CHAPTER 11

DIFFERENTIABLE MANIFOLDS

2.1. SCOPE OF THE CHAPTER

The concept of manifold is essentially propounded to extend the de-
finition of surfaces in classical differential geometry to higher dimensional
spaces. This relatively new concept was first introduced into mathematics
by German mathematician Friedrich Bernhard Riemann (1826-1866) who
was the first one to do extensive work generalising the idea of a surface in a
three-dimensional space to higher dimensions. The term manifold is derived
from Riemann's original German term, Mannigfaltigkeit. This term is
translated into English as manifoldness by English mathematician William
Kingdon Clifford (1845-1879). Riemann's intuitive notion of a Mannig-
faltigkeit evolved into what is formalised today as the concept of manifold.
German mathematician Herman Klaus Hugo Weyl (1885-1955) gave an
intrinsic definition for differentiable manifolds in his lecture course on
Riemann surfaces in 1911-1912 at Goéttingen University uniting analysis,
geometry and topology. However, it was American mathematician Hassler
Whitney (1907-1989) who clarified the foundational aspects of differenti-
able manifolds during the 1930s. Especially, the Whitney embedding theo-
rems provided a firm connection between manifolds and Euclidean spaces.

In Sec. 2.2 we first briefly review topological spaces to which differ-
entiable manifolds also belong. We define fundamental notions and focus
on various relevant properties of topological spaces. We then introduce a
metric space as a special topological space and finally the Euclidean space
that proves to be very important for our investigation. A manifold, also a
differentiable manifold, is defined as a topological space that is locally equi-
valent to the Euclidean space. This amounts to say that each point of the
manifold belongs to an open set which is homeomorphic to an open set of
the Euclidean space. These open sets covering the manifolds are called
charts and an atlas is a collection of charts. Certain operations such as dif-
ferentiation are not allowed on manifolds as topological spaces. However,
the local equivalence with the Euclidean space enables us to perform these
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52 1l Differentiable Manifolds

operations on manifolds by means of the Euclidean space on which such
operations are carried out quite easily. Although the topological structure of
a manifold does not allow us to evaluate directly the derivative of a real-
valued function on a manifold we will be able to describe it indirectly in
Sec. 2.3 by making use of local charts and well known differentiability in
the Euclidean space. We further extend this description to define differen-
tiable mappings between manifolds. In Sec. 2.4 we utilise differentiable
mappings to define submersions, immersions and embeddings between
manifolds and we discuss various approaches to generate submanifolds via
those mappings. Differentiable curves embedded on manifolds are consider-
ed in Sec. 2.5. Sec. 2.6 is devoted to the construction of the tangent space of
a manifold at a given point as the vector space of all tangent vectors at that
point of all differentiable curves through that point which are constructed by
employing local images of these curves in the Euclidean space. A more con-
venient vector space that is isomorphic to the tangent space is introduced as
the space of linear operators determined as derivatives of a scalar function
in the direction of tangent vectors. In Secs. 2.7 we define the differential of
a differentiable mapping between two manifolds as a linear operator map-
ping a tangent space into another at the corresponding points of manifolds.
We show in Sec. 2.8 that the fibre bundle generated by patching all tangent
spaces at all points of the manifold can be equipped with a differentiable
structure through which we can define a vector field on the manifold. We
investigate properties of a mapping called flow generated by trajectories of a
vector field, namely, by curves tangent to the vector field in Sec. 2.9. The
Lie derivative that measures the variation of a vector field on a manifold
with respect to another vector field is defined in Sec. 2.10. This derivative,
which is also called the Lie product, is utilised to construct a Lie algebra on
the tangent space. Finally, in Sec. 2.11 we define a distribution produced by
choosing same dimensional subspaces of the tangent spaces at every points
of the manifold. It is shown that these elementary fragments of vector sub-
spaces attached to every points of the manifold can be patched together
smoothly to form a submanifold if and only if the distribution is involutive,
i.e., if its vectors constitute a Lie subalgebra. This is known as the Frobenius
theorem.

2.2. DIFFERENTIABLE MANIFOLDS

Let M be a non-empty set. P(M ) denotes the power set of M which is
the collection of all subsets of M, the set M itself and the empty set (). Let
M C P(M) be a class of subsets of M. Let us assume that the class I
satisfies the following axioms:
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(7). M and @ belong to the class 9.
(3). The union of any number of members of M (even uncountably
many) belongs to the class 91.
(737). The intersection of any finite number of members of the class I
belongs to the class 9.

Such a class 9 is called a fopology on the set M. The ordered pair (M, 90)
is called a topological space. Unless it causes an ambiguity, a set M endow-
ed with a topology will also be usually called a topological space M. How-
ever, we should remark that several topologies may be defined on the same
set M generating different topological spaces. We usually name the ele-
ments of a topological space as its points. The members of the topology 971
will be called open sets of M. Therefore a set U C M 1is open if and only if
U € M. If the complement V' of a subset V' C M with respect to M is
open, that is, if V' € 9, then V is called a closed set. Since M’ = () and
(" = M, we conclude that the sets M and () are both open and closed sets,
simultaneously. Whether the topological space M contains subsets other
than those two sets having this property is closely related to the topological
concept of connectedness. We immediately see that the class of closed set
will satisfy the following rules directly obtainable from the familiar de
Morgan laws of the set theory: (i) X and () are closed sets, (i) the intersec-
tion of any number of closed sets (even uncountably many) is a closed set,
(#i7) the union of any finite number of closed sets is a closed set.

The relative topology on a subset A C M is the class of subsets of A
defined by My ={Us = ANU : U € M}. It is straightforward to show
that (A, 91 ,) is a topological subspace. Indeed, (§ € 9t and M € 9 implies
that ) = ANPeMyand A=ANM € 9, Let us consider a family of
subsets {V) € M4 : A € A} where A is an index set. Then for each A € A,
there exists an open set Uy € 9 such that V), = A N U,. We thus obtain for
the arbitrary union U V) = U (ANU,) = AN (U U,) € My. We now

A€EA AEA AEA

n
choose a finite index set {\i,\a,...,\,} C A. Since ‘ﬂlUAl €M, we
=

n n n
eventually obtain nlvAi = ‘ﬂl(A NU,) =AN( ﬂlUAi) € My. We thus
1= 1= 1=

conclude that the class 914 complies with the axioms of topology. /¢ should
be noted that the set Uy € M4 may not in general be an open set of M. If
only A itself is an open set of X, then open sets of relative topology coin-
cide with the open sets of M. Evidently, the closed sets of the relative topo-
logy are of the form A N U;.

A subset N, of M is called a neighbourhood of the point p if there
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exists an open set U, such that p € U, C N,. An open neighbourhood of
the point p is just an open set of M containing p. Let A be a subset of a
topological space M. If a point a € A belongs to an open set contained in
A, ie., if there is a set U C A, U € 9 such that a € U, then a is an
interior point of the set A. In other words, if the set A is a neighbourhood
of the point a € A, then a is an interior point of A. We can thus propose at
once that the set A C M is open if and only if A is a neighbourhood of each
of its points.

In fact, let us first assume that A is open and a € A. Due to the obvi-
ous relation a € A C A, the set A is a neighbourhood of the point a. Now
let us suppose that A is a neighbourhood of each of its points. Therefore, for
each a € A, there exists an open set U, such that a € U, C A. We next
define the open set V = UAUa. Since U, C A for each a € V', we find that

ac

V' C A. On the other hand, each point of the set A belongs to a set U, and
consequently to V. This implies that A C V. We thus obtain the result A =
V. Hence the set A is open. (I
Collection of all neighbourhoods of a point is called the system of
neighbourhoods of that point. If each neighbourhood of a point p contains at
least one member of a family of neighbourhoods { N, : A € A}, where A is
an index set, then this family is a fundamental system of neighbourhoods
of p. A topological space is called a first countable space if each of its
points has a countable fundamental system of open neighbourhoods. The set
of all interior points of a set A C M is called the interior of A and is denot-

o
ed by A. It is easy to see that the largest open set contained in A is its

interior A. It is rather straightforward to verify that (A N B)° = AnB.

The closure of a subset A C M is the intersection of all closed sets
containing A. We denote the closure of a set A by A. Since the intersection
of any number of closed sets is also closed, we deduce that A is a closed set.
Hence, the closure of a set A is then the smallest closed set containing A.
We can then show the following proposition:

Let A be any non-empty subset of a topological space M. A point
p € M belongs to the closure A if and only if the intersection of each
neighbourhood of p with A is not empty.

We first consider a point p € A and assume that there exists a par-
ticular open neighbourhood U, € 9t of p such that U, N A = (). We thus
have A C U,. But, since U, is closed we conclude that AC U, Therefore,
we reach to the contradiction that the point p belongs to both U, and U,
Consequently, we ought to take U, N A # (). Hence, every open neighbour-
hood of each point in the closure of the set A must intersect A. Now, con-
versely, we assume that the intersection of each open neighbourhood of a
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point p € M with A is not empty, but p does not belong to A, that is, for all
U, € M we should have U,N A #(), p¢ A so that the point p has to
belong to the open set A Consequently, there must exist an open neigh-
bourhood Uy of p such that Uy C A'. This open set Uy cannot intersect A
and this gives rise to a contradiction so that p € A. Hence we are led to
define the closure of a set A as the set A={pe M :U,NA+#0 for all
U, € M}. O

It can easily be verified that AU B = AUB and if A C B, then one
deduce at once that A C B.

The boundary of a subset A C M is defined by 9A = A — A =

AN (A). The boundary OA of a set A is always closed since it is described
by the intersection of two closed sets.

Let A and B be two subsets of a topological space M. If B C A, then
we say that A is a dense set in B. On the other hand, if B = A, then A is
called an everywhere dense set in B. When B = M, a set A which is dense
in M naturally has to satisfy the relation M = A. Therefore, a set dense in
M is always an everywhere dense set in M. A topological space M is
called a separable space if it possesses a countable dense subset A =
{p1,p2,...Pn,... }so that one gets A = M.

A topological space M is called a Hausdorff space if each pair of its
distinct points pi, po have disjoint neighbourhoods, that is, if p1,ps € M
such that p; # po, then there exist open sets U; and U; so that p; € Uy,
ps € Uy and U; NU; = O [after German mathematician Felix Hausdorff
(1869-1942)].

Let M be a Hausdorff space. If p € M, then the singleton {p}, i.e., the
set of just the single point p is a closed set.

To observe this, let use take any point ¢ € {p} = M — {p}. Since
q # p, there are disjoint open sets U,, U, € M such that U, N U, = 0.
Therefore, the open set U, does not contain the point p and we get
U, C {p}’ implying that the point ¢ is an interior point of the set {p}’. Since
all points of the set {p}’ are interior points, it is open and therefore the set
{p} is closed. O

A subclass 0N of the power set P(M ) is a basis for a topological space
(M,9) (the term open basis will, in fact, be more appropriate) if every
open set in the topology 9 is expressible as a union of some sets in 1.
Elements of 91 are called basic open sets. If we are given a class of subsets
M C P(M) satisfying naturally the condition M = U {N} where N € N,
we cannot usually generate a topology on M by considering all unions of
subsets in 1 because the intersection axiom of the topology does not hold in
general. It is rather straightforward to see that the necessary and sufficient
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condition for a class of subsets 91 of a set M to constitute a basis for a
topology are provided as follows:

A subclass Mt C P(M) with the condition M = U{N : N € N} is a
basis for a topology on M if and only if for any two sets N1, Ny € I and
any point p € N1 N N, there exists a set N3 € N such that p € N3 C
Ni N Nsy. |

For instance in a topology on R basic open sets are open intervals. It is
shown in real analysis that every open sets in R is expressible as a counta-
ble union of open intervals. A topological space M possessing a countable
basis is called a second countable space. Such a topological space enjoys
several pleasant and rather remarkable properties. For instance a second
countable space is a separable space. This property is quite easy to show.
Let 91 be a countable basis for a topological space M. We choose a point
py € N in each non-empty set N € 91 and then introduce the subset D =
{pn : N € M} of M. D is obviously a countable set. Since there is a mem-
ber of the basis, and consequently, a point of D, in every neighbourhood of
each point of M, the countable set D would be dense in X.

Compactness. A cover A of a set X is a collection of some subsets of
X whose union is X, that is, A = {U), C X : A € A} where A is an index
set is a cover of X if and only if X = AEJAUA. If a subclass B of A is also a

cover of X, then B is a subcover of X. A cover A is an open cover of a
topological space M if all members of A are open sets. If every open cover
{Ux € M : X € A} of a topological space M has a finite subcover, namely,

n
if one is able to write M = U U,,, \; € A where n is finite integer, then M
i=1

is a compact topological space. Compactness of a subspace of M is natu-
rally defined with respect to its relative topology.

We can show that closed subspaces of compact topological spaces are
also compact.

Let M be a topological space and A C M be a closed subspace. We
consider an arbitrary open cover {V) } ca of A. We know that Vy, = U, N A4
where {U)},ea is a class of open sets in M. Since A’ is open, the class
{Uy, A" : X € A} is an open cover of the space M. Since M is compact this
cover must have a finite subcover {U,,, A" : \; € A,i =1,2,...,n} so that
one can write A’ UU, U---UU, = M. Since M = AU A’, we conclude
that A C Uy, U---UU,, and finally A =V, U---UV, . This means that
A is compact. O

In Hausdorff spaces the converse of the above statement is also valid.
Let M be a Hausdorff space and let A C M be a compact subspace. Then
A is closed.

In order to prove this proposition, we have to show that A’ is an open
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set. We take a point p € A’. Since M is a Hausdorff space, for any point

a € A, we can find disjoint open sets U, , and U, containing the points p

and a, respectively. The class {U, N A:a € A} is an open cover of A in

relative topology. But Ais compact hence there is a finite set {a,...,a,}

C Asuchthat A = U Uy, NAC U U,,. It is now clear that the finite inter-
i=1 i=1

section U = ﬂl U,.q, is an open neighbourhood of the point p and U N A
1=

= (). We thus obtain U C A’. Hence the arbitrary point p is an interior
point of A’, i.e., A" is open and A is closed. We can now easily deduce the
following corollary: if M is a compact Hausdorff space, then a subspace is
compact if and only if it is closed. |

A subspace of a topological space M is called relatively compact if its
closure is compact. A topological space each point of which admits a com-
pact neighbourhood is called a locally compact space. If M is a locally
compact Hausdorff space, we can replace the term "compact neighbour-
hood" by "relatively compact neighbourhood”. Indeed, let the point p € M
admit the compact neighbourhood N. Since M is a Hausdorff space, IV is

closed. On the other hand, the relation NcN implies that NCN.Nisa
closed subset of a compact set. Therefore, it is compact. Hence. p has an
open neighbourhood with a compact closure.

A useful generalisation of compactness is paracompactness. This
concept was introduced in 1944 by French mathematician Jean Alexander
Eugéne Dieudonné (1906-1992). Let A = {Uy C M : A € A} be a class of
subsets of a space M. Another class of subsets B={V, C M :y eI} is
called a refinement of class A if and only if for any V., € B there exists a
U, € A such that V,, C U,. An open cover A of a topological space M is
called locally finite if every point p € M has a neighbourhood that inter-
sects only finitely many sets in the cover. In other words A = {U), C M } is
locally finite if each point p € M has a neighbourhood V' (p) such that the
set {AeA:V(p)NU, # 0} is finite. M is a paracompact space if any
open cover of M admits an open refinement that is locally finite. It is
obvious that every compact space is also paracompact.

It can be shown that a locally compact, second countable Hausdorff
space M is paracompact.

Let {V;:7 € N} where N denotes the set of natural numbers be a
countable basis for M. We shall first form a countable basis with compact
closure. By our assumption, there exists a relatively compact open set U,
containing a point p € M. Since U, is expressible as union of some basic
open sets, there is a set V;, such that p € V; and V; C U, whence we obtain
Vi CU,. But U, is compact. Being a closed subset of a compact set, V;
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is also compact. Therefore {V; :p€ M} C{V;:i € N} is a countable
relatively compact basis. Let us now suppose that {U;} is such a basis.
Next, we construct inductively a sequence of nested open sets {WW;} with
the following properties: (i) W; is compact, (i) W; C W,; C W;y1, (iii)

M = CileVVZ We further adopt the convention that W, = (). We take W; =

U,. Hence, W = U, is compact. We now introduce the open set

Ik
Wy =U,Ul,U---UU;, = 'LﬁlUi

— Jk Je
Since W, = U U; = U U, is a finite union of compact sets, it is also com-
i=1 i=1

pact. So it must be covered by finitely many elements of the open cover
{U;}. We then take the index jj..1 as the least positive integer greater than
the index j; so that one is able to write

- Jh+1

Wi C lUi.

1=
We then define the next member of the sequence as

Jr+1

Wi = UU;.
=1

This completes the construction of the sequence {W;}. The property (iii) is
then satisfied automatically. Let {U) : A € A} be an arbitrary open cover of
M. The set K; = W,; — W;_y = W,; N W/_, is compact since it is a closed
subset of the compact set ;. We obviously get K; = W ;. On the other
hand, properties of the sequence imply that K is contained in open set
Zi=Wig1 —Wig =W N W;,Q. For i >3, we can choose a finite
subcover of the open cover {U) N Z; : A € A} of the compact set K;. For
the compact set Ky = W, — Wy, we choose a finite subcover of the open
cover {U) N W3 : A € A}. Similarly, the compact set K, will be covered by
a finite subcover of {U) N W5 : A € A}. Because of the relation W; C W,
we get W; — W;_y C W; — W;_; = K;. Since the sequence {W;} is nested,
we obviously obtain

(0.¢] (0.¢] (0.¢]
M=UW,= ‘UI(VVi - W) C ‘UlKi
1= 1=

i=1

implying that M = ‘EJOIK ; where each K is covered by finitely many mem-
1=
bers of the open cover {Uy N Z; : A € A}. It is straightforward to see that
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this open cover is a locally finite, countable refinement which consists of a
countable union of finite unions. Hence, M is a paracompact space. |

Let us consider topological spaces (M ,9) and (N,MN). It is a simple
exercise to see that we can endow the Cartesian product M x N with a
topology by choosing its open sets as unions of elementary open sets
U xV where U € 91, V € 91. Such a topology on M x N is called the
product topology. This definition may be, of course, extended to Cartesian
product of any number of topological spaces. For instance, in R" the ele-
mentary open sets are open m-rectangles obtained as Cartesian products
(a1,b1) X --+ X (an, b,) of open intervals in R. It is easy to see thatR" is a

second countable topological space because it has a countable basis that is
n

the collection of all Cartesian products [](a;, b;) where (a;,b;) € R is an
i=1
open interval with rational end points.

(M,90) and (N, ) are topological spaces. The function f : M — N
is continuous at the point py € M if for each neighbourhood V of the
image point f(py) € N, there exists a neighbourhood U of the point py
such that f(U) C V. Another completely equivalent definition may be
given as follows: the function f is continuous at a point py if the inverse
image f~1(V) of every neighbourhood V of the point f(py) is a
neighbourhood of the point py. Indeed, if the set U is a neighbourhood of py
satisfying the relation f(U) C V, we immediately get U C f~1(f(U)) C
f~Y(V). Conversely, suppose that the set f~1(V) is a neighbourhood of py.
If we write U = f~1(V), we find that f(U) = f(f~1(V)) C V.

A function f : M — N is continuous on M if it is continuous at every
point of its domain. We can easily show that f is a continuous function if
and only if the inverse image of every open set in N is an open set in M,
ie,if f7Y(V)eMforalV € N.

Let f be a continuous function. Consider an arbitrary open set V' € 9
and define the set U = f~1(V) C M. Let p be a point of U. We obviously
have f(p) € V. Since V is an open set, f(p) is an interior point of V. Thus,
there exists an open set Vj(, such that f(p) € Vy(,) C V. Due to the
continuity of f, the set ffl(Vf(m) C U is a neighbourhood of p. Hence,
there exists an open set U, € 9 such that p € U, C U. All points of U are,
therefore, interior points, that is, U is an open set. Conversely, let us now
assume that for all V € M, we have f~!1(V) € 9. Consider an arbitrary
point p in M and assume that f(p) € V € M. The set U = f~1(V) is an
open neighbourhood of the point p. Consequently, f is continuous at all
points of M. |

It is not too difficult to demonstrate that the following definitions for
the continuity of functions are equivalent:
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(a). The function f is continuous.

(b). The inverse image of every open set is open.

(c). The inverse image of every closed set is closed.

(d). For every subset B C N, the relation f~\(B) C f~Y(B) is satisfied.
(e). For every subset A C M, the relation f(A) C f(A) is satisfied.

It is evident from the definition of the continuity that the composition
of continuous functions is also a continuous function.

One can easily demonstrate that images of compact sets are also com-
pact under continuous functions. We thus have to prove that if f : M — N
is a continuous function from a compact space M into a topological space
N, then the set f(M) C N is a compact subspace.

We assume that the class {V)},ca is an arbitrary open cover of the
range f(M) C N in its relative topology. We know that its members are in
the form V) = Uy N f(M) where U, are open sets in N. Obviously, the
class {f~1(V))}aea is a cover of M implying that M :/\UAf‘l(V,\) =

[S

U FHON FOD) = U £ 0 () = U0 0 =
AUAf‘l(UA). The continuity of f requires that the class {f~!(U))}ea is an

open cover of M and must have a finite subcover since M is compact. We
n

thus obtain M = .Ulf*I(UAL,), Xi € A,i=1,...,n, and hence, we find that
1=

F) = U f(f1(0)) € DU The class {Vi, =0y, N f(M)} is a
1= 1=

finite subcover of f(M) in its relative topology since one can clearly write

f(M) = <U/1VAi. Therefore, f(M) is a compact subspace of N. O
1=

We can then deduce the following corollary: if a bijective function
f:M — N from a compact space M into a Hausdorff space N is
continuous, then the inverse function f~' : N — M is also continuous.

In order to prove that the function f~! is continuous, it would be suffi-
cient to show that the image f(A) in N of an arbitrary closed set A in M is
also closed. Since A is closed, it must be a compact subspace of M. Since f
is a continuous function f(A) will be a compact subspace of N. Hence
f(A) is closed. O

Since topologies are governed by open sets, it is evident that in order
to establish a topological equivalence between two topological spaces, it
would be sufficient to be able to transform open sets in one space to open
sets in the other. This mapping must be bijective to ensure numerical equi-
valence. If h : M — N is a continuous bijective mapping, then the inverse
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images of open sets in N would be open in M. If the inverse mapping
h=!:Y — X is continuous as well, then the images of open sets in M will
be open in N. A bijective mapping h : M — N between topological spaces
(M, ) and (N, ) is called a homeomorphism if both h and h~" are con-
tinuous. Such topological spaces M and N are said to be homeomorphic.
We thus conclude that two spaces are topologically equivalent if we can
show that there exists a homeomorphism between them. If A is a homeo-
morphism, then we get h(U) € 91 for all U € 9 and, conversely,
h=Y(V) € M for all V € N. It can, therefore, be said that a homeomor-
phism is an open, continuous and bijective mapping. A property which
remains invariant under a homeomorphism is called a fopological property,
namely, a topological property observed in a topological space remains un-
changed in all homeomorphic images of this space. For instance, we see at
once that Hausdorff property is a topological property. It is quite obvious
that the inverse of a homeomorphism or a composition of two homeomor-
phisms are also homeomorphisms. It is not difficult to observe that the set of
all homeomorphisms of a topological space onto itself equipped with a bina-
ry operation defined as the composition of two homeomorphisms constitute
a group with respect to this operation.

In the light of the above statements we can conclude at once that if the
function f : M — N from a compact space M onto a Hausdorff space N is
continuous and bijective, then the mapping f is a homeomorphism. In this
case, N must clearly be a compact space as well.

Let R be an equivalence relation on a topological space (M, 90) [see
p- 5]. We know that the set [p| consisting of all points that are related to
p € M through R is an equivalence class. Each point in the set [p] generates
the same equivalence class. Thus distinct equivalence classes are disjoint
sets. They form a partition of the set M. The set M /R = {[p] : p € M} has
already been called the quotient set. Therefore, to each point p in the set M
there corresponds a unique equivalence class [p] in the set M /R, that is,
there is a function 7 : M — M /R such that w(p) = [p]. 7 is called a
canonical or natural projection. It is evident that the canonical mapping 7
is surjective, but it is also clear that it is not injective. We now define a class
of subsets of M /R by

Mr ={V € P(M/R): 7 (V) cm}.

It is easily seen that this class is a topology on M /R. The relations
P=n10)eM and M =n'(M/R) €M mean that () € My and
M/R € Mp. Let us now consider a family of sets {V) : A € A} C My
where A is an index set. Our definition implies that Uy = 7~1(V) € 91 so
that one can write
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UV =Ur (V)= UU, M.
AEA AeA AEA

Thus one has AUAVA € Mp. Let {V), : 1 <i < n} CMp be finite family.
S

n n n
Because of the relation 71 ( Aﬂl‘/}) = 0177_1(‘/}) = ﬂlUZ» € M, we obtain
1= 1= 1=

(3
.ﬁVi € Mp. Hence, Mg, is a topology and the pair (M /R, M) is a topo-

logical space. We call 9y the quotient topology and (M /R, Mp) the
quotient space. 1t is quite clear that through the topology so defined the
canonical projection 7 is rendered continuous.

Certain topological spaces possess quite a useful property called the
partition of unity.

Partition of Unity. Let M be a topological space and {V;:i € I},
where 7 is an index set, be a locally finite open cover of M. Hence, we
have M = 'EJIVi and every point p € M has an open neighbourhood U,

whose intersection with only finitely many members of the cover is not
empty. If a family of continuous functions f; : M — [0, 1] satisfies the
conditions

(1). supp (f;) C V; for each index i,

(ii). Zfi(p) = 1foreachp € M
i€l

then the family of ordered pair {V;, f;} is called a partition of unity. Here
the support of a function f : M — R is defined as the closed set

supp (f) ={p € M : f(p) #0} = f~1{(R - {0}) C M.

Since the family {V;} is locally finite there are only finitely many, say N
number of non-empty open sets V; N U, containing a point p. Consequently,
fi(p) # 0 only for a finite N number of functions f; so that at any point p

the sum ) f;(p) must contain only finitely many terms and one can write
1€T

N(p)
> f,[.k(p) =1, {i1,...,in} CZ. Naturally the number N < co may be
k=1

dependent on the position points of M.

Let M be a topological space on which there exists a partition of unity
{Vi, fi} as defined above and let the family {U) : A € A} be an open cover
of M. If for each member V; of locally finite open cover one can find an
open set Uy, such that supp (f;) C Uy, then we say that the partition of unity
{V;, fi} is subordinate to the open cover {U) : A € A}.
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As we shall see later in dealing with integration on manifolds, the
existence of a partition of unity on a topological space will prove to be very
effective in reducing certain global properties to some local properties.

Connectedness. If a topological space (M, 91) cannot be expressible
as the union of two non-empty disjoint open sets, that is, if M # Uy U Us;
U, Uy € M, Uy NU; = (), we say that it is a connected space. Conversely,
if there exist such open sets U; and Us so that M = Uy U Us, then M is a
disconnected space. In a disconnected space we naturally have U{ = U, and
U; = U,. Hence the sets U; and U, are both open and closed sets in topo-
logy 9t whence we conclude that a topological space is connected if it can-
not be expressed as the union of two disjoint closed sets. It is straightfor-
ward to see that a space M being connected means that only the sets () and
M are both open and closed. Indeed, if M possesses a proper subset A that
is both open and closed, then its complement A’ ought to be both open and
closed. Since M = AU A’ and AN A’ = (), M becomes expressible as the
union of two disjoint open or closed sets. Hence, M is a disconnected space.

A connected subspace of a topological space M is a subspace A C M
that is connected with respect to its relative topology. According to this de-
finition, a subset A is connected if it cannot be contained in the union of two
open sets of M whose intersections with A are disjoint and non-empty.

1t is almost straightforward to show that the image of a connected
space under a continuous function between two topological spaces is also
connected.

Another concept of connectedness which is not entirely equivalent to
the one described above may be introduced by resorting to a more geomet-
rical approach. Let M be a topological space and Z = [0, 1] C R in which
the topology is determined by open intervals. A path, or an arc on the space
M 1is defined as the continuous mapping ¢ : Z — M. We say that ¢ joins
the points p;and py in M if ¢(0) = p; and ¢(1) = po. If ¢(t) € M for
every t € [0, 1], then the path ¢ stays in the space M. If any two points in
the space M can be joined by a path staying in M, then M is called a path-
connected or an arc-connected space. If this property is valid for a subspace
of M, then this subspace is path-connected. Such a space is schematically
described in Fig. 2.2.1.

If M ispath-connected, N is a topological space and f : M — N is a
continuous mapping, then we immediately deduce from the fact that com-
position of continuous mappings is also continuous, the subspace f(M) is
path-connected as well. If a topological space M is path-connected, then it
is also connected. However, the converse statement is generally not true.

When ¢(0) = ¢(1) = p;, we say that the path is closed. If every
closed path in the space M can be contracted continuously to a point inside
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the path, the space M is called simply connected. Equivalently, we say that
a connected topological space M is simply connected if a path connecting
any two points of M can be continuously deformed into every other curve
connecting these two points.

Fig. 2.2.1. A path-connected subspace.

Metric Spaces. A topology on a set M can be defined sometimes by
means of a real-valued function. Let M be a non-empty set. Let us suppose
that we can define a real-valued, non-negative function d : M x M — R*
on this set. We further impose the following conditions on the function d:

(). For each p,, ps € M one has d(p,, p2) > 0.

(7). d(p,, p2) = 0 if and only if p, = ps

(iii). For each p,, p» € M one has d(p,, p2) = d(p2, p,).

(iv). For each p,, pa, p3 € M one has d(p,, p2) < d(p,,p3) + d(ps, p2).

The inequality (iv) above is known as the triangle inequality. We call such
a function d(p;, p2) a metric on the set M and we interpret its value as the
distance between two points p; and p, of the set M. In fact, we can easily
verify that the metric concept coincides entirely with the familiar distance
concept in the Euclidean space. The pair (M, d) is called a metric space.
The open ball of radius r centred at the point p € M is defined as the set

B.(p) ={p1 € M :d(p,p1) <r} C M. (2.2.1)

We can generate a topology on a metric space called metric topology by
noting that open balls constitute a basis for a topology. Consider a class of
subsets B, = {B,(p) : p € M,r > 0} of the set M. It is evident that M =

U{B.(p): pe M,r > 0}. 0 € B, since By(p) = (. In order to show that
the class B, is in fact a basis for a topology on M, all we have to do is to
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demonstrate that any point in the intersection of two open balls belongs to
an open ball contained in that intersection. Let us consider two open balls
centred at the points p; and p, with radii r; and 79, respectively. If their in-
tersection is empty, the criterion is automatically satisfied. Hence, we as-
sume that the intersection of these open balls is not empty and take a point p
in their intersection B, (p1) N By, (p2) into consideration. Hence we can
write d(p1, p) < 1 and d(pe, p) < ro. Let us now choose

r =min{r; — d(p1,p), 2 — d(p2,p)} > 0.

The open ball B, (p) is contained both in the sets B, (p1) and B,,(p2). For
an arbitrary point ¢ € B,(p) the triangle inequality yields d(p;,q) <
d(p1,p) +d(p,q) < ri —r+r=r implying that ¢ € B, (p1). In the same
fashion, we obtain this time d(ps,q) < d(p2,p) +d(p,q) <re—r+71 =
ro and ¢ € B,,(p2). We thus find that B,.(p) C B, (p1) N By, (p2). Con-
sequently, the class B, constitutes a basis for a topology on M. Each open
set of this topology is given by unions of some open balls, that is, if U is an
open set, then it is expressible as U = pLeJUBT(m (p) for some r(p). The set

B,pl={p eM :dpm)<r}CM (2.2.2)

is called a closed ball with centre p € M and radius r. It is easy to verify
that B, [p] is a closed set. It can easily be observed that B,(p) C B,[p|. Let
us consider all open balls centred at a point whose radii are rational
numbers. We immediately observe that these open balls constitute a count-
able fundamental system of neighbourhoods of that point. Therefore, metric
spaces are first countable spaces.

Metric spaces has quite a distinctive property. They are all Hausdorff
spaces. Indeed, if we consider two distinct points of a metric space M, we
must have d(p,q) =7 > 0 whenever p # ¢. By choosing r < r1/2, one
easily demonstrates that it is always possible to find two open balls with ra-
dius 7 > 0 such that B,(p) N B,(q) = 0.

Let us consider a sequence of points {p,} C M. This sequence con-
verges to a point p € M, if there exists a natural number N (e¢) for each
e > 0 such that d(p,,p) < € whenever n > N(e). The sequence {p,} is
called a Cauchy sequence [French mathematician Augustin-Louis Cauchy
(1789-1857)] if to each € > 0 there corresponds a natural number N (¢) € N
such that d(p,,, p,) < € whenever m,n > N. If every Cauchy sequence in a
metric space is convergent, then we say that this metric space is complete. It
can be shown that a subspace of a complete metric space is complete if and
only if it is closed .

It can also be proven that metric spaces are paracompact spaces
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though we have to omit its difficult proof because it is beyond our scope.

Let A be a subset of a metric space. The diameter of A is defined by
the non-negative number D(A) = sup d(p,, p2). If D(A) < oo, then A is a

pL,p2€EA

bounded set. Obviously open and closed balls of radius r are bounded and
their diameters are both 2r.

The standard metric on the set of real numbers is d(z,y) = |z — y|.
Let us now consider the set R". If x € R", then z = (2!, 2%,...2") is an
ordered n-tuple of real numbers where ' € R, i =1, 2,---,n. Next, we

define the function
n . N 1/2
d(z,y) = (le” - yZIQ) (2.2.3)
i=1

for a pair of points z,y € R"™. It is straightforward to observe that this func-
tion is actually a metric on R". We name the set R” equipped with this stan-
dard metric as the n-dimensional Euclidean space E,. Since R" formed by
the Cartesian product of the real line n times, the real numbers {z'} de-
termining a point x € E,, are called Cartesian coordinates of that point. The
collection of all such numbers constitutes the coordinate cover of E,,. The
length or the norm of an element x € F,, is given by

= (Y1) (224)
=1

so that we can write d(x,y) = ||z — y||.

A norm on a complex vector space V' defined over a field of scalars F
is a real-valued, non-negative function || - | : V — R™ satisfying the fol-
lowing conditions:

(@). ||v|l = 0 forallv € V and ||v|| = 0 if and only if v = 0.
(). [|v]| = |al||v|| for allv € V and o € F.
(142). ||u+ || < ||u]| + ||v]| for all u,v € V.

We say that a vector space equipped with a norm, i.e., the ordered pair
(V, |- |I) is a normed linear space or a normed vector space or simply a
normed space. By taking « =0 and « = — 1, we obtain ||0|| =0 and
|| —v|]| = ||v||, respectively. (ii7) is known as the triangle inequality. 1t is
then rather easy to establish directly by induction that the following inequal-
ity holds for a number of vectors vy, vo, ..., v, € V:

[or + vz 4+ A vall < Jloa]] + [Joaf] + - + [[on].
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For any two vectors u,v € V, we can write ||u — v| > |lu]| — ||v|| and
lw — ol = [lv = ull = [lv]| — |[ul]. We thus find
lw = ol > [[lull = [lv]l

for all u,v € V. These properties of the norm amply justify our interpreting
the norm of a vector as its length. By means of the norm, we can introduce a
function d : V x V — R as follows:

d(u, v) = [lu = vl.

Evidently, this function satisfies the conditions d(u,v) > 0; d(u,v) = 0 if
and only if u = v and d(u, v) = d(v, u). Furthermore, one can write

d(u,v) = [lu = w+w = of| < flu—wl| + |Jw = vl| = d(u, w) + d(w, v)

so that d holds the triangle inequality. Hence, we realise that the function d
so defined is actually a metric on the vector space V. We call this metric
generated by the norm, the natural metric on the normed space V. But, in
addition to its commonly known properties, this metric satisfies the follow-
ing equalities for all u,v,w € V and € F:

d(au, av) = |ald(u,v), d(u+w,v+w)=d(u,v).

The last relation indicates the fact that the distance between two vectors
does not change by their parallel translations.

It is now clear that a normed space is a Hausdorff space equipped with
a metric topology induced by its natural metric. In this topology, open and
closed balls of radius r centred at a vector v are of course defined, respec-
tively, by

B(v)={ueV:|lu-v||<r}, Biv|]={ueV:|u—-2|<r}

The basis for this topology is the class {B,(v) : for all v € V and r > 0}.
We obviously have By(v) = 0, By[v] = {v}. One immediately verifies that
an open ball B, (v) is obtained by just simply translating all vectors in the
open ball B,(0) of radius r centred at the zero vector O by the vector v. If
M is a subset of V, the set v + M = {v+ w : for all w € M} is said to be
the translation of the set M by the vector v. We thus have B,(v) =
v+ B,(0). The same property will also be valid for closed balls. Unlike
general metric spaces, it can easily be demonstrated that one always obtains
B,.(v) = B,[v] in all normed spaces.

Let us consider a sequence of vectors {v,} C V. This sequence con-
verges to a vector v € V' if there exists a natural number N (e) for each
€ > 0 such that ||v, — v|| < e whenever n > N(e). The sequence {v,} is a
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Cauchy sequence if there exists a natural number N (¢) for each ¢ > 0 such
that ||v, — vy|| < € for all n,m > N (e). If every Cauchy sequence relative
to its natural metric of a normed space V' is convergent, then V is called a
complete normed space. A complete normed space is named as a Banach
space [after Polish mathematician Stefan Banach (1892-1945)].

An inner product on a complex vector space V' is a scalar-valued
function (-, - ) : V x V — T satisfying the following rules:

(7

)
(u,v) = (v,u) for all vectors u,v € V.
(au,v) = a(u,v) for all vectors u,v € V and scalars a € F.
(u+v,w) = (u,w) + (v, w) for all vectors u,v,w € V.
(u,w) > 0 for all non-zero vectors u € V.

An overbar here denotes the complex conjugate. We can easily extract from
this definition some novel results:

(a).(0,v) = (0-u,v) =0-(u,v) =0 and similarly (u,0) =0 from
which we naturally deduce that (0,0) = 0.

(b). Since (u,u) = (u,u) in compliance with (7), one finds (u,u) € R
and the property (iv) becomes meaningful. If (u,u) =0, we then obtain
that w = 0.

(¢). The inner product is linear in its first argument because of the pro-
perties (i7) and (#77). On the other hand, we can easily observe that

(
(u,v+w) = (v+w,u) = (v,u) + (w,u) = (u,v) + (u, w),

(u, ) = (av,u) = a(v,u) = a (v,u) = a(u,v).

Hence the inner product is additive in its second argument but is not homo-
geneous because of the fact that the conjugate of the scalar multiplier is in-
volved. This situation is known as the conjugate linearity. Thus, the inner
product on a complex vector space is a sesquilinear (1%- linear) function
with respect to its two arguments.

(d).If (u,w) = (v,w) or (w,u) = (w,v) for all w € V, then we find
that u = v. We can indeed prove this by simply taking w =u —v € V in
the relation (v — v, w) = 0.

For a real-valued inner product on a real vector space, the property (7)
is reduced to the symmetry condition (u,v) = (v, u). A real inner product is
linear in its second argument too since (u, av) = a(u,v) for a € R. Hence,
an inner product on a real vector space is a bilinear function.

A linear vector space endowed with an inner product is called an inner
product space.

Inner product must hold an important relation which is called Cauchy-
Bunyakowski-Schwarz's inequality or briefly the Schwarz inequality
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[German mathematician Karl Hermann Amandus Schwarz (1843-1921) and
Russian mathematician Viktor Yakovlevich Bunyakowski (1804-1889) who
had actually discovered this inequality that had appeared in one of his books
published in 1859]. Let H be an inner product space. The inequality
|(u, v)| </ (u,u)(v,v) holds for all non-zero vectors u,v € H. The equal-
ity is valid if and only if the vectors u and v are linearly dependent.

If one of the vectors in that inequality is zero, the relation holds trivial-
ly as 0 = 0. For any two vectors u, v € H with v # 0 and any scalar num-
ber a € F, we can write

0 < (u—av,u—av) = (u,u) — alu,v) — a(u,v) + |a]*(v,v).

The right-hand side vanishes if and only if © = awv, namely, if two vectors
are linearly dependent. Let us next choose a = (u,v)/(v,v) to cast the
above inequality into the form

[(w,0)]* [(u,0)]* | [(u,0)]?
(v,v) (v,v) + (v,v)

I((UU, 1;))|2 >0

(uv u) -

= (u,u) —

[(u, 0)* < (u, w) (v, v).

The square root of the above inequality yields the Schwarz inequality. O
The Schwarz inequality helps us to show that a norm is derivable from

the inner product. Let us define ||u|| = \/(u,u). We immediately see from
the definition that ||u|| > 0 for all w € V and ||u|| =0 u= O Ifa e,
then we readily observe that |Jaul| = \/(au, au) = /|al?(u, u) = |a|ul.
Moreover, we easily obtain that [u + || = (u+ v, u+ v) = (u,u) +

(u,0) + (u,0) + (v,0) = Jul* + ||o]|* +2R(u, v). R(u,v) < [R(u,v)| <
|(u,v)| yields through Schwarz's inequality §R(u, v) < [Jull||v]|. We thus

obtain [|u +v[* < [lu* + [[o]|* + 2[|uf|[lo] = (lul + [[v])*. Hence the
triangle inequality

[+ of| < fful| + o]

follows at once. |
By this definition of the norm, Schwarz's inequality is expressed as

[(w, )] < [lull[[v]]
The norm generated by an inner product imposes a restriction that any

two vectors in an inner product space must obey the parallelogram law. Let
u,v € H. We have
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2 2 2 2 2 2
Ju =+l = [Jull” + [[v]I” + 2R(u, v), [lu = oI = [Jul]” + [[o]]” = 2R (u, v).
By adding those two expressions, we obtain
2 2 2 2
w4 oll” + [lu = ol = 2({|ull” + [Jo]]%)

This relation reflects the fact that a well-known relation of the classical
geometry, namely, the sum of the squares of two diagonals of a parallelo-
gram being equal to the sum of the squares of all of its four sides is still
valid in an arbitrary inner product space.

The natural norm induced by an inner product generates now a natural
metric on the vector space V' through the function

d(u,v) = lu —v|| = v/ (u —v,u — ).

An inner product space which is complete relative to its natural metric is
called a Hilbert space [after German mathematician David Hilbert (1862-
1943)]. It goes without saying that a Hilbert space is also a Banach space.

A quite a simple generalisation of the classical Heine-Borel theorem
[German mathematician Heinrich Eduard Heine (1821-1881) and French
mathematician Félix Edouard Justin Emile Borel (1871-1956)] of real anal-
ysis leads to the result that every subset of F,, that is closed and bounded is
compact. Let us consider an open set of F, and a point inside this set.
Hence, there exists an open ball centred at this point and contained in the
open set. On the other hand, there is a closed ball with the same centre in-
side this open ball that is closed and bounded. Therefore, F,, is a locally
compact metric space. If there is no ambiguity, we prefer to employ hence-
forth the notation R" instead of E,, to denote the Euclidean space that illus-
trates the formation of this space more clearly. R" is also a complete metric
space. It can be shown that the class of open balls generated by the metric
(2.2.3) constitutes a countable basis for the metric topology on R". Thus the
second countable metric space R" is a paracompact topological space
according to the statement in p. 57.

Let (M,d) and (N, p) be two metric spaces and consider a function
f M — N. The topological concept of continuity takes now a purely met-
rical form. We say that the function f is continuous at a point p € M if for
each number e > 0 there corresponds a number §(e;p) > 0 such that
p(f(p), f(p)) < € for all points p; € M satisfying d(p,p1) < 6.1f fisa
continuous function and if we can find for each ¢ a number §(¢) that is
independent of points p, then f is called a uniformly continuous function.

Manifold. A differentiable manifold is essentially a topological space.
But it is also equipped with a particular structure that makes it possible to
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support differentiable mappings, vectors, tensors and exterior differential
forms associated with those topological spaces.

Let us first consider a more general definition. An n-dimensional fopo-
logical manifold M is a Hausdorff space every point of which belongs to an
open set that is homeomorphic to an open set of the Euclidean space R".
These open sets constitute an open cover of M. Thus a topological manifold
is locally equivalent to the Euclidean space R".

It proves to be advantageous for a topological manifold to be a para-
compact space if we wish to develop a workable theory of integration on
manifolds. That is the reason why many authors prefer to assume that the
principal ingredient of a topological manifold is a second countable, hence a
separable, locally compact Hausdorff space. As we have mentioned earlier,
the concept of manifold stems from the desire to make an abstraction of the
classical notion of smooth surfaces in the Euclidean space, to endow a
topological space with a local structure supporting differentiability and to be
able patch together these local structure to cover the entire manifold. The
above definition means that when we consider a point p € M, there will be
a connected open set U € 91 containing the point p and a homeomorphism
¢ : U — V C R™. Thus, the function ¢ is bijective, and ¢ and ¢! are con-
tinuous. Since the metric space R" is a Hausdorff space, it is imperative that
M has also the Hausdorff property in order this homeomorphism to exist.
Obviously the set V = p(U) C R™ is open, hence it is expressible as a
union of some open balls in the Euclidean space R". A chart on M is the
pair (U, ). n is the dimension of this chart. The open set U is the domain
of the chart. Let us now write p(p) = x = (2!, 22,...2") € R" and we
choose clearly continuous functions ¢’ : R” — R,i = 1,2, ...,n by the
rule ¢g'(x) = 2'. We say that the real-valued continuous functions ¢’ =
gop: U—R,i=1, ...,n are the coordinate functions of the chart
(U, ) providing the mapping ¢’(p) = z' whereas the real numbers
(x', 22, ...2") will be called the coordinates of the point p € M in the
chart (U, ¢) (Fig. 2.2.2). Thus a chart gives rise to a local system of coor-
dinates on the manifold. If every point of a topological manifold M has an
n-dimensional chart, we say that M is an n-dimensional manifold. When
we want to emphasise its dimension we denote this manifold by M". The
union of local coordinates systems in all charts covering M constitute the
coordinate cover of the manifold M. If there is a point py € U such that
©(po) = 0, then we say that the local coordinate system is centred at py.

Let us consider a function f : M — R". The function f' = g'o f:
M — R is called the ith component function of f.

The inverse mapping ¢! : V — U is called a parametrisation of the
open set U. The coordinates z!, 22, ... 2" are then called parameters of U.
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The coordinate lines on M are the images of Cartesian coordinate lines
on R" under the mapping ¢! : p(U) =V — U (Fig. 2.2.2).

It is now clear that the manifold M behaves locally just like an open
set of the Euclidean space R"” in the vicinity of the point p € M. Since the
Euclidean space is locally compact and homeomorphism preserves com-
pactness, a finite-dimensional topological manifold must also be locally
compact. In fact, let us consider a point p € M contained in a chart (U, ¢).
The point ¢(p) will be in an open neighbourhood in R™. Hence, it belongs
to an open ball inside ¢ (U). Since the closure of this open ball is contained
in a closed ball that is both closed and bounded, then ¢ (p) has a compact
neighbourhood K. Because the function ¢! is continuous, then the point p
also must have the compact neighbourhood ¢! (K) in the open set U.

Fig. 2.2.2. A chart on the manifold M.

A CP*-atlas A on a topological manifold M is a family of charts A =
{(Usy 0a) : « € T} where T is an index set. Moreover this family must
satisfy the following conditions: () all charts have the same dimension and
the union of their domains constitute an open cover of the manifold, that is,
M = LEJIUa, (17) consider two different charts (U,, ¢,) and (Ug, ¢3) of the

«

atlas. Let us assume that U, N Uz # (. Images of the open intersection
U, N Us under mappings ¢, and g will usually be different open set in R"
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Fig. 2.2.3). On the overlapping domain U, N Uy of the homeomorphisms
g pping B rp
o and g, we can define the following transition functions:
Yap = a0 @, : R" — R™, (2.2.5)
Pui = Pao s :R* - R
©ap 1s also a homeomorphism because it is the composition of two homeo-

morphisms. A better description of these homeomorphisms may be illus-
trated more clearly as

Pag 0a(Ua NUp) — p3(Us NUp),
90;5’ :pp(Ua NUp) — ¢a(Ua NUp).

Fig. 2.2.3. Overlapping charts on a manifold M.

Let us denote the coordinates in charts (U,, ¢, ) and (Us, pg) by {x'}
and {y'}, respectively. Then, the transition mapping ¢, leads to a relation
between images x and y of the same point p € M with respect to two over-
lapping charts in the form y = ¢,3(x) € R” that can be expressed as
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y' = ¢ls(@)), i,5=1,2,...n5 X € o (Us NUp) (2.2.6)
Naturally, the mapping cp;é yields the inverse relation:
T fyﬂ(yj), i,j=1,2,...n; y € p3(U, N Up). 2.2.7)

The foregoing relations corresponds clearly to a coordinate transformation
on the open set U, N Uz. We know that partial derivatives are defined on
R". We say that the charts (Uy, ¢,) and (Ug, p3) are C*-compatible if the
functions ¢, 4 are continuously differentiable of order & or they are of class

C*. This of course means that they have continuous partial derivatives with
respect to all variables 27 up to and including order k. Two charts are C*-
related if either they are C”"-compatible or U, NUg=0.4 C*_atlas is an
atlas in which all charts are C*-related.

Let A; and A, be two C*-atlases. We say that they are C*-compatible
or equivalent atlases if and only if their union A; U A, is a C*-atlas, in oth-
er words, if every chart in A; is C*-related to every chart in As,. It is easily
seen that to be C*-related gives rise to an equivalence relation on a family
of atlases. In fact, it is obvious that this relation is reflexive and symmetric.
In order to verify transitivity, let us consider three C*-atlases A;, Az, A3
and assume that A;, A, are C*-compatible and A,, A; are C'*-compatible.
(Ur,p1) € Ay, (Ua, 2) € Ag, (Us, p3) € Az are three arbitrary charts. If
Ui NUs = (), then the charts (Uy, 1) and (Us, p3) become trivially C*-
compatible. Thus, let us assume that the intersection U; N Us is not empty.
Then the functions ¢, 0 1" : ¢ (Uy NUL NUs) — ¢, (U N Uy N Us) and
@, 005" 1, (UyNUsNUL) — @, (U NUs N Uy) are of class C*. On the
other hand, we can write ¢, o ort = (py0 p3t) o (py0 ©71) so that this
function is of class C*. Hence the charts (Uy, 1) and (Us, ¢3) are also C*-
compatible. We thus conclude that all C*-atlases are partitioned into equiv-
alence classes. The union of all atlases in an equivalence class will naturally
be in this class. This means that every equivalence class contains exactly
one maximal atlas.

A C*-differentiable structure on a topological manifold M is an equi-
valence class of C*-atlases. We can also say that a C*-differentiable struc-
ture on a topological manifold M is the choice of a maximal C*-atlas. A
C*-differentiable manifold is a topological manifold equipped with a C*-
differentiable structure.

If real-valued functions (2.2.6) and (2.2.7) with real variables have
continuous derivatives of all orders, we obtain a C'*°-atlas and C'*°-differen-
tiable manifold. A C'*°-differentiable manifold will also be called a smooth
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manifold. If the coordinate transformations are real analytical functions,
that is, if they are expressible as convergent power series, then we get an
analytical manifold or a C“-class manifold. It is evident that every C*-
function is also a C'*°-function. But we know that the converse statement is
generally not true. We can thus write symbolically 1 < k < m < oo < w. A
C™-differentiable structure A prescribed on a manifold M determines a
unique C*-differentiable structure on M for k < m. In order to see this it
suffices to enlarge the set of admissible charts by adding all charts which
are C*-related with charts in A to the structure A. Conversely, we can ask
this question: when we are given a C*-differentiable structure, is it possible
to obtain a C'"-atlas for m > k by discarding some charts? The answer to
this question is provided by the following classical theorem whose proof we
avoid to give because it is quite long and rather difficult.

Theorem 2.2.1 (Whitney's theorem). Every C*-structure with k > 1
on a second countable topological manifold is C*-equivalent to a C“-
structure. a

This theorem means that if we locally make a coordinate transforma-
tion y' = fi(27) of class C* on an n-dimensional second countable topo-
logical manifold, there exist such functions 2’ = g(y’) of C*-class that the
composition z' = g'(f7(x™)) is of C“-class, that is, they are analytical
functions.

This theorem had been proven by Whitney2. That a C°-manifold can-
not be equivalent to a C''-manifold can be shown through a more difficult
theorem. According to the Whitney theorem we can choose all second
countable or separable differentiable manifolds as analytical manifolds
without loss of generality. However, it is not very comfortable to work with
C“-functions as it is with C'*°-functions. Therefore, it will prove to be more
advantageous to consider smooth manifolds. Henceforth, unless stated oth-
erwise we take only smooth manifolds into consideration.

It is possible to extend above definitions to infinite dimensional mani-
folds. However, for this purpose we have the replace the Euclidean space by
a Banach space, that is, by a complete normed space. In this case a chart
(Ua, 9q) implies that the homeomorphism ¢, maps an open set U, of the
manifold M to an open subset V' of a Banach space V such that ¢, (p) =
v € V where p € M. The differentiable structure is now defined by Fréchet
differentiability of the transition function w3 = ps0p,': V — V on the
overlapping domain U, N Uy of the homeomorphisms ¢, and 3. A brief
definition of the Fréchet derivative is given below.

Let ¢ and V be Banach spaces and let 1" : &/ — V be a possibly non-

2Whitney, H., Differentiable manifolds, Ann. of Math. 37, 645-680, 1936.
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linear operator. Suppose that Q = D(T') C U is an open set. If a continuous
linear operator T'(u) € U — V exists at a vector u € 2 such that

lim |T(u+ Au) — T(u) — T'(u) Aul| _

0
1Au]—0 | Aul

for all vectors Au € U, then T"(u) is called the Fréchet derivative of the
operator T at a vector u.T'(u) depends possibly nonlinearly on the vector
u. This derivative was introduced by French mathematician Maurice René
Fréchet (1878-1973) in 1925. The domain of the operator 7" contains natu-
rally all vectors in U at which the Fréchet derivative of 1" can be defined.
The above definition amounts to say clearly that for each ¢ > 0, there exists
anumber 6(e) > 0 such that

|7+ Au) = T(w) = T'(w)Au]| _
| Aull

€

or
IT(u+ Au) — T(u) — T (u) Aul| < €||Aul|

for all Au € U satisfying the condition ||Au| < 6. It is then straightforward
to see that the following relation is valid:
[lw(u; w)

Tu+w)—T(u) =T (u)(w) + wlu;w), lim

=0.
lwl—0  |lw]]

We thus conclude that the existence of the Fréchet derivative at a vector u
brings about the possibility of evaluating the vector T'(u + w) — T'(u) ap-
proximately through a continuous linear operator for all vectors w with suf-
ficiently small norms.

It is straightforward to see that the Fréchet derivative may also be ex-
pressible in the form

T () (wy) = }E}% T(u+ twtl) - T(u)

By following exactly the same procedure we have employed in evaluating
the Fréchet derivative of T, we can of course define the Fréchet derivative
of the operator 7" (u) as

T (w) (wy, ws) = 11“8:[”(” + th)(wtl) — T"(u)(wy)

for all wy, wy € U. If this derivative exists, then the operator 7" (u) is called
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the second Fréchet derivative of 1" at u. This operator must be linear in each
vector w; and wsy. This approach permits us to define higher order deriva-
tives as well. Let us suppose that the (k — 1)th order Fréchet derivative
T*=V(x) is known. Then the kth order Fréchet derivative can be similarly
defined as follows

T(k)(u)(wl, Wy evny wk)
— lim T*=D (w4 twy) (wr, ..., wr—1) — TE VD (w)(wy, ..., wp_1)
o t—0 t

for all ordered sets of vectors wy, ws, ..., w; € U. Evidently, the operator
T®™ (u) : U* — V is an k-linear function, that is, it is linear in each vector
w; €U, 1 =1,..., k. We can immediately extract from the definition that
the operator 7%) (u) may be formally expressed in the following form

an

T () (w) = 6.0, ot ¢

u~+ tywy + tows + - + tpwy)
ti=ty="- =t =0

where w = (wy, we, ..., wy).
In this work, we shall always deal with finite-dimensional manifolds.
Open Submanifold. Let U be an open subset of a differentiable mani-
fold M with a differentiable structure. We can define a differentiable struc-
ture on U by

-AU = {(U N Uaa(pa’UﬁUO) : (Um(pa) S -A}

since U N U, are open sets covering U. It is clearly seen that the open set U
endowed with this structure becomes itself a differentiable manifold called
an open submanifold of M. Since the same homeomorphism is utilised, this
open submanifold has evidently the same dimension as the manifold M .

Product Manifolds. Let us consider two differentiable manifolds M
of dimension m and N of dimension n. We choose, respectively, atlases
Ay ={(Ua,¢a) :ao€ I} and Ay = {(Vs,v3) : B € J} from the differ-
entiable structures of these manifolds. The set M x N of the Cartesian
product of these manifolds can now be equipped with a structure of an
(m + n)-dimensional differentiable manifold by choosing the topology on
M x N as the product topology and by introducing an atlas in the form
Ay = {(Ua X Va,wap) : (o, 3) € T x J}. Here, the mapping w,s is
identified by

Wag : Uy x Vg — gpa(Ua) X 1/}/3(‘/5) CR™ x R" = R™",

Thus, if p € U, C M and q € V3 C N, then we have to write
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wap(p, @) = (0a(D), ¥3(q)) = (X,¥) € @a(Ua) X ¥5(Vs) C R™™

where X = ¢, (p) andy = ¢3(q).

We now consider some samples of manifolds.

Example 2.2.1. Cartesian Spaces. The standard manifold structure on
the Euclidean space R" is prescribed by an atlas including a single chart
(R™, ig) where ig : R" — R" is the identity mapping. Coordinate functions
©',i=1,...,n are just Cartesian coordinates {x’ : i = 1,...,n} of a point
of R". As a differentiable manifold R" is called the affine space.

The space R acquires a manifold structure with the single chart (R, ¢1)
where p; : R — R is given by ¢;(x) = x. Similarly if we replace ¢; by
@o(z) = 2*, then R becomes a manifold with the chart (R, ¢5). But these
two atlases are not compatible, because the mapping 19 : R — R given by
©12() = @1 0 ;' () = /3 is not differentiable at the point = = 0. |

We can observe at once that every open subset of R" is an n-dimen-
sional manifold. Furthermore, we can easily show that an n-dimensional
connected manifold is equivalent to an open submanifold of R" if and only
if its atlas contains only a single chart. Indeed, if the entire manifold M is
homeomorphic to a single open set of the space R", then its atlas has only
one chart. Conversely if the atlas of an n-dimensional manifold M has only
one chart, then the entire space M is homeomorphic to a single open sub-
manifold of R".

Example 2.2.2. Finite-Dimensional Vector Spaces. Let IV be an n-
dimensional real vector space equipped with an arbitrary norm. We choose a
set of basis vectors by (ej, €2, ..., e,). Then any vector v € V' is expressed
as v = x'e; + x%ey + --- + z"e, where ' € R, i =1, ..., n. If we denote
r = (2!, 2%, ...,2") € R", it becomes obvious that there is an isomorphism
and hence a linear homeomorphism ¢ : V' — R" such that x = ¢(v). It then
follows that V' is also an n-dimensional smooth manifold since R" is a
smooth manifold. Evidently this property is independent of the choice of the
basis in V. As a concrete example to finite-dimensional vector spaces, let us
consider the set of m x n matrices defined on real numbers. According to
the rule of matrix addition and scalar multiplication, this set is an mn -
dimensional vector space. Indeed, we can write any member of this set in
the form M = a*M,;,a = 1,...,m,i = ,...,n where the matrix M,; has
1 in its row « and its column ¢ while all other entries are 0. These mn
linearly independent matrices M,; constitute a basis for this vector space.
This vector space is isomorphic to the space R"" whose points are identifi-
ed by elements (a'l,...a'™ ... ;a™, ..., a™") of matrices. Hence, such
matrices constitute an mn-dimensional smooth manifold.

We denote the set of n x n real square matrices by gl(n,R). gl(n,R)
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is a smooth manifold of n?-dimension. Let us consider the subset G L(n, R)
of regular matrices of gl(n,RR). This set is called the general linear group.
Let det : gl(n,R) — R be the determinant function. In this case the general
linear group is expressed as the following set difference:

GL(n,R) = gl(n,R) — det *{0}.

Since the determinant is a continuous function and the singleton {0} € R is
a closed set, then det {0} € gi(n,R) is a closed set. Thus GL(n,R) is an
open set, that is, it is an open submanifold of the manifold gl(n, R).

We can obtain similar results on matrices defined on the field of com-
plex numbers. But, a complex number is given by two real numbers. Conse-
quently, the dimension of the real manifold to which space of matrices is
homeomorphic becomes twice as much. For instance, the general linear
group G L(n,C) of regular n x n complex matrices is a smooth manifold of
2n2-dimension. [ |

Example 2.2.3. The Sphere in R3. We consider a spherical surface of
radius R in R3. Any point P(z,y, 2) of this 2-dimensional surface S? can be
written in the form

z=Rsinfcosgp, 0<0<m 0<¢ <27,
y = Rsinfsin ¢,
z= Rcosf
by employing spherical coordinates (6, ¢). By defining z! = 6 and 2> = ¢

we can determine a function ¢; : S? — R? mapping S? on the region
[0, 7] x [0, 27] of R? (Fig. 2.2.4).

E3 $Z A xz
) P 27 E2
R »
3 Y
X Ar > |
0] T X

Fig. 2.2.4. 2-dimensional sphere.
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It is straightforward to find the inverse function 7 !:

z! = arctan 7M, z? = arctan g
z X
Unfortunately, ¢; is not a homeomorphism on the entire sphere. The poles
(0,0, R) and (0,0, — R) of the sphere (§ = 0 and § = m, respectively) are
mapped onto sets {0} x [0,27] and {7} x [0,27] in E». Furthermore, the
image of a point on the half-circle ¢ = 0 are two points on the lines 2> = 0
and 22 = 2. Hence, on this set (1 1s not even a function. In order to make
the mapping ¢; a homeomorphism, we exclude from the set S? the poles
(0,0, R), (0,0, — R) and the half-circle ¢ = 0 joining them. Thus we have
to choose 6 € (0,7) and ¢ € (0,27) and to restrict ¢7' on the open set
(0,7) x (0,27) in R?, in other words, we have to take 0 < x! <,
0 < 2? < 2. It is now evident that the set

U =S*-1{(0,0,R)}U{(0,0, - R)}U{¢p =0} CS?

is open since it is the homeomorphic image of the open set (0, 7) x (0, 27).
Consequently (Uy, ;) is a chart but it cannot cover the entire manifold S2.
This result should be expected because the sphere S? is a closed and
bounded subset of the manifold R?. In order to find another chart, let us
choose now the point (0, R, 0) as a pole of the sphere. As above, we write

x = Rsiny'siny®, 0<y' <7, 0<y® <2,
y = Rcos y,
z = Rsiny'cosy?.

These relations determine a mapping ¢, and (Us, p2) becomes a chart
where U, is the open set obtained by deleting now the points (0, R,0),
(0, —R,0) and the half-circle behind the sphere joining those two points
from the manifold S?. It is obvious that U; U U = S?, that is, {(Uy, ¢1) and
(Us, p2)} constitute an atlas on S?. In the images of overlapping charts in
R?, we can easily obtain the following coordinate transformation:

y' = arccos (sin z'sin %), y* = arctan (tan z'cos z%);

2! = arccos (siny'cos y?), 2

— arctan (cot y'sin y?);
0<z!l<m0<a?<2m

0<y' <7 0<y?<2m
Since these functions are analytic, S? is an analytical manifold. | |

Example 2.2.4. The Sphere in R™*1, Let us consider the n-dimen-
sional spherical hypersurface S” with radius R in R"*!. If we denote the
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Cartesian coordinates in R"*! by (zg,x1,...,,) then the set S is deter-
mined by the equation

x%+xixi:R2,i:1,2,...,n.

We choose the pole k& of S™ as the point (R,0,...,0). We specify the sub-
space E, by the condition xy = 0. To describe the mapping ; : S” — R",
we impose that the image point ¢ = ¢1(p) of a point p € S” in R" is the
point of intersection of the straight line joining the pole k£ and the point p
with the hyperplane R"™ (Fig.2.2.5). This mapping is known as stereo-
graphic projection. 1f the coordinates of the point p are (xg, x;), then the
relation zy = 7/ R? — x;x; must be satisfied. Let the unit basis vectors in
R"*! be {eg, e;}. The vector ey is in the direction 5/;, while basis vectors in
R™ are e;,7 = 1, ..., n. Let us denote the coordinates of the point ¢ € R" at
which the line joining the points k£ and p intersects the space R"” by y =
(Y1,Y2, -, Yn). Thus, we can write

Reo + A [(Z‘o — R)@() + $167] = Y€
where A is a real parameter. Then, it follows that

Ax

n+1

k

Fig. 2.2.5. Stereographic projection for an n-dimensional sphere.

R Rz; s R+

A= i = s Yy = R o—.
1’?—1‘07 Y R—xo iy R—$0

Hence, the points on S” with the same elevation xy form now an (n — 1)-
dimensional sphere S"~! in R". The radius of that sphere is of course given
by R+\/(R + z0)/(R — w). It is greater than R if 0 < zy < R and less than
Rif —R <z < 0.Letx = (zg,x1,...,2,) € S", then the above relations
prescribe a mapping ¢; : S” — R™ where ¢1(x) =y € R". The inverse
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mapping 7! : R" — S" is easily found to be

:Ryiyi_R2 R —

x=p1'(y), W» Ti= Y

We can immediately observe that ¢; is not a homeomorphism on the entire
S". Indeed, the pole k£ determined by zy = R, z; = 0 is mapped on a "set of
infinities" in R™ under ;. We can simply observe that ¢; becomes a
homeomorphism if we delete the single point k£ from S". Thus (Uy, ¢1) is a
chart where U; =S" — {Rey} is an open set. We can next introduce
another chart by choosing the point { — Reg} as another pole of S” and by
defining the function ¢, : Uy — R as follows

2= p2(x), T Ryz TN RYL

where z = (z1,...,2,) € R" and Uy C S" is the open set S” — { — Rey}.
The inverse mapping ;! : R" — U, is easily provided by the following
relations

R? — ZiZi R+ xg
= z

ro=R——= 1,=— 2.
zjzj + R’ R

Obviously (Us, 9) is also a chart. Since Uy U Uy = S", then we have the
atlas {(U1, 1), (U, p2)}. In the region (S — {Rep}) N (S" — {—Rep})
where the two charts overlap, the coordinate transformation ¢ o 7! is
found to be

o R - ) o R2 ‘
T Rrw” Ty
Thus S" is an analytical manifold. |

Example 2.2.5. Torus. We denote the surface of a 2-torus in R? by
T2. This surface is obtained, for instance, by rotating a circle with radius b
whose distance of its centre from z-axis is a about that axis (Fig. 2.2.6). We
can thus write T?> = S! x S' = (S')? as a product manifold. The manifold
S! represents a 1-dimensional sphere, namely, a circle. Thus, one-dimen-
sional torus T is just the circle. In view of Example 2.2.3, the manifold S!
has an atlas with two charts homeomorphic to R!. In this case we expect
that the product manifold T? will have an atlas with four charts homeomor-
phic to open subsets of R,

On the other hand, a torus may be determined parametrically in R? by
the following relations
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z = (a+ bsinf)cos ¢,
y = (a+ bsinf)sin ¢,
z=bcosf

Fig. 2.2.6. 2-dimensional torus.

where the condition b < a should be satisfied. The parameters ¢ and 6
measure the angles along small and large circles. If we write z! = 60, 2% = ¢
these relations define a mapping ;! : R? — T?. But to render this mapping
injective we have to restrict its domain to an open set in R? prescribed by
inequalities 0 < 2! < 27, 0 < 22 < 27. Let U, be the open set obtained by
deleting from T? the circle with radius a at the plane z = b and the circle
with radius b at the xz-plane centred at the point z = a,z = 0. (Uy, ¢1)
then becomes a chart. We define a new mapping @9 by

r = — (a+bsiny')siny?,
y = (a+ bsiny') cosy?,
z =bcosy'.

Let U, be the open set obtained by deleting from T? the circle with radius a
at the plane z = b and the circle with radius b at the yz-plane centred at the
point y = a, z = 0. It is straightforward to see that (Us, 2) is now a chart.
The region U; N Us in which two charts overlap is the union of two open
sets V, and V5 that are disconnected where

Vi =1 ((0,27) x (7/2,2m)), Vo= ((0,27) x (0,7/2)).

2

There are analytical coordinate transformations y' = 2!, y> = 2* — Z on V}
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and y' = !, 2 =22 + &

given by

on V5. Finally, let us consider the mapping (3

z = (a+bcos z') cos 22,

y = (a + bcos z*) sin 2%,

z= —bsinz'
The open set Us is obtained by deleting from T? the circle with radius a + b
at the plane z = 0 and the circle with radius b at the xz-plane centred at the
point x = a,z = 0. (Us, p3) is a chart. The region U; N Us in which the
charts (U1, 1) and (Us, ¢3) overlap is obviously the union of two open sets
Wy and W5 that are disconnected where

Wi = 1! ((7/2,27) x ((0,27))), Wa = ;' ((0,7/2) x (0,27))

There are analytical coordinate transformations 2! =z — Z, z* = 2® on

Wi and 2t = 2! + 37, 22 = 2% on W,. The charts (Us, ¢2) and (Us, @3)
overlap on U; N Us which is the union of open sets 7y, Zs, Z3 and Z,.
These sets are given by

Zy = 031 ((0,7/2) x (0,37/2)), Zy = 5" ((0,7/2) x (31/2,27))
Zs = 3 ((r/2,2m) x (0,37/2)), Zs = 3" ((n/2,27) x (37/2,27)).

Analytical coordinate transformations on these four sets are determined by
the following expressions, respectively

37 T 3T 3T
1.1 2 _,2 T 1_ 1 2 _,2_ O,
=Y —1——2,2 y+272 y—i——Z,z Yy _27
1_ 1 T o _ o T 4 _ 4 T 5 5 37T
zZ =Y 2,2—y +2vz_y 272 =Y 5

Since U, U U, U Us = T?, we conclude that 2-torus has an analytical atlas
with three charts { (U1, ¢1), (Usz, ¢2), (Us, ¢3)}.

An n-torus may be described in a similar fashion as a product manifold
T =S x $t x .- x St = (S~ |

Example 2.2.6. Klein Bottle K?. The Klein bottle is a 2-dimensional
manifold in the space R* [It was introduced in 1882 by German mathema-
tician Felix Christian Klein (1849-1925)]. We denote the coordinates in R*
by (x,y, z,v). S is a circle with radius b at the 2z-plane whose centre is the
point (a,0,0,0). We assume that a > b. Klein bottle is produced by the
following process: while turning the centre C' of that circle about O in the
xy-plane by an angle ¢, we rotate its plane in 4-dimensional space about the
axis OC that remains perpendicular to the zw-plane by an angle ¢/2
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(Fig. 2.2.7). It can be shown that this operation is tantamount to first
forming a cylindrical surface by gluing two mutual edges together of a
rectangular strip, then trying to glue one edge of this cylinder to the other
after giving a half-twist with respect to the other one. In 3-dimensional
space this operation cannot be realised without intersecting the surface.
Therefore, Klein bottle can be considered as a manifold only in a 4-dimen-
sional space. It cannot be embedded into R? since in such a mapping self-
intersections should not be permissible. However, it is possible to immerse
this surface into 3-dimensional space if we allow self-intersections [for
properties of these sort of mappings see Sec. 2.4]. These immersions are
found to be unfortunately not unique. Two different immersions is depicted
in Fig. 2.2.8.

y

Fig. 2.2.7. Description of Klein bottle in 4-dimensional space.

It is now obvious that a point on Klein bottle is represented paramet-
rically by equations

x = (a+bcosf)cos ¢,

y = (a+ bcosh)sin ¢,

z =bsinfcos (¢/2),

v=">bsinfsin(¢/2), 0<0<2m 0<¢ <27

When we eliminate these parameters, Klein bottle is given in Cartesian
coordinates with the following relations

y(z* —v*) — 220 =0

Py 0 =202yt a0 =0
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With z! = 0, 22 = ¢, these relations determine a mapping ¢; : K> — R
However, in order to render the mapping ;! : R? — K2 injective, we have
to restrict its domain in R? to the open set determined by the inequalities
0 < ' <2m, 0 < 2? < 27. Hence the domain of ¢; is the open set U;
obtained by deleting from K2 the circles ¢ = 0 given by = — a = bcos 6,
z =bsinf and 6 =0 given by z = (a + b)cos ¢, y = (a + b )sin¢. Thus,
the inverse mapping ;! is found as follows when 2 # 0

L VR +? L Vet —a

sing' = ———, cosx = —

b b

v Y
x® = 2arctan — = arctan =.
z X

2

If z = 0, we have either 2! = 7 or 22 = 7. Consequently, inverse mappings

become, respectively

Y
! = T, z? = arctan =,

1_ v 2 _
xr = arctan , T° =T
a—x

Hence (Uy, 1) is a chart. Let us now define a mapping - by relations

= — (a+bcosy')siny?,

y = (a + bcosy') cos ¢/?,
2
z = bsiny' cos <y_ + E),

2 4
y o
v:bsinylsin(gjtz),0<y1<27r,0<y2<27r

where 3 is representing now the angle in zy-plane measured from y-axis.
We can easily observe that the mapping 2 is a homeomorphism on the
open set U, obtained by deleting from K? the circle with radius a + b in xy-
plane and the circle with radius b centred at y = a and located on the
bisecting plane of yz- and yv-planes. Hence, (Us, 2) is a second chart and
it contains the set {z? = 0}. We see that U; N Uy = V4 U V5 where V; and
V, are open disconnected sets given by

Vi = o1 ((0,27) x (7/2,2m)), Vo= 7' ((0,2m) x (0,7/2))

The coordinate transformation on V; is y' = «!, y* = 2 — 7 whereas that

onVaisyt =2r —al, 2 = 2% + 37” Finally, let us define a mapping 3 by
the relations
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z = (a + bsinz') cos 2%,

y = (a+ bsin 2') sin 22,
z = —bcosz' cos (2%/2),
v= —bcosz'sin(2?/2),0 < 2! <27, 0 < 2 <27

where z! now denotes the angle translated 90°. The open set Us is obtained
by deleting from K? the circle with radius b centred at the point = a in
xz-plane and the circle with radius a in zy-plane and the circle with radius b
in zv-plane both centred at the point O. It is obvious that (Us, 3) is a chart
and it contains the set {z! = 0}. We thus obtain U; U Uy U U3 = K?. In the
same fashion one can show that coordinate transformations at the overlap-
ping subsets of all these charts are simple analytical functions. Thus, Klein
bottle K? is an analytical manifold. [ |
Example 2.2.7. Real Projective Spaces. Let us consider the space
R"*! whose origin 0 = (0,0, ...,0) is deleted. A point of R"! is denoted
by x = (2}, 22,...,2"*!). We define a relation R on the set R""! — {0} by
xRy if and only y = Ax, A€ R— {0}, or ¢/ = Aa’,1 <i<n+1 Itis
straightforward to see that R is an equivalence relation. The n-dimensional
real projective space RP" is defined as the quotient space of the topological
space R""! — {0} with respect to this equivalence relation R: RP" =
(R"*! — {0})/R. It is clear that the elements of this space that are equi-
valence classes are straight lines through the origin 0 of R"*!. In this case,
the canonical projection 7 : R"™! — {0} — RP" [see p. 61] assigns to a non
-zero point x € R"*! the line through this point and the origin. Therefore, if
we denote a point of the quotient space RP" by the equivalence class [x] =

[%, 22, ..., 2""!], then for each A € R, A # 0 the equivalence class [Ax] =
Azt Ax?, ..., Ax™ 1] specifies the same point, i.e., [A\x] = [x]. The numbers
7 ) Y p p
ol 2%, ..., 2" are called the homogeneous coordinates of the point [x].
Employing those coordinates, we can represent the coordinates {£!, ..., £"}
of a point in R" by the ratios
1 2 n
1 @ 2 __ X n_ 7T n+1
£ _anrl’5 Togpntl? T € _anrl’x 7&0'

As corresponding to a point [x] in the projective space, these coordi-
nates are uniquely determined. We now want to equip the projective space
by the quotient topology [see p. 62]. Let us choose the sets U;,i = 1,2,
...,n + 1 in the projective space as follows

Ui ={[x] e RP" : 2’ #0}.
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Fig. 2.2.8. Images of Klein bottle in R? for two different immersions.

The set U; consists clearly of the straight lines through the origin of the
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space R"! that do not belong to the n-dimensional subspace determined by
the coordinates (z!,...,2""1, 0,2, ... ") except at the origin. Since
the set

N U;) = {x e R""' — {0} : 2" # 0} C R*""! — {0}
is open, the set U; C RP" is also open in the quotient topology. Moreover,
we see at once that ?L:Jj(ﬁ = RP". We define a mapping ; : U; — R" by
1 i—1 i+l

T T X
— ), W e UL

eil) = (

ey P

i’ xl

Evidently this mapping is a homeomorphism. Hence, (Uj;, ;) is a chart and
the collection {(U;, ;) :i=1,2,...,n+ 1} is an atlas for RP". On the

other hand, in the intersection U; N U; where charts are overlapping the
transition function is easily found to be

B IL‘l ‘,L,ifl I.i“rl ‘,L,nJrl IL‘l ‘,L,jfl ijrl $'n+1
e _ (=
;0 QY; xi,..., e s s yeeey v = xj,..., o s v yeeey 2
zt xl $]_1 £U]+1 xn+1 ; ;
:E E,..., :Ei y {L'i yeeey {L'i , L #0,.% 750

Since transitions functions are analytic, we conclude that RP" is an analyti-
cal manifold.

The interest of mathematicians to the real projective plane RP? goes
rather back in history. It has been observe that this 2-dimensional manifold
can be embedded smoothly into R*. Werner Boy [1879-1914] who was a
student of Hilbert had shown in 1901 that this surface can also be immersed
in R? if it is allowed for the surface to intersect itself. A quite an interesting
parametrisation of Boy's surface was discovered by American mathemati-
cians Robert B. Kusner and Robert L. Bryant (1953): we define the
functions

3, ¢d-¢" 3,y C(L+¢Y
= — — P — = ——%—
R M A RV
1+ ¢ 1
g3 =" ‘ 9=9i+g+0;

TorVEE -1 2

where ¢ = u + iv is a complex variable subject to the restriction || < 1 and
R and & denote the real and imaginary parts of a complex number, respect-
ively. Then the Cartesian coordinates of a point on the surface is parametri-
cally given by
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g1 92 g3
r(u,v) ==, ylu,v) ==, 2(u,v)==—.
(u,v) p (u, ) p (u,v) p
Boy's surface is depicted in Fig. 2.2.9.
Fig. 2.2.9. Image of RP? in 3-dimensional space (Boy's surface). |

Manifolds with Boundary. In order to define a topological manifold
with boundary we need a slightly more generalised concept. Let M; be a
topological space that is an n-dimensional differentiable manifold. We
consider a closed subset M of M;. When M has a boundary M we cannot
generate a differentiable structure on the topological subspace M in the
usual way because a point p € M does not have an open neighbourhood
remaining entirely inside M that is homeomorphic to an open set of R”. In
order to solve this problem, we propose to consider the following subspace
H" of R™:

H" = {x = (z',2%,...2") € R" : 2" > 0}.

The hyperplane R" ! defined by the relation " = 0 is the boundary of this
closed half-space. We know that open sets of the subspace H" in the
relative topology are intersections of standard open sets in R” with H". Let
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V' C H" be an open set defined this way (Fig. 2.2.10). We denote the in-
terior of the set V by Int V. =V N{x € R" : 2" > 0} and its boundary by
OV =Vn{xeR":z" =0}. Itis clear that V = Int V U V. We imme-
diately observe that 9V is not the topological boundary of the set V' given
on p. 55. Actually, OV is the intersection of the topological boundary with
the boundary z" = 0 of H". If this intersection is empty, then V' has no
boundary according to this definition although the topological boundary
may exist in the form V' N (‘7)’

The interior of M denoted by Int M is the set of points of M that have
open neighbourhoods homeomorphic to open subsets of R". The boundary
OM of M is the complement of Int M with respect to M. The points on
OM are mapped by homeomorphism to the points on the boundary z" = 0
of H". We now define a differentiable structure on M by an atlas A =
{(Ua, pa) : @ € T} where U, are open sets in relative topology on M and
Yq : Uy — V, are homeomorphisms. V,, is an open subset of H". Naturally
domains of charts will obey the rules (7)-(i7¢) mentioned on p. 53. We can
now express the boundary M and the interior Int M of the manifold M by
the relations (see Fig. 2.2.11)

A 4

Fig. 2.2.10. An open set in H".

oM :aLeJISO;l (8 (Spa(Ua)))a Int M :aLEJZSO;1 (Int (Spa(Ua»)-
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If a point p € M belongs to a chart (U, ), then its parametrisation is
obviously in the form

w(p) = (xl,xQ,...,x”_l,O).

It is clear that Int M is a n-dimensional manifold without boundary. We
shall show in the sequel that the boundary OM of M is an (n — 1)-dimen-
sional manifold without boundary. But we first prove the following lemma.
Lemma 2.2.1. The position of a point on the boundary of the manifold
M is independent of the parametrisation used.
Let us consider two charts (Uy, 1) and (U, p2) containing a point

p € OM. We suppose that o1(p) = x; = (z!,2%,...,2"71,0) and ¢2(p)

=xy = (2}, 2%, ..., 2" L, 2"), 2" > 0. The transition mapping

012 = 1095 a(Ur NTs) — 1 (U1 N Ts)

is a homeomorphism on H". On the other hand, we assumed that the point
X9 € H" is an interior point of R™. Hence, this point has an open neighbour-
hood V4, C 9(U; N Uz) in R” that does not intersect the boundary z" = 0.
The function ¢y, transforms this open neighbourhood into the open neigh-
bourhood Vi, = o753 (V4,) of xq in R™ (Fig. 2.2.12). But this set contains the
points in the form {(z!, 2%, ..., 2" !, 2") : 2" < 0} that does not belong to
H™. This is of course a contradiction. (I

Fig. 2.2.11. A manifold with boundary.
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Theorem 2.2.2. The boundary of an n-dimensional differentiable
manifold with boundary is an (n — 1)-dimensional differentiable manifold.

Let OM be the boundary of the manifold M. If a chart (U,, ¢,) of an
atlas A contains a boundary point p € dM, we can then write p,(U,) =
0o (Uy) NR™! where we now define U, = U,NOM and R" ! =
{(z', 2%, ..., 2" 2") € R" : 2" = 0}. The set ¢,(U,) is an open set in
R"~! in the relative topology. We denote the restriction of ¢, to the set U,
by ¢uly, = @4 : Ua € OM — V, C R""!. Evidently, p,, is also a homeo-
morphism. Therefore, the pair (U, ®,) is a chart on 9M. Since the family
A ={(Uy,¢s) : @ € T} is an atlas on M, it is quite clear that the family
A={(U,,®,): « € I} becomes an atlas on M. If this atlas has over-
lapping charts at a boundary point, these charts will be compatible in view
of Lemma 2.2.1. Thus the atlas A gives rise to a differentiable structure on
OM. Hence the topological space dM is an (n — 1)-dimensional differen-

tiable manifold. |

n-1

AR

o0;)
T
-
"
i
oM @
%, (T,)

Fig. 2.2.12. A point on the boundary of a manifold.

\4

A

2.3. DIFFERENTIABLE MAPPINGS

We consider a mapping f : M — R on an m-dimensional differenti-
able manifold (M, A), that is, f(p) € R if p € M. Let us assume that the
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point p is contained in the chart (U,, ¢,) € A. Then, we can write f(p) =
(o3t (x)) = (f o 1)(x). If we define a real-valued function of m real
variables by f, = fo,!:R™ — R on the open set p,(U,) C R™, then
the equality f(p) = f.(x) becomes valid provided that the condition x =
©a(p) is satisfied (Fig. 2.3.1). If the function f/(z!, 22, ...,2™) is of class
C" at the point x € ¢, (U, ), we say that the function f is differentiable and
a C"-function at the point p € M and we usually write f € C"(M,R) or
just f € C"(M). Let us note that r < k if the atlas on M is of C*-class.
When we use only the adjectives differentiable or smooth, we will always
mean a function of C*-class. If a function f is differentiable at every point
of the manifold M, then it is a function differentiable on M. We denote the
set of all differentiable functions on M by C'*°(M) or merely by C'(M).
We had seen that the set C"(M) can be equipped with a vector space
structure [see Example 1.2.2], i.e., we can write af + 8g € C"(M) where
a, # € R. We can also define a product of vectors f,g € C"(M) by utilis-
ing the familiar rules of multiplication in R as (fg)(p) = f(p)g(p) at each
point p € M so that we have fg € C"(M). Hence, these sets are actually
algebras. Of course C'(M) is also an algebra.

m

xe

' T~

«

Fig. 2.3.1. A differentiable function f.

We can easily prove that the differentiability of a function f : M — R
is independent of the chosen atlas among compatible atlases. Let us consider
another atlas B on M and assume that the point p € M belongs also to the
chart (V;3,13) € B. We can thus write

f(p) = fa(x) = f5(y); p€UsNVs, x=0u(p), y="13(p)
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where we have of course defined f[’, =fo wgl. Therefore, we obtain

fh=(fhowa)oz' = fio(paotyh).

Because atlases are compatible, we conclude that if f/ is differentiable, then
the function fé must also be differentiable since it is expressed as a com-
position of differentiable functions. By definition, the partial derivative of a
function f at a point p € M with respect to a coordinate =’ in an open set of
R™ determined by a chart (U,, ¢,) containing the point p will be written at
the point x = ¢, (p) as

_ 9fi(x)

D;f(p) = ot i=1,2,...,m.

Higher order derivatives will be represented in the same fashion.

Since a differentiable manifold is actually a topological space, the ex-
istence of the partition of unity on this manifold can be discussed. The
partition of unity {V;, f;} on a topological space was discussed on p. 62.
But, here we further impose the condition that the functions f; : M — [0, 1]
are to be smooth.

It can be shown that if the manifold M is paracompact as a topologi-
cal space, then for each atlas A = {(Ux,p)): A€ A} there exists a
partition of unity subordinate to the open cover {U) : X\ € A}.

To prove this proposition in its most generality is beyond the scope of
this work. Instead, we shall try to manage it for a paracompact space that is
Hausdorff, locally compact and second countable [see p. 57]. These proper-
ties, however, are enjoyed by many differentiable manifolds encountered in
applications. To this end, we start first by demonstrating the existence of a
smooth function ¢ : R” — R which is equal to 1 on the closed cube C[1]
and is 0 on the complement of the open cube C(2). The open cube C(r)
with sides of length 2r about the origin of R is defined as the subset

Cry={xeR":|z'| <r,i=1,...,n} CR™
where x = (z!, 22, ..., 2™) while the closed cube is the subset
Clrl]={zx eR™: |x7\ <r,i=1,...,n} CR™.

Let us consider the function f : R — R defined by

_fe V>0,

which is non-negative, smooth and positive for ¢ > 0. Then, we introduce
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the function

f(t
g(t) = &)
f&)+f(1=1)
depicted in Fig. 2.3.2.
1.0
0.8
0.6
0.4
0.2
-3 -2 -1 1 2 3

Fig. 2.3.2. The function ¢(t).

This function is non-negative, smooth, and it is equal to 1 for £ > 1
and to zero for ¢ < 0.
Next, we construct the function

h(t) = g(t+2)g(t —2)

shown in Fig. 2.3.3. h(t) is a smooth non-negative function which is equal
to 1 on the closed interval [ — 1, 1] and to zero on the complement of the
open interval ( — 2, 2).

0.8
0.6F
04f
02k
-3 ) -1 1 2 3

Fig. 2.3.3. The function h(t).

We now define a function ¢ : R™ — R by the product
¢(x) = (hog')(x)--(hog")(x) = h(z')--h(z™)

where ¢’ were defined on p. 71. Obviously, this function is equal to 1 on the
closed cube C'[1] and to zero on the complement of the open cube C'(2).

We now consider the relatively compact open cover {W;} of M intro-
duced on p. 58. For a point p € M, let 7, be the largest integer such that
peM—-W,; = (W, ) Suppose that for an index \, € A one has p € U, .

p
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By definition, we also have p € (W; 11 — Wip,l) = Z;,. We consider an
open set V' in the intersection of the open set of the chart to which the point
p belongs with the open set Uy N Z; . We shall assume that (V, ¢) where
V C U),N Z,, is a coordinate system centred at the point p chosen in such a
way that (V') € R™ contains the closed cube C[2]. Next, we define the
function v, : M — R by

%:{cboso ifpeV

0 otherwise.

Obviously v, is a smooth function on the manifold M. The continuity of v,
implies that it is equal to 1 on some open neighbourhood V), = v, ! (C’ (1))
in V and it has a compact support given by ' (C[2]) C V. We know that
U, N Z; is an open cover for the compact set K; = W; — W;_; C Z; Thus,
for each ¢ > 1, we can find a finite set of points p; so that the open sets
U, . N Zip]. form a finite cover of K;. Hence, for each ¢ we have a finite

family of sets V), on which v, take the value 1 and their supports forms a
locally finite family of compact subsets of M. Hence, the set of functions
{1, } is actually a countable union of finite sets. Therefore they can be enu-
merated as {1); : ¢ € N}. Thus the function

is a well defined smooth function on M and at each point p all but a finitely
many functions in this series do vanish. Therefore, we have ¢(p) > 0 at
each point p € M. Let us now define the functions f; : M — [0, 1] as

i
=
Y
Hence, the countable family of functions 0 < f; < 1 constitute a partition of
unity subordinate to the open cover {U) } with compact supports. (|

As we shall see later, this property will prove to be quite significant
when we try to define the integration over manifolds.

Example 2.3.1. In the manifold S!, a partition of unity subordinate to
the open cover {(0, 27), (—,7)} is clearly {sin*%, cos?4}. |

We shall now give two seemingly different definitions of the differen-
tiability of a mapping between two differentiable manifolds. We shall then
show that they are actually equivalent.

(7). We consider two differentiable manifolds M and N with dimen-
sions m and n and a continuous mapping ¢ : M — N. This mapping will
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assign a point ¢ € N to a point p € M by the relation ¢ = ¢(p). Due to the
continuity of ¢, to each open neighbourhood V' of the point ¢ there corre-
sponds an open neighbourhood U = ¢~1(V) of the point p. It is evident
that the set inclusion relation ¢(U) = ¢(¢~1(V)) C V will be satisfied. Let
g : N — R be a differentiable function defined on the open set V. We can
then define a function on the open set U in the manifold M whose value at
the point p € M is given by the relation f(p) = g(¢) = g(¢(p)). Thus each
function g : N — R defined on V' generates a function f : M — R defined
on U because ¢(U) C V. We can denote the functional relation between
them by f = g o ¢ = ¢*g. The function ¢*g is called the pull-back or recip-
rocal image of the function g. If for every differentiable function g defined
on N, the function f = ¢*g is differentiable on M, that is, if for all
g € C(N) one obtains ¢*g € C(M), then the mapping ¢ : M — N will be
called a differentiable mapping. Consequently, a differentiable mapping
¢ : M — N produces a mapping ¢*: C(N) — C(M) between algebras
C(N) and C(M). The mapping ¢* is called the dual mapping or pull-back
mapping of ¢. When ¢ is a homeomorphism and both ¢ and its inverse
¢~1 1 N — M are differentiable, then we shall say that the mapping ¢ is a
diffeomorphism. If we establish a diffeomorphism between two manifolds,
they are called diffeomorphic manifolds. Evidently, diffeomorphic mani-
folds are equivalent as far as their topological and differentiability proper-
ties are concerned.
It follows from the definition of pull-back mappings that

(g1 +92) = "1 + ¢ g2, ¢ (g192) = (¢"91)(d"g2)-

where g1, 92 € C(N). Hence, we deduce that the pull-back mapping is an
algebra homomorphism.

If M are N differentiable C*-manifolds and if there corresponds a
¢*g € C"(M) function for each function g € C"(N) for an r < k, we say
that the mapping ¢ : M — N is C7-differentiable. 1f ¢ is a homeomor-
phism and both ¢ and ¢! are C"-differentiable, then we say that ¢ is a C"-
diffeomorphism.

(ii).Let ¢ : M — N be a continuous mapping. This mapping will as-
sign to each point p € M a point ¢(p) = g € N. These points are located in
local charts (U, ) and (V, 1)), respectively and we can write ¢p(U) C V
due to the continuity of ¢. We denote the local coordinates in those charts
by x = (z!,...,2™) and y = (', ...,y"), respectively. Hence one writes
x = ¢(p) € R™ and y = ¢(q) € R". We define by using the transformation
y = ¢(é(¢*(x)), a composite mapping

d=1pogop o) CR" — (V) CR"
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so that we can express this relation by y = ®(x) or y' = ®/(x!,... z™),
i=1,...,n (Fig. 2.3.4). If the functions ®’ have continuous derivatives of
all orders at the point x = ¢(p), namely, if & € C>*(R™,R"), then we say
that ¢ is a differentiable or a smooth mapping (if ® is continuously differen-
tiable of order r, then ¢ is a C"-differentiable mapping). If this property is
valid for every chart of an atlas, then ¢ is a differentiable mapping on the
manifold M. If ¢ is a diffeomorphism, then ¢~ : N — M exists and is
differentiable. In this case, it is straightforward to see that ¢! is locally
represented by a function ¥ € C*(R",R™) given by the inverse relation
x = U(y)suchthat U = po¢ptorp L.

VR ¢o¢o¢_1

Fig. 2.3.4. A differentiable mapping ¢.

We shall now try to prove the equivalence of these two definitions:

(¢) = (43) : We assume that ¢ is differentiable. Let (U, ) and
(V,4) be charts enclosing the points p € M and ¢(p) = g € N, respect-
ively. We define the continuous functions ¢, : R™ — R and ¢} : R" — R
by ¢i;(x) = 2’ and g% (y) = y'. The coordinate functions in those charts are
then o' = g, 00 : U — R, ¢'(p) =2',i=1,2,...,mand ¢/ = gy 01 :
V =R, ¥'(q) =4 (¢(p) =y',i =1,2,...,n. Since the function ¥’ is
clearly differentiable and the set relation ¢(U) C V is satisfied, the function
Y og:U — R is also differentiable due to (7). Since we can write
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Propopl:ip(U) =R or gho(hogpop™t):plU)— R, we find fi-
nally that the function ® =)o ¢ o ! : (U) — (V) is differentiable at
the arbitrary point p € M, i.e., ® € C*(R™,R"). O

(#2) = (%) : We assume again that ¢ is differentiable and we consider an
arbitrary function ¢g: V — R which is differentiable at a point ¢ € N.
Hence the function g, = go ¢! : (V) C R" — R will also be differenti-
able at the point y = (q). We can thus write

9(q) =god(p) =gpood(p) =gyo(Podoyr )(x)=gyoP(x).

We have assumed that the function ® = 1o ¢ o ¢! is differentiable, that
is, ® € C*°(R™,R"). By noting that composition of differentiable real-val-
ued functions is also differentiable, we arrive at the result that the function
¢*g=go¢: U — R must be differentiable. Furthermore, if we write the
above equality in the form

¢*gop Tl (x) = gyo ®(x) = & gy(x)
we obtain the following relation on a chosen chart (U, ¢)
(¢"9)p = gy
for each g € C (V). The pull-back function ®* and (¢*g),, are of the form
o*: C(R") — C(R™) and (¢*g), : ¢(U) CR™ — R. O
Let My, Ms, M3 be differentiable manifolds. Assume that mappings

¢1: My — Ms, ¢o : My — Ms are continuous. If their composition exists,
then one has ¢ = ¢ 0 ¢y : My} — Ms3. For any g € C'(M3), we obtain

¢'g=(p20¢1)"g=gopa001 = (939) b1 = d1(d59).

Because this relation must be valid for every g € C'(M3) we arrive at the
following rule of composition

(P20 ¢1)" = @1 0 ¢5. (2.3.1)

This result can of course be extended to an arbitrary number of composi-
tions. Let us now take into account the identity mapping iy : M — M on
the differentiable manifold M. We thus find i);(p) = p for each p € M. In
this case, we obtain i},9 = g o iy = g for each g € C(M). Consequently,
we reach to the identity mapping on C'(M):

iy = o) (2.3.2)

Example 2.3.2. Consider the manifold R with the standard chart
(R, igr). The function ¢ : R — R prescribed by y = ¢(z) = 2%, a > lisa
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differentiable homeomorphism, but it is not a diffeomorphism. Because the
inverse mapping z = ¢~ !(y) = y'/* cannot be differentiated at the point
y = 0. We define now a new differentiable structure on R by another chart
(R, = ¢~1). Let R, denote the manifold R equipped by this structure.
Hence, for each y € R one has ¢(y) = y'/®. the local representation of the
mapping ¢ : R — R, is now given by ¢! o ¢ oig’ = ig, whereas that of
the inverse mapping ¢! : R, — R becomes ig 0 ¢! o (¢p1)~! = ig. This
amounts to say that ¢ : R — R is a diffeomorphism. |
Example 2.3.3. The manifold S* = {x € R® : 2} + 23 + 23 = 1} in
R? will now be considered. We know that this sphere can only be homeo-
morphic to the plane R? by employing two charts of its atlas and two diffe-
rentiable functions ¢1, ¢2 given below:
ZT; . xI;
N 1 + I3

;Y = d2(x), yi yeR%:xe§?

y:¢1(x)7 Yi = 1—%3’

[see pp. 81-82]. Thus, we cannot find a single diffeomorphism ¢ : S? — R2.
Hence, the sphere cannot be diffeomorphic to the plane. On the other hand,
when we choose the ellipsoidal surface as another manifold given by M =

s YU R
yeR: = + =+ = =1, the mapping ¢ : S — M defined by
a b c
Y1 = ary, Yo = bxa, Y3 = cxs

is evidently a diffeomorphism. Thus the sphere and the ellipsoid are diffeo-
morphic manifolds. |
Example 2.3.4. Let us consider the unit circle S* in R? and the projec-
tive space RP'. These manifolds will be represented as follows: S! = {e'}
and RP' = {E =22 xeR - {0}} It is easily observed that the single
x
mapping ¢ : S? — RP' determined by £ =tan# is a diffeomorphism be-
tween two charts (U; and Us) of the projective space RP! [see p. 87] and
two charts of the circle S!. Hence, these manifolds are diffeomorphic. |
Example 2.3.5. We define the mapping ¢ : (a,b) — R by the relation

(b—a)(26 —a—0b)
4§ —a)(b—¢)
The inverse of this function is obtained as
b? — a® — 4abx
V(b —a)2(l +422) —2(a+b)xr+b—a

v = 6(6) = €€ ab)
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if we note that £ must belong to the open interval (a,b). The functions ¢
and ¢! are continuous and differentiable former on (a, b) while the latter
on ( —o00,00). Thus ¢ is a diffeomorphism. This means that every open in-
terval in R is diffeomorphic to R itself. |

Example 2.3.6. A mapping ¢ : T? — R? between differentiable mani-
folds T? and R? can be defined as follows [see p. 82]

»(0,0) = ((a + bsinf) cos ¢, (a + bsin @) sin ¢, b cos 0) = (z,y, 2).

This mapping is clearly differentiable and smooth. The image of the mani-
fold T? in R? under the mapping ¢ is the surface

Pyt + 22— 20/ i+ at —bP =0

obtained by eliminating parameters 6 and ¢. |

Let ¢ : M — N be a smooth mapping from the m-dimensional mani-
fold M to the n-dimensional manifold N. We consider points p € M and
q = ¢(p) € N in the local charts (U, ¢) and (V, 1), respectively. Then the
mapping ¢ is represented by the function ® : p(U) C R™ — (V) C R"
that can be written as y = ®(x) or y' = ®i(x!,...,2™), i=1,...,n in
terms of local coordinates. We know that ®' are smooth functions. The rank
of the mapping ¢ at the point p is defined as the rank of the following
n X m Jacobian matrix [German mathematician Carl Gustav Jacob Jacobi
(1804-1851)]

20! 9o ! |

orl 022 Oxm

8@2 8‘1)2 8@2 8(132

Yo =ggl=|ar a2z " o
9" HI" oP"

| 02! 922 Oxm |

If the rank of ¢ at a point p € M admits its greatest value, that is, if it is
equal to min {m, n}, then we say that its rank is maximal at that point. If the
rank of ¢ is maximal every point p € S of a subset S C M, then its rank is
maximal on S.

Theorem 2.3.1. Let the rank of a mapping ¢ : M — N be maximal at
a point p € M. Consider the chart (U, p) at the point p and the chart
(V,1) at the point ¢(p) such that ¢(U) C V. Then the local coordinates
(x',2%,...,2™) in the neighbourhood of the point x = p(p) and
(W2, ..y, ..., y") in the neighbourhood of the point'y = 1(¢(p)) =
®(x) can be so chosen that the local representation ® =)o ¢ o ! of ¢
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admits the following forms

y= (', 2%, ..., 2") if n <m,
y = (z!, 2%, ,xm,O,...,O) if n>m.

In terms of arbitrary coordinates in charts, consider the representation

N =®i(¢L ... €M), i = 1,...,n.n x m Jacobian matrix is [9n' /O¢].
If n < m, the rank of this matrix is n. Let us rearrange the variables in
such a way that the determinant of the square matrix [On'/d¢7], i,j = 1,
.,n does not vanish. Then according to the well known implicit function
theorem, the equations z' = ®'(¢!, ... ,f”, §”+1, ...,&™) have uniquely de-
termined smooth solutions ¢ = ¥ (z? nogntl M), 1<i<nin
a sufficiently small neighbourhood. If we now write £l =gt
&M = ™, the new local coordinates in a neighbourhood of the point p be—
come (:cl, , o™, 2"t .. x™). Thus, the local coordinates in the neigh-

bourhood of the image point ¢(p) takes the formn =y = (z!,...,2").
If n > m, the rank of the Jacobian matrix is m. Let us now rearrange
the variables in such a way that a m x m square submatrix [9n'/9¢’], i, j
=1, ...,m of the Jacobian matrix has a non-zero determinant. We now
choose the new local coordinates in a neighbourhood of the point g as 2’ =
®i(¢l, ... &™), i =1,...,m. Then, we can uniquely determine smooth so-
lutions & = Wi(z!,...,2™),i =1,...,m. Thus, we can define the new
local coordinates in a neighbourhood of the point ¢(p) by 7' =y’ = ',

i=1,...,m and gy =n' —® (..., &) =0 - Qi ...,y"), i=

m+1,...,n where ) = ® o W. However, because of the initial relations
=, .. €M), i =m+1,...,n, we immediately see that we are led
toy = (z},...,2™,0,...,0). (I

2.4. SUBMANIFOLDS

Let ¢ : M — N be a smooth mapping between manifolds M™ and
N". If m > n and the rank of ¢ at every point p € M is n, then the
mapping ¢ is called a submersion. In this case, Theorem 2.3.1 indicates that
the local representation ® of ¢ is simply expressible as follows

1 _ 1 2 2 n__ .n
y-»"U:ZJ—UU;m;Z/—x

with an appropriate choice of coordinates.
Example 2.4.1. The mapping ¢ : R* — R? is given by the relations

TS B R ——

Jacobian matrix of this mapping is
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0 1 -1
J= {1 0 0 ]
and its rank is 2 everywhere. Thus ¢ is a submersion. |
Example 2.4.2. Let U C R? be an open set. Hence U is a 3-dimen-

sional differentiable manifold. Jacobian matrix of a mapping ¢ : U — R is
of course given by

_ [ op  0¢ 99 }

ozt Ox? Ox3 ]
If ¢ has at least one non-vanishing partial derivative at each point of U, then
the rank of this matrix is 1. In this case ¢ is a submersion. As an example let
us choose the open set U = {x € R®: (2!)% + (2?)% + (23)? > 0} and the
mapping given by ¢(x) = (z1)? + (2%)® + (2°)%. The Jacobian matrix of
this mapping is J = 2[z! 2? 2] whose entries cannot be all zero in U.
Thus ¢ is a submersion. On the other hand, the Jacobian matrix for the map-
ping ¢1(x) = z'z%2? is J = [2%2® 2'2® 2'2?]. All entries of this matrix
may vanish at some points of U (for instance, at 2! = 22 = 0, 2% # 0). At
such kind of points the rank of J is 0. Hence, the mapping ¢, : U — R is
not a submersion. n

Let ¢ : M — N be a smooth mapping. If n > m and the rank of ¢ at
every point p € M is m, then the mapping ¢ is called an immersion. Again,
Theorem 2.3.1 implies that the local representation ® of ¢ is expressible
now in the form

yl=al =2 Lyt ="y =0,...9" =0

with an appropriate choice of coordinates.

Example 2.4.3. The mapping ¢ : R — R? is defined by the relations
y' = cosx!,y? = sinz!. Obviously, this mapping wraps the entire real axis
R on the unit circle S*. The Jacobian matrix of this mapping becomes J =
[—sinz! cosx!]. The rank of this matrix is 1 everywhere on R. Hence ¢
is an immersion. Since all the points 2. = x! 4 2nm,n € Z, where Z de-
notes the set of integers, are mapped on the same point y = (y', y?) the
mapping ¢ is obviously not injective. |

Example 2.4.4. The mapping ¢ : R? — R3 revolves the plane curve
x! = f(2?) infinitely many times about z2-axis. f(z?) > 0 is a smooth
function. This mapping can be prescribed by the relations

y' = f(u)cosv, y* = f(u)sinv, y® =u; u,v €R
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2

where we wrote 2! = u, 22 = v. The Jacobian matrix is then given by

f'(u)cosv — f(u)sinv
J=| f'(u)sinv  f(u)cosv
1 0

Since f(u) > 0, the rank of this matrix is 2 everywhere. Thus ¢ is an im-
mersion. Clearly, it is not injective. ]

Example 2.4.5. We consider the torus T? = S! x S'. The circle S*
may be represented by complex numbers with constant modulus in the com-
plex plane C. Therefore, we can write

T? = {(21,22) : 21,22 € C, |z1]| = a,|22 — a| = b,b < a} C C?,

We define a mapping ¢ : R — T? by the relations z; = ae’, zo — a = be'"’
where r is a rational number. We can observe at once that this mapping is
an immersion and it produces a closed curve on the torus. In fact, if choose
the integer m and n such that n = mr we reach to the same points

eit+27rmi

=z, beirt+27rni =29—a
at all points ¢,,, = t 4+ 2wm. This means that we reach to the same point on
the torus after having revolved m times the point z; and n times the point 2
about 0. This immersion is clearly not injective. |

If ¢ : M — N is an injective immersion and if the surjective, conse-
quently, bijective mapping ¢ : M — ¢(M) C N is a homeomorphism with
respect to the relative topology on ¢(M) C N generated by the topology on
the manifold /V, then the mapping ¢ is called an embedding.

If the set M™ 1is a topological subspace of the manifold N" and the
inclusion mapping T : M — N defined by Z(p) = p € N for each p € M
is an embedding, then the subpace M is called a submanifold of dimension
m < n of the manifold N. Indeed, we can readily generate a differentiable
structure on M by making use of the differentiable structure on the mani-
fold N. Let us consider a point p € M C N. This point is located in a chart
(U, p) of the atlas on N. U’ = U N M is an open set of M in the relative
topology. The mapping ¢’ = poZ:U N M — R" is a homeomorphism
because it is the composition of two homeomorphisms. Let us denote the set
of coordinates of the point p in N by x and the set of coordinates in M by y.
As is well known, we write the expression y = J(x) where we define

ngo'oZogofl.

Since the rank of 7 is m < n and rank remains invariant under composition
of homeomorphisms, the rank of the mapping J : R —R" is also m < n.
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This means that an appropriate choice of coordinates leads to local coordi-
nates y = (z!,...,2™,0,...,0) € R™ [Theorem 2.3.1]. Hence, one has
¢ : U — R™. Consequently, the topological subspace M is an m-dimen-
sional differentiable submanifold. Let us now denote ¢'(p) =& € R™,
&= (&,...,¢&m) forapoint p € U' C M. Then the equality p = ¢~ (x) =
¢©'71(€) yields the coordinate transformation x = (¢ o ¢'~1)(€) = ¥ (&)
where the mapping v : R™ — R" is expressed by z' = (¢, ..., €M),
1 =1,...,n. These relations describe fully the submanifold M . Evidently,
the rank of the matrix [8xi/8fa] ,a = 1,...,m should be m.

If ¢ : M™ — N™ is an embedding, then the subspace ¢(M) C N is an
m-dimensional submanifold of the manifold N .

We take a point p € M into account and let ¢ = ¢(p) € p(M) C N.
Because ¢ is a homeomorphism on its range ¢(M ), there exists a chart
(U, ¢) enclosing the point p of the manifold M and a chart (V1)) enclos-
ing the point ¢ of the manifold IV such that the open set ¢(U) is contained
in the open set V. The rank of the function ® =1 ogpop ! :R™ — R"
which is the local representation of the mapping ¢ is equal to the rank m of
the embedding ¢ since ¢ and @ are homeomorphisms. Hence, we can re-
write @ : R™ — R™ and on the open set V' = p(U)NV = ¢(U) in the
relative topology we have v : V' — R™. Thus the subspace ¢(M) C N is
an m-dimensional differentiable submanifold of the manifold N. In such a
case we sometimes prefer to regard the manifold M as a submanifold of V
even if they are actually different manifolds. O

Let the mapping ¢ : M™ — N" be a submersion. Thus the condition
m > n will hold and the rank of ¢ will become n. If () C N is a submani-
fold, then the subspace P = ¢~1(Q) C M is either a submanifold of M or
it is empty.

Let us assume that P = ¢~1(Q) is not empty so that Q N R(¢) # 0.
Since ¢ is a submersion, we can choose the local coordinates x = ¢(p) and
y = 1¥(q) of the points p € P and ¢ = ¢(p) € Q in local charts (U, ¢) and

(V,%) in the form x', 2%, ... 2", 2" ... 2™ and y' = 2!,9® = 22, ...,
y" = x". If the dimension of the submanifold @ is r with 1 < r < n, then
one can find a coordinate transformation z = F(y), or z! = Fl(y!, ..., y"),

..., 2" = F"(y',...,y") such that the local coordinates of the point ¢ can
be prescribed by imposing the conditions z'*! = ... = 2" = 0. We now
choose the local coordinates of the point p as follows:

w' = Fi2t, . 2", = F(t, 2,

wn+1 — CCTL—H,... ,wm = m

Therefore, the local representation z = ®(w) of the mapping ¢ becomes
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2t =w!, ..., 2" = w". But the submanifold Q is determined by the condi-
tions 2"*1 = ... = 2" = 0. This implies that the subspace ¢1(Q) in the
vicinity of the point p is described by coordinates (w!,...,w",0,...,0,
w1 ... w™). This is tantamount to say that ¢~(Q) is an (m — n +r)-
dimensional submanifold. O

Example 2.4.6. As we have seen before, any open set of a manifold M
is an open submanifold [see p. 77]. [ ]

Example 2.4.7. Let us consider a smooth function ¢ : R™ — R. We
further suppose that at a point x € R, at least one of the partial derivatives
d¢/0x' i =1,...,n does not vanish. Thus the mapping ¢ is a submersion
of rank 1. Since we can trivially observe that the singleton {0} C R is a 0-
dimensional submanifold of the 1-dimensional manifold R, then the sub-
space ¢~ 1({0}) C R™, that is, the set M = {x € R™: ¢(x) = 0} is an
(m — 1)-dimensional submanifold. [ |

Example 2.4.8. The function ¢ : (0,00) C R — R? is given by

o(t) = (¢1(t) - tcos%, P*(t) = tsin%) c R2.

Fig. 2.4.1. Spiral in R2.

Hence the range C' = ¢((0,00)) of the mapping ¢ is a spiral around the
point 0 in R? depicted in Fig. 2.4.1. We obtain ¢'(t) — oo and ¢2(t) — 1
as t — 0o. We can easily note that this mapping is injective and its rank is
1. Thus it is an injective immersion. The relative topology on C' is defined
in the usual way by means of open sets {C' NV} where V' is an open set in
R?. With respect to these topologies, the mappings ¢ and ¢! : C' — (0, o0)
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are both continuous. Hence ¢ is a homeomorphism, thus it is an embedding.
Consequently C'is a 1-dimensional submanifold in R2. |
Submanifolds can also be determined by means of a set of equations.
Theorem 2.4.1. We define a subset M of an n-dimensional differenti-
able manifold N by means of differentiable functions f*: N — R,a =1,
..., m where m < n as follows

M={peN:f*(p) =0a=1,...,m} CN.

We further assume that the rank of the function f : N — R prescribed by
f(p) = (fl(p), ... fm(p)) is m at each point p € M. In this case M proves
to be a submanifold of dimension n — m.

Let (U, ¢) be a chart containing a point p € M and let the local coor-
dinates be p(p) = (z!,...,2"). Since the rank of the mapping f is m on the
set M, the matrix [O(f® o p~1)/O0x'] has at least one m x m square sub-
matrix whose determinant does not vanish. We may rename the variables if

necessary so that this square matrix is specified by [9(f® o p™1)/02'],a =

1,...,m;¢=1,...,m. Hence, we can perform the following coordinate
transformation
' = (fYop ) (x), d"=gla=1,...,mj=1,....,n—m

in an open neighbourhood U’ C U of the point p. Thus, the local chart
(U’,¢) containing the point p € M yields

o' NM)=1{0,...,0,2""", .. 2"}

Since similar charts would exist at every point of M, this set is an (n — m)-
dimensional submanifold. It is clear that such a submanifold may be also
prescribed by a family of differentiable functions f*(p) = ¢® where ¢'s are
constants. This will help us to define a family of submanifolds. |

By utilising this theorem we can readily demonstrate that (n — 1)-di-
mensional sphere S"~! is a submanifold of R”. The sphere with a radius R
is the subset

n

S ={xeR": f(x) =) (2')’ - R* =0}

i=1

The rank of the function f : R” — R is 1 at every point x € S"~!. Hence,
S"1is an (n — 1)-dimensional submanifold. On the other hand, the cone

Cl={xeR": f(x) = («')* = ) ()" =0}
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is not a submanifold of R" because the rank of f is 0 at the point x = O,
while it is 1 at all other points. Therefore, if only we delete the point O, then
the punctured cone becomes an (n — 1)-dimensional submanifold of R".

If the mapping ¢ : M — N is solely an injective immersion, then the
subspace ¢(M) C N is called an immersed manifold. Unless the mapping
¢ is a homeomorphism on its range, an immersed manifold is obviously not
a submanifold.

Example 2.4.9. Let us define the mapping ¢ : R — T? by the relations
21 = ae' and 29 — a = be' [see Example 2.4.5]. Here « is now an irra-
tional number. Hence, we find ¢; = ¢, when ¢(t1) = ¢(t2). Thus ¢ is injec-
tive and its rank is 1. Consequently, it is an injective immersion and ¢(R)
becomes an immersed manifold. We can easily show that the set M =
#(R) is dense in T2. The mapping ¢ winds the line R around the torus T?
without ever traversing the same point on the torus again. In order to prove
that the set M is dense in T?, we have to show that we can find a point in
M that is as close as we wish to a given point in T?. Let us consider an
arbitrary point (ae, a + be®) € T? where w, # € R. The distance between
the selected point in T? and a point in M is given by

lae™ — ae| + |a 4 be” — a — be'| = a|e’“™D — 1| + ble'ft) — 1]

= a\/Z(l — cos (w — 1)) +b\/2(1 — cos (6 — at))
0 —at
7|

w

—t
‘—I—Zb‘sin

:2"
a|S1in 5

Rational numbers are dense in real numbers. Therefore, for each ¢ > 0 and
real numbers w, 0, t, we can find integers p1, q1, m and ps, g2, n such that the
inequalities

w—t m |9—at_&_n‘<€
4m a2

are satisfied. The integers m and n are so chosen that we ought to have
Ipi/q1] <1 and |po/qo] < 1. If we now write t; =t + 4w(p1/q1) and
t, = at + 4m(p2/q2), then the foregoing inequalities take the form

lw—t1 —4mm| < 4dmwe, |0 — to — 47n| < 4me.
By introducing t3 = max (¢, t2), these inequalities may be transformed into
lw—t3 —4mm| < 4dme, |0 —t3 — 4mn| < 4me.

Hence, for given real numbers w, 6 we can find a real number ¢3 so that one
obtains
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w—1t

9—at|
2

:2a‘sin<w —27rm>‘ —l—2b‘sin<
< 2alsin 27e| + 2b|sin 27e| < 4me(a + b)

Qa‘sin ‘ +2b‘sin
0 — t-

—t
3 3—27rn)’

It is easy to see that the immersed manifold M is not a submanifold. In fact,
under the mapping ¢ the line R intersects an open set in T? infinitely many
times. Therefore, an open set in the relative topology on M is the union of
infinitely many pieces. Thus it is unbounded. This implies that the image of
a bounded open set in R is unbounded. Hence the mapping ¢ is not con-
tinuous with respect to the relative topology, that is, it is not a homeomor-
phism on its range. |

2.5. DIFFERENTIABLE CURVES

A differentiable curve C on an m-dimensional differentiable manifold
M 1is defined through a differentiable (C'*°) mapping v : Z — M where 7
= (a,b) C R is an open interval on the real line. Thus, a point p of the
curve C' =~(Z) C M is given by p=~(t), t € Z. The interval must be
open in order to secure differentiability at neighbourhoods of endpoints. If
the curve is defined on a closed interval [a, b], then we shall have to assume
that the mapping v admits a C* extension 7: (a —€,b+¢) — M for a
number € > 0 so that

V() = (), t€ fa,b].

To realise the local representation of any point p = ~y(¢) of the curve, it
suffices to consider a chart (U, ¢) enclosing the point p € M. The locus of
the points x(t) = ¢((t)) C R™ is the local representation of a part of the
curve C' in the open set p(U) C R™. Naturally, when we move on the curve
C local representations may change together with charts taken into consid-
eration. By employing the coordinate functions ¢’ = g' o : U — R, i =
1,---,m [see p.71] the parametric representation of the curve C in the
open set ¢(U) is provided by functions z' = ¢ ((t)) = ~'(¢) in local coor-
dinates where we have defined the mappings 7' = @' oy :Z C R — R,
i=1,---,m. Since v is a differentiable mapping, the functions ~*(¢) have
clearly derivatives of all orders with respect to ¢. If at every point on the
curve, at least one of the first order derivatives does not vanish, then the
rank of the mapping + is 1. In this case, v becomes an immersion. But the
curve may intersect itself, thus we cannot claim that this immersion is
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injective (Fig. 2.5.1).

R

Fig. 2.5.1. A curve on a differentiable manifold.

If the curve C is defined on a closed interval Z = [a, b], we call the
points p, = y(a) and p, = v(b) the initial point and the end point of the
curve, respectively. We get a closed curve if y(a) = ~(b). A simple closed
curve is a closed curve defined on [a, b], however, v must be an injective
mapping on the half-open interval [a, b).

Example 2.5.1. A mapping ~ : [0, 27] — R? is prescribed by functions
x! = cost, 2% = tsin2t. The closed curve in R? generated by this mapping
is shown in Fig. 2.5.2. We observe that this curve intersects itself. Therefore
~ is not an injective mapping. Moreover, it has a corner point.

Fig. 2.5.2. A closed curve. ]
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2.6. VECTORS. TANGENT SPACES

Our aim in defining tangent vectors and the tangent space formed by
these vectors at a point p on a differentiable manifold is essentially twofold:
(7) to extend the concept of directional derivative of a differentiable func-
tion with which we are quite familiar in the Euclidean space to differenti-
able manifolds, (i7) to be able to specify differentiability properties of vari-
ous quantities at the vicinity of the point p as independent of local coordi-
nates and to approximate the manifold locally by a linear vector space. A
differentiable manifold does generally not possess the structure of a vector
space. Thus vector spaces cannot be incorporated globally into such a mani-
fold. Hence, we shall try to manage this task locally. Our first endeavour
will be to find a tangible way that help define tangent vectors at a point p of
a finite-dimensional manifold. To this end, we take all curves through the
point p on the manifold into account and we specify all vectors at this point
on the manifold by means of tangent vectors at the image point of curves
obtained by making use of the local representations of these curves in the
Euclidean space. Thus, all curves that are tangent to one another at the point
p will generate the same vector. We now define a relation on the set of all
curves through the point p of the manifold as being tangent at the point p.
We can readily verify that this is an equivalence relation. Indeed, we see
immediately that this relation is reflexive (each curve is tangent to itself),
symmetric (if the curve C] is tangent to Cy, then C% is tangent to C} as well)
and transitive (if C is tangent to Cy and C5 to (5, then the curve C is
obviously tangent to the curve C5). Hence, all curves through the point p are
partitioned into disjoint equivalence classes. All curves in an equivalence
class are tangent to one another at the point p, therefore they possess the
same tangent vector. We can thus try to identify tangent vectors at a point p
of the manifold with equivalence classes of curves through this point. We
define the set of equivalence classes, namely, the quotient set as the tangent
space at the point p. We shall now attempt to provide these somewhat
abstract ideas with a fully concrete content.

Let us consider a point p on the manifold M™ and a curve C' through
this point specified by the mapping v : Z — M. We so choose the para-
meter ¢ of the curve as p = (0). We know that in the classical analysis, the
tangent vector to the curve C at the point p is found by means of differen-
tiation with respect to the parameter. However, it is not possible to apply the
usual differentiation operation on a general manifold. Thus we opt to trans-
fer this operation on R by employing a local chart. Let (U, ) be a chart
containing the point p. In terms of local coordinates provided by this chart,
local representation C’ of the curve C' in R™ is determined parametrically
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through the differentiable functions 7* : Z — R as follows:
T =5'(),i=1,...,m. (2.6.1)

The local coordinate of the point p is supposed to be z* = 7/(0). (2.6.1) can
now be collectively written as

X =(t) =~ (t)e
where the vectors e; = (0,...,0,1,0,...0), i = 1,...,m are standard basis

vectors for the vector space R™. As is well known, a tangent vector to the
curve C’ at a point is specified by its components 7* defined by

dx iy Azt dy
v'(t)e;, v'(t) = primieTe

V() == =

Thus, the tangent vector to the curve C’ at the point x = ¢(p) € R™ is
given by

. . dfyi
v=1'e, v = 7

i=1,...,m. (2.6.2)

)
t=0

Since /() are all smooth functions they can be expanded into a Maclaurin
series about the point ¢ = 0 [after Scottish mathematician Colin Maclaurin
(1698-1746)]. Thus we can write

d’yi
dt

1 d2’)/i
2 dt?

t+
t=0

4 =2+ Ut +o(t).
t=0

7' =7'(t) =7(0) +

where the Landau symbol o(t) [after German mathematician Edmund Georg
Hermann Landau (1877-1938)] represents all functions f satisfying the rela-
tion f(t)/t — 0 as t — 0. Another curve through the point ¢(p) can be
represented in a similar fashion by expressions

dy’

NiE) = 4 A owi= Y
N (t)=x'"+T't+o(t), T p”

=0
Therefore the difference between those two curves is found to be

F(8) = () = (V' =)t +o(t).
If those two curves are tangent to one another at the point ©(p) and have a

common tangent vector, then one obtains v " = ¢'. This, of course, leads to
7' (t) —~'(t) = o(t). Hence, the closeness of two such curves is of second
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order. It is clear that a relation so defined is an equivalence relation. (2.6.2)
implies that tangent vectors at a point x of R"* constitute an m-dimensional
linear vector space. This vector space is called the tangent space at the point
x of R™ and is denoted by Tx(R™). We see at once that the tangent space
T (R™) and R™ are isomorphic. The isomorphism R™ — Ty (R™) is provid-
ed by the linear mapping that assigns a vector v = v'e; € Ty(R™) to an or-
dered m-tuple (v!,...,v™) € R™.

The above approach makes it possible to identify curves tangent to one
another at a point p on M as images of curves tangent to one another at the
point ¢(p) in the open set ¢(U) under the homeomorphism ¢ 1. We inter-
pret an equivalence class of curves so formed as a tangent vector at a point
p € M to the manifold M. However, since M is generally not endowed
with a vector space structure we cannot emplace such vectors into the mani-
fold in the usual sense. In order to achieve this, we have to develop a new
but equivalent concept. For this purpose, the classical notion of directional
derivative of a function turns out to be very helpful.

We had denoted the set of smooth functions f : M — R on a manifold
M by C(M). We have seen that this set is an algebra [see p. 94]. Hence-
forth we denote this algebra by A°(M).

Let a point p € M™ be contained in the chart (U, ¢). In a neighbour-
hood of the image point x = ¢(p) € p(U) C R™ we define an operator
V! A’(R™) — R at that point as follows: this operator will assign a real
number to each smooth function f’ € A°(R™) in association with a given
vector v(x) = v'(x)e; at that point or, in other words, with a curve C’ tan-
gent to this vector at x by the rule

v = 200

dy'(0) 9 0/ (x)
dt /

_ (7%>f':vi(x) 5 (263)

t=0
We know that V/(f’) is the directional derivative of the function f’ at the
point x along the curve C’, or in the direction of the vector v. Hence the
operator V; at the point x can be defined in the following way

.0 d
r g _ Y
V"_U&Ei_dt

(2.6.4)

t=0

If there is no ambiguity, we can dispense with the subscript denoting with
which point the operator is associated. It is clear from the definition that for
every functions f/, ¢ € A’(R") and number o € R, we can write

V(' +g) =V +V(d), Vaf)=aV'(f).
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Thus V' is a linear operator on R. It is also evident that there corresponds a
unique operator to each vector v. It is straightforward to see that the set of
all these linear operators constitutes a linear vector space. Consider the ope-
rators V] = v{0/0z" and V) = v,0/0x". We find that

i 9 !

v’ =

or  or

! / i ;
arVi + agVy = (a1v) + aav})

for every «i,as € R. The mapping v — V' between two linear vector
spaces is an isomorphism. Indeed, this mapping is linear, because we have
vi +vo — V] +VJ, av— oV’. This mapping is surjective because each
operator V' is generated by a vector v. Let us now suppose that the same
operator is associated with two vectors v; and vo. Consequently, for every
function f € A°(R") one writes

i Of _ i 0f

= =0 .
Loz 29

V()

When we choose the function f' = 7, we obtain V'(z/) = v}§! = v/ and
v] = v for j=1,...,m or vi = vy. Thus the mapping is injective, hence
bijective. In this case the linear vector spaced formed by operators V" is also
m-dimensional. Practically, two isomorphic vector spaces can be considered
as the same as far as their algebraic properties are concerned. Therefore,
instead of the tangent space 7x(R™) at a point x we can take into conside-
ration the isomorphic vector space formed by the operators V, at that point.

Let us next consider a curve C' on the manifold M through the point
p € M that is determined by a mapping v : [ — M, ~(0) = p. We shall
now try to designate similarly an operator V' representing the tangent vector
of the curve at the point p as a derivative along the curve C. Let us assume
that the point p is contained in a chart (U, ¢). For each function f € A°(U),
we introduce the following operator at the point p

v =Y (dvt(t)) _ d(fd;> 7)

(2.6.5)

t=0 t=0

We determine the function f € A°(R™) such that f/(x) = f(p) at the point
x = ¢(p) € R™. Hence, this function is given by f' = f o ¢! and using
the relation f = f’ o ¢, we obtain

d(fo d(f'opo
Vo(f) = (fdt’v) - (f dzo ")

df (v(t))

=0 dt

t=0
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Therefore, we can write below the defining rule for the operator V,:
Vo(f) = Vi), x=o(p). (2.6.6)

Thus, the action of the operator V' at the point p on a function f is uniquely
determined by the components v' = dz'(t)/dt of the tangent vector to the
curve C' = ¢(C) at the point x with local coordinates x" as follows:

_af of _ 0(foy™)

VI =Vlf) = Ozvjaxi == (267)
t=

(2.6.7) now amply justifies the interpretation that V'(f) is the derivative of
the function f at a point p along a curve through this point whose tangent
vector there is specified by the operator V. We can immediately conclude
from the foregoing relations that if the equality Vi(f) = Va(f) holds for
every function f € A°(U), then two curves whose tangent vectors at the
point p € M are given by V) and V5 are tangent to one another at p. Indeed,
if we insert coordinate functions ¢’/ € A°(U),j = 1,...,m satisfying ¢’(p)
= 2/ into (2.6.7), we find

oz’ oz’

iol ]
—— and v}0; = v50;

i i
vi— = .
Lo 29

leading to v{ = U';, j= 1,...,m.V is a linear operator on R. The relations

V((f+9)®) =V (f(p) +9(p) =V'(f'(x) + 4 (x)
=V'(f(x) +V'(d () =V(f(p) +V(9(p)
V((af)p) =V(af(p) =V'(af (x) =aV'(f'(x)) = aV(f(p))
imply that V(f +¢) = V(f) +V(g) and V(af) = aV(f). Furthermore,

the linear operator V' meets the rule given first by German mathematician
and philosopher Gottfried Wilhelm von Leibniz (1646-1716):

V((f9)(p) =V (f(p)ap)) =V'(f'(x)g (x) =g x)V'(f'(x))
+ 'V (¢ (x)) = g(p)V (f(p) + fF(p)V (9(p))

whence we obtain V,(fg) = gV, (f) + fV,(g) at a point. A linear operator
satisfying this Leibniz rule on an algebra is called a derivation. When we
take notice that the action of the operator V' on a function f is specified by
(2.6.6), we opt for denoting this operator at the point p by
d -0
V,=— =v'—
Prdt|,, Y oz

(2.6.8)
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with a somewhat slight abuse of notation. As we have mentioned before, the
quantity V,(f) measures the variation in a function f € A°(M) at a point
p € M along a curve C or, in other words, along an equivalence class gene-
rated by C, at that point. Let us consider a curve in R” defined by

~4(t) = (0,...,0,2" +,0,...,0).

This curve is obviously the coordinate line in Cartesian coordinates through
the point (0,...,0,2%,0,...,0) in R™. We thus obtain

vy = (0,...,0,1,0,...,0).

We now define a coordinate line on M through the point p by the curve
C' = ¢ (+*(t)). We then conclude that the operator 0/dz" helps measure
the variation of a function along a coordinate line at the point p.

It is clear that all linear operators V' at a point p € M forms a linear
vector space. Due to the relation (2.6.8), this vector space is evidently iso-
morphic to the tangent space 7y(R™) at the point x = ¢(p). Hence, its
dimension is m. We call this vector space the tangent space to the manifold
M at the point p and denote it by 7),(M). We also regard the operators V),
as tangent vectors to the manifold M at the point p (Fig.. 2.6.1).

Fig. 2.6.1. Tangent space.

While having defined a vector V' at a point p € M by means of the
relation (2.6.8), we utilised the local coordinates provided by a chosen chart
at that point. In order that this definition makes sense, we have to prove that
the vector, or the operator, V' is actually independent of the chosen chart.
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Let us take into account two charts (U,, ¢,) and (Ug, ¢s) enclosing the
point p. We denote the corresponding local coordinates by x, and xg, re-
spectively. The function .5 = @50 ¢, ' : 0o (Us) — ©3(Us) on the open
set U, N Up gives rise to a coordinate transformation X3 = ¢,3(X,) (It is
obvious that the summation convention will not be valid now on Greek in-
dices). We have then two representations of a curve C' C M in R™ through
the point p that is determined by the mapping v : [ — M:

Yal(t) = a (V1) 5(t) = 95 (1(1))-
But, in the vicinity of the point p, these two representations are related by
Y5(t) = Pas (Ya(t))
whence the chain rule leads to
dt 9zl dt

Thus, at ¢ = 0, the components of the tangent vector in two different coor-
dinate systems are connected by the relations

(2.6.9)

We usually call elements of the tangent space as contravariant vectors due
to this rule of transformation. When we consider a function f € A°(M), it
will now have two local representations: f(p) = f,(Xa) = f3(x5). We can

thus write

Ofh(xs) L Ofi(xa) 0T Ofh(Xa) Ok
V) = ozl — Y8 ozl _axéva ozl Oz}
BRI AR ACS

hal T o]
which shows that the vector V' is expressed in the same form in both charts.
Hence, the definition (2.6.8) does not depend on the chosen chart.

Theorem 2.6.1. m-dimensional tangent space T,,(M) at a point p of
an m-dimensional differentiable manifold M has basis vectors, or opera-
tors, 0/0x', i = 1,...,m determined by a choice of a local chart.

Since the vector space T),(M) is m-dimensional, the set of vectors

0 » . . . .
{?}, where {z'} are local coordinates, must be linearly independent in
x
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order to constitute a basis. Let us write

. 0
Ww=c=— =0
0 oz’
where ¢/, i = 1,...,m are arbitrary constants. Therefore, we ought to get

Vo(f) = 0 for every function f € A°(M). Then, if we introduce the coor-
dinate functions ¢/ € A°(M), j = 1,...,n into that expression, we find that

Ol L ,
clazi :cz’@] =c=0,j=1,...,m.
Consequently, the set {9/dz'} is linearly independent. (|

The set {9/0x'} at the point p is called the natural basis or coordi-
nate basis of the tangent space 1),(M ). The local coordinates generating
this basis will sometimes be called natural coordinates. Let

-0
V=uv or’
be a tangent vector at the point p. We then obtain for a coordinate function
V(gh) = v Z"Zk = o's) =, (2.6.10)
Thus, we can write
V =V (e 0 - (2.6.11)
ozt

Evidently, there is an isomorphism between 7),(M ) and R™ provided by the
mapping (v, ..., v™) — V.

So far we have defined a tangent space 7),()M) associated with each
point of the manifold that contains all "vectors" tangent to the manifold at
that point. We can construct a vector field by a set of vectors formed by
choosing a vector V,, € T),(M) at each point p of the manifold. We can
denote a vector field by V (p),p € M. A vector of the field at a point p can
then be enounced as

Vip) = v (x)

xt’

x = ¢(p) (2.6.12)

by employing a chart (U, ¢). We have to note that as the point p moves on
the manifold, the vector field might be represented by different local coor-
dinates originated from different charts. When we say that the coordinate
cover of the manifold M is given by (x!,...,2™), we actually mean the
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union of such coordinate systems that might be different in charts covering
the manifold. If the functions v'(x) are all smooth, then we say that V' is a
smooth vector field. When V' is a smooth vector field, we deduce that it has
the form V' : A°(M) — A°(M) as a linear operator.

2.7. DIFFERENTIAL OF A MAP BETWEEN MANIFOLDS

Let M™ and N" be two differentiable manifolds and ¢ : M — N be a
differentiable mapping. We know that to each smooth function g € A°(IV)
there corresponds a smooth function f = ¢*g € A°(M) [see p. 98]. The
mapping ¢* : A°(N) — A°(M) is generated by ¢ in the form ¢*g = go ¢
for all g € A°(N). We now try to find a mapping ¢, : T,(M) — Ty, (N)
in conjunction with the mapping ¢ that transforms the equivalence class of
curves that are tangent at a point p € M into an equivalence class of curves
that are tangent at the point ¢ = ¢(p) € N. Let us now choose a vector
V' € T,(M) and determine a vector V* € Ty, (N) such that the equality

V(g g) =V(gog) =V(g) (2.7.1)

is to be satisfied for all functions g € A°(N). We can also express this rela-
tion for all g € A°(IN) as follows:

(:V)(g9) =V (8"g), ¢ :Tp(M) — Ty (N) (2.7.2)

where V* = ¢, V. The mapping ¢., which will also be denoted occasionally
by d¢, is called the differential of the mapping ¢ at the point p.

Let us assume that a curve C' on a manifold M is specified by a map-
ping v : Z — M. We also suppose that 0 € Z and p = v(0). The image C*
of the curve C' in the manifold /N under the mapping ¢ is given by the map-
ping v* =¢oy:Z — N. We consider a vector V' that is tangent to the
curve C at the point p. For any function g € A°(V), we can write

_d((geg)on)|  d(go(o9))

V(goo) = —a g S T— 3 (2.7.3)
_dlge)| .
- dt 0 =V (g)

Here we make use of the associativity of the composition. We deduce from
the relation (2.7.3) that the vector V* is tangent to the image curve C* =
¢(C) at the point ¢(p) € N.

o« is a linear operator on real numbers. In fact, if we consider a real
number « and vectors Vi, V, € T, (M), we see that ¢, obeys the rules
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= ¢.Vi(9) + #.Va(g) i+ 0.V5)(9)
P«(aV)(g) = aV(¢"g) = ad.(V)(g

for all functions g € A°(N). That proves the linearity of ¢, at the point p:

¢:(aV) = ap,V

We now manage to endow the operator ¢, so defined in the above with
a more concrete structure by utilising local charts in manifolds M and N.
Let us assume that the point p € M belongs to a chart (U, ¢), and the point
q = ¢(p) € N belongs to a chart (V/,1). We denote the local coordinates
by x=¢(p), y=1v(@)={®0od)(p)=(bodop!)(x)=>(x) from
which we can deduce that ¢ = 1)~! o ® o . Thus, the local coordinates of
corresponding points under the mapping ¢ are functionally related by y“ =
o (z!,...,2™),a = 1,...,n. By means of functions

(go9) =godop™ e A(R™),
g =goy e AR
where g € A°(IV), we find that (go ¢) =g otpopop ! =g o®. Thus,
for every function ¢ € A°(R"), the expression (2.7.1) takes the form

w09y _ 109(2(x) _ . 0g 02"

oy~ ar 0 oy Oz’

¢.(Vi +V2)(9) = (Vi + V2)(¢"9) = Vi(679) + Va(0'9)
= (o
)

which leads to the relation

Y R ()
Vi=¢.,V =v aya =7 Oz aya €T¢(p)(N) (2.7.4)

where V' = 1'0/0x" € T,(M). Consequently, we deduce that the mapping
¢ T,(M) — T,(N) transforms a vector at the point p € M with com-
ponents v’ in local coordinates to a vector at the point ¢ = ¢(p) € N with
components

v (6) = (270) () @75)

in local coordinates. This transformation is governed by the Jacobian matrix
J(¢) = [09*/0x'] of the mapping ¢. If only the mapping ¢ has an inverse
¢~1: N — M, then the relation (2.7.5) is expressible as dependent of the
point ¢ € N so that one will then be able to write
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v (q) = [(%i?v) o cb‘l} ().

If such is the case, one readily observes that the following relation is valid
O (fVi+gVa) = (7)1 (V1) + ((97)g) (¢:V2)

forany f,g € A°(M) and V1, Vs € T,(M).
A basis vector

g 40
oz’ =0 OxJ

in T,,(M) is transformed in view of (2.7.4) by the operator ¢, to a vector
o (2) g 0 0% 0
“\Noxi/) U 9xd 9y Ozt dy~

(2.7.6)

in Ty, (N ). Therefore, the matrix representing the linear operator ¢, with
respect to natural bases at the points p and ¢ is the Jacobian matrix J(¢).
Obviously, the rank of the matrix J(¢) at a point p € M gives the number
of linearly independent vectors in the tangent space T}, (IV). If the linear
operator ¢, = d¢ at the point p € M is surjective, then the rank of J(¢) is
n. If ¢, is injective, the rank of J(¢) is m. In that case, ¢ is a submersion if
¢ 1s surjective at every point p € M, whereas ¢ is an immersion if ¢, is
injective everywhere. When m = n and detJ(¢) # 0, then ¢, is an isomor-
phism and there is an inverse (¢.)' : T, (N) — Ty-1(,)(M) at the point
q € N which is clearly represented with respect to natural bases by the in-
verse matrix J~!. This means that the equation y = ®(x) has a differentiable
inverse x = ®~!(y) in a neighbourhood of the point ¢ in accordance with
the celebrated inverse mapping theorem. We can now introduce the map-
ping ¢ =@ ltodtoy : N — M. Then we immediately obtain the com-
position potp =¢' todopop lod oy =iy. Similarly, we come
up with v o ¢ = i, implying that 1) = ¢! and 1+ is differentiable. We thus
conclude that the mapping ¢ becomes a local diffeomorphism at the point
p € M if ¢, is an isomorphism at p.

A point ¢ € N is called a regular value of the smooth mapping ¢ if
d¢ : T,(M) — T,(N) is surjective at every point p such that ¢ = ¢(p). A
point p € M is then called a regular point of ¢ if d¢ : T,(M) — Ty, (N)
is surjective. A point ¢ € N that is not a regular value is called a critical
value of ¢. If qis such a point, then the rank of J(¢) at points p satisfying
q = ¢(p) is less than n. A point p € M is then called a critical point of ¢ if
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d¢ is not surjective at that point. An important theorem known as the Sard
theorem |after American mathematician Arthur Sard (1909-1980)] states
that for second countable manifolds critical values constitute a null subset (a
set of measure zero) of the manifold N .

Let an m-~dimensional smooth manifold M be second countable, and
consequently, separable. It can be demonstrated that such a manifold can
be immersed in at most 2m-dimensional Euclidean space R*™ (R*"~! if
m > 1), or it can be embedded in at most (2m + 1)-dimensional Euclidean
space R+ (R?*™ if M is not an analytical manifold). These results are
known as Whitney's theorems. We confine ourselves only to say a little bit
about the proof. We assume that an m-dimensional manifold M has trans-
versal self-intersections. The main idea of the proof is the possibility of re-
moving self-intersections by embedding the space R into a higher dimen-
sional Euclidean space. Whitney has shown that one can construct an
immersion ¢ : M™ — R?" by removing all self-intersections or double-
points and then resorting to the Sard theorem. Since M is locally homeo-
morphic to R™, Whitney has introduced a local immersion /,,, : R™ — R?"
that is approximately linear outside of the unit ball containing a single
double-point. He has further assumed that the local chart is so parametrised
by (uy,us, ..., uy) € R™ that the double point is given by

x(1,0,...,0) = x(—1,0,...,0).

Then we easily verify that the local mapping defined by

1 2u1 uULU U Uy,
wm(ul,ug,...,um): ( m

U1 = —, 7u27"'a—) GRQm
u u u u

where u = (1 + u?)(1+ u3)---(1 + u2,) is an immersion for all m > 1 re-
moving the double-point. In fact, we observe that

¢m(170;---;0): (17 - 1707"'70)a
Ym(—1,0,...,0)=(1,1,0,---,0).

Actually, it can be verified that ¢),, is an embedding except for the double-
point. Furthermore, if the norm ||x(uy,us, ..., u,)| is large, then 1), be-
comes approximately the linear embedding

wm(ubu% cee ,Um) ~ (07 ur, 07“27 RS 0’ um)

Let M, Ms, M3 be three differentiable manifolds and ¢, : M7 — Mo,
@9 : My — M3 be two differentiable mappings. Let us consider the com-
position ¢y o ¢1 : My — Mj. For every h € A°(M;3) and V € T,(M;), we
can write
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(¢20 1)V (h) =V (hodyo¢) =V ((hoga)opi) = (d1)V(hoep)
= [(¢2)*((¢1)*V)](h) = ((¢2)* © (¢1)*)V(h)

We thus conclude that
(P20 ¢1)s = (¢2)x © (¢1)s Or d(p20¢1) =dpaodpr.  (2.7.7)

This is known as the chain rule. Let us note that the relation (2.7.7) actually
implies that

d(¢2 0 ¢1)(p) = doa(¢1(p)) o dgr(p)

at a point p of M.
Let ip; : M — M be the identity mapping so that we have iy/(p) = p
for all p € M. Accordingly one has diys : T,,(M) — T,(M). Since

diygV(f) =V (f oin) = VI(f)

for all f € AO(M), we obtain diy V' =V and finally diy, = iTp(M)- Z.TP(M)
is the identity operator on the vector space T),(M).

Let the mapping ¢ : M — N be a diffeomorphism so that the mapping
¢~' 1 N — M also exists and differentiable. Hence, we get ¢! 0 ¢ = iy,
¢ o ¢~! =iy and differentials of these mappings yield in view of (2.7.7)

d(¢~" 0 ¢) =dép™" o de = ig,),
d(podp™) =dpodp™" =i, ).

We thus infer that dp~! = (d¢)~!. This result implies that the linear opera-
tor d¢ between tangent spaces T,(M) and Ty, (N) is an isomorphism
since it is a regular operator if ¢ is a diffeomorphism. If we recall the
statement made in p. 122 we can obviously say that a differentiable
mapping ¢ : M — N is a local diffeomorphism at a point p € M if and
only if the linear operator d¢(p) : T,(M) — Ty, (IN) that is the differen-
tial of ¢ is an isomorphism. Of course, this statement will make sense if
only if tangent spaces T},(M) and T, (N ) have the same dimension.

While defining the differential of a mapping between manifolds M and
N, we come up with a rather special situation if one of these manifolds is R.
Let us first take M = Z where Z C R is an open interval and define a curve
C on the manifold N by the differentiable mapping v : Z — N. Therefore,
the differential of the mapping v at a point ¢ € 7 is a linear operator dy =
v« : Ty(Z) — T,(N) where p = 7(t). Since the tangent vector in R is of the
form d/dt, the tangent vector to the curve C at the point p = y(t) € N is
given by
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d
V=n(3) teT
T\t
In view of (2.7.3), the tangent vector, say, at a point v(0) € N will satisfy
the relation

d(gon)

AY(IN).
7 , Vg€ A°(N)

t=0

Vig) =

If we make use of the equality (2.7.4) and notice that the chart on M is
simply (Z,ir), we obtain the tangent vector V' in terms of local coordinates

y*(t) = cp"’(fy(t)), a=1,...,nas

d dy* 0
Vem(z) =22 278
T\at) T dt aye 2.78)

Let us now take N =R and let ¢ : M — R be a differentiable map-
ping. The chart on N is now (R, i) so it follows that ® = ig o po ! =
¢ o ¢!, Thus (2.7.4) yields for a vector V € T,(M),p € M

00 d . d

|4 :¢*V:U Oz dt _V(d))%:

teR. (2.7.9)

Since the tangent space 7;(IR) is isomorphic to the linear vector space R, we
can take as a basis vector d/dt — 1 and write ¢, : T,,(M) — R so that we
obtain ¢,V =V (¢). Thus this interpretation allows us to say that the
number d¢(p)V = ¢.(p)V gives the derivative of the function ¢ at the point
p € M in the direction of V. In this case the operator ¢, assigns a real
number to every vector in the tangent space T,(M). Hence, the linear
operator ¢, = d¢ turns out to be actually a linear functional on 7},()M) and,
consequently, it can be regarded as an element of the dual space 7}, (M ). Let
us now consider the vector V' = 9/dz" whose components are simply v =
1,1/ = 0, j # i. We thus conclude that

- Ori oxt

We now insert the coordinate function ¢ = ¢’ into the foregoing general
expression. Since ¢’(p) = z/, we obtain

0 () =o' () = =

This means that the elements {dx!,...,dx™} constitute a reciprocal basis
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for the dual vector space 7); (M ). This results in

0 > 0P 0P

ozi) ~ oz and d¢ = ox' dx

dé = audz’, a; = d¢(

which coincides with the classical definition of differential of a function. If
we consider a vector V = v'9/dz’, then we find that dz'(V) = v’ and
dp(V) = vid®/dzi = V(¢).

Finally, let us consider the mapping ¢ : U — R™ of a chart (U, ¢) ata
point p € M. Since p(p) = X, we get ¢, = dp : T,(M) — Tx(R™) ~ R™.
Consequently, we can write

deV(f) =V(fow)
for any f € A°(R™) and V € T,,(U). On the other hand, due to (2.6.7) and
(2.6.6) we obtain

. o) o) -1 .
av () =V(fop) =v 2220 _ Oy

so we find that dpV = V. Thus, the operator dp assigns an element v =
(v',...,v™) € R™ to a vector V € T,(U). It is straightforward to verify
that the operator dy : 1),(U) — R™ is an isomorphism.

We now take into account the inverse mapping ¢~ : R™ — U. Then
we get dp ' :R™ — T,(U) and we obtain dp 'V'(f) =V'(fop™)
=V(f) forall f € A°(M) and V' € T,(R™) yielding the relation dp V"
= V. We thus obtain dp~' = (dp)~'. Hence, we conclude that the map-
ping ¢ of a chart is a diffeomorphism.

2.8. VECTOR FIELDS. TANGENT BUNDLE

We have seen that we can construct a vector field on a manifold M™
by associating a vector V' (p) in the tangent space 7,(M) to each point
p € M. If we choose the natural basis in each tangent space 1),(M ) a vector
field is now expressible as

V(p) = U/(X)%7 X = Qpa(p)a pE Ua (281)
where (U,, ¢,) is a chart and U U, = M. We know that if v : R™ — R,
i =1,...,m are all smooth functions, V' (p) is called a smooth vector field.

Evidently, a smooth vector field is built by a linear combination of natural
basis vectors with functions chosen from the set C*°(R™). It is known that
the set C°°(R™) is a commutative ring. If we consider a non-zero function
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its inverse 1/ f(x) does not exist at points satisfying the equation f(x) = 0.
Therefore, although the vector field V' designates an element of a vector
space at every point p € M, it constitutes actually a module G(M) on the
manifold M. In fact, sum of two vector fields and multiplication of a vector
field by a smooth function are again vector fields. It goes without saying
that 20 (M ) reduces to a linear vector space on real numbers.

Let us define a set 7'(M) as the union of disjoint tangent spaces at all
points of a manifold M:

T(M) :pngp(M) —{(p,V):pe M,V eT,(M)}. (282)

It is obvious that this set is produced as the union of sets each of which is
obtained by attaching to each point p € M the linear vector space T, (M) at
that point. We shall now try to equip the set T'(M) with a differentiable
structure of 2m-dimension. The differentiable manifold 7°(M) so structured
will be called the tangent bundle of the manifold M. The set M is named
as the base and tangent spaces as the fibres of the fibre bundle. The natural
projection

7:T(M)— M, wn(p,V)=p, VeT,(M) (2.8.3)

projects every vector in a tangent space to its base point p € M to which a
particular fibre is attached. It is clear that we can write 7,(M) = 71 ({p}).
Moreover, let us consider the set V = 71 (U) C T(M) corresponding to an
open set U € 9t where 90 is the topology on M. Because of the properties
of the set function 7! we can write obviously

Uv=Ur'(U)=r(UU)=r(M)=T(M),
Uem Uem Uem

0 =710).
Furthermore, if A is an index set, we have the relations

Uuv,=u 7T_1(U)\) = 7T_1( U U)\),U/\ em
AEA AEA AeA
N V)\Z. =N 7T_1(U)\L.) = 7T_1( N U,\I.),)\Z' c A, U)\Z. € Mm.
i=1 i=1 i=1
Therefore the class T = {V =7~ }(U) : U € M} is a topology on the set
T(M) and V is an open set in . It is clear that the projection 7 is continu-
ous in this topology. The structure of the tangent bundle is schematically
depicted in Fig. 2.8.1.

We suppose that an atlas on the manifold M is given by the family of
charts A = {(U,, ¢a) : @ € Z}. The set
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T(A[) P

M

Fig. 2.8.1. Tangent bundle.

V,=T(U,) =7 (U, CT(M)

will be open in the topology . Let us consider a point (p, V') € T'(M). The
point p € M will be located inside a chart (U,, ¢, ) of the manifold M and
the point (p, V') will be in the open set V, = 71(U,). Hence, in terms of
local coordinates x = (x!,...,2™) € R™ in the open set ,(U,) C R™, a
vector V' € V), is expressible as

1% = (@, ...,v") € R™

_ 3
~ Yoz Y

We define the mapping ¥, : Vo — ©a(Us) X R™ C R?*™ in such a way
that, for all points (p, V') € V, we get

Ya(p, V) = (2a(p), dpaV) (2.8.4)
= (z', ..., 2™ 0t ™) e R
It is clear that the mapping v, is a homeomorphism. We shall now demon-

strate that the family {(V, = 77! (U,),%a) : a € I} constitutes an atlas on
the topological space T'(M). We know that T'(M) = UZVQ. Let us now
ae

consider two charts (V,, 1) and (Vg, ¢ 3) (the summation convention will

of course be suspended on Greek indices). We have to prove that the transi-
tion mapping

Yo = Vg0 Yy 1 ha(Va NV5) CR¥™ — 1h5(V, N V) C R
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1s smooth. It follows from the relation

(0, V) =0, (x,v) = (0" (%), (depa) (V)
= (pa'(x),de, ' (v))

that

bap(x,v) = (050 5" (%), dipg 0 dp, (V)
= (a0 @, (x),d(pso@,")(V)).

Since a5 = psop,! : R™ — R™ is smooth, the differential mapping
dpap is also smooth. Thus T'(M) acquires a structure of a 2m-dimensional
differentiable manifold with the atlas { (7~ (Ua), %) : @ € Z}. Local coor-
dinates of this manifold is given by (z!,..., 2™ v! ... v™).

Due to the relation (2.6.9), the linear operator dy,z is represented by
the matrix

dpas = Kag = [6%] . (2.8.5)
' oxl,

Hence dyqs: Tx(R™) — Tx(R™) is an automorphism, an isomorphism
mapping a vector space onto itself at a point p € M. We know that we can
take Ty(R"™) = R™. Therefore, denoting the general linear group formed
by m X m regular matrices on fibres R” by GL(m,R), we infer that

dpas € GL(m,R).

GL(m,R), or one of its subgroups G C GL(m,R), is called the structural
group of the tangent bundle. This group ascertains the global character of
T'(M) and helps us distinguish different bundles defined over the same base
space. Then we deduce that in an intersection V, N Vg on the fibre bundle,
the coordinate transformation is determined through the relations

Xg = Pap(Xa), Vg =Kupva, Kog€G.

If the bundle 7'(M ) is diffeomorphic to the product manifold M x R™, it is
then called a globally trivial bundle. Since every tangent bundle is locally
represented as U x R™, it is locally trivial. Whether this property is also
valid globally depends on the structural group. If the tangent bundle is trivi-
al, we can always choose points (p, V) in M x R™ for all points p € M
where Vj is a constant vector. Hence, the inverse mapping creates a vector
field in 7'(M) that vanishes nowhere on M. This means that the tangent
bundle cannot be trivial if it is not possible to find a vector field that
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vanishes nowhere on the manifolds.

A local cross section of the tangent bundle is the smooth mapping
o:U — T(U) where U C M is an open set. ¢ must possess the property
mo o =iy, that is, one has 7(c(p)) = pforall p e U. If U = M, then o is
called a global cross section. The mapping o will clearly assigns a vector to
each point of an open submanifold of M, or M itself. Hence, it prescribes a
vector field (Fig. 2.8.2).

Example 2.8.1. As the base manifold, let us choose the circle. It is
straightforward to observe that one finds easily a vector field that vanishes
nowhere on S!. Therefore T(S!) is a trivial bundle and it can be represented
as S! x R. As a matter of fact if we choose fibres as shown in Fig. 2.8.3(a),
then the tangent bundle becomes the Cartesian product of S! and R. Since
S! is designated by a single coordinate, the transformation of coordinates at
apoint p in overlapping charts are given by x5 = vu3(xa), v3 = Kup Va

T(M)

M

Fig. 2.8.2. Vector field as a cross section.

where the constant K,z is the value of dy,3/dz, at p. This number is a
member of the multiplication group on R which is also the structural group
of the bundle. In order to find a simple representation let us cut the circle at
a point p, unwrap the bundle and make it lie on R?. To assemble the bundle
again all we have to do is to identify p with p/, u with v/ and v with /. In
this case, the transition mapping in overlapping charts is simply found as the
identity mapping (p,v) — (p,v) and the structural group of the tangent
bundle becomes just {1}. However, we can reassemble the bundle to form
the Mébius band if we identify v with v/ and v with u’ by twisting the strip.
In this case the tangent bundle is no longer trivial. Transition mapping in
some overlapping charts is again given by (p,v) — (p, v) whereas in some
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others by (p,v) — (p, — v) and the structural group of the bundle is now
{1, —1}.

Let us consider a Mdbius band whose middle circle is situated at the
plane z = 0, centred at the origin with radius R and its half-width is w. Its
parametric equations are given by

x =[R +vcos(u/2)|cosu,y = [R + vcos(u/2)|sinu, z = vsin(u/2)

where 0 < u < 2rand —w < v < w. Indeed for u = 0 we getx = R + v,
y =2z =0 while for u =27 we obtain t = R — v,y = 2 = 0. Thus we
obtain the description described in Fig.. 2.8.3(b).

Mbobius band, or strip, is named after German mathematician August
Ferdinand Mdbius (1790-1868) who had introduced it on September 1858.
Strictly speaking, the band had already been found a little bit earlier by
German mathematician Johann Benedict Listing (1808-1882) on July 1858.

Sl

v v

Fig. 2.8.3. Fibre bundles: (a) circle, (b) Mdbius band.

Therefore, it would have been more appropriate to call it as Listing
band. Mobius band is perhaps the most prominent example to one-sided and
one-edged surfaces. In fact, when we start moving on the surface we pass
eventually under the surface without crossing the edge. The representation
of M&bius band in R? is depicted in Fig. 2.8.4.

Let ¢ : M — N be a differentiable mapping between two differenti-
able manifolds. The differential of ¢ can now be written as an operator
between tangent bundles as ¢, = d¢ : T(M) — T'(N). However, we have
to keep in mind that the linear operator d¢ transforms pointwise the vector
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space 1,(M) into the vector space Ty, (/N) and its action can only be
embodied through the local charts at points p and ¢(p). Let a smooth vector
field in the tangent bundle 7'(M ) be V. Then we define V* = d¢(V') by the
following relation again

Fig. 2.8.4. Mobius band. |

dp(V)(9)(6(p)) =V(god)(p), peM
for all g € A°(V). This implies that the diagram

Ty 2 7y

ol |

v 2N

is commutative, that is, ¢ oy = 7wy o d¢ where my : T(M) — M and
7wy : T(N) — N are natural projections,
If only the mapping ¢ has an inverse, then one can write

Vi(9)(q) = [V(go¢)] oo '(q), q€ N. (2.8.6)

Thus only for invertible mappings, their differentials are able to assign a
vector V*(q) at every point ¢ € N. In other words, if ¢! does not exist,
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then the image of a vector field on M is generally not a vector field on V. If
¢ is a diffeomorphism, then the image of a smooth vector field becomes also
a smooth vector field . If ¢~ exists but not smooth, then the image is a
vector field but it may not be smooth.

2.9. FLOWS OVER MANIFOLDS

Let M™ be a smooth manifold and let V € T'(M) be a given vector
field. A differentiable curve described by the smooth mapping v : Z — M,
Z = (a,b) C R will be called an integral curve of the vector field V, if it is
tangent to the field V, i.e., if the relation

7.(5) = Vo

is satisfied. In dynamical system, this curve is also called a #rajectory or an
orbit. This relation is symbolically expressed as follows:
dr(t)

e V(y(t), te(a,b). (2.9.1)

We know that the image of this curve in R™ is determined by expressions
=+t =¢'(7(t) ER, i=1,....m

in local coordinates.
Theorem 2.9.1. Let a vector field V on a differentiable manifold M'™
be given by

0

_ e -1
8$i I p SO (X)

V(p) = v'(x)
where (U, p) is the chart to which p € M belongs. A curve ~:7T — M is
an integral curve of the vector field V' if and only if the coordinate functions
x'(t) are solutions of the following system of local ordinary differential
equations in R™

o= (x0), i=1....m (2.9.2)

Indeed, if we take into consideration the relation (2.7.8), we can trans-
form (2.9.1) into the form

dzt 0
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which can be satisfied if and only if the differential equations

dz!
dt

are held. O
We see that in order to find integral curves of a vector field on a mani-
fold M™ we need to generate curves in R™ as solutions of differential equa-
tions (2.9.2) and then carry them on M by making use of local charts.
Let V be a smooth vector field on M. Hence, all components v'(x) are
smooth functions. If M is also a smooth manifold, then the functions V(p)
= v'(¢(p)) will be smooth, either. Next, we consider a point py € M and a
chart (U, ¢) enclosing this point. It is known from the theory of system of
ordinary differential equations that [see Coddington and Levinson (1955), p.
22, Theorem 7.1] for each point xo = @(py) € R™ there exist an open set
U(xg) C R™ containing this point and an open interval Z(xo) C R so that
Sor all x € U(Xq) and t € T(Xg) the following system of ordinary differen-
tial equations

=" (x(t)), i=1,....m

d¢'
= v(9) (2.9.3)

has a unique solution ¢(t;x) satisfying the initial condition @|,_, = Xo
where ty € I(Xo) and ¢ is a vector-valued smooth function of variables t
and x = (x',...,2™). If 0 € Z(xo), then we usually choose ¢y = 0. Thus
the function ¢(¢;x) designate a curve in R™ through the point X(¢y) = x
whose equation is parametrically given by

X(t) = $(t:x) € Uxo), lt;x) = X

where x € U(xp) and ¢t € Z(xg). If we fix ¢ and write ¢;(x) = ¢(¢; x), then
¢ U(xp) — R™ denotes a family of smooth mappings depending on the
parameter ¢ € Z(xXg). For a fixed ¢, each point x € U(xy) is transported
along the integral curve of the vector field V' to the point ¢;(x) € R™ deter-
mined by this value of the parameter t. Because of the uniqueness of the
solutions such curves cannot intersect. An open neighbourhood U, =
¢ 1 (U(x0)) C M is associated with each point py = ¢ *(X9) € M and an
integral curve through a point p € U, is characterised by

o(t;p) =9 Lo p(t;0(p), t € Ty =T(p(p)) SR (2.9.4)

This function must of course satisfy the relation ¢(ty; p) = p. Points on this
curve are found by the transformation
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p(t) = ¢(t;p) = du(p), t €Ly,

We have to point out that the definition of ¢ by (2.9.4) is valid only for
points p and P(t) situated in the same chart of the manifold. A new solution
is required for a different chart. Therefore, the family of /ocal smooth map-
pings {¢; : U,, — M,t € 7, } transports each point p € U, of the mani-
fold M along an integral curve of the vector field V' through this point to
the point ¢;(p) € M. Thus, in essence, the mapping ¢ should be written in
the form

¢:Up xLy — M

where the set Uy, x Z,, is an open subset of (m + 1)-dimensional smooth

manifold M x R. Hence, it is an (m + 1)-dimensional smooth open subma-

nifold. Let us now consider open neighbourhoods U,, defined as above co-

vering the manifold M so that M = AUAUPA' Next, we define the interval 7
[S

= AﬂAZpA C R. Whenever Z is not empty, ¢; becomes a global mapping for
S

all t € 7 so that one is able to write ¢; : M — M. If M is a compact mani-
fold, then it would be covered by finitely many open sets of the above
family. In this case, Z becomes, of course, the intersection of finitely many
open intervals. Hence, it cannot be empty. Such a family of mappings gen-
erated by a vector field on the manifold is called the flow of that vector
field. If Z = R, then we say that V' € T(M) is a complete vector field. 1t
can be shown that if the vector field is bounded, that is, if there exists a

constant K > 0 such that Y |v'(x)| < K for all x € R™, then the solution
i=1

of the system of differential equations (2.9.2) will be valid on the entire real
axis [see Cronin (1980), p. 53]. When M is taken as a compact manifold,
then all continuous functions defined on M ought to be bounded. Conse-
quently, smooth vector fields defined on compact manifolds are always
complete.

We now shall try to better understand the structure of the mapping ¢;.
The functions ¢(¢; X) are to satisfy

d¢'
d‘ﬁ =vi(¢), i=1,...,m,

¢'(0;x) = .
We have assumed without loss of generality that 0 € Z. Since functions ¢

are smooth, they can be expanded into a Maclaurin series in a sufficiently
small neighbourhood of the point ¢ = 0:
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o , dét| , Ldt
T'(t) = ¢'(t;x) = ¢'(0; b5 R
T'(t) = ¢'(t;x) = ¢"(0;%) + dt |, +2! dt* |, i

1dni

= ¢ tn‘l'“‘

n! dt" |,_,

We can evaluate the coefficients of this series at £ = 0 by using the fore-
going ordinary differential equations. As a matter of fact, if we note that we
can write

dqﬁi:vi:qﬂé?:qﬂ'aw _(J. 0 >¢i

dt 1= "¢ — \" 9pi
we easily obtain the following sequence
d2¢i_8vid¢j_80ij_ PO N (50N,
A2~ 96l dt 9T (” aTsa‘)” - (“ aTsz‘) ¢

o 5) e = (o) Y= ()

() = ()

We know that the vector field V' € T(R™) representing the vector field
V € T'(M) in local coordinates is denoted by

0

dai

V/(x) = v (x)

Thus, after having evaluated the foregoing relations at the point ¢t = 0, we
arrive at the following result:

do’ ,
= ? pr— V t
i), ==V
d2¢i )
— V/2 7
dt2 -0 (l' )
d?’gf)i
— V/?) )
dt3 -0 (l' )
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— V/n i
| =V"E)

The operator V'™ denotes n times composition V' oV’ o---0 V' of the
operator V' : A°(R™) — A°(R™) by itself. Hence the Taylor series above
[English mathematician Brook Taylor (1685-1731)] can be cast into the
following series

Tl(t) :¢i(t§x) :xi+tV’( )—|— V’2( )_|_ + V/n( z)
— / ” m ;
_(I+tV +§V +...+mv +--->(w).

We shall now define the exponential operator by the absolutely convergent
operator series

0 $n

exp (V") Z 'v (2.9.5)
n= 0

where we have adopted the convention V'° = I. Thus, we attain at the
formula

6/(t5%) = exp (1/(0) 5 ) (o) = V' ()

or
X(t) = p(t;x) = eV (x) (2.9.6)
where the operator etV R™ — R™ is introduced by
eV (x) = (V' (z1), e (z?), ..., eV (z™) e R™.

If the operators V/, V3 are commutative, namely, if they satisfy the relation
Vi o Vi =V o V/, we find that

i / / ’ ’ /
€V1+V2 :evl 06‘/2 :6‘/2 Oevl

In effect, if these operators commute the classical binomial expansion yields

(‘/1/_'_‘/2/)n :Z(Z> ln k Zk‘ ‘/2ln k.

k=0
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We thus obtain

VIV ZWl + V)" :i VR

n! c ikl (n—k)!

—F =€ '€

m o0 m
=3 :V1 V Vi Vi
n=0 ! m= J

Since the vector addition is a commutative operation, we infer at once the
commutativity of exponential operators. It then follows from (2.9.6) that

Bt +5;x) = eIV (x) = eV 0 eV (x) = @ (t; B(5;%)). (2.9.7)

Next, we employ the expression (2.9.4) by assuming that ¢, s, + s € 7, to
reach to the relation

P(t+sp) =9 L od(t+si0(p) =9 op(tid(s;¢(p))
= lod(t;o(d(s;p)) = d(t;d(s;p)).

This relation is actually independent of the chart in question. Indeed, ac-

cording to the definition of the integral curve, both curves ¢ — ¢(t + s; p)

and ¢ — (;S(t; o(s; p)) satisfy the same differential equations. The initial

conditions at ¢ = 0 are also the same: ¢(s; p) = qb(O; o(s; p)) = ¢(s;p).
Hence, the uniqueness of solutions leads also to the conclusion

ot + s:p) = o (t; ¢ (s p)). (2.9.8)
Consequently, we can write

Gi1s(p) = b1 (¢s(p)) = 1 0 Ps(p)

for all p € U, whenever t, s,t + s € Z,,. If the interval 7 is not empty, then
(2.9.8) becomes valid for all p € M and the global transformation operator
¢, : M — M satisfies the relation

Gtys = b1 0 s (2.9.9)

if t,s,t + s € Z. This implies that the composition of smooth functions ¢;
and ¢, is again a smooth function provided that the parameters ¢ and s are
sufficiently small if Z # R. Furthermore, if we take s = — ¢, then we find
¢o = ¢y 0 ¢_y =iy implying that (¢;)~! = ¢_,. Hence, the inverse map-
ping ¢; ! is also smooth. This amounts to say that {¢; : t € Z} is a family of
diffeomorphisms. It is clear that this set constitutes a group under the
operation of composition of mappings. However, since the group structure
prevails only for limited values of the parameter ¢ including 0, this group is
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called 1-parameter group of local diffeomorphisms of the manifold M. If
T =R, the group is named l-parameter group of diffeomorphisms. The
flow ¢, is represented by a family of curves that are tangent to a given vec-
tor field V' at every point of the manifold M. These curves are obtained as
images of solutions of the set of differential equations (2.9.2) on M by
means of charts. Due to the uniqueness of solutions of equations (2.9.2), the
curves of this family cannot intersect except at the critical points satisfying
the condition V' (p) = 0 and they fill the manifold. Such a family of curves
is called a congruence.

The vector field V' that help determine the flow is sometimes called an
infinitesimal generator of the flow.

The flow ¢(¢; p) can be endowed with an appearance which makes its
group structure more pronounced. Provided that the points X(¢) and x € R™
belong to the same chart, we then deduce from the relation X(¢) = etV (x)
that

p(t) = ¢(t;p) = ¢ (X(t) = (¢ 0 e 0 p)(p).
We can now locally define an exponential mapping 'V : M — M by

eV =ploe" o0, (2.9.10)
It is straightforward to demonstrate that this operator possesses the follow-
ing properties:

!’ !/ !/
e(tJrs)V _ 8071 o €(t+s)V op= (,071 o etV o 6sV o
! !
:¢7106tv OQOO(piloesv ocp:etvoesv,
etV otV = W — QO_l 0 im0 = i

These properties justify our calling e as the exponential mapping and our
using the familiar notation. Moreover, for two commutative operators V)
and V5, we again obtain

e(‘/]+‘/2) e(‘/l/Jr‘/Z/) o= (10_1 o e‘/l/ opo gp_l o) 6‘/‘2/ oy
Vi

:@_10
:6‘/106‘/2:6‘/206

We can now express the flow generated by the vector field V' on the mani-
fold M also in the form

é(t;p) = di(p) = € (p). (2.9.11)

Naturally, as the parameter ¢ varies, (2.9.11) might tangibly be specified on-
ly through different charts.
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Let us now take a function f € A°(M) into consideration. We know
that the function f’ € A°(R™) is related to f by the equality f(p) = f'(x),
that is, we get f = f o L. Our task is to evaluate the value of the smooth
function f’ at the point X(¢). To this end, let us consider the expansion

! (< / 4 , df’ mnoqn
! (X(t)) -/ (etv (X)) =1 |t:0 +td—J; t=0 o E dt{ =0

Introducing the relations

d /
Flo=10, L

af| V() de
dt |,_, 0z dt

_ofar
o OT dt

— vi X 8f/ — 1( p! x
=g =V (W)
=V2(f'(x),

t=0

drf’ av’(”—l)(f/) dzi

_— — m /
i |,y o’ dt 4 (f (X))>

t=0

into that expression we arrive at

t
n

= (F+ V() 4k SV ) )

f’(etvl(x)) :f/(x)—ktV/(f’(x)) +---—|——71!V/n(f/(x)) .

from which we conclude that

FED) = £V (x) = ifgvl"(f')(x) (29.12)
n=0"""
=V (x) = eV F(x)

On the other hand, if the equalities f(p) = f'(x), V" (f)(p) = V" (') (x),
n =1,2,... are utilised in the expression

F@®) = (e () = £ ("' (x) = it—v
we find that

FE0) = 1 ) =3 v o (29.13)
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=V D(p) = eV f(p)

Since V"(f)(p) € R, the foregoing expression makes sense. If a function f
satisfies the equality f(p(t)) = f(p) for every point p € M, we say that it
is invariant under the flow. It immediately follows from (2.9.13) that the
necessary and sufficient condition for a function f to remain invariant
under the flow generated by a vector field V is

V(f) =0. (2.9.14)

Next, we consider a vector field V' € T'(M), its local representation
V'€ T(R™), and the integral curve through a point x € R™. In view of
(2.9.6), we can write X(¢) = !V (x). Hence, we obtain

. dzt d
"= T @

4 4 2 4 " .
[xz_'_tvl(wz)_i_EVIQ(xz)_i_'“_i_ﬁV/n(xz)_i_“']

) ) tnfl .
Y 12,0 m(
=V'(z") +tV=(a") + +(n—1)!v (") +
! t? ) ! m—1 1( ot
=[I+tV +5V +---+(n_1)!v + -]V (2)

=€V (V'(2)) = eV vi(x) = v/ (e (x)) = v'(%).
Here, in the last line we used (2.9.12). We thus conclude that

d sy / d
—eV'(x) = V("' (x)) and —eV(x)| =V'(x). (2.9.15)
dt dt =0

To summarise, one notes that a flow generated by a vector field V on a
manifold M is determined as a solution of symbolic differential equation

doi(p)
dt

=V (é:(p)), ¢o(p)=p, peM

(operation of differentiation can only be realised by means of charts) in the
form ¢;(p) = €'V (p). We can also write
d

VN tV d _
Ee (p)—V(e (p)) and dte (p) f;o_V@) (2.9.16)

in accordance with relations (2.9.15).

Let us now consider a function f € A°(M) and try to specify its varia-
tion along the flow generated by a vector field V. If the local representation
of this function is f' = f o p~! € A°(R™) subordinate to a chart, we can
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then write
df' (x(t))  df' (e of
f S;( )) _ f (edt (X)) — 7 ( )8£L _ V,(f,)|i(t) _ V/(f/)’eﬂ”(x)'
Since V(f) = V'(f’), the above relation leads to
d tV d tvV
OO () ana EDN - _yipyy)

t=0

Letvy : M — N be a diffeomorphism between two differentiable manifolds.
We denote the flow brought out by a vector field V' on M by the relation

p(t) = e'V(p). We get f = gop € A°(M) forany g € A°(N). If ¢ = ()
we obtain

g[v (€™ ()] = (gov) (e (p) = £V (p) =D =V"(H)p)

Cvi(gon)m) = 3L [Viigow) o v (@

n

3

M 2

n!

t’rl

V@@ =9V (@), VI =v(V)

I
=}

n

after having employed (2.9.13) and (2.8.6). Since this relation is in effect for
every smooth function g, we infer that

w(e (p) = M p(p) = e Vy(p). (2.9.17)

This simply means that a diffeomorphism between manifolds M and N
transforms a flow on M onto a flow on N.

2.10. LIE DERIVATIVE

Let us assume that we are given two vector fields U,V € T'(M) on a
manifold M and the U- and V-congruences generated by those fields are
determined. We consider a curve of V'-congruence through a point p € M
for the value of the parameter ¢ = 0, the point of which corresponding to the
value ¢ is the point ¢ € M. U-congruence has now two curves through the
points p and q. This situation is depicted schematically in Fig. 2.10.1.

Hence, we can write ¢ = !V (p). Our aim is to establish a procedure
that is able to measure the variation in vectors of the vector field U while
one moves along a V-curve. In order to realise this, we have to suggest a
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Fig. 2.10.1. Two congruences on a manifold.

scheme that makes it possible to compare vectors U(p) € T,(M) and
U(q) € T,(M) which reside on disjoint vector spaces. In other words, we
have to transport the vector U (q) without changing its properties into the
tangent space 7,(M). To this end, we introduce a vector U* € T,(M)
depending on the parameter ¢ of the V' -curve by the following relation

U*(p;t) = (e").U (e (p) = (V). (e )'U(p) (2.10.1)

where the linear operator (¢; '), = (e™*V), : T,(M) — T,(M) is the dif-
ferential of the inverse flow ¢; ' at the point ¢ and places the vector U (q)
into the tangent space at the point p. The operator (etv)* is defined as usual
by (e!V)*U = U o e'V. The vectors U*(p; t) and U (p) now lie in the same
tangent space. Therefore, their difference can now be calculated without any
difficulty. We shall next define the Lie derivative of a vector field U with
respect to the vector field V' at the point p by the following limiting process

(04 -tV tV o\ _
t—0 t t—0 t

U(p). (2.10.2)

[Although it is always referred to the name of Norwegian mathematician
Marius Sophus Lie (1842-1899), this concept was first introduced in 1931
by Polish mathematician Wiadislaw Slebodziriski (1884-1972). However,
the term Lie derivative was coined by Dutch mathematician David van
Dantzig (1900-1959) in 1932]. Thus the Lie derivative operator can be
expressed in the form
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e lim(eftV)*(etV)* .
v t—0 t ’

(2.10.3)

In the second step, we attempt to evaluate concretely the Lie derivative of a
vector field U with respect to a vector field V' by resorting to local charts at
points p and q. Let the local coordinates at the point p be (z!,...,2™) and

those at the point ¢ = eV (p) be (z',...,7"). Thus we can write
i 8 i f— a
U(p)—u(x)%, U(q)—u(x)afi.

In accordance with the relations (2.7.4) and (2.7.5), we obtain

0 (1) = (5(0) 25 i (x(0) = (x(0) 2

For very small values of the parameter ¢, the expression X(¢) = etvl(x) can
be approximated by

T'(t) = 2’ + tv'(x) + o(t)

where the vector field V' is represented as V = v'9/0x’. Hence, we are led
to a matrix whose elements are given by

8Ti i 8vi
It follows from the chain rule of differentiation that the inverse of this
matrix is prescribed by [0z’ /07’] from which we find approximately

Indeed, it is straightforward to verify that

= D0 (5425 (85 = 22 ot

i o't O i
=0, +t<8x1 - 8mj> +o(t) = 6; + o(t).

Furthermore, the Taylor series around the point x yields

ou’
o o + o(t).

W (X(t)) = v (x +tv(x) + o(t)) = u'(x) +¢

We thus find
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wt = (ul + tg;:,ivk + o(t)) ((5{' - tgzg + o(t))
=l + t(gzlivk — giﬁm) + o(t)

and obtain finally

ozt Y ozt

= +o(t).

oul L ovd ) 0
oxJ

U (pit) = U(p) = (v

Since }in& o(t)/t = 0, we conclude that

£vU = wi% =w'd =W, v = vjufj — ujvfj (2.10.4)
where we employed the abbreviations (-); = d(-)/0x' and 9; = 9/dx'.
We observe that the Lie derivative of a vector field U with respect to a
vector field V' at every point p is again a vector in the tangent space T,,(M)
and the vector field £y U so created measures the rate of change of the
vector U at every point in the manifold along the congruence generated by
the vector field V.
We readily obtain from (2.10.4) the following results

ou' 0 0 ot 0
£oU = Oz Oz’ V<%) Ozl ozt

We can attribute another meaning to the Lie derivative evoking algeb-
raic connotations. We take two vector fields U,V € T'(M) into account on
a manifold M. For any function f € A°(M), we get V(f) € A°(M) and
also U (V(f)) € A°(M) so that we can write

U(V(f)) = ujaij (vi g{i) = uj(v’:fyi)y_,- = ujvfjf,i + ujvif,ij.

(2.10.5)

In a similar way, we arrive at
V(U(f)) = vjufjf,j, + uivjf,ij.
Hence, we find that
VU())-UWV () = (vju'fj — ujvfj)f,i + (u'! — ') i

Second order derivatives f;; are symmetric with respect to the indices 4, j
due to the well known relation f;; = f ;; whereas their coefficients are anti-
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symmetric with respect to the same indices. This means that the second sum
in the foregoing relation turns out to be zero. As a result, for every function
f € A°(M), the following equality holds

(VU =UV)(f) =W (/)
where the vector field W is given by (2.10.4). This of course implies that
VU -UV =W e T(M).
We now define the commutator of two vector fields as
[V, U]=[V,U]=VU-UV. (2.10.6)

This is tantamount to say that the Lie derivative of a vector field U with
respect to the vector field V' is expressible as

£,U = [V, U] (2.10.7)

It clearly follows from the definition that the commutation rule [V,U] =
— [U,V] is valid. Therefore, Lie derivatives of two vector fields with
respect to one another are related by

U = — £ V. (2.10.8)

The commutator [V, U] is also called Lie bracket or Lie product. Lie
product is antisymmetric and one naturally has [V ,V] = 0. It might be
instructive to evaluate the Lie derivative given by (2.10.4) this time by
means of the commutator:

[V, U] = [’Uiai, ujaj] = vZ&(uJaj) — uj(?j(vi&-)
= v'(0;u!)0; — v (0j0")0; + (v'! — wv')0;
= (vj(?jui — ujﬁjvi)&; = £, U.

Let us now take V = 0;,U = 0;. It is then immediately seen that for all
indices ¢, j, we find

[;,0;] = 0. (2.10.9)

Thus Lie derivatives of all natural basis vectors, produced by local charts,
with respect to one another vanish.

Another geometrical meaning can easily be attributed to the Lie brack-
et, namely, the Lie derivative. Suppose that we are given two vector fields
and U- and V-congruences generated by them on a manifold M are deter-
mined. Let these families of curves are parametrised by ¢; and t9, respec-
tively. We consider U - and V -curves through a point p € M. Let the points
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q,m € M be determined along respective flows for the values ¢; and ¢5 of
parameters as

tlU( tzV(

g=-¢""(p), r=e"?"(p).

tQV(

Let us also consider the points g = €2V (¢), 7 = eV (1) along flows. In this

case, we write

taV

g=e?VoelU(p), 7=eVoel(p). (2.10.10)

We denote images of these points in R™ by x(p), x(g), x(7). We obtain from
relations (2.9.6) the expression

X(T]) _ X(T) _ (et2vlet]U/ _ etlU/etzV/)X(p) _ [etQV/, etlU’]X

that can be thought as measuring the "difference" between the points g and 7
where we wrote x(p) = x. On choosing 1, ¢, sufficiently small, the expan-
sions of exponential mappings yields
x(@) —x(7) = {(I + V' + 363V + ) (I + 61U + 587U + )
— I+ 4tU + 3807+ I+ 6V +33V72 4+ ) )x
={I+tU + 6V +t6,V'U" + 5833V7? + 58307 + -
—I =t U" =tV — 10UV = 83U — 513V — -+ }x
= {tits(V'U' = U'V') + o(t3, 13, t1t2) } x.
Next, we take the parameters ¢4, to of the order ¢ where € is a small number.
We thus conclude that
x(q) — x(7) = €[V, U] (x(p)) + o(?) (2.10.11)
= £y U (x(p)) + o(€?).

In view of (2.10.4), this expression can be cast into the shape
i

aiﬂ' + 0(€%) = titaw' + o(€?) ~ 2w’ + o(€?)

z'(q) — x'(T) = titow’

in terms of components. It is seen that even if we consider rather close
points p, g, r, the points G and 7 formed as above do not coincide in general.
But the difference is of second order and its magnitude is governed by the
Lie bracket at the point p (Fig. 2.10.2).

If vector fields U,V commute, then we have VU = UV and [V, U]
=0. We know in this case that eV o ehtl = ehlU o ehV = ghlUthtV
Hence (2.10.10) yields exactly ¢ = 7. In other words, the congruence curves
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Bl

Y

Fig. 2.10.2. The geometrical meaning of the Lie derivative.

through the points ¢ and r intersects at the point § for the parameter values
t; and . This amounts to say that the U- and V- congruences play the part
of two families of coordinate lines on M because ¢; and t; can now be
regarded as two Cartesian coordinates in R,

Conversely, we can immediately deduce from (2.10.11) that if we get
[e!, e!V] = 0 for all ¢ and x, then we must have [V, U] = 0.

It follows directly from the relation (2.10.4) that the Lie product is
distributive:

Vi +Vo,U] = [Vi, U] + [Vo, U], [V, U1+ Us] =[V,U1] + [V, Us]
Therefore, for all vector fields U, V and Uy, Us, V1, V5 we can write
£yonU = £y, U + £,U, £v(Uy + Us) = £y Up + £y Uy
whence we reach to the operator equality
Ly, = £y, + £y, (2.10.12)

Moreover, Lie product satisfies the Jacobi identity. U,V , W € T'(M)
are arbitrary three vector fields. Then, the following identity holds

J=[U,[V,W]] + [V,[W,U]] + [W,[U,V]] =0. (2.10.13)

To verify this, let us begin with the calculation of the first term:
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. N9
k k. i k. k )
[U [V, W]]—{ vwk wv7k)7j—(vwk ka)u }&ﬂ
= {u%f}wfk + ujvkwj’jk, - ujvfkwf}
gt k}
— w5 W —u v w’ +u v
k k axL

After having evaluated the other terms in (2.10.13) in a similar fashion, we
consider their sum and by eliminating terms cancelling each other we reach
to the result

0
ox'’

J = {uijk(vjwk — vl + v L(wiub — whud) + w'; L (ui — ukvj)}

However, in the above sums, the terms within parentheses are antisymmet-
ric whereas mixed derivatives are symmetric with respect to relevant indices
so that we finally obtain J = 0. This result can also be found by resorting to
commutators. If we write (2.10.13) explicitly, we obtain

UV, W] = [V,W]U + V[W,U] - [W,U]V + W[U,V] - [U, VIW
—UVW —UWV = VWU +WVU + VWU = VUW — WUV
+UWV +WUV-WVU —UVW +VUW = 0.

We can now equip the module (M) that consists of all vector fields
on a manifold M with a closed binary operation provided by the Lie bracket
that assigns a vector field to every pair of vector fields. This way U (M)
acquires an algebraic structure. With this structure that is anticommutative
but not associative as is clearly implied by the Jacobi identity (2.10.13), we
can now venture to say, with a slight abuse of the term, that the module
0(M) has become a Lie algebra. In fact, a Lie algebra is usually defined on
a vector space. But U (M) is a vector space only on the field of real num-
bers. Thus, strictly speaking, a Lie algebra can be formed on a real vector
space by defining the product of two vectors as the Lie bracket. In this case,
the Lie product turns out to be a bilinear operations so that for real numbers
a1, (ig, We can write

[alUl + OLQUQ, V] = al[Ula V] + OZQ[UQ, V]
[U, Vi + azVa,] = au[U, V1] + ax[U, V2]

Obviously, tangent spaces 1,,(M ) at every point p € M are Lie algebras in
the true sense of the word.

We shall now attempt to measure the change in a vector field U along
a V-curve through the point p. We can transport all vectors U in different
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tangent spaces at every point of the curve into the tangent space 7),(M)
utilising the mapping (2.10.1). Since we can add vectors in the same tangent
space, the rate of change of the vector field U can be measured directly by
the derivative

Ur(pit+71) —U(p;t)

dU*(p;t) .

We know that the diffeomorphism e’V : M — M generated by a vector
field V' on the manifold M will satisfy etV — etV o e™V =™V o etV
It then follows from the rule (2.7.7) concerning the composition of differen-
tials that one can write

(

( 7TV>* o (eftV)* ol o eTV ° €tv(p>

— (V)0 (e), 0 (V) o (Uoe™) (p)
(€™ )0 U(pst)oe™ (p)

= (e )eo () U (p5t).
Hence, the derivative (2.10.14) is expressible in the form

* (0. -7V TV _
dt T7—0 T

U*(pst).

If we recall the relation (2.10.3), we conclude that

dU*(p;t)

= £y U"(p; ). 2.10.15
dt \%4 (pv ) ( )

This is a differential equation satisfied by the operator U* with the initial
condition U*(p;0) = U(p). The solution of this equation is formally ex-
panded into a Maclaurin series around ¢ = 0 as follows

dU*(p; ) 1d2U*(pst)|
U*(p:t) = U*(p: 0 J — ’ t
(pv ) (pv )+ dt 10 2 dt? =0 +
1 d"U*(p;t
L LT .
n! dtr =0

Since the operator £y, does not depend on the parameter ¢, we find that

dU*(p; 1)

dt

=£yU"(p;0) = £y U (p),
t=0
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d*U*(p;t)

dU*(p; t)
dt? v

=£
dt

t=0

=£2U(p),.
t=0

where U*(p; 0) = U (p). We thus arrive at the formal operator series
n

t? t
U (pit) = U(p) + t&v U (p) + SEU(p) + -+ £, U (p) + -+

We now define the exponential operator e/*V in the usual way as the abso-
lutely convergent series

et :I+1t£v+ﬁ£2v+---+ﬁ vt
2! n!
whence we are led to the result
U*(p;t) = ™ U (p) € T,(M), pe M. (2.10.16)

We deduce from his relation an important property of vector fields. If £, U
= [V,U] =0, then we get U*(p;t) = U(p) implying that the vector field
U does not change on V' -congruence. In other words, the vector field U re-
mains invariant with respect to the vector field V. On the other hand, if
£y U = 0, then we have £V = 0 due to (2.10.8). Therefore, we understand
that if the field U is invariant with respect to the field V, then the field V
becomes necessarily invariant with respect to the field U .
We can now write the Jacobi identity in the form

L£uEyW + £v£w U + £ £y V = 0.
Then properties of Lie derivative allows us to transform this relation into
(Evky — EvEp)W = £,y W

or [£y,£v]W = £y 1yW. Since this equality must hold for every vector

field W, we arrive at the following rather elegant result between two Lie de-
rivative operators

[£v, £v] = £ 1y (2.10.17)

In exactly same way, we can define the Lie derivative of a function
f € A°(M) as follows

f(eV'p) — f(p)
SR

-1
v =i
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On using charts, we have f(p) = f'(x), f(e!Vp) = f' (X(t)). We can now
approximately write Z'(t) = ' + tv'(x) + o(t). Hence, Taylor series about
the point x yields

(K(0) — J'(5) = F'(8) + 04 () 2%+ oft) — /(x) = V(") + o1
and we finally obtain
Of
£vf=V(f) :vzaxi (2.10.18)

Thus the Lie derivative of a function f is nothing but the directional deriva-
tive of f along the vector V. If £ f = 0, then the function f remains con-
stant on every curve of V-congruence. Naturally this constant may be
different on each curve of the congruence.

Suppose now that we are given two vector fields U,V € T'(M) and
two smooth functions f,g € A°(M). For any function h € A°(M), we can
write

[fU.gV1(h) = fU(gV(h)) — gV (fU(h)) = fU(g)V(h) + fgUV (h)
—gV(f)U(h) —gfVU(h) = [fg[U,V]+ fU(9)V — gV (f)U](h).

where we have taken into account that vector fields are actually derivations.
We thus obtain

[fU,gV] = fglU,V]I+ fU(9)V — gV (/)U (2.10.19)
or equivalently
Lrv(gV) = fagtuV + fEu(9)V — gkv (f)U. (2.10.20)

Let ¢ : M — N be a differentiable mapping between manifolds M
and N. We know that the differential of ¢ at a point p € M is the linear
operator ¢, : T),(M) — Ty, (IN). Consider two vector fields U and V' on
the manifold M. The Lie bracket of these vector fields at p is given by the
vector

V] = w2 e, 00),

oxt
; ; Ov' ;jou’
w = w p— ,
oz’ ox’

in the local coordinates. In view of (2.7.4), the vector ¢.[U, V] € Ty, (M)
is expressed in the form
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*or 9 _ iaq)ai
O [U, V] =w 9y =w'o oy

Here, y = (y!,...,y") are the local coordinates at the point ¢(p) € N and
are related to the local coordinates x = (z!,...,2™) at the point p € M by
a functional relation y = ®(x) or functions y* = ®%(z!,...,2™),a =
1,...,n associated with the mapping ¢. Let us now explicitly evaluate
components w**:

09 ( jﬁvi _Uj@ui>8fl>“
- oxt b oxJ oxi/ Oxt
-0 olok -0 olok o R Ak
= ) — v Y B ? P I PN )
Y OxJ (U ozt ) v oxJ (u ozt ) + (U —ulv )Bxiaxj
j(%*“ ]ﬁu*“ j(%*“ o’ jau*“ o’
—) _ = mp—y .
OxJ OxJ oy’ Ox oy Oz’

ov*® ou*™®
*BZY 6 — «@
u a5 v 5 [0:U, . V]".

*Q

We thus conclude that
6:[U,V] = [0.U, ¢.V] (2.10.21)
or [U,V]* = [U*,V*],0or ¢.(£0V) = £4.0(0.V).

2.11. DISTRIBUTIONS. THE FROBENIUS THEOREM

Let M be an m-dimensional differentiable manifold. Let us consider a
subspace D), = 7T,(M) C T),(M) of dimension k < m of the tangent space
T,(M) at every point p € M. We may constitute a tangent subbundle by
union of disjoint subspaces 7,(M):

T(M) = U T,(M) ={(p,V) : p € M,V € T,(M)} € T(M) (2.11.1)

This subbundle is called a k-dimensional distribution. We denote it by D
=T (M). Thus a k-dimensional distribution really attaches to every point
of the manifold a k-dimensional subspace of the tangent space at that point.
In order to construct such a distribution, all we have to do is to select & line-
arly independent vector fields. If vector fields U,, a« = 1, ..., k are linearly
independent, then the relation

a®(p)Ua(p) =0
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with a® € A°(M) can be satisfied if and only if a®(p) = 0 fora = 1,... , k.
Such vector fields U, constitute a basis of the distribution.

A distribution D is called an involutive distribution if for every vector
fields U,V € D one has [U,V] € D, namely, if D is closed under the Lie
product. 1t is clear that all Lie brackets remain in D if and only if it is possi-
ble to find functions ¢* € A°(M) such that

[U7 V] = Ca(p)Ua

for all U,V € D. Since basis vectors U, are also in D, a necessary condi-
tion for the distribution D to be involutive is that the relations

[Us, Us] = 4(p)U, 2.112)

should be satisfied for some functions ¢, 5 € A°(M). One can readily shows

that this condition is also sufficient. Let us consider vectors U = \“U, and
V = pu®U,. It follows from (2.10.19) that

[U,V] = \"Ua, p°Us] = A 1P [Us, Us] + A*Ua (") Up
- /’LﬂUﬁ()‘a)Ua = {Cgﬂ)\a/ﬁﬁ + )\aUa(,uﬁ/) - MaUa()"y)}UV
=c'(p)U, € D.
Due to the antisymmetry of Lie brackets, the coefficients ¢ 5 must be anti-
symmetric with respect to the subscripts:
clﬁ = — cga. (2.11.3)

Moreover, Lie brackets of vectors in D ought to satisfy the Jacobi identity.
For basis vectors U, this identity is reduced to the form

[Ua, [Us, UA,]] + [Ug, [Uw,Ua]] + [UA,, [Ua, Uﬁ]] =0.
On using (2.11.2), this identity yields
[Ua ¢, Us) + [Up, ,Us] + [Us, ¢4,3Us] = ¢, [Ua, Us] + ¢4, [Us, Us)

o zes

+ caslUs: Us] + Ua(efy)Us + Up(e)Us + Us(cz5)Us
= {c‘gﬁ/céé + cgacg(s + ciﬁc% + Ua(cgv) + Uﬁ(cia) + Uy (chg) YUy = 0.

Since vectors U), are linearly independent, we deduce that the coefficients
c) 5 must satisfy the following relations

Cg,\/Céé‘ + Cfmc[’}é + cgﬁc% + Ua(c[’}w) + U@(cn’/\a) + Uv(c(’;ﬁ) =0 (2.11.4)
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for all values of indices «, 3,7, A = 1,..., k. Because of the symmetry pro-
perties of these coefficients the number of independent relations in (2.11.4)
is considerably smaller.

We have discussed in Sec. 2.4 some techniques to specify a submani-
fold of a given manifold M. We now propose another method to achieve
that purpose. Let S be a k-dimensional submanifold of M determined by
the relations ' = z'(u®),i=1,...,m and a = 1,..., k. Then at a point
p € S there will be a k-dimensional tangent space 7},(S). But p is a point of
M as well and all vectors at that point belong also to 7},(A/). Hence, we can
write T,(S) C T,,(M), i.e., T,,(S) is a subspace of T,,(M). Since the inclu-
sion map Z : S — M is an embedding, its differential dZ : T'(S) — T'(M)
is an injective linear operator. Because Z : S — Z(S) is an identity map-
ping, we can write dZ(V) =V ,V € T,(5). Thus, if we consider a vector
V' in the tangent space of .S at a point p, its components in tangent spaces
T,(S) and T},(M) are related by

0 0 ar' 0 . Ox

V=2 D v S v 507 5ai " v = e v (2.11.5)

Let U,V € T,(S). Due to (2.10.21) we obtain
dZ([U,V]) = [dZ(U),dZ(V)] = [U,V]

that results in [U, V] € T,,(S). This means that as long as S C M is a sub-
manifold, Lie products of vectors in 7),(.S) stay in 7),(.S). Therefore, such a
subspace T),(S) is a Lie subalgebra of the Lie algebra T),(M ).

Now, conversely, let us suppose that we are given k linearly indepen-
dent vector fields on the manifold M. In other words, we choose a k-dimen-
sional subspace of the tangent space at every point of the manifold. We then
take congruences that are integral curves of those vector fields. Therefore,
we can construct a local piece of the manifold which is tangent to a linear
vector space formed by the chosen k vectors at every point of the manifold
M. Next we have to ask the following question: under which conditions
these small pieces of manifolds can be patched together smoothly in order to
produce a smooth hypersurface forming a submanifold? This question can
be quite easily answered qualitatively. When moving on an integral curve of
a vector field, the variations of other vector fields are measured by Lie de-
rivatives. In order that these integral curves stay on the hypersurface, Lie
derivatives of vector fields must lie in the chosen subspace.

Let us consider a k-dimensional distribution D on a manifold M. If the
tangent space at every point p € S of a k-dimensional submanifold S C M
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is identical with the subspace D, of the tangent space T),(M) of M, that is,
if we have

dZ(T,(S)) = Dy_z(), VP ES (2.11.6)

where Z : S — M is the embedding mapping determining the submanifold
S, then S is called an integral submanifold of the distribution D. Some-
times instead of (2.11.6), we may prefer the weaker condition dZ(7,(5))
C D,—i(p) at each point p € S. In this case the dimension of S may be less
than k. If a k-dimensional distribution D possesses a k-dimensional integ-
ral submanifold through every point p € M, then D is called a completely
integrable distribution. A fundamental theorem concerning such distribu-
tions is provided by German mathematician Ferdinand Georg Frobenius
(1849-1917).

Theorem 2.11.1 (The Frobenius Theorem). A distribution D on a
manifold is completely integrable if and only it is involutive.

If we assume that the distribution D is completely integrable, then
there exists an integral submanifold .S through every point p € M and at
that point the subspace D, C T),(M) corresponds to the tangent space of S.
Therefore, for each U,V € D, one finds [U,V] € D,, namely, D is in-
volutive.

For the proof of the converse statement, we consider a k-dimensional
involutive distribution D on an m-dimensional manifold M. This distribu-
tion is specified by k& < m linearly independent vector fields U,,a =
1,2,...,k in the m-dimensional tangent bundle 7'(M). Since D is an
involutive distribution, there exist smooth functions ¢, ; € AY(M) satisfying

the relations [U,, Us] = ¢ 3(p)U, and verifying the conditions (2.11.3) and

(2.11.4). Let us choose a new set of linearly independent vector fields by
means of the transformation

Va(p) = AS(p)Us(p), o,B=1,....k (2.11.7)

where A%(p) € A°(M). The only restriction imposed on k x k matrix A =
[Aj] is that det A(p) # 0 at each point p € S. Thus, we can write

[V,, Vsl = [A3U., AJUs] = AT AS[Ua, Us] + ASUL(A)) U
— AJUS(AN)Us = [ehs ATAT + ASUL(A) — ALUL(AN]U,

Let us denote the inverse matrix by A~ = B = [B;], namely, the relations

AIB) = BA; =6
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will hold. Hence, (2.11.7) gives
Ua(p) = By (p)Vs(p)-
The commutators of vectors V,, then become
[V, Vsl = [ch AT A + ATUL(AY) — AjUo(AY)] BpVy (2.11.8)
=C 5VA

as it should be expected. We thus find that [V, V5] € D. Here, the functions
CJs € A°(M) are given by

Ol = B)[ch ;AT AY + ATUL(AL) — Ay Ua(AY)]

= B)[ch ATA] + V(AL — Vs(AM)].

The vector fields U, are prescribed by

4 0
Ua:u}a(")%: X:(p(p)v

i=1,....m; a=1,...,k
in a chart (U, ¢) containing the point p. Therefore, the vector fields V,, are
given by

0

Vo = Abul, —
. Uga ;

(2.11.9)

Since k& number of vectors U, are linearly independent, the rank of the
rectangular matrix

1 2 k m

ul ul DEEY ul ... ul
1 2 k m

i . u2 u2 DY u2 “ . u2

[ua] - : . . :
1 2 k m

uk‘ uk/‘ .. uk‘ e uk

is k. We rename the coordinates x if necessary to arrange this matrix in
such a way that [ug] can be chosen as the k£ x k square matrix with non-

vanishing determinant. Then (2.11.9) can be written as follows

8
Vo = A2ﬁ67+A i =k+1,....,m. (2.11.10)

So far the matrix A was arbitrary. We now select it as the inverse of the
matrix [uf]:
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Al =8, A =1,
where the smooth functions ﬂlg € A(M) are elements of the inverse matrix
[u3]~!. With this choice the structure of the expressions (2.11.10) reduces to
a much simpler form

o , 0
=5t 2.11.11)

Va

where we have introduced the functions v{, by

18

o =uju

Vo

(2.11.12)

o
On recalling that [0;, ;] = 0, we readily find
Va, V3] = [0 + 0204, 0 + v% O] = 0,05 + v;}’aﬁb + UZ 000
+ 130,05 + viv%yaaa + vgv% 040 — 0500 — vy 3 Ou
— vy, 030, — v% 0Oy — v%vgvbﬁa - U%UZ&,@G
= {(Wha +vhvhy) = (Vs + Vi) } 00
or

0
oz’

[Va, V] = {Va(vg) — Vs(va)} (2.11.13)

Next we insert (2.11.11) into (2.11.8) and rearrange the terms to obtain

0 . 0
+ Cgﬂ% EIE

_ Y _ Y
[V, Vsl = CasVs = Cas g5

If we compare this expression with (2.11.13) we deduce that all coefficient
functions C(;’j must vanish. Hence, we conclude that

[Va, Vs] = 0. (2.11.14)

Furthermore, (2.11.13) then implies that the following conditions should al-
so be satisfied

Vo (vh) = Vs(vg). (2.11.15)

(2.11.14) means that in an involutive distribution D one is always able to

find k linearly independent vector fields V,, generating this distribution that

commute with respect to the Lie product. Consequently, congruences pro-
duced by those vector fields constitute a k-dimensional net of coordinate



2.11 Distributions. The Frobenius Theorem 159

lines at the vicinity of each point of the manifold M. In other words, they
form an integral manifold. (I
Making use of the information provided by the above theorem, we can
determine in a concrete way the integral manifold of an involutive distribu-
tion S. Let (¢1,€2,...,€%) € R* denote the local coordinates that give rise
to natural basis {V,} of the tangent bundle 7°(.S). So we can write
0 0 0

Vazaiga: a;va —{—UZ@,a:1,...,k;a:/{:—|—1,...,m.

Therefore, one has

oz oz 0z
- a.3 + Vg

Vila') = G5 = par s =

8%, + v &,

whence we conclude that

00 _ o 0a

30 =% 7e = 0% (x). (2.11.16)

Solutions of equations (2.11.16); are trivially found as
¥ =€+c% a=1,...,k (2.11.17)

Since equations (2.11.16)9 are generally non-linear, it is usually much more
difficult to obtain their solutions. Utilising (2.11.17), we can put these equa-
tions into the form

dx” 1 ko k+1
85&21}3(36,...,35,x*,...,mm)
el 1 ko ok okl ,
=0ttty ™),

a=k+1,...,m.

Let us then calculate derivatives of equations (2.11.16), with respect to va-
riables &7

9%z o’

(e}

R

_OvL Oz Qv dab oL, Oul

927 067 T 9xb 067 ~ az0 T i om

This implies that equations (2.11.16)2 can only be solved if the compatibili-
ty conditions V,,(v}) = Vj(vg,), that are naturally brought about by the sym-
metries of second order derivatives, are satisfied. However, these are none
other than conditions (2.11.15) that must be elicited by functions v%. Thus,
equations (2.11.16), can be integrated in principle and the set of coordinates
{z} are expressible in terms of variables £* as below:
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2 = €L, ) e

where a =k + 1,...,m and ¢* arem — k arbitrary constants. Let us now
define the new local coordinates by means of the relations

ya :€a7 ya = z" _fa(€1?€2?“'7§k)

where « = 1,...,k and a = k + 1,..., m. In the light of the above devel-
opments, we can thus rephrase the Frobenius theorem as follows: Let D be a
k-dimensional involutive distribution on an m-dimensional manifold. Then
there exists local coordinates y',1 < i < m such that the vector fields
00yt = 0/0¢E,...,0/0yF = 0/OE* constitute a local basis of the distri-
bution D and submanifolds determined by y* = constant,k+1 <a <m
are integral manifolds of D.

It is now seen that a k-dimensional involutive distribution on an m-di-
mensional manifold M generates a k-dimensional smooth integral manifold
through each point p € M. Therefore, the manifold M can be reconstructed
as the union of a family of k-dimensional submanifolds stacked on top of
one another. Such a case is called a k-dimensional foliation of the class C'™
on the manifold M. Each submanifold is known as a leaf of the foliation.

Example 2.11.1. Let M = R? with a coordinate cover z,7, z. We de-
fine a 2-dimensional distribution D by the vector fields

U]Z — %—i—xa—y,
0 0
Uy = —zanyry&

where we take ! = x, 2% = y, 2® = 2. It is easily verified that these vector
fields are linearly independent if y # 0. In fact, we write with f, g € A°(M)

JUL+gUs = —yfo, + (xf — 29)0, + yg0. = 0.

This relation is satisfied if and only if f = g = 0 when y # 0. On the other
hand, the commutator of these vector fields becomes
0 0 z x

U,Ug) = —2— —=-U1+-U,€D.

(U7, 2] 28:6+$(9z y1+y2
Thus D is an involutive distribution. Let us first determine the congruences
produced by vector fields U; and U,. The solutions of the following simple
ordinary differential equations associated with vector fields U; and Us,
respectively
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dz _dy dz = _
Ul.a——y,a—l‘, dt—07 X(O)—X
dT dy _dz __
UQ.%—O, PP et x(0) =x

yield the U;-congruence by the following parametric equations
T(t) = xcost —ysint, Y(t) = zsint + ycost, Z(t) = z,
and Us-congruence by equations
Z(s) =z, Y(s) = ycoss — zsins, Z(s) = ysins + z cos s.
It is immediately seen that both equations satisfy
() + y(t)* + 2(8)* = 2(s)* + Y(s)* + 2(s)* = 2® + 7 + 2%

Hence, the 2-dimensional integral manifold through the point x = (x,y, z)
is a sphere whose radius is equal to the distance of this point from the origin
0. But these congruences cannot form a coordinate net on the sphere. In-
deed, let us move along U integral curve through the point x to the point x;
by the parameter ¢, then along U, integral curve from the point x to the
point X by the parameter s. We find that

x1 =xcost —ysint, y; = xsint + ycost, z; =z

Tog =1, Yo = YCOSS — z8INS, 2o = ysins+ zCoSS.

Next, we go along U; integral curve from x» to the point x3 by ¢, and along
U, integral curve from x; to the point x4 by s. We obtain

T3 = T9COSt — Yo Sint, y3 = ToSint + yo coSt, 23 = 2
Ty =21, Y4 = Y1 COSS — 218InS, z4 = Y1 SInS + 21 COS S

or
x3 =xcost —ysintcoss + zsintsins, ry =xcost —ysint
Y3 = Y COStCOSS — zcostsins,ys = xrsintcoss + y costcoss — zsins
23 = 2c0s S+ ysins, zy = xsintsins 4 ycostsins + zcos s

It is evident that x3 # x4. For instance, for t = s = 7/2 we have x3 =
(z,2,v), x4 = (—y, — z,x). In this case, it would be necessary to produce
two commutative vector fields generating the distribution D. We write

9 0 d
Vi =AU + AU, = — Aiya + (Alz — A%z)a—y + Aﬁy&
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Vo= AU+ 4302 = — Ay + (Ao~ A32) 5+ Ay
and choose
A= —1/y, A} =0,4;,=0,43=1/y
with det A = — 1/y? # 0. We thus obtain vectors
90 z0 0 z0
"o yay P 0z yoy

We see at once that [V7, V5] = 0. The congruences generated by these vector
fields are found as solutions of ordinary differential equations

dz dy T dz

dt U dt 7 a5 X0 =x
dz dy z dz

— =0, == ——, — =1: X(0) =
ds " ds 7’ ds P X(0) =x

These are respectively
T(t) =x+t, g(t)? =y* — 2wt — 2, 2(t) = 2,
T(s) =z, 7(s)* = 9> — 225 — 5%, Z(s) = 2z + s.

As above, we now determine again the points X, Xo, X3 and x4 starting from
a point x:

= +t, y%:yQ—th—tQ, 2 = 2,
Ty = T, y§:y2—223—82, 29 = 2+ s,
T3 =ao+ 1, Y3 =15 — 2aat — 7, 23 =2,

T4 = X1, yZ:y%—Zzls—SQ, Z4 = 21 + S.
A short calculation then leads to
563:$4:£C+t,y§:yz:y2—2$t—228—t2—82,23:Z4:Z+S.

Consequently V;- and Vs-congruences form a 2-dimensional coordinate net
on the sphere.

Let us now parametrise the integral manifolds by variables £ and 7 via
the general scheme that was given above. We thus write

0 0 x0 0 0 z0

59z ydy By 9z oy
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to obtain
Oz Oz Oy _ _xOy_ _z 0z_, 0z _,
o6 om0 y’ dn y' 06 7 On
the integration of which yields
r=E+ca(n), () =0 and ==&+,
z=cs(n), c4(n) =1 and z =1+ cy,
oy? 0
P = ")y = —€2attam), Gl = -2+ e)

cs(n) = — 772 —2com + ¢3 and y2 = — 52 — 772 —2c1& —2cm+c3

where ci, c2 and c3 are arbitrary constants. We define the new coordinates
(&,m,7) by

& m =y + €+ 07 +20E + 200m — 3.

If we eliminate variables ¢ and 7 in the expression for r? we find

7 :x2+y2+z2+c%+c§—03.
Hence r = constant corresponds to a spherical integral manifold. [ |

Let f : M — R be a smooth function. The differential of this function
is the linear operator f., = df : T(M) — R, or a linear functional defined
by the relation f.(V) = V(f) [see p. 126]. The vectors in the null space
N (f.) of the operator f, that is a subbundle of 7'(M ) satisfy the condition
(V)=V(f)=0.1fU,V € N(f.), then we have f.(U) = f.(V) =0so
that due to (2.10.21), we find f.[U,V] = [f.U, f.V] = [0,0] = 0 and thus
[U,V] € N(f.). Hence, the distribution N ( f,) induced by the function f is
involutive.

We next consider a k-dimensional distribution D of the tangent bundle
T(M). We know that this distribution is determined by & linearly independ-
ent vector fields U,. A function f : M — R is annihilated by the distribu-
tion D if the relations U,(f) =0, a =1,...,k are met. In this case, we
obtain U(f) =0 for all vector fields U € D. This of course implies that
such a distribution must satisfy D C A/(f.). Let us then consider the equa-
lities U, (f) = 0, Us(f) = 0 with o # (. Utilising these relations, we arrive
at the result

[V Usl(f) = Ua(Us(f)) = Us(Ua(f)) =0.  (2.11.18)

If [Uy, Ug] ¢ D for a # [ where o, 5 € {1, ..., k}, then relations (2.11.18)
provide additional conditions needed for the function f to be annihilated by
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the distribution D. On the other hand, if the distribution D is involutive, the

conditions (2.11.18) will be satisfied automatically:
[Ua, Us](f) = cqgUy(f) = 0.

In this case, the relations U, (f) = 0 would be sufficient to determine func-
tions annihilated by D. In an involutive distribution, we can always choose
normal basis vectors satisfying the conditions [V, V3] = 0 instead of arbi-
trary basis vectors U, = u (x)3/dx'. The vectors V,,a=1,...,k are
given by (2.11.11). Therefore,, we can take the equivalent relations
Vo(f) =0 in lieu of U,(f) =0. Thus, in order to determine functions
annihilated by an involutive distribution D, we have to solve the following
set of first order partial differential equations

i 9f
g, (X) O =0,

a=1,...,k (2.11.19)

The components v/, = &, + v%8,, where a =k +1,...m are given by
(2.11.12). These equations can be solved by the usual method of charac-
teristics. We start with the first equation. Its characteristics are obtained as
usual by solving the set of autonomous ordinary differential equations
below
1 2 m
do”_ de” DT (2.11.20)
vi(x)  vi(x) v (x)

Evidently, characteristics are nothing but the integral curves of the vector
field V; that are found by integrating the ordinary differential equations

dx’ ;
dt == ’Ul (X)

It is well known that the solution of equations (2.11.20) is expressible in the
form

gx)=c, Fx)=c ..., ¢ ix) ="t (2.11.21)
where ¢!, g%, ..., ¢g" ! are given smooth functions and ¢!, ¢?,...,c™ ! are
arbitrary constants. It follows from (2.11.21) that

0g" dx’ - 0g" :
0= _ % _ vy

ari dt 1oz (")
r=12,...,m—1

We can thus see that the following equations
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of of of
1 2 m —
18 + v 18 + +U1 81‘7” O,
109 5 Og dg' B
Vet TGt g =0
0g* 5 0g° 7”892
’U%a——'— 8 + -4 O =0,
agml ag magm—l
v} o+ v oy +~-~+v1 oo =0

are to be held. Since V; # 0, this homogeneous set of linear equations in
terms of m coefficient functions v can have a nontrivial solution if and
only if the determinant of the coefficient functions vanishes:

of o . 9F
ox! ox? ox™m
d¢'  dg' 9g'
ozt 0x2  am 9 1 m—1
892 892 892 _ (fvg7'~'7g )_0
T = oz, x?, ..., xm)
axl ax2 8xm
3gm71 agmfl 8gm71
ox! Ox? oxm
This means that the function f is not independent of functions g', ..., g™ L.
We thus conclude that
f=F(g"....d" . (2.11.22)

Let us now take the equation V5(f) = 0 into account. Inserting (2.11.22)
into this equation, we obtain

; Of , OF 0g" oF

0=wgi= 289 0~ 2l )agr‘

On the other hand, commutativity of vectors V,, results in
Vi(Va(g")) = Va(Vilg")) = Va(0) = 0.
Hence, functions V5(g") are solutions of the equation

Vi(g) = 0.

Thus, we must write
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‘/2(97') — hr(gl7 ’gmfl).

Consequently, we find that

Vf) = (g ) =0
The solution of this differential equation is similarly expressed as
F=Fm'm? ...,m"?
where the functions
S=m(g',..., 9" ),

are determined just as in the previous step. If we continue this way, we
observe that every function annihilated by a k-dimensional involutive distri-
bution is represented in the form

f=58g,g%...,g" ™). (2.11.23)

m — k functions g', g%, ..., g" " are definite functions of variables z', 22,

., ™ obtained through all the foregoing steps. These functions constitute
a set of maximal solutions if they are functionally independent, that is, if the
following Jacobian with an appropriate ordering of local coordinates does
not vanish

8($17 $27 tee 7$k7gl7927 tet 7gml_k)

o(xt,x?, ... ™)
1 0 0 0
0 0 v 1 0
T Y
N
8gn—k 8gn—k agn—k 8gn—k
Ox! Ox? oxk oxn
Such functions g/, I =1,...,m — k are named as the first integrals or

integral functions of the distribution D. Since we must have V,,(f) = 0 for
every function in the form (2.11.23), we find that
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i of 89‘] .

s of af
“0g’ Ox'

0="Vu(f) = Va(gj)agJ'

If we select f = g’, we then obtain
Volg) o =V(g)=0,a=1,....k, I=1,....,m — k.
Hence, for each vector V' € D one gets
dg'(V)=gl(V)=V(g) =0, I=1,....m—k. (2.11.24)

Let us now define a subset M of the differentiable manifold M with the
help of local charts as follows

M={peM:g'p) =c () = ....a" *(p) = ")

where c',c?,...,c™ % are arbitrary constants. Because of Theorem 2.4.1,

we understand that M is a submanifold. We generate a family of submani-
folds, namely, a foliation of the manifold M by giving different values to
these constants. If we take into consideration the relations (2.11.24), it
becomes clear that the distribution is now specified by

D={VeT(M):dg'(V)=0,dg* (V) =0,...,dg" *(V) =0}.

Hence the family M are actually integral manifolds of the involutive distri-
bution D. The linear operators dg’ are now expressible as

dx® = dz“,
g’ g’
I _ a a —
dg —&Tada: +%dx,f—l,...,m—k‘
where o =1,...,k, a=k+1,...,m. Since we have assumed that the

Jacobian defined above does not vanish, then the operators (dz®, dg’) are
linearly independent. Let us now reconsider Example 2.11.1. We know that
the normalised basis vectors are

0 z 0 0 z 0

L7 ox yoy' T 9z ydy

Hence, for a function f = f(x,y, z), the solution of the equation
Vi) = ot - 25—

is obtainable through characteristic equations
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whose integrals are given as

g =ttt =c, f=r=c2

We thus find f = F(g', g%). Since

Va(g') = —22= —2¢°, Wa(g®) =1

the function F’ must satisfy

,OF OF

7o T o -

Solution of the ordinary differential equation

—dg'/2¢° = dg*/1

is g' = ¢! + (¢*)? = 2® + 3> + 2% = C'. Therefore, we arrive at the result
f=F(g") = F(2® + y* + 2%). Thus, integral manifolds, or leaves, of that
2-dimensional involutive distribution are spheres centred at the origin 0.

2.1.

2.2.

2.3.

24.

2.5.

II. EXERCISES

Show that a discreet topology can be generated on a set M by choosing every
point in M as an open set and this topological space has the structure of a 0-
dimensional manifold.

The standard topology on R? is given as unions of open rectangles
(a,b) x (c,d). Discuss whether the mapping f : [0,27) — S! defined by the
rule f(¢) = (cost,sint) is bijective, continuous and it is a homeomorphism
with respect to relative topologies on [0, 27) and S!.

Two differentiable structures on R are provided by atlases ;(x) = = and
@2(z) = 2®. We know that these atlases are not compatible [see Example
2.2.1]. Yet show that they are diffeomorphic.

An equivalence relation ~ is defined on the set S = {(z,y) e R? :y =
+1} by x #0,(z,1) ~ (x, —1). Show that the quotient space M = S/ ~
is a locally Euclidean and second countable space, but not a Hausdorff space
(This example is known as straight line with two centres).

S? is the sphere given by the equation 2 + 3> + 2> = 1. Let us consider its
open upper hemisphere U = {x € S%’:2z >0}, the open set V, =
{(z,y) € R? : 2% + y* < 1} and the mapping ¢ : U;" — V. determined by
i (z,y,\/1 — 22— y?) = (x,y). Similarly, on the open lower hemisphere
U ={xeS*:2<0}, we define the mapping ¢, : U7 — V. by the
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relation ¢ (z,y, — /1 — 22 — y2) = (z,y). Show that the pairs (U, p]")
and (U, , ¢, ) are charts. Prove that we obtain an atlas with six charts when
we add to these two those charts (U, ¢y), (U, ,¢;) and (U, 0;),
(U, , ¢, ) involving left, right and front, rear hemispheres constructed in the
similar fashion.

2.6. Let U C R? be an open set and f : U — R be a smooth mapping. Show that
the graph {x, f(x)} of this function is a 2-dimensional submanifold of R?.

2.7. Let M;,i=1,2,...,n be differentiable manifolds. We take submanifolds
N; C M; into account. Show that the Cartesian product N; x Ny X --- x N,
is a submanifold of the product manifold M; x Ms x --- x M,.

2.8. Discuss whether the following curves defined by mappings ¢; : R — R? are
immersion or embedding:

pi(t) = (2 =1, —t), 1<t< oo,

odo(t) = (t ;tlcost, t;_tlsint),

¢3(t) = (2cost,sin2t), ¢a(t) = (2cos (2arctant), sin (4arctant)),
¢5(t) = (at — bsint,a — bceost), a,b €R,

P6(t) = (2sin(at + b),ccosdt), a,b,c,d € R.

2.9. Discuss whether the following mappings ¢; : R> — R? and ¢, : R? — R*
are immersions or submanifolds:

¢1(u,v) = (Rsinwu cos v, Rsinu sinv, Rcosu),

¢ (u,v) = ((a + beosu)cosv, (a + beosu)sinv, bsinu cos(v/2), bsinucos(v/2).

2.10. Discuss whether the mappings ¢; : (0,00)? — R3, ¢ : (0,00)* — R?® and
#3 1 (0,00)* — R? defined below are immersions or submersions

¢1(’LL,U) = <u7u2’v2/u>’ ¢2(’LL7’U,U)) = (UUU}, ’LLU,’LU),

¢3(u,v,w) = (vw — u, v — vw).

2.11. The mapping ¢ : R? — R* is given by ¢(u,v,w) = (u* — v*, uv, uw, vw).
Show that the restriction ¢|g. of this mapping satisfies the relation ¢|c.(p) =
Pls:(—p) for all pe S Let us define the mapping ¢ : RP? — R* by
Y({p, — p}) = ¢|s(p). Show that the mapping + is an embedding.

2.12. Let us consider the manifold R® with the coordinate cover (z1, 2,23, 74,
x5, x6). We define the following subsets:

M={xeRb:a? — 2} —a2i=1,23 — 2} 22 =1} CR,
N={xecRC:zl4+22=1al+22=1} CRS
P={xecRC:2} — 23 +23-22<0}CR"

Investigate whether (a) M, N, P are submanifolds of RS, (b) the set M N N
is a submanifold of R®, M, N, (c) P is a submanifold of N with boundary.
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2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.
2.21.

v(t) = (x(1),y(t),2(t)) = (costsin (t+ g),sintsin (t+ g),cos (t+ Z))
2.22.

2.23.

2.24.
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Show that the composition of two immersions is an immersion and the com-
position of two embeddings is an embedding.

Show that the subset GL™ (n,R) of matrices with positive determinants and
the set SL(n,R) of matrices whose determinants are 1 constitute submani-
folds of the manifold GL(n, R).

Let us denote by s(n,R) the subset of symmetric matrices of the manifold
gl(n,R). We define a mapping ¢ : gl(n,R) — s(n,R) by the rule ¢(A) =

AAT. Let I, be n x n identity matrix. Then show that the mapping ¢ is a
submersion on the subset ¢~ *(I,,) C gl(n,R) and it constitutes a submanifold
of the subset O(n,R) of orthogonal matrices A € gl(n,R) satisfying the
condition AAT =1,,.

Let us take a fixed vector vy € R" into consideration and define a mapping
f:GL"(n,R) — R" by the relation f(A) = Avy. We naturally assume that
vg # 0. Show that this mapping and its restriction g = f| somRr) 10 the set of
orthogonal matrices SO(n,R) with unit determinants are submersions. Show
further that inverse mapping M = g~ *({vo}) = {A € SO(n,R) : Avy = vo}
of the set {vo} under g is a submanifold of the manifold SO(n,R) that is
isomorphic to the manifold SO(n — 1, R).

Let ¢ : M — N be an injective immersion between two smooth manifolds.
Show that the mapping ¢ is a submersion when M is a compact manifold.

Let ¢ : M — N be an immersion. If M; C M is a submanifold, then show
that the restriction ¢|,, is also an immersion.

We define the mapping f : GL*(n,R) — GL"(n + m,R) in the form

f(A) = [‘8‘ g], B € SO(m,R).

Show that the restriction f|g., g) is an embedding into SO(n + m, R).

The mapping ¢ : R — R? is defined by ¢(t) = (¢,t?). Determine the image
¢.U of the vector U = d/dt.

The curve v : R — S? is given by the relations

3

Let V' denote the vector tangent to this curve at the point ¢ = 0. Determine
images of the point v(0) and the vector V under the stereographic projection.
We define a cylinder by S! x R = {(x,y,2) € R®: 22 + 42 = 1}. Its coor-
dinate cover can be taken as (¢, z) in polar coordinates. On using spherical
coordinates we introduce a mapping ® : S> — S! x R by the relation ®(¢, )
= (¢, sin ). Evaluate the differential d® = ®,.

U,V € T(M) are two vector fields. Their flows are denoted by ¢; and 1,
respectively. Show that ¢; o 1), = 1) 0 ¢ if and only if [U, V] = 0.

The vector field U € T(R?) is given by U = 9, + d,. Find the flow generat-
ed by this vector field and show that this vector field is complete. Does this
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2.26.

2.27.

2.28.

2.29.

2.30.

2.31.
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vector field retain its completeness when it is defined on the manifold M =
R%2—-{0}?

The vector field U € T(R*—{0}) is given by U = — y 9, + = 9. Find the
flow generated by this vector field and check whether it is a complete vector
field.

Find the integral curves of the vector field (1 + #2)d, € T(R) and check
whether it is a complete vector field.

The vector fields Uy, Uy, Us € T(R?) are given by

0 0

Up=20 —yl

1 Zay yaz7

0 0

Up=1— — 20
2T T far

1o} 0

Us = y— — p—

3 y@x xay

Show that [Ul,UQ] = Ug, [UQ, U,j] = U1 and [U}, Ul] = Uz.
f € R* — R is a smooth function. We define the vector field Uy € T'(R?) by

_0fo _0f9
I~ 9ydxr odxoy
Show that the set formed by such kind of vector fields is closed under the Lie
product.

Let ¢; and v; be flows of vector fields U,V € T'(M), respectively. We con-
sider the curve

V) =1_ 00 ot 500 4(p)

through the point p € M. We assume that ¢ € [0, €] for a sufficiently small
€ > 0.Letf: M — R be a smooth function. Show that we can write

[U’ V](f)‘ — 1imf(7(t)) - f(’Y(O))

t—0 t

and we get 7/(0) = [U, V]. Verify this property in T'(R?) for vector fields
U=09/0yandV =090/0x + y9/0z.

Let ® : M — N be a diffeomorphism. We denote flows generated by vector
fieldsU e T(M)andV € T(N) by ¢y : M — M and ¢y, : N — N, respect-
ively. We say that vector fields U and V are ®-related if the relation
®.U =V, or more explicitly .U (p) = V (®(p)) forall p € M, is satisfied.
Show that U and V' are ®-related if and only if ® o ¢, = 1y o ®. If we take
® = ¢, this relation is satisfied identically so that we find (¢;).U = U. This
means that vector fields are conserved under their own flows.

Let ® : M — N be a diffeomorphism and U € T'(M). Suppose that at every
points py, ps € M satisfying the condition ®(p;) = ®(p2) we have ®,U (p;)
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2.32.

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.
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= ®,U(p2) € T(N). Is there a vector field V' € T(N) that is ®-related with
the vector field U?

Let ®: M — N be a diffeomorphism, Uy, U; € T(M) and Vi, V2 € T(N).
If vector fields U; and V;, Uy and V5 are ®-related, then show that Lie
products [Uy, Us] and [V}, V3] are also ®-related.

Let ®: M — N be a diffeomorphism. We assume that vector fields
UeT(M)andV € T(N) are ®-related. Show that

£y(®7g) = @£y (g9) = £a.0(9)

for a function g € A°(V).

Let us consider f € A°(M) and U € T(M). The flow generated by the vec-
tor field U is ¢, : M — M. Show that the function ¢} f = f o ¢, satisfies the
following differential equation

dleif)
dt

o kv f

along the flow.
The function f:R" xR — R satisfies the following partial differential
equation and initial condition

of(x,t)  , Of(x,1)
a " ) ox’
where x = (z!,22,...,2") € R". If the vector field U = u’(x)d/dz" is com-

plete and its flow is ¢; : R” — R", then show that the function f(x,t) =
g(¢:(x)) is the solution.

, J(x,0) = g(x)

Find the solution of initial value problem given below:
66_{ = 2%, f(z,0) =sinz.

Find the solution of initial value problem given below:

of _ of _of

ot —(J?—l-y)(ax 3y>’ f(xa%o):l‘y.

Find the solution of initial value problem given below:

of _ _ of , 9Of _
5 = y8x+xay, f(z,y,0) =2 +y.

We consider the vector fields U,V € T'(M). ¢ : M — M is the flow of the
vector field U. Show that the following relation is valid:

d, B _ _
a(ﬁbf 1)*V = (¢f 1)*(£UV)
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2.40. Vector fields U,V € T'(R") depending also on a parameter ¢ are given as

2.41.

2.42.

2.43.

follows:

V =vl(x,t 0

Uzui(x s )@

0
) t) % ’
We assume that the functions v’(x, t) are satisfying the initial value problem

o' ovt ot . )
=’ — — ) ¢ =4
ot Vow  ow' " (x,0) =g'(x)

for prescribed functions u’(x, ). If

0
ozt

and ¢, is the flow generated by the vector field U, then show that the vector
V = (¢;1).G represents the solution of the initial value problem.

G=g(x)5-

Find the solution of initial value problem given below:
o' ov' o'
T (x—i—y)% - ($+?J)a—y — vt =% ol (z,y,0) =y
ov? o? ov? .
T = @Gy — @Gt e Py 0) = sing

Find the solution of initial value problem given below:
vt vt ovt 9 1 9
e b 9,0) =
5 y8m+x8y vY, v(z,y,0) =z
ot ot
_—= —_— —_— 0 =
5 = Vay TGy v P =y

M is an m-dimensional smooth manifold. A k-dimensional involutive distri-
bution D C T(M) is specified by linearly independent vector fields U, €
T(M),a=1,...,k satisfying the conditions [U,,Us] = ¢ ;(p)U,. Smooth
functions F,, : M x R — R are denoted by F,(p,t),p€ M,a=1,...,k.
We consider the differential equation

Us(f) = Fu(x, f), x= (:cl,...,xm), a=1,...,k

where f : M — R. Show that the solution f(x) of this system of differential
equations may only exists if the functions F,, satisfy the relations

(. +F8f)( 5) — (U3+F388f>( W) =Py o 8=1,... k.

Show further that the solution is found as the solution of the following
differential equations
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0

(Ua+Faa—f)}‘_ 0, a=1,....k
when the above relations are satisfied.

2.44. We consider the manifold M = R?® — {0}. Show that the vector fields V! =
20y — Y0., V2 =120, — 20, and V3 = y0, — xz0, in T (M) give rise to a 2-
dimensional involutive distribution. Determine its integral manifold.

2.45. Show that the distribution generated by vector fields V! = 9, + 29, and
V2 =0, +y0; in T(R*) does not possess a 2-dimensional integral manifold.





