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Although one can formulate an intuitive notion of instantaneous frequency, generalizing
“frequency” as we understand it in e.g. the Fourier transform, a rigorous mathematical
definition is lacking. In this paper, we consider a class of functions composed of waveforms
that repeat nearly periodically, and for which the instantaneous frequency can be given
a rigorous meaning. We show that Synchrosqueezing can be used to determine the
instantaneous frequency of functions in this class, even if the waveform is not harmonic,
thus generalizing earlier results for cosine wave functions. We also provide real-life
examples and discuss the advantages, for these examples, of considering such non-
harmonic waveforms.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The term “instantaneous frequency” is somewhat of an oxymoron. In many cases, researchers who seek to decompose
signals into different components, and who want to determine the “instantaneous frequency” [15,16] of each, really seek to
solve problems of the following form:

given a function of the form

f (t) =
K∑

k=1

Ak(t) cos
(
2πφk(t)

)
, with Ak(t),φ

′
k(t) > 0 ∀t, (1)

compute Ak(t) and φ′
k(t) and/or describe their properties.

The Synchrosqueezing transform, a reassignment method [12,2] originally introduced in the context of audio signal
analysis [7], and further analyzed in [6,19,20,18], provides a way to determine Ak(t) and φ′

k(t) uniquely, up to some pre-
assigned accuracy, under some conditions on f (t).

For some applications, decompositions of the form (1) are too restrictive. Consider, for instance, the function f illustrated
in the left plot of Fig. 1(a); it is a toy example of the type

f (t) = A(t)s
(
2πφ(t)

)
(2)

where, as before, A(t) and φ′(t) vary slowly, and s is now no longer a cosine, but the periodic extension of the function
in the right plot of Fig. 1(a). It is clear that this f (t) can be decomposed as in (1), simply by replacing s by its Fourier
expansion; however, the representation (2) is much more efficient because it uses fewer terms. Another way in which one
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Fig. 1. Toy examples of the type f (t) = A(t)s(2πφ(t)). The amplitude modulation function and the phase function are identical for the three cases:
A(t) = √

1 + 0.2t and φ(t) = t + 0.3 cos(t). In (a) the shape function s(t) is given by s(t) = [cos(0.8 cos(t)) − sin(t)
cos(t) sin(0.8 cos(t))] cos(t); in (b): s(t) =

[cos(0.8 cos(t)) − sin(t)
cos(t) sin(0.8 cos(t)) − 1.4 cos+(t + 1/6)2] cos(t); in (c): s(t) = [cos(1.2 cos(t)) − sin(t)

cos(t) sin(1.2 cos(t))] cos(t).

Fig. 2. Top: the lead I ECG signal; bottom: the lead II ECG signal, where the black crosses mark the locations of the R-peaks. It is clear that the time interval
between consecutive R-peaks is not constant.

could reduce f (t) to an expansion of type (1), with a single term, would be to “absorb” some of the properties of s into
a modified phase function m(t) := cos−1(s(2πφ(t))). This is the preferred solution in [10], where m(t) is then called the
“intra-wave” modulation, indicative of the nonlinear nature of the wave process generating f (t). Although this would work
for the example in Fig. 1(a), it is not always possible to do this. Consider the function f in the left plot of Fig. 1(b), clearly
of the same type as in Fig. 1(a); one would expect that the same remarks apply to both examples. However, because s has
several maxima, it cannot be written as cos(m(t)), with m a monotonic mapping on [0,2π ]. A single-term expansion of
type (1) can thus not deal with this example by using only “intra-wave modulation”. To nevertheless still reduce f (t) to an
expansion of type (1) with a single term, one can, instead, attempt to “absorb” some of the properties of s into a modified
amplitude Ã. In this particular case,

s(t) =
[

cos
(
0.8 cos(t)

) − sin(t)

cos(t)
sin

(
0.8 cos(t)

) − 1.4 cos+(t + 1/6)2
]

cos(t) =: w(t) cos(t), (3)

where cos+(t) = max{0, cos(t)}. So one can write f (t) = Ã(t) cos(2πφ(t)), with Ã(t) = w(2πφ(t))A(t). Note that this am-
plitude Ã varies much faster than A, masking the only slowly changing wave-pattern of f (t). Even this solution is not
always applicable. Consider the function f plotted on the left of Fig. 1(c). Absorbing the “extraneous” extrema of the basic
wave-pattern into a special Ã would lead to an amplitude that is no longer always positive, clearly an undesirable trait.

Although the examples in Fig. 1 are just toy examples, similar phenomena can be observed in real-life signals, for
example, in electrocardiography (ECG) (see Fig. 2). As we shall see below, it is important, in these real-life examples, to
tease apart the characteristics of the “shape” s(t) from the slow variations in φ′(t) and A(t). Rather than insisting on a
representation of type (1), we are therefore, in this paper, interested in decompositions of the type

f (t) =
K∑

Ak(t)sk
(
2πφk(t)

)
, (4)
k=1
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Fig. 3. The intuitive instantaneous heart rate.

where we shall give the name “wave shape function” (or, shorter, “shape function”) to the 2π periodic functions sk , gener-
alizing the cosine functions of (1) and [6], and where we assume that |A′

k(t)| and |φ′′
k (t)| are small compared with φ′

k(t), as
in [6]. Functions of type (4) can be found in many applications. We already mentioned ECG signals; another medical signal
of this same form is respiration.

The additional layer of generality in (4), when compared to (1), adds to the complexity of determining desirable de-
compositions of type (4) for a (noisy) signal f . Even for decompositions of type (1), uniqueness is not guaranteed (see e.g.
[6]); this absence of uniqueness can obviously be only more pronounced for decompositions of type (4). Even when the
decomposition is unambiguous, the algorithmic task will necessarily be more complex, since not only the Ak(t) and φk(t),
but also the sk(t) need to be determined, in general. We shall concentrate here on the determination of the amplitudes
Ak(t), the instantaneous frequencies φ′

k(t) and the components Ak(t)sk(2πφk(t)) for the more generalized expansions (4)
for a restricted class of wave shape functions. For more general wave shape functions sk , the determination of the wave
shapes sk themselves will be discussed in a sub-sequential paper.

The main result of this paper is that, under the same technical conditions as in [6] (the φ′
k have to be sufficiently

separated), we can determine Ak(t) and φ′
k(t) and reconstruct each component via Synchrosqueezing, for suitable wave

forms sk . We shall apply this method to ECG and respiration signals, and show the clinical potential of the results. In
the next section, we first discuss some properties of these signals in more detail. Section 3 states and proves the related
theorems, which generalize the results provided in [6].

2. Two biomedical signals

The ECG signal can be measured easily and cheaply, and its clinical usefulness is well established. It is commonly ac-
cepted to model the ECG signal as a current dipole vector undergoing a periodic motion in R3 [11]; the recorded ECG signal
is then viewed as the orthogonal projection of this dipole vector onto a fixed axis.1 The ECG signal, recording the dynamics
of the electrical activity of the heart, is a collection of periodic oscillating time series, one per channel, each corresponding
to an ECG lead [9,8]. The waveforms provide a lot of information about the anatomic or electrophysiological structure of
the heart, essential in ascertaining certain medical conditions, such as ischemia or atrial fibrillation. On the other hand, the
variation of the time intervals between sequential heart beats, referred to as “heart rate variability” (HRV), has been shown in
the past few decades to be related to more general physiological dynamical processes [13]. To understand these different
types of dynamics of the physiological system via the recorded ECG signal, it thus is beneficial to separate the shape of the
oscillation from the variability of the time intervals between sequential oscillatory waveforms.

In this section, the example ECG signals are recorded from a healthy 33-year-old male, with 12 bit resolution and a
sampling rate of 1000 Hz. We show in Fig. 2 the lead I and lead II ECG signals, which we denote as ECGI(t) and ECGII(t), t ∈
[0, T ]. In the figure, the black curve is the usual ECG signal; the peaks indicated by black crosses are called the R-peaks [8].
One type of variation from one cycle to the next in the ECG signal can be clearly tracked by the changing time intervals
between consecutive R-peaks. In clinical practice, the “heart rate” is given by simply counting the number of beats during
a minute, that is, the “mean rate” over a given time period. However, there is information hidden inside the HRV, beyond
the mean rate, that we want to describe quantitatively. To access this, let us first introduce an intuitive definition of time-
dependent instantaneous heart rate (IHR), as the inverse of the time interval between the two most recent successive heart
beats. We refer to this quantity as the intuitive instantaneous heart rate (or intuitive instantaneous frequency) and denote it as
IHRi(t), where the subscript i refers to the “intuitive” character of this definition. Denoting by tk the location of the R-peak
of the k-th heart beat, k = 1, . . . , N . IHRi is defined as the piecewise constant function plotted in Fig. 3,

IHRi(t) = 1

tk − tk−1
if tk � t < tk+1.

Note that the definition of IHRi echoes the etymology of “frequency”: counting how frequently a phenomenon occurs per
unit time.

1 In fact, the situation is a bit more complex. In addition to the periodic motion for every heart beat, the trajectory in R
3 of the current dipole vector is

deformed by other phenomena such as breathing. We shall ignore these effects here.
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Fig. 4. Top: the Synchrosqueezing transform of ECGI(t); bottom: the dashed black curve is IHRI(t) estimated from the Synchrosqueezing transform of ECGI(t)
and the solid black curve is IHRi(t) shifted down by 0.1.

Fig. 5. Top: the Synchrosqueezing transform of ECGII(t); bottom: the dotted black curve is IHRII(t) estimated from the Synchrosqueezing transform of
ECGII(t) and the solid black curve is IHRi(t) shifted down by 0.1.

To a very good approximation, the ECG signals can be modeled as

ECG�(t) = A�(t)s�

(
φE(t)

) + W�(t),

where � stands for the lead (or channel) number (e.g., I or II), and where φE (t) does not depend on �. (The subscript
E indicates that this is the φ(t) for the ECG signal; we shall meet other φ below.) The function W�(t) contains all the
other components of the signal, including noise and low-frequency baseline wandering. We show in this paper that the
Synchrosqueezing transform2 can identify φ′

E(t) for such ECG signals, with high accuracy, independently of the detailed
properties of the wave shape functions s�(t), for s� within a certain class of functions (that contains ECG profiles). Physio-
logically, the HRV reflects the periodic behavior of the current dipole vector; it should thus not depend on how we project
this dipole vector. In other words, our estimate should be the same, whether we derive it from ECGI(t) or ECGII(t), i.e.
whether the behavior in time of the wave shape function it modulates is associated with lead I or lead II. It turns out that
the Synchrosqueezing estimate does indeed exhibit this invariance, as we demonstrate numerically here. (A mathematical
explanation of this will be given in Section 3.) We denote the estimated φ′

E as IHR�(t) if it is estimated by computing the
Synchrosqueezing transform of ECG�(t). Fig. 4, resp. Fig. 5 plot IHRI(t), resp. IHRII(t) and show that in both cases IHR�(t)
is extremely close to IHRi . In Fig. 6, IHRI and IHRII are plotted together, illustrating directly that our estimate of φ′

E does
not depend on which wave shape function was being modulated. (That the two shape functions sI and sII are different is
clear from Fig. 2.) Furthermore, this example indicates that our estimate captures the “instantaneous frequency”: indeed, φ′

E
matches IHRi with high accuracy. This finding makes it possible to define an “instantaneous heart rate” for subjects with
much less clearly defined heart beats: even if the IHRi(t) can no longer be defined because the tk cannot be defined clearly,
we can still estimate IHR�(t).

Our second example concerns the respiratory signal, i.e., the signal provided by a mechanical recording of the breath-
ing process. Physiologically, the morphology of the recorded respiratory signal reflects the anatomical structure of our

2 The official code of the Synchrosqueezing transform is available at http://www.math.princeton.edu/~ebrevdo/synsq/.

http://www.math.princeton.edu/~ebrevdo/synsq/
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Fig. 6. The dashed black curve is IHRI(t) and the dotted black curve is IHRII(t) shifted down by 0.1.

Fig. 7. The black oscillatory curve is the respiratory signal Resp(t); the dashed piecewise constant curve is the intuitive respiration rate IRRi(t); the black
curve is the IRR(t) estimated via Synchrosqueezing (or SSTIF). The vertical axis is for IRR(t) and IRRi(t).

Fig. 8. The black curve is the estimated instantaneous frequency IRR(t) of the respiratory signal from the Synchrosqueezing transform, and the dashed
piecewise constant curve is the intuitive respiration rate IRRi(t).

respiratory system [9]. In a first approximation, breathing is a periodic process; a closer look reveals that consecutive
“breathing peaks” are not quite equally spaced (see Fig. 7). This breathing rate variability (BRV) reflects the physiological
dynamics [3,21,4]. An example of a respiratory signal Resp(t) is shown in Fig. 7. The signal was recorded from a 28-year-old
healthy male, with a sampling rate of 20 Hz. Like the ECG signal, to a very good approximation, the respiratory signal can
be modeled as

Resp(t) = A(t)s
(
φR(t)

) + W (t),

where the subscript R indicates that this is the phase function φ(t) for the respiratory signal; the function W (t) contains
again all the other components of the signal, including noise and low-frequency baseline wandering.

As in the discussion of the ECG signal, we first define an intuitive notion of time-dependent instantaneous breathing
rate IRRi(t) as the inverse of the time interval between the two most recent successive breathing cycles. A breathing cycle
is defined to be the signal between two consecutive ends of the inspiration; these ends are marked as the black crosses
in Fig. 7. More precisely, we denote the location of the ends of the inspiration by tk , k = 1, . . . , M , and define IRRi(t) as
follows:

IRRi(t) = 1

tk − tk−1
when tk � t < tk+1.

The IRRi(t) is plotted as the dashed piecewise constant curve in Fig. 7. Next, we apply the Synchrosqueezing transform
directly on Resp(t) and get an estimation of its instantaneous frequency, denoted by IRR(t). In Fig. 7, the IRR(t) is super-
imposed on Resp(t) and IRRi(t) to demonstrate that the estimated IRR(t) captures the notion of instantaneous frequency.
Indeed, the spacing of respiration cycles in Resp(t) is reflected by IRR(t): closer spacing corresponds to higher IRR(t) values,
and wider spacing to lower IRR(t) values. In Fig. 8 IRR(t) and IRRi(t) are put together for comparison; they are clearly
closely related.
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Fig. 9. The gray curve is the 24 × SSTIF, and the black piecewise function is the sleep stage determined from the simultaneously recorded EEG by the R&K
criteria. The REM stage period is emphasized in both signals.

For the sake of convenience, we shall use the acronym SSTIF for the SynchroSqueezing Transform-derived Instantaneous
Frequency in what follows. Fig. 9 shows a different breathing signal, and illustrates a direct physiological application of
the respiration SSTIF. Sleep is a universally recurring physiological dynamical process. It is divided into two broad stages:
rapid eye movement (REM) and non-rapid eye movement (NREM). Normally, sleep proceeds in cycles, each alternating
between REM and NREM, with one cycle taking about 90 minutes. A clinically acceptable staging of the sleep is determined
by reading the recorded electroencephalography (EEG) based on the R&K criteria, which were standardized in 1968 by
Allan Rechtschaffen and Anthony Kales [17]. We take the staging according to this criteria as the gold standard, and we
demonstrate that the respiration SSTIF can recover the gold standard staging of REM versus non-REM. The result is illustrated
in Fig. 9 which shows the SSTIF of a respiratory signal recorded for about 8 hours with a 16 Hz sampling rate (original signal
not shown here), and the corresponding sleep stages, denoted by S(t), determined from a simultaneously recorded EEG
according to the R&K criteria. High correlation is observed when comparing the time intervals with S(t) = 5 with SSTIF.3

The discussion and examples in this section illustrate the importance of an accurate determination of the “instantaneous
frequency” of a signal, as captured by our SSTIF notion. In principle, we can determine instantaneous frequencies φ′(t) from
representation of type (1) as well as from (2) or (4). We believe (and will argue in Section 3) that, at least for certain
signals f (t), modeling f as in (2) or (4), i.e., in terms of “wave shape functions” rather than with cosines, leads to more
accurate estimates of the function φ′(t) via Synchrosqueezing, and probably also by other methods. For such signals, it is
thus important to separate each component of f modeled as in (2) or (4) into a “wave shape function” on the one hand,
and slowly varying amplitude and instantaneous frequency on the other hand.

Another reason why it is important to separate “shape function” from “instantaneous frequency” is that the information
hidden in the shape function is important in its own right, and can, for medical signals, be used for clinically quite different
diagnoses. In other words, this separation allows us to tease apart two types of information that are commonly mixed-up.
For example, reading ECG signals to diagnose cardiac disease in clinical practice amounts to evaluating the morphology
of each heart beat, and this is given by the wave shape function. A well known example is the typical “ST elevation” in
myocardial infarction patients. Another example is the qualitatively different spectral behavior of the morphology of the
ECG shape function indicative of myocardial ischemia: the spectral analysis of ECG wave shape functions from dogs revealed
a shift from high- to low-frequency ranges in ischemia cases [14]. Similar phenomena have been associated with balloon
inflations during percutaneous transcatheter angioplasty in CAD patients [1]. We expect that a cleaner identification of the
SSTIF will also lead to a separation of the shape function particularities with greater sensitivity, which in turn will be useful
for clinical diagnoses linked to those particularities. A detailed discussion of this will have to wait for a subsequent paper;
here we concentrate on the identification of the instantaneous frequency.

3. Theorem

We start by introducing some notations and conventions. Suppose f is a tempered distribution. The Fourier transform of

f is denoted by f̂ and satisfies the normalization ̂e−πx2 = e−πξ2
. In the following, we denote W f (a,b) to be the continuous

wavelet transform of f with the mother wavelet ψ which is in the Schwartz space [5]. For simplicity, we shall assume
supp ψ̂ ⊂ [1 − �,1 + �], where 0 < � � 1; in practice, our results seem to hold under much less stringent conditions.

3 Further study and finding of the sleep cycle is beyond our scope here; a more detailed study will be presented in a later paper.
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Fig. 10. Three different shape functions s1(t), s2(t) and sII(t) (upper) and their spectrum (below). Left: s1(t) is equal to normalizing [cos(0.5 cos(t)) −
sin(t)
cos(t) sin(0.5 cos(t))] cos(t) to be of unit L2 norm; middle: s2(t) is equal to normalizing (3) to be of unit L2 norm; right: sII is a shape function for a
particular lead II ECG signal.

As is customary, we say that τ is a period for the function ϕ : R → C, or that ϕ is τ -periodic, if, for all t ∈ R, and all
k ∈ Z, ϕ(t + kτ ) = ϕ(t). We shall designate T to be the Period for ϕ , if

∀t ∈R, ∀k ∈ Z: ϕ(t + kT ) = ϕ(t) and T = inf
({τ ; τ > 0 and τ is a period for ϕ}).

Next, we define a special class of wave shape functions that are dominated by one particular Fourier mode. More pre-
cisely,

Definition 3.1 (Analytic shape function class Sδ,D,θ ). Fix δ � 0, D ∈ N and θ � 0. The analytic shape function class Sδ,D,θ

is the subset of C1,α(T), where T is the 1-dim torus and α > 1/2 (the 2π -periodic α-Hölder continuously differentiable
functions), consisting of analytic functions s with mean 0, i.e. ŝ(k) = 0 for all k � 0, and unit L2-norm for which all the
Fourier modes ŝ(k), k 	= 1 are dominated by the product of δ and the first mode coefficient, i.e.

∀k ∈ N, with k 	= 1,
∣∣ŝ(k)

∣∣ � δ
∣∣ŝ(1)

∣∣ (5)

and ∑
n>D

∣∣nŝ(n)
∣∣ � θ. (6)

Remark. (1) The parameters δ, D and θ are used to characterize the “shape” of the shape function. Condition (5) says that
the “base” frequency ŝ(1) cannot be zero; we use this condition to estimate the “instantaneous frequency” as we should
see below. Condition (6) says that “essentially” the shape does not oscillate too fast. (2) In practice, we shall consider real-
valued shape function s̃, which are not analytic. However, we can use the standard trick of viewing them as the real part
of an analytic function, i.e., s̃ = 
s, where ŝ(k) = 2ˆ̃s(k) if k � 0, ŝ(k) = 0 if k < 0. Because the Synchrosqueezing transform
(to be defined soon) uses the positive frequency domain only, s̃ and s can be used interchangeably in our analysis. Thus, we
can define a real shape function class S̃δ,D,θ of parameters δ, D , and θ to contain the functions s̃ : T → R so that s̃ = 
s for
some s ∈ Sδ,D,θ . Since the analysis of the functions with the real shape functions is the same as that of the analytic shape
functions, in the following we focus on analytic shape functions in our analysis, for notational convenience, but when we
demonstrate numerical results, we use real shape functions, which is easier for visualization.

For example, eit is a shape function, which is widely used in the Fourier analysis. Indeed, êit(n) = 1 when n = 1 and
0 when n 	= 1 so that eit ∈ S0,1,0. We demonstrate some examples in Fig. 10: the shape function sII(t) for the ECG lead II
signal satisfies sII(t) ∈ Sδ,D,θ where δ ≈ 3.4, D ≈ 40 and θ � 1. (Note that the shape function sII(t) depends on the subject;
different ECG signals may belong to different S̃δ,D,θ ; the value δ = 3.4 is one of the larger we have encountered – more
often δ can be picked less than 1.)

Next, consider the following class of functions.

Definition 3.2 (Intrinsic Mode Functions class Cδ,D
ε ). For fixed choices of ε, δ, D > 0, ε � 1, the space Cδ,D

ε of Intrinsic Mode
Functions (IMFs) consists of functions f :R →C, f ∈ C1(R) ∩ L∞(R) having the form
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f (t) = A(t)s
(
2πφ(t)

)
, (7)

where s ∈ Sδ,D,ε , such that A and φ satisfy the following conditions:

A ∈ C1(R) ∩ L∞(R), φ ∈ C2(R),

inf
t∈R A(t) > 0, inf

t∈Rφ′(t) > 0, sup
t∈R

φ′(t) < ∞,∣∣A′(t)
∣∣ � ε

∣∣φ′(t)
∣∣, ∣∣φ′′(t)

∣∣ � ε
∣∣φ′(t)

∣∣ for all t ∈R,

M ′′ := sup
t∈R

∣∣φ′′(t)
∣∣ < ∞.

We then consider the function class Cδ,D
ε,d , defined as follows.

Definition 3.3 (Superpositions of IMFs). The space Cδ,D
ε,d of superpositions of IMFs consists of functions f having the form

f (t) =
K∑

k=1

fk(t)

for some finite K > 0 and fk(t) = Ak(t)sk(2πφk(t)) ∈ Cδ,D
ε such that φk satisfy

φ′
k(t) > φ′

k−1(t) and φ′
k(t) − φ′

k−1(t) � d
[
φ′

k(t) + φ′
k−1(t)

]
.

Note that Cδ,D
ε,d and Sδ,D,θ are not vector spaces and are not the most general possible definition. We use these definitions

for the purpose of simplifying the proof and clarifying the main idea of this work.
In the following we prove that the Synchrosqueezing transform discussed in [6] allows us to estimate the instantaneous

frequency of each component of the functions in Cδ,D
ε,d with high accuracy when all the wave shape functions are close to

the exponential function, i.e. when δ is sufficiently small. Moreover, under some constraints on the IF of each component,
we are able to reconstruct each component. Most of the estimates needed to prove these results follow from Section 3
in [6]; we shall spell out the details only when care has to be taken with extra terms involving the possibly more complex
shape of the wave shape functions.

Definition 3.4 (Instantaneous frequency information function). Let f ∈ L∞(R). The instantaneous frequency information function
of f is defined by

ω f (a,b) =
{ −i∂b W f (a,b)

2π W f (a,b)
|W f (a,b)| > 0,

∞ |W f (a,b)| = 0.

Note that this definition makes sense since W f (a,b) ∈ C∞(R+ ×R).

Remark. In practice, the determination of those (a,b)-pairs for which W f (a,b) = 0 is rather unstable when f has been
contaminated by noise. For this reason, it is useful to consider a threshold for |W f (a,b)|, below which ω f (a,b) is not
defined. The purpose of this function is to record the information of the instantaneous frequency, based on which the
reassignment will be performed.

Then, we consider the following definition of the Synchrosqueezing based on the wavelet transform:

Definition 3.5 (Synchrosqueezing transform). For f ∈ L∞(R), the Synchrosqueezing transform with resolution α > 0 and threshold
γ � 0 is defined by

Sα,γ
f (b, ξ) :=

∫
Aγ , f (b)

W f (a,b)
1

α
h

( |ξ − ω f (a,b)|
α

)
a−3/2 da, (8)

where b ∈R, ξ ∈ R+ , Aγ , f (b) := {a ∈ R+; |W f (a,b)| > γ } and h(t) = 1√
π

e−t2
.

Note that ω f (a,b) and Sα,γ
f (b, ξ) can be defined for any L∞ function f . However, when f ∈ Cδ,D

ε,d , the next theorem
tells us that the Synchrosqueezing transform provides an accurate estimation of the instantaneous frequency and allows the
reconstruction of each component.
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Theorem 3.6. Let f (t) = ∑K
k=1 Ak(t)sk(2πφk(t)) ∈ Cδ,D

ε,d . Suppose � < d/(1 + d) and(
D⋃

n=1

[
1 − d

nφ′
k(t)

,
1 + d

nφ′
k(t)

])
∩

( ⋃
l<k

D⋃
n=1

[
1 − d

nφ′
l (t)

,
1 + d

nφ′
l (t)

])
= ∅ (9)

for all 1 � k � K and t ∈ R. Set Rψ := ∫
ψ̂(z)z−1 dz, Zk,n := {(a,b): |anφ′

k(b) − 1| < �} and ε̃ := ε1/3 . Then, provided ε is suffi-
ciently small, the following hold:

• |W f (a,b)| > ε̃ only when (a,b) ∈ Zk,n for some k ∈ {1, . . . , K } and n ∈ {1, . . . , D}.
• For each pair (a,b) ∈ Zk,n for which |W f (a,b)| > ε̃ , we have∣∣ω f (a,b) − nφ′

k(b)
∣∣ � ε̃.

• Moreover, for each k ∈ {1, . . . , K } and all b ∈ R,∣∣∣∣ lim
α→0

(
R−1

ψ

∫
⋃D

n=1{ξ : |ξ−nφ′
k(b)|<ε̃}

Sα,ε̃
f (b, ξ)dξ

)
− Ak(b)sk

(
2πφk(b)

)∣∣∣∣ � C ε̃,

where C = Ak(b)ε̃2 + 4[( φ′
k(b)

1−�
)1/2 − (

φ′
k(b)

1+�
)1/2].

Notice that the special case when K = 1 is important since the ECG signal and the respiration signal are both signals
of this kind. The results of estimating the instantaneous frequency via Synchrosqueezing transform have been shown in
Section 2.

When the wave shape functions of all the components of f (t) are close to the imaginary exponential function, the
following corollary immediately follows by taking D = 1 in Theorem 3.6.

Corollary 3.6.1. Let f (t) = ∑K
k=1 Ak(t)sk(2πφk(t)) ∈ Cδ,1

ε,d . Suppose � < d/(1 + d), and δ � ε . We use the same notations Rψ , Zk,n

and ε̃ as in Theorem 3.6. Then, provided ε is sufficiently small, the following hold:

• |W f (a,b)| > ε̃ only when (a,b) ∈ Zk,1 for some k ∈ {1, . . . , K }.
• For each pair (a,b) ∈ Zk,1 for which |W f (a,b)| > ε̃ , we have∣∣ω f (a,b) − φ′

k(b)
∣∣� ε̃.

• For each k ∈ {1, . . . , K } and all b ∈ R,∣∣∣∣ lim
α→0

(
R−1

ψ

∫
{ξ : |ξ−φ′

k(b)|<ε̃}
Sα,ε̃

f (b, ξ)dξ

)
− Ak(b)sk

(
2πφk(b)

)∣∣∣∣ � C ε̃,

where C = Ak(b)ε̃2 + 4[( φ′
k(b)

1−�
)1/2 − (

φ′
k(b)

1+�
)1/2].

Notice that in Corollary 3.6.1, the wave shape functions of all components are close to eit while the separation of the
“base frequencies”, that is, φ′

k(t), are not further limited; on the other hand, the wave shape functions of each component in
Theorem 3.6 are more general than the cosine function but the behaviors of φ′

k(t) need to be further limited by (9). Setting
sk(t) = eit for all k = 1, . . . , K , we fully recover Theorem 3.3 from [6].

Condition (9) can be slightly relaxed as follows. Suppose f (t) = ∑K
k=1 Ak(t)sk(2πφk(t)) ∈ Cδ,D

ε,d , where sk ∈ Sδ,Dk,ε and
Dk � D may be different. Then the following condition suffices for the proof:( Dk⋃

n=1

[
1 − d

nφ′
k(t)

,
1 + d

nφ′
k(t)

])
∩

( ⋃
l<k

Dl⋃
n=1

[
1 − d

nφ′
l (t)

,
1 + d

nφ′
l (t)

])
= ∅. (10)

Since the proof is entirely analogous to what we show below, involving longer computations without making a conceptual
difference, we focus here on the condition (9) only.

The proof of the theorem is similar to the one carried out in [6, Theorem 3.3], except for some estimates related to the
wave shape function, which are given in detail below. In the statement and proof of all the lemmas, we shall always assume
that the conditions of Theorem 3.6 are satisfied without repeating them, unless stated otherwise.

First of all, we have the following estimates bounding the growth of Ak(t) and φ′
k(t) in terms of the value of φ′

k(t). The
proof is the same as that of Estimate 3.4 in [6], so we omit it.
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Lemma 3.7. For each k ∈ {1, . . . , K }, we have∣∣Ak(t + u) − Ak(t)
∣∣ � ε|u|

(∣∣φ′
k(t)

∣∣ + 1

2
M ′′

k |u|
)

and
∣∣φ′

k(t + u) − φ′
k(t)

∣∣ � ε |u|
(∣∣φ′

k(t)
∣∣ + 1

2
M ′′

k |u|
)

.

The next lemma concerns the “dyadic separation” condition in the definition of Cδ,D
ε,d . It implies that for every (a,b)-pair,

at most one component of the signal “comes into play”.

Lemma 3.8. For any pair (a,b) such that a > 1−�
Dφ′

K (b)
, there can be at most one l ∈ {1, . . . , K } and n ∈ {1, . . . , D} for which |anφ′

l (b) −
1| < �.

Proof. Suppose (9) holds. We rewrite f (t) as

K∑
k=1

Ak(t)sk
(
2πφk(t)

) =
K∑

k=1

D∑
n=1

Ak(t)ŝk(n)ei2πnφk(t) +
K∑

k=1

∞∑
n=D+1

Ak(t)ŝk(n)ei2πnφk(t), (11)

where the pointwise convergence holds since sk ∈ C1,α . By condition (9), we know for all t ∈ R[
1 − d

nφ′
l (t)

,
1 + d

nφ′
l (t)

]
∩

[
1 − d

mφ′
j(t)

,
1 + d

mφ′
j(t)

]
= ∅ (12)

when l 	= j or n 	= m, where n,m � D . Next we permute D × K components {nφ′
k(b)}n=1,...,D, k=1,...,K in the ascending way

and index φ′
1(b) by 1 and Dφ′

K (b) by D × K . Thus (11) can be further rewritten as

D×K∑
l=1

Ãl(t)ei2πψl(t) +
K∑

k=1

∞∑
n=D+1

Ak(t)ŝk(n)ei2πnφk(t),

where Ã1(t) = ŝ1(1)A1(t), . . . , ÃD×K (t) = ŝK (D)AK (t) and ψ1(t) = φ1(t), . . . ,ψD×K (t) = DφK (t). Take j, l ∈ {1, . . . , D × K } so
that l > j and fix a > 1−�

Dφ′
K (b)

= 1−�
ψ ′

D×K (b)
. By (12) we have

ψ ′
l (b) − ψ ′

j(b)� d
[
ψ ′

j(b) + ψ ′
l (b)

]
(13)

since 1+d
ψ ′

l (b)
< 1−d

ψ ′
j(b)

. Now suppose |aψ ′
j(b) − 1| < � and |aψ ′

l (b) − 1| < � hold simultaneously. A direct calculation leads to

ψ ′
l (b) − ψ ′

j(b)� (1 + �) − (1 − �)

a
= 2�

a
and

ψ ′
l (b) + ψ ′

j(b)� (1 − �) + (1 − �)

a
= 2(1 − �)

a
,

which with (13) gives

�� d(1 − �),

contradicting the condition � < d
1+d . �

The following lemma describes the result of applying the continuous wavelet transform to f ∈ Cδ,D
ε,d . It is similar to

Estimate 3.5 in [6] except for some extra terms due to the more general form of the wave shape functions; when sk(t) = eit

for all k ∈ {1, . . . , K }, we recover the statement and proof of Estimate 3.5 in [6].

Lemma 3.9. For l ∈ {1, . . . , K }, n ∈ {1, . . . , D} and (a,b) ∈ Zl,n, we have∣∣W f (a,b) − Al(b)ŝl(n)ei2πnφl(b)
√

aψ̂
(
anφ′

l (b)
)∣∣ � εa1/2Λ1(a,b), (14)

where

Λ1(a,b) =
K∑

k=1

{
‖sk‖∞

(
φ′

k(b)aI1 + M ′′
k

2
a2 I2

)
+ π Ak(b)

[∑
j∈Z

| j|∣∣ŝk( j)
∣∣](

a2 I2
∣∣φ′

k(b)
∣∣ + M ′′

k

3
a3 I3

)}
+ I0

l−1∑
k=1

Ak(b)

and Ii = ∫ |x|i|ψ(x)| dx.

R
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Remark. We observe from this lemma that when (9) holds, the larger the l is, the larger the Λ1(a,b) in Lemma 3.9. Indeed,
take f = ∑K

k=1 fk ∈ Cδ,D
ε,d and fix fl for some l ∈ {1, . . . , K } for example. The larger l is, the more φ′

k(b) will be smaller

than φ′
l (b) so that more ψ̂(aφ′

k(b)n), n > D , become (possibly) positive. Consider a such that aφ′
l (b) ∈ [1 − �,1 + �]. For

k ∈ {1, . . . , K }, k < l, ψ̂(aφ′
k(b)n) 	= 0 holds only if

nφ′
k(b)(1−�)

φ′
l (b)

< 1 + � or 1 − � <
nφ′

k(b)(1+�)

φ′
l (b)

, or equivalently

1 − �

1 + �

φ′
l (b)

φ′
k(b)

< n <
1 + �

1 − �

φ′
l (b)

φ′
k(b)

. (15)

Clearly when the l is large, ψ̂(aφ′
k(b)n) 	= 0 for more combinations of k and n. On the other hand, if sk(t) 	= eit for some k < l,

due to the existence of the nonzero high Fourier modes of the shape function sk(t), that is, ŝk(n) 	= 0 for n > 1, the nonzero
ψ̂(aφ′

k(b)n) will survive for those n for which ŝk(n) 	= 0. Thus, the continuous wavelet coefficients around Zl,n , n = 1, . . . , D ,
will be “contaminated”. Putting these two effects together, we expect that the larger l is and the more nonzero ŝk(n), n > D
and k < l are, the larger the Λ1(a,b) will be. Thus, the higher the n > 1 is, the more blurring is around the band Zk,n on
the time–frequency plane, which depend on the wave shape functions. It is for these reasons that we shall evaluate the IF
from the lowest mode ŝk(1) of the sk . We shall illustrate this below, in examples.

Proof. Since f ∈ Cδ,D
ε,d ⊂ L∞(R) and the mother wavelet ψ(t) is a Schwartz function, W f (a,b) is well defined. We work out

the estimation step by step. First, we evaluate the following integration for k ∈ {1, . . . , K } and (a,b) ∈ R+ ×R:∫
R

Ak(b)sk
(
2π

(
φk(b) − bφ′

k(b)
) + 2πφ′

k(b)t
) 1√

a
ψ

(
t − b

a

)
dt

= Ak(b)

∫
R

sk
(
2π

(
φk(b) − bφ′

k(b)
) + 2πx

) 1√
a
ψ

(
x − bφ′

k(b)

aφ′
k(b)

)
1

φ′
k(b)

dx

= Ak(b)

∫
R

sk
(
2π

(
φk(b) − u

)) 1√
a
ψ

(
u

aφ′
k(b)

)
1

φ′
k(b)

du

= Ak(b)
∑
n∈Z

ŝk(n)

∫
R

ei2πn(φk(b)−u) 1√
a
ψ

(
u

aφ′
k(b)

)
1

φ′
k(b)

du

=
∑
n∈N

Ak(b)ŝk(n)ei2πnφk(b)
√

aψ̂
(
aφ′

k(b)n
)
, (16)

where the first two equalities come from the change of variable and the third equality comes from the fact that sk ∈ C1,α(T).
Next, by applying Lemma 3.7, we can evaluate the difference between the continuous wavelet transform of

Ak(b)sk(2πφk(t)) and Ak(b)sk(2π(φk(b) − bφ′
k(b)) + 2πφ′

k(b)t):∣∣∣∣∫
R

Ak(b)sk
(
2πφk(t)

) 1√
a
ψ

(
t − b

a

)
dt

−
∫
R

Ak(b)sk
(
2π

(
φk(b) − bφ′

k(b)
) + 2πφ′

k(b)t
) 1√

a
ψ

(
t − b

a

)
dt

∣∣∣∣
=

∣∣∣∣∣
∫
R

Ak(b)sk

[
2π

(
φk(b) − bφ′

k(b) + φ′
k(b)t +

t−b∫
0

[
φ′

k(b + u) − φ′
k(b)

]
du

)]
1√
a
ψ

(
t − b

a

)
dt

−
∫
R

Ak(b)sk
[
2π

(
φk(b) − bφ′

k(b) + φ′
k(b)t

)] 1√
a
ψ

(
t − b

a

)
dt

∣∣∣∣∣
= Ak(b)

∣∣∣∣∫
R

[∑
n∈Z

ŝk(n)ei2πn(φk(b)−bφ′
k(b)+φ′

k(b)t)(ei2πn
∫ t−b

0 [φ′
k(b+u)−φ′

k(b)]du − 1
)] 1√

a
ψ

(
t − b

a

)
dt

∣∣∣∣
� Ak(b)

∫ [∑
n∈Z

∣∣ŝk(n)
∣∣∣∣ei2πn

∫ t−b
0 [φ′

k(b+u)−φ′
k(b)]du − 1

∣∣] 1√
a

∣∣∣∣ψ(
t − b

a

)∣∣∣∣dt
R
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� 2π Ak(b)

∫
R

[∑
n∈Z

|n|∣∣ŝk(n)
∣∣∣∣∣∣∣

t−b∫
0

[
φ′

k(b + u) − φ′
k(b)

]
du

∣∣∣∣∣
]

1√
a

∣∣∣∣ψ(
t − b

a

)∣∣∣∣dt

� 2πε Ak(b)

[∑
n∈Z

|n|∣∣ŝk(n)
∣∣]∫

R

[
1

2
|t − b|2∣∣φ′

k(b)
∣∣ + 1

6
|t − b|3M ′′

k

]
1√
a

∣∣∣∣ψ(
t − b

a

)∣∣∣∣dt

� 2πε Ak(b)

[∑
n∈Z

|n|∣∣ŝk(n)
∣∣](

1

2
a5/2 I2

∣∣φ′
k(b)

∣∣ + 1

6
M ′′

k a7/2 I3

)
,

where the first equality comes from applying Taylor’s expansion to φk(t) and the fifth inequality comes from Lemma 3.7.
Note that

∑
n∈Z |n||ŝk(n)| < ∞ since sk ∈ C1,α with α > 1/2.

Third, we approximate Ak(t) by Lemma 3.7:∣∣∣∣∣W f (a,b) −
K∑

k=1

∫
R

Ak(b)sk
(
2πφk(t)

) 1√
a
ψ

(
t − b

a

)
dt

∣∣∣∣∣
�

K∑
k=1

∫
R

∣∣Ak(b) − Ak(t)
∣∣∣∣sk

(
2πφk(t)

)∣∣ 1√
a

∣∣∣∣ψ(
t − b

a

)∣∣∣∣dt

� ε

K∑
k=1

‖sk‖∞
∫
R

|t − b|
(∣∣φ′

k(b)
∣∣ + 1

2
M ′′

k |t − b|
)

1√
a

∣∣∣∣ψ(
t − b

a

)∣∣∣∣dt

� ε

K∑
k=1

‖sk‖∞
(

φ′
k(b)a3/2 I1 + 1

2
M ′′

k a5/2 I2

)
, (17)

where the second inequality comes from Lemma 3.7.
When l ∈ {1, . . . , K }, n ∈ {1, . . . , D} and (a,b) ∈ R+ × R such that |anφ′

l (b) − 1| � �, (16) and (17) together lead to the
result:∣∣W f (a,b) − Al(b)ŝl(n)ei2πnφl(b)

√
aψ̂

(
anφ′

l (b)
)∣∣

�
∣∣∣∣∣

K∑
k=1,k 	=l

Ak(b)ŝk(n)ei2πnφk(b)
√

aψ̂
(
anφ′

k(b)
) +

K∑
k=1

∑
j∈N, j 	=n

Ak(b)ŝk( j)ei2π jφk(b)
√

aψ̂
(
ajφ′

k(b)
)∣∣∣∣∣

+ ε

K∑
k=1

‖sk‖∞
(

φ′
k(b)a3/2 I1 + 1

2
M ′′

k a5/2 I2

)

+ 2πε

K∑
k=1

Ak(b)

[∑
n∈Z

|n|∣∣ŝk(n)
∣∣](

1

2
a5/2 I2

∣∣φ′
k(b)

∣∣ + 1

6
M ′′

k a7/2 I3

)
. (18)

By the definition of IMTs, the second term and the third term in (18) are bounded by

ε

{
K∑

k=1

‖sk‖∞
(

φ′
k(b)a3/2 I1 + M ′′

k

2
a5/2 I2

)
+ π Ak(b)

[∑
n∈Z

|n|∣∣ŝk(n)
∣∣](

a5/2 I2
∣∣φ′

k(b)
∣∣ + M ′′

k

3
a7/2 I3

)}
.

Moreover, when (9) holds, due to Lemma 3.8 and the assumption of ψ , the first term in (18) is bounded by∣∣∣∣∣
K∑

k=1,k 	=l

Ak(b)ŝk(n)ei2πnφk(b)
√

aψ̂
(
anφ′

k(b)
) +

K∑
k=1

∑
j∈N, j 	=n

Ak(b)ŝk( j)ei2π jφk(b)
√

aψ̂
(
ajφ′

k(b)
)∣∣∣∣∣

=
∣∣∣∣∣

K∑
k=1

∑
j∈N, j 	=n

Ak(b)ŝk( j)ei2π jφk(b)
√

aψ̂
(
ajφ′

k(b)
)∣∣∣∣∣

�
√

aI0

l−1∑
Ak(b)

∑ ∣∣ŝk( j)
∣∣ � ε

√
aI0

l−1∑
Ak(b), (19)
k=1 j∈N, j>D k=1
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where the first equality comes from the fact that (a,b) ∈ Zl,n and the assumption (9), the first inequality holds since
|ψ̂(ajφ′

k(b))| � I0 and Lemma 3.8 and the second inequality holds since f ∈ Cδ,D
ε,d . To be more precise in the first inequality,

when k = l, ψ̂(ajφ′
l (b)) 	= 0 holds only for j = n; when k > l, no j ∈ N leads to ψ̂(ajφ′

k(b)) 	= 0; when k < l, ψ̂(ajφ′
k(b)) 	= 0

is possible only when j > D . The proof is thus done. �
In the next lemma, we show that by differentiating the continuous wavelet transform, the instantaneous frequency φ′

k(b)

and its multiples pop out. Though the instantaneous frequency is mixed-up with other quantities, we will show that, when
handled properly, this gives us an estimate of the instantaneous frequency with high accuracy. This lemma is analogous to
Lemma 3.9 in [6].

Lemma 3.10. For l ∈ {1, . . . , K }, n ∈ {1, . . . , D} and (a,b) ∈ Zl,n, we have∣∣−i∂b W f (a,b) − 2π Al(b)ŝl(n)ei2πnφl(b)nφ′
l (b)

√
aψ̂

(
anφ′

l (b)
)∣∣ � εa1/2Λ2(a,b), (20)

where

Λ2(a,b) =
K∑

k=1

{
‖sk‖∞

(
φ′

k(b)I ′1 + 1

2
M ′′

k aI ′2
)

+ π Ak(b)

[∑
j∈Z

| j|∣∣ŝk( j)
∣∣](

aI ′2
∣∣φ′

k(b)
∣∣ + 1

3
M ′′

k a2 I ′3
)}

+ 2π I0

l−1∑
k=1

Ak(b)φ′
k(b)

and I ′i = ∫
R

|x|i|ψ ′(x)| dx.

Proof. The proof follows the same lines as that for Lemma 3.9. Under the same conditions, we can evaluate the following
approximations. First,∫

R

Ak(b)sk
(
2π

(
φk(b) − bφ′

k(b)
) + 2πφ′

k(b)t
) 1

a3/2
ψ ′

(
t − b

a

)
dt

= i2π Ak(b)
∑
n∈N

ŝk(n)nφ′
k(b)ei2πnφk(b)

√
aψ̂

(
anφ′

k(b)
)
. (21)

Second,∣∣∣∣∫
R

Ak(b)sk
(
2πφk(t)

) 1

a3/2
ψ ′

(
t − b

a

)
dt

−
∫
R

Ak(b)sk
(
2π

(
φk(b) − bφ′

k(b)
) + 2πφ′

k(b)t
) 1

a3/2
ψ ′

(
t − b

a

)
dt

∣∣∣∣
� 2π Ak(b)

∫
R

[∑
n∈Z

|n|∣∣ŝk(n)
∣∣∣∣∣∣∣

t−b∫
0

[
φ′

k(b + u) − φ′
k(b)

]
du

∣∣∣∣∣
]

1

a3/2

∣∣∣∣ψ ′
(

t − b

a

)∣∣∣∣dt

� 2πε Ak(b)

[∑
n∈Z

|n|∣∣ŝk(n)
∣∣](

1

2
a3/2 I ′2

∣∣φ′
k(b)

∣∣ + 1

6
M ′′

k a5/2 I ′3
)

, (22)

where
∑

n∈Z |n||ŝk(n)| < ∞ since sk ∈ C1,α and α > 1/2. And third,∣∣∣∣∣−∂b W f (a,b) −
K∑

k=1

∫
R

Ak(b)sk
(
2πφk(t)

) 1

a3/2
ψ ′

(
t − b

a

)
dt

∣∣∣∣∣
� ε

K∑
k=1

‖sk‖∞
(

φ′
k(b)a1/2 I ′1 + 1

2
M ′′

k a3/2 I ′2
)

. (23)

When l ∈ {1, . . . , K }, n ∈ {1, . . . , D} and (a,b) ∈ R+ ×R such that |anφ′(b) − 1| ��, (21)–(23) together lead to the result:
l
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∣∣−i∂b W f (a,b) − 2π Al(b)ŝl(n)ei2πnφl(b)nφ′
l (b)

√
aψ̂

(
anφ′

l (b)
)∣∣

� 2π

∣∣∣∣∣
K∑

k=1,k 	=l

Ak(b)ŝk(n)ei2πnφk(b)nφ′
k(b)

√
aψ̂

(
anφ′

k(b)
) +

K∑
k=1

∑
j∈N, j 	=n

Ak(b)ŝk( j)ei2π jφk(b) jφ′
k(b)

√
aψ̂

(
ajφ′

k(b)
)∣∣∣∣∣

+ ε

K∑
k=1

‖sk‖∞
(

φ′
k(b)a1/2 I ′1 + 1

2
M ′′

k a3/2 I ′2
)

+ 2πε

K∑
k=1

Ak(b)

[∑
j∈Z

| j|∣∣ŝk( j)
∣∣](

1

2
a3/2 I ′2

∣∣φ′
k(b)

∣∣ + 1

6
M ′′

k a5/2 I ′3
)

.

By the same argument as that for Lemma 3.9, we get (20). �
The same remark for Lemma 3.9 holds for Lemma 3.10. That is, the larger the difference between the wave shape

functions and the cosine function, the larger the possible negative effect on the precision of the estimate. The following
lemma clarifies the role of the function ω f (a,b). Indeed, it states that ω f (a,b) provides the information of the instantaneous
frequency of each component. Since the proof of this lemma is the same as that of Estimate 3.8 in [6], we shall skip it.

Lemma 3.11. For l ∈ {1, . . . , K }, n ∈ {1, . . . , D} and (a,b) ∈ Zl,n so that |W f (a,b)| � ε̃ , we have∣∣ω f (a,b) − nφ′
l (b)

∣∣� ε2/3a1/2(Λ1nφ′
l (b) + Λ2/2π

)
.

It is now clear that with appropriate restrictions on ε , the first two claims in Theorem 3.6 are proved. Indeed, note that
by the definition of Zk,n and the uniform lower and upper bounds on φ′

k(b), we know that the values of a for which (a,b) ∈⋃D
n=1

⋃K
k=1 Zk,n are uniformly bounded. Then, supposing that (9) holds, due to the uniform boundedness of Ak(b) and φ′

k(b),

it follows that Λ1(a,b) and Λ2(a,b) are uniformly bounded in
⋃D

n=1
⋃K

k=1 Zk,n as well. Thus, for (a,b) ∈ ⋃D
n=1

⋃K
k=1 Zk,n ,

there exists ε > 0 so that

ε < a−3/4Λ
−3/2
1 , (24)

which leads to εa1/2Λ1(a,b) < ε̃ . If further we impose the condition that for all l = 1, . . . , K and n = 1, . . . , D ,

ε < a−3/2(Λ1nφ′
l (b) + Λ2/2π

)−3
, (25)

then ε2/3a1/2(Λ1nφ′
l (b) + Λ2/2π) < ε̃ . Thus the first two claims in Theorem 3.6 hold.

The final lemma concerns the reconstruction of each component; when sk(t) = eit for all k = 1, . . . , K , we recover
Lemma 3.9 in [6].

Lemma 3.12. Suppose that both (24) and (25) are satisfied, and that, in addition, for all b and k ∈ {1, . . . , K } under consideration,

ε � min

{
d3[φ′

1(b) + φ′
2(b)]3

8
,

27d3φ′
1(b)3

8

}
. (26)

Then for any b ∈R∣∣∣∣ lim
α→0

(
R−1

ψ

∫
⋃D

n=1{ξ : |ξ−nφ′
k(b)|<ε̃}

Sα,γ
f (b, ξ)dξ

)
− Ak(b)sk

(
2πφk(b)

)∣∣∣∣ � C ε̃,

where C = Ak(b)ε̃2 + 4[( φ′
k(b)

1−�
)1/2 − (

φ′
k(b)

1+�
)1/2] < Ak(b) + 4[( φ′

k(b)

1−�
)1/2 − (

φ′
k(b)

1+�
)1/2].

Proof. Fix b ∈ R. As a function of a, W f (a,b) ∈ C∞(Aε̃, f (b)), so by the definition of the wavelet Synchrosqueezing trans-

form, as a function of ξ , Sα,ε̃
f (b, ξ) ∈ C∞(R). Thus, we have

lim
α→0

∫
⋃D

n=1{ξ : |ξ−nφ′
k(b)|<ε̃}

Sα,ε̃
f (b, ξ)dξ

= lim
α→0

∫
⋃D

n=1{ξ : |ξ−nφ′
k(b)|<ε̃}

∫
Aε̃, f (b)

W f (a,b)
1

α
h

( |ξ − ω f (a,b)|
α

)
a−3/2 da dξ

= lim
α→0

∫
Aε̃, f (b)

a−3/2W f (a,b)

∫
⋃D {ξ : |ξ−nφ′ (b)|<ε̃}

1

α
h

( |ξ − ω f (a,b)|
α

)
dξ da
n=1 k
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=
∫

Aε̃, f (b)

lim
α→0

a−3/2W f (a,b)

∫
⋃D

n=1{ξ : |ξ−nφ′
k(b)|<ε̃}

1

α
h

( |ξ − ω f (a,b)|
α

)
dξ da

=
∫

Aε̃, f (b)∩(
⋃D

n=1{a: |ω f (a,b)−nφ′
k(b)|<ε̃})

W f (a,b)a−3/2 da, (27)

where we have used Fubini’s theorem for the second equality, the Dominant Convergence theorem for the third equality, and
the approximation of identity for the fourth equality. Indeed, the integrand on the third line is bounded by a−3/2|W f (a,b)| ∈
L1(Aε̃, f (b)) and converges almost everywhere to a−3/2W f (a,b) if |ω f (a,b) − nφ′

k(b)| < ε̃ for some n ∈ {1, . . . , D}, and to
zero otherwise.

We now claim that there is only one l ∈ {1, . . . , K } and n ∈ {1, . . . , D} for which |anφ′
l (b) − 1| < � and |ω f (a,b) −

nφ′
l (b)| < ε̃ hold simultaneously. In fact, if there exist l′ ∈ {1, . . . , K } and n′ ∈ {1, . . . , D} so that |an′φ′

l′ (b) − 1| < � holds,
where l 	= l′ or n 	= n′ , we get∣∣ω f (a,b) − n′φ′

l′(b)
∣∣� ∣∣nφ′

l (b) − n′φ′
l′(b)

∣∣ − ∣∣ω f (a,b) − nφ′
l (b)

∣∣� d
[
nφ′

l (b) + n′φ′
l′(b)

] − ε̃,

where the second inequality comes from (13) and Lemma 3.11. Notice that

d
[
nφ′

l (b) + n′φ′
l′(b)

]
� d min

{[
φ′

1(b) + φ′
2(b)

]
,3φ′

1(b)
}
� 2ε̃, (28)

where the first inequality holds since nφ′
l (b) � φ′

1(b), n′φ′
l′ (b) � φ′

1(b) and φ′
2(b) might be larger than 2φ′

1(b) and the second
inequality comes from (26). Thus we conclude that∣∣ω f (a,b) − n′φ′

l′(b)
∣∣ > ε̃,

which is absurd. Next, from Lemma 3.10 and (24) we know that |W f (a,b)| > ε̃ only when |anφ′
l (b) − 1| < � for some

l ∈ {1, . . . , K } and n ∈ {1, . . . , D}. Hence we know

Aε̃, f (b) ∩
(

D⋃
n=1

{
a:

∣∣ω f (a,b) − nφ′
k(b)

∣∣ < ε̃
}) = Aε̃, f (b) ∩

(
D⋃

n=1

{
a:

∣∣anφ′
k(b) − 1

∣∣ < �
})

and the right hand side of (27) becomes∫
Aε̃, f (b)∩(

⋃D
n=1{a: |anφ′

k(b)−1|<�})

W f (a,b)a−3/2 da

=
∫

⋃D
n=1{a: |anφ′

k(b)−1|<�}

W f (a,b)a−3/2 da −
∫

(
⋃D

n=1{|anφ′
k(b)−1|<�})\Aε̃, f (b)

W f (a,b)a−3/2 da.

Thus we obtain∣∣∣∣ lim
α→0

R−1
ψ

∫
⋃D

n=1{ξ : |ξ−nφ′
k(b)|<ε̃}

Sα,ε̃
f (b, ξ)dξ − Ak(b)sk

(
2πφk(b)

)∣∣∣∣
�

∣∣∣∣R−1
ψ

( ∫
⋃D

n=1{a: |anφ′
k(b)−1|<�}

W f (a,b)a−3/2 da

)
− Ak(b)sk

(
2πφk(b)

)∣∣∣∣
+R−1

ψ

∣∣∣∣ ∫
(
⋃D

n=1{|anφ′
k(b)−1|<�})\Aε̃, f (b)

W f (a,b)a−3/2 da

∣∣∣∣
�

∣∣∣∣∣R−1
ψ Ak(b)

D∑
n=1

ŝk(n)ei2πnφk(b)

( ∫
|anφ′

k(b)−1|<�

√
aψ̂

(
anφ′

k(b)
)
a−3/2 da

)
− Ak(b)sk

(
2πφk(b)

)∣∣∣∣∣
+R−1

ψ

D∑
n=1

∫
|anφ′ (b)−1|<�

ε̃a−3/2 da +R−1
ψ

∣∣∣∣ ∫
(
⋃D {|anφ′ (b)−1|<�})\A (b)

W f (a,b)a−3/2 da

∣∣∣∣

k n=1 k ε̃, f
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�
∣∣∣∣∣Ak(b)

D∑
n=1

ŝk(n)ei2πnφk(b) − Ak(b)sk
(
2πφk(b)

)∣∣∣∣∣ + 2R−1
ψ

D∑
n=1

∫
|anφ′

k(b)−1|<�

ε̃a−3/2 da, (29)

where the second inequality comes from Lemma 3.9 and (24) and the third inequality comes from Lemma 3.9 and the fact
that ∫

|anφ′
k(b)−1|<�

ψ̂
(
anφ′

k(b)
)
a−1 da =

∫
|ζ−1|<�

ψ̂(ζ )ζ−1 dζ = Rψ.

The first term in (29) is bounded by∣∣∣∣∣Ak(b)

∞∑
n=D+1

ŝk(n)ei2πnφk(b)

∣∣∣∣∣� Ak(b)

∞∑
n=D+1

∣∣ŝk(n)
∣∣ � ε Ak(b).

The second term in (29) can be worked out explicitly:

2R−1
ψ

D∑
n=1

∫
|anφ′

k(b)−1|<�

ε̃a−3/2 da = 4ε̃

D∑
n=1

[(
nφ′

k(b)

1 − �

)1/2

−
(

nφ′
k(b)

1 + �

)1/2]
.

We thus conclude∣∣∣∣ lim
α→0

R−1
ψ

∫
⋃D

n=1{ξ : |ξ−nφ′
k(b)|<ε̃}

Sα,ε̃
f (b, ξ)dξ − Ak(b)sk

(
2πφk(b)

)∣∣∣∣
� ε Ak(b) + 4ε̃

[(
φ′

k(b)

1 − �

)1/2

−
(

φ′
k(b)

1 + �

)1/2]
. �

Combining Lemmas 3.9–3.12 completes the proof of Theorem 3.6.

Remark. This theorem suggests that if we know a priori that the components of the signal have wave shape function close
to an imaginary exponential (or if its real part has components close to a cosine function), then focusing on the band around
the instantaneous frequency φ′

k(b) and its multiples allows us to recover the signal.

Now we demonstrate some numerical results of applying the Synchrosqueezing transform to analyze the functions
in Cδ,D

ε,d . Take the phase functions φ1(t) = 1.5t + 0.2 cos(t + 1) and φ2(t) = 4.5(t + 0.2 cos(t)) and the amplitude modulation

functions A1(t) = 1 + 0.1 sin(t1.1) and A2(t) = √
1 + 0.2 cos(t). Consider the following two functions for comparison:

f1(t) = A1(t)sII
(
2πφ1(t)

) + A2(t)s1
(
2πφ2(t)

)
and

f2(t) = A1(t)

3.5
cos

(
2πφ1(t)

) + A2(t)s1
(
2πφ2(t)

)
,

where s1(t) and sII(t) are the shape functions demonstrated in Fig. 10. Clearly, f1 and f2 are both composed of one com-
ponent with instantaneous frequency 1.5 − 0.2 sin(t + 1) and one component with instantaneous frequency 4.5 − 0.9 sin(t)
but with different wave shape functions in the low-frequency component.

As is shown in Fig. 10, the coefficients of the high Fourier modes of sII are quite significant, whereas those of 1
3.5 cos(t)

are all 0. In this case, since φ2 is roughly 3 times φ1, it is the coefficient of the third Fourier mode of sII that matters. Thus,
according to Theorem 3.6, we expect to have worse φ′

2 estimation from f1, which is borne out by Fig. 11.
Next we show the component reconstruction results stated in Theorem 3.6. Take the phase functions φ3(t) = 4t +

0.1 cos(t + 1) and φ4(t) = 5t + 0.2 cos(t)2 and the wave shape functions s3(t) and s4(t). The Fourier modes of s3(t) and
s4(t) are illustrated in Fig. 12. Consider the function

f3(t) = f3,1(t) + f3,2(t),

where

f3,1(t) = A1(t)s3
(
2πφ3(t)

)
and
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Fig. 11. Left top: the f1 signal; left middle: the Synchrosqueezing transform of f1; left bottom: the dashed curve is φ′
2(t), while the black curve is the

estimated φ′
2; right top: the f2 signal; right middle: the Synchrosqueezing transform of f2; right bottom: the dashed curve is φ′

2(t), while the black curve
is the estimated φ′

2. It is clear that the estimation of φ′
2 is worse in f1. Notice that the dominant curve around φ′

1 in the left middle figure is not very
marked. This is caused by the small coefficient of the first Fourier mode of ŝII .

Fig. 12. Top row: the s3 (left) and s4 (right) wave shape function; bottom row: the first 20 Fourier modes of s3 (left) and s4 (right). Note that ŝ3(n) and
ŝ4(n) are not zero but very small when n > 4.

f3,2(t) = A2(t)s4
(
2πφ4(t)

)
.

Since f3,1(t) ∈ C1.2,4
ε and f3,2(t) ∈ C0.5,3

ε , we know f3(t) ∈ C1.2,4
ε,d , where ε ≈ 2/25 and d ≈ 1/9. We take � = 0.1 in the

simulation, and it is clear that the intervals [ 1−�
nφ′

3(t)
, 1+�

nφ′
3(t)

] for n = 1, . . . ,4 and [ 1−�
mφ′

4(t)
, 1+�

mφ′
4(t)

] for m = 1, . . . ,3 do not

overlap, so the condition (9) is satisfied, and hence we expect to be able to reconstruct f3,1(t) and f3,2(t) from f3 via
Synchrosqueezing transform. The extraction result is shown in the left panel of Fig. 14. We also demonstrate the robustness
of Synchrosqueezing transform in this case. Consider

f4 = f3 + σ W ,

where W is the white noise with variance 1 and σ = √
var( f3)101/5, that is, we add −2 dB white noise to f3 if the

signal-to-noise ratio is defined by

signal-to-noise ratio (dB) = 10 log10

(
var( f3)

2

)
.

σ
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Fig. 13. Left: the Synchrosqueezing transform of f4; right: the reassigned Morlet scalogram. Notice that the performance of the Synchrosqueezing transform
is equivalent to the reassigned Morlet scalogram for the purpose of extracting the instantaneous frequency.

Fig. 14. Left top: the f3 signal; left middle: the gray curve is A1(t)s3(2πφ3(t)), while the black curve is the reconstructed A1(t)s3(2πφ3(t)), which is shifted
down by 0.3 to improve the readability; left bottom: the gray curve is A2(t)s4(2πφ4(t)), while the black curve is the reconstructed A2(t)s4(2πφ4(t)), which
is shifted down by 0.3 to improve the readability; right top: the f4 signal; right middle: the gray curve is A1(t)s3(2πφ3(t)), while the black curve is the
reconstructed A1(t)s3(2πφ3(t)), which is shifted down by 0.3 to improve the readability; right bottom: the gray curve is A2(t)s4(2πφ4(t)), while the black
curve is the reconstructed A2(t)s4(2πφ4(t)), which is shifted down by 0.3 to improve the readability.

We first demonstrate the Synchrosqueezing transform of f4 and the reassigned Morlet scalogram [2] in Fig. 13. Then we
extract the components f3,1 and f3,2 by applying Synchrosqueezing transform on f4. The result is shown in the right
panel of Fig. 14. Since reconstructing the components from the reassigned Morlet scalogram is not guaranteed, we only
demonstrate the reconstruction results of the Synchrosqueezing transform.
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