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CHAPTER I

EXTERIOR ALGEBRA

1.1. SCOPE OF THE CHAPTER

An operation that helps us to extend in some way the notion of vectori-
al product in the classical vector algebra to vector spaces with dimensions
higher than three is called  and a vector space equippedthe exterior product
with such an operation assigning a new vector to every pair of vectors in the
vector space is called an . This operation was introduced inexterior algebra
1844 by German mathematician Hermann Günter Grassmann (1809-1877).
Thus the exterior algebra is sometimes known as the .Grassmann algebra

We first define in Sec. 1.2 linear vector spaces axiomatically over
which the exterior algebra will be built. Some pertinent attributes of vector
spaces to which we will have recourse frequently are briefly discussed there.
These are concepts of linear independence and basis, linear operators, the
algebraic dual space that is the linear vector space formed by linear func-
tionals over this vector space and some significant properties of dual spaces
of finite-dimensional vector spaces and finally exact sequences. Then, the
multilinear functionals that are mappings from the finite Cartesian product
of vector spaces into the field of scalars that are linear in each of their argu-
ments are considered in Sec. 1.3. It is shown that by properly defining the
operation of tensor product it becomes possible to endow the Cartesian pro-
ducts of vector spaces with a structure of a vector space and it is observed
that multilinear ( -linear) functionals may be expressible in terms of ele-5
ments of that space called tensors (contravariant on the vector spaces, co-
variant on their duals). Afterward we investigate briefly in Sec. 1.4 alternat-
ing -linear functionals that are completely antisymmetric with respect to5
their arguments and the operation of alternation which help produce com-
pletely antisymmetric quantities. The generalised Kronecker deltas and Levi
-Civita symbols that facilitate to a great extent the implementation of this
operation are also discussed in detail. The exterior product of vectors are
then defined by means of the operation of alternation on tensor products. It
is then shown that a completely antisymmetric covariant tensor representing
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2 I  Exterior Algebra

an alternating -linear functional is expressible by using exterior products.5
Such a tensor will be called an . Exterior products of exterior exterior form
forms are defined in such a way that two exterior forms generate another
form of different degree. Thus, this enables us to construct in Sec. 1.5 an
exterior algebra over a vector space. This chapter ends in Sec. 1.6 with the
discussion of the concept of rank of a form that makes it possible sometimes
to reduce an exterior form to a simpler structure.

1.2. LINEAR VECTOR SPACES

In order to define a linear vector space abstractly we consider an Abelian
(c ) ommutative group #  [after Norwegian mathematician Niels HenrikÖKß ×
Abel (1802-1829)] and a  .  is the identity element of thefield Ö ß  ß ‚ × "…
field with respect to multiplication. A binary operation  is de-… ‚ K Ä K
noted by . Hence, this binary operation assigns a member  of the‡ ‡B − K!
group to an arbitrary scalar  and an arbitrary member  of the! …− B − K
group. Furthermore, we shall assume that this binary operation  will obey‡
the following rules for all  and :! " …ß − Bß C − K

Ð3ÑÞ Ð ‚ Ñ‡B œ ‡Ð ‡BÑ

Ð33ÑÞ Ð  Ñ‡B œ Ð ‡BÑ Ð ‡BÑß ‡ÐB CÑ œ Ð ‡BÑ Ð ‡CÑ

Ð333ÑÞ "‡B œ B

! " ! "

! " ! " ! ! !

.
#   # # .

.

The algebraic system  #  satisfying these con-i …œ ÖKß ß ß  ß ‚ ß ‡×
ditions is called a  over the field . Members of thelinear vector space …
group are named as whereas members of the field as . Thevectors scalars
operation # is known as and the operation  as vector addition scalar‡
multiplication.

Sometimes it becomes advantageous to replace the field of scalars by a
ring with identity in the system described above. Such an algebraic system
is then called a . We will have opportunities to deal with modules inmodule
later parts of this work.

As far as we are concerned, the field of scalars will either be the real…
numbers  or complex numbers . Accordingly, we shall consider either‘ ‚
real  complex vector spaces or . However, in this work, we shall be mostly
interested in real spaces. Moreover, in order to simplify the notation we
prefer to use the same symbol  to designate addition operations both in
the group and in the field while identity elements with respect to these ope-
rations will be represented, respectively, by the symbols  and . Usually,! !
we shall not use any symbol for scalar multiplication as well as for the pro-
duct of two scalars of the field by adopting the familiar convention employ-
ed in the multiplication of real or complex numbers. Although one might
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think that representation of different operations by the same symbol would
cause some complications, we should observe that the real nature of these
symbols are unambiguously revealed within the context of expressions in
which they are involved. Thus it is unlikely that misinterpretations may ever
arise concerning these operations. Nevertheless, a much more detailed
definition of a linear vector space can also be given as follows.

I.  Z is a binary operation on a set , whose members are called
vectors, having the following properties:

      ( ).
    ( ).

  

Ð3ÑÞ ?  @ − Z ?ß @ Z−

Ð33ÑÞ ?  @ œ @  ? ?ß @ Z−

Ð333ÑÞ Ð?  @Ñ  A œ ?  Ð@  AÑ

for all closed operation
for all commutative operation

for all ?ß @ß A Z−

Ð3@ÑÞ ?  œ ?− Z

Ð@ÑÞ

 ( ).
  .
 

associative operation
There exists an  such that 
There exists an  

identity element
inverse element

! !

 ? Z ? Z− −

?  Ð  ?Ñ œ

   
   .

for each
such that !

These properties are tantamount to say that the set  is an Abelian groupZ
with respect to the operation . The element  is called the  ! zero vector
and  is called the  of vectors  and . We usually employ?  @ ? @vector sum
the abbreviated notation  to denote .?  @ ?  Ð@Ñ

II. Let  be a field of scalars. Scalar multiplication over the Abelian…
group  is so defined that it satisfies the following relationsZ :

For all and  we have  ! " …ß − ?ß @ Z−

Ð3ÑÞ ? Z−

Ð33ÑÞ Ð Ñ? œ Ð ?Ñ

Ð333ÑÞ Ð  Ñ? œ ?  ?ß Ð?  @Ñ œ ?  @

  ( ).
  ( ).
  ( )

!

!" ! "

! " ! " ! ! !

closed operation
associative operation

distributive operation .
 .Ð3@ÑÞ " † ? œ ?

 

Here  is the identity element of the field of scalars with respect to the"
multiplication. We call the set  satisfying all axioms in  and a Z I II linear
vector space over the field The scalar multiplication is represented by….
the symbol  although we would often prefer to omit it.†

We can deduce some fundamental properties of linear vector spaces
from the foregoing axioms:

Ð+ÑÞ ? œ " † ? œ Ð"  !Ñ † ? œ " † ?  ! † ? œ ?  ! † ?  If we write , we
immediately obtain

! † ? œ !

for all .? Z−
Ð,ÑÞ œ ! † ? œ Ð"  "Ñ † ? œ " † ?  Ð"Ñ † ? œ ?  Ð"Ñ † ? From , !

it follows that
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Ð"Ñ † ? œ  ?

for all .? Z−
Ð-ÑÞ ? œ Ð?  Ñ œ ?  † Since , we find that ! ! ! !! !

! † œ! !

for all .! …−
Example 1.2.1. Let us consider the set  where  is a positive inte-…8 8

ger.  is the Cartesian product  . An element  is an… … … … …8 8

8

ðóóóóóñóóóóóò‚ ‚ â ‚ ? −

ordered -tuple  where . For ele-8 ? œ Ð ß ß á ß Ñ ß ß á ß −! ! ! ! ! ! …" # 8 " # 8

ments  and  let us define the vector addition@ œ Ð ß ß á ß Ñ − −" " " … ! …" # 8
8

and scalar multiplication by making use of the operations in the field  as…
follows

?  @ œ Ð  ß  ß á ß  Ñß ? œ Ð ß ß á ß Ñ! " ! " ! " ! !! !! !!" " # # 8 8 " # 8 .

It is then straightforward to see that the set  so equipped is a linear vector…8

space. The zero vector  is the -tuple  and the inverse of! − 8 Ð!ß !ß á ß !Ñ…8

the vector  is . With the same rules becomes?  ? œ Ð  ß á ß  Ñ! ! ‘" 8
8

a real vector space while is a complex vector space.‚8

If we increase  indefinitely, the elements of the set  are 8 …_ sequences
of scalars given by

? œ Ð ß ß á ß ß á Ñ! ! !" # 8 .

With the same rules  becomes also a linear vector space.  …_ è
Example 1.2.2. Let us consider the set  of all scalar-valuedY …Ð\ß Ñ

functions  on an abstract set . We define the sum of two func-0 À \ Ä \…
tions in that set and the multiplication of a function with a scalar by the fol-
lowing rules

Ð0  0 ÑÐBÑ œ 0 ÐBÑ  0 ÐBÑß Ð 0ÑÐBÑ œ 0ÐBÑ" # " # ! ! .

We then see at once that this set acquires the structure of a vector space over
the field . The zero vector  of this space corresponds naturally to zero… !
function mapping all members of  to .  \ ! è

Let  be a vector space and  be a subset. If the subset  is aZ Y © Z Y
linear vector space relative to operations in , then the subset  is said toZ Y
be a  of  Subspaces are sometimes called . Itsubspace Z Þ linear manifolds
may easily be verified that the necessary and sufficient conditions for a sub-
set  to be a subspace are   for all  and Y © Z Ð3Ñ ?  ? Y ? ß ? Y Ð33Ñ− −" # " #

! ! …? − Y − ? − Y − Y for all  and . It is clear that we must have .!
Every linear vector space has obviously two trivial subspaces: zero
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subspace } and the space itself.Ö!
As is well known, an   on an arbitrary set  is aequivalence relation V \

subset  of the Cartesian product  which is V © \ \ œ \ ‚ \# # reflexive
( ),   andB − \ Ê ÐBß BÑ − V ÐB ß B Ñ − V Ê ÐB ß B Ñ − Vsymmetric ˆ ‰" # # "

transitive , . The set of all ele-ˆ ‰ÐB ß B Ñ − V ÐB ß B Ñ − V Ê ÐB ß B Ñ − V" # # $ " $

ments of  that are related to an element  by the equivalence relation\ B − \
is called an  . It is readily seen that  andequivalence class ÒBÓ  ÒBÓ œ \

B−\

equivalence classes are all disjoint sets . Therefore, equivalence classes con-
stitute a  on the set . The set  is called thepartition \ \ÎV œ ÖÒBÓ À B − \×
quotient set with respect to the equivalence relation .V

Let  be a subspace of the vector space . We define a relation  onY Z µ
Z ? µ @ ?  @ − Y ?ß @ − Z ?  ? œ − Y such that  implies  for . Since !
we have , i.e., the relation is reflexive. If , namely if ? µ ? ? µ @ ?  @ − Y
we obtain  and we see that , i.e., the relation@  ? œ  Ð?  @Ñ − Y @ µ ?
is symmetric. On the other hand, if , , namely, both ? µ @ @ µ A ?  @ − Y
and , we then get . Hence we find@  A − Y ?  A œ ?  @  @  A − Y
that , i.e., the relation is transitive. We then conclude that the relation? µ A
so defined is an equivalence relation. Thus, this relation decomposes the
vector space  into disjoint equivalence classes. Therefore an equivalenceZ
class, or a , associated with a vector  is defined as the setcoset @ − Z

Ò@Ó œ Ö@  ? À a? − Y ×. (1.2.1)

Sometimes the notation  is also used. We know that the set ofÒ@Ó œ @  Y
all equivalence classes  is the quotient set. If we canZ ÎY œ ÖÒ@Ó À @ − Z ×
devise appropriate rules for the addition of element of this set and for the
scalar multiplication we are then able to endow the quotient set  with aZ ÎY
vector space structure. To this end, we define vector addition and scalar
multiplication on  by the following rulesZ ÎY

Ò@ Ó  Ò@ Ó œ Ò@  @ Óß Ò@Ó œ Ò @Ó" # " # ! ! (1.2.2)

where the scalar  is an element of the field over which the vector space ! Z
is defined. The validity of this definition becomes evident if we note that

Ð@  ? Ñ  Ð@  ? Ñ œ Ð@  @ Ñ  ?  ? − Ò@  @ Ó

Ð@  ?Ñ œ @  ? − Ò @Ó
" " # # " # " # " #

! ! ! !

for all  and . The set  equipped with such a@ ß @ − Z ?ß ? ß ? − Y Z ÎY" # " #

structure is called the , or more accurately, the quotient space quotient space
of   modulo Z Y . The zero element of this vector space is the coset Y œ Ò Ó!
and the inverse of an element  is the coset . Since an equivalenceÒ@Ó Ò@Ó
class  is assigned to each vector , we can say that thereÒ@Ó − Z ÎY @ − Z
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exists a surjective mapping .  is often called the 9 9À Z Ä Z ÎY canonical
mapping   of  onto and we can write . Due to definitionsZ Z ÎY Ò@Ó œ Ð@Ñ9
(1.2.2) we immediately deduce that the mapping  must satisfy the relations9
9 9 9 9 ! !9Ð@  @ Ñ œ Ð@ Ñ  Ð@ Ñ Ð @Ñ œ Ð@Ñ" # " #  and . Thus the canonical map-
ping is linear see [   9]. Obviously,  is not injective in general.:Þ 9

Let  and  be two subspaces of the vector space . We define theY Y Z" #

set  byY  Y" #

Y  Y œ Ö? œ ?  ? À a? − Y ß a? − Y × © Z" # " # " " # # .

It is straightforward to see that this set is a  of  that is called thesubspace Z
sum of subspaces  and . One must note that the sum of two subspacesY Y" #

is completely different from their   as sets. It is easy to see thatunion Y  Y" #

Y  Y Y" # " is not in general a subspace. The  of two subspaces intersection
and  is the set of all vectors belonging to both subspaces. It is then prop-Y#

erly denoted by . In contrast to the union, one easily observes thatY  Y" #

the intersection of two subspaces, in fact, the intersection of a family of sub-
spaces, is again a subspace. The intersection of subspaces cannot be empty
since all subspaces must contain the zero vector. We say that two subspaces
Y Y Z Y  Y œ Ö ×" # " # and  of  are  if .disjunct !

Let  and  be two subspaces of the vector space  and let the sub-Y Y Z" #

space  be the sum of these subspaces. If there corre-Y œ Y  Y © Z" #

sponds to each vector  a  pair of vectors ? − Y ? − Yuniquely determined " "

and  such that , we then say that the subspace  is the? − Y ? œ ?  ? Y# # " #

direct sum of subspaces  and  and we write . It is quiteY Y Y œ Y Š Y" # " #

easy to see that the sum  of two subspaces  and  is a direct sum ofY Y Y" #

these subspaces if and only if  and  are disjunct, that is, if and only ifY Y" #

Y  Y œ Ö ×" # ! .
Let  be a linear vector space and let  be a subspace of . If we canZ Z Z"

find another subspace  of  such thatZ Z#

Z œ Z Š Z" #

any such subspace  is said to be to  in  It can beZ Z Z Þ# "complementary  
shown by employing the celebrated  [German-American math-Zorn lemma
ematician Max August Zorn (1906-1993)] that there exists at least one sub-
space which is complementary to a given subspace of a linear vector space.
However, a complementary subspace is generally not uniquely determined.
It is rather straightforward to observe that the restriction  of thek9 Z#

canonical mapping  is injective, consequently, the function9 À Z Ä Z ÎZ"k k9 9Z Z# "# #
À Z Ä Z ÎZ  is bijective. Therefore,  is an isomorphism between

the spaces  and . We thus conclude that Z Z ÎZ# " any subspace of  which isZ
complementary to a subspace  is isomorphic to the quotient space Z Z ÎZ" ".
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This result reflects the fact that all complementary subspaces of  in  areZ Z"

isomorphic see . to one another [   10 for the definition of isomorphism]:Þ
Let  be a non-empty set of a  , say ,W œ Ö@ ß @ ß á ß @ × 8  !8 " # 8 finite

number of elements of a vector space . The vector  formed by the sumZ 6

6 œ @  @  â  @ − Z! ! !" " # # 8 8

where  are arbitrary scalars is called a ! ! ! …" # 8ß ß á ß − linear combina-
tion linearly independent  of the vectors in . We call the set  as  if andW W8 8

only if the relation

! ! !" " # # 8 8@  @  â  @ œ Þ Þ! (1 2 3)

is satisfied when all scalar coefficients vanish, namely, when  for all!3 œ !
" Ÿ 3 Ÿ 8. On the other hand, if the expression (1.2.3) is satisfied with
scalar coefficients not all of which are zero, the set  is called as W8 linearly
dependent. If  of a possibly infinite set all non-empty finite subsets T © Z
are linearly independent, we say that the set  is . InT linearly independent
such a set  no element of  can be expressed as a finite linear combina-T T
tion of some other elements of . T It is quite clear that a linearly independ-
ent set cannot be empty and cannot contain the zero vector. Let us denote
the  which is the collection of all finite linear combinations ofsubspace
vectors in  by . This subspace is called the of the set .T T TÒ Ó linear hull 

Theorem 1.2.1. A subset  of a vector space  is linearly independ-T Z
ent if and only if each vector in the subspace can be uniquelyÒ ÓT  
represented as a finite linear combination of vectors in the set.

Let the set  be linearly independent and let us assume that a vectorT
@ − Ò ÓT  is expressible as two different finite linear combinations of vectors
in . But we can of course naturally combine vectors appearing in the firstT
and the second representations into a single finite set such as  .@ ß @ ß á ß @" # 5

We can then write

@ œ @ œ @" "
3œ" 3œ"

5 5

3 3 3 3! "

where some of scalar coefficients  and  may of course be zero. ItÖ × Ö ×! "3 3

then follows from the above expression that

"
3œ"

5

3 3 3Ð  Ñ@ œ! " !

which yields  for all  since all of the vectors involved are! "3 3œ " Ÿ 3 Ÿ 5
linearly independent. Hence the vector  has a unique representation. Con-@
versely, let us assume that every vector in the subspace has a Ò ÓT  unique
representation in the form of finite linear combination of vectors in . SinceE
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the set  is also contained in  this uniqueness should also be valid for allE Ò ÓT
vectors in . This simply means that any element of  cannot be express-T T
ible as a linear combination of other vectors in . Hence  is a linearlyT T
independent set. 

If the linear hull of a linearly independent subset  of a vector space U Z
is the entire space , that is, if , then the set  is called a  forZ œ ZÒ ÓU U basis
the vector space . In this case, every vector  in the vector space is ex-Z @
pressible  as a  of some vectorsin exactly one way finite linear combinations
in . Therefore, each vector  can be represented by the sumF @ − Z

@ œ Ð@Ñ/"
/ −- U

- -! (1.2.4)

where scalar coefficients  that are determined uniquely for any! …-Ð@Ñ −
given vector    and@ / −do not vanish only for a finite number vectors - U
they are called  of the vector  with respect to the basis . Thecomponents @ U
basis  might be an infinite, even uncountably infinite, set but the expres-U
sion (1.2.4) must involve only a sum of finite number of vectors that may of
course be different for each vector . Such a basis, if it exists, is called@ − Z
an  or  because it was first introduced, albeit in aalgebraic basis Hamel basis
limited framework, by German mathematician Georg Karl Wilhelm Hamel
(1877-1954). We can also readily show that a linearly independent set  ofU
Z  is a basis   it is  with respect to linear independency.if and only if maximal
Here the term maximal is used to indicate that every subset of  containingZ
the set  is . One can prove by resorting to the ZornU linearly dependent
lemma that every vector space has an algebraic basis. However,non-zero 
like almost every proposition based on Zorn lemma, we have no algorithm
at hand to determine such a basis although we definitely know that it exists.
Furthermore, we cannot say that there exists a unique basis.

It is now quite clear that a non-zero vector space  might possess sev-Z
eral, possibly infinitely many, bases. But it can be shown that all Hamel ba-
ses have the same cardinality. This cardinal number is called the dimension
of the vector space  and is denoted by dim . If  we adopt theZ ÐZ Ñ Z œ Ö ×!
convention that its dimension is . If the dimension of a vector space is a fi-!
nite integer, then this space is , otherwise it is finite-dimensional infinite-
dimensional. In this work, we shall mostly be dealing with finite-dimen-
sional vector spaces. When we would like to underline this fact we shall
usually write, say, .Z Ð8Ñ

In a vector space , the  joining two vectors  and  isZ ? @line segment
defined as the subset . A non-emptyÖ ?  Ð"  Ñ@ À ! Ÿ Ÿ "× Z§! ! !
subset  of a vector space  is called a  subset if it contains everyE Z convex
line segments joining any pair of vectors . In other words, a set?ß @ − E
E © Z Ö ?  Ð"  Ñ@ À ! Ÿ Ÿ "× E§ is a convex set if  for all! ! !
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?ß @ − E. If  is a subspace of , it is clear that it becomes automatically aE Z
convex set.

Example 1.2.3. Let us consider the vector space  introduced in…8

Example 1.2.1 and define the vectors  as/ ß / ß á ß / −" # 8
8…

/ œ Ð"ß !ß á ß !Ñß / œ Ð!ß "ß á ß !Ñß á ß / œ Ð!ß !ß á ß "Ñ" # 8 .

It is obvious that an arbitrary vector  can now be? œ Ð ß ß á ß Ñ −! ! ! …" # 8
8

expressed by the following linear combination

? œ /  /  â  /! ! !" " # # 8 8.

From the definitions of vectors  we see at once that the relation/ ß / ß á ß /" # 8

! ! ! ! ! !" " # # 8 " # 88/  /  â  / œ Ð ß ß á ß Ñ œ !

is satisfied if and only if . Hence the set ! ! ! U" # 8œ œ â œ œ ! œ
Ö/ ß / ß á ß / × §" # 8

8…  is linearly independent and all linear combinations of
vectors in  generate the vector space . Hence  is an algebraic basis forU … U8

… U8. Since the cardinal number of the set  is , the dimension of the vector8
space  is .…8 8

On the other hand, if we consider the vector space  we can easily…_

verify that the countably infinite set  whereÖ/ ß / ß á ß / ß á × §" # 8
_…

/ œ Ð"ß !ß á ß !ß á Ñß á ß / œ Ð!ß !ß á ß !ß "ß !ß á Ñß á" 8

are linearly independent and any vector  is unique-? œ Ð ß ß á ß ß á Ñ! ! !" # 8

ly represented by

? œ /"
8œ"

_

8 8! .

However, it is quite evident that each vector  cannot be expressed as? − …_

a  linear combinations of vectors  . Therefore, thefinite / ß / ß á ß / ß á" # 8

countably infinite subset  cannot be a Hamel basisÖ/ ß / ß á ß / ß á × §" # 8
_…

for the vector space .  …_ è
If a function  between vector spaces  and  defined onE À Y Ä Z Y Z

the same scalar field  possesses the properties…

EÐ?  ? Ñ œ EÐ? Ñ  EÐ? Ñ − Z ß EÐ ?Ñ œ EÐ?Ñ − Z" # " # ! !

for all  and , then it is called a  or a?ß ? ß ? − Y −" # ! … linear operator
homomorphism since it preserves algebraic operations. It is evident that all
linear operators of this kind constitute also a vector space . If the_ÐY ß Z Ñ
inverse linear operator  exists, then  is a E À Z Ä Y E" regular linear
operator null space. The  of a linear operator  is the subspaceE ÐEÑ œ a
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Ö? − Y À E? œ × © Y ÐEÑ œ Ö@ − Z À!  and its is the subspace range e
E? œ @ß a? − Y × © Z ÐEÑ ÐEÑ. Sometimes  is denoted by Ker ,  ofa kernel
E ÐEÑ ÐEÑ Y E ÐEÑ œ Ö ×, and  by Im ,  of   under .  We see that  ife image a !
E ÐEÑ œ Z is  and  if it is surjective. The necessary and sufficientinjective  e
condition for a linear operator to be regular is that it has to be bijective, i.e.,
a ÐEÑ œ Ö × ÐEÑ œ Z!  and . A bijective linear mapping between two vec-e
tor spaces preserving operations is called  and such spaces areisomorphism
said to be . It is straightforward to see that isomorphic compositions of
isomorphisms is also an isomorphism. It is a simple exercise to show that if
E À Y Ä Z © Y is an isomorphism and the set  is an algebraic basis forU
Y EÐ Ñ Z, then the set  is an algebraic basis for U .

The   of a linear operator  is the dimension of itsrank <ÐEÑ E À Y Ä Z
range and its   is the dimension of its null space. Let  be a nullity 8ÐEÑ RE

complementary subspace of the null space  in  so that one writes a ÐEÑ Y Y
œ ÐEÑ Š R E œ Ea E R

. We consider the restriction  of the linear trans-† ¸
E

formation  to the subspace . Each vector  is now expressed as aE R ? − YE

unique sum  where  and . We immediately? œ ?  ? ? − ÐEÑ ? − R" # " # Ea
notice that . Next, let us assume that We thuse eÐE Ñ œ ÐEÑ E ? œ† †

# !. 
have . In consequence, we see thatE? œ E?  E? œ E? œ E ? œ" # # #

† !  
? − ÐEÑ ÐEÑ  R œ Ö × ? œ# #Ea a. But, , therefore, it follows that ! !
which means that the restriction of a linear transformation to the comple-
mentary subspace of its null space is injective  hence it is an isomorphism of,
R RE E" onto Consequently, if the set  is a basis for , then  ise U UÐEÑ E Ð Ñ. †

"

a basis for eÐEÑ Y 8. We thus conclude that if  is an -dimensional vector
space, then  has to be finite-dimensional so that one gets the simple,eÐEÑ
but rather useful, relation

dim ÐY Ñ œ 8 œ 8ÐEÑ  <ÐEÑÞ

If linearly independent vectors  are chosen as a basis/ ß á ß / − Y" 8
Ð8Ñ

for a finite-dimensional vector space, then each vector  is @ − Y Ð8Ñ uniquely
expressible as

? œ /  /  â  / ß − ß " Ÿ 3 Ÿ 8! ! ! ! …" " # # 8 8 3 .

Let us denote . We then see that there exists a+ œ Ð ß ß á ß Ñ −! ! ! …" # 8
8

mapping  determined by the relation . We deduceJ À Y Ä J Ð?Ñ œ +Ð8Ñ 8…
immediately from definition that  is a bijective linear operator. We thusJ
conclude that the spaces  and  are Y Ð8Ñ 8… isomorphic.

Let  be a vector space defined over a field of scalars . A linearY …
operator  that assigns a scalar number  to each vector  in 0 À Y Ä 0Ð?Ñ ? Y…
is known as a . The term functional was coined by Frenchlinear functional
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mathematician Jacques Salomon Hadamard (1865-1963) in 1903. The linear
vector space  formed by linear functionals is called the ,Y œ ÐY ß Ñ‡ _ … dual
or more appropriately the , of the vector space .algebraic dual Y

Consider vector spaces  and  with bases  and  res-Y Z Ö/ × Ö0 ×Ð7Ñ Ð8Ñ
3 3

pectively. Let  be a linear operator. We can then writeE À Y Ä Z

@ œ E? œ E ? / œ ? E/ œ ? + 0 œ @ 0Š ‹" " "" "
3œ" 3œ" 4œ" 4œ"

7 7 7 8 8
3 3 3 4

3 3 4 4

3œ"

3
4

from which it follows that . This relation is@ œ + ? ß 4 œ "ß á ß 84 3

3œ"

7

3
4!

expressible in the matrix form  where  is the  matrix  andv Au Aœ 7 ‚ 8 Ò+ Ó3
4

u v Aß Ò? Óß Ò@ Ó are column matrices . The matrix  is a representation of the3 4

linear operator  with respect to some chosen bases in  and E Y Z Þ
 Let us now consider a finite-dimensional vector space . If a basisY Ð8Ñ

of this space is , then every vector  is written as Ö/ ß / ß á ß / × ? − Y ? œ" # 8!
3œ"

8
3 3 ‡

3? / ? − 0 − Y ? where . The value of a linear functional  on a vector …

can now be evaluated as follows:

0Ð?Ñ œ 0Ð? / Ñ œ ? 0Ð/ Ñ œ ? −" " "
3œ" 3œ" 3œ"

8 8 8
3 3 3

3 3 3! … (1.2.5)

where the scalar numbers  are prescribed by!3

! …3 3œ 0Ð/ Ñ − ß 3 œ "ß á ß 8   . (1.2.6)

This means that the action of any linear functional on a vector  is com-?
pletely determined by an ordered -tuple . Thus,8 + œ Ð ß ß á ß Ñ −! ! ! …" # 8

8

there is a mapping  such that . If  X À Y Ä X Ð0Ñ œ + X Ð0 Ñ œ + ß X Ð0 Ñ‡ 8
" " #…

œ + X Ð0  0 Ñ œ +  + ß X Ð 0Ñ œ# " # " #, we then deduce from (1.2.5) that  !
!+ X 8. Hence,  turns out to be a linear operator. Each ordered -tuple of
scalars  determines a linear functional . Therefore  isÐ ß ß á ß Ñ 0 X! ! !" # 8

surjective. On other hand if  we find X Ð0 Ñ œ X Ð0 Ñ œ + X Ð0  0 Ñ œ œ" # " # !
Ð!ß !ß á ß !Ñ Ð0  0 ÑÐ?Ñ œ ! and (1.2.5) leads to the conclusion that   for" #

all . This simply implies that  or . Thus  is? − Y 0  0 œ ! 0 œ 0 XÐ8Ñ
" # " #

injective. Consequently, the linear operator  is bijective. This indicatesX
that the vector space  is  to  just like the space SinceY Y‡ 8 Ð8Ñisomorphic . …
isomorphic spaces must have the same dimension, the dimension of the
space  is also . Furthermore,  and  must be isomorphic to oneY 8 Y Y‡ ‡ Ð8Ñ

another because they are isomorphic to the same space . Let us now…8
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consider  linearly independent vectors  in the8 Ð!ß á ß "ß á ß !Ñß 3 œ "ß á ß 8
3

vector space  such that in the th vector only its th entry is  and all the…8 3 3 "
others are zero. We can then obtain  linear functionals 8 0 − Y ß 3 œ3 ‡

"ß á ß 8 corresponding to those vectors in  through the isomorphism…8

X À Ä Y" 8 ‡… .
The definition (1.2.6) leads now to relations

0 Ð/ Ñ œ ß 3ß 4 œ "ß #ß á ß 83 3
4 4$ (1.2.7)

where  denotes the  [it is so named because it was first$3
4 Kronecker delta

introduced by German mathematician Leopold Kronecker (1823-1891)]. It
is equal to  if  and to  if . Hence, it essentially represents the" 3 œ 4 ! 3 Á 4
8 ‚ 8 Ö0 × unit matrix. The set of linear functionals  so obtained is linearly3

independent. To see this, we consider the zero functional given by

- 0  - 0  â  - 0  â  - 0 œ !" # 3 8
" # 3 8

where . Because the value of this functional on the basis- ß - ß á ß - −" # 8 …
vectors   of the vector space  must be zero, we obtain/ ß 4 œ "ß á ß 8 Y4

" "
3œ" 3œ"

8 8

3 4 3 4
3 3

4- 0 Ð/ Ñ œ - œ - œ !ß 4 œ "ß #ß á ß 8$ .

This means that all linear functionals  are linearly independent0 ß 0 ß á ß 0" # 8

and constitute a basis for the dual space  since its dimension is . Hence,Y 8‡

an arbitrary linear functional  can now be uniquely represented in0 − Y ‡

the following form:

0 œ 0 ß − ß 3 œ "ß á ß 8"
3œ"

8

3 3
3! ! … .

Let  be the basis in  which we have employed to generate theÖ/ ß á ß / × Y" 8

basis . Then the value of a functional  on a vector Ö0 × Y 0 Y ? − Y§ §3 ‡ ‡

can be calculated as follows

0Ð?Ñ œ ? 0 Ð/ Ñ œ ? œ ?"" "" "
3œ" 4œ" 3œ" 4œ" 3œ"

8 8 8 8 8

3 4 3 3
4 3 4 3 3

4! ! $ !

which is the same as (1.2.5). We easily observe that the relations

0 Ð?Ñ œ ? ß 0Ð/ Ñ œ3 3
3 3! (1.2.8)

are satisfied.



1.2  Linear Vector Spaces 13

The two foregoing ordered sets of basis vectors  of Ö0 ß 0 ß á ß 0 × Y" # 8 ‡

and  of  are called (or ) bases. In view ofÖ/ ß / ß á ß / × Y" # 8 dual reciprocal
the relations (1.2.7), we may also say that they form a set of biorthogonal
bases.

Sometimes it proves to be more convenient to use the notation   ¡0ß ?

instead of . This symbolism is known as the and it is0Ð?Ñ duality pairing 
clear that it describes a mapping which may be call-  ¡† ß † À Y ‚ Y Ä‡ … 
ed a  or a  due to the obvious reason thatbilinear functional bilinear form
this functional has the following properties:

  ¡   ¡   ¡  ¡   ¡   ¡  ¡   ¡   ¡
0  0 ß ? œ 0 ß ?  0 ß ? ß

0 ß ?  ? œ 0ß ?  0ß ? ß

0 ß ? œ 0ß ? œ 0ß ? Þ

" # " #

" # " #

  (1.2.9)

  

! ! !

With this notation (1.2.7) can be rewritten as

  ¡0 ß / œ Þ3 3
4 4$ (1.2.10)

Since one can write , it is obvious that if  for0Ð?Ñ œ ? 0Ð?Ñ œ !!
3œ"

8

3
3!

all , we then get  , namely, ; conversely, if? − Y œ â œ œ ! 0 œ !Ð8Ñ
" 8! !

0Ð?Ñ œ ! 0 Y ? œ â œ ? œ !− for all , we then have to write   so‡Ð8Ñ " 8

that ? œ !.
We shall now discuss the change of basis in finite-dimensional vector

spaces. We choose first a basis  in a vector space  and consider anoth-Ö/ × Y3

er basis . Since both basis are to be linearly independent sets, this ope-Ö/ ×w
3

ration is obviously carried out by use of a   regular matrix such thatA œ Ò+ Ó3
4

det A Á ! as follows

/ œ + / œ + / ß4
3 w 3 w
4 3 4 3

3œ"

8" (1.2.11)

where we have employed the celebrated proposed bysummation convention 
the great German physicist Albert Einstein (1879-1955). Repeated indices
( ), usually superscripts and subscripts that are sometimes called dummy
indices because we can freely rename them without actually affecting the
meaning of an expression, will imply a summation over the range of these
indices When we would like to suspend this rule we will underline the. 
relevant indices. Henceforth, we shall always resort to the Einstein summa-
tion convention to simplify the appearance of rather complicated expres-
sions, at least notationally, by dispensing with the symbol . It follows!
from the relations
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? œ ? / œ ? + / œ ? /4 4 3 w w3 w
4 4 3 3

that the components of a vector  with respect to the new basis in terms of?
old components are given by

? œ + ?w3 3 4
4 . (1.2.12)

Let the reciprocal basis in the dual space  to the basis  be .Y Ö/ × Ö0 ×‡ w w3
3

Hence the value of  on every vector  is found as0 − Y ? − Y‡

0Ð?Ñ œ ? œ ? + œ ?w3 w 4 3 w 4
3 4 3 4! ! !

from which it follows that

! !w "
3 3 3

4 4
4œ , ß Ö, × œ œ    . (1.2.13)B A

On the other hand, when we consider the relations

0 Ð?Ñ œ ? œ + ? œ + 0 Ð?Ñw3 w3 3 4 3 4
4 4

that must be satisfied for all vectors  we are led to the following trans-? − Y
formation rules

0 œ + 0 ß 0 œ , 0w3 3 4 3 3 w4
4 4 . (1.2.14)

Let us now consider a sequence of linear vector spaces  and aÖZ ×8

sequence of linear operators , that is, homomorphisms, rep-E À Z Ä Z8 8 8"

resented diagrammatically as

â Z Z Z âÄ Ä Ä Ä8" 8 8"

E E8" 8

. (1.2.15)

The sequence  is called an  if Z œ ÖZ ß E × ÐE Ñ œñ
8 8 8"exact sequence e

a ÐE Ñ Z 8 E ‰ E œ !§8 8 8 8" for all , This of course requires that . How-
ever, we observe easily that this condition alone is not sufficient for the
above sequence to be exact. In fact, if , then @ − Z E Ð@ Ñ8" 8" 8" 8"

− ÐE Ñ © Z E E Ð@ Ñ œ !e 8" 8 8 8" 8". Since by definition we assume ,ˆ ‰
we can only infer that  implying merely that E Ð@ Ñ − ÐE Ñ ÐE Ñ8" 8" 8 8"a e
© ÐE Ña 8 . If, at each stage, the image of one homomorphism is contained

in the kernel of the next homomorphism, this  sequence is calledincreasing
a . Clearly, an exact sequence is also a cochain complex,cochain complex
but the converse statement is generally not true. Let us consider two
cochains  and . A Z œ ÖZ ß E × œ ÖY ß F ×ñ ñ

8 8 8 8 Y cochain homomorphism
G À Z Ä ÖG À Z Ä Y ×ñ ñ ñ

8 8 8Y  is a set of homomorphisms  such that the
following diagram commutes for all :8
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â Z Z â

â Y Y â

Ä Ä Ä

Ä Ä Ä

8 8"

8 8"

E

G G

F

8

8 8"

8

Æ Æ   

We can thus write  for all .G ‰ E œ F ‰ G 88" 8 8 8

An exact sequence of the form

! Y Z [ !Ä Ä Ä Ä
E F

(1.2.16)

is called a . Obviously  is injective because short exact sequence E ÐEÑ œa
Ö!× F ÐFÑ œ [ E whereas  is surjective since . Hence,  has left inversese
and  right inverses so that there are homomorphisms  andF P À Z Ä Y
V À [ Ä Z P ‰ E œ 3 ß F ‰ V œ 3 3 3 such that  where  and  are iden-Y Y[ [

tity mappings  A simple example to a short exact sequence is provided by
the quotient space  produced by a subspace :Z ÎY Y © Z

! Y Z Z ÎY !Ä Ä Ä Ä
\ 9

where  is the inclusion mapping, i.e.,  for all\ \À Y Ä Z ? œ Ð?Ñ − Z
? − Y À Z Ä Z ÎY :Þ and  is the canonical mapping [   6]. We know9 see
that   so that we may write .a 9 \ÐZ ÎY Ñ œ Y ‰ œ !

A salient property of exact sequences is revealed in the following theo-
rem known as .the five lemma

Theorem 1.2.2. Let and  be two exactZ œ ÖZ ß E × œ ÖY ß F ×ñ ñ
8 8 8 8 Y

sequences and  be a cochain homomorphism  Let usG œ Öñ G À Z Ä Y × Þ8 8 8

consider the five consecutive elements of these sequences corresponding to
8  #ß 8  "ß 8ß 8  "ß 8  # G ß G ß G ß G. If  are isomor-8# 8" 8" 8#

phisms, then  must also be an isomorphism.G8

The commutativity of the diagram below with rows of exact sequences

â Z Z Z Z Z â

â Y Y Y Y Y â

Ä Ä Ä Ä Ä Ä

Ä Ä Ä Ä Ä Ä

8# 8" 8 8" 8#

8# 8" 8 8" 8#

E EE E

G G G G G

F FF F

8# 88" 8"

8# 8" 8 8" 8#

8# 88" 8"

Æ Æ Æ Æ Æ  

requires that  for each .G ‰ E œ F ‰ G À Z Ä Y 88" 8 8 8 8 8"

Let us first show that the homomorphism  is injective  Let G Þ @ − Z8 8 8

and assume that  Then G Ð@ Ñ œ ! − Y Þ G E Ð@ Ñ œ F G Ð@ Ñ œ8 8 8 8" 8 8 8 8 8ˆ ‰ ˆ ‰
!Þ G E Ð@ Ñ œ ! Since  is an isomorphism, we obtain . Therefore,8" 8 8
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@ − ÐE Ñ œ ÐE Ñ @ − Z @ œ8 8 8" 8" 8" 8a e  so that there exists  such that 
E Ð@ Ñ F G Ð@ Ñ œ G E Ð@ Ñ œ G Ð@ Ñ œ !8" 8" 8" 8" 8" 8 8" 8" 8 8. Then ˆ ‰ ˆ ‰
implying that  so that we may chooseG Ð@ Ñ − ÐF Ñ œ ÐF Ñ8" 8" 8" 8#a e
? − Y F Ð? Ñ œ G Ð@ ÑÞ G8# 8# 8# 8# 8" 8" 8# such that  Since  is an
isomorphism, there exists  such that . Then,@ − Z G Ð@ Ñ œ ?8# 8# 8# 8# 8#

we obtain G E Ð@ Ñ œ F G Ð@ Ñ œ F Ð? Ñ œ8" 8# 8# 8# 8# 8# 8# 8#ˆ ‰ ˆ ‰
G Ð@ Ñ G @ œ E Ð@ Ñ8" 8" 8" 8" 8# 8#. Because  is an isomorphism, we get .
Since  because  is an exact sequence, we thusE ‰ E œ ! ÖZ ß E ×8" 8# 8 8

find . Hence,  which! œ E E Ð@ Ñ œ E Ð@ Ñ œ @ @ œ !8" 8# 8# 8" 8" 8 8ˆ ‰
amounts to say that  is injective.G8

We shall now show that  is surjective. Let be an arbitraryG ? − Y8 8 8 

vector. We then have . Since  is an isomor-? œ F Ð? Ñ − Y G8" 8 8 8" 8"

phism, there exists a vector  so that . We@ − Z F Ð? Ñ œ G Ð@ Ñ8" 8" 8 8 8" 8"

thus have G E Ð@ Ñ œ F G Ð@ Ñ œ F F Ð? Ñ œ !8# 8" 8" 8" 8" 8" 8" 8 8ˆ ‰ ˆ ‰ ˆ ‰
because  since  is an exact sequence. We thus findF ‰ F œ ! ÖY ß F ×8" 8 8 8

E Ð@ Ñ œ ! G Þ @8" 8" 8# 8" because  is an isomorphism  Since  belongs to
the null space of , then there exists a vector  such that E @ − Z @8" 8 8 8"

œ E Ð@ Ñ ÐE Ñ œ ÐE Ñ8 8 8" 8 because . Let us now consider the vectora e
?  G Ð@ Ñ − Y F Ð? Ñ œ G Ð@ Ñ8 8 8 8 8 8 8" 8". Recalling that , We readily ob-
serve that

F ?  G Ð@ Ñ œ F Ð? Ñ  F G Ð@ Ñ

œ F Ð? Ñ  G E Ð@ Ñ

œ F Ð? Ñ  G Ð@ Ñ œ !

8 8 8 8 8 8 8 8 8

8 8 8" 8 8

8 8 8" 8"

ˆ ‰ ˆ ‰ˆ ‰
.

Since , there exists a vector  satisfying?  G Ð@ Ñ − ÐF Ñ ? − Y8 8 8 8 8" 8"a
the relation  and we have ?  G Ð@ Ñ œ F Ð? Ñ ? œ G Ð@ Ñ8 8 8 8" 8" 8" 8" 8"

for some  because  is an isomorphism. Let now consider@ − Z G8" 8" 8"

the vector . We can then write@  E Ð@ Ñ − Z8 8" 8" 8

G @  E Ð@ Ñ œ G Ð@ Ñ  G E Ð@ Ñ

œ G Ð@ Ñ  F G Ð@ Ñ

œ G Ð@ Ñ  F Ð? Ñ œ ?

8 8 8" 8" 8 8 8 8" 8"

8 8 8" 8" 8"

8 8 8" 8" 8

ˆ ‰ ˆ ‰ˆ ‰
implying that  is surjective. Since this linear operator is both injectiveG8

and surjective, then  is an isomorphism.G8 
Let  be a cochain given by (1.2.15) such that .Z ÐE Ñ © ÐE Ññ

8" 8e a
The quotient space of  with respect to its subspace  is thea eÐE Ñ ÐE Ñ8 8"

vector space

L ÐZ Ñ œ ÐE ÑÎ ÐE Ñ œ ÐE ÑÎ ÐE ÑÞ8 ñ
8 8" 8 8"a e Ker Im (1.2.17)
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L ÐZ Ñ8 ñ  is called the  due to the fact that a vector8th cohomology group
space is an Abelian group. An element of the vector space , called aL ÐZ Ñ8 ñ

cohomology class, is an equivalence class  involv-Ò@ Ó œ Ö@  E @ ×8 8 8" 8"

ing all vectors  where  We shall now demonstrate the@ − Z E @ œ !Þ8" 8" 8 8

following theorem commonly known as .the zigzag lemma 
Theorem 1.2.3. Let us consider the following short exact sequence

! Y Z [ !Ä Ä Ä Äñ ñ ñ
E F

ñ ñ

(1.2.18)

where  are cochains so that Y œ ÐY ß .Ñß Z œ ÐZ ß .Ñß [ œ Ð[ ß .Ñ .ñ ñ ñ #
8 8 8

œ ! and  are cochain homomorphisms. Then thereE œ ÖE ×ß F œ ÖF ×ñ ñ
8 8

exists a homomorphism such that the sequence> À L Ð[ Ñ Ä L ÐY Ñ8 ñ 8" ñ  

 â L ÐY Ñ L ÐZ Ñ L Ð[ Ñ L ÐY Ñ âÄ Ä Ä Ä Ä
> >8 ñ 8 ñ 8 ñ 8" ñ

E F E8 8 8"

(1.2.19)

is exact.
We consider the following commutative diagram whose rows are short

exact sequences and columns are cochains:

ã ã ã

! Y Z [ !

! Y Z [ !

! Y Z [ !

ã ã ã

Æ Æ Æ

Æ Æ Æ

Æ Æ Æ

Æ Æ Æ

. . .

. . .

. . .

. . .

Ä Ä Ä Ä8 8 8

8" 8" 8"

8# 8# 8#

E F

E F

E F

8 8

8" 8"

8# 8#

Ä Ä Ä Ä

Ä Ä Ä Ä

We thus infer that for all , the homomorphism  is injective and  is8 E F8 8

surjective and . Similarly, we have  ande a e aÐE Ñ œ ÐF Ñ Ð.Ñ © Ð.Ñ8 8 8 8"

this gives rise to cohomology groups , ,  for all L ÐY Ñ L ÐZ Ñ L Ð[ Ñ 88 ñ 8 ñ 8 ñ

along columns of cochains. The linear operator E À Y Ä ÐF Ñ œ8 8 8a
eÐE Ñ © Z8 8 is evidently bijective so that it is an isomorphism, hence its
inverse  exists. Equivalence classes in the quotientE À ÐF Ñ Ä Y"

8 8 8a
space  are given by . Then theZ Î ÐF Ñ Ò@ Ó œ Ö@  E ? À ? − Y ×8 8 8 8 8 8 8 8a
operator  interpreted as  becomes anF F À Z Î ÐF Ñ Ä [8 8 8 8 8a
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isomorphism so that one has the inverse  . Therefore, we mayF A œ Ò@ Ó"
8 8 8

define a linear operator  by>

> œ E ‰ . ‰ F À [ Ä Y" "
8" 8 8 8" (1.2.20)

which is unique within the precepts of the cohomology. Due to the commu-
tativity of the diagram, we infer from (1.2.20)  that

. ‰ œ . ‰ E ‰ . ‰ F œ E ‰ . ‰ F œ !> " " " # "
8" 8 8# 8 .

It straightforward to see that we also get the relation ! œ E ‰ . ‰ F" # "
8" 8"

œ ‰ .Þ A> Let us now consider a representative  of the equivalence class8

ÒA Ó − L Ð[ Ñ .A œ ! .Ð A Ñ œ !Þ8 8 8
8 ñ  so that . We then obtain  Hence,>

> >A − L ÐY Ñ8
8" ñ . Thus,  is a homomorphism as follows

> À L Ð[ Ñ Ä L ÐY ÑÞ8 ñ 8" ñ

Let us take a vector . Since  is surjective, there exists aA − [ F8 8 8

representative vector  of an equivalence class  such that @ − Z Ò@ Ó F @8 8 8 8 8

œ A [8
ñ. Because we have to consider the cochain ,  let us assume that

A − Ð.Ñ © [ .A œ !8 8 8 8a  so that . Due to the commutativity of the above
diagram we find that . Thus, .F @ œ F .@ œ ! .@ − ÐF Ñ œ8 8 8" 8 8 8"a
eÐE Ñ E ?8" 8" 8". Since  is injective, there is a unique vector  such that
E ? œ .@8" 8" 8. It follows from the commutativity of the above diagram
that  so that .E .? œ .E ? œ . @ œ ! .? − ÐE Ñ8# 8" 8" 8" 8 8" 8#

# a
Since  is injective, we get . Hence,  belongs to a coho-E .? œ ! ?8# 8" 8"

mology class. Obviously, it is expressed as . However, we have? œ A8" 8>
to show that this result is independent of the choice of representative of the
equivalence class. Let us consider another vector . We then must@ − Ò@ Ów

8 8

write . Exactness requires that there exists a  such@  @ − ÐF Ñ ? − Y8 8 8 8
w
8 a

that . Now the commutativity of the diagram implies thatE ? œ @  @8 8 8
w
8

E .? œ .E ? œ .Ð@  @ Ñ8" 8 8 8 8
w
8 .

It then follows from cochain and exact sequence properties that there are
? ß ? − Y E ? œ .@ E ? œ .@8" 8" 8" 8" 8 8"

w w w
8" 8" 8 such that  and . Since

E E Ð?  ?  .? Ñ œ ! .? œ8" 8" 8" 8 8
w
8" is injective, the relation yields 

?  ? .? œ .? ? ?8" 8" 8"
w w w
8" 8" 8", hence we get . Consequently,  and 

belong to the same cohomology class.
We now consider an element  where .A œ .A − [ A − [8 8" 8 8" 8"

Since , we get . In view of the surjectivity of .A œ ! A − L Ð[ Ñ F8 8 8"
8 ñ

we can write  for a vector . Let F @ œ A @ − Z @ œ .@8" 8" 8" 8" 8" 8 8"

so that . We have seen above that there exists a.@ œ . @ œ ! − Z8 8" 8"
#

unique vector  such that . Since  is? − Y E ? œ .@ œ ! E8" 8" 8" 8" 8 8"
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injective, we have . This of course implies that all elements in the? œ !8"

equivalence class  are mapped under the operator  onto theÒA Ó − L Ð[ Ñ8
8 ñ >

same equivalence class . Hence,  is a well definedÒ? Ó − L ÐY Ñ8"
8" ñ >

operator.
Finally, we have to show that the sequence

â L ÐY Ñ L ÐZ Ñ L Ð[ Ñ L ÐY Ñ âÄ Ä Ä Ä Ä
> >8 ñ 8 ñ 8 ñ 8" ñ

E F E8 8 8"

is exact. To this end, it suffices to prove exactness at . Because, theL ÐY Ñ8 ñ

sequence is exact at  since  and proof atL ÐZ Ñ ÐE Ñ œ ÐF Ñ8 ñ
8 8e a

L Ð[ Ñ ÒA Ó − L Ð[ Ñ8 ñ 8" ñ
8"may be accomplish in the same fashion. Let 

and take the element  into account. It then> e >ÒA Ó − L ÐY Ñ œ Ð Ñ8" 8"
8 ñ

immediately follows from (1.2.20) that  whereE ÒA Ó œ Ò.@ Ó œ Ò!Ó8 8" 8">
Ò@ Ó œ F ÒA Ó Ð Ñ © ÐE Ñ8" 8" 8" 8

"
8" . Consequently, we obtain . Con-e > a

versely, let us now consider an equivalence class  of theÒ? Ó − ÐE Ñ8 8a
cohomology group . Since  we find thatL ÐY Ñ E Ò? Ó œ Ò!Ó − L ÐZ Ñß8 ñ 8 ñ

8 8

E Ò? Ó œ Ò.@ Ó A œ F @ − [8 8 8" 8" 8" 8" 8". We then define  and the
cohomology class . Since ÒA Ó − L Ð[ Ñ ÒA Ó œ E .F ÒA Ó8" 8" 8"

8" ñ " "
8 8">

œ E .F F Ò@ Ó œ E Ò.@ Ó œ E E Ò? Ó œ Ò? Ó − ÐE Ñ" " " "
8 8 88" 8" 8" 8" 8 8 8 8a ,

we see that  is the image of an equivalence class  under . Thus,Ò? Ó ÒA Ó8 8" >
we get  and we finally find  Hence,a e > e > aÐE Ñ © Ð Ñ Ð Ñ œ ÐE Ñ8 8" 8" 8

the sequence is exact at . We shall not repeat the analysis to proveL ÐY Ñ8 ñ

exactness at .L Ð[ Ñ8 ñ 
Finally, for later applications, we have to emphasise the fact that what

we have said so far are equally valid for .modules

1.3. MULTILINEAR FUNCTIONALS

Let  be ordered -tuple of linear vector spaces definedÐY ß Y ß á ß Y Ñ 5" # 5

over the same field of scalars . Let us consider a scalar-valued function…
g …À Y ‚ Y ‚ â ‚ Y Ä" # 5  on the Cartesian product of these vector
spaces. If the function , where , g … !Ð? ß ? ß á ß ? Ñ − ? − Y œ "ßÐ"Ñ Ð#Ñ Ð5Ñ ( )! !

#ß á ß 5, is , that is, if the following rela-linear in each one of its arguments
tions

g g g

g ! !g ! …

Ðá ß ?  @ ß á Ñ œ Ðá ß ? ß á Ñ  Ðá ß @ ß á Ñ

Ðá ß ? ß á Ñ œ Ðá ß ? ß á Ñß −
Ð3Ñ Ð3Ñ Ð3Ñ Ð3Ñ

Ð3Ñ Ð3Ñ

(1.3.1)

are satisfied for all , then the function  is called a " Ÿ 3 Ÿ 5 g multilinear
functional -linear functional (or a ). In finite-dimensional vector spaces5

whose dimensions and bases are  and , ,8 ß á ß 8 Ö/ × − Y 3 œ "ß á ß 8" 5
Ð Ñ
3
!

! !
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! œ "ß á ß 5 ? œ ? /, we can then write , without having recourseÐ Ñ
3œ"

8
3
Ð Ñ

Ð Ñ
3!

!!

!
!

to the summation convention. Multilinearity then leads to the following
value of the functional at vectors ? − Y ß ? − Y ß á ß ? − YÐ"Ñ Ð#Ñ Ð5Ñ" # 5

      (1.3.2)g Ð? ß ? ß á ß ? Ñ œ â > ? ? â ?Ð"Ñ Ð#Ñ Ð5Ñ

3 œ" 3 œ" 3 œ"

8 8 8

3 3 â3
3 3
Ð"Ñ Ð#Ñ Ð5Ñ

3"" "
" #

" # 5

5

" # 5
" # 5

where  number of scalar  are defined by8 ‚ 8 ‚ â ‚ 8 >" # 5 3 3 â3" # 5

> œ Ð/ ß / ß á ß / Ñ −3 3 â3
Ð"Ñ Ð#Ñ Ð5Ñ
3 3 3" # 5 " # 5

g …. (1.3.3)

We thus conclude that the set of scalars  completely determines theÖ> ×3 3 â3" # 5

action of a -linear functional on any set of  number of vectors 5 5 ? − Y ßÐ"Ñ "

? − Y ß á ß ? − YÐ#Ñ Ð5Ñ# 5 . We can thus say that they unambiguously charac-
terise a multilinear functional.

Let us now suppose that . The value of aY œ Y œ â œ Y œ Y" # 5
Ð8Ñ

multilinear functional  on vectors  cang …À Y Ä ? ß ? ß á ß ? − Y5
Ð"Ñ Ð#Ñ Ð5Ñ

now be found from (1.3.2) and (1.3.3) as follows

g

g

Ð? ß ? ß á ß ? Ñ œ > ? ? â? ß

> œ Ð/ ß / ß á ß / Ñß " Ÿ 3 ß 3 ß âß 3 Ÿ 8

Ð"Ñ Ð#Ñ Ð5Ñ 3 3 â3
3 3
Ð"Ñ Ð#Ñ Ð5Ñ

3

3 3 â3 3 3 3 " # 5

" # 5
" # 5

" # " #5 5
 

(1.3.4)

where we experience no difficulty in resorting to the summation convention
because the range of all indices is the same now, from  to . In this case," 8
we can introduce a more advantageous representation of a multilinear func-
tional as an operator. To this end, we shall first introduce the tensor product
of two vector spaces.

Let  and  be two linear vector spaces defined on the same field ofY Z
scalars . As is well known, the Cartesian product  of these spaces is… Y ‚ Z
formed by ordered pairs  where  and . There is initially noÐ?ß @Ñ ? − Y @ − Z
algebraic structure on this product set. However, by making use of known
operations on vector spaces  and , we may define appropriate operationsY Z
on the set  so that it may be equipped with a structure of a linear vec-Y ‚ Z
tor space. The resulting vector space will be called the  oftensor product
spaces  and  and will be denoted by . Let us choose opera-Y Z [ œ Y Œ Z
tions of vector addition and scalar multiplication on  in such a way that[
tensor product of vectors  has to satisfy the following biline-? Œ @ − Y Œ Z
arity conditions:

Ð3ÑÞ ? Œ Ð@  @ Ñ œ ? Œ @  ? Œ @ ß " # " #
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Ð33ÑÞ Ð?  ? Ñ Œ @ œ ? Œ @  ? Œ @ß

Ð333ÑÞ Ð ?Ñ Œ @ œ ? Œ Ð @Ñ œ Ð? Œ @Ñß − Þ

 
 

" # " #

! ! ! ! …

Let us note that the same symbol in the foregoing expressions rep-
resents, in fact, different addition operations in three different vector spaces
Y ß Z [ and . We can thus write

Ð?  ? Ñ Œ Ð@  @ Ñ œ ? Œ @  ? Œ @  ? Œ @  ? Œ @" # " # " " " # # " # #.

The space  is then defined as the collection of all [ ? Œ @finite sums !
3

3 3

where  and . If we consider finite-dimensional vector spaces? − Y @ − Z3 3

Y Z Ö/ × Ö0 × A − [Ð7Ñ Ð8Ñ
3 4 and  with respective bases  and , a vector  is

evidently expressible as .Hence,  is an -dimensionalA œ A / Œ 0 [ 7834
3 4

vector space with a basis . The tensor product can evidently be ex-Ö/ Œ 0 ×3 4

tended on Cartesian products of arbitrary number of vector spaces.
Let us now consider the -dimensional dual space  of an -dimen-8 Y 8‡

sional vector space . It is quite clear that an element, or a vector, of theY
tensor product  can now be represented byŒ Y5 ‡

g œ > 0 Œ 0 Œ â Œ 03 3 â3
3 3 3

" # 5
" # 5 (1.3.5)

where  is the reciprocal basis in  corresponding to the basis  inÖ0 × Y Ö/ ×3 ‡
3

Y 5. We define the value of the element  on an ordered -tuple of vectorsg
Ð? ß ? ß á ß ? Ñ − YÐ"Ñ Ð#Ñ Ð5Ñ

5  as

g Ð? ß á ß ? Ñ œ > ? â? 0 Ð/ Ñâ0 Ð/ ÑÐ"Ñ Ð5Ñ 3 â3 4
4 4
Ð"Ñ Ð5Ñ

3 3
4" "5

" 5 " 5
5

In view of (1.2.7), we then find that

g Ð? ß ? ß á ß ? Ñ œ > ? ? â?Ð"Ñ Ð#Ñ Ð5Ñ 3 3 â3
3 3
Ð"Ñ Ð#Ñ Ð5Ñ

3
" # 5

" # 5 .

We immediately see that the above relation leads to (1.3.4)  for vectors # 3/ ß"

/ ß á ß / 53 3# 5
. Hence (1.3.5) does in fact play the part of a -linear functional

on  and the tensor product  is the vector space in which such -Y Œ Y 55 5 ‡

linear functionals inhabit. We say that the elements of this vector space are
5-covariant tensors order  and the number  is known as the  of the tensor.5
The scalar coefficients  are then called the >3 3 â3" # 5

components of such a
tensor with respect to bases . It is easily observed that the0 Œ â Œ 03 3" 5

tensor product  of basis vectors constitutes a basis for the0 Œ â Œ 03 3" 5

space . Indeed the value of the zero element in Œ Y Œ Y5 ‡ 5 ‡

> 0 Œ 0 Œ â Œ 0 œ !3 3 â 3
3 3 3

" # 5
" # 5
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on vectors  vanishes naturally so that one obtains/ ß / ß á ß / − Y4 4 4" # 5

> 0 Ð/ Ñ0 Ð/ Ñ â 0 Ð/ Ñ œ > œ !3 3 â3 4 4 4 4 4 â4
3 3 3

" # " # " #5 5 5
" # 5

for all coefficients. Hence, the dimension of this vector space is . Obvi-85

ously, the sum of two tensors of the same kind and multiplication of a ten-
sor by a scalar are again the following tensors of the same kind:

g g

!g !

" #
Ð"Ñ Ð#Ñ
3 3 â3 3 3 â3

3 3 3

3 3 â 3
3 3 3

 œ Ð>  > Ñ0 Œ 0 Œ â Œ 0

œ Ð > Ñ0 Œ 0 Œ â Œ 0
" # " #5 5

" # 5

" # 5
" # 5 .

This is of course a direct consequence of  being a linear vector space.Œ Y5 ‡

We can now naturally define the tensorial product of a -covariant tensor5
and an -covariant tensor by6

g g" #
Ð"Ñ Ð#Ñ
3 â3 4 â4

3 3 4 4Œ œ > > 0 Œ â Œ 0 Œ 0 Œ â Œ 0
" "5 6

" "5 6 .

The result is obviously a -covariant tensor.Ð5  6Ñ
Let us now change the basis  in the vector space  to another basisÖ/ × Y3

Ö/ × Ö0 ×w 3
3  as in (1.2.11). We know that the reciprocal basis  in the dual space

Y Ö0 ×‡ w3 changes to a reciprocal basis  through the relations (1.2.14). Conse-
quently, the same tensor  is represented with respect to two different basesg
as follows

g œ > 0 Œ 0 Œ â Œ 0 œ > 0 Œ 0 Œ â Œ 0

œ > , , â, 0 Œ 0 Œ â Œ 0

4 4 â4
4 4 4 w w3 w3 w3

3 3 â3

4 4 â4 3 3 3
4 4 4 w3 w3 w3

" # 5
" # " #5 5

" # 5

" # 5 " #

" #

5

5 " # 5

from which we immediately deduce that the following rule of transforma-
tion between components of a -covariant tensor must be valid:5

> œ , , â, >w
3 3 â3 3 3 3

4 4 4
4 4 â4" # 5 " #

" #

5

5
" # 5

. (1.3.6)

In a similar fashion we may define a multilinear ( -linear) functional5
on the dual space  of a vector space. Such a functional Y À ÐY Ñ Ä‡ ‡ 5g …
assigns a scalar number  to an ordered -tuple ofg …Ð0 ß 0 ß á ß 0 Ñ − 5Ð"Ñ Ð#Ñ Ð5Ñ

linear functionals  and obeys the rulesÐ0 ß 0 ß á ß 0 Ñ − ÐY ÑÐ"Ñ Ð#Ñ Ð5Ñ ‡ 5

g g g

g ! !g ! …

Ðá ß 0  1 ß á Ñ œ Ðá ß 0 ß á Ñ  Ðá ß 1 ß á Ñ

Ðá ß 0 ß á Ñ œ Ðá ß 0 ß á Ñß −

Ð3Ñ Ð3Ñ Ð3Ñ Ð3Ñ

Ð3Ñ Ð3Ñ .

By resorting to the reciprocal basis  corresponding to the basisÖ0 × − Y3 ‡

Ö/ × − Y 0 œ 0 ß − ß " Ÿ 7 Ÿ 53
Ð7Ñ 3

3 3
Ð7Ñ Ð7Ñ, we can of course write  and! ! …

we obtain
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g ! ! !

g

Ð0 ß 0 ß á ß 0 Ñ œ > â ß

> œ Ð0 ß 0 ß á ß 0 Ñ

Ð"Ñ Ð#Ñ Ð5Ñ 3 3 â3
3 3 3
Ð"Ñ Ð#Ñ Ð5Ñ

3 3 â3 3 3 3

" # 5

" # 5

" # " #5 5 .

(1.3.7)

The ensemble of scalar numbers  entirely> ß " Ÿ 3 ß 3 ß âß 3 Ÿ 83 3 â3
" # 5

" # 5

determines the action of a multilinear functional  on . Let us nowg ÐY Ñ‡ 5

define an element in the tensor product  byŒ Y5

g œ > / Œ / Œ â Œ /3 3 â3
3 3 3

" # 5
" # 5

.

g  is called a  . It is evident that the linearly inde-5-contravariant tensor
pendents elements  constitute a basis for the vector space/ Œ / Œ â Œ /3 3 3" # 5

Œ Y 8 >5 5 3 3 â 3.  number of scalars  are said to be  of this tensor" # 5 components
with respect to bases . Let us define the value of the tensor / Œ â Œ /3 3" 5

g

on  linear functionals   by the relation5 0 ß 0 ß á ß 0Ð"Ñ Ð#Ñ Ð5Ñ

g Ð0 ß 0 ß á ß 0 Ñ œ > 0 Ð/ Ñ0 Ð/ Ñ â 0 Ð/ ÑÐ"Ñ Ð#Ñ Ð5Ñ 3 3 â3 Ð"Ñ Ð#Ñ Ð5Ñ
3 3 3

" # 5
" # 5

.

In view of (1.2.6) we find that

g ! ! !Ð0 ß 0 ß á ß 0 Ñ œ > âÐ"Ñ Ð#Ñ Ð5Ñ 3 3 â3
3 3 3
Ð"Ñ Ð#Ñ Ð5Ñ" # 5

" # 5
.

It is clear that the product of a -contravariant tensor and an -contravariant5 6
tensor is a -contravariant tensor. We now consider a change of basisÐ5  6Ñ
in the vector space . We then obtainY

g œ > / Œ / Œ â Œ / œ > / Œ / Œ â Œ /

œ > + + â+ / Œ / Œ â Œ /

4 4 â4 w3 3 â3 w w w
4 4 4 3 3 3

4 4 â4 w w w
4 4 4
3 3 3

3 3 3

" # " #5 5
" # 5 " # 5

" # 5

" #

" # 5

5 " # 5

from which we deduce the following rule of transformation for components
of a contravariant  tensor

> œ + + â+ >w3 3 â3 4 4 â4
4 4 4
3 3 3" # " #5 5

" #

" # 5

5
. (1.3.8)

We can also easily define tensors of mixed type. A -contravariant and -5 6
covariant  is an element of the vector space  andmixed tensor Œ Y Œ Y5 6 ‡

can be written in the form

g

g

œ > / Œ / Œ â Œ / Œ 0 Œ 0 Œ â Œ 0 ß

> œ Ð0 ß 0 ß á ß 0 ß / ß / ß á ß / Ñß

" Ÿ 3 ß 3 ß âß 3 Ÿ 8ß " Ÿ 4 ß 4 ß âß 4 Ÿ 8Þ

3 3 â3
4 4 â4 3 3 3

4 4 4

3 3 â3
4 4 â4

3 3 3
4 4 4

" # 5 " # 6

" # 5

" # 6 " # 5
" # 6

" # 5

" # 6

" # 5
" # 6

The value of this tensor on linear functionals  and0 ß 0 ß á ß 0 − YÐ"Ñ Ð#Ñ Ð5Ñ ‡

vectors   is given by? ß ? ß á ß ? − YÐ"Ñ Ð#Ñ Ð6Ñ
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g ! ! !Ð0 ß á ß 0 ß ? ß á ß ? Ñ œ > â ? ? â?Ð"Ñ Ð5Ñ
Ð"Ñ Ð6Ñ

3 3 â3
4 4 â4 3 3 3

Ð"Ñ Ð#Ñ Ð5Ñ 4 4 4
Ð"Ñ Ð#Ñ Ð6Ñ

" # 5

" # " #6 5

" # 6 .

It is quite obvious that we do not have to select the ordering in the tensor
products in the foregoing way. We may, of course, consider a different
ordering such as . The indices of componentsY Œ Y Œ Y Œ Y Œ Y Œ â‡ ‡ ‡

of this type of a tensor occupy accordingly proper upper and lower posi-
tions. It is evident that different ordering of spaces in the tensor product will
give rise to different types of tensors of the same order.

If, in a mixed tensor of order , we remove the tensor product be-5  6

tween the functional  and the vector , then the relation 0 / 0 Ð/ Ñ œ4 4
3 3 3

47 7
8 8 8

7$

between reciprocal basis vectors reduces the order of the tensor. We thus
obtain a -contravariant and -covariant tensor, in other words, aÐ5 "Ñ Ð6 "Ñ
tensor of order  defined by the relation5  6  #

g- 3 3 3 3
3 â3 â3
4 â3 â4

4 4 4 4

œ > / Œ â Œ / Œ / Œ â Œ /

Œ 0 Œ â Œ 0 Œ 0 Œ â Œ 0

" 8 5

" 8 6 " 8" 8" 5

" 7" 7" 6                                          .

This operation is called a . The components of the contractedcontraction
tensor are given as follows:

-
3 â3 3 â3 3 â3 33 â3
4 â4 4 â4 4 â4 34 â4> œ >" 8" 8" " 8" 8"5 5

" 7" 7" " 7" 7"6 6
.

1.4. ALTERNATING -LINEAR FUNCTIONALS5

Let us consider a multilinear functional  where  is a fi-= …À Y Ä Y5

nite-dimensional vector space so that for vectors ,  we? − Y 3 œ "ß á ß 53

have . We know from Sec 1.3 that the multilinear= …Ð? ß ? ß á ß ? Ñ −" # 5

functional  may be represented by a -covariant tensor. We say that the= 5
multilinear functional  is an  or a = alternating -linear functional -vector5 5
or a if it becomes zero whenever any two of its arguments aremultivector 
equal. It can be shown that such an alternating multilinear functional enjoys
the following properties:

1. An alternating -linear functional is completely antisymmetric in the5
sense that its value changes only its sign whenever any two of its arguments
are interchanged.

To understand the effect of interchanging the argument vectors  and?3

?4 let us take into account the expansion

=

=

Ð? ß á ß ?  ? ß á ß ?  ? ß á ß ? Ñ œ

Ð? ß á ß ? ß á ß ? ß á ß ? Ñ
" 3 4 3 4 5

" 3 3 5                                                            
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 Ð? ß á ß ? ß á ß ? ß á ß ? Ñ

 Ð? ß á ß ? ß á ß ? ß á ß ? Ñ

 Ð? ß á ß ? ß á ß ? ß á ß ? Ñ œ !

=

=

=

" 3 4 5

" 4 3 5

" 4 4 5

       
.

If we note that the first and the fourth terms in the above expression is zero
by definition, we obtain from the middle lines the following property of
complete antisymmetry for every pair of arguments:

= =Ð? ß á ß ? ß á ß ? ß á ß ? Ñ œ  Ð? ß á ß ? ß á ß ? ß á ß ? Ñ" 3 4 5 " 4 3 5

Thus if , then the value of an alternating -linear functional onY œ Y 5Ð8Ñ

vectors  are given by? ß ? ß á ß ? − Y" # 5

= =Ð? ß ? ß á ß ? Ñ œ ? ? â?" # 5 3 3 â3 " #
3 3

5
3

" # 5
" # 5 (1.4.1)

where the scalars  are = = …3 3 â3 3 3 3" # " #5 5
œ Ð/ ß / ß á ß / Ñ − completely anti-

symmetric with respect to indices  taking the values from  to5 3 ß 3 ß âß 3 "" # 5

8. Hence, for every pair of indices the relation

= =3 â3 â3 â3 3 â3 â3 â3" : ; " ; :5 5
œ  (1.4.2)

is satisfied. It is then straightforward to see that the number of independent

components of such coefficients are given by .Š ‹8 8x

5 5x Ð8  5Ñx
œ

2. The value of an alternating -linear functional on linearly depend-5
ent vectors is zero.

Let us assume that at least one of the  vectors is a linear combination5
of the remaining  vectors. When we expand the functional by employ-5  "
ing multilinearity, we see that it is expressible as a sum of terms in each of
which at least two arguments in the functional are equal. Hence the value of
the functional becomes zero. Consequently if  all -linear functionals5  8 5
on a vector space of dimension  are identically zero8 .

3. Any alternating -linear functional on a linear vector space 8 Y Ð8Ñ

that vanishes on an ordered basis  of   is identicallyÖ/ ß / ß á ß / × Y" # 8
Ð8Ñ

zero.
If we insert ordered vectors  into the functional,? œ ? / ß 3 œ "ß á ß 83 43

4

expand the resulting expression by making use of multilinearity, equate to
zero the terms involving repeated arguments and exploit the property of an-
tisymmetry, we see that the value of the functional is a linear combination
of terms in the form . In case , the„ Ð Ð œ != =/ ß / ß á ß / Ñ / ß / ß á ß / Ñ" # 8 " # 8

value of the functional becomes eventually zero on every ordered -tuple of8
vectors.
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We can generate a completely antisymmetric quantity from a quantity
with  indices, say , through the . Let us denote5 +3 3 â 3" # 5

alternation mapping
a permutation of indices  by . As is well known3 ß á ß 3 Ð3 ß 3 ß á ß 3 Ñ" 5 7 " # 55
the total number of all such permutations is . We now introduce the fol-5x
lowing quantity through the alternation mapping

+ œ Ð"Ñ +
"

5x
[ ]3 3 â3

7œ"

5x
Ð Ñ

Ð3 ß3 ßáß3 Ñ" # 5
7

7 " # 5
" , 5

5 (1.4.3)

where  if  is an even permutation whereas, 5 5Ð Ñ œ ! Ð3 ß 3 ß á ß 3 Ñ7 7 " # 5

, 5Ð Ñ œ "7  if it is odd. We know that a permutation is realised by means of
a number of transpositions performed by interchanging successive indices.
A specified permutation is called an even permutation if the number of
transpositions performed is even and odd if that number is odd. We can
immediately verify that the quantity  is completely antisymmetric.+[ ]3 3 â 3" # 5

Henceforth, the indices inside a square bracket will always represent the
completely antisymmetric part. As an example, let us consider a quantity
+345  with three indices. We then find that

+ œ Ð+  +  +  +  +  + Ñ
"

$x
[ ]345 345 453 534 354 543 435 .

If  is already completely antisymmetric, then it is clearly understood+3 3 â 3" # 5

that .+ œ +3 3 â 3 3 3 â 3" # " #5 5[ ]

Since the coefficients  are completely antisymmetric, only the=3 3 â 3" # 5

completely antisymmetric parts of terms  in a -fold sum as in? ? â? 5" #
3 3

5
3" # 5

(1.4.1) can contribute to the sum so that we can write

= =

=

Ð? ß ? ß á ß ? Ñ œ ? ? â?

œ ? ? â? Þ

" # 5 3 3 â3 " #
3 3

5
3

3 3 â3 " #
3 33

5

" # 5
" # 5

" # 5

" # 5[ ]

(1.4.4)

The components of a completely antisymmetric quantity  whose in-=3 3 â 3" # 5

dices satisfy inequalities  will be called its " Ÿ 3  3  â  3 Ÿ 8" # 5 essen-
tial components. Because all other components are either zero or determined
by essential components, sometimes, only with a change of sign. The ex-
pression (1.4.4) can then be written in the following form by using essential
components

= =Ð? ß ? ß á ß ? Ñ œ 5x ? ? â ?" # 5 3 3 â3

"Ÿ3 3 â3 Ÿ8
" #
3 33

5
"

" # 5

" # 5

" # 5[ ]. (1.4.5)

As an example, we consider a -linear alternating functional # Ð? ß ? Ñ œ= " #

= = =34 34 43"
3

#
4? ? 8 œ $ œ  5 œ # and .  Since  we obtain at once with 
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= = = =

= = =

=

Ð? ß ? Ñ œ ? ?  ? ?  ? ?

 ? ?  ? ?  ? ?

œ Ð? ?  ?

" # "# #" "$" # " # " #
" # # " " $

$" #$ $#" # " # " #
$ " # $ $ #

"# " # "
" # #

                             

                ? Ñ  Ð? ?  ? ? Ñ  Ð? ?  ? ? Ñ

œ #Ð ? ?  ? ?  ? ?

œ ? ?  ?

# " # " # " # " #
" " $ $ " # $ $ #

"$ #$

"# "$ #$" # " # " #
" # " $ # $

"# #"" #
" #

= =

= = =

= =

              )

                

[ ] [ ] [ ]

[ ]
" # " #
# " " $

"$

$" #$ $" # " # " #
$ " # $

34 " #
3 4

[ ] [ ]

[ ] [ ] [3 2]
2

[ ]

?  ? ?

 ? ?  ? ?  ? ?

œ ? ?

=

= = =

=

                                        

                .

The operation of alternation can be performed much more systemati-
cally by introducing the . We shall define in angeneralised Kronecker delta
8 5 Ÿ 8-dimensional space the generalised Kronecker delta of order  by
means of the following symbolic determinant

$

$ $ $

$ $ $

$ $ $

4 4 â4
3 3 â3

4 4 4
3 3 3

4 4 4
3 3 3

4 4 4
3 3 3

" # 5

" # 5

" #

" " "

5

" #

# # #

5

" #

5 5 5

5

œ

â

â

ã ã ã

â

â ââ ââ ââ ââ ââ ââ ââ ââ ââ â
(1.4.6)

where the range of all indices  and  is, of course,3 ß 3 ß âß 3 4 ß 4 ß âß 4" # 5 " # 5

from  to . Since a determinant changes only its sign when we interchange" 8
either its two columns or its two rows we immediately notice that  num-8#5

ber of quantities  are completely antisymmetric with respect to its$4 4 â4
3 3 â3

" # 5

" # 5

superscripts or its subscripts so that only the sign of the relevant quantity
changes when we interchange any two of its upper indices or lower indices
and it becomes zero when any two indices in upper or lower positions are
equal. If the indices  and  are chosen from aÖ3 ß 3 ß âß 3 × Ö4 ß 4 ß âß 4 ×" # 5 " # 5 not 
same subset of the set  involving  distinct numbers, then at leastÖ"ß á ß 8× 5
one row of the determinant (1.4.6) is zero owing to the definition of the
Kronecker delta. Hence, the corresponding generalised Kronecker delta van-
ishes. On the other hand, if the upper and lower indices are both even or odd
permutations of the same distinct  numbers the generalised Kronecker5
delta becomes  whereas it becomes  if  "  " one is an even and the other
is the odd permutations  of these  numbers. To see this, it suffices to note5
that when we choose upper and lower indices from the same set of distinct
indices we can obviously set   by properly inter-3 œ 4 ß 3 œ 4 ß á ß 3 œ 4" " # # 5 5

changing row and columns in the determinant, in other words, by properly
permuting upper and lower indices. In this case the determinant reduces
simply to
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… œ …"

" ! â !
! " â !
ã ã ã
! ! â "

â ââ ââ ââ ââ ââ ââ ââ â
.

It is clear that if it is necessary to make either even or odd permutations in
both upper and lower indices then the value of the generalised Kronecker
delta would be . However, if it is required to make even permutation in "
one set of indices and odd permutation in the other set the value would, of
course, be . It is clear that if the generalised Kronecker delta " 5  8ß
becomes identically zero.

Since the generalised Kronecker delta is completely antisymmetric
with respect to both upper and lower indices, it follows from the definition
(1.4.6) that

$ $ $ $ $ $ $4 4 â4 4 4 4 4
3 3 â3 3 3 3 3 3 3

4 4" # # " #5 5

" # " # " #5 5 5

" 5
œ 5x â œ 5x â[ ]

[ ]
. (1.4.7)

Indeed, we can readily observe this property in two simple examples below
for  and 5 œ # 5 œ $

$ $ $ $ $ $ $ $ $
$ $

$ $

$ $ $ $ $ $ $ $ $

$ $ $

$ $ $

$ $ $

34 3 4 3 4 3 4 3 4

56 5 6 6 5 5 6 5 6
5 6

3 3

5 6
4 4

345 3 4 5 3 4 5 3

678 6 6

6
3 3 3

7 8

6
4 4 4

7 8

6

5 5 5
7 8

7 8 8 7 7

œ œ  œ # œ #

œ œ  

» »
â ââ ââ ââ ââ ââ ââ â

[ ]
[ ]

8 7 8
4 5 3 4 5

6 6

8 7 8 7
3 4 5 3 4 5

6 6

6 6

3 4 5 3 4 5

7 8 7 8

$ $ $ $

$ $ $ $ $ $

$ $ $ $ $ $



 

œ $x œ $x[ ]
[ ]

.

Consider a quantity  with  indices. It is rather straightforward toE 53 3 â 3" # 5

see that (1.4.7) leads to the relation

$4 4 â4
3 3 â3 4 4 â4 3 3 â3
" # 5

" # 5 " # " #5 5E œ 5x E[ ] (1.4.8)

Let us now rewrite the expression (1.4.4) defining an alternating -linear5
functional in the form

= =Ð? ß ? ß á ß ? Ñ œ 0 Ð? Ñ0 Ð? Ñâ 0 Ð? Ñ" # 5 3 3 â3 # 5
3 3 3

"" # 5
" # 5[ ]

where, as usual, the vectors, or linear functionals  constitutes theÖ0 × Y§3 ‡

reciprocal basis in the dual space with respect to the basis . ThusÖ/ × Y§3
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we can represent this alternating -linear functional acting on an element5
Ð? ß ? ß á ß ? Ñ Y" # 5

5 of the Cartesian product  [ (1.3.5)] by the followingsee 
expression

= =œ 0 Œ 0 Œ â Œ 03 3 â3
3 3 3

" # 5
" # 5[ ] (1.4.9)

by employing the tensor product. Resorting to the relation (1.4.8) we can
transform the expression (1.4.9) into

= = $œ 0 Œ 0 Œ â Œ 0
"

5x
3 3 â3 4 4 â4

3 3 â3 4 4 4
" # 5 " # 5

" # 5 " # 5 .

We now define the , or , of  basis vectors inexterior product wedge product 5
the dual space  by the relationY ‡

0 • 0 • â • 0 œ 0 Œ 0 Œ â Œ 0

œ 5x 0 Œ 0 Œ â Œ 0

3 3 3 4 4 4
4 4 â4
3 3 â3

3 3 3

" # " #5 5

" # 5

" # 5

" # 5

$
[ ].

(1.4.10)

We can then represent (1.4.9) in the form

= =œ 0 • 0 • â • 0
"

5x
3 3 â3

3 3 3
" # 5

" # 5 . (1.4.11)

For instance, we find that

0 • 0 œ 0 Œ 0  0 Œ 0 ß

0 • 0 • 0 œ 0 Œ 0 Œ 0  0 Œ 0 Œ 0  0 Œ 0 Œ 0

 0 Œ 0 Œ 0  0 Œ 0 Œ 0  0 Œ 0 Œ 0

3 4 3 4 4 3

3 4 5 3 4 5 4 5 3 5 3 4

3 5 4 5 4 3 4 3 5 .

It is clear that the exterior product introduced by (1.4.10) is completely
antisymmetric. In view of the representation (1.4.11), we call an alternating
5-linear functional as an  or simply a .exterior form of degree -form5 5
Such a form is obviously a completely antisymmetric -covariant tensor5 .
The value of a -form on linearly independent vectors 5 5 ? ß ? ß á ß ? − Y" # 5

is given by (1.4.4). However, if we recall the definition of a determinant we
can immediately recognise that a quantity  is expressible by a? ? â?" #

3 33
5

[ ]" # 5

determinant as follows:

5x ? ? â? œ Þ

? ? â ?

? ? â ?

ã ã ã

? ? â ?

" #
3 33

5

" #
3 3 3

5

" #
3 3 3

5

" #
3 3 3

5

[ ]" # 5

" " "

# # #

5 5 5

â ââ ââ ââ ââ ââ ââ ââ ââ â
We can thus write
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= = =

=

Ð? ß ? ß á ß ? Ñ œ ? ? â? œ
"

5x

? ? â ?

? ? â ?

ã ã ã

? ? â ?

œ
"

5x

" # 5 3 3 â3 3 3 â3" #
3 33

5

" #
3 3 3

5

" #
3 3 3

5

" #
3 3 3

5

3 3 â3

" # " #5 5

" # 5

" " "

# # #

5 5 5

" # 5

[ ]

â ââ ââ ââ ââ ââ ââ ââ ââ âââââââââ â

âââââââ
0 Ð? Ñ 0 Ð? Ñ â 0 Ð? Ñ

0 Ð? Ñ 0 Ð? Ñ â 0 Ð? Ñ
ã ã ã

0 Ð? Ñ 0 Ð? Ñ â 0 Ð? Ñ

3 3 3
" # 5

3 3 3
" # 5

3 3 3
" # 5

" " "

# # #

5 5 5

By employing essential components, we can also transform this expression
into the form

   (1.4.12)= =Ð? ß ? ß á ß ? Ñ œ Z Ð? ß ? ß á ß ? Ñ" # 5 3 3 â3 " # 5

"Ÿ3 3 â3 Ÿ8

3 3 â3"
" # 5

" # 5
" # 5

Here

Z Ð? ß ? ß á ß ? Ñ œ

? ? â ?

? ? â ?

ã ã ã

? ? â ?

3 3 â3
" # 5

" #
3 3 3

5

" #
3 3 3

5

" #
3 3 3

5

" # 5

" " "

# # #

5 5 5

â ââ ââ ââ ââ ââ ââ ââ ââ â
(1.4.13)

may be interpreted as the -  of the projection of -5 5dimensional volume1

dimensional parallelepiped formed by vectors  in -dimen-? ß ? ß á ß ? 8" # 5

sional vector space on a subspace generated by  . Asaxes 3  3  â  3" # 5

an example, let us consider  and a -form8 œ $ß 5 œ # #

= =œ 0 • 0
"

#
34

3 4

whose value on vectors  and  is given by? ?" #

= = = =Ð? ß ? Ñ œ Z Ð? ß ? Ñ  Z Ð? ß ? Ñ  Z Ð? ß ? Ñ" # "# " # "$ " # #$ " #
"# "$ #$

where one identifies the numbers , Z Ð? ß ? Ñ œ ? ?  ? ? Z Ð? ß ? Ñ"# " # # " "$
" # " #" # " #

œ ? ?  ? ? Z Ð? ß ? Ñ œ ? ?  ? ?" # " #
" $ $ " #$ # $ $ #

# " # "" # and  as  of parallelogramsareas
that are projections of the parallelogram formed by vectors  and  in the? ?" #

$ "# "$-dimensional space, respectively, on the planes generated by -, - and

1One must notice the fact that this number does not correspond to the real invariant
geometric volume. As is easily observed, this number is dependent on the selected
basis of the vector space  But it is non-zero for linearly independent vectors.Y Þ
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#$ 5 8-axes. We can now say that a -form defined on an -dimensional vector
space  makes it possible for us to evaluate certain linear combinations,Y
with coefficients of that form, of -  projected onto -5 5dimensional volumes
dimensional subspaces from a -dimensional parallelepiped formed by 5 5
linearly independent vector in .Y

Let us now consider an -form as follows8

= =œ 0 • 0 • â • 0
"

8x
3 3 â3

3 3 3
" # 8

" # 8 . (1.4.14)

Since the indices have to be permutations of the numbers , the"ß #ß á ß 8
only essential component is . In order to express this situation more="#â8

systematically we now introduce the  [after Italian math-Levi-Civita symbol
ematician Tullio Levi-Civita (1873-1941)] with covariant indices as

   
if any two indices are equal,
if indices  is an even permutation of ,
if indices  

/ œ
!ß

 "ß Ð3 ß âß 3 Ñ Ð"ß á ß 8Ñ
 "ß Ð3 ß âß 3 Ñ

3 3 â3 " 8

" 8

" # 8

Ú
ÛÜ is an odd permutation of ,Ð"ß á ß 8Ñ Þ

The symbol  with contravariant indices is defined in exactly the same/3 3 â3" # 8

fashion. On the other hand, it is easy to see that we have the relation

/ / œ 8x3 3 â3
3 3 â3

" # 8
" # 8 (1.4.15)

since each term in the above sum will take the value  for every permuta- "
tion. We can thus write for an -form8

= =

=

œ / / 0 • 0 • â • 0
"

8x
œ 0 • 0 • â • 0

3 3 â3 "#â 8
3 3 â3 " # 8

"#â 8
" # 8

" # 8
" # 8

Since  there exists indeed only one linearly independent form, forŠ ‹8

8
œ "

instance, . 0 • 0 • â • 0" # 8 All other -forms are scalar multiples of that8
form. The value of this form  on linearly independent  vectors = 8 ? ß ? ß" #

á ß ? − Y8  are given by

= =

=

Ð? ß ? ß á ß ? Ñ œ

? ? â ?

? ? â ?
ã ã ã

? ? â ?

œ Z Ð? ß ? ß á ß ? Ñ

" # 8 "#â8

" #
" " "

8

" #
# # #

8

" #
8 8 8

8

"#â8 8 " # 8

â ââ ââ ââ ââ ââ ââ ââ â
.

We may interpret the determinant  as the volume of an -dimensionalZ 88

parallelepiped formed  vectors in the space . If these vectors are linearly8 Y
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independent we know that the above determinant cannot vanish so that we
have . If we rename the basis vectors  in Z Ð? ß ? ß á ß ? Ñ Á ! / ß á ß / Y8 " # 8 " 8

properly we can set  and we findZ Ð/ ß á ß / Ñ œ  "8 " 8

= ="#â 8 " # 8œ Ð/ ß / ß á ß / Ñ

as it should be. If , the generalised Kronecker deltas are obviously5 œ 8
expressible in terms of Levi-Civita symbols in the following way

$4 4 â4
3 3 â3 3 3 â3

4 4 â4" # 8

" # 8 " # 8
" # 8

œ / / . (1.4.16)

The determinant  can now be written asZ8

Z œ 8x ? â? œ / ? ? â?8 3 3 â3"
"

8 8
8 3

"
3 3[ ]

" # 8
" # 8

# .

But this expression is completely antisymmetric with respect to indices "ß
á ß 8. Therefore, we can also write

Z œ / / ? â? œ ? â?
" "

8x 8x
8 3 â3

4 â4 3 3
4 3 â3 4
3 34 â4

" 8
" 8 " "

8 " 8 8

8 8" 8

4 4" "
$ . (1.4.17)

It then readily follows from (1.4.17) that the relation

/ Z œ / ? â?
"

8x
œ / ? â? œ / ? â?

5 â5 8 3 â35 â5
4 â4 3

4
3

3 â3 3 â3
3 3

5 5
3 3

" 8 " 8" 8

" 8 "

8

8

" 8 " 8
" "

8 8

8 8

$ 4

5 5

"

" "[ ]

(1.4.18)

is valid for determinants.
It is straightforward to realise that the addition of -forms on a vector5

space  and their multiplication with scalars are again -forms. To see thisY 5
let us consider two -forms  and :5 ! "

! ! " "œ 0 • â • 0 ß œ 0 • â • 0
" "

5x 5x
3 â3 3 â3

3 3 3 3
" "5 5

" "5 5 .

The sum  of these forms will naturally be# ! "œ 

# # # ! "œ 0 • â • 0 ß œ 
"

5x
3 â3 3 â3 3 â3 3 â3

3 3
" " " "5 5 5 5

" 5 .

Similarly, for an arbitrary scalar  the form  is given by- ( -!œ

( ( ( -!œ 0 • â • 0 ß œ
"

5x
3 â3 3 â3 3 â3

3 3
" " "5 5 5

" 5 .

Hence -forms constitute a linear vector space which will be denoted by5
A5ÐY Ñ "  5 Ÿ 8. This vector space is well defined for . Obviously, there
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are  linearly independent -forms in this space. All forms whose de-Š ‹8

5
5

grees satisfying  are identically zero. If we define exterior forms for5  8
5 œ " by the expression

= = = …œ 0 ß −3 3
3 (1.4.19)

the spaces  will be completely determined for . There areA5ÐY Ñ " Ÿ 5 Ÿ 8

evidently  linearly independent -form since .8 " œ 8
8

"
Š ‹

1.5. EXTERIOR ALGEBRA

We shall now try to define the product of two exterior forms in such a
way that the result will again be an exterior form. Thus, we will be able to
construct an exterior algebra. Let us consider the forms  and! A− ÐY Ñ:

" A− ÐY Ñ : Ÿ 8 ; Ÿ 8 :  ; Ÿ 8;  given below such that ,  and :

! !

" "

œ 0 • 0 • â • 0 ß
"

:x

œ 0 • 0 • â • 0
"

;x

3 3 â3
3 3 3

4 4 â4
4 4 4

" # :
" # :

" # ;
" # ; .

The   of forms  and  will now be defined in theexterior product ! " ! "•
following fashion

! " ! "• œ 0 • 0 • â • 0 • 0 • 0 • â • 0
"

:x ;x
3 3 â3 4 4 â4

3 3 3 4 4 4
" # : " # ;

" # : " # ;

where the exterior product of basis vectors is, of course, determined by

 

       .

0 • 0 • â • 0 • 0 • 0 • â • 0 œ

0 Œ 0 Œ â Œ 0 Œ 0 Œ 0 Œ â Œ 0

3 3 3 4 4 4

5 5 â5 6 6 â6
3 3 â3 4 4 â4 5 5 5 6 6 6

" # : " # ;

" # : " # ;

" # : " # ; " # : " # ;$

With this definition we are obviously led to the result .! " A• − ÐY Ñ:;

The coefficients of the form  should be completely antisymmetric with! "•
respect to  indices. But they are already completely antisymmetric:  ;
with respect to the first  and the last  indices. Therefore, the number of: ;
independent components will be   and if we defineÐ:  ;ÑxÎ:x ;x

# ! "3 3 â3 4 4 â4 3 3 â3 4 4 â4" # : " # ; " # : " # ;œ
Ð:  ;Ñx

:x;x
[ ] (1.5.1)

we obtain
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# ! "

#

œ •

œ 0 • â • 0 • 0 • â • 0
"

Ð:  ;Ñx
3 â3 4 â4

3 3 4 4
" : " ;

" : " ; .

(1.5.2)

If  we clearly find . As an example, consider:  ;  8 • œ !! "

! ! A " " Aœ 0 − ÐY Ñß œ 0 • 0 − ÐY Ñ
"

#x
3 45

3 " 4 5 #

where  are antisymmetric. For  we obtain"45 8  $

# ! " ! " ! "œ • œ 0 • 0 • 0 œ 0 • 0 • 0
" "

#x #x
3 45 3 45

3 4 5 3 4 5
[ ] .

On the other hand, we find that

! " ! " ! " ! " ! " ! " ! "

! " ! " ! " #

[ ]3 45 3 45 4 53 5 34 3 54 5 43 4 35

3 45 4 53 5 34 345

œ Ð      Ñ
"

$x

œ Ð   Ñ œ
" "

$ $
.

Hence the exterior product   has the standard structure! "•

# # Aœ 0 • 0 • 0 − ÐY Ñ
"

$x
345

3 4 5 $ .

Just from the definition of the exterior product of forms, we conclude
that the exterior product is , namelydistributive

      . (1.5.3)! " # ! " ! # ! " # ! # " #• Ð  Ñ œ •  • ß Ð  Ñ • œ •  •

Here we have, naturally, considered the addition of forms of the same
degree associative. It is evident that the exterior product so defined is :

! " # ! " # ! " #• Ð • Ñ œ Ð • Ñ • œ • • Þ (1.5.4)

However, the exterior product is not generally . Let us considercommutative
the forms  and . We can show that the relation! A " A− ÐY Ñ − ÐY Ñ: ;

" ! ! "• œ Ð"Ñ •:; (1.5.5)

is valid. Indeed, in order to transform the form  into the form ,! " " !• •
we are compelled to interchange the exterior products  and0 • â • 03 3" :

0 • â • 0 04 4 3" ; : as blocks. To this end, we first put the vector  at the end of
the second sequence by successively interchanging it with vectors 0 ß 0 ß4 4" #

á ß 0  "4; . Every transposition gives rise to the multiplication by . Thus the
form is eventually multiplied by . Since this operation should beÐ"Ñ;
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repeated  times for vectors   we obtain the relation (1.5.5).: 0 ß 0 ß á ß 03 3 3: :" "

It follows now from (1.5.5) that if , we then of course find! A− ÐY Ñ"

! !• œ !Þ
The vector space of -forms  on an -dimensional vector space5 ÐY Ñ 8A5

Y  is not an algebra since it is not closed with respect to the exterior product.
If we use the notation  to denote the field of real numbers, the‘ Aœ ÐY Ñ!

sequence of spaces  starts then with  and ends with . LetA A A5 ! 8ÐY Ñ ÐY Ñ ÐY Ñ
us now define a vector space  by the following direct sum:AÐY Ñ

A A A A AÐY Ñ œ ÐY Ñ Š ÐY Ñ Š ÐY Ñ Š â Š ÐY Ñ! " # 8 . (1.5.6)

It is obvious that the vector space  now becomes an algebra under theAÐY Ñ
exterior product. In other words, for all forms  we find! " Aß − ÐY Ñ
! " A A• − ÐY Ñ ÐY Ñ. We call the algebra  as the . However,exterior algebra
this vector space is constructed as a direct sum of some linear vector spaces.
Therefore, it is called a .graded algebra 

We are now going to show that the -forms ,5 0 • 0 • â • 03 3 3" # 5

" Ÿ 3  3  â  3 Ÿ 8 ÐY Ñ" # 5
5 constitute a basis for the vector space .A

To this end, it suffices to prove that those forms are linearly independent.
With arbitrary scalars , let us write!3 3 â 3" # 5

"
"Ÿ3 3 â3 Ÿ8

3 3 â3
3 3 3

" # 5

" # 5
" # 5! 0 • 0 • â • 0 œ !

Let us choose an arbitrary index set of  distinct numbers  out5 Ö3 ß 3 ß âß 3 ×w w w
" # 5

of the set . Let the index set of  natural numbers that isÖ"ß #ß á ß 8× 8  5
the complement of this subset with respect to the set  be theÖ"ß #ß á ß 8×
subset . The exterior product of the foregoing expression byÖ4 ß âß 4 ×w w

5" 8

the -form  will beÐ8  5Ñ 0 • â • 04 4w w
5" 8

"
"Ÿ3 3 â3 Ÿ8

3 3 â3
3 3 3 4 4

" # 5

" # 5
" # 5

w w
5" 8! 0 • 0 • â • 0 • 0 • â • 0 œ !.

However, the set  is the complement of the set Ö4 ß âß 4 × Ö3 ß âß 3 ×w w w w
5" 8 " 5

with respect to the set . Consequently, all terms in the aboveÖ"ß #ß á ß 8×
sum except the one corresponding to those indices vanish because at least
two basis vectors (actually -forms) would be equal. We thus see that only"
the term

! !3 â3 3 â3
3 3 4 4 " 8

w w w w
" "5 5

w w w w
" 85 5"0 • â • 0 • 0 • â • 0 œ „ 0 • â • 0 œ !

survives in that zero form. The value of that form on  linearly independent8
vectors  is given by? ß ? ß á ß ? − Y" # 8
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Z Ð? ß ? ß á ß ? Ñ œ !8
" # 8 3 â3! w w

" 5
.

Since  we find that . Since the choice ofZ Ð? ß ? ß á ß ? Ñ Á ! œ !8
" # 8 3 â 3! w w

" 5

indices is entirely arbitrary, we conclude that all scalar coefficients must
vanish. Hence, the set of forms Ö0 • â • 0 À " Ÿ 3  â  3 Ÿ 8×3 3

" 5
" 5

constitutes a basis for the vector space . The cardinality of this set isA5ÐY Ñ

Š ‹ Š ‹8 8

5 5
ÐY Ñ œ implying that the dimension of the vector space  is A5

8x

5x Ð8  5Ñx
ÐY Ñ. The basis of the vector space , which is defined by theA

direct sum (1.5.6), is clearly determined by the union of bases of component
vector spaces. Since the basis of the vector space  is , the basis ofA!ÐY Ñ "
AÐY Ñ is prescribed by

Ö"×  Ö0 ×  â  Ö0 • â • 0 À 3  â  3 ×  â  Ö0 • â • 0 ×3 3 3 " 8
" 5

" 5 .

Therefore the  on a vector spacedimension of the exterior algebra AÐY Ñ
Y Ð8Ñ is given by the integer

R œ œ #
8

5
"Š ‹
5œ!

8
8. (1.5.7)

We say that a -form is a  if it is expressible as an exterior5 simple form
product of  linearly independent -forms, that is, if a -form is simple it5 " 5
can be written as follows

= = = = = A = Aœ • • â • ß − ÐY Ñß − ÐY ÑÐ"Ñ Ð#Ñ Ð5Ñ Ð3Ñ " 5 (1.5.8)

where . We thus obtain= =Ð7Ñ 3
3
Ð7Ñ

œ 0 ß 7 œ "ß #ß á ß 5

= = = =œ â 0 • 0 • â • 0 œ 0 • 0 • â • 0
"

5x[ ]3 3
Ð"Ñ Ð5Ñ 3 3 3 3 3 3

3 3 â3" 5

" # " #5 5
" # 5

.

Here the scalar numbers   are components of the= = =3 3 â3 3 3
Ð"Ñ Ð5Ñ

" # 5 " 5
œ 5x â[ ]

form . The value of a simple -form on  linearly independent vectors = 5 5 ? ß"

? ß á ß ? − Y# 5  can now be evaluated as follows

= = =Ð? ß ? ß á ß ? Ñ œ â

? ? â ?

? ? â ?

ã ã ã

? ? â ?

" # 5 3 3
Ð"Ñ Ð5Ñ

" #
3 3 3

5

" #
3 3 3

5

" #
3 3 3

5

" 5

" " "

# # #

5 5 5

â ââ ââ ââ ââ ââ ââ ââ ââ â
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œ œ

? ? â ?

? ? â ?

ã ã ã

? ? â ?

â ââ â â ââ â â ââ â ââ â ââ â ââ â ââ â ââ â ââ â

= = =

= = =

= = =

3 3 3
Ð"Ñ Ð"Ñ Ð"Ñ

" #
3 3 3

5

3 3 3
Ð#Ñ Ð#Ñ Ð#Ñ

" #
3 3 3

5

3 3 3
Ð5Ñ Ð5Ñ Ð5Ñ

" #
3 3 3

5

" " "

" " "

# # #

# # #

5 5 5

5 5 5

ââââââ

= = =

= = =

= = =

Ð"Ñ Ð"Ñ Ð"Ñ
" # 5

Ð#Ñ Ð#Ñ Ð#Ñ
" # 5

Ð5Ñ Ð5Ñ Ð5Ñ
" # 5

Ð? Ñ Ð? Ñ â Ð? Ñ

Ð? Ñ Ð? Ñ â Ð? Ñ
ã ã ã

Ð? Ñ Ð? Ñ â Ð? Ñ

1.6. RANK OF AN EXTERIOR FORM

Let us consider a form  on an -dimensional vector space= A− ÐY Ñ 85

Y  (unless stated otherwise we shall always consider a finite dimensional
vector space):

= =œ 0 • 0 • â • 0
"

5x
3 3 â3

3 3 3
" # 5

" # 5 . (1.6.1)

We now choose a certain linear combinations of reciprocal basis vectors in
the dual space  as followsY ‡

1 œ - 0 ß 3 œ "ß #ß á ß 8à œ "ß #ß á ß 7! !
3

3     . (1.6.2)!

- 13
! ! are some scalar coefficients. We shall assume that the vectors  are

linearly independent. In other words, the rank of the rectangular matrix  Ò- Ó3
!

should be . Therefore, the transformations (1.6.2) will be meaningful if7
only . Let us suppose that these transformations reduce the form7 Ÿ 8
(1.6.1) into the following -form5

= Hœ 1 • 1 • â • 1
"

5x
! ! !

! ! !
" # 5

" # 5
â .

The least integer  found in this fashion, that is, , is called the7 < œ 7min
rank of the form . In order to determine the rank of a form, we have to=
look for the nontrivial, linearly independent solutions of the following ho-
mogeneous equations

=3 3 â3
3 3 ‡

" # 5
" "2 œ ! 2 − Y,   . (1.6.3)

If we find linearly independent  solutions  8  < 2 ß + œ <  "ß <  #ß á ß 8+

we can then write . Hence, the rank of the rec-2 œ 2 ß œ "ß #ß á ß <! !# !+
+

tangular matrix  must be  for vectors  to be Ò Ó < 2#+
! ! linearly independent

among themselves. We will see that this number denotes also the rank of the
form . If , then we clearly get  . In this case,= < œ 8 2 œ !ß 3 œ "ß #ß á ß 83

we cannot reduce the number of basis vectors or forms appearing in (1.6.1).
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Let us now assume that the rank of the form is satisfying the condition
<  8. It follows from equations (1.6.3) that

= = = # =! !
! !

3 â3 +3 â3 3 â3 +3 â3
+ +

+# # # #5 5 5 5
2  2 œ Ð  Ñ2 œ !.

Since we supposed that the vectors  are linearly independent, we then see2+

that the relations

= # =!
!

3 â3 +3 â3+# #5 5
 œ !ß (1.6.4)

where  should be satisfied. Let us+ œ <  "ß á ß 8à 3 œ "ß á ß 8à 7   #ß7

now define the linearly independent vectors

1 œ 0  0 ß œ "ß #ß á ß <! ! !# !+
+ (1.6.5)

and insert the vectors  into the first factor in the exterior0 œ 1  0! ! !#+
+

product in (1.6.1). In the first step we obtain

= =

= =

= # =

=

œ 0 • 0 • â • 0
"

5x

œ Ð 0  0 Ñ • 0 • â • 0
"

5x

œ Ð1  0 Ñ  0 • 0 • â • 0
"

5x

œ
"

5x

3 3 â3
3 3 3

3 â3 + 3 â3
+ 3 3

3 â3 + 3 â3+
+ + 3 3

3 â3

" # 5
" # 5

" # " #5 5
" " # 5

" # " #5 5
" " " " #

"

5

" # 5

!
!

!
! !

!

 ‘
 1  Ð  Ñ0 • 0 • â • 0

œ 1 • 0 • â • 0
"

5x

! !
!

!
!

" " " #
" # " #5 5"

5

" # 5
" # 5

= # =

=

3 â3 + 3 â3+
+ 3 3

3 â3
3 3

‘

where we made use of the relation (1.6.4) in the fourth line. In the second
step, we are led to

= =

= = # =

=

œ  1 • 0 • â • 0 œ
"

5x

 1 • 1  Ð  Ñ0 •0 • â •0
"

5x

œ 1 • 1 • 0 • â • 0
"

5x

3 â3
3 3

3 â3 3 â3 + 3 â3+
+ 3 3

3 â3
3 3

# " 5
" # 5

" # # # $
# " $ # " $ # " $5 5 5#

5

" # $ 5
" # $ 5

!
!

! ! !
! ! ! ! !

! !
! !

 ‘
k .

Continuing this way, we arrive at the following result in the th step5

= =œ 1 • 1 • â • 1
"

5x
! ! !

! ! !
" # 5

" # 5
â . (1.6.6)

This clearly means that the -form  is now generated by basis forms5 =

Ö1 • 1 • â • 1 ×
<

5
! ! !" # 5 . The cardinality  of this set is of course lessŠ ‹
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than the cardinality  of the original basis set. If , i.e., if the rankŠ ‹8

5
< œ 5

of the form is equal to its degree, we get  and the form  can beŒ 5

5
œ " =

represented by

= =œ 1 • 1 • â • 1"â5
" # 5 . (1.6.7)

In order to see this, it suffices to note that one has

= =! ! ! !
! ! ! !

" "5 5
" "5 5

â â "â5
â " 5œ / ß 1 • â • 1 œ / 1 • â • 1  

and . If we write , (1.6.7) now becomes/ / œ 5x 1 œ 1! !
! !

" 5
" 5

â "â5
â ""µ =

= œ 1 • 1 • â • 1µ " # 5 .

We thus conclude that every -form whose rank is equal to its degree can be5
reduced to a simple form. Conversely, if a -form is simple it can be written5
in the form (1.5.8) as follows

= = = =œ • • â •" # 5

where -forms  are of course linearly" œ 0 ß œ "ß á ß 5ß 3 œ "ß á ß 8= = !! !
3

3

independent. Therefore, the rank of the rectangular matrix  must be .Ò Ó 5=3
!

Thus we can state the following theorem:
Theorem 1.6.1. A form  is a simple form if and only= A− ÐY Ñß 5 Ÿ 85

if its rank is equal to its degree. 
We now apply the general approach which we have developed above

to a -form owing to its rather simple structure. We know that an arbitrary#
form  is expressible as= A− ÐY Ñ# Ð8Ñ

= =œ 0 • 0
"

#
34

3 4 (1.6.8)

where   constitutes an antisymmetric  matrix of real numbers. In=34 8 ‚ 8
order to find the rank of the form  we have to determine nontrivial, linearly=
independent solutions  of the homogeneous equations2 − Y3 ‡

=34
42 œ !. (1.6.9)

Since  is an antisymmetric matrix, its rank is always an even number,=34

say,  where  is a positive integer. Therefore, the dimension of the< œ #7 7
null space of the linear operator represented by the matrix , or the=34

number of linearly independent vectors spanning this subspace would be
8  #7 #7 8. In other words,  vectors out of  vectors satisfying the
equations (1.6.9) are expressible as linear combinations of the remaining
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8  #7 #7 8 vectors. Thus the rank of the form  becomes . If  is an even=
number, it may happen that the rank of the form may be equal to . In this8
case, it will not be possible to reduce the form. However if  is an odd8
number,  will, of course, always be smaller than . Consequently, in this#7 8
case a -form is always reducible.#

Example 1.6.1. Let us first begin with a relatively simple case of
8 œ $ #. By using the essential components, we can express a -form by the
following expression

 = = = =œ 0 • 0  0 • 0  0 • 0"# "$ #$
" # " $ # $.

Obviously the rank of this form is . Indeed, the equations  are# 2 œ !=34
4

now written in the form

= =

= =

= =

"# "$
# $

"# #$
" $

"$ #$
" #

2  2 œ !

 2  2 œ !

 2  2 œ !

whence we deduce by the assumption  that="# Á !

2 œ 2 ß 2 œ  2" $ # $#$ "$

"# "#

= =

= =
   .

Let us now define -forms"

1 œ 0  0 ß 1 œ 0  0" " $ # # $
"#

#$ "$

"# "#
=

= =

= =
ˆ ‰ .

We immediately see that the form  reduces to=

 = œ 1 • 1 è" #  

Example 1.6.2. In order to explore a little bit more complicated case,
let us now choose . By using the essential antisymmetric components8 œ %
we can express a -form as follows#

= = = = =

= =

œ 0 • 0  0 • 0  0 • 0  0 • 0

 0 • 0  0 • 0

"# "$ "% #$
" # " $ " % # $

#% $%
# % $ %.

The rank of the form  can now be either  or . If the rank is ,  is= =% # %
evidently not reducible. Let us consider the equations

= = =

= = =

"# "$ "%
# $ %

"# #$ #%
" $ %

2  2  2 œ !

 2  2  2 œ !
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 2  2  2 œ !

 2  2  2 œ !

= = =

= = =

"$ #$ $%
" # %

"% #% $%
" # $ .

? = = = = = =œ Ð   Ñ"# $% "$ #% "% #$
# is the determinant of the coefficient of

these linear equations. If , then the rank of the form is . If only? Á ! %
? ?œ ! # œ !, then the rank reduces to . When  the solution of the above
homogeneous equations is given by

2 œ 2  2 ß 2 œ  2  2" $ % # $ %#$ #% "$ "%

"# "# "# "#

= = = =

= = = =
  

with the assumption . Hence, the transformations="# Á !

1 œ 0  0  0 ß 1 œ 0  0  0
" "" " $ % # # $ %

"# #$ #% "$ "%
"# "#

= = = = =
= =

’ “ˆ ‰ ˆ ‰
lead to the expression

= œ 1 • 1 è" #.   

It is possible to introduce a  for -forms imposed bycanonical structure #
their ranks.

Theorem 1.6.2.   Let be a -form whose rank is . There exist= # #7
linearly independent -forms  such that  is expressible in the" 1 ß 1 ß á ß 1" # #7 =
following canonical form

= œ 1 • 1  1 • 1  â  1 • 1

œ 1 • 1

" 7" # 7# 7 #7

3œ"

7
3 73"

(1.6.10)

We can easily prove this theorem by resorting to mathematical induc-
tion. By employing the essential components we can write the form  in the=
following manner

= = = =

= = = F

œ 0 • 0  0 • 0  â  0 • 0

 0 • 0  0 • 0  â  0 • 0 

"# "$ "8
" # " $ " 8

#$ #% #8 "
# $ # % # 8 ¯

where  is a quadratic form depending only to basis forms .F̄"
$ % 80 ß 0 ß á ß 0

Let us then rewrite it as follows

= = = =

= = = F

œ 0 • Ð 0  0  â  0 Ñ

 0 • Ð 0  0  â  0 Ñ 

" # $ 8
"# "$ "8

# $ % 8
#$ #% #8 "¯ .

(1.6.11)

If we assume that , we can define -forms  and  by="#
" 7"Á ! " 1 1
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1 œ 0  Ð 0  0  â  0 Ñ
"

1 œ 0  0  â  0

" " $ % 8

"#
#$ #% #8

7" # $ 8
"# "$ "8

=
= = =

= = = .

(1.6.12)

When we insert the forms (1.6.12) into the expression (1.6.11) we conclude
after some manipulations that

= = = =
=

=
= = = = =

F = =
=

œ 1  Ð 0  0 â  0 Ñ • 1 
"

"
Ð1  0  â  0 Ñ • Ð 0  0 â  0 Ñ

 œ 1 • 1  1 • Ð 0  â  0 Ñ
"

 ‘" $ % 8 7"

"#
#$ #% #8

"#

7" $ 8 $ % 8
"$ "8 #$ #% #8

" #$ #8
" 7" 7" $ 8

"#

   

¯

           

              ¯

 1 • Ð 0  â  0 Ñ
"

 Ð 0  â  0 Ñ • Ð 0  â  0 Ñ 
"
=

= =

=
= = = = F

"#

7" $ 8
#$ #8

"#
"$ "8 #$ #8 "

$ 8 $ 8

or

= Fœ 1 • 1 " 7"
".

The new quadratic form  will evidently involve only  number of -F" 8  # "
forms . Thus its rank will be at most . If this number0 ß 0 ß á ß 0 #7  #$ % 8

is not zero, namely, if , we then repeat this operation this time for theF" Á !
form . After repeating this operation  number of times, we reach to theF" 5
conclusion

= Fœ 1 • 1 "
3œ"

5
3 73

5 .

The rank of the quadratic form  depending on  number of -formsF5 8  #5 "
will now at most . Therefore, when we repeat this operation a#7  #5
sufficient number of times the form  will eventually vanish and we shallF5

arrive at the relation (1.6.10). 
Example 1.6.3. We consider a 2-form on a -dimensional vector space%

given by its essential components:

= = = = =

= =

œ 0 • 0  0 • 0  0 • 0  0 • 0

 0 • 0  0 • 0 Þ

"# "$ "% #$
" # " $ " % # $

#% $%
# % $ %

The number  can now be at most . We define as above7 #
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1 œ 0  Ð 0  0 Ñß
"

1 œ 0  0  0

" " $ %

"#
#$ #%

$ # $ %
"# "$ "%

=
= =

= = = .

When , we then easily find that="# Á !

=
= = = = = =

=
œ 1 • 1  0 • 0

 " $ $ %"# $% "$ #% "% #$

"#
.

Let us now write

1 œ 0 ß
 

1 œ 0

# $"# $% "$ #% "% #$

"#
% %

= = = = = =

=

we obtain

= œ 1 • 1  1 • 1" $ # %.

On the other hand, if the relation  is satisfied,= = = = = ="# $% "$ #% "% #$  œ !
then the rank of the form  reduces to  and the canonical form becomes= #

= œ 1 • 1 è" $.   

In view of Theorem 1.6.2, it is now understood that any -form on a#
vector space  whose rank is an even number is always expressible in theY Ð8Ñ

following canonical form

= œ 1 • 1"
!

! !

œ"

7
7 .

< œ #7 1 ß 1 ß á ß 1 is the rank of the form and  are linearly independent" # #7

" #-forms. We now define -forms

= A !!
! !œ 1 • 1 − ÐY Ñß œ "ß #ß á ß 77 # . (1.6.13)

Due to properties of the exterior product we immediately observe that the
relations

= = = = = =! !• œ !ß • œ •! " " ! (1.6.14)

are satisfied. We can now write

= =œ "
!

!

œ"

7

.
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Let us next consider the form . Owing to= = = = A5 #5œ • • â • − ÐY Ñðóóóóóñóóóóóò
5

the commutation rule (1.6.14)  we readily realise that the well known multi-#

nomial expansion

= =

= = =

5

œ"

7 5

5 5 â5 œ5 " # 7
" #
5 5

7
5

œ

œ • • â •
5x

5 x5 xâ5 x

Š ‹"
"
!

!

" # 7

" # 7

(1.6.15)

would be valid just like in the classical algebra. But, if , then we have5  "!

= !!
5

"
! œ !ß œ "ß #ß á ß 7 due to (1.6.14) . Hence only the terms corres-

ponding to  and involving only the exponents 5 œ 5 œ â œ 5 œ " 5" # 7 !

meeting the restriction  will survive. When we take5  5  â  5 œ 5" # 7

5 œ 7, this expansion will of course yield

= = = =7
" # 7

" 7" # 7# 7 #7

œ 7x • • â •

œ 7x 1 • 1 • 1 • 1 • â • 1 • 1 .

Hence  is a simple form. This result should be anticipated because the=7

rank of the form  is equal to its degree. The relation (1.6.15) implies=7

clearly that  if . This scheme suggests a rather simple method=5 œ ! 5  7
to determine the rank of a quadratic form: If , but , then= =7 7Á ! œ !+1

the rank of the quadratic form  is .  If , it then follows from= < œ #7 5  7
(1.6.15) that

= = = =5
" # 7œ 5x Ð ß ß âß Ñ"5-fold exterior products of forms  

whence we deduce with a little care that  is represented by=5

   

 .

= = = =5

œ" œ " œ "

75" 75# 7

œ" œ " œ "

75" 75# 7
7 7 7

œ 5x â • • â •

œ 5x â 1 • 1 • 1 • 1 • â • 1 • 1

" " "
" " "

! ! ! ! !

! ! !

! ! ! ! !

! ! ! ! ! !

" # " 5 5"

" # 5

" # " 5 5"

" " # # 5 5

As an application of what we have obtained so far let us try to answer
this question: under what conditions a quadratic form

= =œ 0 • 0
"

#
34

3 4
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is expressible as , i.e., as an exterior product of two -forms? In= œ 1 • 1 "" #

order to realise this situation, the rank of the form must be , namely, we#
must have , and consequently . This relation then7 œ " œ • œ != = =#

gives rise to

 = = = = =# 3 4 5 6 3 4 5 6
34 56 34 56œ 0 • 0 • 0 • 0 œ 0 • 0 • 0 • 0 œ !

" "

% %
[ ]

or . By making use of the relation (1.4.8), we should note that= =[ ]34 56 œ !
one can write

= = $ = =[ ]34 56 :; <=3456
:;<=

œ
"

%x
.

Moreover, it follows from the definition of the generalised Kronecker delta
that we arrive at the expansion

$ $ $ $ $ $ $ $ $ $ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $

3456 6 5 5 6 6 5
:;<= : ; < = : ; < = : ; < =

3 4
: : : :

5 6

3 4
; ; ; ;

5 6

3 4
< < < <

5 6

3 4
= = = =

5 6

4 3 4 3 4 3

4
:

œ œ  



â ââ ââ ââ ââ ââ ââ ââ ââ ââ â
      6 5 5 6 5 6 6 5 5 6

; < = : ; < = : ; < = : ; < = : ; < =
3 4 3 4 3 3 4 3 4

6 5 6 5 5 6 5 6 6
: ; < = : ; < = : ; < = : ; < = : ; <

3 4 3 4 3 4 3 4 4 3

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

   

         5
=

4 3 3 4 3 4 4 3 3 4
: ; < = : ; < = : ; < = : ; < = : ; < =

6 5 6 5 6 5 6 5 6 5

5 6 5 6 5 6 5 6
: ; < = : ; < = : ; < = : ; < =

4 3 4 3 3 4 3 4

4

          

   



$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $

$
: ; < = : ; < =

3 3 45 6 5 6$ $ $ $ $ $ $ .

Therefore, we obtain

= = = = = = = = = = = = = =

= = = = = = = = = = = =

= = = = = = = = =

[ ]34 56 65 43 56 43 64 53 46 53 54 63 45 63

65 34 56 34 63 54 36 54 53 64 35 64

64 35 46 35 63 45 36 45 43

œ Ð     
"

#%
     

     = = =

= = = = = = = = = = = =

= = = = = =

65 34 65

54 36 45 36 53 46 35 46 43 56 34 56

34 56 35 46 36 45



      Ñ

œ Ð   Ñ
"

$
.

Hence, the conditions which we are looking for turn out to be

= = = = = =34 56 35 46 36 45  œ !.

A non-degenerate quadratic form  with maximal rank on a linear= A− ÐY Ñ#
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vector space  is called a . The maximality of the rankY Ð8Ñ symplectic form
implies that  if the dimension  of the vector space is an even number,< œ 8 8
and  if it is an odd number. Non-degeneracy means that the rela-< œ 8  "
tion  for a vector , or in explicit form, the set of equations=Ð?Ñ œ ! ? − Y

=34
4? œ ! (1.6.16)

has only the trivial solution . If  is an even number, then the maximal? œ ! 8
rank will imply the existence of non-degeneracy. However, if  is an odd8
number, then the maximal rank should be less than  so that equations8
(1.6.16) will be satisfied by a vector . Consequently, the form  will? Á ! =
be degenerate. We thus conclude that a symplectic form can only be defined
on vector spaces with even dimensions.

Exterior forms have several other algebraic properties. However, we
prefer to postpone to treat them on differentiable manifolds later in Chapter
V within a much more general context.

I.  EXERCISES

1.1.  Let  be a linear vector space.  and  are its finite-dimensional sub-Y Y Y" #

spaces.  Show that their sum  is also a subspace whose dimensionÐ+Ñ Y  Y" #

is given by

dim dim dim .ÐY Ñ  ÐY Ñ  ÐY  Y Ñ" # " #

  Find the basis set of the subspace .  Show that the subsetÐ,Ñ Y  Y Ð-Ñ" #

Y  Y Ð.Ñ Y  Y œ Y  Y Ð/Ñ" # " # " # is generally not a subspace.  Show that  . [ ]
Show that  if and only if one of the relations  orY  Y œ Y  Y Y © Y" # " # " #

Y © Y# " are satisfied.
1.2.  is a vector space and  is a given  vector. If  is the field ofY ? − Y! fixed …

scalars over which this vector space is defined, then we introduce two new
operations # and  that can be interpreted as the vector addition and scalar‡
multiplication as follows

? ? œ ?  ?  ? ß ‡? œ ?  Ð  "Ñ?" # " # ! !# ! ! !

 for all  and . Show that the triple #  is also a linear? ß ? ß ? − Y − ÐY ß ß ‡Ñ" # ! …
vector space.

1.3. If  is a positive integer, show that the set  is a linear vector space over8 8

 the field of rational numbers .
1.4. Construct explicitly three subspaces  and  of the vector space Y ß Y Y" # $

$‘
 such that

                                      Y  Y œ Y  Y œ Y  Y œ Ö ×" # " $ # $ !

 but .Y  ÐY  Y Ñ Á Ö ×" # $ !
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1.5. If the subspaces  and  of a vector space  satisfy the relationsY ß Y Y Z" # $

  and , show that we haveY  Y œ Y  Y ß Y  Y œ Y  Y Y Y§" # " $ " # " $ # $

 necessarily .Y œ Y# $

1.6. Let us consider the linear vector space of functions differentiable up to the
 th order on an open interval  of . Show that the necessary and sufficient8 \ ‘
 condition for the set of such functions  to beÖ0 ÐBÑß 0 ÐBÑß á ß 0 ÐBÑ×" # 8

 linearly  independent at the point  is that the following determinant does notB
 vanish at that point

[ ÐBÑ œ Á !

0 ÐBÑ 0 ÐBÑ â 0 ÐBÑ
0 ÐBÑ 0 ÐBÑ â 0 ÐBÑ

ã ã ã ã

0 ÐBÑ 0 ÐBÑ â 0 ÐBÑ

â ââ ââ ââ ââ ââ ââ ââ â
" # 8
w w w
" # 8

Ð8"Ñ Ð8"Ñ Ð8"Ñ
" # 8

.

 The above determinant  is known as the of the set of func-[ ÐBÑ Wronskian 
 tions  [after Polish-French mathematician Josef-Ö0 ÐBÑß 0 ÐBÑß á ß 0 ÐBÑ×" # 8

 Maria Hoëné Wronski (1778-1853)].
1.7. Are the functions  linearly independent ?Ö"ß Bß Bß #Bß #B×sin cos sin cos
1.8. The complex numbers  are satisfying the conditions Ö ß ß á ß × Á! ! ! ! !" # 8 3 4

 when . Show that the set of functions  is linearly3 Á 4 Ö/ À 3 œ "ß #ß á ß 8×!3B

 independent.
1.9. Show that the set  of polynomials with real coefficients whose degrees areT8

 less than or equal to  constitute a linear vector space. Is the subset8

W œ :ÐBÑ − T À :ÐBÑ .B œ ! © Tš ›(8 8
!

"

 a subspace?
1.10. Show that  real matrices constitute a vector space  with7 ‚ 8 Q Ð Ñ78 ‘
 dimension  and determine a basis for this space.78
1.11. A A A square matrix satisfying the relation  is  whereas if itœ T symmetric
 satisfies the relation  it is  is the transposeA A Aœ  T Tantisymmetric. 
 matrix. Show that a symmetric matrix and an antisymmetric matrix of the
 same order are linearly independent.
1.12. Let  be a finite-dimensional vector space and let  be a linearY E À Y Ä Y
 transformation. Show that the following statements are equivalent:

Ð3ÑÞ ÐEÑ  ÐEÑ œ Ö ×

Ð33ÑÞ ÐE Ñ ÐEÑ§

Ð333ÑÞ ÐEÑ Š ÐEÑ œ Y Þ

 .

 .
 

a e

a a

a e

!
#

1.13. E Z is a linear transformation which maps the vector space  into itself. ForÐ8Ñ

 a given basis , let us suppose that the transformation  satisfiesÖ/ ß á ß / × E" 8

 the relations

E/ œ /  /  â  / ß 3 œ "ß á ß 83 " # 8
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 What is the value of  at a vector ? Find the null spaceE @ œ @ /  â  @ /" " 8 8

 and the range of .E
1.14.  and  are vector spaces and  is a linear transformation. Let aY Z E À Y Ä Z
 finite-dimensional subspace of  be . Show thatY Y"

dim dim dimÒEÐY ÑÓ œ Y  Ò ÐEÑ  Y Ó" " "a

1.15. Let  be a convex subset of a vector space . For a finite number of vectorsO Y
  arbitrarily chosen from the set  and for scalars ? ß ? ß á ß ? O   !ß" # 8 3!

  obeying the condition , show that their linear combina-3 œ "ß á ß 8 œ "!
3œ"

8

3!

 tion belongs to , namely, . If  is a linearO ?  ?  â  ? − O E! ! !" " # # 8 8

 transformation from  into a vector space , prove that  maps convex setsY Z E
 in  onto convex sets in .Y Z
1.16. Let  be linear vector spaces and let  and  beY ß Z ß [ E À Y Ä Z F À Z Ä [
 linear transformations. Show that

<ÐFEÑ Ÿ Ö<ÐEÑß <ÐFÑ× 8ÐFEÑ Ÿ 8ÐEÑ  8ÐFÑmin ,     .

1.17. Show that  is a zero vector space if and only if the sequence  isZ ! Ä Z Ä !
 exact.
1.18. Show that the linear operator  is an isomorphism if and only if theE À Y Ä Z

 sequence  is exact.! Ä Y Ä Z Ä !
E

1.19. Let  be an exact sequence where  are finite-! Ä Y Ä Z Ä [ Ä ! Y ß Z ß [
 dimensional vector spaces. Show that dim dim dimÐZ Ñ œ ÐY Ñ  Ð[ ÑÞ
1.20. Let  be an exact sequence where each  is! Ä Z Ä Z Ä â Ä Z Ä ! Z" # 8 3

 finite-dimensional. Show that !
3œ"

8
3

3Ð"Ñ ÐZ Ñ œ !Þdim

1.21.   is a bilinear functional. One can define two kernels or nullg …À Y ‚ Z Ä
 spaces for : the subspace , g a g gY Ð Ñ œ Ö? − Y À Ð?ß @Ñ œ ! a@ − Z × © Y
 and the subspace , .  isa g g gZ Ð Ñ œ Ö@ − Z À Ð?ß @Ñ œ ! a? − Y × © Z
 called a transformation if  and .non-degenerate a g a gY ZÐ Ñ œ Ö × Ð Ñ œ Ö ×! !
 We denote quotient spaces of  and  with respect to these subspaces byY Z
  and , respectively. We define a bilinear functional onY Î Ð Ñ Z Î Ð Ña g a gY Z

 the Cartesian product of these spaces, i.e., f a g a g …œ Y Î Ð Ñ ‚ Z Î Ð Ñ ÄY Z

 by the relation . Show that the functional  is non-f g fÐÒ?Óß Ò@ÓÑ œ Ð?ß @Ñ
 degenerate.
1.22. g …À Y ‚ Y Ä ? ß ? − Y is a symmetric bilinear functional, i.e., for each " #

 one has . Show that  satisfies the g g gÐ? ß ? Ñ œ Ð? ß ? Ñ" # # " polarisation
 identity

% Ð? ß ? Ñ œ Ð?  ? ß ?  ? Ñ  Ð?  ? ß ?  ? Ñg g g" # " # " # " # " # .

 quadratic functionalA real functional  is called a  if it satisfies theU À Y Ä ‘
 relation  for all  and . A quadratic functional isUÐ ?Ñ œ UÐ?Ñ − ? − Y! ! ! ‘#

 derivable from a symmetric bilinear functional in the following manner
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UÐ?Ñ œ Ð?ß ?Ñß ? − Yg .

 Conversely, show that a symmetric bilinear functional can be generated from
 such a quadratic functional through the relation

g Ð? ß ? Ñ œ U  U œ UÐ?  ? Ñ  UÐ?  ? Ñ
?  ? ?  ? "

# # %
" # " # " #

" # " #Š ‹ Š ‹  ‘.

1.23.  Let  and  be linear vector spaces. Show that the tensor products Y Z Y Œ Z
 and  are isomorphic vector spaces.Z Œ Y
1.24. If , show that the equality  is? − Y ß 3 œ "ß #ß á ß 8 ? Œ ? Œ â Œ ? œ !3 3 " # 8

 satisfied if and only if anyone vector is zero, i.e., if  for at least one? œ !3

 1 .Ÿ 3 Ÿ 8

1.25. If ? ß ? − Y ß 3 œ "ß #ß á ß 8 ? Œ ? Œ â Œ ?3 3 " # 8
w
3 , then verify that the equality 

 0 is satisfied if and only if , ,œ ? Œ ? Œ â Œ ? Á ? œ ? −w w w w
" # 8 3 3 3! ! …3

 0,  such that .! ! ! !3 " # 8Á 3 œ "ß #ß á ß 8 â œ "
1.26.  and  are vector spaces, and  and  are subspaces. Verify  Y Z Y Y Z Z§ §" "

 that the relation  is valid.ÐY Œ Z Ñ  ÐY Œ Z Ñ œ Y Œ Z" " " "

1.27. Y Z Y ß Y Y Z ß Z Z§ § and  are vector spaces, and  and  are subspaces.  " # " #

 Verify that the following relation is valid

ÐY Œ Z Ñ  ÐY Œ Z Ñ œ ÐY  Y Ñ Œ ÐZ  Z Ñ" " # # " # " # .

1.28. A -covariant tensor  on a vector space  is called a  if# Yg Ð8Ñ symmetric tensor
  for all , and an  ifg gÐ? ß ? Ñ œ Ð? ß ? Ñ ? ß ? − Y" # # " " # antisymmetric tensor
 . If the set  is a basis for the dual space , weg gÐ? ß ? Ñ œ  Ð? ß ? Ñ Ö0 × Y" # # "

3 ‡

 write . Show that the components of the tensor  must satisfyg gœ > 0 Œ 034
3 4

 the conditions  if it is symmetric, and the conditions  if it is> œ > > œ  >34 43 34 43

 antisymmetric. Show further that these conditions do not depend on the
 choice of bases in .Y ‡

1.29. Show that any -covariant tensor is expressible  as the sum of one# uniquely
 symmetric and one antisymmetric tensor.
1.30. Let  and  be symmetric non-zero tensors on ag fœ > 0 Œ 0 œ = 0 Œ 034 34

3 4 3 4

 vector space . Show that if components of these tensors satisfy theY Ð8Ñ

 equality

> =  > =  > =  > = œ !34 56 36 45 45 36 56 34 ,

 then the relation  is valid. This result is known as > œ Ð> Î= Ñ =34 55 66 34 Schouten's
 theorem [Dutch mathematician Jan Arnoldus Schouten (1883-1971)].
1.31. The components of a -covariant tensor are satisfying the relations#

! ">  > œ !34 43

 where . Show that this tensor must be either symmetric or! " … ! "ß − ß ß Á !
 antisymmetric.
1.32. A -tensor  on a vector space  is explicitly given by$ œ > / Œ 0 Œ 0 Yg 3 5 6 Ð#Ñ

56 3
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g œ  / Œ 0 Œ 0  ' / Œ 0 Œ 0  $ / Œ 0 Œ 0# " #
" # # # # ".

 Find all contracted tensors.
1.33. A mixed -tensor on a vector space  is given by$ Y Ð#Ñ

g œ $ / Œ / Œ 0  / Œ / Œ 0  / Œ / Œ 0" # # # # "
" # #.

 A new basis for  is determined by transformationsY Ð#Ñ

/ œ /  #/ ß / œ /  /w w
" #" # " # .

   Find the components of this tensor with respect to the new basis.
1.34. Evaluate the quantities ,  where the indices/ / ß / / ß / / / /345 345 345 345

678 378 348 345

 take the values ."ß #ß $
1.35. Using the definition of generalised Kronecker delta, show that one can write

Ð+ÑÞ œ 

Ð,ÑÞ œ     

$ = = =

$ = = = = = = =

56
34

34 56 65

678
345

345 678 687 786 876 867 768.

1.36. Find the values of  and .$ $" # â 8" 8
5 5" â 8 " # â 5"

" # â 8
â 8

n+1 n+2 3 n+3  2n
1 2  2n-1 2

1.37. Let the basis and its reciprocal for a vector space  and its dual  beY YÐ8Ñ Ð8Ñ*

 , respectively. Then verify that for , one findsÖ/ ß 0 ß 3 œ "ß á ß 8× " Ÿ 5 Ÿ 83
3

 .0 • 0 • â • 0 Ð/ ß / ß á ß / Ñ œ3 3 3
4 4 4 4 4 â4

3 3 â3
" # 5

" # 5 " # 5

" # 5$

1.38. We consider the following members of the exterior algebra : A !ÐY Ñ œÐ%Ñ

 , , ,! ! " " " # # #"$ #% " % "% #$
" $ # % " % " % # $0 • 0  0 • 0 œ 0  0 œ 0 • 0  0 • 0

  where all coefficients are scalars.) ) )œ 0 • 0 • 0  0 • 0 • 0"#$ #$%
" # $ # $ %

 Evaluate the forms  ,  , Ð+Ñ •  •  Ð,Ñ • $ •  # • Ð-Ñ! " " # ) ! ! # # ) "
 ." ) ! #•  •
1.39. Let us consider the forms . Show that one can write! A " A− ÐY Ñß − ÐY Ñ# "

Ð • ÑÐ? ? ß ? Ñ œ Ð? ? Ñ Ð? Ñ  Ð? ? Ñ Ð? Ñ  Ð? ? Ñ Ð? Ñ! " ! " ! " ! "" # $ " # $ " $ # # $ ", , , ,

 for all , .? ? ß ? − Y" # $

1.40. If we choose to omit the factor  in the definition (1.4.11) of an exterior"Î5x
 form , show that the exterior product of such types of forms turns= A− ÐY Ñ5

 out to be no longer associative.
1.41. Let us consider an exterior form ,  on a vector space= A =− ÐY Ñ Á !8" Ð8Ñ

 . Show that the forms  satisfying the equality  constitute anY • œ !Ð8Ñ ! ! =
 -dimensional subspace of  and there exist -forms Ð8  "Ñ ÐY Ñ " ß ß á ßA ! !Ð8Ñ " #

  such that  is expressible as .! = = ! ! !8" " # 8"œ • • â •

1.42. If  is finite-dimensional, then show that the vector spaces  andY ÐY Ñˆ ‰A5 ‡

  are isomorphic.A5 ‡ÐY Ñ
1.43. The exterior form  is given by= A− ÐY Ñ$ Ð%Ñ

            .= œ + 0 • 0 • 0  + 0 • 0 • 0  + 0 • 0 • 0  + 0 • 0 • 0" # $ %
" # $ " # % " $ % # $ %

 Find its rank and its reduced form . 




