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H+-EIGENVALUES OF LAPLACIAN AND SIGNLESS LAPLACIAN
TENSORS∗

LIQUN QI†

Abstract. We propose a simple and natural definition for the Laplacian and the signless Lapla-
cian tensors of a uniform hypergraph. We study their H+-eigenvalues, i.e., H-eigenvalues with non-
negative H-eigenvectors, and H++-eigenvalues, i.e., H-eigenvalues with positive H-eigenvectors. We
show that each of the Laplacian tensor, the signless Laplacian tensor, and the adjacency tensor has at
most one H++-eigenvalue, but has several other H+-eigenvalues. We identify their largest and small-
est H+-eigenvalues, and establish some maximum and minimum properties of these H+-eigenvalues.
We then define analytic connectivity of a uniform hypergraph and discuss its application in edge
connectivity.
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1. Introduction
Recently, several papers appeared on spectral hypergraph theory via tensors [3,

6, 10, 15, 16, 19, 24, 25, 26]. These works are all on uniform hypergraphs [1]. In 2008,
Lim [16] proposed to study spectral hypergraph theory via eigenvalues of tensors. In
2009, Bulò and Pelillo [3] gave new bounds on the clique number of a graph based on
analysis of the largest eigenvalue of the adjacency tensor of a uniform hypergraph. In
2012, Hu and Qi [10] proposed a definition for the Laplacian tensor of an even uniform
hypergraph, and analyzed its connection with edge and vertex connectivity. In the
same year, Cooper and Dutle [6] analyzed the eigenvalues of the adjacency tensor
(hypermatrix) of a uniform hypergraph, and proved a number of natural analogs of
basic results in spectral graph theory. Li, Qi, and Yu [15] proposed another definition
for the Laplacian tensor of an even uniform hypergraph, established a variational
formula for its second smallest Z-eigenvalue, and used it to provide lower bounds
for the bipartition width of the hypergraph. In [24, 26], Xie and Chang proposed a
definition for the signless Laplacian tensor of an even uniform hypergraph, studied its
largest and smallest H-eigenvalues and Z-eigenvalues, and its applications in the edge
cut and the edge connectivity of the hypergraph. They also studied the largest and
the smallest Z-eigenvalues of the adjacency tensor of a uniform hypergraph in [25].
In [19], Pearson and Zhang studied the H-eigenvalues and the Z-eigenvalues of the
adjacency tensor of a uniform hypergraph.

Precisely speaking, the tensors mentioned above may be called hypermatrices.
In physics and mechanics, tensors are physical quantities, while hypermatrices are
multi-dimensional arrays. In geometry, a tensor to a hypermatrix is like a linear
transformation to a matrix - the former objects are defined without choosing bases
[21]. However, for most papers in tensor decomposition, spectral theory of tensors and
spectral hypergraph theory, as most papers cited in this paper, the word “tensors”
are used for those multi-dimensional arrays. Following this habit, we use the word
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“tensors” in this paper.

A uniform hypergraph is also called a k-graph [1, 2]. Let G=(V,E) be a k-graph,
where V ={1,2, . . . ,n} is the vertex set, E={e1,e2, . . . ,em} is the edge set, ep⊂V,

and |ep|=k for p=1, . . . ,m, and k≥2. If k=2, then G is an ordinary graph. We
assume that ep 6= eq if p 6= q. Two vertices are called adjacent if they are in the same
edge. Two vertices i and j are called connected if either i and j are adjacent, or
there are vertices i1, . . . ,is such that i and i1, ik and j, ir and ir+1 for r=1, . . . ,s−1,
are adjacent respectively. A k-graph G is called connected if any pair of its vertices
are connected. The adjacency tensor A=A(G) of G, is a kth order n-dimensional
symmetric tensor, with A=(ai1i2···ik), where ai1i2···ik =

1
(k−1)! if (i1,i2, . . . ,ik)∈E, and

0 otherwise. Thus, ai1i2···ik =0 if two of its indices are the same. For i∈V , its degree
d(i) is defined as d(i)= |{ep : i∈ ep∈E}|. We assume that every vertex has at least
one edge. Thus, d(i)>0 for all i. The degree tensor D=D(G) of G, is a kth order
n-dimensional diagonal tensor, with its ith diagonal entry as d(i). We denote the
maximum degree, the minimum degree, and the average degree of G by ∆, δ, and d̄

respectively. If d̄=∆=d, then G is a regular graph, called a d-regular k-graph.

The definition of the adjacency tensor is natural. It was studied in [3, 6, 25].
On the other hand, the definitions of Laplacian and signless Laplacian tensors in
[10, 15, 24, 26] are based upon some forms of sums of k-th powers. They are not
simple and natural, and only work when k is even.

In this paper, we propose a simple and natural definition for the Laplacian and
the signless Laplacian tensors of a k-graph G. Recall that when k=2, the Laplacian
matrix and the signless Laplacian matrix of G are defined as L=D−A and Q=D+A
[2]. Many results of spectral graph theory are based upon this definition. Thus,
for k≥3, we propose to define the Laplacian tensor and the signless Laplacian
tensor ofG simply by L=D−A andQ=D+A. This definition is simple and natural,
and is closely related to the adjacency tensor A. Furthermore, the signless Laplacian
tensor Q is a symmetric nonnegative tensor, while the Laplacian tensor L is the
limit of symmetric M -tensors in the sense of [29]. M -tensors are closely related
with nonnegative tensors [29]. Thus, we may use the recently developed theory and
algorithms on eigenvalues of nonnegative tensors [4, 5, 8, 9, 17, 18, 22, 27, 28] to study
L and Q.

We discover that L and Q have very nice spectral properties. They are not
irreducible in the sense of [4]. But they are weakly irreducible in the sense of [8] if G is
connected. When k≥3, each of them has at least n+1 H-eigenvalues with nonnegative
H-eigenvectors. We call such H-eigenvalues H+-eigenvalues. Furthermore, each of
them has at most one H+-eigenvalue with a positive eigenvector. We call such an
H+-eigenvalue an H++-eigenvalue.

The remainder of this paper is distributed as follows. In the next section, we
review the definition and properties of eigenvalues and H-eigenvalues of tensors, and
introduce H+-eigenvalues and H++-eigenvalues. We study H+-eigenvalues of A, L,
andQ in Section 3. We show that each ofA, L, andQ has at most one H++-eigenvalue,
but has several other H+-eigenvalues. In Section 4, we study the smallest H-eigenvalue
of L, and its link with the connectedness of G. We identify the largest H+-eigenvalue
of L, and establish a maximum property of this H+-eigenvalue in Section 5. We
establish some maximum properties of the largest H-eigenvalues of Q and A, and
discuss methods for computing them in Section 6. In Section 7, we identify the
smallest H+-eigenvalue of Q, establish a minimum property of this H+-eigenvalue,
and discuss its applications in edge connectivity and maximum cut. In Section 8, we
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define analytic connectivity of G as a minimum quantity related to L, and discuss
its application in edge connectivity. Some final remarks are made in Section 9.

Denote by 1 the all 1 n-dimensional vector, 1j =1 for j=1, . . . ,n. Denote by e(i)

the ith unit vector in <n, i.e., e
(i)
j =1 if i= j and e

(i)
j =0 if i 6= j, for i,j=1, . . . ,n. For a

vector x in <n, we define its support as supp(x)={i∈V :xi 6=0}. Denote the set of all
nonnegative vectors in <n by <n

+ and the set of all positive vectors in <n by <n
++. For

a kth order n-dimensional tensor C=(ci1···ik), |C| is a kth order n-dimensional tensor
|C|=(|ci1···ik |). If both C=(ci1···ik) and B=(bi1···ik) are real kth order n-dimensional
tensors, and bi1···ik ≤ ci1···ik for i1, . . . ,jk=1, . . . ,n, then we write B≤C. We use J to
denote the kth order n-dimensional tensor with all of its entries being 1.

2. H+-eigenvalues and H++-eigenvalues
In this section, we will review the definition and properties of eigenvalues and

H-eigenvalues of tensors in [20], introduce H+-eigenvalues and H++-eigenvalues, and
review the Perron-Frobenius Theorem for nonnegative tensors in [4, 8, 27]. We also
discuss the reducibility and weak irreducibility of L and Q in this section.

Consider a real kth order n-dimensional tensor T =(ti1···ik). Let x∈Cn. Then

T xk=

n
∑

i1,...,ik=1

ti1···ikxi1 · · ·xik ,

and T xk−1 is a vector in Cn, with its ith component defined by

(

T xk−1
)

i
=

n
∑

i2,...,ik=1

tii1···ikxi2 · · ·xik .

Let r be a positive integer. Then x[r] is a vector in Cn, with its ith component
defined by xr

i . We say that T is symmetric if its entries ti1···ik are invariant under
any permutation of its indices.

Suppose that x∈Cn, x 6=0, λ∈C, and x and λ satisfy

T xk−1=λx[k−1]. (2.1)

Then we call λ an eigenvalue of T , and x its corresponding eigenvector. From (2.1),
we may see that if λ is an eigenvalue of T and x is its corresponding eigenvector, then

λ=
(T xk−1)j

xk−1
j

, (2.2)

for some j with xj 6=0. In particular, if x is real, then λ is also real. In this case, we
say that λ is an H-eigenvalue of T and x is its corresponding H-eigenvector. If
x∈<n

+, then we say that λ is an H+-eigenvalue of T . If x∈<n
++, then we say that λ

is an H++-eigenvalue of T . If λ is an H+-eigenvalue but not an H++-eigenvalue
of T , then we say that λ is a strict H+-eigenvalue of T .

We say that T is positive definite (semi-definite) if T xk>0 (T xk≥0) for all
x∈<n, x 6=0. Clearly, T is positive definite only if k is even, and when k is odd, T is
positive semi-definite only if T is the zero tensor.

Note that (2.1) is a homogeneous system of x, with n variables and n equations.
We may regard these variables as taking values in the complex field. According to
algebraic geometry [7], the resultant of (2.1) is a polynomial in the coefficients of (2.1),
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hence a polynomial in λ, which vanishes if and only if (2.1) has a nonzero solution x.
Denote this polynomial by φT (λ), and call it the characteristic polynomial of T .

The main properties of eigenvalues and H-eigenvalues of a real kth order n-
dimensional symmetric tensor in [20] are summarized in the following theorem.

Theorem 2.1. (Eigenvalues of Real Symmetric Tensors). (Qi 2005) The
following hold for the eigenvalues of a real kth order n-dimensional symmetric tensor
T :

(a). A number λ∈C is an eigenvalue of T if and only if it is a root of the
characteristic polynomial φT . Hence, we regard the multiplicity of an eigenvalue λ of
T as its multiplicity as a root of φT .

(b). The number of eigenvalues of T , counting their multiplicities, is n(k−1)n−1.
Their product is equal to det(T ), the resultant of T xk−1=0.

(c). The sum of all the eigenvalues of T is

(k−1)n−1tr(T ),

where tr(T ) denotes the sum of the diagonal entries of T .

(d). If k is even, then T always has H-eigenvalues. T is positive definite (positive
semi-definite) if and only if all of its H-eigenvalues are positive (nonnegative).

(e). The eigenvalues of T lie in the following n disks:

|λ− tii···i|≤
∑

{|tii2···ik | : i2, . . . ,ik=1, . . . ,n,(i2, . . . ,ik) 6=(i,... ,i)} ,

for i=1, . . . ,n.

A substantial portion of this theorem is still true when T is not symmetric. As
we are only concerned with real symmetric tensors, we do not go into this in detail.

We call
∑

{tii2···ik : i2, . . . ,ik=1, . . . ,n,(i2, . . . ,ik) 6=(i,... ,i)} the ith off-diagonal
sum of T .

The set of eigenvalues of T is called the spectrum of T . The largest modulus of
the eigenvalues of T is called the spectral radius of T , denoted by ρ(T ).

Following [4], T is called reducible if there exists a proper nonempty subset I of
{1, . . . ,n} such that

ti1···ik =0, ∀i1∈ I, ∀i2, . . . ,ik 6∈ I.

If T is not reducible, then we say that T is irreducible. If we take I={1, . . . ,n−1},
it is evident that L and Q are reducible.

Suppose that T =(ti1···ik) is a kth order n-dimensional tensor. Construct a graph

Ĝ(T )=(V̂ ,Ê), where V̂ =∪n
j=1Vj ,Vj is a copy of {1, . . . ,n}, for j=1, . . . ,n. Assume

that ij ∈Vj ,il∈Vl,j 6= l. The edge (ij ,il)∈ Ê if and only if ti1···ik 6=0 for some k−2

indices {i1, . . . ,ik}\{ij ,il}. The tensor T is called weakly irreducible if Ĝ(T ) is
connected. The original definition in [8] for weakly irreducible tensors only applies
to nonnegative tensors. Here we remove the nonnegativity restriction. As observed
in [8], an irreducible tensor is always weakly irreducible. Very recently, Pearson and
Zhang [19] proved that the adjacency tensor A is weakly irreducible if and only if the
k-graph G is connected. Clearly, if the adjacency tensor A is weakly irreducible, then
L and Q are weakly irreducible. This shows that if G is connected, then A, L, and
Q are weakly irreducible.
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If the entries ti1···ik are nonnegative, T is called a nonnegative tensor. There
is a rich theory on eigenvalues of a nonnegative tensor [4, 5, 8, 17, 18, 27, 28]. We
now summarize the Perron-Frobenius theorem for nonnegative tensors, established
in [4, 8, 27]. With the new definitions of H+-eigenvalues and H++-eigenvalues, this
theorem can be stated concisely.

Theorem 2.2. (The Perron-Frobenius Theorem for Nonnegative Tensors).

(1) (Yang and Yang 2010). If T is a nonnegative tensor of order k and
dimension n, then ρ(T ) is an H+-eigenvalue of T .

(2) (Friedland, Gaubert, and Han 2011). If furthermore T is weakly irre-
ducible, then ρ(T ) is the unique H++-eigenvalue of T , with the unique eigenvector
x∈<n

++, up to a positive scaling coefficient.

(3) (Chang, Pearson, and Zhang 2008). If moreover T is irreducible, then
ρ(T ) is the unique H+-eigenvalue of T .

The tensors L and Q are reducible. This permits the possibility that they have
some strict H+ eigenvalues. In the next five sections, we will study their H+ eigen-
values.

3. H+-eigenvalues of A, L, and Q

Theorem 2.1 establishes some basic properties of eigenvalues of the adjacency
tensor A, the Laplacian tensor L, and the signless Laplacian tensors Q. Note that
they are all real kth order n-dimensional symmetric tensors. Both A and Q are
nonnegative tensors. The diagonal entries of A are zero. The ith diagonal entry of
L and Q is di>0. All the off-diagonal entries of A and Q are nonnegative. All the
off-diagonal entries of L are non-positive. The ith off-diagonal sum of A and Q is di.
The ith off-diagonal sum of L is −di.

Theorem 3.1. (Basic Properties of Eigenvalues of A, L, and Q ). Assume
that k≥3. The following conclusions hold for eigenvalues of A, L, and Q.

(a). A number λ∈C is an eigenvalue of A (respectively, L or Q) if and only if
it is a root of the characteristic polynomial φA (respectively, φL or φQ).

(b). The number of eigenvalues of A (respectively, L or Q) is n(k−1)n−1. Their
product is equal to det(A) (respectively, det(L) or det(Q)).

(c). The sum of all the eigenvalues of A is zero. The sum of all the eigenvalues
of L or Q is (k−1)n−1

∑n

i=1di=k(k−1)n−1m.

(d). The eigenvalues of A lie in the disk {λ : |λ|≤∆}. The eigenvalues of L and
Q lie in the disk {λ : |λ−∆|≤∆}.

(e). L and Q are positive semi-definite when k is even.

Proof. The conclusions (a), (b), (c), and (d) follow directly from Theorem 2.1
(a), (b), (c), and (e), and the basic structure of A, L, and Q. By (d), the real parts
of all the eigenvalues of L and Q are nonnegative. Then (e) follows from Theorem 2.1
(d).

We now discuss H+-eigenvalues of L.

Theorem 3.2. (H+-Eigenvalues of L ). Assume that k≥3. For j=1, · · · ,n, dj is a
strict H+-eigenvalue of L with H-eigenvector e(j). Zero is the unique H++-eigenvalue
of L with H-eigenvector 1, and is the smallest H-eigenvalue of L.
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Proof. A real number µ is an H-eigenvalue of L, with H-eigenvector x, if and
only if x∈<n, x 6=0, and Lxk−1=µx[k−1], i.e.,

dix
k−1
i −

∑

{

1

(k−1)!
xi2 · · ·xik : (i,i2, · · · ,ik)∈E

}

=µxk−1
i , (3.1)

for i=1· · · ,n. We now may easily verify that for j=1, · · · ,n, dj is an H+-eigenvalue of
L with H-eigenvector e(j), and zero is an H++-eigenvalue of L with H-eigenvector 1.
By Theorem 3.1 (d), the real parts of all the eigenvalues of L are nonnegative. Thus,
zero is the smallest H-eigenvalue of L. Assume that x is a positive H-eigenvector of
L, associated with an H-eigenvalue µ. By Theorem 3.1 (d), µ≥0. Let xj =mini{xi}.
By (3.1), we have

µ=dj−
∑

{

1

(k−1)!

xi2

xj

· · ·
xik

xj

: (j,i2, · · · ,ik)∈E

}

≤dj−dj =0.

This shows that µ=0. Thus, zero is the unique H++ eigenvalue of L, and dj is a
strict H+ eigenvalue of L, for j=1, · · · ,n.

As in spectral graph theory [2], we may call eigenvalues (respectively, H-eigenvalue
or H+-eigenvalue or H++-eigenvalue or spectrum or spectral radius) of A as eigenval-
ues (respectively, H-eigenvalue or H+-eigenvalue or H++-eigenvalue or spectrum or
spectral radius) of the k-graph G, or simply eigenvalues (respectively, H-eigenvalue
or H+-eigenvalue or H++-eigenvalue or spectrum or spectral radius) if the context
is clear. Similarly, we may call eigenvalues (respectively, H-eigenvalues or H+-
eigenvalue or H++-eigenvalue or spectrum or spectral radius) of L and Q as Lapla-
cian and signless Laplacian eigenvalues (respectively, H-eigenvalues or H+-eigenvalue
or H++-eigenvalue or spectrum or spectral radius) of G, or simply Laplacian and
signless Laplacian eigenvalues (respectively, H-eigenvalues or H+-eigenvalue or H++-
eigenvalue or spectrum or spectral radius) if the context is clear.

Theorem 3.1 of [6] concerns the spectrum of the union of two disjoint hypergraphs.
Checking its proof, we see that it also holds for Laplacian and signless Laplacian
spectra. This will be useful for our further discussion. We state it here but omit its
proof as the proof is the same as the proof of Theorem 3.1 of [6].

Theorem 3.3. (The Union of Two Disjoint Hypergraphs). Suppose G=
(V,E) is the union of two disjoint hypergraphs G1=(V1,E1) and G2=(V2,E2), where
|V1|=n1, |V2|=n2, n1+n2=n= |V |. Then the spectrum (respectively, the Lapla-
cian spectrum or the signless Laplacian spectrum) of G is the union of the spectra
(respectively, the Laplacian spectra or the signless Laplacian spectra) of G1 and G2,
where, as multisets, an eigenvalue with multiplicity r in the spectrum (respectively, the
Laplacian spectrum or the signless Laplacian spectrum) of G1 occurs in the spectrum
(respectively, the Laplacian spectrum or the signless Laplacian spectrum) of G with
multiplicity r(k−1)n2 .

In general, G may be decomposed into components Gr=(Vr,Er) for r=1, . . . ,s.
If s=1, then G is connected. Denote the adjacency tensor and the signless Laplacian
tensor of Gr by A(Gr) and Q(Gr) respectively, for r=1, . . . ,s. Then by Theorem 3.3,

ρ(A)= max
r=1,···,s

{ρ(A(Gr))}, ρ(Q)= max
r=1,...,s

{ρ(Q(Gr))}.

With the above discussion, we are now ready to study H+-eigenvalues of Q and A.
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Theorem 3.4. (H+-Eigenvalues of Q ). Assume that k≥3. Suppose that G has s
components Gr=(Vr,Er) for r=1, . . . ,s. For j=1, . . . ,n, dj is a strict H+-eigenvalue
of Q with an H-eigenvector e(j). Let ν1=ρ(Q). If ν1≡ρ(Q(Gr)) for r=1, . . . ,s, then
ν1 is the unique H++-eigenvalue of Q. Otherwise, Q has no H++-eigenvalue, and for
r=1, . . . ,s, ρ(Q(Gr)) is a strict H+-eigenvalue of Q.

Proof. A real number ν is an H-eigenvalue of Q, with an H-eigenvector x, if and
only if x∈<n, x 6=0, and Qxk−1=νx[k−1], i.e.,

dix
k−1
i +

∑

{

1

(k−1)!
xi2 · · ·xik : (i,i2, . . . ,ik)∈E

}

=νxk−1
i , (3.2)

for i=1, . . . ,n. Then, we may easily verify that for j=1, . . . ,n, dj is an H+-eigenvalue
of Q with an H-eigenvector e(j).

For r=1, . . . ,s, as Gr is connected, Q(Gr) is weakly irreducible by [19]. By
Theorem 2.2, ρ(Q(Gr)) is the unique H++-eigenvalue of Q(Gr), with a positive H-

eigenvector x(r)∈<|Vr|. In (3.2), let ν=ρ(Q(Gr)), xi=x
(r)
i if i∈Vr, and xi=0 if

i 6∈Vr. Then we see that (3.2) is satisfied for i=1, . . . ,n. This shows that for r=1, . . . ,s,
ρ(Q(Gr)) is an H+-eigenvalue of Q.

Assume that ν is an H++-eigenvalue of Q with a positive H-eigenvector x. For r=

1, . . . ,s, define x(r)∈<|Vr| by x
(r)
i =xi for i∈Vr. Then x(r) is a positive H-eigenvector

in <|Vr|. By (3.2), ν is an H++-eigenvalue of Q(Gr). Because Q(Gr) is weakly
irreducible, by Theorem 2.2, ν=ρ(Q(Gr)). Thus, if Q has an H++-eigenvalue, then
it must be ν1=ρ(Q)≡ρ(Q(Gr)) for r=1, . . . ,s. This completes our proof.

Theorem 3.5. (H+-Eigenvalues of A ). Assume that k≥3. Then zero is a strict
H+-eigenvalue of A. Suppose that G has s components Gr=(Vr,Er) for r=1, . . . ,s.
Let λ1=ρ(A). If λ1≡ρ(A(Gr)) for r=1, . . . ,s, then λ1 is the unique H++-eigenvalue
of A. Otherwise, A has no H++-eigenvalue, and for r=1, . . . ,s, ρ(A(Gr)) is a strict
H+-eigenvalue of A.

Proof. Zero is an H-eigenvalue of A, with an H-eigenvector x, if and only if
x∈<n, x 6=0, and Axk−1=0, i.e.,

∑

{

1

(k−1)!
xi2 · · ·xik : (i,i2, . . . ,ik)∈E

}

=0,

for i=1· · · ,n. Let x be a vector in <n
+ with 1≤ supp(x)≤k−2. Then we see that x

is a nonnegative H-eigenvector of A, corresponding to the zero H-eigenvalue. Thus,
zero is an H+-eigenvalue of A. The proof of the remaining conclusions of this theorem
is similar to the last part of the proof of the last theorem, so we omit it.

For some k-graph G, L, Q, and A may have more strict H+-eigenvalues.
For example, let k=3, n=8, m=8, and E={(1,2,3),(1,4,5),(2,4,5),(3,4,5),
(4,5,6), (4,5,7),(4,5,8),(6,7,8)}. Then d1=d2=d3=d6=d7=d8=2 and d4=d5=6
are strict H+-eigenvalues of L and Q, 0 is a strict H+-eigenvalue of A. It is easy to
verify that µ=1, ν=3, and λ=1 are also strict H+-eigenvalues of L, Q, and A, with
an H-eigenvector (1,1,1,0,0,0,0,0).

We will not identify all strict H+-eigenvalues of L, Q, and A, but we will identify
the largest and the smallest H+-eigenvalues of L and Q, and establish their maximum
or minimum properties in the next few sections. They are the most important H+-
eigenvalues of L and Q.
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There are also H-eigenvalues of L and Q which are not H+-eigenvalues. We will
give such an example in sections 5 and 7.

Theorems 3.2, 3.4, and 3.5 say that each of L, Q, and A has at most one H++-
eigenvalue. Actually, a real symmetric matrix has at most one H++-eigenvalue. By
Theorem 2.2, a weakly irreducible nonnegative tensor has at most one H++-eigenvalue.
By extending the proof of Theorem 3.4, probably this is also true for a general nonneg-
ative tensor. We may also show that this is true for a real diagonal tensor. However,
by numerical experiments, we found that this is not true for some real symmetric
tensors. Thus, we ask the following question.

Question 1. Is there a reasonable class of real symmetric tensors, which includes
the above cases, such that any tensor in this class has at most one H++-eigenvalue?

4. The smallest Laplacian H-eigenvalue
The smallest Laplacian H-eigenvalue of G is µ1=0. By Theorem 3.2, 1 is an

H-eigenvector of L, associated with the H++-eigenvalue µ1=0. We say that x∈<n is
a binary vector if xi is either 0 or 1 for i=1, . . . ,n. Thus, 1 is a binary H-eigenvector
of L, associated with the H-eigenvalue µ1=0. We say that a binary H-eigenvector
x of L, associated with an H-eigenvalue µ, is a minimal binary H-eigenvector
of L, associated with µ, if there does not exist another binary H-eigenvector y of L,
associated with µ, such that supp(y) is a proper subset of supp(x).

Let G=(V,E) be a k-graph. For ep=(i1, . . . ,ik)∈E, define a kth order n-
dimensional symmetric tensor L(ep) by

L(ep)x
k=

k
∑

j=1

xk
ij
−kxi1 · · ·xik

for any x∈Cn. Then, for any x∈Cn, we have

Lxk=
∑

ep∈E

L(ep)x
k.

Theorem 4.1. (The Smallest Laplacian H-Eigenvalue). For a k-graph G, we
have the following conclusions.

(a). For any x∈<+, Lxk≥0. We have

0=min{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1}.

(b). A binary vector x∈<n is a minimal binary H-eigenvector of L associated
with the H-eigenvalue µ1=0 if and only if supp(x) is the vertex set of a component
of G.

(c). A vector x∈<n is an H-eigenvector of L associated with the H-eigenvalue
µ1=0 if it is a nonzero linear combination of minimal binary H-eigenvectors of L
associated with the H-eigenvalue µ1=0.

Proof.
(a). For any ep=(i1, . . . ,ik)∈E and x∈<n

+, we know that the arithmetic mean
of xk

i1
, · · · ,xk

ik
is greater than or equal to their geometric mean, i.e.,

1

k

k
∑

j=1

xk
ij
≥xi1 · · ·xik .
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This implies that L(ep)x
k≥0. Thus, Lxk≥0 for any x∈<n

+. As Lyk=0, where

y= l

n
1
k

, we have

0=min{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1}.

(b). A nonzero vector x∈<n is an H-eigenvector of L, associated the the H-
eigenvalue µ1=0, if and only Lxk−1=0, i.e.,

dix
k−1
i =

∑

{

1

(k−1)!
xi2 · · ·xik : (i,i2, . . . ,ik)∈E

}

, (4.1)

for i=1, . . . ,n.
Suppose that x is a binary vector and supp(x) is the vertex set of a component of

G. Then the equation (4.1) reduces to di=di if i∈ supp(x), and 0=0 if i 6∈ supp(x).
Thus, x is a binary H-eigenvector of L associated with H-eigenvalue µ1=0. Suppose
that y is a binary vector and supp(y) is a proper subset of supp(x). Then there are
i∈ supp(y) and an edge (i,i2, . . . ,ik)∈E such that one of the indices {i2, . . . ,ik} is not
in supp(y). Then, for this i, by replacing x by y in (4.1), the left hand side of (4.1)
becomes di, while the right hand side of (4.1) is strictly less than di, i.e., (4.1) does
not hold under this replacement. This shows that y cannot be a binary H-eigenvector
of L associated with H-eigenvalue µ1=0, i.e., x is a minimal binary H-eigenvector of
L associated with the H-eigenvalue µ1=0.

On the other hand, suppose that x is a binary H-eigenvector of L associated with
the H-eigenvalue µ1=0. Let i∈ supp(x). Then, in order that the equation (4.1)
holds for i, for any (i,i2, . . . ,ik)∈E, we must have i2, . . . ,ik ∈ supp(x). This shows
that supp(x) is either the vertex set of a component of G, or the union of the vertex
sets of several components of G. This proves (b).

(c). Let
{

y(1), . . . ,y(s)
}

be the set of binary H-eigenvectors of L associated with
H-eigenvalue µ1=0.

Suppose that x is a nonzero linear combination of y(1), . . . ,y(s), x=
∑s

r=1αry(r),
where αr are real numbers. If i∈ supp(y(r)) for some r, then the equation (4.1) is
αk−1
r di=αk−1

r di. Otherwise, the equation (4.1) is 0=0. Thus, x is an H-eigenvector
of L associated with the H-eigenvalue µ1=0. This proves (c).

Corollary 4.2. The following two statements are equivalent.

(a). The k-graph G is connected.

(b). The vector 1 is the unique minimal binary H-eigenvector of L associated with
the H-eigenvalue µ1=0.

5. The largest Laplacian H+-eigenvalue
In Section 3, we showed that zero is the unique Laplacian H++-eigenvalue of G,

and dj is a strict H+-eigenvalue of G, for j=1, . . . ,n. We now identify the largest
Laplacian H+-eigenvalue of G, and establish a maximum property of this Laplacian
H+-eigenvalue.

Theorem 5.1. (The largest Laplacian H+-eigenvalue). Assume that k≥3. The
largest Laplacian H+-eigenvalue of G is ∆=maxi{di}. We have

∆=max{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1}. (5.1)
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Proof. Suppose that µ is a Laplacian H+-eigenvalue of G associated with
nonnegative H-eigenvector x. Assume that xj >0. By (3.1), we have

µxk−1
j =djx

k−1
j −

∑

{

1

(k−1)!
xi2 · · ·xik : (i,i2, . . . ,ik)∈E

}

≤djx
k−1
j .

This implies that

µ≤dj ≤∆.

By Theorem 3.2, ∆ is an H+-eigenvalue of L. Thus, ∆ is the largest H+-eigenvalue
of L.

Suppose that ∆=dj . Let x=e(j). Then x is a feasible point of the maximization
problem in (5.1). We have

Lxk=
n
∑

i=1

[

dix
k
i −

∑

{

1

(k−1)!
xixi2 · · ·xik : (i,i2, . . . ,ik)∈E

}]

=∆.

This shows that

∆≤max{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1}.

On the other hand, suppose x∗ is a maximizer of the maximization problem in
(5.1). As the feasible set is compact, and the objective function is continuous, such a
maximizer exists. By optimization theory, for i=1, · · · ,n, either x∗

i =0 and

di(x
∗
i )

k−1−
∑

{

1

(k−1)!
x∗
i2
· · ·x∗

ik
: (i,i2, . . . ,ik)∈E

}

≥µ(x∗
i )

k−1, (5.2)

or x∗
i >0 and

di(x
∗
i )

k−1−
∑

{

1

(k−1)!
x∗
i2
· · ·x∗

ik
: (i,i2, . . . ,ik)∈E

}

=µ(x∗
i )

k−1, (5.3)

where µ is a Lagrange multiplier. As x∗ is feasible for the maximization problem,
(5.3) holds for at least one i, say i0. We have

di0(x
∗
i0
)k−1≥µ(x∗

i0
)k−1.

As x∗
i0
>0, we have µ≤di0 ≤∆. Multiplying (5.2) and (5.3) by x∗

i and summing over
i=1, . . . ,n, we have

L(x∗)k=µ

n
∑

i=1

(x∗
i )

k=µ.

Thus,

µ=max{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1}.
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This shows that

∆≥max{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1}.

Hence, (5.1) holds.

In general, ∆ may not be the largest H-eigenvalue of L. For example, let n=k=
6, m=1, and E={(1,2,3,4,5,6)}. Then ∆=1, while µ=2 is an H-eigenvalue of L
with an H-eigenvector (1,1,1,−1,−1,−1).

6. The largest H-eigenvalue and the largest signless Laplacian H-
eigenvalue

The largest H-eigenvalue is λ1=ρ(A). The largest signless Laplacian H-eigenvalue
is ν1=ρ(Q). As both A and Q are nonnegative tensors, their properties are similar.
We thus discuss them together.

When k is even, by [20], we know that

λ1=max{Axk :x∈<n,

n
∑

i=1

xk
i =1},

and

ν1=max{Qxk :x∈<n,

n
∑

i=1

xk
i =1}.

The feasible sets of the above two maximization problems are the same. It is a compact
set when k is even. When k is odd, it is not compact. We intend to establish some
maximum properties of λ1 and ν1, which hold whenever k is even or odd.

Corollary 3.4 of [6] indicates that when G is connected,

λ1=max{Axk :x∈<n
+,

n
∑

i=1

xk
i =1}. (6.1)

Using a similar argument, we may show that when G is connected,

ν1=max{Qxk :x∈<n
+,

n
∑

i=1

xk
i =1}. (6.2)

We wish to show that (6.1) and (6.2) hold even if G is not connected.

Theorem 6.1. (The largest H-eigenvalue and the largest signless Laplacian
H-eigenvalue). Assume that k≥3. Then (6.1) and (6.2) always hold.

Proof. We now prove (6.1). Suppose that G is decomposed to some com-
ponents Gr=(Vr,Er) for r=1, . . . ,s. Then λ1=max{ρ(A(Gr)) : r=1, . . . ,s}, and for
r=1, . . . ,s,

ρ(A(Gr))=max{A(Gr)(x
(r))k :x(r)∈<

|Vr|
+ ,

∑

i∈Vr

(

x
(r)
i

)k

=1}.

Suppose that λ1=ρ(A(Gj)) for some j. Define x∈<n
+ by xi=x

(r)
i if i∈Vr and xi=0

otherwise. Then
∑n

i=1x
k
i =1, and Axk=A(Gj)(x

(j))k. We see that λ1=Axk and x
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is a feasible point of the maximization problem in (6.1). This shows that

λ1≤max{Axk :x∈<n
+,

n
∑

i=1

xk
i =1}.

On the other hand, suppose that x∗ is a maximizer of the maximization problem
in (6.1). Then,

max{Axk :x∈<n
+,

n
∑

i=1

xk
i =1}=Axk

∗ =

s
∑

r=1

A(Gr)(x̄
(r))k,

where x̄(r)∈<
|Vr|
+ and x̄

(r)
i =(x∗)i for i∈Vr, for r=1, . . . ,s. For r=1, . . . ,s, assume

that αr=
∑

i∈Vr
(x∗)

k
i . Then αr≥0 for r=1, . . . ,s, and

∑s

r=1αr=1. If αr>0, then

define x(r)∈<
|Vr|
+ by x(r)= 1

(αr)
1
k

x̄(r). Then
∑

i∈Vr

(

x
(r)
i

)k

=1. We now have

Axk
∗ =

∑

{A(Gr)(x̄
(r))k :αr>0}=

∑

{αrA(Gr)(x
(r))k :αr>0}

≤
∑

{αrρ(A(Gr)) :αr>0}

≤
∑

{αrλ1 :αr>0}=λ1.

Thus, we have

λ1≥max{Axk :x∈<n
+,

n
∑

i=1

xk
i =1}.

Hence, (6.1) holds.
Similarly, we may show that (6.2) holds.

Corollary 6.2. (Bounds for ν1). We always have

max{∆,2d̄}≤ν1≤2∆. (6.3)

Proof. By Theorem 3.1 (d), we have that

0≤ν1≤2∆.

In (6.2), letting x= l

n
1
k

, we see that ν1≥2d̄. Assume that dj =∆. In (6.2), letting

x=e(j), we see that ν1≥∆. Thus, we always have

ν1≥max{∆,2d̄}.

These prove (6.3).

It was established in [6] that d̄≤λ1≤∆.

Question 2. Are there any formulas related to λ1 and ν1?
We may compare ν1, λ1, and ρ(L). We prove a lemma first.

Lemma 6.3. If C is a nonnegative tensor of order k and dimension n, and B is a
tensor of order k and dimension n, satisfying |B|≤C, then ρ(B)≤ρ(C).
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Proof. Let Cε=C+εJ , with ε>0. Then Cε is a positive tensor, thus irreducible,
and |B|≤Cε. By Lemma 3.2 of [27], we have ρ(B)≤ρ(Cε). Let ε→0. As the eigen-
values of a tensor are roots of the characteristic polynomial, whose coefficients are
polynomials in the entries of that tensor [20], the spectral radius of that tensor is
continuous in its entries. Then we have ρ(B)≤ρ(C).

With this lemma, we immediately have the following proposition.

Proposition 6.4. For a k-graph G, we have

ν1=ρ(Q)≥ρ(L), and ν1=ρ(Q)≥λ1=ρ(A).

Note that it is possible that ν1=ρ(Q)=ρ(L). For example, let n=k=6, m=
1 and E={(1,2,3,4,5,6)}. Then G is connected. Thus, A, L, and Q are weakly

irreducible. We have Lx6=
∑6

i=1x
6
i −6x1 · · ·x6 and Qx6=

∑6
i=1x

6
i −6x1 · · ·x6. We

see that ν=2 is an H++ eigenvalue of Q with an H-eigenvector l=(1,1,1,1,1,1). By
Theorem 2.2 (b), we have ρ(Q)=2. On the other hand, we see that µ=2 is an H-
eigenvalue of L with an H-eigenvector l=(1,1,1,−1,−1,−1). By Proposition 6.4, we
have ρ(L)=ρ(Q)=2. Thus, it is a research topic to identify the conditions under
which ρ(L)=ρ(Q).

We now discuss algorithms for computing ν1. As Q is a nonnegative tensor, we
may use algorithms for finding the largest eigenvalue of a nonnegative tensor to com-
pute it. However, the convergence of the NQZ algorithm [18] needs the condition that
Q is primitive [5], and the convergence of the LZI algorithm needs the condition that
Q is irreducible [17]. These conditions are somewhat strong. The linear convergence
of the LZI algorithm needs the condition that Q is weakly positive [28]. A nonnega-
tive tensor T =(ti1···ik) is weakly positive if tij···j >0 for all i 6= j,i,j=1, . . . ,n. We see
that Q cannot be weakly positive. Thus, it may not be a good choice to use these
two algorithms for computing ν1. Instead, one may use the HHQ algorithm proposed
in [9] to compute ν1. The HHQ algorithm is globally R-linearly convergent if Q is
weakly irreducible in the sense of [8]. As discussed above, if G is connected, then Q is
weakly irreducible. Thus, the HHQ algorithm is practical for computing ν1 when G

is connected. If G is not connected, the HHQ algorithm may be used for components
(and then the maximum value chosen), by the observation at the beginning of the
proof of Theorem 11. This argument is also valid for computing λ1.

Thus, we may use the HHQ algorithm to compute λ1 and ν1, and we have global
R-linear convergence.

7. The smallest signless Laplacian H+-eigenvalue
We now identify the smallest signless Laplacian H+-eigenvalue of G, and establish

a minimum property of this signless Laplacian H+-eigenvalue.

Theorem 7.1. (The smallest signless Laplacian H+-eigenvalue). The smallest
signless Laplacian H+-eigenvalue of G is δ. We always have

δ=min{Qxk :x∈<n
+,

n
∑

i=1

xk
i =1}. (7.1)

Proof. Suppose that ν is an H+-eigenvalue of Q, with a nonnegative H-
eigenvector x. Suppose that xj >0. By (3.2), we have

djx
k−1
j +

∑

{

1

(k−1)!
xi2 · · ·xik : (j,i2, . . . ,ik)∈E

}

=νxk−1
j .
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This implies that djx
k−1
j ≤νxk−1

j , i.e., ν≥dj ≥ δ. As δ is an H+-eigenvalue of Q by

Theorem 3.4, this shows that δ is the smallest H+-eigenvalue of Q.
We now prove (7.1). Suppose that dj = δ. Let x=e(j) in (7.1). Then we have

δ≥min{Qxk :x∈<n
+,

n
∑

i=1

xk
i =1}. (7.2)

Suppose that x∗ is an optimal solution of the minimization problem in (7.1). By
the optimization theory, there are Lagrange multipliers u∈<n and ν ∈< such that
for i=1, · · · ,n,

(

Q(x∗)
k−1

)

i
=ν (x∗

i )
k−1

+ui, (7.3)

x∗
i ≥0, ui≥0, x∗

i ui=0,

and

n
∑

i=1

(x∗
i )

k
=1. (7.4)

Let I= supp(x∗). By (7.4), I 6=∅. Then for i∈ I,ui=0 and for i 6∈ I,x∗
i =0. Multiply-

ing (7.3) by x∗
i and summing from i=1 to n, we have

ν=Q(x∗)
k
.

Now assume that x∗
j =max{x∗

i : i∈ I}. Then x∗
j >0 and uj =0. By (7.3), we have

(

Q(x∗)
k−1

)

j
=ν

(

x∗
j

)k−1
,

which implies that

dj
(

x∗
j

)k−1
≤ν

(

x∗
j

)k−1
.

Thus,

ν=Q(x∗)
k≥dj ≥ δ.

Hence,

δ≤min{Qxk :x∈<n
+,

n
∑

i=1

xk
i =1}.

Combining this with (7.2), we have (7.1).

In general, δ may not be the smallest H-eigenvalue of Q. For example, let n=
k=6, m=1, and E={(1,2,3,4,5,6)}. Then δ=1, while ν=0 is an H-eigenvalue of Q
with an H-eigenvector (1,1,1,−1,−1,−1). In general, we may show that Q has a zero
H-eigenvalue if and only if k=4j+2 for some integer j, and there is a vector x∈<k

such that for any edge ep=(i1, . . . ,ik)∈E, half of xi1 , . . . ,xik are j, and the other half
are −1. Hence, if k=4j or if k=4j+2 but such an x does not exist, then Q is positive
definite.
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We now give an application of Theorem 7.1. Suppose that S is a proper nonempty
subset of V . Denote S̄=V \S. Then S̄ is also a proper nonempty subset of V . The
edge set E is now partitioned into three parts E(S),E(S̄) and E(S,S̄). The edge set
E(S) consists of edges whose vertices are all in S. The edge set E(S̄) consists of edges
whose vertices are all in S̄. The edge set E(S,S̄) consists of edges whose vertices are
in both S and S̄. We call E(S,S̄) an edge cut of G. If we delete E(S,S̄) from G,
then G is separated into two k-graphs G[S]= (S,E(S)) and G[S̄]= (S̄,E(S̄)). For a
vertex i∈S, we denote its degree at G[S] by di(S). Similarly, for a vertex i∈ S̄, we
denote its degree at G[S̄] by di(S̄). We denote the maximum degrees, the minimum
degrees, the average degrees of G[S] and G[S̄] by ∆(S), ∆(S̄), δ(S), δ(S̄), d̄(S),
and d̄(S̄) respectively. For an edge ep∈E(S,S̄), t(ep) of its vertices are in S, where
1≤ t(ep)≤k−1. For all edges ep∈E(S,S̄), the average value of such t(ep) is denoted
t(S). Then 1≤ t(S)≤k−1. Similarly, we may define t(S̄). Then t(S)+ t(S̄)=k. We
call the minimum or maximum cardinality of such an edge cut the edge connectivity
or maximum cut of G, and denote it by e(G) or c(G) respectively.

For ep=(i1, . . . ,ik)∈E, define a kth order n-dimensional symmetric tensor Q(ep)
by

Q(ep)x
k=

k
∑

j=1

xk
ij
+kxi1 · · ·xik

for any x∈Cn. Then, for any x∈Cn, we have

Qxk=
∑

ep∈E

Q(ep)x
k.

Proposition 7.2. For a k-graph G, we have the following conclusions.

(a). The edge connectivity satisfies e(G)≤ δ.

(b). We have

c(G)≤
n

k
(2d̄−δ).

(c). If n≤2k−1, then e(G)= δ.

Proof.
(a). Assume that dj = δ. Let S={j}. Then |E(S,S̄)|=dj =dmin. This proves

(a).

(b). Let S be a nonempty proper subset of V . Let x= 1

|S|
1
k

∑

i∈S e
(i). For

ep∈E(S), we have

Q(ep)x
k=

2k

|S|
.

For ep∈E(S̄), we have

Q(ep)x
k=0.

For ep∈E(S,S̄), we have

Q(ep)x
k=

t(ep)

|S|
.
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As

Qxk=





∑

ep∈E(S)

+
∑

ep∈E(S̄)

+
∑

ep∈E(S,S̄)



Q(ep)x
k,

we have

Qxk=
2k

|S|
|E(S)|+

t(S)

|S|
|E(S,S̄)|. (7.5)

Similarly, letting y= 1

|S̄|
1
k

∑

i∈S̄ e
(i), we have

Qyk=
2k

|S̄|
|E(S̄)|+

t(S̄)

|S̄|
|E(S,S̄)|. (7.6)

By (7.1) and (7.5), we have

|S|δ≤2k|E(S)|+ t(S)|E(S,S̄)|. (7.7)

By (7.1) and (7.6), we have

|S̄|δ≤2k|E(S̄)|+ t(S̄)|E(S,S̄)|. (7.8)

Summing (7.7) and (7.8), we have

nδ≤2k
(

|E(S)|+ |E(S̄)|
)

+k|E(S,S̄)|,

i.e.,

nδ≤2k
(

m−|E(S,S̄)|
)

+k|E(S,S̄)|,

which implies that

δ≤
2km

n
−

k

n
|E(S,S̄)|.

Noticing that d̄= km
n
, we have

|E(S,S̄)|≤
n

k
(2d̄−dmin).

This proves (b).

(c). When n≤2k−1, either |S|<k or |S̄|<k. Without loss of generality, assume
that |S|<k. Then E(S)=∅ and |E(S)|=0. From (7.7), we have

|S|δ≤ t(S)|E(S,S̄)|.

We always have t(S)≤|S|. Thus, we have

δ≤|E(S,S̄)|.

Combining this with conclusion (a), we have conclusion (c).
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8. Analytic connectivity
We define the analytic connectivity α(G) of the k-graph G by

α(G)= min
j=1,···,n

min{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1,xj =0}.

By Theorem 4.1, Lxk≥0 for any x∈<n
+. Thus, α(G)≥0. We first prove the

following proposition.

Proposition 8.1. The k-graph G is connected if and only if the analytic connectivity
α(G)>0.

Proof. Suppose that G is not connected. Let G1=(V1,E1) be a component
of G. Then there is a j∈V \V1. Let x= 1

|V1|

∑

i∈V1
e(i). Then x is a feasible point

of min{Lxk :x∈<n
+,

∑n

i=1x
k
i =1,xj =0}, and we see that min{Lxk :x∈<n

+,
∑n

i=1x
k
i =

1,xj =0}=0. This implies that α(G)=0.
Suppose that α(G)=0. There is a j such that min{Lxk :x∈<n

+,
∑n

i=1x
k
i =1,xj =

0}=0. Suppose that x∗ is a minimizer of this minimization problem. Then x∗
j =0,

L(x∗)k=0 and by optimization theory, there is a Lagrange multiplier µ such that for
i=1, . . .n, i 6= j, either x∗

i =0 and

di(x
∗
i )

k−1−
∑

{

1

(k−1)!
x∗
i2
· · ·x∗

ik
: (i,i2, . . . ,ik)∈E

}

≥µ(x∗
i )

k−1, (8.1)

or x∗
i >0 and

di(x
∗
i )

k−1−
∑

{

1

(k−1)!
x∗
i2
· · ·x∗

ik
: (i,i2, . . . ,ik)∈E

}

=µ(x∗
i )

k−1. (8.2)

In (8.1) and (8.2), we always have x∗∈<n
+,

∑n

i=1(x
∗
i )

k=1 and x∗
j =0. Multiplying

(8.1) and (8.2) with x∗
i and summing them together, we have µ

∑n

i=1(x
∗
i )

k=L(x∗)k=
0, i.e., µ=0. Then for i=1, . . .n, i 6= j, either x∗

i =0 or

di(x
∗
i )

k−1−
∑

{

1

(k−1)!
x∗
i2
· · ·x∗

ik
: (i,i2, . . . ,ik)∈E

}

=0. (8.3)

Let x∗
r =max{x∗

i : i=1, . . . ,n}. Then by (8.3), we have

0=dr−
∑

{

1

(k−1)!

x∗
i2

x∗
r

· · ·
x∗
ik

x∗
r

: (r,i2, . . . ,ik)∈E

}

.

Note that

dr=
∑

{

1

(k−1)!
: (r,i2, . . . ,ik)∈E

}

.

Thus, we have xi=xr as long as i and r are in the same edge. From this, we see
that xi=xr as long as i and r are in the same component of G. Because x∗

j =0, we
see that j and r are in the different components of G, i.e., G is not connected. This
proves the proposition.

We now further explore an application of α(G).
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Proposition 8.2. For a k-graph G, we have

e(G)≥
n

k
α(G).

Proof. Let S be a nonempty proper subset of V . Then there is a j 6∈S such that

min{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1,xj =0}≥α(G). (8.4)

Let x= 1

|S|
1
k

∑

i∈S e
(i). Then x is a feasible point of the minimization problem in (8.4).

For ep∈E(S) and ep∈E(S̄), we have

L(ep)x
k=0,

where L(ep) is defined in Section 4. For ep∈E(S,S̄), we have

L(ep)x
k=

t(ep)

|S|
.

As

Lxk=





∑

ep∈E(S)

+
∑

ep∈E(S̄)

+
∑

ep∈E(S,S̄)



L(ep)x
k,

we have

Lxk=
t(S)

|S|
|E(S,S̄)|. (8.5)

Similarly, letting y= 1

|S̄|
1
k

∑

i∈S̄ e
(i), we have

Lyk=
t(S̄)

|S̄|
|E(S,S̄)|. (8.6)

By (8.4) and (8.5), we have

|S|α(G)≤ t(S)|E(S,S̄)|. (8.7)

By (8.4) and (8.6), we have

|S̄|α(G)≤ t(S̄)|E(S,S̄)|. (8.8)

Summing up (8.7) and (8.8), we have

nα(G)≤k|E(S,S̄)|,

i.e.,

n

k
α(G)≤|E(S,S̄)|.
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This implies that

e(G)≥
n

k
α(G).

We now give an upper bound for α(G).

Proposition 8.3. For a k-graph G, we have

0≤α(G)≤ δ.

Proof. We know α(G)≥0. It suffices to prove that α(G)≤ δ. Suppose that
dr= δ and j 6= r. Then l(r) is a feasible point of

min{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1,xj =0},

and L(l(r))k= δ. This implies that

α(G)≤min{Lxk :x∈<n
+,

n
∑

i=1

xk
i =1,xj =0}≤ δ.

By Proposition 8.1, when G is not connected, α(G)=0. Let n=k, m=1, and

E={(1,2, . . . ,k)}. Then Lxk=
∑k

i=1x
k
i −kx1 · · ·xk, and we see that α(G)=1= δ.

Thus, both the lower bound 0 and the upper bound δ in Proposition 8.3 are at-
tainable. However, it is possible that 0<α(G)<δ. Let k=3, n=4, m=2, and
E={(1,2,3),(2,3,4)}. Then G is connected and α(G)>0. We have Lx3=x3

1+2x3
2+

2x3
3+x3

4−3x1x2x3−3x2x3x4. Consider

min{Lx3 :x∈<4
+,

4
∑

i=1

x3
i =1,x4=0}

=min{x3
1+2x3

2+2x3
3−3x1x2x3 :x

3
1+x3

2+x3
3=1,x1,x2,x3≥0}.

Let y=
(

1
3

)
1

3 (1,1,1). Then we see that

α(G)≤min{Lx3 :x∈<4
+,

4
∑

i=1

x3
i =1,x4=0}≤y31+2y32+2y33−3y1y2y3=

2

3
<1= δ.

Actually, the exact value of α(G) for this example is α(G)=1−β2, where β satisfies
β+β3=1 and 0.5<β<1.

Question 3. In general, how can we calculate α(G)?

9. Final remarks
In this paper, we propose a simple and natural definition for the Laplacian and

the signless Laplacian tensors of a uniform hypergraph. We show that they have very
nice spectral properties. This sets the base for further exploring their applications
in spectral hypergraph theory. Several further questions are raised. We expect that
the research on these two Laplacian tensors will also motivate further development
of the spectral theory of tensors. Some very recent papers [11, 12, 13, 14, 22, 23]
demonstrated the impacts on these two aspects.

Acknowledgment. The authors are very grateful to the two referees for their
valuable suggestions and comments, which have considerably improved the presenta-
tion of the paper.
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