CHAPTER 1

EXTERIOR ALGEBRA

1.1. SCOPE OF THE CHAPTER

An operation that helps us to extend in some way the notion of vectori-
al product in the classical vector algebra to vector spaces with dimensions
higher than three is called the exterior product and a vector space equipped
with such an operation assigning a new vector to every pair of vectors in the
vector space is called an exterior algebra. This operation was introduced in
1844 by German mathematician Hermann Giinter Grassmann (1809-1877).
Thus the exterior algebra is sometimes known as the Grassmann algebra.

We first define in Sec. 1.2 linear vector spaces axiomatically over
which the exterior algebra will be built. Some pertinent attributes of vector
spaces to which we will have recourse frequently are briefly discussed there.
These are concepts of linear independence and basis, linear operators, the
algebraic dual space that is the linear vector space formed by linear func-
tionals over this vector space and some significant properties of dual spaces
of finite-dimensional vector spaces and finally exact sequences. Then, the
multilinear functionals that are mappings from the finite Cartesian product
of vector spaces into the field of scalars that are linear in each of their argu-
ments are considered in Sec. 1.3. It is shown that by properly defining the
operation of tensor product it becomes possible to endow the Cartesian pro-
ducts of vector spaces with a structure of a vector space and it is observed
that multilinear (k-linear) functionals may be expressible in terms of ele-
ments of that space called tensors (contravariant on the vector spaces, co-
variant on their duals). Afterward we investigate briefly in Sec. 1.4 alternat-
ing k-linear functionals that are completely antisymmetric with respect to
their arguments and the operation of alternation which help produce com-
pletely antisymmetric quantities. The generalised Kronecker deltas and Levi
-Civita symbols that facilitate to a great extent the implementation of this
operation are also discussed in detail. The exterior product of vectors are
then defined by means of the operation of alternation on tensor products. It
is then shown that a completely antisymmetric covariant tensor representing
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2 1 Exterior Algebra

an alternating k-linear functional is expressible by using exterior products.
Such a tensor will be called an exterior form. Exterior products of exterior
forms are defined in such a way that two exterior forms generate another
form of different degree. Thus, this enables us to construct in Sec. 1.5 an
exterior algebra over a vector space. This chapter ends in Sec. 1.6 with the
discussion of the concept of rank of a form that makes it possible sometimes
to reduce an exterior form to a simpler structure.

1.2. LINEAR VECTOR SPACES

In order to define a linear vector space abstractly we consider an Abelian
(commutative) group {G,#} [after Norwegian mathematician Niels Henrik
Abel (1802-1829)] and a field {F, 4+, x }.1 is the identity element of the
field with respect to multiplication. A binary operation F x G — G is de-
noted by *. Hence, this binary operation assigns a member axx € GG of the
group to an arbitrary scalar a € F and an arbitrary member = € G of the
group. Furthermore, we shall assume that this binary operation * will obey
the following rules for all o, 5 € F and x,y € G:

(). (a x B)*xx = ax(f*x).
((mg (o + P)xx = (axx)#(fxx), ax(x#y) = (xx)#(axy).
i11). 1xx = .

The algebraic system V = {G,F, #, +, x ,x} satisfying these con-
ditions is called a linear vector space over the field F. Members of the
group are named as vectors whereas members of the field as scalars. The
operation # is known as vector addition and the operation * as scalar
multiplication.

Sometimes it becomes advantageous to replace the field of scalars by a
ring with identity in the system described above. Such an algebraic system
is then called a module. We will have opportunities to deal with modules in
later parts of this work.

As far as we are concerned, the field of scalars IF will either be the real
numbers R or complex numbers C. Accordingly, we shall consider either
real or complex vector spaces. However, in this work, we shall be mostly
interested in real spaces. Moreover, in order to simplify the notation we
prefer to use the same symbol + to designate addition operations both in
the group and in the field while identity elements with respect to these ope-
rations will be represented, respectively, by the symbols O and 0. Usually,
we shall not use any symbol for scalar multiplication as well as for the pro-
duct of two scalars of the field by adopting the familiar convention employ-
ed in the multiplication of real or complex numbers. Although one might
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think that representation of different operations by the same symbol would
cause some complications, we should observe that the real nature of these
symbols are unambiguously revealed within the context of expressions in
which they are involved. Thus it is unlikely that misinterpretations may ever
arise concerning these operations. Nevertheless, a much more detailed
definition of a linear vector space can also be given as follows.

I. + is a binary operation on a set V, whose members are called
vectors, having the following properties:

(i). u+v €V forall u,v € V (closed operation).
(13). u + v = v+ u for all u,v € V (commutative operation).
(i31). (u +v) + w = u + (v + w) for all u,v,w € V (associative operation).
(iv). There exists an identity element O € V such that u + 0 = .
(v). There exists an inverse element — v €V foreachu € V
such that uw+ ( — u) = 0.

These properties are tantamount to say that the set V is an Abelian group
with respect to the operation + . The element O is called the zero vector
and u + v is called the vector sum of vectors u and v. We usually employ
the abbreviated notation u — v to denote u + (—v).

II. Let F be a field of scalars. Scalar multiplication over the Abelian
group V' is so defined that it satisfies the following relations:

Forall o, 8 € F and u,v € V we have

(7). au € V (closed operation).

(77). (afB)u = a(Pu) (associative operation).

(731). (o + B)u = au + Pu, a(u + v) = au + av (distributive operation).
).

(iv).1-u=u.

Here 1 is the identity element of the field of scalars with respect to the
multiplication. We call the set V satisfying all axioms in 1 and 11 a linear
vector space over the field F.The scalar multiplication is represented by
the symbol - although we would often prefer to omit it.

We can deduce some fundamental properties of linear vector spaces
from the foregoing axioms:

(a). fwewriteu=1-u=(140)-u=1-u+0-u=u+0-u, we
immediately obtain

0-u=0
forallu € V.

(b).From 0=0-u=(1—-1)-u=1-u+(-1) - u=u+(-1)- u,
it follows that
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(-1)-u= —u
forallu € V.
(¢). Since au = a(u + 0) = au + « - 0, we find that
a-0=0
foralla € F.

Example 1.2.1. Let us consider the set F" where n is a positive inte-

ger. F" is the Cartesian product F X F x --- x [F, . An element v € F" is an
—_—————
n

ordered n-tuple u = (ay,ay,...,q,) where ay,a,...,a, € F. For ele-
ments v = (1, B2, ...,03,) € F" and a € F let us define the vector addition
and scalar multiplication by making use of the operations in the field I as
follows

u+v= (a1 + fr,a2+ Bo, ..., + Bn), au = (ao, s, ..., c0).

It is then straightforward to see that the set F" so equipped is a linear vector
space. The zero vector O € F" is the n-tuple (0,0, ...,0) and the inverse of
the vector u is —u = ( — ay,..., — ay,). With the same rules R" becomes
a real vector space while C” is a complex vector space.

If we increase n indefinitely, the elements of the set F°° are sequences
of scalars given by

u=(o1,Q9,...,0,...).

With the same rules F*° becomes also a linear vector space. |

Example 1.2.2. Let us consider the set F(X,F) of all scalar-valued
functions f : X — F on an abstract set X. We define the sum of two func-
tions in that set and the multiplication of a function with a scalar by the fol-
lowing rules

(i + f2)(x) = fi(z) + fol2), (af)(2) = af(z).

We then see at once that this set acquires the structure of a vector space over
the field F. The zero vector O of this space corresponds naturally to zero
function mapping all members of X to 0. |

Let V be a vector space and U C V' be a subset. If the subset U is a
linear vector space relative to operations in V/, then the subset U is said to
be a subspace of V. Subspaces are sometimes called linear manifolds. It
may easily be verified that the necessary and sufficient conditions for a sub-
set U C V to be a subspace are (i) uj; + ug € U for all uy, up € U and (i4)
au €U for all « € F and uw € U. It is clear that we must have 0 € U.
Every linear vector space has obviously two trivial subspaces: zero
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subspace {0} and the space itself.

As is well known, an equivalence relation R on an arbitrary set X is a
subset R C X2 of the Cartesian product X? = X x X which is reflexive
(x € X = (z,2) € R), symmetric ((z1,72) € R = (z2,71) € R) and
transitive ((z1,22) € R, (x2,23) € R = (z1,23) € R). The set of all ele-
ments of X that are related to an element « € X by the equivalence relation
is called an equivalence class [x]. It is readily seen that gX[x] = X and

equivalence classes are all disjoint sets. Therefore, equivalence classes con-
stitute a partition on the set X. The set X/R = {[z] : x € X} is called the
quotient set with respect to the equivalence relation R.

Let U be a subspace of the vector space V. We define a relation ~ on
V such that u ~ v implies u —v € U for u,v € V. Since u —u=0€ U
we have u ~ u, i.e., the relation is reflexive. If u ~ v, namely ifu —v € U
we obtainv — u = — (u —v) € U and we see that v ~ w, i.e., the relation
is symmetric. On the other hand, if v ~ v, v ~ w, namely, both u —v € U
and v —w € U, we then get u —w =u —v+v—w € U. Hence we find
that u ~ w, i.e., the relation is transitive. We then conclude that the relation
so defined is an equivalence relation. Thus, this relation decomposes the
vector space V' into disjoint equivalence classes. Therefore an equivalence
class, or a coset, associated with a vector v € V is defined as the set

[v]={v+u:YueU}. (1.2.1)

Sometimes the notation [v] = v+ U is also used. We know that the set of
all equivalence classes V /U = {[v] : v € V'} is the quotient set. If we can
devise appropriate rules for the addition of element of this set and for the
scalar multiplication we are then able to endow the quotient set V' /U with a
vector space structure. To this end, we define vector addition and scalar
multiplication on V' /U by the following rules

[v1] + [v2] = [v1 + 9], afv] = [av] (1.2.2)

where the scalar « is an element of the field over which the vector space V'
is defined. The validity of this definition becomes evident if we note that

(1)1 +’LL1) + (’UQ +UQ) = (U1 +U2) +ur +us € [’Ul +U2]
a(v+u) =av+ au € [av)

for all v1,ve € V and w,ui,us € U. The set V /U equipped with such a
structure is called the quotient space, or more accurately, the quotient space
of 'V modulo U . The zero element of this vector space is the coset U = [0]
and the inverse of an element [v] is the coset [—v]. Since an equivalence
class [v] € V /U is assigned to each vector v € V, we can say that there
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exists a surjective mapping ¢ : V. — V /U. ¢ is often called the canonical
mapping of V onto V /U and we can write [v] = ¢(v). Due to definitions
(1.2.2) we immediately deduce that the mapping ¢ must satisfy the relations
d(v1 + v2) = @(v1) + ¢(v2) and ¢(av) = ap(v). Thus the canonical map-
ping is linear [see p. 9]. Obviously, ¢ is not injective in general.

Let U; and U, be two subspaces of the vector space V. We define the
set Uy + U, by

U1+U2:{u:u1+u2:Vu1 €U1,VuQ€U2}§V.

It is straightforward to see that this set is a subspace of V' that is called the
sum of subspaces U; and Us. One must note that the sum of two subspaces
is completely different from their union Uy U Us as sets. It is easy to see that
U; U U, is not in general a subspace. The intersection of two subspaces Uy
and Us is the set of all vectors belonging to both subspaces. It is then prop-
erly denoted by U; N Us. In contrast to the union, one easily observes that
the intersection of two subspaces, in fact, the intersection of a family of sub-
spaces, is again a subspace. The intersection of subspaces cannot be empty
since all subspaces must contain the zero vector. We say that two subspaces
Uy and Us of V' are disjunct if Uy N Uy = {0}.

Let U; and U, be two subspaces of the vector space V' and let the sub-
space U = U; + Uy CV be the sum of these subspaces. If there corre-
sponds to each vector u € U a uniquely determined pair of vectors u; € U
and uy € U, such that u = w1 + ue, we then say that the subspace U is the
direct sum of subspaces U; and U, and we write U = U; ¢ Us. It is quite
easy to see that the sum U of two subspaces U, and U, is a direct sum of
these subspaces if and only if Uy and U, are disjunct, that is, if and only if
U NU; = {0}

Let V' be a linear vector space and let V; be a subspace of V. If we can
find another subspace V; of V' such that

V=Vielh

any such subspace V; is said to be complementary to V1 in V. It can be
shown by employing the celebrated Zorn lemma [German-American math-
ematician Max August Zorn (1906-1993)] that there exists at least one sub-
space which is complementary to a given subspace of a linear vector space.
However, a complementary subspace is generally not uniquely determined.
It is rather straightforward to observe that the restriction ¢[, of the
canonical mapping ¢ : V' — V/V] is injective, consequently, the function
Bly, : Va — V//Vi is bijective. Therefore, ¢}, is an isomorphism between
the spaces V5 and V' /V;. We thus conclude that any subspace of 'V which is
complementary to a subspace V1 is isomorphic to the quotient space V' /V;.
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This result reflects the fact that all complementary subspaces of Vi in'V are
isomorphic to one another [see p. 10 for the definition of isomorphism].

Let S, = {v1,v9,...,v,} beanon-empty set of a finite, say n > 0,
number of elements of a vector space V. The vector [ formed by the sum

l=o1v1 +agvg + - +ayv, €V

where oy, ao,...,a, € IF are arbitrary scalars is called a linear combina-
tion of the vectors in S,,. We call the set S,, as linearly independent if and
only if the relation

a1v1 + aove + -+ + apv, =0 (1.2.3)

is satisfied when all scalar coefficients vanish, namely, when a; = 0 for all
1 <4 < n. On the other hand, if the expression (1.2.3) is satisfied with
scalar coefficients not all of which are zero, the set S, is called as linearly
dependent. 1f all non-empty finite subsets of a possibly infinite set A C V'
are linearly independent, we say that the set A is linearly independent. In
such a set A no element of A can be expressed as a finite linear combina-
tion of some other elements of A. It is quite clear that a linearly independ-
ent set cannot be empty and cannot contain the zero vector. Let us denote
the subspace which is the collection of all finite linear combinations of
vectors in A by [A]. This subspace is called the linear hull of the set A.

Theorem 1.2.1. 4 subset A of a vector space V is linearly independ-
ent if and only if each vector in the subspace [A] can be uniquely
represented as a finite linear combination of vectors in the set.

Let the set A be linearly independent and let us assume that a vector
v € [A] is expressible as two different finite linear combinations of vectors
in A. But we can of course naturally combine vectors appearing in the first
and the second representations into a single finite set such as vy, vo, ..., vs.
We can then write

k k
v= E QU = E Bivi
i=1 i=1

where some of scalar coefficients {c;} and {5;} may of course be zero. It

then follows from the above expression that
k

Z(ai —Bi)vi =0

i—1
which yields o; = 3; for all 1 < i < k since all of the vectors involved are
linearly independent. Hence the vector v has a unique representation. Con-
versely, let us assume that every vector in the subspace [A] has a unique
representation in the form of finite linear combination of vectors in A. Since
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the set A is also contained in [A] this uniqueness should also be valid for all
vectors in A. This simply means that any element of .4 cannot be express-
ible as a linear combination of other vectors in A. Hence A is a linearly
independent set. O

If the linear hull of a linearly independent subset BB of a vector space V'
is the entire space V/, that is, if [B] = V/, then the set B is called a basis for
the vector space V. In this case, every vector v in the vector space is ex-
pressible in exactly one way as a finite linear combinations of some vectors
in B. Therefore, each vector v € V' can be represented by the sum

v = Zcu(v)e,\ (1.2.4)
e\eEB

where scalar coefficients o) (v) € F that are determined uniquely for any
given vector v do not vanish only for a finite number vectors ey € B and
they are called components of the vector v with respect to the basis 5. The
basis 3 might be an infinite, even uncountably infinite, set but the expres-
sion (1.2.4) must involve only a sum of finite number of vectors that may of
course be different for each vector v € V. Such a basis, if it exists, is called
an algebraic basis or Hamel basis because it was first introduced, albeit in a
limited framework, by German mathematician Georg Karl Wilhelm Hamel
(1877-1954). We can also readily show that a linearly independent set B of
V' is a basis if and only if it is maximal with respect to linear independency.
Here the term maximal is used to indicate that every subset of V' containing
the set B is linearly dependent. One can prove by resorting to the Zorn
lemma that every non-zero vector space has an algebraic basis. However,
like almost every proposition based on Zorn lemma, we have no algorithm
at hand to determine such a basis although we definitely know that it exists.
Furthermore, we cannot say that there exists a unique basis.

It is now quite clear that a non-zero vector space V' might possess sev-
eral, possibly infinitely many, bases. But it can be shown that all Hamel ba-
ses have the same cardinality. This cardinal number is called the dimension
of the vector space V' and is denoted by dim (V). If V' = {0} we adopt the
convention that its dimension is 0. If the dimension of a vector space is a fi-
nite integer, then this space is finite-dimensional, otherwise it is infinite-
dimensional. In this work, we shall mostly be dealing with finite-dimen-
sional vector spaces. When we would like to underline this fact we shall
usually write, say, V.

In a vector space V, the line segment joining two vectors v and v is
defined as the subset {au+ (1 —a)v:0<a <1} CV. A non-empty
subset A of a vector space V' is called a convex subset if it contains every
line segments joining any pair of vectors u,v € A. In other words, a set
ACYV is a convex set if {au+(l—a)v:0<a<1}CA for all
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u,v € A. If Ais a subspace of V, it is clear that it becomes automatically a
convex set.

Example 1.2.3. Let us consider the vector space F" introduced in
Example 1.2.1 and define the vectors ey, €9, ..., e, € F" as

e = (1,0,...,0), es = (0,1,...,0), ..., e, = (0,0,...,1).

It is obvious that an arbitrary vector u = (aq, @, ..., a;,) € F" can now be
expressed by the following linear combination

U= «aie; + agses + -+ + aue,.

From the definitions of vectors eq, €9, ..., €, we see at once that the relation
ajey + ageg + -+ ape, = (g, a9, ...,0,) =0

is satisfied if and only if oy = a3 =--- =, = 0. Hence the set B =

{e1,€e9,...,e,} C F" is linearly independent and all linear combinations of

vectors in B generate the vector space F”. Hence B is an algebraic basis for
F". Since the cardinal number of the set 53 is n, the dimension of the vector
space F" is n.

On the other hand, if we consider the vector space > we can easily
verify that the countably infinite set {e;, €2, ..., €,,... } C F> where

er =(1,0,...,0,...), ...,en = (0,0,...,0,1,0,...),...

are linearly independent and any vectoru = (aq, ag, ..., ay, ... ) is unique-
ly represented by

00
u = E p €.
n=1

However, it is quite evident that each vector u € F* cannot be expressed as

a finite linear combinations of vectors ej, es,...,e,,.... Therefore, the
countably infinite subset {e1, €2, ..., €,,... } C F* cannot be a Hamel basis
for the vector space F*°. |

If a function A : U — V between vector spaces U and V' defined on
the same scalar field IF possesses the properties

Auy +ug) = A(ur) + A(uz) €V, A(au) = aA(u) €V

for all w,uy,us € U and o € F, then it is called a linear operator or a
homomorphism since it preserves algebraic operations. It is evident that all
linear operators of this kind constitute also a vector space £L(U, V). If the
inverse linear operator A™! : V — U exists, then A is a regular linear
operator. The null space of a linear operator A is the subspace N(A) =
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{ueU:Au=0} CU and its range is the subspace R(A) ={ve V :
Au=v,Yu € U} C V. Sometimes N (A) is denoted by Ker (A), kernel of
A, and R(A) by Im (A), image of U under A. We see that N'(A) = {0} if
A is injective and R(A) = V if it is surjective. The necessary and sufficient
condition for a linear operator to be regular is that it has to be bijective, i.e.,
N(A) = {0} and R(A) = V. A bijective linear mapping between two vec-
tor spaces preserving operations is called isomorphism and such spaces are
said to be isomorphic. 1t is straightforward to see that compositions of
isomorphisms is also an isomorphism. It is a simple exercise to show that if
A :U — V is an isomorphism and the set B C U is an algebraic basis for
U, then the set A(B) is an algebraic basis for V.

The rank r(A) of a linear operator A : U — V is the dimension of its
range and its nullity n(A) is the dimension of its null space. Let N4 be a
complementary subspace of the null space N'(A) in U so that one writes U

= N(A) ® N4. We consider the restriction AT = A w, of the linear trans-

formation A to the subspace N 4. Each vector u € U is now expressed as a
unique sum u = u; + up where u; € N'(A) and uy € Ny. We immediately
notice that R(A") = R(A). Next, let us assume that ATuy = 0. We thus
have Au = Au; + Auy = Auy = ATuy = 0. In consequence, we see that
ug € N(A). But, N(A)N Ny = {0}, therefore, it follows that uy =0
which means that the restriction of a linear transformation to the comple-
mentary subspace of its null space is injective, hence it is an isomorphism of
N4 onto R(A). Consequently, if the set By is a basis for N4, then AT(By) is
a basis for R(A). We thus conclude that if U is an n-dimensional vector
space, then R(A) has to be finite-dimensional so that one gets the simple,
but rather useful, relation

dim (U) = n =n(A4) +r(A4).

If linearly independent vectors ey, ..., e, € U™ are chosen as a basis
for a finite-dimensional vector space, then each vector v € U™ is uniquely
expressible as

u=are; +aes+--+aye, o€l 1<i<n.

Let us denote a = (ay,a9,...,a,) € F". We then see that there exists a
mapping F : U™ — F” determined by the relation F(u) = a. We deduce
immediately from definition that F' is a bijective linear operator. We thus
conclude that the spaces U™ and F" are isomorphic.

Let U be a vector space defined over a field of scalars F. A linear
operator f : U — F that assigns a scalar number f(u) to each vector u in U
is known as a linear functional. The term functional was coined by French
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mathematician Jacques Salomon Hadamard (1865-1963) in 1903. The linear
vector space U* = L(U,F) formed by linear functionals is called the dual,
or more appropriately the algebraic dual, of the vector space U.

Consider vector spaces U™ and V(") with bases {e;} and {f;} res-
pectively. Let A : U — V be a linear operator. We can then write

v=Au = A(iu%» = Zm:uiAei = ZZUIG% Z 7f]
i=1 i=1

i=1J=

m .
from which it follows that v/ = > alu’,j=1,...,n. This relation is
i=1
expressible in the matrix form v = Au where A is the m X n matrix [af | and
u, v are column matrices [u'], [v/]. The matrix A is a representation of the
linear operator A with respect to some chosen bases in U and V.
Let us now consider a finite-dimensional vector space U ™). If a basis
of this space is {e1, €2, ..., €,}, then every vector u € U is written as u =
n

S u'e; where u' € F. The value of a linear functional f € U* on a vector u
i=1
can now be evaluated as follows:

=3 S =Y i) =YW e F (1.25)
i=1 i=1 i=1

where the scalar numbers «; are prescribed by
ozz;:f(e,;) elF, 1=1,...,n. (1.2.6)

This means that the action of any linear functional on a vector v is com-
pletely determined by an ordered n-tuple a = (a1, ag, ..., ) € F". Thus,
there is a mapping 7" : U* — F" such that T'(f) = a. If T'(f1) = a1, T(f2)
= ay, we then deduce from (1.2.5) that T'(f; + f2) = a1 + as, T(af) =
aa. Hence, T' turns out to be a linear operator. Each ordered n-tuple of
scalars (aq, o, ...,q,) determines a linear functional f. Therefore 7' is
surjective. On other hand if 7'(f1) = T'(f2) = awe find T'(f; — fo) =0 =
(0,0,...,0) and (1.2.5) leads to the conclusion that (f; — f2)(u) =0 for
all w € U™ This simply implies that f; — fo =0 or f; = fo. Thus 7T is
injective. Consequently, the linear operator 7" is bijective. This indicates
that the vector space U™ is isomorphic to F" just like the space U™. Since
isomorphic spaces must have the same dimension, the dimension of the
space U™ is also n. Furthermore, U* and U™ must be isomorphic to one
another because they are isomorphic to the same space F”. Let us now
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consider n linearly independent vectors (0, ..., 1,...,0),i =1,...,n in the
7

vector space F” such that in the ith vector only its ith entry is 1 and all the
others are zero. We can then obtain n linear functionals f'e€ U*, ¢ =

1,...,n corresponding to those vectors in F" through the isomorphism
T-':F" - U".
The definition (1.2.6) leads now to relations
file)) =06, i,j=1,2,....n (1.2.7)

where 6; denotes the Kronecker delta [it is so named because it was first

introduced by German mathematician Leopold Kronecker (1823-1891)]. It
is equal to 1 if ¢ = j and to 0 if ¢ # j. Hence, it essentially represents the
n x n unit matrix. The set of linear functionals { '} so obtained is linearly
independent. To see this, we consider the zero functional given by

affteaf’++af +Faf =0
where c1,ca,...,c, € F. Because the value of this functional on the basis

vectors e, 7 = 1,...,n of the vector space U must be zero, we obtain

n n

Zcifi(ej)ZZci(S;:cj:O, j=12....n

i=1 i=1

This means that all linear functionals f!, f2,..., f" are linearly independent
and constitute a basis for the dual space U* since its dimension is n. Hence,
an arbitrary linear functional f € U* can now be uniquely represented in
the following form:

n
:Zaifl, o €F, i=1,...,n.
i=1

Let {ey, o en} be the basis in U which we have employed to generate the
basis { f'} C U*. Then the value of a functional f C U* on a vector u € U
can be calculated as follows

n n n n n
DD NTTIBED 9 SNLES ST
=1 j= i=1 j= i=1
which is the same as (1.2.5). We easily observe that the relations

filw) =, fle) =0y (1.2.8)

are satisfied.
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The two foregoing ordered sets of basis vectors { f1, f2,..., f"} of U*
and {ej,eq,...,e,} of U are called dual (or reciprocal ) bases. In view of
the relations (1.2.7), we may also say that they form a set of biorthogonal
bases.

Sometimes it proves to be more convenient to use the notation < f, u>
instead of f(w). This symbolism is known as the duality pairing and it is
clear that it describes a mapping < oy > : U* x U — T which may be call-
ed a bilinear functional or a bilinear form due to the obvious reason that
this functional has the following properties:

{fi + fosu) = {fi,u) + (fo, u), (1.2.9)
<f,u1 +U2> = <f,u1> + <f,u2>,
(af,u) = (f,au) = aff,u).

With this notation (1.2.7) can be rewritten as

(f' ej) =6 (1.2.10)

n .
Since one can write f(u) = > a;u', it is obvious that if f(u) = 0 for
i=1

all w € U™, we then get oy = - = oy =0, namely, f = 0; conversely, if
f(u) =0 for all f € U*™, we then have to write u' = --- =u" =0 so
that u = 0.

We shall now discuss the change of basis in finite-dimensional vector
spaces. We choose first a basis {e;} in a vector space U and consider anoth-
er basis {e]}. Since both basis are to be linearly independent sets, this ope-
ration is obviously carried out by use of a regular matrix A = [al]] such that

det A # 0 as follows
ej=aje; =Y die, (1.2.11)
1=1

where we have employed the celebrated summation convention proposed by
the great German physicist Albert Einstein (1879-1955). Repeated indices
(usually superscripts and subscripts), that are sometimes called dummy
indices because we can freely rename them without actually affecting the
meaning of an expression, will imply a summation over the range of these
indices. When we would like to suspend this rule we will underline the
relevant indices. Henceforth, we shall always resort to the Einstein summa-
tion convention to simplify the appearance of rather complicated expres-
sions, at least notationally, by dispensing with the symbol >_. It follows
from the relations
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u = ujej = ujaé e =u''e]
that the components of a vector u with respect to the new basis in terms of
old components are given by
u' = aju’. (1.2.12)
Let the reciprocal basis in the dual space U* to the basis {e/} be {f"}.
Hence the value of f € U* on every vector u € U is found as

flu) = u'iag = ujaz- o) = ujoz_,-
from which it follows that

of =blay, {bl}=B=A"" (1.2.13)
On the other hand, when we consider the relations

fiu) = u" = aj! = aj f(u)
that must be satisfied for all vectors u € U we are led to the following trans-
formation rules

fr=alfl, fr=0l (1.2.14)

Let us now consider a sequence of linear vector spaces {V/,} and a
sequence of linear operators A,, : V;, — V.11, that is, homomorphisms, rep-
resented diagrammatically as

Anfl An
o Ve =V = Vi /e (1.2.15)

The sequence V* = {V,,, A,,} is called an exact sequence if R(A,_1) =
N (A,) C V, for all n, This of course requires that A, o A,_; = 0. How-
ever, we observe easily that this condition alone is not sufficient for the
above sequence to be exact. In fact, if v,_; € V,,_1, then A,_;(v,—1)
€ R(A,-1) C V. Since by definition we assume A, (An—1(vy—1)) =0,
we can only infer that A, _1(v,—1) € N(A,) implying merely that R(A,,—1)
C N(A,). If, at each stage, the image of one homomorphism is contained
in the kernel of the next homomorphism, this increasing sequence is called
a cochain complex. Clearly, an exact sequence is also a cochain complex,
but the converse statement is generally not true. Let us consider two
cochains V* = {V,, A,} and U* = {U,, B,,}. A cochain homomorphism
C*:V* = U* is a set of homomorphisms {C,, : V,, — U,} such that the
following diagram commutes for all n:
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AT)
SV D Vi &

\l/ Cn \L Cn-H
B,

n
- Un — Un+1 — ..

We can thus write C,,1 0 A,, = B,, o C, for all n.
An exact sequence of the form

A B
0—U—>V—>W—0 (1.2.16)

is called a short exact sequence. Obviously A is injective because N'(A) =
{0} whereas B is surjective since R(B) = W. Hence, A has left inverses
and B right inverses so that there are homomorphisms L :V — U and
R:W — V such that Lo A =iy, Bo R =1, where iy and ¢, are iden-
tity mappings A simple example to a short exact sequence is provided by
the quotient space V' /U produced by a subspace U C V:

T ¢
0 —>U—>V —=>V/U—0

where Z : U — V is the inclusion mapping, i.e., u=Z(u) € V for all
ueU and ¢ : V — V /U is the canonical mapping [see p. 6]. We know
that N (V' /U) = U so that we may write ¢ o Z = 0.

A salient property of exact sequences is revealed in the following theo-
rem known as the five lemma.

Theorem 1.2.2. Let V* = {V,, A, } and U* = {U,, B,,} be two exact
sequences and C* = {C,, : V,, — U,} be a cochain homomorphism. Let us
consider the five consecutive elements of these sequences corresponding to
n—2n—1Lnn+1ln+2 If C,9,Ch1,Chi1,Chia are isomor-
phisms, then C,, must also be an isomorphism.

The commutativity of the diagram below with rows of exact sequences

An—2 Anfl An An+1
= Ve — Vg — V, — Vn+1 — Vn+2 — ..

\l, Cn—Z \l/ Cn,—l \l/ Cn, \l/ Cn+1 \l, Cn+2
B

n—2 anl Bn Bn+1
c— Upg — Uy — U, — Un+1 - Un+2 —

requires that C), 11 0 A, = B, 0 C, : V;, — U, 1 for each n.
Let us first show that the homomorphism C), is injective. Let v, € V,,
and assume that C,(v,) = 0 € U,,. Then C,,1; (An(vn)) =B, (C’n(vn)) =

0. Since C,41 is an isomorphism, we obtain A,(v,) = 0. Therefore,
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v, € N(A,) = R(A,—1) so that there exists v,_; € V,,_; such that v, =
An—l(vn—l)- Then B, (Cn—l(vn—l)) = Cn(An—l(vn—l)) = Cn(vn) =0
implying that C,,_1(v,—1) € N(B,—1) = R(B,_2) so that we may choose
Up—9 € Uy—g such that B, _o(u,—2) = Cyp—1(v,—1). Since C,_o is an
isomorphism, there exists v,y € V;,_5 such that C,,_(v,,—2) = u,_2. Then,
we obtain Cn,—l (An—Q(vn—Q)) = Bn—2 (Cn—Q(Un—Q)) = Bn—2<un—2) =
Cp-1(vp—1). Because (), is an isomorphism, we get v,,—1 = A, —2(v,—2).
Since A,,_1 0 A,_o =0 because {V),, A,} is an exact sequence, we thus
find 0= A, 1(Ar-2(vn—2)) = Ap_1(vy_1) = v,. Hence, v, =0 which
amounts to say that C,, is injective.

We shall now show that C,, is surjective. Let u,, € U,, be an arbitrary
vector. We then have u,1 = B, (u,) € Upy1. Since Cy4q is an isomor-
phism, there exists a vector v, 11 € Vj,41 so that By, (u,) = Cyi1(vpy1). We
thus have Cn+2 (An+1(vn+1)) = Bn+1 (CnJrl ('Un+1)) = Bn+1 (Bn(un)) =0
because By, 11 o B,, = 0 since {U,,, B,,} is an exact sequence. We thus find
Api1(vpg1) = 0 because C),49 is an isomorphism. Since v, belongs to
the null space of A, 1, then there exists a vector v, € V,, such that v,
= A, (v,) because N (A,4+1) = R(A,). Let us now consider the vector
uy, — Cp(vy,) € Uy,. Recalling that By, (u,) = Cpy1(vn41), We readily ob-
serve that

B, (Un — Cn(vn)) = Bn(un) - B, (Cn(vn))
= Bn(un) - Cn+1 (An(vn))
= Bn(un) - Cn+1(vn+1) =0.

Since u,, — Cy,(v,) € N(B,,), there exists a vector u,_; € U,_; satisfying
the relation u,, — Cy,(v,) = B,,—1(u,—1) and we have u,_1 = C;,—1(v,—1)
for some v,,_; € V,,_1 because C,,_; is an isomorphism. Let now consider
the vector v, + A,,—1(v,—1) € V,,. We can then write

Cn (Un + An71<vnfl)) = Cn(vn) + Cn (Anfl(vnfl))
= Cn(vn) + By (Cnfl(%hl))
= Cn(vn) + Bn71<un71) = Up
implying that C), is surjective. Since this linear operator is both injective
and surjective, then C), is an isomorphism. O
Let V* be a cochain given by (1.2.15) such that R(A,_1) € N (A4,).

The quotient space of N (A,) with respect to its subspace R(A,_1) is the
vector space

H"(V*) = N(A2)/R(Ap_y) = Ker (A,)/Im (A1) (1.2.17)
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H"(V*) is called the nth cohomology group due to the fact that a vector
space is an Abelian group. An element of the vector space H"(V*), called a
cohomology class, is an equivalence class [v,] = {v, + A,_1v,_1} involv-
ing all vectors v,,_1 € V,,_1 where A,v, = 0. We shall now demonstrate the
following theorem commonly known as the zigzag lemma.
Theorem 1.2.3. Let us consider the following short exact sequence
A* B
0 —U*— V" —W*"—0 (1.2.18)

where U® = (U,,d),V* = (V,,,d), W* = (W,,d) are cochains so that d*
=0and A* = {A,}, B* = {B,} are cochain homomorphisms. Then there
exists a homomorphism T : H"(W*®) — H"Y(U®) such that the sequence
r A, B, I 1 Apa
- — H"(U*) — H"(V*) — H"(W*) — H"" (U*) — -+ (1.2.19)
is exact.

We consider the following commutative diagram whose rows are short
exact sequences and columns are cochains:

ld ld ld
A, B,
o—u, —V, — W, —0

Lo Lo La

A'n,+l B7H~l
0= U1 —= Vg1 — Wopp — 0

La La L

An+2 Bn+2
0= Unyz = Voo = Wipp — 0

Lz :ld :ld

We thus infer that for all n, the homomorphism A, is injective and B, is
surjective and R(A,) = N (B,). Similarly, we have R, (d) C N,+1(d) and
this gives rise to cohomology groups H"(U*®), H"(V*), H"(W?*) for all n
along columns of cochains. The linear operator A, :U, — N(B,) =
R(A,) CV, is evidently bijective so that it is an isomorphism, hence its
inverse A.!: N(B,) — U, exists. Equivalence classes in the quotient
space V,,/N(B,,) are given by [v,] = {v, + Anu, : u, € U,}. Then the
operator B, interpreted as B, :V,/N(B,) — W, becomes an



18 1 Exterior Algebra

isomorphism so that one has the inverse B;, 'w,, = [v,]. Therefore, we may
define a linear operator I" by

I'=A,1,0doB," : W, — Uy (1.2.20)

which is unique within the precepts of the cohomology. Due to the commu-

tativity of the diagram, we infer from (1.2.20) that
doT=doA,},odoB,' =A1,0d*cB,' =0.

It straightforward to see that we also get the relation 0 = A, !, o d*o B, 1,

= ["od. Let us now consider a representative w,, of the equivalence class

[wy,] € H"(W?®) so that dw, = 0. We then obtain d(I'w,) = 0. Hence,

Tw, € H"(U*). Thus, T is a homomorphism as follows

r:H"(W*) — H"TY(U*).

Let us take a vector w,, € W,,. Since B, is surjective, there exists a
representative vector v, € V,, of an equivalence class [v,] such that B,v,
= w,. Because we have to consider the cochain W*, let us assume that
wy, € Ny(d) € W, so that dw,, = 0. Due to the commutativity of the above
diagram we find that dB,v, = B,1dv, = 0. Thus, dv, € N (B,41) =
R(A,+1). Since A, is injective, there is a unique vector w,; such that
Api1Unr1 = dv,. It follows from the commutativity of the above diagram
that A, odu,i1 = dA,1up = d*v, =0 so that du,1 € N(A,y2).
Since A, .o is injective, we get du, 11 = 0. Hence, u, 1 belongs to a coho-
mology class. Obviously, it is expressed as u,+; = ['w,,. However, we have
to show that this result is independent of the choice of representative of the
equivalence class. Let us consider another vector v/, € [v,,]. We then must
write v, — v, € N(B,,). Exactness requires that there exists a u,, € U,, such
that A,u, = v, — v),. Now the commutativity of the diagram implies that

Apidu, = dAyu, = d(v, —v)).

It then follows from cochain and exact sequence properties that there are
Unt1, Uy € Upyq such that A, p1upi1 = dv, and A, qul, ;= dv),. Since
A, 11 is injective, the relation A, (uy41 — u;,, — du,) = Oyields du,, =
Unt1 — U, .1, hence we get du,1 = du,,,. Consequently, u,1 and u
belong to the same cohomology class.

We now consider an element w,, = dw,,_1 € W,, where w,,_1 € W,,_1.
Since dw,, = 0, we get w, € H"(W?*). In view of the surjectivity of B,_;
we can write B,,_1v,_1 = w,_1 for a vector v,,_; € V,,_1. Let v,, = dv,,_1
so that dv, = d?v,_1 = 0 € V,,.1. We have seen above that there exists a
unique vector wu,.1 € U, 1 such that A, 1,1 = dv, = 0. Since A, ;1 is
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injective, we have u,41 = 0. This of course implies that all elements in the
equivalence class [w,] € H"(W*) are mapped under the operator I" onto the
same equivalence class [u,1] € H" 1 (U®). Hence, T' is a well defined
operator.

Finally, we have to show that the sequence

T Ay B, T Ant1

L — Hn(U-) — Hn(vu) — Hn(W-) N Hn+1(U-) — ...
is exact. To this end, it suffices to prove exactness at H"(U*). Because, the
sequence is exact at H"(V*) since R(A,)=N(B,) and proof at
H"(W*)may be accomplish in the same fashion. Let [w, 1] € H" }(W*)
and take the element I'[w,_1] € H"(U®) = R,,—1(I") into account. It then
immediately follows from (1.2.20) that A, T'[w,_1] = [dv,—1] = [0] where
[n—1] = B}, [w,-1]. Consequently, we obtain R,_;(T') C N'(4,). Con-
versely, let us now consider an equivalence class [u,] € N(A,) of the
cohomology group H"(U®). Since A,[u,| =[0] € H"(V*), we find that
Aplu,] = [dv,—1]. We then define w,—; = B,_1v,-1 € W,,_; and the
cohomology class [w,_1] € H"1(W?*). Since ['[w,_1] = A, 'dB, ! [w,_1]
= A, 'dB, 1 By [vg-1] = A dvg—] = A An[ug) = [un] € N(Ay),
we see that [u,] is the image of an equivalence class [w,,_1] under I". Thus,
we get N(4,) C R,—1(I") and we finally find R,,_1(I') = N (A,) Hence,
the sequence is exact at H"(U*). We shall not repeat the analysis to prove
exactness at H"(IV°*). O

Finally, for later applications, we have to emphasise the fact that what
we have said so far are equally valid for modules.

1.3. MULTILINEAR FUNCTIONALS

Let (U1, Us, ..., Uy) be ordered k-tuple of linear vector spaces defined
over the same field of scalars F. Let us consider a scalar-valued function
T:Up xUyx--xUp—TF on the Cartesian product of these vector
spaces. If the function 7 (u(), w2, ..., uw)) € F, where u) € Uy, a = 1,
2,..., k, is linear in each one of its arguments, that is, if the following rela-
tions

T(...,oug),...)=aT(...,uz),...),« € F

are satisfied for all 1 < ¢ < k, then the function 7 is called a multilinear
Sfunctional (or a k-linear functional). In finite-dimensional vector spaces

whose dimensions and bases are nq,...,n; and {ega)} ceUyi=1,...,nq,
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RN

a=1,..., k, we can then write u(,) = Zu’éa)ei , without having recourse
i=1

to the summation convention. Multilinearity then leads to the following
value of the functional at vectors u;) € Ui, ug) € Us, ..., up) € Uy

ni N9 Nk

T (u), ug2), ZZ Z% sufhulyul (13.2)

21 17,2
where n; X ng X --- X ny, number of scalar ¢; ,...;, are defined by

tiliz“"ik- = T(ez(ll), 61(»22), ey ff)) eF. (133)
We thus conclude that the set of scalars {¢;;,...;, } completely determines the
action of a k-linear functional on any set of k& number of vectors u;) € Uy,
u) € Uz, ..., uq) € Uy. We can thus say that they unambiguously charac-
terise a multilinear functional.

Let us now suppose that Uy = Uy = --- = U, = U™ . The value of a
multilinear functional 7 : U¥ — F on vectors U(1); U(2), - Uy € U can
now be found from (1.3.2) and (1.3.3) as follows

T (w1, u2)s - (k) = Biyigeoi U} Uy U (1.3.4)

ti :T(eiweiza'- elk) 1 <iy,ig, i <

2102k
where we experience no difficulty in resorting to the summation convention
because the range of all indices is the same now, from 1 to n. In this case,
we can introduce a more advantageous representation of a multilinear func-
tional as an operator. To this end, we shall first introduce the tensor product
of two vector spaces.

Let U and V be two linear vector spaces defined on the same field of
scalars IF. As is well known, the Cartesian product U x V of these spaces is
formed by ordered pairs (u, v) where u € U and v € V. There is initially no
algebraic structure on this product set. However, by making use of known
operations on vector spaces U and V', we may define appropriate operations
on the set U x V so that it may be equipped with a structure of a linear vec-
tor space. The resulting vector space will be called the fensor product of
spaces U and V' and will be denoted by W = U ® V. Let us choose opera-
tions of vector addition and scalar multiplication on W in such a way that
tensor product of vectors u ® v € U ® V has to satisfy the following biline-
arity conditions:

(1) u® (v +v2) =u®v +u vy,
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(7). (u1 + ug) @V =11 ® v+ us Vv,
(13i). (au) @ v =u® (av) = a(u®v), a€cF.

Let us note that the same symbol + in the foregoing expressions rep-
resents, in fact, different addition operations in three different vector spaces
U,V and W. We can thus write

(U1 +u2) ® (V1 +v2) = U1 @ V1 + U1 @ Vg + Uy @ V1 + U ® vo.

The space W is then defined as the collection of all finite sums > u; ® v;

where u; € U and v; € V. If we consider finite-dimensional vector spaces
U™ and V" with respective bases {e;} and {f;}, a vector w € W is
evidently expressible as w = we; ® fj.Hence, W is an mn-dimensional
vector space with a basis {e; ® f;}. The tensor product can evidently be ex-
tended on Cartesian products of arbitrary number of vector spaces.

Let us now consider the n-dimensional dual space U™* of an n-dimen-
sional vector space U. It is quite clear that an element, or a vector, of the
tensor product ® *U* can now be represented by

T =t i ST O 2@ @ [ (1.3.5)

where {f?} is the reciprocal basis in U* corresponding to the basis {e;} in
U. We define the value of the element 7 on an ordered k-tuple of vectors
(u(l), U(2) - ,U(k,)) c U¥ as

T (uqay, - ) = iy ufyy =gy S (e) - (e,)

In view of (1.2.7), we then find that

T(U(1>, U2)y -+ U(k)) = tuwuuﬁ)uzé) ’ uz(k]g)
We immediately see that the above relation leads to (1.3.4); for vectors e;,,
€i,, - - -, €. Hence (1.3.5) does in fact play the part of a k-linear functional
on U* and the tensor product ® ¥U* is the vector space in which such k-
linear functionals inhabit. We say that the elements of this vector space are
k-covariant tensors and the number £ is known as the order of the tensor.
The scalar coefficients ¢;,;,...;, are then called the components of such a
tensor with respect to bases [ @ ---® fi. It is easily observed that the
tensor product ' ® ---® f% of basis vectors constitutes a basis for the
space ® *U*. Indeed the value of the zero element in ® *U*

tiip i S © [P @@ f =0
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on vectors e , €j,, ..., e, € U vanishes naturally so that one obtains
tili?"'ikf“ (eji)fzz (€j2) fl (e]k) tjijyge = 0

for all coefficients. Hence, the dimension of this vector space is n*. Obvi-
ously, the sum of two tensors of the same kind and multiplication of a ten-
sor by a scalar are again the following tensors of the same kind:

T+ ="+t

BEERER 18- Zk)fjl ® fu XX f”‘
ol = (atiliZ'“ik)f“ frg...@ fi.

This is of course a direct consequence of ® *U* being a linear vector space.
We can now naturally define the tensorial product of a k-covariant tensor
and an [-covariant tensor by

T®T () f11® ®flk f]1®®f7l

71 ‘U Jl Ji

The result is obviously a (k + [)-covariant tensor.

Let us now change the basis {e;} in the vector space U to another basis
{e!} as in (1.2.11). We know that the reciprocal basis { '} in the dual space
U* changes to a reciprocal basis { f’*} through the relations (1.2.14). Conse-
quently, the same tensor 7 is represented with respect to two different bases
as follows

T:tjljz j‘fjl fh@ ®f]k_tmz zkflil®f/i2®-..®f’ik
J1J2 kazjllbfzz bg:f/“ X f”2 R ® f”k

from which we immediately deduce that the following rule of transforma-
tion between components of a k-covariant tensor must be valid:

e = OO0t (1.3.6)

leg*--lk 11 "1

In a similar fashion we may define a multilinear (k-linear) functional
on the dual space U* of a vector space. Such a functional 7 : (U*)" — F
assigns a scalar number 7 (f(V, £ .. f(#)) € F to an ordered k-tuple of
linear functionals (f1), f@ ..., f®) € (U*)* and obeys the rules

T fO gD =T D )+T(..,¢%,..)
T(..,oafP, .. )y=aT(...,f%,..),a eF.

By resorting to the reciprocal basis { fiyeur corresponding to the basis

{e;} € U, we can of course write ™ = a!™ fi o™ € F,1<m < k and
we obtain
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T, f0) = el ol (3.)

(e = T(f, f2, L ).

The ensemble of scalar numbers 7% % 1 <, iy, -+, i) <n entirely
determines the action of a multilinear functional 7 on (U*)*. Let us now
define an element in the tensor product ® *U by

T =t e, e, ® - Qe

T is called a k-contravariant tensor. It is evident that the linearly inde-
pendents elements e;, ® e;, ® --- @ e;, constitute a basis for the vector space
® *U. n* number of scalars t11%2" "% are said to be components of this tensor
with respect to bases e;, ® --- ® e;,. Let us define the value of the tensor 7°
on k linear functionals (1), f® ... f*) by the relation

T(fW, & fEy =i g W ) D (e,) - fE)(ey,).
In view of (1.2.6) we find that

T(f(1)7 f(2)7 e f(k)) = tiliz”.ika(l)a@)' . oz(k)

il 2 (23

It is clear that the product of a k-contravariant tensor and an [-contravariant
tensor is a (k + [)-contravariant tensor. We now consider a change of basis
in the vector space U. We then obtain

— b kg R P Q- !
T =t e, Ve, - -Qej =t €, e, Qe

Y I SRR N I N ! !
=1 aj Qg Qg C) ® €y ® ® iy

from which we deduce the following rule of transformation for components
of a contravariant tensor

Fivig--+iy _ 01 d2 Uk gfijer i
t =aja;---a;t . (1.3.8)
We can also easily define tensors of mixed type. A k-contravariant and I-
covariant mixed tensor is an element of the vector space ® *U ® 'U* and
can be written in the form

— gl i, . . J1 J2 Ji
T—tj1_7‘2~--j1621®622®"‘®62k®f PR ® f,
i ein i i o _

tjljz--'jz_T(f :f 7"'>f 761176_727-“76471)7

1 Sil:i%"'?ik Sn? 1 Sjl?j?a”'ajl <n.

The value of this tensor on linear functionals fV), f® ... f#) ¢ U* and
vectors uy), U(),---,uq) € U is given by



24 1 Exterior Algebra

T, W, Uy, -, UQ)) = t;llyzlj‘lal(ll)az(f) . -agf)uﬁ)ug)- : ugé)
It is quite obvious that we do not have to select the ordering in the tensor
products in the foregoing way. We may, of course, consider a different
ordering suchas U @ U @ U* ® U ® U* ® ---. The indices of components
of this type of a tensor occupy accordingly proper upper and lower posi-
tions. It is evident that different ordering of spaces in the tensor product will
give rise to different types of tensors of the same order.

If, in a mixed tensor of order k + [, we remove the tensor product be-
tween the functional f7= and the vector e; , then the relation fin(e; ) = 57“
between reciprocal basis vectors reduces the order of the tensor. We thus
obtain a (k —1)-contravariant and (I —1)-covariant tensor, in other words, a
tensor of order k£ + [ — 2 defined by the relation

7; = t3117z:7]’;eh @ ® einfl ® einJrl Q- ® eik
®f.71 Q- ®f‘7mfl ®f.7m+1 ERE ®fjl.

This operation is called a contraction. The components of the contracted
tensor are given as follows:

g itk i iy dingr i
C¥g1 e Jm—1Jm+1° 1 Jr e Im=1m 1 g1

1.4. ALTERNATING k-LINEAR FUNCTIONALS

Let us consider a multilinear functional w : U¥ — F where U is a fi-
nite-dimensional vector space so that for vectors u; € U, 1 =1,...,k we
have w(uy,us,...,u;) € F. We know from Sec 1.3 that the multilinear
functional w may be represented by a k-covariant tensor. We say that the
multilinear functional w is an alternating k-linear functional or a k-vector
or a multivector if it becomes zero whenever any two of its arguments are
equal. It can be shown that such an alternating multilinear functional enjoys
the following properties:

1. An alternating k-linear functional is completely antisymmetric in the
sense that its value changes only its sign whenever any two of its arguments
are interchanged.

To understand the effect of interchanging the argument vectors u; and
u; let us take into account the expansion

WUty oo, Wi+ Uy o, U+ U, Up) =
W(ULy vy Wiy eeey Wy oo ey UR)
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+w(ur, ..y Uy Uy, U
Fw(ur, .oy Wiy ooy Wiy e, Up)
+w(ur, ..o,y .oy, . uy) = 0.
If we note that the first and the fourth terms in the above expression is zero

by definition, we obtain from the middle lines the following property of
complete antisymmetry for every pair of arguments:

W(UL, ey Wiy ooy Wiy oy U) = — W(ULy ey Uy oy Wiy ey W)

Thus if U = U™, then the value of an alternating k-linear functional on

vectors uy, us, ..., u € U are given by

WU, Uy ooy W) = Wiy U U U (1.4.1)
where the scalars wj;,...;, = w(e;,, €i,,...,€;,) € F are completely anti-
symmetric with respect to k indices i1, i9, - - -, 1), taking the values from 1 to
n. Hence, for every pair of indices the relation

wili..ipi..iq..iik = — wili..iq..iip..iik (142)
is satisfied. It is then straightforward to see that the number of independent
. . n n!
components of such coefficients are given by ( ) = —
k El'(n — k)!

2. The value of an alternating k-linear functional on linearly depend-
ent vectors is zero.

Let us assume that at least one of the k vectors is a linear combination
of the remaining k — 1 vectors. When we expand the functional by employ-
ing multilinearity, we see that it is expressible as a sum of terms in each of
which at least two arguments in the functional are equal. Hence the value of
the functional becomes zero. Consequently if 'k > n all k-linear functionals
on a vector space of dimension n are identically zero.

3. Any alternating n-linear functional on a linear vector space U™
that vanishes on an ordered basis {ey,es,...,e,} of U ") g identically
zero.

If we insert ordered vectors u; = u] ej,i = 1,...,n into the functional,
expand the resulting expression by making use of multilinearity, equate to
zero the terms involving repeated arguments and exploit the property of an-
tisymmetry, we see that the value of the functional is a linear combination
of terms in the form =+ w(eq, ey, ...,¢,). In case w(ey, es,...,e,) =0, the
value of the functional becomes eventually zero on every ordered n-tuple of
vectors.
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We can generate a completely antisymmetric quantity from a quantity
with k indices, say a;,;,...;,, through the alternation mapping. Let us denote
a permutation of indices iy, ..., i by o, (i1,19,...,1). As is well known
the total number of all such permutations is k!. We now introduce the fol-
lowing quantity through the alternation mapping

1 X
iy i) = 717 D (=10, o, (1.4.3)
" m=1
where k(o) =0 if 0,(i1,42,...,1;) is an even permutation whereas

k(om) = 1if it is odd. We know that a permutation is realised by means of
a number of transpositions performed by interchanging successive indices.
A specified permutation is called an even permutation if the number of
transpositions performed is even and odd if that number is odd. We can
immediately verify that the quantity a; ..., 1S completely antisymmetric.
Henceforth, the indices inside a square bracket will always represent the
completely antisymmetric part. As an example, let us consider a quantity
a;j with three indices. We then find that

Qijk] = %(aiﬂc + ki + Qgij — Qikj — Akji — ajik)-
If a;,...;, 1s already completely antisymmetric, then it is clearly understood
that iy iy = Aliyin---iy]-
Since the coefficients w;,;,...;, are completely antisymmetric, only the
completely antisymmetric parts of terms u?u?- . u}j in a k-fold sum as in
(1.4.1) can contribute to the sum so that we can write

WU, Uy ooy U) = Wiy U U - U (1.4.4)
= wiliz...iku[l“u?- . -uZ“].

The components of a completely antisymmetric quantity wj,,...;, whose in-
dices satisfy inequalities 1 < 47 < 19 < --- < i3, < n will be called its essen-
tial components. Because all other components are either zero or determined
by essential components, sometimes, only with a change of sign. The ex-
pression (1.4.4) can then be written in the following form by using essential
components

_ li1, i ir]
wlur, ug, ..., u;) = k! E Wiy i Wy Usy =+ Uy (1.4.5)
1<ii1<io<- - <ip.<n

As an example, we consider a 2-linear alternating functional w(uy,us) =
wijutu} and n = 3. Since w;; = —w;; we obtain at once with k = 2
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1,2 21 1,3
w(ug, ug) = Wizt Uy + woUiuy + Wizt Us

3,,1 2,3 3,,2
+ W31UT Uy + WozU Uy + Wa2U U
1,2 2,1 1,3 3,1 2,3 3,2
= le(UqUQ — U1U2) + W13(U1U2 - U1U2) + WZS(U1U2 - U1U2)

1,2 1,3 2 3
= 2(wpput'ud 4+ wizul'ud + wozulPul))

— (1,2 (2,1 [, 3l
= W12l Uy + WorlUy Uy + W13UT Usy

[3, 1] [2, 3] 3,2]
+ w3ty Uy + wosly Uy + WUy U

= w,;ju[liug].

The operation of alternation can be performed much more systemati-
cally by introducing the generalised Kronecker delta. We shall define in an
n-dimensional space the generalised Kronecker delta of order k < n by
means of the following symbolic determinant

TR i
b G b
19 12 12
6j1j2"‘jk =" P 2 (1'4'6)
i i '751\-,
6.71 6]'2 o 6.7k
where the range of all indices 41,49, ---, 4 and j1, jo, - -+, Ji 1S, of course,

from 1 to n. Since a determinant changes only its sign when we interchange
either its two columns or its two rows we immediately notice that n?* num-
i

e
superscripts or its subscripts so that only the sign of the relevant quantity
changes when we interchange any two of its upper indices or lower indices
and it becomes zero when any two indices in upper or lower positions are
equal. If the indices {1, 49, -, i1} and {j1, J2, - -+, Ji } are not chosen from a
same subset of the set {1,...,n} involving k distinct numbers, then at least
one row of the determinant (1.4.6) is zero owing to the definition of the
Kronecker delta. Hence, the corresponding generalised Kronecker delta van-
ishes. On the other hand, if the upper and lower indices are both even or odd
permutations of the same distinct k£ numbers the generalised Kronecker
delta becomes + 1 whereas it becomes — 1 if one is an even and the other
is the odd permutations of these k numbers. To see this, it suffices to note
that when we choose upper and lower indices from the same set of distinct
indices we can obviously set i1 = ji, i2 = Jo, ..., i = ji by properly inter-
changing row and columns in the determinant, in other words, by properly
permuting upper and lower indices. In this case the determinant reduces
simply to

ber of quantities 62;2 are completely antisymmetric with respect to its
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1 0 0
01 - 0

. | = FL
0 0 1

It is clear that if it is necessary to make either even or odd permutations in
both upper and lower indices then the value of the generalised Kronecker
delta would be + 1. However, if it is required to make even permutation in
one set of indices and odd permutation in the other set the value would, of
course, be — 1. It is clear that if k& > n,the generalised Kronecker delta
becomes identically zero.

Since the generalised Kronecker delta is completely antisymmetric
with respect to both upper and lower indices, it follows from the definition
(1.4.6) that

5i1i2"'ik — k! 5i1 6l2 5;2] _ k'(s[m(szz “6@;]

Jig2: gk 192 g1 Y% Jr *

(1.4.7)

Indeed, we can readily observe this property in two simple examples below
fork=2and k=3

= | | = el - sisl = 268) = 2405
k l
5 G b

S =18 8 61| =066m6n —6,608m + 6mbnd, — Smb; 60
8 Sm 6

6508760 — 5066,
= 318,67 81 = 316 6y -

Consider a quantity A% % with k indices. It is rather straightforward to
see that (1.4.7) leads to the relation

5i1i‘2"‘i]€ Adzdk — o) Alinte-ix] (1.4.8)

JijeJk

Let us now rewrite the expression (1.4.4) defining an alternating k-linear
functional in the form

w(ug, Uz, .. k) = Wiy S () 2 (u2) -+ f* ()

where, as usual, the vectors, or linear functionals {f} C U* constitutes the
reciprocal basis in the dual space with respect to the basis {e;} C U. Thus
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we can represent this alternating k-linear functional acting on an element
(u1,us, ..., u;) of the Cartesian product U* [see (1.3.5)] by the following
expression

W= Wiy [ R R @ ] (1.4.9)

by employing the tensor product. Resorting to the relation (1.4.8) we can
transform the expression (1.4.9) into
1 z Q91 ; P
W= k'w’“? T Jlljj lefjl fre-e
We now define the exterior product, or wedge product, of k basis vectors in
the dual space U™ by the relation
FONFEA A fE =61 g @ f (1.4.10)

Jl]z “Jk
=K e fre. o

We can then represent (1.4.9) in the form

1 A , A
w = Ewili?”ikf“ Aflz/\"'/\flk. (1411)

For instance, we find that
AP =fef-fef,
fNfinfr=fofeoff+feoffof+ffeafef
—feffeof-ffefef-fefef.

It is clear that the exterior product introduced by (1.4.10) is completely
antisymmetric. In view of the representation (1.4.11), we call an alternating
k-linear functional as an exterior form ofdegree k or simply a k-form.
Such a form is obviously a completely antisymmetric k-covariant tensor.
The value of a k-form on linearly independent k vectors wuy, us, ..., u; € U
is given by (1.4.4). However, if we recall the definition of a determinant we
can immediately recognise that a quantity uglulg ukk] is expressible by a

determinant as follows:

i1 i i
ut u U
1 2 k
i iy 123
ket uluiz. UZ”]— e Uy U
Uy Uy Uy

We can thus write
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Y1 N
i ; 1 u? u?
WU, Uy ooy W) = Wiy U U = T Wi i o ¥
frlu)  fr(ug) e f(uk)
1 fo(ur)  f2(ug) - (k)
T Wik : :

fre(u)  frug) oo ()

By employing essential components, we can also transform this expression
into the form

w(ug, ug, ..., up) = Z Wiy V2 (g, ug, .y ug) (1.4.12)
1< <ig << <n

Here
i i i
u1 u2 “1;
19 19 19
VAR (uy ugy ey uy) = |1 2 k (1.4.13)
n i i
Uy Uy Uy,

may be interpreted as the k-dimensional volume! of the projection of k-
dimensional parallelepiped formed by vectors wi,us,...,u; in n-dimen-
sional vector space on a subspace generated by axes i1 < iy < --- < i. AS
an example, let us consider n = 3, £k = 2 and a 2-form

1 ) )
w = 5 wij fl A f]
whose value on vectors u; and ug is given by

wlug, ug) = w1V (ur, ug) + w13V (uy, ug) + wos V2 (uy, ug)

where one identifies the numbers V'2(uy, us) = uiu3 — uud, V'3 (uy, us)

= utud — udud and V2 (uy, up) = vudu3d — udu3 as areas of parallelograms
that are projections of the parallelogram formed by vectors u; and wus in the

3-dimensional space, respectively, on the planes generated by 12-, 13- and

10One must notice the fact that this number does not correspond to the real invariant
geometric volume. As is easily observed, this number is dependent on the selected
basis of the vector space U. But it is non-zero for linearly independent vectors.
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23-axes. We can now say that a k-form defined on an n-dimensional vector
space U makes it possible for us to evaluate certain linear combinations,
with coefficients of that form, of k-dimensional volumes projected onto k-
dimensional subspaces from a k-dimensional parallelepiped formed by &
linearly independent vector in U'.

Let us now consider an n-form as follows

1 . . ,
w = E wiliz...inf“ VAN f7'2 VANERRWAN fz". (1414)
Since the indices have to be permutations of the numbers 1, 2,...,n, the

only essential component is wis...,. In order to express this situation more
systematically we now introduce the Levi-Civita symbol [after Italian math-
ematician Tullio Levi-Civita (1873-1941)] with covariant indices as

0, if any two indices are equal,
€iyiy-i, = & + 1,if indices (i1, ---,4,) is an even permutation of (1,...,n),
— 1,if indices (i1, - -+, 4,) is an odd permutation of (1,...,n),.

The symbol e’ i» with contravariant indices is defined in exactly the same
fashion. On the other hand, it is easy to see that we have the relation

Ciiy-i, €17 = nl (1.4.15)

since each term in the above sum will take the value + 1 for every permuta-
tion. We can thus write for an n-form
1 iliQ- . 'ir, 1 2 n
w:meim..inwlg.‘.ne f /\f /\"'/\f

=wignf ASEA AL

Since <n> = 1 there exists indeed only one linearly independent form, for

n
instance, f' A f2A--- A f. All other n-forms are scalar multiples of that
form. The value of this form w on linearly independent n vectors u;, us,
..., u, € U are given by

_ ui uy oo

w(u, U, ...y Up) = Wiz ; n
n n n

Uy Uy Uy,

= wlg...nVn(ul, U,y ... ,un).

We may interpret the determinant V,, as the volume of an n-dimensional
parallelepiped formed n vectors in the space U. If these vectors are linearly
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independent we know that the above determinant cannot vanish so that we

have V), (uy, ug, ..., u,) # 0. If we rename the basis vectors ey, ..., e, in U
properly we can set V,,(eq,...,e,) = + 1 and we find
wW12...n = w(e1,€2,...,€5)

as it should be. If k = n, the generalised Kronecker deltas are obviously
expressible in terms of Levi-Civita symbols in the following way

i in _ jyigeevin
Ojrjpgn = € " €y (1.4.16)

The determinant V,, can now be written as

in
n -

N N 1) N TN - S
Vo =nluy -uy’ = e,..0,ui ug---u

But this expression is completely antisymmetric with respect to indices 1,
..., n. Therefore, we can also write

1 o . 1 .
— e pltting i, g IV Ing i e
V, = n'e“...lne uleug = n' 62»1,__77" wheu (1.4.17)

It then readily follows from (1.4.17) that the relation

€y ke, Vo = — 6,? i”ez-l...inu“-'-ul-” (1.4.18)

nl 1t R 1 Jn

f— . . il .. in — . . il .. in
- 6“. : 'Zizu[kl ukn] - eZl‘ : '7fnuk] ukn

is valid for determinants.

It is straightforward to realise that the addition of k-forms on a vector
space U and their multiplication with scalars are again k-forms. To see this
let us consider two k-forms « and 3:

1 . . 1 , ‘
a= oy i SN NS B = B SN A

The sum v = a + (3 of these forms will naturally be

1 . :
v =g YA NS Vi = e+ B

Similarly, for an arbitrary scalar A the form n = A« is given by
1 . .
n= E ni1'~7ﬁkf21 ARERA flka Miy--vi, = /\ail"'ik'

Hence k-forms constitute a linear vector space which will be denoted by
AF(U). This vector space is well defined for 1 < k < n. Obviously, there



1.5 Exterior Algebra 33

are (Z) linearly independent k-forms in this space. All forms whose de-
grees satisfying k£ > n are identically zero. If we define exterior forms for
k = 1 by the expression

w=wf, weF (1.4.19)

the spaces A*(U) will be completely determined for 1 < k < n. There are

evidently n linearly independent 1-form since (T) =n.

1.5. EXTERIOR ALGEBRA

We shall now try to define the product of two exterior forms in such a
way that the result will again be an exterior form. Thus, we will be able to
construct an exterior algebra. Let us consider the forms o € AP(U) and
B € A1(U) given below such that p < n,q < nand p+q < n:

1 ) ) )
a = H ai1i2“~7ﬁpf“ A flz A A flpy

1 , , .
B = P NN AP

The exterior product o N\ 3 of forms « and 3 will now be defined in the
following fashion

QNP = o @i B i S AN AN RN

where the exterior product of basis vectors is, of course, determined by
fil/\fiz/\,,,/\fip/\fjl /\sz/\,,,/\qu —
St i i@ oo e ®fh
With this definition we are obviously led to the result o A 5 € APTI(U).
The coefficients of the form o A 3 should be completely antisymmetric with
respect to p + ¢ indices. But they are already completely antisymmetric

with respect to the first p and the last ¢ indices. Therefore, the number of
independent components will be (p + ¢)!/p! ¢! and if we define

(p+q)!

Vivig:--ipiijo- Gy = g Qfiyige iy Bjrgo - -jy) (L.5.1)

we obtain
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y=aAp (1.5.2)
1 A A . .
= ———— Vi SN NFON AN f
(p+9)! e
If p4+ g > n we clearly find @ A § = 0. As an example, consider
4 1 ,
a=af € N'(U), B= 51 B f? A fFen(U)

where (3;;; are antisymmetric. For n > 3 we obtain

T=ahf= %Oﬁﬁjk FINFIAfE= %a[zﬂjk] FANENY i
On the other hand, we find that

apfk = %(aiﬁjk + @jBri + arBij — @iBrj — B — a;Bir)

1 1
= g(oézﬂjk + a;jBri + o fij) = 3 Vidk-

Hence the exterior product o A 3 has the standard structure
1 , _
=gy [ ASTA R € AU,

Just from the definition of the exterior product of forms, we conclude
that the exterior product is distributive, namely

ahN(B+y)=aAf+ary, (a+B)Ay=aAy+ LAy (1.53)

Here we have, naturally, considered the addition of forms of the same
degree. It is evident that the exterior product so defined is associative:

alN(BAY)=(aAB)Ay=aANBA~. (1.5.4)

However, the exterior product is not generally commutative. Let us consider
the forms o € AP(U) and § € A?(U). We can show that the relation

BAha=(—1)Manp (1.5.5)

is valid. Indeed, in order to transform the form a A 3 into the form G A a,
we are compelled to interchange the exterior products fit A --- A f and
7 A - A fl as blocks. To this end, we first put the vector £ at the end of
the second sequence by successively interchanging it with vectors f/!, f72,
..., f%. Every transposition gives rise to the multiplication by — 1. Thus the
form is eventually multiplied by (—1)%. Since this operation should be
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repeated p times for vectors f, f-1 ..., f'' we obtain the relation (1.5.5).
It follows now from (1.5.5) that if o € A'(U), we then of course find
aNa=0.

The vector space of k-forms A*(U) on an n-dimensional vector space
U is not an algebra since it is not closed with respect to the exterior product.
If we use the notation R = A’(U) to denote the field of real numbers, the
sequence of spaces A (U) starts then with A°(U) and ends with A"(U). Let
us now define a vector space A(U') by the following direct sum:

AU)=AU) s AN U) @ A2U) & - & A™U).  (1.5.6)

It is obvious that the vector space A(U) now becomes an algebra under the
exterior product. In other words, for all forms «,5 € A(U) we find
a A€ AU). We call the algebra A(U) as the exterior algebra. However,
this vector space is constructed as a direct sum of some linear vector spaces.
Therefore, it is called a graded algebra.

We are now going to show that the k-forms fit A f2 A--- A fir,
1 <4y < iy <--- < i <n constitute a basis for the vector space A*(U).
To this end, it suffices to prove that those forms are linearly independent.
With arbitrary scalars «,j,...5,, let us write

S G ALEAAfE=0

1<) <ig << <n

Let us choose an arbitrary index set of & distinct numbers {4}, 5, ---, 7} } out
of the set {1,2,...,n}. Let the index set of n — k natural numbers that is
the complement of this subset with respect to the set {1,2,...,n} be the
subset {j}.,1, -, 7, }. The exterior product of the foregoing expression by
the (n — k)-form fi+1 A .- A f7n will be

Z ailiZ"'ikfil /\f’iz A A flk A fﬂ»ﬂ A - /\fﬂ =0.

1<i1 <o < - < <n

However, the set {7}, ,---,/,} is the complement of the set {3},---,4}}
with respect to the set {1,2,...,n}. Consequently, all terms in the above
sum except the one corresponding to those indices vanish because at least
two basis vectors (actually 1-forms) would be equal. We thus see that only
the term

ai’y--i’kfi/l A /\fii» /\fﬂwl A - /\fﬂp — :l:ai’lmz‘;,fl AN =0

survives in that zero form. The value of that form on n linearly independent
vectors uy, uo, ..., u, € U is given by
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n
\%4 (Ul,UQ, ,un) Ozl/lZ;t =0.

Since V" (u1,ug, ..., u,) # 0 we find that ;... = 0. Since the choice of
indices is entirely arbitrary, we conclude that all scalar coefficients must
vanish. Hence, the set of forms {f" A--- A f%: 1< <--- <ip <n}
constitutes a basis for the vector space A*(U). The cardinality of this set is
(Z) implying that the dimension of the vector space A*(U) is (Z) =
n!
El'(n — k)
direct sum (1.5.6), is clearly determined by the union of bases of component

vector spaces. Since the basis of the vector space A°(U) is 1, the basis of
A(U) is prescribed by

{DBU{fFU-—U{fPA-Aflriig <o <ipdbU - U{f' A A f)

Therefore the dimension of the exterior algebra A(U) on a vector space
U™ is given by the integer

N:ki; (Z) —on, (1.5.7)

We say that a k-form is a simple form if it is expressible as an exterior
product of £ linearly independent 1-forms, that is, if a k-form is simple it
can be written as follows

w=wD A A AP WD e ANU), we AFU)  (1.5.8)

The basis of the vector space A(U), which is defined by the

where W™ = wgm)fi, m=1,2,..., k. We thus obtain

: 1 ,
w= <'d[ll ZL] fll fZQ : f” = wlllz Zkfll flz /\ ttt /\ flk.

Here the scalar numbers wj,...;, = k'w[n -wgf]) are components of the

form w. The value of a simple k-form on £ linearly independent vectors u,

Us, ..., ur € U can now be evaluated as follows

i i i

up' Uy {

19 19 12

(1) k)| uf u U

WU, g, ..oy up) = wy w2 k

i ik i

Uy Uy Uy,
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1), i1

Wi, u1 w; u2 Wy wD(uy)  wWH(ug) -+ WD (uy)
it Py ol | O o)
wgf)ull" wgf)ué“ ‘e wgf)uﬁj WP () wP(ug) - WP ()

1.6. RANK OF AN EXTERIOR FORM

Let us consider a form w € A*(U) on an n-dimensional vector space
U (unless stated otherwise we shall always consider a finite dimensional
vector space):
1 . y ,
W = ywiﬂ?“ikfh /\f”/\"'/\f”“. (161)
We now choose a certain linear combinations of reciprocal basis vectors in
the dual space U™ as follows

@ =ctf, i=1,2,...,n a=12,...,m. (1.6.2)

¢ are some scalar coefficients. We shall assume that the vectors g“ are

1
linearly independent. In other words, the rank of the rectangular matrix [c{']
should be m. Therefore, the transformations (1.6.2) will be meaningful if
only m < n. Let us suppose that these transformations reduce the form
(1.6.1) into the following k-form
1
w= ] Qoyaya N G2N - A g

The least integer m found in this fashion, that is, » = minm, is called the
rank of the form w. In order to determine the rank of a form, we have to
look for the nontrivial, linearly independent solutions of the following ho-
mogeneous equations

w’il’iz“-ikhil =0, hil eU". (163)
If we find linearly independent n — r solutions A%, a =r+1,r+2, ..., n
we can then write h* = y7h*, o =1,2,...,r. Hence, the rank of the rec-

tangular matrix [y%] must be r for vectors h® to be linearly independent
among themselves. We will see that this number denotes also the rank of the
form w. If r = n, then we clearly get h' =0, i = 1,2,...,n. In this case,
we cannot reduce the number of basis vectors or forms appearing in (1.6.1).
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Let us now assume that the rank of the form is satisfying the condition
r < n. It follows from equations (1.6.3) that

Waizn-ikha + WaiQWik.ha = (wmé...ik'yg + waiz--»ik)ha = 0.

Since we supposed that the vectors h® are linearly independent, we then see
that the relations

waiQ...iﬂfj + Waiy- i, = 0, (1.6.4)
where a =r+1,...,n;4, = 1,...,n;m > 2, should be satisfied. Let us
now define the linearly independent vectors

g =f" = f a=1,2,...,r (1.6.5)

and insert the vectors f* = g“ + ¢ f* into the first factor in the exterior
product in (1.6.1). In the first step we obtain

W= %wiligu'ikfil A f” A A fiL:
B %(Wf F Wayig iy SN F2 A A f
B % [Waniy iy (87 4 Y2 FD) F Wiy SO A 2 Ao A fi
— %[waliQ...ikgal + (Woriy Y+ Wariy i) FO] A F2 Ao A f
= %Wali?-.ikgm A f” Ao A fik

where we made use of the relation (1.6.4) in the fourth line. In the second
step, we are led to

w= - %Wizal--»ikgal AFEN- A fi =
—H!JQLA [ Wasanis:i1 9™ + (Wasanis---in Vo + Wagaine i) S AFEN -+ A f%
k= %walagigwikgal AGEN BN N
Continuing this way, we arrive at the following result in the kth step
w= %wam...akgo‘1 NG A A gt (1.6.6)

This clearly means that the k-form w is now generated by basis forms
{g** AN g®* A--- A g*}. The cardinality (Z) of this set is of course less
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than the cardinality (Z) of the original basis set. If r = £, i.e., if the rank

of the form is equal to its degree, we get ( i

k) =1 and the form w can be
represented by
w=wi. g ANGZEA A G (1.6.7)
In order to see this, it suffices to note that one has
Way-ap = €ayeeapWio-ky g Ao AN g™t = e gl AL A g
and eg,...q, €™ = k. If we write § ' = wi...1 ¢', (1.6.7) now becomes
wzﬁl/\gQ/\~--/\gk.

We thus conclude that every k-form whose rank is equal to its degree can be
reduced to a simple form. Conversely, if a k-form is simple it can be written
in the form (1.5.8) as follows

w:wl/\w2/\~-/\wk

where 1-forms w® = w?f',a = 1,...,k,i = 1,...,n are of course linearly
independent. Therefore, the rank of the rectangular matrix [w] must be k.
Thus we can state the following theorem:

Theorem 1.6.1. A form w € A*(U), k < n is a simple form if and only
if its rank is equal to its degree. O

We now apply the general approach which we have developed above
to a 2-form owing to its rather simple structure. We know that an arbitrary
form w € A%(U™) is expressible as

1 ) .

W = § Wij fL A fj (168)
where w;; constitutes an antisymmetric n X n matrix of real numbers. In
order to find the rank of the form w we have to determine nontrivial, linearly
independent solutions h’ € U™* of the homogeneous equations

wijh! = 0. (1.6.9)

Since wj;; 1s an antisymmetric matrix, its rank is always an even number,
say, r = 2m where m is a positive integer. Therefore, the dimension of the
null space of the linear operator represented by the matrix w;;, or the
number of linearly independent vectors spanning this subspace would be
n —2m. In other words, 2m vectors out of n vectors satisfying the
equations (1.6.9) are expressible as linear combinations of the remaining



40 1 Exterior Algebra

n — 2m vectors. Thus the rank of the form w becomes 2m. If n is an even
number, it may happen that the rank of the form may be equal to n. In this
case, it will not be possible to reduce the form. However if n is an odd
number, 2m will, of course, always be smaller than n. Consequently, in this
case a 2-form is always reducible.

Example 1.6.1. Let us first begin with a relatively simple case of
n = 3. By using the essential components, we can express a 2-form by the
following expression

w=wi fPA PP Hw fEA P+ ws PAF

Obviously the rank of this form is 2. Indeed, the equations w;; h/ =0 are
now written in the form
w19 h? + wi3 h3 =0
—w12h1 —|—(.U23h3 =0

—wlghl—w23h2:0

whence we deduce by the assumption wyo # 0 that

w w
R A
w12 w12
Let us now define 1-forms
1 1 W23 .3 2 2 | W13 .3
g =wn(f'——=r), ¢=r+—r.
w12 w12

We immediately see that the form w reduces to
w=g'A ¢ |
Example 1.6.2. In order to explore a little bit more complicated case,

let us now choose n = 4. By using the essential antisymmetric components
we can express a 2-form as follows

w=wip AP o AR rou fPA P fws AP
+was A F +wa 2N

The rank of the form w can now be either 4 or 2. If the rank is 4, w is
evidently not reducible. Let us consider the equations

wip h? +wish® +wu ht =0
—u)lghl +w23h3 +w24h4 =0
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—wlghl —w23h2 +W34h4 =0

— W14 h1 — Wy h2 — W34 h3 =0.
A = (wiawsy — wizway + wigwoz)? is the determinant of the coefficient of
these linear equations. If A # 0, then the rank of the form is 4. If only
A = 0, then the rank reduces to 2. When A = 0 the solution of the above
homogeneous equations is given by

Rl = 9253 %hﬁi, R — _ Y13,3 Wiy
w12 w12 w12 w12

with the assumption wjy # 0. Hence, the transformations
1 1
g' = le[fl - —(w23f3 +w24f4)}7 F=r+ —(Wwf3 +w14f4)
w12 w12

lead to the expression
w=g"'A ¢~ ]

It is possible to introduce a canonical structure for 2-forms imposed by
their ranks.

Theorem 1.6.2. Let w be a 2-form whose rank is 2m. There exist
linearly independent 1-forms g*, ¢°, ..., g*™ such that w is expressible in the

following canonical form

w:gl/\gm+1+g2/\gm+2_|_...+gm/\92m (1.6.10)
_ Zgi /\gm+i
i=1

We can easily prove this theorem by resorting to mathematical induc-
tion. By employing the essential components we can write the form w in the
following manner

w=wp fPAPHos AP+ o fEAS
Fwu AL Ywu fPAf o A+

where ®, is a quadratic form depending only to basis forms f3, f4,..., f.
Let us then rewrite it as follows
w=fIA (Wi fF w2+ wi 1) (1.6.11)

—{—f2/\(w23f3+w24f4+---+w2nf”)+<T>1.

If we assume that wi» # 0, we can define 1-forms g' and g™ *! by
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1
g =f- — (s Prwufrt o twn Y (1.6.12)
12

gmﬂ :w12f2+w13f3+“'+w1nfn-

When we insert the forms (1.6.12) into the expression (1.6.11) we conclude
after some manipulations that

1 A
w = [gl + w—(wB f3 + way f4’ c+ wop f”)] A gmH +
12

1

w—(QmH —wlsfg—"‘—wlnfn)/\(w23f3+w24f4"'+w2nfn)
12

_ 1
+ ® :91/\9m+1—wfgm+1/\(w23f3+"'+w2nfn)
12

1 .
+_gm+1/\(w23f3+"'+w2nfn)
w12

1 , -
— w—Q(w13f3+"'+W1nfn)/\(L{JQ3f3+"‘+LU2nfn)+(I)1
1

or
W :gl /\ngrl +(I’1-

The new quadratic form ®; will evidently involve only n — 2 number of 1-
forms f3, f4, ..., f". Thus its rank will be at most 2m — 2. If this number
is not zero, namely, if ®; # 0, we then repeat this operation this time for the
form ®;. After repeating this operation £ number of times, we reach to the
conclusion

k
w=>Y g ANg"" + &,
i=1

The rank of the quadratic form ®; depending on n — 2k number of 1-forms
will now at most 2m — 2k. Therefore, when we repeat this operation a
sufficient number of times the form ®;, will eventually vanish and we shall
arrive at the relation (1.6.10). O

Example 1.6.3. We consider a 2-form on a 4-dimensional vector space
given by its essential components:

w=wp AP o AL You fPAf Hws PAL
+wog f2AfEwsa RN

The number m can now be at most 2. We define as above
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1 )
g =rf- —(c«lzzf3 +w24f4),
w12
¢ =wia 2+ wiz £ +wia L
When w9 # 0, we then easily find that

WioW34 — Wizwaq + Wi4Wa3
Wiz

w:gl/\gg—i— f3/\f4.

Let us now write

&= W1oW34 — Wizwaq + Wi4Was £
- )

w12

we obtain
w:g1A93+92Ag4.

On the other hand, if the relation wiswss — wiswas + wiswosg = 0 is satisfied,
then the rank of the form w reduces to 2 and the canonical form becomes

w=g"'Ag |

In view of Theorem 1.6.2, it is now understood that any 2-form on a
vector space U™ whose rank is an even number is always expressible in the
following canonical form

m
W = Zga /\ngra.
a=1

r = 2m is the rank of the form and g', ¢, ..., ¢*™ are linearly independent

1-forms. We now define 2-forms
Wo =g ANg" e AX(U), a=1,2,...,m. (1.6.13)

Due to properties of the exterior product we immediately observe that the
relations

Wo ANwy =0, waAwsg=wgAw, (1.6.14)

are satisfied. We can now write

m
w= g Wy
a=1
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Let us next consider the form " = WA WA --- Aw, € A?*(U). Owing to

k
the commutation rule (1.6.14), we readily realise that the well known multi-

nomial expansion

W = (Z wa>k (1.6.15)

a=1
k! ,
= Z PR 'w]fl/\wéz/\---/\wf#
Kepthgt A=k L2 vme

would be valid just like in the classical algebra. But, if k, > 1, then we have
w’;a =0,a=1,2,...,m due to (1.6.14);. Hence only the terms corres-
ponding to k; = ky = --- =k, = 1 and involving only the exponents k,
meeting the restriction &y + ko + --- + k,,, = k will survive. When we take
k = m, this expansion will of course yield

D" =mlwi Awg A A wpy,

:m!gl/\gmH/\gZ/\g7n+2/\---/\gm/\ng.

Hence w™ is a simple form. This result should be anticipated because the
rank of the form w™ is equal to its degree. The relation (1.6.15) implies
clearly that w* = 0 if k > m. This scheme suggests a rather simple method
to determine the rank of a quadratic form: If w™ # 0, but W™ = 0, then
the rank of the quadratic form w is » = 2m. If kK < m, it then follows from
(1.6.15) that

Wb = k!Zk-fold exterior products of forms (wy,ws, -+, W)

whence we deduce with a little care that w* is represented by

m—k+1 m—k+2 m
w —k'z Z Z Way A Way Ao+ A W,
1=1 =1+l ap=aj_1+1
m—k+1 m—k+2
— k' Z Z Z 901 A gm-‘rm A gag A gm-i-az A A gak A gm—&-ak.

a1=1 ay=a;+1 A= 1+1

As an application of what we have obtained so far let us try to answer
this question: under what conditions a quadratic form

1 _ .
w = Ewijfl/\f]
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is expressible as w = g' A ¢?, i.e., as an exterior product of two 1-forms? In
order to realise this situation, the rank of the form must be 2, namely, we
must have m = 1, and consequently w? = w A w = 0. This relation then
gives rise to

1 o 1 o
W? = Zwijwklfl/\fj/\ fAAfl= Zw[z‘jwkZ]fl/\fJA fAAfi=0

or wp;jwi = 0. By making use of the relation (1.4.8), we should note that
one can write

]- pars
Wij W] = Al 67ijl Wpq Wrs-

Moreover, it follows from the definition of the generalised Kronecker delta
that we arrive at the expansion

5, 6] 6 &
e _ |60 60 50 4
LA 5; 6 6
5 6 b &
+ 876,6,0; + 6,676, 6; — 576,66, — 86,667 +5,6/6,6;
+ 8,6 8,6; — 6]6/6,67 — 6,6]6, 6 4 6]6,6,6] +66]6,6,

— 876,86, — 66,66, + 6686, +6;6/8,6, — 66786,

— 8,676, 8, + 676,6,6] +6,6]6,6, — 6] 6,6:6;
— 676/8,6, + 66756,

= 6/6,6,6; — 6,6/6,6; — 6/6]6,6;

Therefore, we obtain

1
Wrij Weip = ﬂ(wm Wi — Wk Wi — Wi Wi + Wi Wi + Wk Wi — Wik Wi

— Wik Wij + Wi Wij + Wi Wi — Wil Wej — Wi Wi + Wik Wi
+ wij Wik — Wi Wik — Wi Wik + Wi Wik + Wi Wik — Wi Wik
— Wkj Wil + Wik Wil + Wk Wi — Wik Wil — Wji Wil + Wij W)
1

= g(wijwkl — Wik Wi + Wi wjk)-

Hence, the conditions which we are looking for turn out to be
wij Wg — wik Wi + wipwj, = 0.

A non-degenerate quadratic form w € A%(U) with maximal rank on a linear
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vector space U™ is called a symplectic form. The maximality of the rank
implies that » = n if the dimension n of the vector space is an even number,
and r = n — 1 if it is an odd number. Non-degeneracy means that the rela-
tion w(u) = 0 for a vector u € U, or in explicit form, the set of equations

wiju! =0 (1.6.16)

has only the trivial solution v = 0. If n is an even number, then the maximal
rank will imply the existence of non-degeneracy. However, if n is an odd
number, then the maximal rank should be less than n so that equations
(1.6.16) will be satisfied by a vector u # 0. Consequently, the form w will
be degenerate. We thus conclude that a symplectic form can only be defined
on vector spaces with even dimensions.

Exterior forms have several other algebraic properties. However, we
prefer to postpone to treat them on differentiable manifolds later in Chapter
V within a much more general context.

I. EXERCISES

1.1. Let U be a linear vector space. U; and U, are its finite-dimensional sub-
spaces. (a) Show that their sum Uy + Us is also a subspace whose dimension
is given by

dlm(Ul) + dlm(UQ) — dim (U1 n Uz)

(b) Find the basis set of the subspace Uy NUs. (¢) Show that the subset
U, U U, is generally not a subspace. (d) Show that [U; U Us] = Uy + Us. (e)
Show that U; U Uy = U; + Us if and only if one of the relations U; C U, or
Uy C U, are satisfied.

1.2. U is a vector space and ug € U is a given fived vector. If F is the field of
scalars over which this vector space is defined, then we introduce two new
operations # and * that can be interpreted as the vector addition and scalar
multiplication as follows

uttug = uy + ug + 1y, axu = au+ (o — 1yg

for all uy,ug,u € U and « € F. Show that the triple (U, #, *) is also a linear
vector space.

1.3. If n is a positive integer, show that the set Q" is a linear vector space over
the field of rational numbers Q.

1.4. Construct explicitly three subspaces U;, U, and Us of the vector space R?
such that

UyNnU,=U,NU; =U,NU; = {0}
but U; N (UQ + U3) 75 {0}
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If the subspaces U;,U; and Us of a vector space V' satisfy the relations
UyNUy,=U,NU3, Uy + Uy =U; +Us and Uy C Us, show that we have
necessarily Us = Us.

Let us consider the linear vector space of functions differentiable up to the
nth order on an open interval Z of R. Show that the necessary and sufficient
condition for the set of such functions {fi(z), fo(z),..., fu(x)} to be
linearly independent at the point z is that the following determinant does not
vanish at that point

B@) @) e )
W o| @R nw |,

A A e 1w

The above determinant W (z) is known as the Wronskian of the set of func-
tions {f1(z), fa(x),..., fu(z)} [after Polish-French mathematician Josef-
Maria Hoéné Wronski (1778-1853)].

Are the functions {1, sin z, cos z, sin 2z, cos 2z} linearly independent ?

The complex numbers {1, ag, ..., a,} are satisfying the conditions ¢; # «;
when ¢ # j. Show that the set of functions {e®® : i =1,2,...,n} is linearly
independent.

Show that the set P, of polynomials with real coefficients whose degrees are
less than or equal to n constitute a linear vector space. Is the subset

S = {p(w) €Pb,: /Olp(x)dx :0} CcPp,

a subspace?
Show that m x n real matrices constitute a vector space M,,,(R) with
dimension mn and determine a basis for this space.

. A square matrix satisfying the relation A = A" is symmetric whereas if it

satisfies the relation A = — A" it is antisymmetric. A" is the transpose
matrix. Show that a symmetric matrix and an antisymmetric matrix of the
same order are linearly independent.

Let U be a finite-dimensional vector space and let A: U — U be a linear
transformation. Show that the following statements are equivalent:

(1). N(A)NR(A) = {0}.
(ii). N (A%) C N(A).
(11). N(A) @ R(A) =U.
A is a linear transformation which maps the vector space V™ into itself. For

a given basis {ej,...,e,}, let us suppose that the transformation A satisfies
the relations

Ae;j=e +ex+ - +ep, i=1,...,n
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What is the value of A at a vector v = vie; + -+ + v,e,? Find the null space
and the range of A.

U and V are vector spaces and A : U — V is a linear transformation. Let a
finite-dimensional subspace of U be U;. Show that

Let K be a convex subset of a vector space U. For a finite number of vectors

Uy, Ua, ..., U, arbitrarily chosen from the set K and for scalars a; > 0,
n

i =1,...,n obeying the condition Y «; = 1, show that their linear combina-

i=1
tion belongs to K, namely, ayu; + aous + -+ + ayu, € K. If A is a linear
transformation from U into a vector space V, prove that A maps convex sets
in U onto convex sets in V.
Let U,V , W be linear vector spaces and let A: U — V and B: V — W be
linear transformations. Show that

r(BA) < min{r(A4),r(B)}, n(BA)<n(A)+n(B).

Show that V' is a zero vector space if and only if the sequence 0 — V' — 0 is
exact.
Show that the linear operator A : U — V is an isomorphism if and only if the

sequence 0 — U é V — 0 is exact.

Let0 - U — V — W — 0 be an exact sequence where U, V', W are finite-
dimensional vector spaces. Show that dim (V') = dim (U) + dim (W).

Let 0 =V} —» Vo — --- — V,, — 0 be an exact sequence where each V] is

finite-dimensional. Show that Z (—=1)idim (V;) = 0.
i=1

T :U xV — F is a bilinear functional. One can define two kernels or null
spaces for 7: the subspace Ny(7)={uecU :7T(u,v)=0,YVveV} CU
and the subspace My(7T)={veV :T(u,v)=0, VueU}CV. T is
called a non-degenerate transformation if Ny (7)) = {0} and Ny (7)) = {0}.
We denote quotient spaces of U and V' with respect to these subspaces by
U/Ny(T) and V /Ny (T), respectively. We define a bilinear functional on
the Cartesian product of these spaces, i.e., S = U/Ny(T) x V/Ny(T) = F
by the relation S([u], [v]) = 7 (u,v). Show that the functional S is non-
degenerate.

T :U x U — F is a symmetric bilinear functional, i.e., for each uy,uy € U
one has 7T (uj,us) =7 (ug,uy). Show that 7 satisfies the polarisation
identity

AT (ug,u2) = T (ug + ug, uy + ug) — 7 (ug — ug, ug — u2).

A real functional @ : U — R is called a quadratic functional if it satisfies the
relation Q(au) = o*>Q(u) for all « € R and u € U. A quadratic functional is
derivable from a symmetric bilinear functional in the following manner
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Q(u) =T (u,u), uel.

Conversely, show that a symmetric bilinear functional can be generated from
such a quadratic functional through the relation

T (u1,uz) = Q(m —;—ug) - Q(ul gw) ZE[Q(W +uz) — Q(ug — U?)]

Let U and V' be linear vector spaces. Show that the tensor products U @ V
and V ® U are isomorphic vector spaces.

If w; € U,1=1,2,...,n, show that the equality u; @ us ® --- ® u,, = 0 is
satisfied if and only if anyone vector is zero, i.e., if u; = 0 for at least one
1 <i<n.

If uj,u; € U;,i = 1,2,...,n, then verify that the equality u; ® us ® --- @ u,
=u] @uHpQ- - @u, #0 is satisfied if and only if u} = aju;, oy €F,
a; #0,i=1,2,...,nsuchthat vyay---a, = 1.

U and V are vector spaces, and U; C U and V; C V are subspaces. Verify
that the relation (U, @ V)N (U @ Vi) = U; ® V; is valid.

U and V are vector spaces, and Uy, U, C U and V;, Vo C V' are subspaces.
Verify that the following relation is valid

U eWV)N (U@ V) = (U NU) @ (V1 NW).

A 2-covariant tensor 7 on a vector space U™ is called a symmetric tensor if
T (uy,u2) = T (ug,uy) for all uy,us € U, and an antisymmetric tensor if
T (u1,ug) = — T (ug,u). If the set { '} is a basis for the dual space U*, we
write 7 = ¢;;f' @ f/. Show that the components of the tensor 7 must satisfy
the conditions ¢;; = ¢j; if it is symmetric, and the conditions ¢;; = — tj; if it is
antisymmetric. Show further that these conditions do not depend on the
choice of bases in U*.

Show that any 2-covariant tensor is expressible uniquely as the sum of one
symmetric and one antisymmetric tensor.

Let 7 =t;;f'® f/ and S = s;;f' ® f/ be symmetric non-zero tensors on a
vector space U(. Show that if components of these tensors satisfy the
equality

tijsk — tasie + tixsi — tusi; = 0,
then the relation ¢;; = (¢x/sy) s;; is valid. This result is known as Schouten's

theorem [Dutch mathematician Jan Arnoldus Schouten (1883-1971)].
The components of a 2-covariant tensor are satisfying the relations

ati]' + ﬁtji =0
where a, f € F, a, 3 # 0. Show that this tensor must be either symmetric or

antisymmetric.
. A 3-tensor 7 = t},e; ® f* @ f' on a vector space U? is explicitly given by
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T=-—e2f'0ff+6a2 0’36 2 f.

Find all contracted tensors.
A mixed 3-tensor on a vector space U2 is given by

T=3a06a0f -6 f +ea0edf.
A new basis for U? is determined by transformations
€] =e; — 2eq, €y = €1 + e3.

Find the components of this tensor with respect to the new basis.
Evaluate the quantities e; el’””‘, eipe™", erpe", e,;jke”k where the indices
take the values 1, 2, 3.

Using the definition of generalised Kronecker delta, show that one can write
o
(a). 6kl wij = Wk — Wik
ijk —
(b) 5lmn Wijk = Wimn — Winm + Winnl — Wnml + Wnim — Wmin-

. kht1---n12--- k-1 12 -.-2n-12n
Find the values of 675", "1, and 0 7 1505 53 o 2

Let the basis and its reciprocal for a vector space U™ and its dual U™ be
{e;, fi,i =1,...,n}, respectively. Then verify that for 1 < k < n, one finds
FENFEN A e e, e5) =600

We consider the following members of the exterior algebra A(UW): a =
af AP anfP AFL B=00f"+ Baft v =yuf A f e AP,
0 =013 N FEN 34 O34 f? A f2 A f* where all coefficients are scalars.
Evaluate the forms (a) a A3 —B8Ay+0, (b) aANa+3yAvy—20A0, (c)
BAO+ oA

Let us consider the forms o € A?2(U), 3 € AL(U). Show that one can write

(A B)(ur,uz, uz) = a(ur,uz)B(us) — a(ur,uz)B(uz) — a(ug,uz)B(ur)

for all uy,us,u3 € U.

If we choose to omit the factor 1/k! in the definition (1.4.11) of an exterior
form w € A¥(U), show that the exterior product of such types of forms turns
out to be no longer associative.

Let us consider an exterior form w € A"1(U™), w # 0 on a vector space
U™, Show that the forms « satisfying the equality o A w = 0 constitute an
(n — 1)-dimensional subspace of A(U ™)) and there exist 1-forms a', a2, ...,
a"~ ! such that w is expressible as w = a* Aa? A --- A" L,

If U is finite-dimensional, then show that the vector spaces (A¥(U))" and
AF(U*) are isomorphic.

The exterior form w € A3(UY) is given by

w=af'APANP+af ' NPAf rafPAPA a2 AL

Find its rank and its reduced form.





