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The acquisition of breathing dynamics without directly recording the respiratory signals
is beneficial in many clinical settings. The electrocardiography (ECG)-derived respiration
(EDR) algorithm enables data acquisition in this manner. However, the EDR algorithm fails
in analyzing such data for patients with atrial fibrillation (AF) because of their highly
irregular heart rates. To resolve these problems, we introduce a new algorithm, referred to
as SSTEDR, to extract the breathing dynamics directly from the single lead ECG signal; it is
based on the EDR algorithm and the time–frequency representation technique referred to
as the synchrosqueezing transform. We report a preliminary result about the relationship
between the anesthetic depth and breathing dynamics. To the best of our knowledge, this is
the first algorithm allowing us to extract the breathing dynamics of patients with obvious
AF from the single lead ECG signal.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Respiratory signals can contain a wealth of information valuable for the clinics. For example, the existence of the respi-
ratory rate variability is commonly observed in normal subjects, and its clinical application in ventilator weaning prediction
has been explored extensively recently [12]. We shall call the information extracted from the respiratory signal of this kind
breathing dynamics.

However, obtaining the respiratory signal might be a cumbersome task, and may not be convenient for certain clinical
purposes, such as ambulatory, monitoring of anesthesia for surgical procedures, or long-term monitoring in naturalistic
settings. Based on the profound information contained in the respiratory signal, the development of a convenient method
to obtain such signals or their dynamics, is important from a clinical perspective.

The ECG-derived respiration (EDR) algorithm is one way to achieve this goal, in that it allows us to obtain a respiratory
signal from the easily accessed ubiquitous ECG signals. EDR algorithm is based on respiration induced ECG distortions,
which are caused by 2 physiological reasons. First, the respiration-related mechanical changes affect the thoracic electrical
impedance [4], and the cardiac axis rotation occurring during the respiratory cycle has been shown to be the largest factor
contributing to the distortion of ECG signals [9]. Secondly, respiration affects the heart rate variability (HRV), thereby causing
respiratory sinus arrhythmia [4]. Many EDR algorithms have been developed to obtain the respiratory signal on the basis
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Fig. 1. Left: The EDR signal, YEDR, of a subject with normal sinus rhythm is illustrated by the black curve; the respiration signal measured from the chest
belt, YTHO, is illustrated by the gray curve. Note that the YEDR correlates well with the YTHO. Right: The YEDR of a subject with AF is illustrated by the black
curve; the YTHO is illustrated by the gray curve. Clearly, the YEDR corresponds poorly with the YTHO.

of the 2 physiological factors mentioned above, and hence are essentially classified into 2 major groups. With the acquired
EDR signals, we can extract the breathing dynamics of the subject. However, as far as we know, the existing EDR algorithms
fail in patents with atrial fibrillation (AF) due to their white-noise-like HRV (see example in Fig. 1). Thus, it may not be
possible to obtain breathing dynamics from the EDR signals in AF patients. In light of the high prevalence of AF in clinics
(it affects more than 5% of individuals older than 65 years) and the ubiquitousness of ECG, it is beneficial to develop a new
algorithm that allows us to extract the breathing dynamics directly from the ECG signal, which is particularly suitable for
AF patients.

We thus propose a novel algorithm for this purpose, which comprises the EDR algorithm and an adaptive time-frequency
analysis technique, referred to as synchrosqueezing transform (SST). We shall refer the algorithm as SSTEDR. To demonstrate
the applicability of SSTEDR, the algorithm is applied to reveal the relationship between the anesthetic depth and breathing
dynamics.

2. Mathematical model and algorithm

2.1. Mathematical model

We model the measured respiratory signal by considering the equation

Y{}(t) = A(t)s{}
(
φ(t)

) + Φ{}(t), (1)

where {} indicates the different respiratory signal measurements, for example, YCflow represents the airflow measuring
device, YTHO represents the chest wall movement measuring device, YEDR represents the traditional EDR signal, etc., and the
following conditions are satisfied:

(I) A ∈ C1(R) ∩ L∞(R), φ ∈ C2(R), inft∈R A(t) > 0, inft∈R φ′(t) > 0, |A′(t)| � εφ′(t) and |φ′′(t)| � εφ′(t), for all t , and ε is a
small parameter;

(II) s{} : [0,1] → R is C1,α{} , where α{} > 1/2, and 1-periodic function with unit L2 norm, |ŝ{}(k)| � δ{}|ŝ{}(1)| for all k �= 1,
where δ{} � 0 is a small parameter, and

∑
n>D{} |nŝ{}(n)| � θ{} for some small parameter θ{} � 0 and D{} ∈ N. Here α{} ,

δ{} , θ{} and D{} depend on the measurement device;
(III) Φ{}(t) is a stationary random process or “almost” stationary random process [3] independent of A(t)s{}(φ(t)), which is

introduced to model the measurement error.

Note that the signal is assumed to have just 1 component, unlike the case in previous studies wherein the signals were
considered to include several components [11]. We shall call s{}(·) the wave shape function [11], φ the phase function of
the signal R(t), the derivative φ′(t) of the phase function the instantaneous respiratory rate (IRR), and A(t) the amplitude
modulation function (AM) [3].

Physiologically, φ′(t), A(t) and s{} quantify the breathing dynamics. Indeed, the breathing rate variability can be char-
acterized by IRR, the breathing depth variance can be captured by AM, and the wave shape function models a respiratory
cycle which is comprised of inspiration and an expiration.

2.2. The EDR algorithm

Denote the recorded lead II ECG signal as ECGII(t). We apply the median filter to remove the wandering baseline artifact
in ECGII(t), which may come from patient movement, dirty lead electrodes and a variety of other things. We choose the
moving window of length 120 ms, so that it is longer than the average length of the QRS complex. We use the same
notation ECGII(t) to denote the lead II ECG signal with the wandering baseline removed.
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Fig. 2. The demonstration of the SSTEDR algorithm applied to a subject with normal sinus rhythm. Upper left: the lead II ECG signal is shown as a black
curve and the wandering baseline of the lead II ECG signal determined by the median filter is plotted as a light gray curve shifted below to enhance the
visualization. Lower left: the median-filtered lead II ECG signal is plotted as a dark gray curve superimposed with the R-peaks marked as black crosses, and
the EDR signal, YEDR, is plotted as a black curve shifted up to increase the visualization. Note that we can find the oscillatory pattern in the YEDR. Right
upper: the SST of YTHO with YTHO superimposed as the black curve. Right lower: the SST of YEDR with YEDR superimposed as the black curve. Notice that
we can see a dominant curve inside the band between 0.2 and 0.25 Hz, which is corresponding to the IRR, in the SST of YTHO, as well as in the SST of
YEDR. Furthermore, note that these two dominant curves coincide with each other.

To construct the traditional EDR signal YEDR(t), we determine the timing of the R-peaks (or S-peaks when the cardiac
axis is deviated) by the standard algorithm [4]. Suppose that there are n normal R-peaks and their timings are ti , where
i = 1, . . . ,n. Then, YEDR(t) is constructed by the cubic spline interpolation of the data points {(ti, ECGII(ti))}n

i=1 [4]. See Fig. 1
for example.

2.3. Synchrosqueezing transform

Our main focus is to extract the breathing dynamics from the traditional EDR signal YEDR, even when the subject has AF.
The main mathematical tool we apply to achieve this goal is an adaptive time–frequency (TF) analysis, referred to as the
Synchrosqueezing transform (SST) [6,5,10,3], which is a special reallocation technique [7,1]. We refer the reader to [6] for the
initial proposal of SST. For the theoretical results, the reader can find the first theoretical analysis of SST when the signal
is not contaminated by noise in [5] and when the signal is contaminated by stationary or almost stationary generalized
random process and there exists trend in [10,3]. The numerical implementation details of SST can be found in [10].

We summarize the theoretical results of SST relevant to this work [5,10,3] as follows:

(P1) SST is robust to the several different kinds of noise Φ{} , which might be slightly non-stationary, and the estimation of
IRR and AM is not influenced by the non-harmonic shape function s{};

(P2) Since SST is local in nature, we are able to detect components that do not exist all the time and hence the dynamical
behavior of the signal;

(P3) The time–frequency representation determined by SST is visually informative;
(P4) SST is “adaptive” to the data in the sense that the error in the estimation depends only on the first three moments of

the mother wavelet instead of the profile of the mother wavelet.

2.4. The SSTEDR algorithm

The SSTEDR algorithm we propose to extract the breathing dynamics from the single lead ECG signal comprises of the
following 3 steps: (1) pre-processing the lead II ECG signal to remove the wandering baseline; (2) constructing YEDR by
cubic spline interpolation of the detected R peaks as is discussed in Section 2.2; (3) analyze YEDR by SST. The result of
SSTEDR applied to a subject without AF (resp. with AF) is illustrated in Fig. 2 (resp. Fig. 3). A Matlab code for SSTEDR can
be found in https://sites.google.com/site/hautiengwu/.

https://sites.google.com/site/hautiengwu/


JID:YACHA AID:929 /SCO [m3G; v 1.109; Prn:14/08/2013; 11:15] P.4 (1-6)

4 H.-T. Wu et al. / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Fig. 3. The demonstration of the SSTEDR algorithm applied to a subject with AF. Upper left: the lead II ECG signal is shown as a black curve and the
wandering baseline of the lead II ECG signal determined by the median filter is plotted as a light gray curve shifted below to enhance the visualization.
Lower left: the median-filtered lead II ECG signal is plotted as a dark gray curve superimposed with the R-peaks marked as black crosses, and the EDR
signal, YEDR, is plotted as a black curve shifted up to increase the visualization. Note the highly irregular intervals between two consecutive R-peaks.
Also note that it is not easy to identify the oscillatory patterns in YEDR. Right upper: the SST of YTHO with YTHO superimposed as the black curve. Right
lower: the SST of YEDR with YEDR superimposed as the black curve. Notice that although YEDR and YTHO have different appearance, their TF representations
determined by SST contain similar information, in the sense that the dominant curves in both TF representations coincide with each other.

3. Anesthetic depth estimation

Anesthesia is usually necessary for a patient receiving surgery. We now demonstrate a potential clinical application of
SSTEDR in the anesthesia depth estimation problem. The dosage of anesthetic medication should be dynamically adjusted to
achieve adequate level of anesthesia during surgery. In anesthesia, the respiratory pattern reflects the effects of anesthetic
agents on human body. Indeed, more than seventy years ago, Guedel described that respiratory patterns appear regular in
deeper levels and irregular in lighter levels of ether anesthesia [8]. Also, the respiratory pattern changes correspondingly
with electroencephalography during arousal from anesthesia [2]. Since the clinician relies on various information to judge
the administration of anesthetics, the knowledge of the breathing dynamics is appealing.

However, while it is currently mandatory to monitor the ECG signal during anesthesia, the respiratory signal is not
routinely monitored. Hence it is inconvenient to obtain the breathing dynamics during anesthesia. We therefore ask if we
can apply our algorithm on the ECG signal to capture the reported breathing dynamics in [8]: the respiration is regular in
deeper level of anesthesia and irregular in lighter level of anesthesia.

The study was approved by the Institutional Review Board (Shin Kong Wu Ho-Su Memorial Hospital) and written in-
formed consents were obtained from the subjects. The raw limb lead II ECG signal during anesthesia was recorded at the
sampling rate 1000 Hz and with 12 bits resolution for off-line analysis (My ECG E3-80, MSI, Inc., Taiwan). The inhaled
and end-tidal concentrations of the inhaled anesthetics (sevoflurane) detected by the gas analyser on a Datex-Ohmeda S/5
anesthesia machine (GE Health Care, Helsinki, Finland) were simultaneously recorded. The airflow signal was continuously
measured by the anesthesia machine too. Data from the anesthesia machine were recorded at a rate of 25 Hz on the laptop
via a dedicated software (Datex-Ohmeda S/5 collect. Ver 4, GE Health Care, Helsinki, Finland).

We show the analysis result of an anesthetized patient with normal sinus rhythm under anesthesia in Fig. 4. The SST
of the recorded respiratory flow YCflow is shown in the upper left subfigure of Fig. 4 with YCflow superimposed as the
black curve and the end-tidal concentrations of the inhaled anesthetics superimposed as the gray dashed line. As the
concentration of anesthetic gas decreased, gradually the subject awakened from anesthesia and the motor movement was
recovered. The statement that the respiration is regular in the deeper anesthesia level, that is, before the first reaction (first
motor movement as a sign of recovery from anesthesia), and irregular in the lighter anesthesia level, that is, after the first
reaction, can be visually seen in the SST of YCflow. Indeed, we can see a dominant curve in the TF representation before the
first reaction, while the TF representation becomes blurred afterward. Note that this transition from the regular pattern to
non-regular pattern can be seen clearly in the recorded respiratory signal, too, as is shown in the lower subfigure of Fig. 4.
On the other hand, we can also visually observe this pattern transition in YEDR shown in the lower subfigure of Fig. 4 as
well as its SST shown in the upper right subfigure of Fig. 4.
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Fig. 4. Upper left: the SST of the recorded respiratory signal, YCflow, from a subject with normal sinus rhythm with YCflow superimposed as the black curve
and the end-tidal concentrations of inhaled anesthetics superimposed as the gray dashed curve. The main surgical procedure was finished at the 4500th
second and the skin suture was started. In the mean time, the anesthesiologist started to reduce the anesthetic medication concentration, as can be seen
in the gray dashed curve. The mechanical ventilator was removed at the 5050th second and the subject started to breath spontaneously. At the 5781th
second, the first reaction (movement of his head and neck) occurred. Notice the dominant curve inside the band around 0.25 Hz before the 5781th second
is corresponding to the IRR. The signal after the first reaction, however, does not satisfy the model (1), so we cannot see any dominant curve and the TF
representation of SST is blurred. Upper right: the SST of YEDR, superimposed with YEDR, as the black curve. Note that the pattern transition can be seen
both in the SST of YEDR, as well as the waveform of YEDR. Also note that the dominant curve existing from the 5100th second to the 5300th second in the
SST of YCflow is not that clear in the SST of YEDR. It is because the amplitude of YEDR, is relatively small during this period compared with other periods.
Lower: the zoomed in signal around the first reaction (at the 5781th second) of a subject with normal sinus rhythm. The YCflow is shown in the gray curve
and the YEDR is shown in the black curve. Note that we can easily see visually the transition from “regular oscillation” to “irregular oscillation” in both
signals. The regular oscillation is modeled by (1).

Fig. 5. Upper left: the SST of the recorded respiratory signal, YCflow, from a subject with AF with YCflow superimposed as the black curve and the end-tidal
concentrations of inhaled anesthetics superimposed as the gray dashed curve. The mechanical ventilator was removed at the 1205th second and the subject
started to breath spontaneously. The skin suture started right after removing the mechanical ventilator. The anesthetic gas was increased at the 2070th
second due to the hypertension induced by the skin suturing. The whole surgical intervention was finished at the 4870th second and the anesthesiologist
started to reduce the anesthetic medication concentration. At the 5158th second, the first reaction (movement of his head and neck) occurred. About 1
minutes before the first reaction, the respiratory pattern became irregular. Notice the dominant curve inside the band around 0.4 Hz before the 5158th
second is corresponding to the IRR. The signal after the first reaction, however, does not always satisfy the model (1), so we can see an interlacing
appearance of a dominant curve, and the TF representation is blurred in between. Upper right: the SST of the EDR signal, YEDR, superimposed with YEDR as
the black curve. We can see a dominant curve around 0.4 Hz from 1200th second to 5100th second, which disappear afterward. This finding coincides with
that in the SST of YCflow. Lower: the zoomed in signals around the first reaction (at the 5158th second). The YCflow is shown in the gray curve and YEDR

is shown in the black curve. There is a re-calibration in YCflow at the 5035th second. Note that we can easily see visually the transition from the “regular
oscillation” to the “irregular oscillation” in YCflow, while it is not easy to infer too much from YEDR.

Then, the analysis result of an anesthetized patient with AF under anesthesia is illustrated in Fig. 5. The SST of the
recorded respiratory flow YCflow is shown in the upper left sub-figure of Fig. 5 with YCflow superimposed as the black curve
and the end-tidal concentrations of inhaled anesthetics superimposed as the gray dashed curve. The SST of the YEDR is
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shown in the upper right subfigure of Fig. 5 with YEDR superimposed as the black curve. Note that the transition from
the regular pattern to non-regular pattern can be seen clearly both inYCflow and its SST. On the other hand, this pattern
transition cannot be visually seen easily in YEDRl shown in the lower subfigure of Fig. 5, while we can still see the transition
in its SST figure. Indeed, before the first reaction at the 5158th second, a visually viewable dominant curve exists in the
TF representation, and the whole TF representation becomes blurred afterward. However, it is not an easy task to infer too
much from YEDR as shown in the lower subfigure of Fig. 5.

In summary, the breathing dynamics of the respiration revealed from SSTEDR provides clinical information regarding the
anesthetic depth, even for patients with AF. To further study this positive result and make it clinically helpful by quantifying
the findings, a large scale study is ongoing and will be reported in our future work.
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