in Thakur et al. (2013). In general,
determining how to adaptively choose γ is an open problem.

Step 4: Estimate IF, AM and trend from Sx.

We fit a discretized curve c∗ ∈ ZNnω , where Znω = {1, . . . , nω} is the index
set of the discretized frequency axis, to the dominant area of Sx by maximizing
the following functional over c ∈ ZNnω :

[ N∑
m=1

log

(
|Sx(m, cm)|∑nω

i=1

∑N
j=1 |S

x(j, i)|

)
− λ

N∑
m=2

|cm − cm−1|2
]
,

8http://www-stat.stanford.edu/∼wavelab/
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where λ > 0. The first term is used to capture the maximal value of Sx at each
time and the second term is used to impose regularity of the extracted curve.
In other words, the user-defined parameter λ determines the “smoothness” of
the resulting curve estimate. In practice we simply choose λ = 10. Denote the
maximizer of the functional as c∗ ∈ RN . In that case, the estimator of the IF
of the k-th component at time t = nτ is defined as

φ′
k(n) := c∗(n)∆ω,

where φ′
k ∈ RN . With c∗, the k-th component ak(t) cos(2πφk(t)) and its AM,

ak(t) at time t = nτ are estimated by:

fk(n) := < 2

Rψ
∆ω

c∗(n)+b∆/∆ωc∑
i=c∗(n)−b∆/∆ωc

Sx(n, i),

ak(n) :=

∣∣∣∣∣∣ 2

Rψ
∆ω

c∗(n)+b∆/∆ωc∑
i=c∗(n)−b∆/∆ωc

Sx(n, i)

∣∣∣∣∣∣ ,
where < is the real part, fk ∈ RN and ak ∈ RN . Lastly, we estimate the trend
T (t) at time t = nτ by

T (n) := xn −<
2

Rψ
∆ω

nω∑
i=bωl/∆ωc

Sx(n, i),

where T ∈ RN and ωl > 0 is determined by the model.
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