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CHAPTER II

DIFFERENTIABLE MANIFOLDS

2.1. SCOPE OF THE CHAPTER

The concept of manifold is essentially propounded to extend the de-
finition of surfaces in classical differential geometry to higher dimensional
spaces. This relatively new concept was first introduced into mathematics
by German mathematician Friedrich Bernhard Riemann (1826-1866) who
was the first one to do extensive work generalising the idea of a surface in a
three-dimensional space to higher dimensions. The term manifold is derived
from Riemann's original German term, . This term isMannigfaltigkeit
translated into English as by English mathematician Williammanifoldness 
Kingdon Clifford (1845-1879). Riemann's intuitive notion of a Mannig-
faltigkeit evolved into what is formalised today as the concept of manifold.
German mathematician Herman Klaus Hugo Weyl (1885-1955) gave an
intrinsic definition for differentiable manifolds in his lecture course on
Riemann surfaces in 1911–1912 at Göttingen University uniting analysis,
geometry and topology. However, it was American mathematician Hassler
Whitney (1907-1989) who clarified the foundational aspects of differenti-
able manifolds during the 1930s. Especially, the Whitney embedding theo-
rems provided a firm connection between manifolds and Euclidean spaces.

In Sec. 2.2 we first briefly review topological spaces to which differ-
entiable manifolds also belong. We define fundamental notions and focus
on various relevant properties of topological spaces. We then introduce a
metric space as a special topological space and finally the Euclidean space
that proves to be very important for our investigation. A manifold, also a
differentiable manifold, is defined as a topological space that is  equi-locally
valent to the Euclidean space. This amounts to say that each point of the
manifold belongs to an open set which is homeomorphic to an open set of
the Euclidean space. These open sets covering the manifolds are called
charts and an atlas is a collection of charts. Certain operations such as dif-
ferentiation are not allowed on manifolds as topological spaces. However,
the local equivalence with the Euclidean space enables us to perform these
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operations on manifolds by means of the Euclidean space on which such
operations are carried out quite easily. Although the topological structure of
a manifold does not allow us to evaluate directly the derivative of a real-
valued function on a manifold we will be able to describe it indirectly in
Sec. 2.3 by making use of local charts and well known differentiability in
the Euclidean space. We further extend this description to define differen-
tiable mappings between manifolds. In Sec. 2.4 we utilise differentiable
mappings to define submersions, immersions and embeddings between
manifolds and we discuss various approaches to generate submanifolds via
those mappings. Differentiable curves embedded on manifolds are consider-
ed in Sec. 2.5. Sec. 2.6 is devoted to the construction of the tangent space of
a manifold at a given point as the vector space of all tangent vectors at that
point of all differentiable curves through that point which are constructed by
employing local images of these curves in the Euclidean space. A more con-
venient vector space that is isomorphic to the tangent space is introduced as
the space of linear operators determined as derivatives of a scalar function
in the direction of tangent vectors. In Secs. 2.7 we define the differential of
a differentiable mapping between two manifolds as a linear operator map-
ping a tangent space into another at the corresponding points of manifolds.
We show in Sec. 2.8 that the fibre bundle generated by patching all tangent
spaces at all points of the manifold can be equipped with a differentiable
structure through which we can define a vector field on the manifold. We
investigate properties of a mapping called  generated by trajectories of aflow
vector field, namely, by curves tangent to the vector field in Sec. 2.9. The
Lie derivative that measures the variation of a vector field on a manifold
with respect to another vector field is defined in Sec. 2.10. This derivative,
which is also called the Lie product, is utilised to construct a Lie algebra on
the tangent space. Finally, in Sec. 2.11 we define a distribution produced by
choosing same dimensional subspaces of the tangent spaces at every points
of the manifold. It is shown that these elementary fragments of vector sub-
spaces attached to every points of the manifold can be patched together
smoothly to form a submanifold if and only if the distribution is involutive,
i.e., if its vectors constitute a Lie subalgebra. This is known as the Frobenius
theorem.

2.2. DIFFERENTIABLE MANIFOLDS

Let  be a non-empty set.  denotes the power set of  which isQ ÐQÑ Qc
the collection of all subsets of , the set  itself and the empty set . LetQ Q g
À c À© ÐQÑ Q be a class of subsets of . Let us assume that the class 
satisfies the following :axioms
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Ð3ÑÞ Q g

Ð33ÑÞ

  and  belong to the class .
 The union of  of members of  (even uncountably
many) belongs to the c

À

Àany number
         lass .

 The intersection of  of members of the class 
belongs to the class .

À

À

À

Ð333ÑÞ any finite number  
         

Such a class  is called a  on the set . The ordered pair À Àtopology Q ÐQß Ñ
is called a . Unless it causes an ambiguity, a set  endow-topological space Q
ed with a topology will also be usually called a topological space . How-Q
ever, we should remark that several topologies may be defined on the same
set  generating different topological spaces. We usually name the ele-Q
ments of a topological space as its . The members of the topology points À
will be called  of . Therefore a set  is open if and only ifopen sets Q Y © Q
Y Z Z © Q Q− À.  If the complement  of a subset  with respect to  isw

open, that is, if , then  is called a . Since  andZ Z Q œ g−w wÀ closed set
g œ Q Q gw , we conclude that the sets  and  are ,both open and closed sets
simultaneously. Whether the topological space  contains subsets otherQ
than those two sets having this property is closely related to the topological
concept of . We immediately see that the class of closed setconnectedness
will satisfy the following rules directly obtainable from the familiar de
Morgan laws of the set theory:   and  are closed sets,  the intersec-Ð3Ñ \ g Ð33Ñ
tion of  of closed sets (even uncountably many) is a closed set,any number
Ð333Ñ the union of  of closed sets is a closed set.any finite number  

The  on a subset  is the class of subsets of relative topology E © Q E
defined by . It is straightforward to showÀ ÀE Eœ ÖY œ E  Y À Y ×−
that  is a topological subspace. Indeed,  and  impliesÐEß Ñ g Q− −À À ÀE

that  and .  Let us consider a family ofg œ E  g E œ E  Q− −À ÀE E

subsets  where  is an index set. Then for each ,ÖZ − × −−- À - A A - AE À
there exists an open set  such that . We thus obtain forY Z œ E  Y−- - -À

the arbitrary union . e now  W  Ð   
- A - A - A

- - -
− − −

EZ œ E Y Ñ œ E Y −ˆ ‰ À

choose a  index set . Since , wefinite Ö ß ß á ß × © Y −- - - A À" # 8  
8

3œ"
-3

eventually obtain  . We thus  Ð   
8 8 8

3œ" 3œ" 3œ"
Z œ E Y Ñ œ E Y −- - -3 3 3

ˆ ‰ ÀE

conclude that the class  complies with the axioms of topology.  ÀE It should
be noted that the set  may not in general be an open set of  Y −E EÀ À. If
only  itself is an open set of , then open sets of relative topology coin-E \
cide with the open sets of  Evidently, the closed sets of the relative topo-QÞ
logy are of the form .E  Y-

w

A subset  of  is called a  of the point  if thereR Q :: neighbourhood
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exists an open set  such that . An  ofY : − Y © R: : : open neighbourhood
the point  is just an open set of  containing . Let  be a subset of a: Q : E
topological space . If a point  belongs to an open set contained inQ + − E
E Y © E Y − + − Y +, i.e., if there is a set ,  such that , then  is anÀ
interior point of the set . In other words, E if the set  is a neighbourhoodE
of the point  then  is an interior point of + − Eß + E. We can thus propose at
once that  the set  is open if and only if  is a neighbourhood of eachE © Q E
of its points.

In fact, let us first assume that  is open and . Due to the obvi-E + − E
ous relation , the set  is a neighbourhood of the point . Now+ − E © E E +
let us suppose that  is a neighbourhood of each of its points. Therefore, forE
each ,  there exists an open set  such that . We next+ − E Y + − Y © E+ +

define the open set . Since  for each , we find thatZ œ Y Y © E + − Z
+−E

+ +

Z © E E Y. On the other hand, each point of the set  belongs to a set  and+

consequently to . This implies that . We thus obtain the result Z E © Z E œ
Z E. Hence the set  is open. 

 Collection of all neighbourhoods of a point is called the system of
neighbourhoods of that point. If each neighbourhood of a point  contains at:
least one member of a family of neighbourhoods , where  isÖR À − ×:- - A A
an index set, then this family is a fundamental system of neighbourhoods
of .  topological space is called a  if each of its: E first countable space
points has . The seta countable fundamental system of open neighbourhoods
of all interior points of a set  is called the  of  and is denot-E © Q Einterior
ed by . It is easy to see that E

‰
the largest open set contained in  is itsE

interior E ÐE  FÑ œ E  F
‰ ‰ ‰
. It is rather straightforward to verify that .‰

The  of a subset  is the intersection of all closed setsclosure E © Q
containing  We denote the closure of a set  by . Since the intersection¯EÞ E E
of any number of closed sets is also closed, we deduce that  is a closed set.Ē
Hence, the closure of a set  is then  closed set containing .E Ethe smallest
We can then show the following proposition:

Let  be any non-empty subset of a topological space . A pointE Q
: − Q  belongs to the closure  if and only if the intersection of eachĒ
neighbourhood of  with  is not empty.: E

We first consider a point  and assume that there exists a par-¯: − E
ticular open neighbourhood  of  such that . We thusY : Y  E œ g−: :À
have . But, since  is closed we conclude that . Therefore,¯E © Y Y E © Y: : :

w w w

we reach to the contradiction that the point  belongs to both  and .: Y Y: :
w

Consequently, we ought to take . Hence, every open neighbour-Y  E Á g:

hood of each point in the closure of the set  must intersect . Now, con-E E
versely, we assume that the intersection of each open neighbourhood of a
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point with  is not empty, but  does not belong to , that is, for all¯: E : E− Q  
Y Y  E Á g : E :−: :À we should have ,  so that the point  has to¯Â

belong to the open set . Consequently, there must exist an open neigh-Ē
w

bourhood  of  such that . This open set  cannot intersect ¯Y : Y © E Y E! ! !
w

and this gives rise to a contradiction so that . Hence we are led to¯: E−
define the closure of a set  as the set  for all¯E E œ Ö À Y  E Á g: − Q :

Y − ×: À . 
It can easily be verified that  and if , then oneE  F œ E  F E © F

deduce at once that E © FÞ

The is defined by ¯  boundary of a subset  E © Q `E œ E  E œ
‰

E  ÐEÑ `E E¯ . The boundary  of a set  is always closed since it is described
‰

w

by the intersection of two closed sets.
Let  and  be two subsets of a topological space . If , then¯E F Q F © E

we say that  is a  in . On the other hand, if , then  is¯E F F œ E Edense set
called an  in . When , a set  which is denseeverywhere dense set F F œ Q E
in  naturally has to satisfy the relation . Therefore, a set dense in¯Q Q œ E
Q Q Q is always an everywhere dense set in . A topological space  is
called a  if it possesses a  dense subset separable space countable E œ
Ö: ß : ß á : ß á × E œ Q" # 8 so that one gets .¯

A topological space  is called a  if each pair of itsQ Hausdorff space
distinct points  have  neighbourhoods, that is, if : ß : : ß : − Q" # " #disjoint
such that , then there exist open sets  and  so that : Á : Y Y : − Y ß" # " # " "

: − Y Y  Y œ g# # " # and  [after German mathematician Felix Hausdorff
(1869-1942)].

Let  be a Hausdorff space. If then the singleton , i.e., theQ Ö:× ,  : − Q
set of just the single point  is  closed set.: +

To observe this, let use take any point . Since; − Ö:× œ Q  Ö:×w

; Á : Y ß Y − Y  Y œ g, there are disjoint open sets  such that .: ; : ;À
Therefore, the open set  does not contain the point  and we getY :;

Y Ö:× ; Ö:×§;
w w implying that the point  is an interior point of the set . Since

all points of the set  are interior points, it is open and therefore the setÖ:×w

Ö:× is closed. 
A subclass  of the power set  is a  for a topological spaceÁ cÐQÑ basis

ÐQß ÑÀ  (the term  will, in fact, be more appropriate) if everyopen basis
open set in the topology  is expressible as a union of some sets in .À Á
Elements of  are called . If we are given a class of subsetsÁ basic open sets
Á c Á§ −ÐQÑ Q œ ÖR× R satisfying naturally the condition  where ,
we cannot usually generate a topology on  by considering all unions ofQ
subsets in  because the intersection axiom of the topology does not hold inÁ
general. It is rather straightforward to see that the necessary and sufficient
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condition for a class of subsets  of a set  to constitute a basis for aÁ Q
topology are provided as follows:

A subclass  with the condition  is aÁ c Á§ ÐQÑ Q œ ÖR À R ×− 
basis for a topology on  if and only if  for any two sets andQ R ß R" # − Á 
any point , there exists a set  such that : − R  R R : − R ©" # $$ − Á
R  R" # . 

 For instance in a topology on  basic open sets are open intervals. It is‘
shown in real analysis that every open sets in  is expressible as a ‘ counta-
ble countable union of open intervals. A topological space  possessing a Q
basis is called a . Such a topological space enjoyssecond countable space
several pleasant and rather remarkable properties. For instance a  second
countable space is a separable space. This property is quite easy to show.
Let  be a countable basis for a topological space . We choose a pointÁ Q
: − R R − H œR  in each non-empty set  and then introduce the subset Á
Ö: À R × Q H−R Á  of .  is obviously a countable set. Since there is a mem-
ber of the basis, and consequently, a point of , in every neighbourhood ofH
each point of , the countable set  would be dense in .Q H \

 A   of a set  is a collection of some subsets ofCompactness. cover T \
\ \ œ ÖY © \ À − × whose union is , that is,  where  is an indexT - A A-

set is a cover of  if and only if . If a subclass  of  is also a\ \ œ  Y
- A

-
−

U T

cover of , then  is a  of . A cover  is an  of a\ \U Tsubcover open cover
topological space  if all members of  are open sets. Q T If every open cover
ÖY © Q À − ×- - A  of a topological space  has a finite subcoverQ , namely,

if one is able to write  where  is finite integer, then  Q œ  Y ß − 8
8

3œ"
3-3 - A Q

is a   . Compactness of a subspace of  is natu-compact topological space Q
rally defined with respect to its relative topology.

We can show that closed subspaces of compact topological spaces are 
also compact.

Let  be a topological space and  be a closed subspace. WeQ E Q§
consider an arbitrary open cover  of . We know that ÖZ × E Z œ Y  E- - -- A−

where  is a class of open sets in . Since  is open, the classÖY × Q E- - A−
w

ÖY ß E À − × Q Q-
w - A  is an open cover of the space . Since  is compact this

cover must have a finite subcover  so thatÖY ß E À − ß 3 œ "ß #ß á ß 8×-3
w

3- A
one can write . Since , we concludeE  Y  â  Y œ Q Q œ E  Ew w

- -" 8

that  and finally . This means thatE © Y  â  Y E œ Z  â  Z- - - -" 8 " 8

E is compact. 
In Hausdorff spaces the converse of the above statement is also valid.

Let  be a Hausdorff space and let  be a compact subspace. ThenQ E Q§
E is closed.

In order to prove this proposition, we have to show that  is an openEw
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set. We take a point . Since  is a Hausdorff space, for any point: − E Qw

+ − E Y Y :, we can find disjoint open sets  and  containing the points :ß+ +

and , respectively. The class  is an open cover of  in+ ÖY  E À + − E× E+

relative topology. But  is compact, hence there is a finite set E Ö+ ß á ß + ×" 8

§ E E œ Y  E © Y such that . It is now clear that the finite inter- 
3œ" 3œ"

8 8

+ +3 3

section  is an open neighbourhood of the point  and  Y œ Y : Y  E
3œ"

8

:ß+3

œ g Y E :§. We thus obtain . Hence the arbitrary point  is an interiorw

point of , i.e.,  is open and  is closed. We can now easily deduce theE E Ew w

following corollary:   if is a compact Hausdorff space, then a subspace isQ
compact if and only if it is closed. 

A subspace of a topological space  is called if itsQ relatively compact 
closure is compact. A topological space each point of which admits a com-
pact neighbourhood is called a . locally compact space If  is a locallyQ
compact Hausdorff space, we can replace the term "compact neighbour-
hood" by "relatively compact neighbourhood". Indeed, let the point : − Q
admit the compact neighbourhood  Since  is a Hausdorff space,  isRÞ Q R

closed. On the other hand, the relation  implies that  .  is aR R R R R§ §
‰ ‰ ‰

closed subset of a compact set. Therefore, it is compact. Hence.  has an:
open neighbourhood with a compact closure.

A useful generalisation of compactness is . Thisparacompactness
concept was introduced in 1944 by French mathematician Jean Alexander
Eugène Dieudonné (1906-1992). Let  be a class ofT - Aœ ÖY © Q À − ×-

subsets of a space . Another class of subsets  isQ œ ÖZ © Q À − ×U # >#

called a  of class  if and only if for any  there exists arefinement T UZ −#

Y Z © Y Q−- # -T T such that . An open cover  of a topological space  is
called  if every point  has a neighbourhood that inter-locally finite : − Q
sects only finitely many sets in the cover. In other words  isT œ ÖY © Q×-

locally finite if each point  has a neighbourhood  such that the: − Q Z Ð:Ñ
set  is finite. Ö − À Z Ð:Ñ  Y Á g×- A - Q  is a  if anyparacompact space
open cover of  admits an open refinement that is locally finiteQ . It is
obvious that every compact space is also paracompact.

It can be shown that a locally compact, second countable Hausdorff 
space  is paracompactQ .

Let  where  denotes the set of natural numbers be aÖZ À 3 − ×3  
countable basis for . We shall first form a countable basis with compactQ
closure. By our assumption, there exists a relatively compact open set Y:

containing a point . Since  is expressible as union of some basic: − Q Y:

open sets, there is a set  such that  and  whence we obtainZ : − Z Z © Y3 3 3 :: : :

Z © Y Y Z¯ ¯ ¯ ¯. But  is compact. Being a closed subset of a compact set, 3 : : 3: :
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is also compact. Therefore  is a countableÖZ À : − Q× © ÖZ À 3 − ×3 3:


relatively compact basis. Let us now suppose that  is such a basis.ÖY ×3

Next, we construct inductively a sequence of  open sets  withnested Ö[ ×3

the following properties:   is compact, , ¯ ¯Ð3Ñ [ Ð33Ñ [ § [ § [ Ð333Ñ3 3 3 3"

Q œ  [ [ œ g [ œ
_

3œ"
3 ! ". We further adopt the convention that . We take 

Y Þ [ œ Y" " " Hence,  is compact. We now introduce the open set¯ ¯

[ œ Y  Y  â  Y œ Y5 " # 4 3
3œ

4

5

5


"

Since  is a finite union of compact sets, it is also com-¯ ¯[ œ Y œ Y5 3 3
3œ 3œ

4 4

 
" "

5 5

pact. So it must be covered by finitely many elements of the open cover
ÖY × 43 5". We then take the index  as the least positive integer greater than
the index  so that one is able to write45

[ © Y¯ .5 3
3œ

4


"

5"

We then define the next member of the sequence as

[ œ Y Þ5" 3
3œ

4


"

5"

This completes the construction of the sequence . The property  isÖ[ × Ð333Ñ3

then satisfied automatically. Let  be an arbitrary open cover ofÖY À − ×- - A
QÞ O œ [  [ œ [  [ The set  is compact since it is a closed¯ ¯3 3 3" 3

w
3"

subset of the compact set . We obviously get . On the other¯ ¯[ O œ [3 " "

hand, properties of the sequence imply that  is contained in open setO3

^ œ [  [ œ [  [ Þ 3   $3 3" 3# 3"
w
3#¯ ¯  For , we can choose a finite

subcover of the open cover  of the compact set . ForÖY  ^ À − × O- 3 3- A
the compact set , we choose a finite subcover of the open¯O œ [  [# # "

cover . Similarly, the compact set  will be covered byÖY  [ À − × O- $ "- A
a finite subcover of . Because of the relation ,¯ÖY  [ À − × [ [§- # 3 3- A
we get . Since the sequence  is nested,¯[  [ [  [ œ O Ö[ ×§3 3" 3 3" 3 3

we obviously obtain

Q œ  [ œ  Ð[  [ Ñ §  O
_ _ _

3œ" 3œ" 3œ"
3 3 3" 3

implying that  where each  is covered by finitely many mem-Q œ  O O
_

3œ"
3 3

bers of the open cover . It is straightforward to see thatÖY  ^ À − ×- 3 - A
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this open cover is a locally finite, countable refinement which consists of a
countable union of finite unions. Hence,  is a paracompact space. Q 

Let us consider topological spaces  and . It is a simpleÐQß Ñ ÐRß ÑÀ Á
exercise to see that we can endow the Cartesian product  with aQ ‚ R
topology by choosing its open sets as unions of elementary open sets
Y ‚ Z Y − Z − Q ‚ R where , . Such a topology on  is called theÀ Á
product topology. This definition may be, of course, extended to Cartesian
product of any number of topological spaces. For instance, in  the ele-‘8

mentary open sets are obtained as Cartesian productsopen -rectangles 8
Ð+ ß , Ñ ‚ â ‚ Ð+ ß , Ñ" " 8 8  of open intervals in . It is easy to see that‘ ‘8 is a
second countable topological space because it has a countable basis that is

the collection of all Cartesian products  where  is an#
3œ"

8

3 3 3 3Ð+ ß , Ñ Ð+ ß , Ñ − ‘

open interval with  end points.rational
ÐQß Ñ ÐRß Ñ 0 À Q Ä RÀ Á and  are topological spaces. The function 

is   if for each neighbourhood  of thecontinuous at the point : − Q Z!

image point ) , there exists a neighbourhood  of the point 0Ð: − R Y :! !

such that 0ÐY Ñ © Z . Another completely equivalent definition may be
given as follows: the function  is continuous at a point  if the inverse0 :!

image  of every neighbourhood  of the point  is a0 ÐZ Ñ Z 0Ð: Ñ"
!

neighbourhood of the point :!. Indeed, if the set  is a neighbourhood of Y :!

satisfying the relation , we immediately get 0ÐY Ñ © Z Y © 0 Ð0ÐY ÑÑ ©"

0 ÐZ Ñ 0 ÐZ Ñ :" "
!. Conversely, suppose that the set  is a neighbourhood of .

If we write , we find that .Y œ 0 ÐZ Ñ 0ÐY Ñ œ 0Ð0 ÐZ ÑÑ © Z" "

A function  is  on  if it is continuous at every0 À Q Ä R Qcontinuous
point of its domain. We can easily show that  is a continuous function if0
and only if the inverse image of every open set in  is an open set in ,R Q
i.e., if  for all 0 ÐZ Ñ − Z −" À Á.

Let  be a continuous function. Consider an arbitrary open set 0 Z − Á
and define the set . Let  be a point of . We obviouslyY œ 0 ÐZ Ñ © Q : Y"

have . Since  is an open set,  is an interior point of . Thus,0Ð:Ñ − Z Z 0Ð:Ñ Z
there exists an open set  such that . Due to theZ 0Ð:Ñ − Z © Z0Ð:Ñ 0Ð:Ñ

continuity of , the set  is a neighbourhood of  Hence,0 0 ÐZ Ñ © Y :Þ"
0Ð:Ñ

there exists an open set  such that . All points of  are,Y − : − Y © Y Y: :À
therefore, interior points, that is,  is an open set. Conversely, let us nowY
assume that for all we have . Consider an arbitraryZ − 0 ÐZ Ñ −Á À, "

point  in  and assume that . The set is an: Q 0Ð:Ñ − Z − Y œÁ 0 ÐZ Ñ"  
open neighbourhood of the point . Consequently,  is continuous at all: 0
points of . Q 

It is not too difficult to demonstrate that the following definitions for
the continuity of functions are equivalent:
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Ð+ÑÞ 0

Ð,ÑÞ

Ð-ÑÞ

 The function  is continuous.
 The inverse image of every open set is open.
 The inverse image of every closed set is closed.
 For every subset  the relation  is satisfied.¯
 For every subset  the relation  i¯

Ð.ÑÞ F © R 0 ÐFÑ © 0 ÐFÑ

Ð/ÑÞ E © Q 0ÐEÑ © 0ÐEÑ

,

,

" "

s satisfied.

It is evident from the definition of the continuity that the composition
of continuous functions is also a continuous function.

One can easily demonstrate that images of compact sets are also com-
pact under continuous functions. We thus have to prove that if 0 À Q Ä R
is a continuous function from a compact space  into a topological spaceQ
R 0ÐQÑ © R Þ, then the set  is a compact subspace

 We assume that the class  is an arbitrary open cover of theÖZ ×- - A−

range  in its relative topology. We know that its members are in0ÐQÑ © R
the form  where  are open sets in . Obviously, theZ œ Y  0ÐQÑ Y R- - -

class  is a cover of  implying that Ö0 ÐZ Ñ× Q Q œ 0 ÐZ Ñ œ" "
−

−
- -- A

- A


  
- A - A - A

- - -
− − −

" " " "0 Y  0ÐQÑ œ 0 ÐY Ñ  0 0ÐQÑ œ 0 ÐY Ñ  Q œˆ ‰ ˆ ‰

- A

- - - A
−

" "
−0 ÐY Ñ 0 Ö0 ÐY Ñ×. The continuity of  requires that the class  is an

open cover of  and must have a finite subcover since  is compact. WeQ Q

thus obtain , and hence, we find thatQ œ 0 ÐY Ñß − ß 3 œ "ß á ß 8
3œ"

8
"

3-3 - A

0ÐQÑ œ 0 0 ÐY Ñ © Y ÖZ œ Y  0ÐQÑ× 
3œ" 3œ"

8 8
"ˆ ‰- - - -3 3 3 3. The class  is a

finite subcover of  in its relative topology since one can clearly write0ÐQÑ

0ÐQÑ œ Z 0ÐQÑ R
3œ"

8

-3
. Therefore,  is a compact subspace of . 

 We can then deduce the following corollary: if a bijective function
0 À Q Ä R  from a compact space  into a Hausdorff space  isQ R
continuous, then the inverse function is also continuous.0 À R Ä Q"  

In order to prove that the function is continuous, it would be suffi-0 " 
cient to show that the image  in  of an arbitrary closed set  in  is0ÐEÑ R E Q
also closed. Since  is closed, it must be a compact subspace of . Since E Q 0
is a continuous function  will be a compact subspace of . Hence0ÐEÑ R
0ÐEÑ is closed. 

Since topologies are governed by open sets, it is evident that in order
to establish a  between two topological spaces, ittopological equivalence
would be sufficient to be able to transform open sets in one space to open
sets in the other. This mapping must be bijective to ensure numerical equi-
valence. If  is a continuous bijective mapping, then the inverse2 À Q Ä R
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images of open sets in  would be open in . If the inverse mappingR Q
2 À ] Ä \ Q"  is continuous as well, then the images of open sets in  will
be open in . A bijective mapping  between topological spacesR 2 À Q Ä R
ÐQß Ñ ÐRß Ñ 2 2À Á and  is called a  if both  and  are con-homeomorphism "

tinuous. Such topological spaces  and  are said to be .Q R homeomorphic
We thus conclude that two spaces are topologically equivalent if we can
show that there exists a homeomorphism between them. If  is a homeo-2
morphism, then we get  for all  and, conversely,2ÐY Ñ Y− −Á À
2 ÐZ Ñ Z− −" À Á for all . It can, therefore, be said that a homeomor-
phism is an , continuous and bijective mapping. A property whichopen
remains invariant under a homeomorphism is called a ,topological property
namely, a topological property observed in a topological space remains un-
changed in all homeomorphic images of this space. For instance, we see at
once that Hausdorff property is a topological property. It is quite obvious
that the inverse of a homeomorphism or a composition of two homeomor-
phisms are also homeomorphisms. It is not difficult to observe that the set of
all homeomorphisms of a topological space onto itself equipped with a bina-
ry operation defined as the composition of two homeomorphisms constitute
a group with respect to this operation.

In the light of the above statements we can conclude at once that if the
function from a compact space  onto a Hausdorff space  is0 À Q Ä R  Q R
continuous and bijective, then the mapping  is a homeomorphism.0  In this
case,  must clearly be a compact space as well.R

Let  be an equivalence relation on a topological space  [V ÐQß ÑÀ see 
p  Þ 5]. We know that the set  consisting of all points that are related toÒ:Ó
: − Q V Ò:Ó through  is an equivalence class. Each point in the set  generates
the same equivalence class. Thus distinct equivalence classes are disjoint
sets. They form a partition of the set . The set  hasQ QÎV œ ÖÒ:Ó À : − Q×
already been called the . Therefore, to each point  in the set quotient set : Q
there corresponds  a unique equivalence class  in the set , that is,Ò:Ó QÎV
there is a function  such that .  is called a1 1 1À Q Ä QÎV Ð:Ñ œ Ò:Ó
canonical natural projection or . It is evident that the canonical mapping1
is surjective, but it is also clear that it is not injective. We now define a class
of subsets of  byQÎV

 .À c 1 ÀV
"œ ÖZ − ÐQÎVÑ À ÐZ Ñ − ×

It is easily seen that this class is a topology on . The relationsQÎV
g œ ÐgÑ − Q œ ÐQÎVÑ − g −1 À 1 À À" "

V and  mean that  and
QÎV − ÖZ À − × ©À - A ÀV V. Let us now consider a family of sets -

where  is an index set. Our definition implies that  soA 1 ÀY œ ÐZ Ñ −- -
"

that one can write
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1 1 À" "

− − −
Ð  Z Ñ œ  ÐZ Ñ œ  Y −
- A - A - A

- - - .

Thus one has . Let  be finite family. Z − ÖZ À " Ÿ 3 Ÿ 8× ©
- A

- -
−

V VÀ À
3

Because of the relation , we obtain1 1 À" "

3œ" 3œ" 3œ"

8 8 8

3 3 3Ð  Z Ñ œ  ÐZ Ñ œ  Y −

 Z − ÐQÎVß Ñ
3œ"

8

3 V V VÀ À À. Hence,  is a topology and the pair  is a topo-

logical space. We call  and  À ÀV Vthe quotient topology the ÐQÎVß Ñ
quotient space. It is quite clear that through the topology so defined the
canonical projection  is rendered continuous.1

Certain topological spaces possess quite a useful property called the
partition of unity.

Partition of Unity. Let  be a topological space and ,Q ÖZ À 3 − ×3 \
where  is an index set, be a locally finite open cover of . Hence, we\ Q
have  and every point  has an open neighbourhood Q œ Z : − Q Y

3−
3 :

\

whose intersection with only finitely many members of the cover is not
empty. If a family of continuous functions  satisfies the0 À Q Ä Ò!ß "Ó3

conditions

Ð3ÑÞ Ð0 Ñ Z 3§

Ð33ÑÞ 0 Ð:Ñ œ " : − Q

 for each index ,

  for each  

supp 3 3

3−

3"
\

then the family of ordered pair  is called a partition of unity. HereÖZ ß 0 ×3 3

the   is defined as the support of a function 0 À Q Ä ‘ closed set

supp Ð0Ñ œ Ö: − Q À 0Ð:Ñ Á !× œ 0 Ð  Ö!×Ñ © Q" ‘ .

Since the family  is locally finite there are only finitely many, say ÖZ × R3

number of non-empty open sets  containing a point . Consequently,Z  Y :3 :

0 Ð:Ñ Á ! R 0 :3 3 only for a finite  number of functions  so that at any point 

the sum  must contain only finitely many terms and one can write!
3−

3
\

0 Ð:Ñ

!
5œ"

RÐ:Ñ

" R0 Ð:Ñ œ "ß Ö3 ß á ß 3 × R  _§
35

 . Naturally the number  may be\

dependent on the position points of .Q
Let  be a topological space on which there exists a partition of unityQ

ÖZ ß 0 × ÖY À − ×3 3  as defined above and let the family  be an open cover- - A
of . Q If for each member  of locally finite open cover one can find anZ3

open set such that supp  then we say that the partition of unityY Y- -3 3  Ð0 Ñ §3

ÖZ ß 0 ×3 3  is subordinate to the open cover ÖY À − ×- - A .
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As we shall see later in dealing with integration on manifolds, the
existence of a partition of unity on a topological space will prove to be very
effective in reducing certain global properties to some local properties.

Connectedness. If a topological space  cannot be expressibleÐQß ÑÀ
as the union of two non-empty disjoint open sets, that is, if Q Á Y  Y à" #

Y ß Y − Y  Y œ g" # " #À, , we say that it is a . Conversely,connected space
if there exist such open sets  and  so that , then  is aY Y Q œ Y  Y Q" # " #

disconnected space. In a disconnected space we naturally have  andY œ Y"
w

#

Y œ Y Y Y#
w

" #1. Hence the sets  and  are both open and closed sets in topo-
logy  whence we conclude that a topological space is connected if it can-À
not be expressed as the union of two disjoint closed sets. It is straightfor-
ward to see that a space  being connected means that only the sets  andQ g
Q Q E are both open and closed. Indeed, if  possesses a proper subset  that
is both open and closed, then its complement  ought to be both open andEw

closed. Since  and ,  becomes expressible as theQ œ E  E E  E œ g Qw w

union of two disjoint open or closed sets. Hence,  is a disconnected space.Q
A  of a topological space  is a subspace connected subspace Q E Q§

that is connected with respect to its relative topology. According to this de-
finition, a subset  is connected if it cannot be contained in the union of twoE
open sets of  whose intersections with  are disjoint and non-empty.Q E

It is almost straightforward to show that the image of a connected
space under a continuous function between two topological spaces is also
connected.

Another concept of connectedness which is not entirely equivalent to
the one described above may be introduced by resorting to a more geomet-
rical approach. Let  be a topological space and  in whichQ œ Ò!ß "Ó §\ ‘
the topology is determined by open intervals. A , or an  on the spacepath arc
Q À Ä Q is defined as the continuous mapping . We say that  joins 9 \ 9
the points and  in  if  and . If  for: : Q Ð!Ñ œ : Ð"Ñ œ : Ð>Ñ − Q" # " #9 9 9
every , then   . If any two points in> − Ò!ß "Ó the path stays in the space 9 Q
the space  can be joined by a path staying in , then  is called a Q Q Q path-
connected arc-connected or an  space. If this property is valid for a subspace
of , then this subspace is path-connected. Such a space is schematicallyQ
described in Fig. 2.2.1.

If  is path-connected,  is a topological space and  is aQ R 0 À Q Ä R
continuous mapping, then we immediately deduce from the fact that com-
position of continuous mappings is also continuous, the subspace  is0ÐQÑ
path-connected as well. If a topological space  is path-connected, then itQ
is also connected. However, the converse statement is generally not true.

When , we say that the path is . If every9 9Ð!Ñ œ Ð"Ñ œ :" closed
closed path in the space  can be contracted continuously to a point insideQ
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the path, the space  is called . Equivalently, we say thatQ simply connected
a connected topological space  is simply connected if a path connectingQ
any two points of  can be continuously deformed into every other curveQ
connecting these two points.

A

M

Fig. 2.2.1. A path-connected subspace.

 A topology on a set  can be defined sometimes by Metric Spaces. Q
means of a real-valued function. Let  be a non-empty set. Let us supposeQ
that we can define a real-valued, non-negative function . À Q ‚ Q Ä ‘

on this set. We further impose the following conditions on the function :.

Ð3Ñ : ß : − .Ð: ß : Ñ   !

Ð33Ñ .Ð: ß : Ñ œ ! : œ :

Ð333Ñ : ß : − .Ð: ß : Ñ œ .Ð: ß : Ñ

. For each M one has .

.  if and only if .

. For each M one has 

" "

" "

" " "

# #

# #

# # # Þ

Ð3@Ñ : ß : ß : − .Ð: ß : Ñ Ÿ .Ð: ß : Ñ  .Ð: ß : Ñ. For each M one has ." " "# $ # $ $ #

The inequality  above is known as  . We call suchÐ3@Ñ the triangle inequality
a function  a  on the set  and we interpret its value as the.Ð Ñ Q: ß :" # metric
distance between two points  and  of the set . In fact, we can easily: : Q" #

verify that the metric concept coincides entirely with the familiar distance
concept in the Euclidean space. The pair  is called a .ÐQß .Ñ metric space
The  of radius  centred at the point  is defined as the set     open ball < : − Q

F Ð:Ñ œ Ö: − Q À .Ð:ß : Ñ  <× Q§< " " . (2.2.1)

We can generate a topology on a metric space called  metric topology by
noting that open balls constitute a basis for a topology. Consider a class of
subsets  of the set . It is evident that µ. <œ ÖF Ð:Ñ À : − Qß <   !× Q Q œ

 ÖF Ð:Ñ À : − Qß <  !× g − F Ð:Ñ œ g< . !.  since . In order to show thatµ
the class  is in fact a basis for a topology on , all we have to do is toµ. Q
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demonstrate that any point in the intersection of two open balls belongs to
an open ball contained in that intersection. Let us consider two open balls
centred at the points  and  with radii  and , respectively. If their in-: : < <" # " #

tersection is empty, the criterion is automatically satisfied. Hence, we as-
sume that the intersection of these open balls is not empty and take a point :
in their intersection  into consideration. Hence we canF Ð: Ñ  F Ð: Ñ< " < #" #

write  and . Let us now choose.Ð: ß :Ñ  < .Ð: ß :Ñ  <" " # #

< œ Ö<  .Ð: ß :Ñß <  .Ð: ß :Ñ×  !min " " # # .

The open ball  is contained both in the sets  and . ForF Ð:Ñ F Ð: Ñ F Ð: Ñ< < " < #" #

an arbitrary point  the triangle inequality yields ; − F Ð:Ñ .Ð: ß ;Ñ Ÿ< "

.Ð: ß :Ñ  .Ð:ß ;Ñ  <  <  < œ < ; − F Ð: Ñ" " " < " implying that . In the same
"

fashion, we obtain this time  .Ð: ß ;Ñ Ÿ .Ð: ß :Ñ  .Ð:ß ;Ñ  <  <  < œ# # #

< ; − F Ð: Ñ F Ð:Ñ F Ð: Ñ  F Ð: Ñ§# < # < < " < # and . We thus find that . Con-# " #

sequently, the class  constitutes a basis for a topology on . Each openµ. Q
set of this topology is given by unions of some open balls, that is, if  is anY
open set, then it is expressible as  for some . The setY œ F Ð:Ñ <Ð:Ñ

:
<Ð:Ñ

−Y

F Ò:Ó œ Ö: − Q À .Ð:ß : Ñ Ÿ <× Q§< " " (2.2.2)

is called a  with centre  and radius . It is easy to verifyclosed ball : − Q <

that  is a closed set. It can easily be observed that . LetF Ò:Ó F Ð:Ñ © F Ò:Ó< < <

us consider all open balls centred at a point whose radii are rational
numbers. We immediately observe that these open balls constitute a count-
able fundamental system of neighbourhoods of that point. Therefore, metric
spaces are first countable spaces.

Metric spaces has quite a distinctive property. They are all Hausdorff
spaces. Indeed, if we consider two distinct points of a metric space , weQ
must have  whenever . By choosing , one.Ð:ß ;Ñ œ <  ! : Á ; < Ÿ < Î#" "

easily demonstrates that it is always possible to find two open balls with ra-
dius  such that .<  ! F Ð:Ñ  F Ð;Ñ œ g< <

Let us consider a sequence of points . This sequence con-Ö: × Q§8

verges to a point , if there exists a natural number  for each: − Q RÐ Ñ%
% % % ! .Ð: ß :Ñ  8   RÐ Ñ Ö: × such that  whenever . The sequence  is8 8

called a  [French mathematician Augustin-Louis CauchyCauchy sequence
(1789-1857)] if to each  there corresponds a natural number % %  ! RÐ Ñ −
such that  whenever . If every Cauchy sequence in a.Ð: ß : Ñ  7ß 8   R7 8 %
metric space is convergent, then we say that this metric space is . Itcomplete
can be shown that a subspace of a complete metric space is complete if and
only if it is closed .

It can also be proven that metric spaces are paracompact spaces
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though we have to omit its difficult proof because it is beyond our scope.
Let  be a subset of a metric space.  is defined byE EThe diameter of 

the non-negative number  If , then  is aHÐEÑ œ HÐEÑ Esup
: ß: −E" #

.Ð: ß : Ñ  _" # . 

bounded set. Obviously open and closed balls of radius  are bounded and<
their diameters are both .#<

The standard metric on the set of real numbers is ..ÐBß CÑ œ lB  Cl
Let us now consider the set . If , then   is an‘ ‘8 8 " # 8B − B œ ÐB ß B ß á B Ñ
ordered -tuple of real numbers where   . Next, we8 B − ß 3 œ "ß #ß âß 83 ‘
define the function

.ÐBß CÑ œ lB  C lŠ ‹"
3œ"

8
3 3 #

"Î#

(2.2.3)

for a pair of points . It is straightforward to observe that this func-Bß C − ‘8

tion is actually a metric on . We name the set  equipped with this ‘ ‘8 8 stan-
dard metric as the -dimensional  . Since  formed by8 IEuclidean space 8

8‘
the Cartesian product of the real line  times, the real numbers  de-8 ÖB ×3

termining a point  are called of that point. TheB − I8 Cartesian coordinates 
collection of all such numbers constitutes the  of . coordinate cover TheI8

length the norm or   of an element  is given byB − I8

l l Š ‹"B œ lB l
3œ"

8
3 #

"Î#

(2.2.4)

so that we can write .ÐBß CÑ œ B  C Þl l
A  on a complex vector space  defined over a field of scalars norm Z …

is a real-valued, non-negative function  satisfying the fol-l l† À Z Ä ‘

lowing conditions:

Ð3Ñ   ! @ − Z œ ! @ œ

Ð33Ñ œ l l @ − Z −

Ð333Ñ ?ß @ − Z

.  for all  and  if and only if .

.  for all  and .

.  for all .  

l l l ll l l ll l l l l l
@ @

@ @

?  @ Ÿ ?  @

!

! ! …

We say that a vector space equipped with a norm, i.e., the ordered pair
ÐZ ß † Ñl l  is a  or a  or simply anormed linear space normed vector space
normed space. By taking  and , we obtain  and! !œ ! œ  " œ !l l!l l l l @ œ @ , respectively.  is known as the . It isÐ333Ñ triangle inequality
then rather easy to establish directly by induction that the following inequal-
ity holds for a number of vectors :@ ß @ ß á ß @ − Z" # 8

l l l l l l l l@  @  â  @ Ÿ @  @  â  @" # 8 " # 8 .
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For any two vectors , we can write  and?ß @ − Z ?  @   ?  @l l l l l ll l l l l l l l?  @ œ @  ?   @  ? . We thus find

l l l l l l¸ ¸?  @   ?  @

for all . These properties of the norm amply justify our interpreting?ß @ − Z
the norm of a vector as its . By means of the norm, we can introduce alength
function  as follows:. À Z ‚ Z Ä ‘

.Ð?ß @Ñ œ ?  @l l.

Evidently, this function satisfies the conditions ;  if.Ð?ß @Ñ   ! .Ð?ß @Ñ œ !
and only if  and . Furthermore, one can write? œ @ .Ð?ß @Ñ œ .Ð@ß ?Ñ

.Ð?ß @Ñ œ ?  A  A  @ Ÿ ?  A  A  @ œ .Ð?ß AÑ  .ÐAß @Ñl l l l l l
so that  holds the triangle inequality. Hence, we realise that the function . .
so defined is actually a metric on the vector space . We call this metricZ
generated by the norm, the  on the normed space . But, innatural metric Z
addition to its commonly known properties, this metric satisfies the follow-
ing equalities for all  and :?ß @ß A − Z −! …

.Ð ?ß @Ñ œ l l.Ð?ß @Ñß .Ð?  Aß @  AÑ œ .Ð?ß @Ñ! ! !   .

The last relation indicates the fact that the distance between two vectors
does not change by their parallel translations.

It is now clear that a normed space is a Hausdorff space equipped with
a metric topology induced by its natural metric. In this topology,  andopen
closed balls of radius  centred at a vector<   are of course defined, respec-@
tively, by

F Ð@Ñ œ Ö? − Z À ?  @  <×ß F Ò@Ó œ Ö? − Z À ?  @ Ÿ <×< <l l l l .

The basis for this topology is the class for all  and .ÖF Ð@Ñ À @ − Z <  !×<

We obviously have , . One immediately verifies thatF Ð@Ñ œ g F Ò@Ó œ Ö@×! !

an open ball  is obtained by just simply translating all vectors in theF Ð@Ñ<

open ball  of radius  centred at the zero vector  by the vector . IfF Ð Ñ < @< ! !
Q Z @  Q œ Ö@  ? À ? − Q× is a subset of , the set for all  is said to be
the  of the set  by the vector . We thus have translation Q @ F Ð@Ñ œ<

@  F Ð Ñ< ! . The same property will also be valid for closed balls. Unlike
general metric spaces, it can easily be demonstrated that one always obtains
F Ð@Ñ œ F Ò@Ó< <  in all normed spaces.

Let us consider a sequence of vectors . This sequence con-Ö@ × Z§8

verges to a vector  if there exists a natural number  for each@ − Z RÐ Ñ%
% % % ! @  @  8   RÐ Ñ Ö@ × such that  whenever . The sequence  is al l8 8
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Cauchy sequence if there exists a natural number  for each  suchRÐ Ñ  !% %
that  for all . l l@  @  8ß 7   RÐ Ñ8 7 % % If every Cauchy sequence relative
to its natural metric of a normed space is convergent,     then is called aZ Z
complete normed space. A complete normed space is named as a Banach
space [after Polish mathematician Stefan Banach (1892-1945)].

An  on a complex vector space  is a scalar-valuedinner product Z
function  satisfying the following rules:Ð † ß † Ñ À Z ‚ Z Ä …

Ð3Ñ Ð?ß @Ñ œ Ð@ß ?Ñ ?ß @ − Z

Ð33Ñ Ð ?ß @Ñ œ Ð?ß @Ñ ?ß @ − Z −

Ð333Ñ Ð?  @ß AÑ œ Ð?ß AÑ  Ð@ß AÑ

 for all vectors .
 for all vectors  and scalars .

 for all ve
! ! ! …

ctors .
 for all non-zero vectors 

?ß @ß A − Z

Ð3@Ñ Ð?ß ?Ñ  ! ? − Z Þ

An overbar here denotes the complex conjugate. We can easily extract from
this definition some novel results:

Ð+Ñ Ð @Ñ œ Ð! † ?ß @Ñ œ ! † Ð?ß @Ñ œ ! Ð?ß Ñ œ !.  and similarly  from! !ß

which we naturally deduce that .Ð Ñ œ !! !ß

Ð,ÑÞ Ð?ß ?Ñ œ Ð?ß ?Ñ Ð3Ñ Ð?ß ?Ñ −Since  in compliance with , one finds ‘
and the property  becomes meaningful. If , we then obtainÐ3@Ñ Ð?ß ?Ñ œ !
that .? œ !

Ð-ÑÞ The inner product is linear in its first argument because of the pro-
perties  and . On the other hand, we can easily observe thatÐ33Ñ Ð333Ñ

Ð?ß @  AÑ œ Ð@  Aß ?Ñ œ Ð@ß ?Ñ  ÐAß ?Ñ œ Ð?ß @Ñ  Ð?ß AÑß

Ð?ß @Ñ œ Ð @ß ?Ñ œ Ð@ß ?Ñ œ Ð@ß ?Ñ œ Ð?ß @Ñ! ! ! ! !¯ ¯ .

Hence the inner product is additive in its second argument but is not homo-
geneous because of the fact that the conjugate of the scalar multiplier is in-
volved. This situation is known as the . Thus, the innerconjugate linearity
product on a complex vector space is a  ( ) functionsesquilinear linear1 "

# - 
with respect to its two arguments.

Ð.Ñ Ð?ß AÑ œ Ð@ß AÑ ÐAß ?Ñ œ ÐAß @Ñ A − Z. If  or  for all , then we find
that . We can indeed prove this by simply taking  in? œ @ A œ ?  @ − Z
the relation .Ð?  @ß AÑ œ !

For a real-valued inner product on a real vector space, the property Ð3Ñ
is reduced to the  condition . A real inner product issymmetry Ð?ß @Ñ œ Ð@ß ?Ñ
linear in its second argument too since  for . Hence,Ð?ß @Ñ œ Ð?ß @Ñ −! ! ! ‘
an inner product on a real vector space is a  function.bilinear

A linear vector space endowed with an inner product is called an inner
product space.

Inner product must hold an important relation which is called Cauchy-
Bunyakowski-Schwarz's inequality Schwarz inequality or briefly the 



2.2  Differentiable Manifolds 69

[German mathematician Karl Hermann Amandus Schwarz (1843-1921) and
Russian mathematician Viktor Yakovlevich Bunyakowski (1804-1889) who
had actually discovered this inequality that had appeared in one of his books
published in 1859]. Let  be an inner product space. The inequalityL
lÐ?ß @Ñl Ÿ Ð?ß ?ÑÐ@ß @Ñ ?ß @ − LÈ  holds for all non-zero vectors . The equal-
ity is valid if and only if the vectors  and  are linearly dependent.? @

If one of the vectors in that inequality is zero, the relation holds trivial-
ly as . For any two vectors ,  with  and any scalar num-! œ ! ? @ − L @ Á !
ber , we can write! …−

! Ÿ Ð?  @ß ?  @Ñ œ Ð?ß ?Ñ  Ð?ß @Ñ  Ð?ß @Ñ  l l Ð@ß @Ñ! ! ! ! !¯ .#

The right-hand side vanishes if and only if , namely, if two vectors? œ @!
are linearly dependent. Let us next choose  to cast the! œ Ð?ß @ÑÎÐ@ß @Ñ
above inequality into the form

Ð?ß ?Ñ    œ Ð?ß ?Ñ    !
lÐ?ß @Ñl lÐ?ß @Ñl lÐ?ß @Ñl lÐ?ß @Ñl

Ð@ß @Ñ Ð@ß @Ñ Ð@ß @Ñ Ð@ß @Ñ

# # # #

or

lÐ?ß @Ñl Ÿ Ð?ß ?ÑÐ@ß @Ñ# .

The square root of the above inequality yields the Schwarz inequality. 
The Schwarz inequality helps us to show that a norm is derivable from

the inner product. . We immediately see fromLet us define l l È? œ Ð?ß ?Ñ
the definition that  for all  and . If ,l l l l?   ?! ? − Z œ ! Í ? œ −! ! …

then we readily observe that .l l l lÈ È! ! ! ! !? œ Ð ?ß ?Ñ œ l l Ð?ß ?Ñ œ l l ?#

Moreover, we easily obtain that l l?  @ œ Ð?  @ß ?  @Ñ œ Ð?ß ?Ñ #

Ð?ß @Ñ  ?  @Ð?ß @Ñ  Ð@ß @Ñ œ  #dÐ?ß @Ñ dÐ?ß @Ñ Ÿ ldÐ?ß @Ñl Ÿl l l l# # . 
lÐ?ß @Ñl dÐ?ß @Ñ Ÿ yields through Schwarz's inequality . We thusl ll l? @

obtain . Hence thel l l l l l l ll l l l l l?  @ Ÿ ?  @  # ? @ œ Ð ?  @ Ñ# # # #

triangle inequality

l l l l l l?  @ Ÿ ?  @

follows at once. 
By this definition of the norm, Schwarz's inequality is expressed as

lÐ?ß @Ñl Ÿ ? @l ll l.

The norm generated by an inner product imposes a restriction that any
two vectors in an inner product space must obey the . Letparallelogram law
?ß @ − L . We have
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l l l l l l l l l l l l?  @ œ ?  @ ?  @ œ ?  @# # # # # # #dÐ?ß @Ñß  #dÐ?ß @Ñ.

By adding those two expressions, we obtain

l l l l l l l l?  @  ?  @ œ #Ð ?  @ Ñ# # # # .

This relation reflects the fact that a well-known  relation of the classical
geometry, namely, the sum of the squares of two diagonals of a parallelo-
gram being equal to the sum of the squares of all of its four sides is still
valid in an arbitrary inner product space.

The natural norm natural  induced by an inner product generates now a 
metric on the vector space  through the functionZ

.Ð?ß @Ñ œ l l È?  @ œ Ð?  @ß ?  @Ñ.

An inner product space which is complete relative to its natural metric is
called a [after German mathematician David Hilbert (1862-Hilbert space 
1943)]. It goes without saying that a Hilbert space is also a Banach space.

A quite a simple generalisation of the classical Heine-Borel theorem
[German mathematician Heinrich Eduard Heine (1821-1881) and French
mathematician Félix Édouard Justin Émile Borel (1871-1956)] of real anal-
ysis leads to the result that every subset of  that is closed and bounded isI8

compact. Let us consider an open set of  and a point inside this set.I8

Hence, there exists an open ball centred at this point and contained in the
open set. On the other hand, there is a closed ball with the same centre in-
side this open ball that is closed and bounded. Therefore,  is a I8 locally
compact metric space. If there is no ambiguity, we prefer to employ hence-
forth the notation  instead of  to denote the Euclidean space that illus-‘8

8I
trates the formation of this space more clearly.  is also a complete metric‘8

space. It can be shown that the class of open balls generated by the metric
(2.2.3) constitutes a  for the metric topology on . Thus thecountable basis ‘8

second countable metric space  is a paracompact topological space ‘8

according to the statement in . 57.:
Let  and  be two metric spaces and consider a functionÐQß .Ñ ÐRß Ñ3

0 À Q Ä R . The topological concept of continuity takes now a purely met-
rical form. We say that the function  is  at a point  if for0 : − Qcontinuous
each number  there corresponds a number  such that% $ % ! Ð à :Ñ  !
3 % $ˆ ‰0Ð:Ñß 0Ð: Ñ  : − Q .Ð:ß : Ñ  0" " " for all points  satisfying . If  is a
continuous function and if we can find for each  a number  that is% $ %Ð Ñ
independent of points , then  is called a : 0 uniformly continuous function.

Manifold. A  is essentially a topological space.differentiable manifold
But it is also equipped with a particular structure that makes it possible to
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support differentiable mappings, vectors, tensors and exterior differential
forms associated with those topological spaces.

Let us first consider a more general definition. An -dimensional 8 topo-
logical manifold  is a Hausdorff space every point of which belongs to anQ
open set that is homeomorphic to an open set of the Euclidean space ‘8.
These open sets constitute an open cover of .Q  Thus a topological manifold
is  to the Euclidean space .locally equivalent ‘8

It proves to be advantageous for a topological manifold to be a para-
compact space if we wish to develop a workable theory of integration on
manifolds. That is the reason why many authors prefer to assume that the
principal ingredient of a topological manifold is a second countable, hence a
separable, locally compact Hausdorff space. As we have mentioned earlier,
the concept of manifold stems from the desire to make an abstraction of the
classical notion of smooth surfaces in the Euclidean space, to endow a
topological space with a local structure supporting differentiability and to be
able patch together these local structure to cover the entire manifold. The
above definition means that when we consider a point , there will be: − Q
a connected open set  containing the point  and a homeomorphismY − :À
: ‘ : : :À Y Ä Z © 8 ". Thus, the function  is bijective, and  and  are con-
tinuous. Since the metric space  is a Hausdorff space, it is imperative that‘8

Q  has also the Hausdorff property in order this homeomorphism to exist.
Obviously the set  is open, hence it is expressible as aZ œ ÐY Ñ ©: ‘8

union of some open balls in the Euclidean space . A  on  is the‘8 chart Q
pair .  is the  of this chart. The open set  is the domainÐY ß Ñ 8 Y: dimension
of the chart. Let us now write  and we: ‘Ð:Ñ œ œ ÐB ß B ß á B Ñ −x " # 8 8

choose clearly continuous functions   by the1 À Ä ß 3 œ "ß #ß á ß 83 8‘ ‘
rule . We say that the real-valued continuous functions 1 Ð Ñ œ B œ3 3 3x :
1 ‰ À Y Ä 3 œ "ß á ß 83 : ‘ ,   are the  of the chartcoordinate functions
ÐY ß Ñ Ð:Ñ œ B: : providing the mapping  whereas the real numbers3 3

ÐB ß B ß á B Ñ : − Q" # 8  will be called the  of the point  in thecoordinates
chart  (Fig. 2.2.2). Thus a chart gives rise to a ÐY ß Ñ: local system of coor-
dinates on the manifold. If every point of a topological manifold  has anQ
8-dimensional chart, we say that  is an -dimensional manifold. WhenQ 8
we want to emphasise its dimension we denote this manifold by . TheQ 8

union of local coordinates systems in all charts covering  constitute theQ
coordinate cover of the manifold . If there is a point  such thatQ : − Y!

:Ð: Ñ œ :! !!, then we say that the local coordinate system is  at .centred
Let us consider a function  The function 0 À Q Ä Þ 0 œ 1 ‰ 0 À‘8 3 3

Q Ä 3 0‘ is called the th  of .component function
The inverse mapping  is called a  of the:" À Z Ä Y parametrisation

open set . The coordinates  are then called  of .Y B ß B ß á B Y" # 8 parameters
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The coordinate lines on  are the images of Cartesian coordinate linesQ
on  under the mapping  (Fig. 2.2.2).‘ : :8 " À ÐY Ñ œ Z Ä Y

It is now clear that the manifold  behaves just like an openQ locally 
set of the Euclidean space  in the  of the point . Since the‘8 vicinity : − Q
Euclidean space is locally compact and homeomorphism preserves com-
pactness, a finite-dimensional topological manifold must also be locally
compact. In fact, let us consider a point  contained in a chart .: − Q ÐY ß Ñ:

The point  will be in an open neighbourhood in . Hence, it belongs: ‘Ð:Ñ 8

to an open ball inside . Since the closure of this open ball is contained:ÐY Ñ

in a closed ball that is both closed and bounded, then  has a compact:Ð:Ñ

neighbourhood . Because the function  is continuous, then the point O ::"

also must have the compact neighbourhood  in the open set .:"ÐOÑ Y

 

Q

:

I8

:
: (Y

Y
)

Z
X

Fig. 2.2.2. A chart on the manifold .Q

A -  on a topological manifold  is a family of charts G5 atlas T TQ œ
ÖÐY ß Ñ À − ×! !: ! \ \ where  is an index set. Moreover this family must
satisfy the following conditions:  all charts have the same dimension andÐ3Ñ
the union of their domains constitute an open cover of the manifold, that is,
Q œ  Y Ð33Ñ ÐY ß Ñ ÐY ß Ñ

! \
! ! ! " "

−
,  consider two different charts  and  of the: :

atlas. Let us assume that . Images of the open intersectionY  Y Á g! "

Y  Y! " ! " under mappings  and  will usually be different open set in : : ‘8
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(Fig. 2.2.3). On the overlapping domain  of the homeomorphismsY  Y! "

: :! " and , we can define the following :transition functions 

: : : ‘ ‘

: : : ‘ ‘

!" " !

!" "!

œ ‰ À Ä ß

œ ‰ À Ä

" 8 8

" " 8 8.

(2.2.5)

:!"  is also a homeomorphism because it is the composition of two homeo-
morphisms. A better description of these homeomorphisms may be illus-
trated more clearly as

: : :

: : :

!" ! ! " " ! "

!" " ! " ! ! "

À ÐY  Y Ñ Ä ÐY  Y Ñ

À ÐY  Y Ñ Ä ÐY  Y Ñ

,

."

!

-1

:

!" = " !
-1

!" =: :
"
-1

I8

Y

Y

Q

!

"

:
!

: (  )Y
! !

: (  )Y
" "

‰

:
"

X

Fig. 2.2.3. Overlapping charts on a manifold Q .

Let us denote the coordinates in charts  and  by { }ÐY ß Ñ ÐY ß Ñ B! ! " ": : 3

and { }, respectively. Then, the transition mapping  leads to a relationC3 :!"
between images and  of the same point  with respect to two over-x  y : − Q
lapping charts in the form  that can be expressed as y xœ Ð Ñ −: ‘!"

8
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C œ ÐB Ñß 3ß 4 œ "ß #ß á 8à − ÐY  Y Ñ3 3 49 :!" ! ! "x (2.2.6)

Naturally, the mapping  yields the inverse relation::"
!"

B œ ÐC Ñß 3ß 4 œ "ß #ß á 8à − ÐY  Y Ñ3 3 4< :!" " ! "y . (2.2.7)

The foregoing relations corresponds clearly to a coordinate transformation
on the open set . We know that partial derivatives are defined onY  Y! "

‘ : :8. We say that the charts  and  are -  if theÐY ß Ñ ÐY ß Ñ! ! " " G5 compatible
functions  are continuously differentiable of order  or they are of class9!"

3 5

G5 . This of course means that they have continuous partial derivatives with
respect to all variables  up to and including order . Two charts are -B 54 G5

related if either they are -compatible or .  G Y  Y œ g5
! " A -atlas is anG5

atlas in which all charts are -related.G5

Let  and  be two -atlases. We say that they are -T T" #
5G G5 compatible

or  atlases if and only if their union  is a -atlas, in oth-equivalent T T" #
5 G

er words, if every chart in  is -related to every chart in . It is easilyT T" #
5G

seen that to be -related gives rise to an equivalence relation on a familyG5

of atlases. In fact, it is obvious that this relation is reflexive and symmetric.
In order to verify transitivity, let us consider three -atlases , , G5

" # $T T T
and assume that ,  are -compatible and ,  are -compatible.T T T T" # # $

5 5G G
ÐY ß Ñ − ß ÐY ß Ñ − ß ÐY ß Ñ −" " " # # # $ $ $: T : T : T  are three arbitrary charts. If
Y  Y œ g ÐY ß Ñ ÐY ß Ñ G" $ " " $ $

5, then the charts  and  become trivially -: :
compatible. Thus, let us assume that the intersection  is not empty.Y  Y" $

Then the functions  and: : : :
# " #

"
" # " $ # " $‰ À ÐY  Y  Y Ñ Ä ÐY  Y  Y Ñ

: : : :
$ # $

" 5
# # $ " # $ "‰ À ÐY  Y  Y Ñ Ä ÐY  Y  Y Ñ G are of class . On the

other hand, we can write  so that this: : : : : :
$ $ #

" " "
" # "‰ œ Ð ‰ Ñ ‰ Ð ‰ Ñ

function is of class . Hence the charts  and  are also -G ÐY ß Ñ ÐY ß Ñ G5 5
" " $ $: :

compatible. We thus conclude that all -atlases are partitioned into equiv-G5

alence classes. The union of all atlases in an equivalence class will naturally
be in this class. This means that every equivalence class contains exactly
one .maximal atlas

A -  on a topological manifold  is an equi-G Q5 differentiable structure
valence class of -atlases a -G G5 5. We can also say that differentiable struc-
ture on a topological manifold  is the choice of a maximal -atlas AQ G5 . 
G5- is a topological manifold equipped with a -differentiable manifold G5

differentiable structure.
If real-valued functions (2.2.6) and (2.2.7) with real variables have

continuous derivatives of all orders, we obtain a -atlas and -differen-G G_ _

tiable manifold. A -differentiable manifold will also be called a G_ smooth
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manifold. If the coordinate transformations are real analytical functions,
that is, if they are expressible as convergent power series, then we get an
analytical manifold or a -class manifold. It is evident that every -G G= =

function is also a -function. But we know that the converse statement isG_

generally not true. We can thus write symbolically . A" Ÿ 5 Ÿ 7 Ÿ _  =
G Q7-differentiable structure  prescribed on a manifold  determines aT
unique -differentiable structure on  for . In order to see this itG Q 5 Ÿ 75

suffices to enlarge the set of admissible charts by adding all charts which
are -related with charts in  to the structure . Conversely, we can askG5 T T
this question: when we are given a -differentiable structure, is it possibleG5

to obtain a -atlas for  by discarding some charts? The answer toG 7   57

this question is provided by the following classical theorem whose proof we
avoid to give because it is quite long and rather difficult.

Theorem 2.2.1 (Whitney's theorem). -Every structure with G5 5   "
on a second countable topological manifold is equivalent to a G G5- -=

structure. 
This theorem means that if we locally make a coordinate transforma-

tion  of class  on an -dimensional second countable topo-C œ 0 ÐB Ñ G 83 3 4 5

logical manifold, there exist such functions  of -class that theD œ 1 ÐC Ñ G3 3 4 5

composition  is of -class, that is, they are analyticalD œ 1 Ð0 ÐB ÑÑ G3 3 4 7 =

functions.
This theorem had been proven by Whitney . That a -manifold can-2 G!

not be equivalent to a -manifold can be shown through a more difficultG1

theorem. According to the Whitney theorem we can choose all second
countable or separable differentiable manifolds as analytical manifolds
without loss of generality. However, it is not very comfortable to work with
G G=-functions as it is with -functions. Therefore, it will prove to be more_

advantageous to consider smooth manifolds. Henceforth, unless stated oth-
erwise we take only  into consideration.smooth manifolds

It is possible to extend above definitions to infinite dimensional mani-
folds. However, for this purpose we have the replace the Euclidean space by
a Banach space, that is, by a complete normed space. In this case a chart
ÐY ß Ñ Y! ! ! !: : implies that the homeomorphism  maps an open set  of the
manifold  to an open subset  of a Banach space  such that Q Z Ð:Ñ œi :!
@ − Z : − QÞ where  The differentiable structure is now defined by Fréchet
differentiability of the transition function  on the: : :!" " !œ ‰ À Z Ä Z"

overlapping domain  of the homeomorphisms  and . A briefY  Y! " ! ": :
definition of the Fréchet derivative is given below.

Let  and  be Banach spaces and let  be a possibly non-h i h iX À Ä

2Whitney, H., Differentiable manifolds, Ann. of Math. 37, 645-680, 1936.
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linear operator. Suppose that  is an open set. If a H W hœ ÐX Ñ © continuous
linear operator X Ð?Ñ − Ä ? −w h i H exists at a vector  such that

liml l?? Ä!

wl ll lX Ð?  ?Ñ  X Ð?Ñ  X Ð?Ñ ?

?
œ !

? ?

?

for all vectors , then  is called the  ? h? − X Ð?Ñw Fréchet derivative of the
operator at a vector   . depend  possibly nonlinearly on the vectorX ? X Ð?Ñ =w

?. This derivative was introduced by French mathematician Maurice René
Fréchet (1878-1973) in 1925. The domain of the operator  contains natu-X w

rally all vectors in  at which the Fréchet derivative of  can be defined.h X
The above definition amounts to say clearly that for each , there exists%  !
a number  such that$ %Ð Ñ  !

l ll lX Ð?  ?Ñ  X Ð?Ñ  X Ð?Ñ ?

?


? ?

?
%

w

or

l l l lX Ð?  ?Ñ  X Ð?Ñ  X Ð?Ñ ?  ?? ? % ?w

for all  satisfying the condition . It is then straightforward? ? $? − Y ? l l
to see that the following relation is valid:

X Ð?  AÑ  X Ð?Ñ œ X Ð?ÑÐAÑ  Ð?à AÑß œ !
Ð?à AÑ

A
w

A Ä!
=

=
    lim .l l

l ll l
We thus conclude that the existence of the Fréchet derivative at a vector ?
brings about the possibility of evaluating the vector  ap-X Ð?  AÑ  X Ð?Ñ
proximately through a continuous linear operator for all vectors  with suf-A
ficiently small norms.

It is straightforward to see that the Fréchet derivative may also be ex-
pressible in the form

X Ð?ÑÐA Ñ œ
X Ð?  >A Ñ  X Ð?Ñ

>
w

"
>Ä!

"lim .

By following exactly the same procedure we have employed in evaluating
the Fréchet derivative of , we can of course define the Fréchet derivativeX
of the operator  asX Ð?Ñw

X Ð?ÑÐA ß A Ñ œ
X Ð?  >A ÑÐA Ñ  X Ð?ÑÐA Ñ

>
ww

" #
>Ä!

w w
# " "lim

for all . If this derivative exists, then the operator  is calledA ß A − X Ð?Ñ" #
wwh
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the second Fréchet derivative of  at . This operator must be linear in eachX ?
vector  and . This approach permits us to define higher order deriva-A A" #

tives as well. Let us suppose that the th order Fréchet derivativeÐ5  "Ñ
X Ð?Ñ 5Ð5"Ñ  is known. Then the th order Fréchet derivative can be similarly
defined as follows

X Ð?ÑÐA ß A ß á ß A Ñ

œ
X Ð?  >A ÑÐA ß á ß A Ñ  X Ð?ÑÐA ß á ß A Ñ

>

Ð5Ñ
" # 5

>Ä!

Ð5"Ñ Ð5"Ñ
5 " 5" " 5"lim

for all ordered sets of vectors . Evidently, the operatorA ß A ß á ß A −" # 5 h
X Ð?Ñ À Ä 5Ð5Ñ 5h i is an -linear function, that is, it is linear in each vector
A − ß 3 œ "ß á ß 53 h . We can immediately extract from the definition that
the operator  may be formally expressed in the following formX Ð?ÑÐ5Ñ

 X Ð?ÑÐ Ñœ X Ð?  > A  > A  â  > A Ñ
`

`> `> â `>
Ð8Ñ

8

" # 8
" " # # 5 5

> œ> œâœ> œ!

A º
" # 5

where .A œ ÐA ß A ß á ß A Ñ" # 5

In this work, we shall always deal with finite-dimensional manifolds.
Open Submanifold. Let  be an  of a differentiable mani-Y open subset

fold  with a differentiable structure. We can define a differentiable struc-Q
ture on  byY

T : : TY Y Yœ ÖÐY  Y ß Ñ À ÐY ß Ñ − ×! ! ! !k
!

.

since  are open sets covering . It is clearly seen that the open set Y  Y Y Y!

endowed with this structure becomes itself a differentiable manifold called
an  of . Since the same homeomorphism is utilised, open submanifold Q this
open submanifold has evidently the same dimension as the manifold .Q

Product Manifolds. Let us consider two differentiable manifolds Q
of dimension  and  of dimension . We choose, respectively, atlases7 R 8
T : ! \ T < " ]Q Rœ ÖÐY ß Ñ À − × œ ÖÐZ ß Ñ À − ×! ! " " and  from the differ-
entiable structures of these manifolds. The set  of the CartesianQ ‚ R
product of these manifolds can now be equipped with a structure of an
Ð7  8Ñ-dimensional differentiable manifold by choosing the topology on
Q ‚ R  as the  and by introducing an atlas in the formproduct topology
T = ! " \ ] =QR œ ÖÐY ‚ Z ß Ñ À Ð ß Ñ − ‚ ×! " !" !". Here, the mapping  is
identified by

= : < ‘ ‘ ‘!" ! " ! ! " "À Y ‚ Z Ä ÐY Ñ ‚ ÐZ Ñ ‚ œ§ 7 8 78.

Thus, if  and , then we have to write: − Y Q ; − Z R§ §! "
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= : < : < ‘!" ! " ! ! " "Ð:ß ;Ñ œ Ð Ð:Ñß Ð;ÑÑ œ Ð ß Ñ ÐY Ñ ‚ ÐZ Ñ− §x y 78

where  and .x yœ Ð:Ñ œ Ð;Ñ: <! "

We now consider some samples of manifolds.
Example 2.2.1. Cartesian Spaces. The  manifold structure onstandard

the Euclidean space  is prescribed by an atlas including a single chart‘8

Ð ß 3 Ñ 3 À Ä‘ ‘ ‘8 8 8
‘ ‘ where  is the identity mapping. Coordinate functions

:3 3,  are just Cartesian coordinates { } of a point3 œ "ß á ß 8 B À 3 œ "ß á ß 8
of . As a differentiable manifold  is called the .‘ ‘8 8 affine space

The space  acquires a manifold structure with the single chart ‘ ‘ :Ð ß Ñ"

where  is given by . Similarly if we replace  by: ‘ ‘ : :" " "À Ä ÐBÑ œ B
: ‘ ‘ :# #

$ÐBÑ œ B Ð ß Ñ, then  becomes a manifold with the chart . But these
two atlases are not compatible, because the mapping  given by: ‘ ‘"# À Ä
: : :"# "

" "Î$
#ÐBÑ œ ‰ ÐBÑ œ B B œ ! è is not differentiable at the point .  

 We can observe at once that every open subset of  is an -dimen-‘8 8
sional manifold. Furthermore, we can easily show that an 8-dimensional
connected manifold is equivalent to an open submanifold of   if and only‘8

if  its atlas contains only a single chart . Indeed, if the entire manifold  isQ
homeomorphic to a single open set of the space , then its atlas has only‘8

one chart. Conversely if the atlas of an -dimensional manifold  has only8 Q
one chart, then the entire space  is homeomorphic to a single open sub-Q
manifold of .‘8

Example 2.2.2. Finite-Dimensional Vector Spaces. Let  be an -Z 8
dimensional real vector space equipped with an arbitrary norm. We choose a
set of basis vectors by . Then any vector  is expressedÐ/ ß / ß á ß / Ñ @ − Z" # 8

as  where , . If we denote@ œ B /  B /  â  B / B − 3 œ "ß á ß 8" # 8 3
" # 8 ‘

B œ ÐB ß B ß á ß B Ñ −" # 8 8‘ , it becomes obvious that there is an isomorphism
and hence a linear homeomorphism  such that . It then: ‘ :À Z Ä B œ Ð@Ñ8

follows that  is also an -dimensional smooth manifold since  is aZ 8 ‘8

smooth manifold. Evidently this property is independent of the choice of the
basis in . As a concrete example to finite-dimensional vector spaces, let usZ
consider the set of  matrices defined on real numbers. According to7 ‚ 8
the rule of matrix addition and scalar multiplication, this set is an  -78
dimensional vector space. Indeed, we can write any member of this set in
the form   where the matrix  hasM M Mœ + ß œ "ß á ß 7ß 3 œ ß á ß 8!

! !
3

3 3!
" 3 ! 78 in its row  and its column  while all other entries are . These !
linearly independent matrices  constitute a basis for this vector space.M!3

This vector space is isomorphic to the space  whose points are identifi-‘78

ed by elements  of matrices. Hence, suchÐ+ ß á + ß á ß + ß á ß + Ñ"" "8 7" 78

matrices constitute an -dimensional smooth manifold.78
We denote the set of  real square matrices by . 8 ‚ 8 16Ð8ß Ñ 16Ð8ß Ñ‘ ‘
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is a smooth manifold of -dimension. Let us consider the subset 8 KPÐ8ß Ñ# ‘
of regular matrices of . This set is called the .16Ð8ß Ñ‘ general linear group
Let det  be the determinant function. In this case the generalÀ 16Ð8ß Ñ Ä‘ ‘
linear group is expressed as the following set difference:

KPÐ8ß Ñ œ 16Ð8ß Ñ  Ö!×‘ ‘ det ."

Since the determinant is a continuous function and the singleton  isÖ!× − ‘
a closed set, then det  is a closed set. Thus  is an"Ö!× − 16Ð8ß Ñ KPÐ8ß Ñ‘ ‘
open set, that is, it is an open submanifold of the manifold .16Ð8ß Ñ‘

We can obtain similar results on matrices defined on the field of com-
plex numbers. But, a complex number is given by two real numbers. Conse-
quently, the dimension of the real manifold to which space of matrices is
homeomorphic becomes twice as much. For instance, the general linear
group KPÐ8ß Ñ 8 ‚ 8‚  of regular  complex matrices is a smooth manifold of
#8 è#-dimension.

Example 2.2.3. The Sphere in .‘$  We consider a spherical surface of
radius  in . Any point  of this -dimensional surface  can beV T ÐBß Cß DÑ #‘ ’$ #

written in the form

B œ V ß ! Ÿ Ÿ ß ! Ÿ Ÿ # ß

C œ V ß

D œ V

sin cos
sin sin
cos

) 9 ) 1 9 1

) 9

)

by employing spherical coordinates . By defining  and Ð ß Ñ B œ B œ) 9 ) 9" #

we can determine a function  mapping  on the region: ’ ‘ ’"
# # #À Ä

Ò!ß Ó ‚ Ò!ß # Ó1 1 ‘ of  (Fig. 2.2.4).#

R

x

y

z x2

x1

2
21

1

)

9

E
3

ì

ì

:

O

Fig. 2.2.4. #-dimensional sphere.
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It is straightforward to find the inverse function ::"
"

B œ ß B œ
B  C C

D B
" #

# #

arctan arctan
È

Unfortunately,  is not a homeomorphism on the entire sphere. The poles:"

Ð!ß !ß VÑ Ð!ß !ß  VÑ œ ! œ Ñ and  of the sphere (  and , respectively  are) ) 1
mapped onto sets  and  in . Furthermore, theÖ!× ‚ Ò!ß # Ó Ö × ‚ Ò!ß # Ó I1 1 1 #

image of a point on the half-circle  are two points on the lines 9 œ ! B œ !#

and . Hence, on this set  is not even a function. In order to makeB œ ##
"1 :

the mapping  a homeomorphism, we exclude from the set  the poles: ’"
#

Ð!ß !ß VÑ Ð!ß !ß  VÑ œ !,  and the half-circle  joining them. Thus we have9
to choose  and  and to restrict  on the open set) 1 9 1 :− Ð!ß Ñ − Ð!ß # Ñ "

"

Ð!ß Ñ ‚ Ð!ß # Ñ !  B  ß1 1 ‘ 1 in , in other words, we have to take # "

!  B  ## 1. It is now evident that the set

Y œ  ÖÐ!ß !ß VÑ×  ÖÐ!ß !ß  VÑ×  Ö œ !× §"
# #’ 9 ’

is open since it is the homeomorphic image of the open set .Ð!ß Ñ ‚ Ð!ß # Ñ1 1
Consequently  is a chart but it cannot cover the entire manifold .ÐY ß Ñ" "

#: ’
This result should be expected because the sphere  is a closed and’#

bounded subset of the manifold . In order to find another chart, let us‘$

choose now the point  as a pole of the sphere. As above, we writeÐ!ß Vß !Ñ

B œ V C C ß !  C  ß !  C  # ß

C œ V C ß

D œ V C C Þ

sin sin

cos

sin cos

" # " #

"

" #

1 1

These relations determine a mapping  and  becomes a chart: :# # #ÐY ß Ñ
where  is the open set obtained by deleting now the points ,Y Ð!ß Vß !Ñ#

Ð!ß Vß !Ñ and the half-circle behind the sphere joining those two points
from the manifold . It is obvious that , that is,  and’ ’ :# #

" # " "Y  Y œ ÖÐY ß Ñ
ÐY ß Ñ×# #

#: ’ constitute an atlas on . In the images of overlapping charts in
‘#, we can easily obtain the following coordinate transformation:

C œ Ð B B Ñß C œ Ð B B Ñà

B œ Ð C C Ñß B œ Ð C C Ñ

!  B  ß !  B  # à

!  C  ß !  C  #

" " # # " #

" " # # " #

" #

" #

arccos sin sin cos

arccos sin cos cot sin

arctan tan

arctan ;

.

1 1

1 1

Since these functions are analytic,  is an analytical manifold.’# è
Example 2.2.4. The Sphere in .‘8"  Let us consider the -dimen-8

sional spherical hypersurface  with radius  in . If we denote the’ ‘8 8"V
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Cartesian coordinates in  by  then the set  is deter-‘ ’8" 8
! " 8ÐB ß B ß á ß B Ñ

mined by the equation

B  B B œ V ß 3 œ "ß #ß á ß 8# #
! 3 3 .

We choose the pole  of  as the point . We specify the sub-5 ÐVß !ß á ß !Ñ’8

space  by the condition . To describe the mapping ,I B œ ! À Ä8 ! "
8 8: ’ ‘

we impose that the image point  of a point  in  is the; œ Ð:Ñ : −: ’ ‘"
8 8

point of intersection of the straight line joining the pole  and the point 5 :
with the   (Fig. 2.2.5). This mapping is known as hyperplane ‘8 stereo-
graphic projection. If the coordinates of the point  are , then the: ÐB ß B Ñ! 3

relation  must be satisfied. Let the  basis vectors inB œ … V  B B! 3 3
#È unit

‘8"
! 3 ! be . The vector  is in the direction , while basis vectors inÖ/ ß / × / S5

Ä

‘ ‘8 8
3 are . Let us denote the coordinates of the point  at/ ß 3 œ "ß á ß 8 ; −

which the line joining the points  and  intersects the space  by 5 : œ‘8 y
ÐC ß C ß á ß C Ñ" # 8 . Thus, we can write

V/  ÐB  VÑ/  B / œ C /! ! ! 3 3 3 3- ‘
where  is a real parameter.  Then, it follows that-

E

S :

;En

n

x0

5

O

e0

(e ,...,
1

  e
n
 )

Fig. 2.2.5. Stereographic projection for an -dimensional sphere8 .

- œ ß C œ ß C C œ V
V VB V  B

V  B V  B V  B! ! !
3 3 3

3 !#        .

Hence, the points on  with the same elevation  form now an -’8
!B Ð8  "Ñ

dimensional sphere  in . The radius of that sphere is of course given’ ‘8" 8

by . It is greater than  if  and less thanV ÐV  B ÑÎÐV  B Ñ V !  B  VÈ ! ! !

V V  B  ! œ ÐB ß B ß á ß B Ñ − if . Let , then the above relations! ! " 8
8x ’

prescribe a mapping  where . The inverse: ’ ‘ : ‘" "
8 8 8À Ä Ð Ñ œ −x y
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mapping  is easily found to be: ‘ ’" 8 8
" À Ä

x yœ Ð Ñß B œ V ß B œ C
C C  V V  B

C C  V V
:"

" ! 3 3
3 3 !

#

4 4
#

.

We can immediately observe that  is not a homeomorphism on the entire:"

’8
! 3. Indeed, the pole  determined by ,  is mapped on a "set of5 B œ V B œ !

infinities" in  under . We can simply observe that  becomes a‘ : :8
" "

homeomorphism if we delete the single point  from . Thus  is a5 ÐY ß Ñ’ :8
" "

chart where  is an open set. We can next introduceY œ  ÖV/ ×" !
8’

another chart by choosing the point  as another pole of  and byÖ V/ ×!
8’

defining the function  as follows: ‘# #À Y Ä

z xœ Ð Ñß D œ ß D D œ V
VB V  B

V  B V  B
:# 3 3 3

3 !

! !

#    

where  and  is the open set .z œ ÐD ß á ß D Ñ − Y  Ö V/ ×§" 8 # !
8 8 8‘ ’ ’

The inverse mapping  is easily provided by the following: ‘" 8
# #À Ä Y

relations

B œ V ß B œ D
V  D D V  B

D D  V V
! 3 3

#
3 3 !

4 4
#

.

Obviously  is also a chart. Since , then we have theÐY ß Ñ Y  Y œ# # " #
8: ’

atlas . In the region ÖÐY ß Ñß ÐY ß Ñ× Ð  ÖV/ ×Ñ  Ð  ÖV/ ×Ñ" " # # ! !
8 8: : ’ ’

where the two charts overlap, the coordinate transformation  is: :#
"
"‰

found to be

D œ C œ C
V  B V

V  B C C
3 3 3

!

! 4 4

#

.

Thus  is an analytical manifold.’8 è
Example 2.2.5. TorusÞ # We denote the surface of a -torus in  by‘$

“#. This surface is obtained, for instance, by rotating a circle with radius ,
whose distance of its centre from -axis is  about that axis (Fig. 2.2.6). WeD +
can thus write  as a product manifold. The manifold“ ’ ’ ’# " " " #œ ‚ œ Ð Ñ
’" represents a -dimensional sphere, namely, a circle. Thus, one-dimen-"
sional torus  is just the circle.  In view of Example 2.2.3, the manifold “ ’" "

has an atlas with two charts homeomorphic to . In this case we expect‘"

that the product manifold  will have an atlas with four charts homeomor-“#

phic to open subsets of .‘#

On the other hand, a torus may be determined parametrically in  by‘$

the following relations
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B œ Ð+  , Ñ ß

C œ Ð+  , Ñ ß

D œ ,

sin cos
sin sin

cos

) 9

) 9

)

Fig. 2.2.6. 2-dimensional torus.

where the condition  should be satisfied. The parameters  and ,  + 9 )
measure the angles along small and large circles. If we write , B œ B œ" #) 9
these relations define a mapping . But to render this mapping: ‘ “" # #

" À Ä
injective we have to restrict its domain to an open set in  prescribed by‘#

inequalities , . Let  be the open set obtained by!  B  # !  B  # Y" #
"1 1

deleting from  the circle with radius  at the plane  and the circle“# + D œ ,
with radius  at the -plane centred at the point . , BD B œ +ß D œ ! ÐY ß Ñ" ":
then becomes a chart. We define a new mapping  by:#

B œ  Ð+  , C Ñ C ß

C œ Ð+  , C Ñ C ß

D œ , C

sin sin

sin cos

cos

" #

" #

".

Let  be the open set obtained by deleting from  the circle with radius Y +#
#“

at the plane  and the circle with radius  at the -plane centred at theD œ , , CD
point . It is straightforward to see that  is now a chart.C œ +ß D œ ! ÐY ß Ñ# #:
The region  in which two charts overlap is the union of two openY  Y" #

sets  and  that are  whereZ Z" # disconnected

Z œ Ð!ß # Ñ ‚ Ð Î#ß # Ñ ß Z œ Ð!ß # Ñ ‚ Ð!ß Î#Ñ" #
" "
" ": 1 1 1 : 1 1ˆ ‰ ˆ ‰.

There are analytical coordinate transformations ,  on C œ B C œ B  Z" " # #
# "
1
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and ,  on . Finally, let us consider the mapping C œ B C œ B  Z" " # # $
# # $
1 :

given by

B œ Ð+  , D Ñ D ß

C œ Ð+  , D Ñ D ß

D œ  , D

cos cos

cos sin

sin

" #

" #

".

The open set  is obtained by deleting from  the circle with radius Y +  ,$
#“

at the plane  and  the circle with radius  at the -plane centred at theD œ ! , BD
point .  is a chart. The region  in which theB œ +ß D œ ! ÐY ß Ñ Y  Y$ $ " $:
charts  and  overlap is obviously the union of two open setsÐY ß Ñ ÐY ß Ñ" " $ $: :
[ [" # and  that are  wheredisconnected

[ œ Ð Î#ß # Ñ ‚ Ð!ß # Ñ ß [ œ Ð!ß Î#Ñ ‚ Ð!ß # Ñ" #
" "
" ": 1 1 1 : 1 1ˆ ˆ ‰‰ ˆ ‰

There are analytical coordinate transformations ,  onD œ B  D œ B" " # #
#
1

[ D œ B  D œ B [ ÐY ß Ñ ÐY ß Ñ" # # # $ $
" " # #$

# and  ,  on . The charts  and 1 : :

overlap on  which is the union of open sets , ,  and .Y  Y ^ ^ ^ ^# $ " # $ %

These sets are given by

^ œ Ð!ß Î#Ñ ‚ Ð!ß $ Î#Ñ ß ^ œ Ð!ß Î#Ñ ‚ Ð$ Î#ß # Ñ

^ œ Ð Î#ß # Ñ ‚ Ð!ß $ Î#Ñ ß ^ œ Ð Î#ß # Ñ ‚ Ð$ Î#ß # Ñ

" #
" "
# #

$ %
" "
# #

: 1 1 : 1 1 1

: 1 1 1 : 1 1 1 1

ˆ ‰ ˆ ‰
ˆ ‰ ˆ ‰.

Analytical coordinate transformations on these four sets are determined by
the following expressions, respectively

    

  

D œ C  ß D œ C  à D œ C  ß D œ C  à
$ $ $

# # # #

D œ C  ß D œ C  à D œ C  ß D œ C 
# # # #

$

" " # # " " # #

" " # # " " # #

1 1 1 1

1 1 1 1

Since , we conclude that -torus has an analytical atlasY  Y  Y œ #" # $
#“

with three charts .ÖÐY ß Ñß ÐY ß Ñß ÐY ß Ñ×" " # # $ $: : :
An -torus may be described in a similar fashion as a product manifold8

“ ’ ’ ’ ’8 " " " " 8œ ‚ ‚ â ‚ œ Ð Ñ è.
Example 2.2.6. Klein Bottle .  The Klein bottle is a -dimensionalŠ# #

manifold in the space  [It was introduced in 1882 by German mathema-‘%

tician Felix Christian Klein (1849-1925)]. We denote the coordinates in ‘%

by .  is a circle with radius  at the -plane whose centre is theÐBß Cß Dß @Ñ , BD’"

point . We assume that . Klein bottle is produced by theÐ+ß !ß !ß !Ñ +  ,
following process: while turning the centre  of that circle about  in theG S
BC %-plane by an angle , we rotate its plane in -dimensional space about the9
axis  that remains perpendicular to the -plane by an angle /2SG D@ 9
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(Fig. 2.2.7). It can be shown that this operation is tantamount to first
forming a cylindrical surface by gluing two mutual edges together of a
rectangular strip, then trying to glue one edge of this cylinder to the other
after giving a half-twist with respect to the other one. In -dimensional$
space this operation cannot be realised without intersecting the surface.
Therefore, Klein bottle can be considered as a manifold only in a -dimen-%
sional space. It cannot be embedded into  since in such a mapping self-‘$

intersections should not be permissible. However, it is possible to immerse
this surface into -dimensional space if we allow self-intersections [for$
properties of these sort of mappings see Sec. 2.4]. These immersions are 
found to be unfortunately not unique. Two different immersions is depicted
in Fig. 2.2.8.

x

y

z
v

O
C

C

b
a
9

)

Fig. 2.2.7. Description of Klein bottle in -dimensional space% .

It is now obvious that a point on Klein bottle is represented paramet-
rically by equations

B œ Ð+  , Ñ ß

C œ Ð+  , Ñ ß

D œ , Ð Î#Ñß

@ œ , Ð Î#Ñß ! Ÿ Ÿ # ß ! Ÿ Ÿ #

cos cos
cos sin

sin cos
sin sin

) 9

) 9

) 9

) 9 ) 1 9 1    

When we eliminate these parameters, Klein bottle is given in Cartesian
coordinates with the following relations

CÐD  @ Ñ  #BD@ œ !

B  C  D  @  #+ B  C  +  , œ !

# #

# # # # # ## #È
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With , , these relations determine a mapping .B œ B œ À Ä" # # #
") 9 : Š ‘

However, in order to render the mapping  injective, we have: ‘ Š" # #
" À Ä

to restrict its domain in  to the open set determined by the inequalities‘#

!  B  # !  B  # Y" #
" "1 1 :, . Hence the domain of  is the open set 

obtained by deleting from  the circles  given by Š 9 )# œ ! B  + œ , ßcos
D œ , œ ! B œ Ð+  ,Ñ C œ Ð+  , Ñsin cos sin) ) 9 9 and  given by , . Thus,
the inverse mapping  is found as follows when :"

" D Á !

sin cosB œ ß B œ ß
D  @ B  C  +

, ,

B œ # œ
@ C

D B

" "
# # # #

#

È È
arctan arctan .

If , we have either  or . Consequently, inverse mappingsD œ ! B œ B œ" #1 1
become, respectively

B œ ß B œ ß
C

B

B œ ß B œ
@

+  B

" #

" #

1

1

arctan

arctan .

Hence  is a chart. Let us now define a mapping  by relationsÐY ß Ñ" " #: :

B œ  Ð+  , C Ñ C ß

C œ Ð+  , C Ñ C ß

D œ , C  ß
C

# %

@ œ , C  ß !  C  # ß !  C  #
C

# %

cos sin

cos cos

sin cos

sin sin

" #

" #

"
#

" " #
#

Š ‹
Š ‹

1

1
1 1

where  is representing now the angle in -plane measured from -axis.C BC C#

We can easily observe that the mapping  is a homeomorphism on the:#

open set  obtained by deleting from  the circle with radius  in -Y +  , BC#
#Š

plane and the circle with radius  centred at  and located on the, C œ +
bisecting plane of - and -planes. Hence,  is a second chart andCD C@ ÐY ß Ñ# #:
it contains the set . We see that  where  andÖB œ !× Y  Y œ Z  Z Z#

" # " # "

Z# are open disconnected sets given by

Z œ Ð!ß # Ñ ‚ Ð Î#ß # Ñ ß Z œ Ð!ß # Ñ ‚ Ð!ß Î#Ñ" #
" "
" ": 1 1 1 : 1 1ˆ ‰ ˆ ‰

The coordinate transformation on  is ,  whereas thatZ C œ B C œ B "
" " # #

#
1

on  is , . Finally, let us define a mapping  byZ C œ #  B C œ B # $
" " # # $

#1 :1

the relations
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B œ Ð+  , D Ñ D ß

C œ Ð+  , D Ñ D ß

D œ  , D ÐD Î#Ñß

@ œ  , D ÐD Î#Ñß !  D  # ß !  D  #

sin cos

sin sin

cos cos

cos sin

" #

" #

" #

" # " #1 1

where  now denotes the angle translated . The open set  is obtainedD *! Y" ‰
$

by deleting from  the circle with radius  centred at the point  inŠ# , B œ +
BD + BC ,-plane and the circle with radius  in -plane and the circle with radius 
in -plane both centred at the point . It is obvious that  is a chartD@ S ÐY ß Ñ$ $:
and it contains the set . We thus obtain . In theÖB œ !× Y  Y  Y œ" #

" # $ Š
same fashion one can show that coordinate transformations at the overlap-
ping subsets of all these charts are simple analytical functions. Thus, Klein
bottle  is an analytical manifold.Š# è

Example 2.2.7. Real Projective Spaces. Let us consider the space
‘ ‘8" 8" whose origin  is deleted. A point of  is denoted! œ Ð!ß !ß á ß !Ñ
by . We define a relation  on the set  byx œ ÐB ß B ß á ß B Ñ V  Ö ×" # 8" 8"‘ !
x y y xV œ −  Ö!× C œ B ß " Ÿ 3 Ÿ 8  "if and only , , or . It is- - ‘ -3 3

straightforward to see that  is an equivalence relation. The -dimensionalV 8
real projective space  is defined as the quotient space of the topological‘8

space with respect to this equivalence relation : ‘ ‘8" 8 Ö × V œ!  
Ð  Ö ×ÑÎV‘8" ! . It is clear that the elements of this space that are equi-
valence classes are straight lines through the origin  of . In this case,! ‘8"

the canonical projection  [  61] assigns to a non1 ‘ ‘À !8" 8 Ö × Ä see .:
-zero point  the line through this point and the origin. Therefore, ifx − ‘8"

we denote a point of the quotient space  by the equivalence class ‘8 Ò Ó œx
ÒB ß B ß á ß B Ó − Á ! Ò Ó œ" # 8" , then for each ,  the equivalence class - ‘ - -x
Ò B ß B ß á ß B Ó Ò Ó œ Ò Ó- - - -" # 8"  specifies the same point, i.e., . The numbersx x
B ß B ß á ß B Ò Ó" # 8" are called the  of the point .homogeneous coordinates x
Employing those coordinates, we can represent the coordinates Ö ß á ß ×0 0" 8

of a point in  by the ratios‘8

0 0 0" # 8 8"
" # 8

8" 8" 8"
œ ß œ ß á ß œ ß B Á !

B B B

B B B
.

As corresponding to a point  in the projective space, these coordi-Ò Óx
nates are uniquely determined. We now want to equip the projective space
by the quotient topology [  62]. Let us choose the sets see .: Y ß 3 œ "ß #ß3

á ß 8  " in the projective space as follows

Y œ ÖÒ Ó − À B Á !×3
8 3x ‘ .
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Fig. 2.2.8.   Images of Klein bottle in  for two different immersions‘$ .

The set  consists clearly of the straight lines through the origin of theY3
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space  that do not belong to the -dimensional subspace determined by‘8" 8
the coordinates  except at the origin. SinceÐB ß á ß B ß !ß B ß á B Ñ" 3" 3" 8"

the set

1 ‘ ‘" 8" 3 8"
3ÐY Ñ œ Ö −  Ö × À B Á !×  Ö ×§x ! !

is open, the set   is also open in the quotient topology. Moreover,Y §3
8‘

we see at once that . We define a mapping  by
8"

3œ"
3 3 3

8 8Y œ À Y Ä‘ : ‘

:3 3

" 3" 3" 8"

3 3 3 3
ÐÒ ÓÑ œ ß á ß ß ß á ß ß Ò Ó − Y

B B B B

B B B B
x xŠ ‹ .

Evidently this mapping is a homeomorphism. Hence,  is a chart andÐY ß Ñ3 3:
the collection  is an atlas for . On theÖÐY ß Ñ À 3 œ "ß #ß á ß 8  "×3 3

8: ‘

other hand, in the intersection  where charts are overlapping theY  Y3 4

transition function is easily found to be

: :4
"
3

" 3" 3" 8" " 4" 4" 8"

3 3 3 3 4 4 4 4

3 " 4" 4" 8"

4 3 3 3 3
3 4

‰ ß á ß ß ß á ß œ ß á ß ß ß á ß
B B B B B B B B

B B B B B B B B

œ ß á ß ß ß á ß ß B Á !ß B Á !
B B B B B

B B B B B

Š ‹ Š ‹
Š ‹  .

Since transitions functions are analytic, we conclude that  is an analyti-‘8

cal manifold.
The interest of mathematicians to the real projective plane  goes‘#

rather back in history. It has been observe that this -dimensional manifold#
can be embedded smoothly into . Werner Boy [1879-1914] who was a‘%

student of  Hilbert had shown in 1901 that this surface can also be immersed
in  if it is allowed for the surface to intersect itself. A quite an interesting‘$

parametrisation of  was discovered by American mathemati-Boy's surface
cians Robert B. Kusner and Robert L. Bryant (1953): we define the
functions

1 œ  e ß 1 œ  d
$ Ð"  Ñ $ Ð"  Ñ

# # &  "  &  "

1 œ e  ß 1 œ 1  1  1
"  "

 &  " #

" #

% %

' $ ' $

$

%

' $

# # #
" # $

' ' ' '

' ' ' '

'

' '

È È
È

where  is a complex variable subject to the restriction  and' 'œ ?  3@ l l Ÿ "
d e and  denote the real and imaginary parts of a complex number, respect-
ively Then the Cartesian coordinates of a point on the surface is parametri-Þ
cally given by
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BÐ?ß @Ñ œ ß CÐ?ß @Ñ œ ß DÐ?ß @Ñ œ Þ
1 1 1

1 1 1
" # $

Boy's surface is depicted in Fig. 2.2.9.

Fig. 2.2.9. Image of  -dimensional space (Boy's surface)‘# in .$ è

Manifolds with Boundary. In order to define a topological manifold
with boundary we need a slightly more generalised concept. Let  be aQ"

topological space that is an -dimensional differentiable manifold. We8
consider a  subset  of . When  has a boundary  we cannotclosed Q Q Q `Q"

generate a differentiable structure on the topological subspace  in theQ
usual way because a point  does not have an open neighbourhood: − `Q
remaining entirely inside  that is homeomorphic to an open set of . InQ ‘8

order to solve this problem, we propose to consider the following subspace
‡ ‘8 8 of :

‡ ‘8 " # 8 8 8œ Ö œ ÐB ß B ß á B Ñ − À B   !×Þx

The hyperplane  defined by the relation  is the boundary of this‘8" 8B œ !
closed half-space. We know that open sets of the subspace  in the‡8

relative topology are intersections of standard open sets in  with . Let‘ ‡8 8
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Z § ‡8 be an open set defined this way (Fig. 2.2.10). We denote  the in-
terior boundary of the set  by Int   and its  byZ Z œ Z  Ö − À B  !×x ‘8 8

`Z œ Z  Ö − À B œ !× Z œ Z  `Zx ‘8 8 . It is clear that Int . We imme-
diately observe that  is not the topological boundary of the set  given`Z Z
on . 55. Actually,  is the intersection of the topological boundary with: `Z
the boundary  of . If this intersection is empty, then  has noB œ ! Z8 8‡
boundary according to this definition although the topological boundary

may exist in the form .Z̄  ÐZ Ñ
‰

w

The  of  denoted by interior Q Int  is the set of points of  that haveQ Q
open neighbourhoods homeomorphic to open subsets of . The ‘8 boundary
`Q Q Q Q of  is the complement of Int  with respect to . The points on
`Q B œ ! are mapped by homeomorphism to the points on the boundary 8

of . We now define a differentiable structure on  by an atlas‡ T8 Q œ 
ÖÐY ß Ñ À − × Y Q! ! !: ! \  where  are open sets in relative topology on  and
: ‡! ! ! !À Y Ä Z Z are homeomorphisms.  is an open subset of . Naturally8

domains of charts will obey the rules -  mentioned on  53. We canÐ3Ñ Ð333Ñ :Þ
now express the boundary  and the interior Int  of the manifold  by`Q Q Q
the relations ( Fig. 2.2.11)see 

n -1

8

8

Fig. 2.2.10. An open set in ‡8.

`Q œ ` Ð ÐY ÑÑ Q œ Ð ÐY ÑÑ 
! \ ! \

! !! ! ! !
− −

" ": : : :ˆ ‰ ˆ ‰,   Int Int .
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If a point  belongs to a chart , then its parametrisation is: − `Q ÐY ß Ñ:
obviously in the form

:Ð:Ñ œ ÐB ß B ß á ß B ß !Ñ" # 8" .

It is clear that Int . WeQ 8 is a -dimensional manifold without boundary
shall show in the sequel that the boundary  of  is an -dimen-`Q Q Ð8  "Ñ
sional manifold without boundary. But we first prove the following lemma.

Lemma 2.2.1. The position of a point on the boundary of the manifold
Q  is independent of the parametrisation used.

Let us consider two charts  and  containing a pointÐY ß Ñ ÐY ß Ñ" " # #: : 
: − `Q Ð:Ñ œ œ ÐB ß B ß á ß B ß !Ñ Ð:Ñ. We suppose that  and : :" " #

" # 8"x
œ œ ÐB ß B ß á ß B ß B Ñß B  !x#

" # 8" 8 8 . The transition mapping

: : : : :" "
"# #" # " # " " #œ ‰ À ÐY  Y Ñ Ä ÐY  Y Ñ

is a homeomorphism on . On the other hand, we assumed that the point‡8

x#
8 8− ‡ ‘ is an interior point of . Hence, this point has an open neighbour-

hood  in  that does not intersect the boundary .Z © ÐY  Y Ñ B œ !x# : ‘# " #
8 8

The function  transforms this open neighbourhood into the open neigh-:"
"#

bourhood  of  in  (Fig. 2.2.12). But this set contains theZ œ ÐZ Ñx x" #: ‘" 8
"# "x

points in the form  that does not belong toÖÐB ß B ß á ß B ß B Ñ À B  !×" # 8" 8 8

‡8. This is of course a contradiction. 

Q1

Q

Y

Y

: ÐYÑ

ÐYÑ

:
:

8

`Q

Fig. 2.2.11. A manifold with boundary.
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Theorem 2.2.2. -The boundary of an dimensional differentiable8
manifold with boundary is an dimensional differentiable manifold.Ð8  "Ñ-

Let  be the boundary of the manifold . If a chart  of an`Q Q ÐY ß Ñ! !:
atlas  contains a boundary point , we can then write ¯T :: − `Q ÐY Ñ œ! !

: ‘ ‘! ! ! !ÐY Ñ  Y œ Y  `Q œ8" 8" where we now define  and ¯
ÖÐB ß B ß á ß B ß B Ñ − À B œ !× ÐY Ñ" # 8" 8 8 8‘ :. The set  is an open set in¯! !

‘ :8" in the relative topology. We denote the restriction of  to the set ¯! !Y
by . Evidently,  is also a homeo-¯ ¯¯: : ‘ :! ! !! !kY 8"

¯ !
œ À Y © `Q Ä Z ©

morphism. Therefore, the pair  is a chart on . Since the family¯ ¯ÐY ß Ñ `Q! !:
T : ! \œ ÖÐY ß Ñ À − × Q! !  is an atlas on , it is quite clear that the family
T : ! \¯ ¯ ¯  becomes an atlas on . If this atlas has over-œ ÖÐY ß Ñ À − × `Q! !

lapping charts at a boundary point, these charts will be compatible in view
of Lemma 2.2.1. Thus the atlas  gives rise to a differentiable structure onT̄
`Q `Q Ð8  "Ñ. Hence the topological space  is an -dimensional differen-
tiable manifold. 

ñ

Fig. 2.2.12. A point on the boundary of a manifold.

2.3. DIFFERENTIABLE MAPPINGS

We consider a mapping  on an -dimensional differenti-0 À Q Ä 7‘
able manifold , that is,  if . Let us assume that theÐQß Ñ 0Ð:Ñ − : − QT ‘
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point  is contained in the chart . Then, we can write : ÐY ß Ñ − 0Ð:Ñ œ! !: T
0 Ð Ñ œ Ð0 ‰ Ð Ñ 7ˆ ‰: :" "

! !x x) . If we define a real-valued function of  real
variables by  on the open set , then0 œ 0 ‰ À Ä ÐY Ñ ©w " 7 7

! ! ! !: ‘ ‘ : ‘
the equality  becomes valid provided that the condition 0Ð:Ñ œ 0 Ð Ñ œw

! x x
:! !Ð:Ñ 0 ÐB ß B ß á ß B Ñ is satisfied (Fig. 2.3.1). If the function  is of classw " # 7

G ÐY Ñ 0< at the point , we say that the function  is  andx − :! ! differentiable
a  at the point  and we usually write  orG<-function : − Q 0 − G ÐQß Ñ< ‘
just . Let us note that  if the atlas on  is of -class.0 − G ÐQÑ < Ÿ 5 Q G< 5

When we use only the adjectives  or , we will alwaysdifferentiable smooth
mean a function of -class. If a function  is differentiable at every pointG 0_

of the manifold , then it is a function differentiable on . We denote theQ Q
set of all differentiable functions on  by  or merely by .Q G ÐQÑ GÐQÑ_

We had seen that the set  can be equipped with a vector spaceG ÐQÑ<

structure [ Example 1.2.2], i.e., we can write  wheresee ! "0  1 − G ÐQÑ<

! " ‘ß − 0ß 1 − G ÐQÑ. We can also define a product of vectors  by utilis-<

ing the familiar rules of multiplication in  as  at each‘ Ð01ÑÐ:Ñ œ 0Ð:Ñ1Ð:Ñ
point  so that we have . Hence, these sets are actually: − Q 01 − G ÐQÑ<

algebras. Of course  is also an algebra.GÐQÑ

Q

:

0
0

Y!

!

:
!

‘

‘

7

X

ñ ñ

w

Fig. 2.3.1. A differentiable function .0

We can easily prove that the differentiability of a function 0 À Q Ä ‘
is independent of the chosen atlas among compatible atlases. Let us consider
another atlas  on  and assume that the point  belongs also to theU Q : − Q
chart . We can thus writeÐZ ß Ñ −" "< U

0Ð:Ñ œ 0 Ð Ñ œ 0 Ð Ñà : Y  Z ß œ Ð:Ñß œ Ð:Ñw w
! " ! " ! "x y x y− : <
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where we have of course defined . Therefore, we obtain0 œ 0 ‰w "
" "<

0 œ Ð0 ‰ Ñ ‰ œ 0 ‰ Ð ‰ Ñw w " w "
" ! " ! "! !: < : < .

Because atlases are compatible, we conclude that if  is differentiable, then0 w
!

the function  must also be differentiable since it is expressed as a com-0 w
"

position of differentiable functions. By definition, the partial derivative of a
function  at a point  with respect to a coordinate  in an open set of0 : − Q B3

‘ :7 determined by a chart  containing the point  will be written atÐY ß Ñ :! !

the point  asx œ Ð:Ñ:!

H 0Ð:Ñ œ ß 3 œ "ß #ß á ß 7
`0 Ð Ñ

`B
3

w

3
! x

.

Higher order derivatives will be represented in the same fashion.
Since a differentiable manifold is actually a topological space, the ex-

istence of the partition of unity on this manifold can be discussed. The
partition of unity  on a topological space was discussed on  62.ÖZ ß 0 × :Þ3 3

But, here we further impose the condition that the functions 0 À Q Ä Ò!ß "Ó3

are to be .smooth
It can be shown that if the manifold  is paracompact as a topologi-  Q

cal space, then for each atlas  there exists aT : - Aœ ÖÐY ß Ñ À − ×- -

partition of unity subordinate to the open cover ÖY À − ×- - A .
To prove this proposition in its most generality is beyond the scope of

this work. Instead, we shall try to manage it for a paracompact space that is
Hausdorff, locally compact and second countable [  . 57]. These proper-see :
ties, however, are enjoyed by many differentiable manifolds encountered in
applications. To this end, we start first by demonstrating the existence of a
smooth function  which is equal to  on the closed cube 9 ‘ ‘À Ä " GÒ"Ó7

and is  on the complement of the open cube . The  ! GÐ#Ñ GÐ<Ñopen cube
with sides of length  about the origin of  is defined as the subset#< ‘7

GÐ<Ñ œ Ö − À lB l  <ß 3 œ "ß á ß 8× §x ‘ ‘7 3 7

where  while the  is the subsetx œ ÐB ß B ß á ß B Ñ" # 7 closed cube

GÒ<Ó œ ÖB − À lB l Ÿ <ß 3 œ "ß á ß 8× § Þ‘ ‘7 3 7

Let us consider the function  defined by0 À Ä‘ ‘

0Ð>Ñ œ
/ >  !ß
! > Ÿ !

œ "Î>

which is non-negative, smooth and positive for . Then, we introduce>  !
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the function

1Ð>Ñ œ
0Ð>Ñ

0Ð>Ñ  0Ð"  >Ñ

depicted in Fig. 2.3.2.

Fig. 2.3.2. The function .1Ð>Ñ

This function is non-negative, smooth, and it is equal to  for " >   "
and to zero for .> Ÿ !

Next, we construct the function

2Ð>Ñ œ 1Ð>  #Ñ1Ð>  #Ñ

shown in Fig. 2.3.3.  is a smooth non-negative function which is equal2Ð>Ñ
to  on the closed interval  and to zero on the complement of the" Ò  "ß "Ó
open interval .Ð  #ß #Ñ

Fig. 2.3.3. The function .2Ð>Ñ

We now define a function  by the product9 ‘ ‘À Ä7

9Ð Ñ œ Ð2 ‰ 1 ÑÐ ÑâÐ2 ‰ 1 ÑÐ Ñ œ 2ÐB Ñâ2ÐB Ñx " 7 " 7x x

where  were defined on  71. Obviously, this function is equal to  on the1 :Þ "3

closed cube  and to zero on the complement of the open cube GÒ"Ó GÐ#ÑÞ
We now consider the relatively compact open cover  of  intro-Ö[ × Q3

duced on . 58. For a point , let  be the largest integer such that: : − Q 3:

: − Q  [ œ Ð[ Ñ : − Y¯ ¯ . Suppose that for an index one has .3 3
w

: : :- A: −  -
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By definition, we also have   We consider an¯: − Ð[  [ Ñ œ ^ Þ3 " 3 " 3: : :

open set  in the intersection of the open set of the chart to which the pointZ
: Y  ^ ÐZ ß Ñ belongs with the open set . We shall assume that  where-: :3 :

Z © Y  ^ :-: :3  is a coordinate system centred at the point  chosen in such a
way that  contains the closed cube . Next, we define the: ‘ÐZ Ñ − GÒ#Ó7

function  by< ‘: À Q Ä

<
9 :

: œ
‰ : − Z

!œ if
otherwise.

  
        

Obviously  is a smooth function on the manifold . The continuity of < <: :Q
implies that it is equal to  on some open neighbourhood " Z œ GÐ"Ñ:

"
:< ˆ ‰

in  and it has a compact support given by  We know thatZ GÒ#Ó Z Þ§<"
:

ˆ ‰
Y  ^ O œ [  [ § ^- 3 3 3 3" 3 is an open cover for the compact set  Thus,¯
for each , we can find a finite set of points  so that the open sets3   " :4

Y  ^ O 3-: :4 4
3 3 form a finite cover of . Hence, for each  we have a finite

family of sets  on which  take the value  and their supports forms aZ ": :4 4<

locally finite family of compact subsets of . Hence, the set of functionsQ
Ö ×<:  is actually a countable union of finite sets. Therefore they can be enu-
merated as . Thus the functionÖ À 3 − ×< 3

< <œ "
3œ"

_

3

is a well defined smooth function on  and at each point  all but a finitelyQ :
many functions in this series do vanish. Therefore, we have  at<Ð:Ñ  !
each point . Let us now define the functions  as: − Q 0 À Q Ä Ò!ß "Ó3

0 œ3
3<

<

Hence, the countable family of functions  constitute a partition of! Ÿ 0 Ÿ "3

unity subordinate to the open cover  with compact supports.ÖY ×- 
As we shall see later, this property will prove to be quite significant

when we try to define the integration over manifolds.
Example 2.3.1. In the manifold , a partition of unity subordinate to’"

the open cover  is clearly .ÖÐ!ß # Ñß Ð ß Ñ× Ö ß × è1 1 1 sin cos# #
# #
) )

We shall now give two seemingly different definitions of the differen-
tiability of a mapping between two differentiable manifolds. We shall then
show that they are actually equivalent.

Ð3ÑÞ Q RWe consider two differentiable manifolds  and  with dimen-
sions  and  and a continuous mapping . This mapping will7 8 À Q Ä R9
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assign a point  to a point  by the relation . Due to the; − R : − Q ; œ Ð:Ñ9
continuity of , to each open neighbourhood  of the point  there corre-9 Z ;
sponds an open neighbourhood  of the point . It is evidentY œ ÐZ Ñ :9"

that the set inclusion relation  will be satisfied. Let9 9 9ÐY Ñ œ Ð ÐZ ÑÑ © Z"

1 À R Ä Z‘ be a differentiable function defined on the open set . We can
then define a function on the open set  in the manifold  whose value atY Q
the point  is given by the relation . Thus each: − Q 0Ð:Ñ œ 1Ð;Ñ œ 1Ð Ð:ÑÑ9
function  defined on  generates a function  defined1 À R Ä Z 0 À Q Ä‘ ‘
on  because . We can denote the functional relation betweenY ÐY Ñ © Z9
them by . The function  is called the  or 0 œ 1 ‰ œ 1 19 9 9‡ ‡ pull-back recip-
rocal image of the function . 1 If for every differentiable function  defined1
on , the function  is differentiable on that is  if for allR 0 œ 1 Q9‡ , ,
1 − 1 −GÐRÑ GÐQÑ À Q Ä R  one obtains , then the mapping will be9‡ 9
called a .  Consequently, a differentiable mappingdifferentiable mapping
9 À Q Ä R GÐRÑ Ä GÐQÑ produces a mapping  between algebras9‡ À
GÐRÑ GÐQÑ and . The mapping  is called the  or 9‡ dual mapping pull-back
mapping of . 9 When  is a homeomorphism and both  and its inverse9 9
9 9" À R Ä Q  are differentiable, then we shall say that the mapping  is a
diffeomorphism. If we establish a diffeomorphism between two manifolds,
they are called . Evidently, diffeomorphic mani-diffeomorphic manifolds
folds are equivalent as far as their topological and differentiability proper-
ties are concerned.

It follows from the definition of pull-back mappings that

9 9 9 9 9 9‡ ‡ ‡ ‡ ‡ ‡
" # " # " # " #Ð1  1 Ñ œ 1  1 ß Ð1 1 Ñ œ Ð 1 ÑÐ 1 ÑÞ

where Hence, we deduce that 1 ß 1 − GÐRÑ" # . the pull-back mapping is an
algebra homomorphism.

If  are  differentiable -manifolds and if there corresponds aQ R G5

9‡1 − G ÐQÑ 1 − G ÐRÑ < Ÿ 5< < function for each function  for an , we say
that the mapping  is  . If  is a homeomor-9 9À Q Ä R G<-differentiable
phism and both  and  are -differentiable, then we say that  is a 9 9 9" <G G<-
diffeomorphism.

Ð33ÑÞ À Q Ä RLet  be a continuous mapping. This mapping will as-9
sign to each point  a point . These points are located in: − Q Ð:Ñ œ ; − R9
local charts  and , respectively and we can write ÐY ß Ñ ÐZ ß Ñ ÐY Ñ © Z: < 9
due to the continuity of . We denote the local coordinates in those charts9
by  and , respectively. Hence one writesx yœ ÐB ß á ß B Ñ œ ÐC ß á ß C Ñ" 7 " 8

x yœ Ð:Ñ − œ Ð;Ñ −: ‘ < ‘7 8 and . We define by using the transformation
y xœ Ð Ð ÑÑ< 9 :ˆ " , a composite mapping

F < 9 : : ‘ < ‘œ ‰ ‰ À ÐY Ñ © Ä ÐZ Ñ ©" 7 8
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so that we can express this relation by  or y xœ Ð Ñ C œ ÐB ß á ß B ÑßF F3 3 " 7

3 œ "ß á ß 8 (Fig. 2.3.4). If the functions  have continuous derivatives ofF3

all orders at the point , namely, if , then we sayx œ Ð:Ñ − G Ð ß Ñ: F ‘ ‘_ 7 8

that  is a  or a  mapping if  is continuously differen-9 Fdifferentiable smooth Ð
tiable of order , then  is a  mapping). If this property is< 9 G<-differentiable
valid for every chart of an atlas, then 9 is a differentiable mapping on the
manifold Q . If  is a diffeomorphism, then  exists and is9 9" À R Ä Q
differentiable. In this case, it is straightforward to see that  is locally9"

represented by a function  given by the inverse relationG ‘ ‘− G Ð ß Ñ_ 8 7

x yœ Ð Ñ œ ‰ ‰G G : 9 < such that ." "

ì

ì

ì ì

Q R

;

:

X Y

Y
Z

:ÐYÑ <ÐZÑ

: <

9

9 ‰

‘ ‘7 8

:
q"

<

Fig. 2.3.4. A differentiable mapping .9

We shall now try to prove the equivalence of these two definitions:
Ð3Ñ Ê Ð33Ñ À ÐY ß ÑWe assume that  is differentiable. Let  and9 :

ÐZ ß Ñ : − Q Ð:Ñ œ ; − R< 9 be charts enclosing the points  and , respect-
ively. We define the continuous functions  and 1 À Ä 1 À ÄQ R

3 7 3 8‘ ‘ ‘ ‘
by  and . The coordinate functions in those charts are1 Ð Ñ œ B 1 Ð Ñ œ CQ R

3 3 3 3x y
then , ,  and : : ‘ : < <3 3 3 3 3 3

Q Rœ 1 ‰ À Y Ä Ð:Ñ œ B 3 œ "ß #ß á ß 7 œ 1 ‰ À
Z Ä Ð;Ñ œ Ð Ð:ÑÑ œ C ß 3 œ "ß #ß á ß 8‘ < < 9 <, . Since the function  is3 3 3 3

clearly differentiable and the set relation  is satisfied, the function9ÐY Ñ © Z
< 9 ‘3 ‰ À Y Ä  is also differentiable due to . Since we can writeÐ3Ñ
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< 9 : : ‘ < 9 : : ‘3 " 3 "
R‰ ‰ À ÐY Ñ Ä 1 ‰ Ð ‰ ‰ Ñ À ÐY Ñ Ä or , we find fi-

nally that the function  is differentiable atF < 9 : : <œ ‰ ‰ À ÐY Ñ Ä ÐZ Ñ"

the arbitrary point , i.e., .: − Q − G Ð ß ÑF ‘ ‘_ 7 8 
 We assume again that  is differentiable and we consider anÐ33Ñ Ê Ð3Ñ À 9
arbitrary function  which is differentiable at a point .1 À Z Ä ; − R‘
Hence the function  will also be differenti-1 œ 1 ‰ À ÐZ Ñ © Ä< < < ‘ ‘" 8

able at the point . We can thus writey œ Ð;Ñ<

1Ð;Ñ œ 1 ‰ Ð:Ñ œ 1 ‰ ‰ Ð:Ñ œ 1 ‰ Ð ‰ ‰ ÑÐ Ñ œ 1 ‰ Ð Ñ9 < 9 < 9 : F< < <
" x x .

We have assumed that the function  is differentiable, thatF < 9 :œ ‰ ‰ "

is, . By noting that composition of differentiable real-val-F ‘ ‘− G Ð ß Ñ_ 7 8

ued functions is also differentiable, we arrive at the result that the function
9‡1 œ 1 ‰ À Y Ä9 ‘ must be differentiable. Furthermore, if we write the
above equality in the form

9 : F F‡ " ‡1 ‰ Ð Ñ œ 1 ‰ Ð 1 Ð Ñx x) x< <œ

we obtain the following relation on a chosen chart ÐY ß Ñ:

Ð 1Ñ œ 19 F‡ ‡
: <

for each . The pull-back function  and  are of the form1 − GÐRÑ Ð 1ÑF 9‡ ‡
:

F ‘ ‘ 9 : ‘ ‘‡ 8 7 ‡ 7À GÐ Ñ Ä GÐ Ñ Ð 1Ñ À ÐY Ñ © Ä and .: 
Let , ,  be differentiable manifolds. Assume that mappingsQ Q Q" # $

9 9" " # # # $À Q Ä Q À Q Ä Q,  are continuous. If their composition exists,
then one has . For any , we obtain9 9 9œ ‰ À Q Ä Q 1 − GÐQ Ñ# " " $ $

9 9 9 9 9 9 9 9 9‡ ‡ ‡ ‡ ‡
# " # " "# " #1 œ Ð ‰ Ñ 1 œ 1 ‰ ‰ œ Ð 1Ñ ‰ œ Ð 1Ñ.

Because this relation must be valid for every  we arrive at the1 − GÐQ Ñ$

following rule of composition

Ð ‰ Ñ œ ‰9 9 9 9# "
‡ ‡ ‡

" # . (2.3.1)

This result can of course be extended to an arbitrary number of composi-
tions. Let us now take into account the   onidentity mapping 3 À Q Ä QQ

the differentiable manifold . We thus find  for each . InQ 3 Ð:Ñ œ : : − QQ

this case, we obtain  for each . Consequently,3 1 œ 1 ‰ 3 œ 1 1 − GÐQÑ‡
Q Q

we reach to the identity mapping on :GÐQÑ

3 œ 3‡
Q GÐQÑ (2.3.2)

Example 2.3.2. Consider the manifold  with the standard chart‘
Ð ß 3 Ñ À Ä C œ ÐBÑ œ B ß  "‘ 9 ‘ ‘ 9 !‘

!. The function  prescribed by  is a
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differentiable homeomorphism, but it is not a diffeomorphism. Because the
inverse mapping  cannot be differentiated at the pointB œ ÐCÑ œ C9" "Î!

C œ !. We define now a new differentiable structure on  by another chart‘
Ð ß œ Ñ‘ < 9 ‘ ‘" . Let  denote the manifold  equipped by this structure.9

Hence, for each  one has . the local representation of theC − ÐCÑ œ C‘ < "Î!

mapping  is now given by , whereas that of9 ‘ ‘ 9 9À Ä ‰ ‰ 3 œ 39 ‘‘
" "

the inverse mapping  becomes . This9 ‘ ‘ 9 9" " " "À Ä 3 ‰ ‰ Ð Ñ œ 39 ‘ ‘

amounts to say that  is a diffeomorphism.9 ‘ ‘À Ä è9

Example 2.3.3. x The manifold  in’ ‘# $ # # #
" # $œ Ö − À B  B  B œ "×

‘$ will now be considered. We know that this sphere can only be homeo-
morphic to the plane  by employing two charts of its atlas and two diffe-‘#

rentiable functions ,  given below:9 9" #

y x y x y xœ Ð ß C œ à œ Ð Ñß C œ à − ß −
B B

"  B "  B
9 9 ‘ ’" 3 # 3

3 3

$ $

# #)

[ . 81-82]. Thus, we cannot find a single diffeomorphism .see :: 9 ’ ‘À Ä# #

Hence, the sphere cannot be diffeomorphic to the plane. On the other hand,
when we choose the ellipsoidal surface as another manifold given by Q œ

š ›y − À   œ " À Ä Q
C C C

+ , -
‘ 9 ’$

# # #
" # $
# # #

#, the mapping  defined by

C œ +B ß C œ ,B ß C œ -B" " # # $ $

is evidently a diffeomorphism. Thus the sphere and the ellipsoid are diffeo-
morphic manifolds. è

Example 2.3.4. Let us consider the unit circle  in  and the projec-’ ‘" #

tive space . These manifolds will be represented as follows: ‘ ’" " 3œ Ö/ ×)

and . It is easily observed that the single‘ 0 ‘" #

"

#œ œ À −  Ö ×
B

B
š ›x !

mapping  determined by tan  is a diffeomorphism be-9 ‘ 0 )À W Ä œ# "

tween two charts (  and ) of the projective space  [   87] andY Y :Þ" #
"‘ see

two charts of the circle . Hence, these manifolds are diffeomorphic.’" è
Example 2.3.5. We define the mapping  by the relation9 ‘À Ð+ß ,Ñ Ä

B œ Ð Ñ œ ß − Ð+ß ,Ñ
Ð,  +ÑÐ#  +  ,Ñ

%Ð  +ÑÐ,  Ñ
9 0 0

0

0 0
.

The inverse of this function is obtained as

0 9œ ÐBÑ œ
,  +  %+,B

Ð,  +Ñ Ð"  %B Ñ  #Ð+  ,ÑB  ,  +
"

# #

# #È
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if we note that  must belong to the open interval . The functions 0 9Ð+ß ,Ñ
and  are continuous and differentiable former on  while the latter9" Ð+ß ,Ñ
on . Thus  is a diffeomorphism. This means that every open in-Ð _ß _Ñ 9

terval in  is diffeomorphic to  itself.‘ ‘ è
Example 2.3.6. A mapping  between differentiable mani-9 “ ‘À Ä# $

folds  and  can be defined as follows [   82]“ ‘# $ see :Þ

9 ) 9 ) 9 ) 9 )Ð ß Ñ œ Ð+  , Ñ ß Ð+  , Ñ ß , œ ÐBß Cß DÑˆ ‰sin cos sin sin cos .

This mapping is clearly differentiable and smooth. The image of the mani-
fold  in  under the mapping  is the surface“ ‘ 9# $

B  C  D  #+ B  C  +  , œ !# # # # ## #È
obtained by eliminating parameters  and .) 9 è

Let  be a smooth mapping from the -dimensional mani-9 À Q Ä R 7
fold  to the -dimensional manifold . We consider points  andQ 8 R : − Q
; œ Ð:Ñ − R ÐY ß Ñ ÐZ ß Ñ9 : < in the local charts  and , respectively. Then the
mapping  is represented by the function 9 F : ‘ < ‘À ÐY Ñ © Ä ÐZ Ñ ©7 8

that can be written as  or ,  iny xœ Ð Ñ C œ ÐB ß á ß B Ñ 3 œ "ß á ß 8F F3 3 " 7

terms of local coordinates. We know that  are smooth functions. F3 The rank
of the mapping  at the point  9 : is defined as the rank of the following
8 ‚ 7 Jacobian matrix [German mathematician Carl Gustav Jacob Jacobi
(1804-1851)]

JÐ Ñ œ œ
`

`B

` ` `

`B `B `B
â

` ` `

`B `B `B
â

ã ã ã
` ` `

`B `B `B
â

9
F

F F F

F F F

F F F

’ “ Ö Ù
Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

3

4

" "

" # 7

"

# # #

" # 7

8 8 8

" # 7

.

If the rank of  at a point  admits its greatest value, that is, if it is9 : − Q
equal to , then we say that its rank is  at that point. If themin Ö7ß 8× maximal
rank of  is maximal every point  of a subset , then its rank is9 : − W W © Q
maximal on .W

Theorem 2.3.1. Let the rank of a mapping  be maximal at9 À Q Ä R
a point . Consider the chart  at the point  and the chart: − Q ÐY ß ::Ñ
ÐZ ß Ñ Ð:Ñ ÐY Ñ © Z<   .at the point such that  Then the local coordinates9 9
ÐB ß B ß á ß B Ñ Ð:Ñ" # 7   in the neighbourhood of the point andx œ :
ÐC ß C ß á ß C ß á ß C Ñ œ Ð Ð:ÑÑ œ" # 7 8  in the neighbourhood of the point y < 9
F F < 9 : 9Ð Ñ œ ‰ ‰x    can be so chosen that the local representation of"
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admits the following forms

y
y

œ ÐB ß B ß á ß B Ñ 8 Ÿ 7

œ ÐB ß B ß á ß B ß !ß á ß !Ñ 8  7

" # 8

" # 7

    ,   

  .  

if  
if  

In terms of arbitrary coordinates in charts, consider the representation
(3 œ F 0 0 ( 03 " 7 3 4Ð ß á ß Ñ 3 œ "ß á ß 8 8 ‚ 7 Ò` Î` Ó,  .  Jacobian matrix is .

If , the rank of this matrix is . Let us rearrange the variables in8 Ÿ 7 8
such a way that the determinant of the square matrix , Ò` Î` Ó 3ß 4 œ "ß( 03 4

á ß 8 does not vanish. Then according to the well known implicit function
theorem, the equations  have uniquely de-B œ Ð ß á ß ß ß á ß Ñ3 3 " 8 8" 7F 0 0 0 0
termined smooth solutions  in0 G 0 03 3 " 8 8" 7œ ÐB ß á ß B ß ß á ß Ñß " Ÿ 3 Ÿ 8
a sufficiently small neighbourhood. If we now write 08" 8"œ B ß á ß
07 7œ B :, the new local coordinates in a neighbourhood of the point  be-
come . Thus, the local coordinates in the neigh-ÐB ß á ß B ß B ß á ß B Ñ" 8 8" 7

bourhood of the image point  takes the form .9Ð:Ñ œ œ ÐB ß á ß B Ñ( y " 8

If , the rank of the Jacobian matrix is . Let us now rearrange8  7 7
the variables in such a way that a  square submatrix , 7 ‚ 7 Ò` Î` Ó 3ß 4( 03 4

œ "ß á ß 7  of the Jacobian matrix has a non-zero determinant. We now
choose the new local coordinates in a neighbourhood of the point  as ; B œ3

F 0 03 " 7Ð ß á ß Ñß 3 œ "ß á ß 7 . Then, we can uniquely determine smooth so-
lutions . Thus, we can define the new 0 G3 3 " 7œ ÐB ß á ß B Ñß 3 œ "ß á ß 7
local coordinates in a neighbourhood of the point  by 9Ð:Ñ (3 3 3œ C œ B ß
3 œ "ß á ß 7 Ð ß á ß Ñ œ ÐC ß á ß C Ñ 3 œ and , C œ  3 3 3( (F 0 0 H3 " 7 3 " 7

7  "ß á ß 8 œ ‰ where . However, because of the initial relationsH F G
(3 œ F 0 03 " 7Ð ß á ß Ñ 3 œ 7  "ß á ß 8, , we immediately see that we are led
to .y œ ÐB ß á ß B ß !ß á ß !Ñ" 7 

2.4. SUBMANIFOLDS

Let  be a smooth mapping between manifolds  and9 À Q Ä R Q 7

R Þ 7   8 : − Q 88  If  and the rank of  at every point  is , then the9
mapping  is called a . In this case, Theorem 2.3.1 indicates that9 submersion
the local representation  of  is simply expressible as followsF 9

C œ B ß C œ B ß á ß C œ B" " # # 8 8  

with an appropriate choice of coordinates.
Example 2.4.1. The mapping  is given by the relations9 ‘ ‘À Ä$ #

C œ B  B ß C œ B" # $ # ".

Jacobian matrix of this mapping is
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J œ
! " "
" ! !” •

and its rank is  everywhere. Thus  is a submersion.# è9
Example 2.4.2. Let  be an open set. Hence  is a -dimen-Y © Y $‘$

sional differentiable manifold. Jacobian matrix of a mapping  is9 ‘À Y Ä
of course given by

J œ
` ` `

`B `B `B
” •9 9 9

" # $
.

If  has at least one non-vanishing partial derivative at each point of , then9 Y
the rank of this matrix is . In this case  is a submersion. As an example let" 9
us choose the open set  and theY œ Ö − À ÐB Ñ  ÐB Ñ  ÐB Ñ  !×x ‘$ " # # # $ #

mapping given by . The Jacobian matrix of9Ð Ñ œ ÐB Ñ  ÐB Ñ  ÐB Ñx " # # # $ #

this mapping is  whose entries cannot be all zero in .J œ # YB B Bc d" # $

Thus  is a submersion. On the other hand, the Jacobian matrix for the map-9
ping  is . All entries of this matrix9"

" # $ # $ " $ " #Ð Ñ œ B B B œ B B B B B Bx J c d
may vanish at some points of  (for instance, at ). AtY B œ B œ !ß B Á !" # $

such kind of points the rank of  is . Hence, the mapping  isJ ! À Y Ä9 ‘"

not a submersion. è
Let  be a smooth mapping. If  and the rank of  at9 9À Q Ä R 8   7

every point  is , then the mapping  is called an . Again,: − Q 7 9 immersion
Theorem 2.3.1 implies that the local representation  of  is expressibleF 9
now in the form

C œ B ß C œ B ß á ß C œ B ß C œ !ß á C œ !" " # # 7 7 7" 8

with an appropriate choice of coordinates.
Example 2.4.3. The mapping  is defined by the relations9 ‘ ‘À Ä #

C œ B ß C œ B" " # "cos sin . Obviously, this mapping wraps the entire real axis
‘ ’ on the unit circle . The Jacobian matrix of this mapping becomes " J œc d "B Bsin cos" " . The rank of this matrix is  everywhere on . Hence ‘ 9
is an immersion. Since all the points , where  de-B œ B  #8 ß 8 −" "

8 1 ™ ™
notes the set of integers, are mapped on the same point  they œ ÐC ß C Ñ" #

mapping  is obviously not injective.  9 è
  The mapping  revolves the plane curveExample 2.4.4. 9 ‘ ‘À Ä# $

B œ 0ÐB Ñ B 0ÐB Ñ  !" # # # infinitely many times about -axis.  is a smooth
function. This mapping can be prescribed by the relations

C œ 0Ð?Ñ @ß C œ 0Ð?Ñ @ß C œ ?à ?ß @ −" # $cos sin ‘
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where we wrote . The Jacobian matrix is then given byB œ ?ß B œ @" #

J œ
0 Ð?Ñ @ 0Ð?Ñ @
0 Ð?Ñ @ 0Ð?Ñ @

" !

Ô ×
Õ Ø

w

w
cos sin
sin cos  .

Since , the rank of this matrix is  everywhere. Thus  is an im-0Ð?Ñ  ! # 9
mersion. Clearly, it is not injective. è

Example 2.4.5. We consider the torus . The circle “ ’ ’ ’# " " "œ ‚
may be represented by complex numbers with constant modulus in the com-
plex plane . Therefore, we can write‚

“ ‚ ‚# #
" # " # " #œ ÖÐD ß D Ñ À D ß D − ß lD l œ +ß lD  +l œ ,ß ,  +× § .

We define a mapping  by the relations 9 ‘ “À Ä D œ +/ ß D  + œ ,/# 3> 3<>
" #

where  is a . We can observe at once that this mapping is< rational number
an immersion and it produces a closed curve on the torus. In fact, if choose
the integer  and  such that  we reach to the same points7 8 8 œ 7<

/ œ D ,/ œ D  +3># 73 3<># 83
" #

1 1, 

at all points . This means that we reach to the same point on> œ >  # 77 1
the torus after having revolved  times the point  and  times the point 7 D 8 D" #

about . This immersion is clearly not injective.S è
 If  is an  and if the surjective, conse-9 À Q Ä R injective immersion

quently, bijective mapping  is a homeomorphism with9 9À Q Ä ÐQÑ © R
respect to the relative topology on  generated by the topology on9ÐQÑ © R
the manifold , then the mapping  is called an .R 9 embedding

If the set  is a topological subspace of the manifold  and theQ R7 8

inclusion mapping  defined by  for each \ \À Q Ä R Ð:Ñ œ : − R : − Q
is an embedding, then the subpace  is called a  of dimensionQ submanifold
7 Ÿ 8 R of the manifold . Indeed, we can readily generate a differentiable
structure on  by making use of the differentiable structure on the mani-Q
fold . Let us consider a point . This point is located in a chartR : − Q © R
ÐY ß Ñ R Y œ Y  Q Q:  of the atlas on .  is an open set of  in the relativew

topology. The mapping  is a homeomorphism: : \ ‘w 8œ ‰ À Y  Q Ä
because it is the composition of two homeomorphisms. Let us denote the set
of coordinates of the point  in  by  and the set of coordinates in  by .: R Qx y
As is well known, we write the expression  where we definey xœ Ð Ñ¼

¼ : \ :œ ‰ ‰w ".

Since the rank of  is  and rank remains invariant under composition\ 7  8
of homeomorphisms, the rank of the mapping  is also .¼ ‘ ‘À Ä 7  88 8
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This means that an appropriate choice of coordinates leads to local coordi-
nates  [Theorem 2.3.1]. Hence, one hasy œ ÐB ß á ß B ß !ß á ß !Ñ −" 7 7‘
: ‘w w 7À Y Ä Q 7. Consequently, the topological subspace  is an -dimen-
sional differentiable submanifold. Let us now denote ,: ‘w 7Ð:Ñ œ −0
0 œ Ð ß á ß Ñ : − Y © Q : œ Ð Ñ œ0 0 :" 7 w " for a point . Then the equality x
: : : <w" w"Ð Ñ ‰ ÑÐ Ñ œ Ð Ñ0 0 0 yields the coordinate transformation x œ Ð
where the mapping  is expressed by < ‘ ‘ < 0 0À Ä B œ Ð ß á ß Ñß7 8 3 3 " 7

3 œ "ß á ß 8 Q. These relations describe fully the submanifold . Evidently,
the rank of the matrix  should be . ‘`B Î` ß œ "ß á ß 7 73 0 !!

If  is an embedding, then the subspace  is an9 9À Q Ä R ÐQÑ © R7 8

7 R-dimensional submanifold of the manifold .
We take a point  into account and let .: − Q ; œ Ð:Ñ − ÐQÑ © R9 9

Because  is a homeomorphism on its range , there exists a chart9 9ÐQÑ
ÐY ß Ñ : Q ÐZ ß Ñ: < enclosing the point  of the manifold  and a chart  enclos-
ing the point  of the manifold  such that the open set  is contained; R ÐY Ñ9
in the open set . The rank of the function Z œ ‰ ‰ À ÄF < 9 : ‘ ‘" 7 8

which is the local representation of the mapping  is equal to the rank  of9 7
the embedding  since  and  are homeomorphisms. Hence, we can re-9 : <
write  and on the open set  in theF ‘ ‘ 9 9À Ä Z œ ÐY Ñ  Z œ ÐY Ñ7 7 w

relative topology we have . Thus the subspace  is< ‘ 9À Z Ä ÐQÑ © Rw 7

an -dimensional differentiable submanifold of the manifold . In such a7 R
case we sometimes prefer to regard the manifold  as a submanifold of Q R
even if they are actually different manifolds. 

Let the mapping  be a submersion. Thus the condition9 À Q Ä R7 8

7   8 8 U © R will hold and the rank of  will become . If  is a submani-9
fold, then the subspace  is either a submanifold of  orT œ © Q Q9"ÐUÑ
it is empty.

Let us assume that  is not empty so that .T œ ÐUÑ U  Ð Ñ Á g9 e 9"

Since is a submersion, we can choose the local coordinates  and9 x œ Ð:Ñ:
y œ Ð;Ñ : − T ; œ − U ÐY ß Ñ< : of the points  and  in local charts  and9Ð:Ñ
ÐZ ß Ñ B ß B ß á ß B ß B ß á ß B C œ B ß C œ B ß á ß<  in the form  and " # 8 8" 7 " " # #

C œ B U < " Ÿ < Ÿ 88 8. If the dimension of the submanifold  is  with , then
one can find a coordinate transformation , or z yœ J Ð Ñ D œ J ÐC ß á ß C Ñß" " " 8

á ß D œ J ÐC ß á ß C Ñ ;8 8 " 8  such that the local coordinates of the point  can
be prescribed by imposing the conditions . We nowD œ â œ D œ !<" 8

choose the local coordinates of the point  as follows::

A œ J ÐB ß á ß B Ñß á ß A œ J ÐB ß á ß B Ñ

A œ B ß á ß A œ B

" " " 8 8 8 " 8

8" 8" 7 7

,

.

Therefore, the local representation  of the mapping  becomesz wœ Ð ÑF 9
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D œ A ß á ß D œ A U" " 8 8. But the submanifold  is determined by the condi-
tions . This implies that the subspace  in theD œ â œ D œ ! ÐUÑ<" 8 "9
vicinity of the point  is described by coordinates : ÐA ß á ß A ß !ß á ß !ß" <

A ß á ß A Ñ ÐUÑ Ð7  8  <Ñ8" 7 ". This is tantamount to say that  is an -9
dimensional submanifold. 

Example 2.4.6. As we have seen before, any open set of a manifold Q
is an open submanifold [ . 77].see : è

Example 2.4.7. Let us consider a smooth function . We9 ‘ ‘À Ä7

further suppose that at a point , at least one of the partial derivativesx − ‘7

` Î`B ß 3 œ "ß á ß 89 93  does not vanish. Thus the mapping  is a submersion
of rank . Since we can trivially observe that the singleton  is a -" Ö!× § !‘
dimensional submanifold of the -dimensional manifold , then the sub-" ‘
space , that is, the set  is an9 ‘ ‘ 9" 7 7ÐÖ!×Ñ § Q œ Ö À Ð Ñ œ !×x x−
Ð7  "Ñ è-dimensional submanifold. 

Example 2.4.8. The function  is given by9 ‘ ‘À Ð!ß _Ñ Ä§ #

9 9 9 ‘Ð>Ñ œ Ð>Ñ œ > ß Ð>Ñ œ > −
" "

> >
Š ‹" # #cos sin .

Fig. 2.4.1. Spiral in ‘#Þ

Hence the range  of the mapping  is a spiral around theG œ Ð!ß _Ñ9 9ˆ ‰
point  in  depicted in Fig. 2.4.1. We obtain  and ! ‘ 9 9# " #Ð>Ñ Ä _ Ð>Ñ Ä "
as . We can easily note that this mapping is injective and its rank is> Ä _
" G. Thus it is an injective immersion. The relative topology on  is defined
in the usual way by means of open sets  where  is an open set inÖG  Z × Z
‘ 9 9# ". With respect to these topologies, the mappings  and À G Ä Ð!ß _Ñ
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are both continuous. Hence  is a homeomorphism, thus it is an embedding.9
Consequently  is a -dimensional submanifold in  .G " è‘#

Submanifolds can also be determined by means of a set of equations.
Theorem 2.4.1. -We define a subset  of an dimensional differenti-Q 8

able manifold N by means of differentiable functions 0 À R Ä! ‘ !ß œ "ß
á ß 7 7 Ÿ 8   where as follows

Q œ Ö: − R À 0 Ð:Ñ œ !ß! ! œ "ß á ß 7× © R .

We further assume that the rank of the function prescribed by0 À R Ä ‘7 
0Ð:Ñ œ 0 Ð:Ñß á 0 7 : − Q Qˆ " 7Ð:Ñ‰ is  at each point . In this case  proves
to be a submanifold of dimension .8  7

Let  be a chart containing a point  and let the local coor-ÐY ß Ñ : − Q:
dinates be . Since the rank of the mapping  is  on the:Ð:Ñ œ ÐB ß á ß B Ñ 0 7" 8

set , the matrix  has at least one  square sub-Q Ò`Ð0 ‰ ÑÎ`B Ó 7 ‚ 7! :" 3

matrix whose determinant does not vanish. We may rename the variables if
necessary so that this square matrix is specified by Ò`Ð0 ‰ ÑÎ`B Óß œ! : !" 3

"ß á ß 7à 3 œ "ß á ß 7. Hence, we can perform the following coordinate
transformation

B œ Ð0 ‰ Ñ B œ B à œ "ß á ß 7ß 4 œ "ß á ß 8  7w " w 474! ! : !Ð Ñßx

in an open neighbourhood  of the point . Thus, the local chartY © Y :w

ÐY ß Ñ : − Qw w:  containing the point  yields

:w w w w7" 8
ÐY  QÑ œ Ö!ß á ß !ß B ß á ß B ×.

Since similar charts would exist at every point of , this set is an -Q Ð8  7Ñ
dimensional submanifold. It is clear that such a submanifold may be also
prescribed by a family of differentiable functions  where 's are0 Ð:Ñ œ - -! ! !

constants. This will help us to define a family of submanifolds. 
By utilising this theorem we can readily demonstrate that -di-Ð8  "Ñ

mensional sphere  is a submanifold of . The sphere with a radius ’ ‘8" 8 V
is the subset

’ ‘8" 8 3 # #

3œ"

8

œ Ö − À 0Ð ÐB Ñ  V œ !×x xÑ œ " .

The rank of the function  is  at every point . Hence,0 À Ä " −‘ ‘ ’8 8"x
’8" is an -dimensional submanifold. On the other hand, the coneÐ8  "Ñ

G œ Ö − À 0Ð Ñ œ ÐB Ñ  ÐB Ñ œ !×8" 8 " # 3 #

3œ#

8

x x‘ "
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is not a submanifold of  because the rank of  is  at the point ,‘8 0 ! œx !
while it is  at all other points. Therefore, if only we delete the point , then" !
the punctured cone becomes an -dimensional submanifold of .Ð8  "Ñ ‘8

If the mapping  is solely an injective immersion, then the9 À Q Ä R
subspace  is called an . Unless the mapping9ÐQÑ © R immersed manifold
9 is a homeomorphism on its range, an immersed manifold is obviously not
a submanifold.

Example 2.4.9. Let us define the mapping  by the relations9 ‘ “À Ä #

D œ +/ D  + œ ,/" #
3> 3 > and  [ Example 2.4.5]. Here  is now an irra-! see !

tional number. Hence, we find  when . Thus  is injec-> œ > Ð> Ñ œ Ð> Ñ" # " #9 9 9
tive and its rank is . Consequently, it is an injective immersion and " Ð Ñ9 ‘
becomes an immersed manifold. We can easily show that the set Q œ
9 ‘ “ 9 ‘ “Ð Ñ is dense in . The mapping  winds the line  around the torus # #

without ever traversing the same point on the torus again. In order to prove
that the set  is dense in , we have to show that we can find a point inQ “#

Q  that is as close as we wish to a given point in . Let us consider an“#

arbitrary point  where . The distance betweenÐ+/ ß +  ,/ Ñ − ß −3 3 #= ) “ = ) ‘
the selected point in  and a point in  is given by“# Q

l+/  +/ l  l+  ,/  +  ,/ l œ +l/  "l  ,l/  "l

œ + # "  Ð  >Ñ  , # "  Ð  >Ñ

œ #+
 >

3 3> 3 3 > 3Ð >Ñ 3Ð  >Ñ= ) ! = ) !

                              É Éˆ ‰ ˆ ‰
¹

cos cos

sin

= ) !

=

# #
 #,

 >¹ ¹ ¹sin
) !

.

Rational numbers are dense in real numbers. Therefore, for each  and%  !
real numbers , we can find integers  and  such that the= )ß ß > : ß ; ß 7 : ß ; ß 8" " # #

inequalities

¹ ¹ ¹ ¹= ) !

1 1
% %

 > :  > :

% ; % ;
  7  ß   8 

" #

" #

are satisfied. The integers  and  are so chosen that we ought to have7 8
l: Î; l  " l: Î; l  " > œ >  % Ð: Î; Ñ" " # # " " " and . If we now write  and1
> œ >  % Ð: Î; Ñ2 ! 1 # # , then the foregoing inequalities take the form

l  >  % 7l  % ß l  >  % 8l  %= 1 1% ) 1 1%" # .

By introducing , these inequalities may be transformed into> œ Ð> ß > Ñ$ " #max

l  >  % 7l  % ß l  >  % 8l  %= 1 1% ) 1 1%$ $ .

Hence, for given real numbers ,  we can find a real number  so that one= ) >$

obtains



110 II  Differentiable Manifolds

#+  #,
 >  >

# #

œ #+  # 7  #,  # 8
 >  >

# #
 #+l # l  #,l # l  % Ð+  ,Ñ

¹ ¹ ¹ ¹
¹ Š ‹¹ ¹ Š ‹¹

sin sin

sin sin

sin sin

= ) !

= )
1 1

1% 1% 1%

$ $

It is easy to see that the immersed manifold  is not a submanifold. In fact,Q
under the mapping  the line  intersects an open set in  infinitely many9 ‘ “#

times. Therefore, an open set in the relative topology on  is the union ofQ
infinitely many pieces. Thus it is unbounded. This implies that the image of
a bounded open set in  is unbounded. Hence the mapping  is not con-‘ 9
tinuous with respect to the relative topology, that is, it is not a homeomor-
phism on its range. è

2.5. DIFFERENTIABLE CURVES

A  on an -dimensional differentiable manifolddifferentiable curve   G 7
Q ÐG Ñ À Ä Q is defined through a differentiable  mapping  where _ # \ \
œ Ð+ß ,Ñ © :‘ is an open interval on the real line. Thus, a point  of the

curve  is given by , . The interval must beG œ Ð Ñ Q : œ Ð>Ñ > −§# \ # \
open in order to secure differentiability at neighbourhoods of endpoints. If
the curve is defined on a closed interval , then we shall have to assumeÒ+ß ,Ó
that the mapping  admits a  extension  for a# # % %G À Ð+  ß ,  Ñ Ä Q_

number  so that%  !

# #Ð>Ñ œ Ð>Ñß > − Ò+ß ,ÓÞ

To realise the local representation of any point  of the curve, it: œ Ð>Ñ#
suffices to consider a chart  enclosing the point . The locus ofÐY ß Ñ : − Q:
the points  is the local representation of a part of thexÐ>Ñ œ Ð>Ñ §: # ‘ˆ ‰ 7

curve  in the open set . Naturally, when we move on the curveG ÐY Ñ ©: ‘7

G  local representations may change together with charts taken into consid-
eration. By employing the coordinate functions , : : ‘3 3œ 1 ‰ À Y Ä 3 œ
"ß âß 7 : G  [ . 71] the parametric representation of the curve  in thesee 
open set  is provided by functions  in local coor-: : # #ÐY Ñ B œ Ð>Ñ œ Ð>Ñ3 3 3ˆ ‰
dinates where we have defined the mappings # : # \ ‘ ‘3 3œ ‰ À © Ä ß
3 œ "ß âß 7 Ð>Ñ. Since  is a differentiable mapping, the functions  have# #3

clearly derivatives of all orders with respect to . If at every point on the>
curve, at least one of the first order derivatives does not vanish, then the
rank of the mapping  is . In this case,  becomes an immersion. But the# #"
curve may intersect itself, thus we cannot claim that this immersion is



2.5  Differentiable Curves 111

injective (Fig. 2.5.1).

+

,

>

:

G
Q

#

‘

‘

:

:

Y

B

Bw

7

w

Y
w

\

Fig. 2.5.1. A curve on a differentiable manifold.

If the curve  is defined on a closed interval , we call theG œ Ò+ß ,Ó\
points  and  the  and the  of the: œ Ð+Ñ : œ Ð,Ñ+ ,# # initial point end point
curve, respectively. We get a  if . A closed curve simple closed# #Ð+Ñ œ Ð,Ñ
curve is a closed curve defined on , however,  must be an injectiveÒ+ß ,Ó #
mapping on the half-open interval .Ò+ß ,Ñ

Example 2.5.1. A mapping  is prescribed by functions# À Ò!ß # Ó Ä1 ‘#

B œ >ß B œ > #>" # #cos sin . The closed curve in  generated by this mapping‘
is shown in Fig. 2.5.2. We observe that this curve intersects itself. Therefore
# is not an injective mapping. Moreover, it has a corner point.

Fig. 2.5.2. A closed curve. è



112 II  Differentiable Manifolds

2.6. VECTORS. TANGENT SPACES

Our aim in defining tangent vectors and the tangent space formed by
these vectors at a point  on a differentiable manifold is essentially twofold::
Ð3Ñ to extend the concept of directional derivative of a differentiable func-
tion with which we are quite familiar in the Euclidean space to differenti-
able manifolds,  to be able to specify differentiability properties of vari-Ð33Ñ
ous quantities at the vicinity of the point  as independent of local coordi-:
nates and to approximate the manifold locally by a linear vector space. A
differentiable manifold does generally not possess the structure of a vector
space. Thus vector spaces cannot be incorporated globally into such a mani-
fold. Hence, we shall try to manage this task locally. Our first endeavour
will be to find a tangible way that help define tangent vectors at a point  of:
a finite-dimensional manifold. To this end, we take all curves through the
point  on the manifold into account and we specify all vectors at this point:
on the manifold by means of tangent vectors at the image point of curves
obtained by making use of the local representations of these curves in the
Euclidean space. Thus, all curves that are tangent to one another at the point
: will generate the same vector. We now define a relation on the set of all
curves through the point  of the manifold as  .: :being tangent at the point
We can readily verify that this is an equivalence relation. Indeed, we see
immediately that this relation is (each curve is tangent to itself),reflexive 
symmetric (if the curve  is tangent to , then  is tangent to  as well)G G G G" # # "

and (if  is tangent to  and  to , then the curve  istransitive G G G G G" # # $ "

obviously tangent to the curve ). Hence, all curves through the point  areG :$

partitioned into disjoint equivalence classes. All curves in an equivalence
class are tangent to one another at the point , therefore they possess the:
same tangent vector. We can thus try to identify tangent vectors at a point :
of the manifold with equivalence classes of curves through this point. We
define the set of equivalence classes, namely, the quotient set as the tangent
space at the point . We shall now attempt to provide these somewhat:
abstract ideas with a fully concrete content.

Let us consider a point  on the manifold  and a curve  through: Q G7

this point specified by the mapping . We so choose the para-# \À Ä Q
meter  of the curve as . We know that in the classical analysis, the> : œ Ð!Ñ#
tangent vector to the curve  at the point  is found by means of differen-G :
tiation with respect to the parameter. However, it is not possible to apply the
usual differentiation operation on a general manifold. Thus we opt to trans-
fer this operation on  by employing a local chart. Let  be a chart‘ :7 ÐY ß Ñ
containing the point . In terms of local coordinates provided by this chart,:
local representation  of the curve  in  is determined parametricallyG Gw 7‘
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through the differentiable functions  as follows:# \ ‘3 À Ä

B œ Ð>Ñß 3 œ "ß á ß 7¯ . (2.6.1)3 3#

The local coordinate of the point  is supposed to be . (2.6.1) can: B œ Ð!Ñ3 3#
now be collectively written as

x e¯ œ Ð>Ñ œ Ð>Ñ# #3
3

where the vectors ,  are standard basise3
3

œ Ð!ß á ß !ß "ß !ß á !Ñ 3 œ "ß á ß 7

vectors for the vector space . As is well known, a tangent vector to the‘7

curve  at a point is specified by its components  defined by¯G @w 3

v e¯
x

Ð>Ñ œ œ @ Ð>Ñ ß @ Ð>Ñ œ œ
. .B .

.> .> .>
¯

¯ ¯
¯ .3 3

3

3 3#

Thus, the tangent vector to the curve  at the point  isG œ Ð:Ñ −w 7x : ‘
given by

v eœ @ ß @ œ ß 3 œ "ß á ß 7
.

.>
3 3

3

3

>œ!
º#

. (2.6.2)

Since  are all smooth functions they can be expanded into a Maclaurin#3Ð>Ñ
series about the point  [after Scottish mathematician Colin Maclaurin> œ !
(1698-1746)]. Thus we can write

B œ Ð>Ñ œ Ð!Ñ  >  >  â œ B  @ >  9Ð>Ñ
. " .

.> # .>¯ .3 3 3 # 3 3
3 # 3

>œ! >œ!
#

# #
# #º º

where the   [after German mathematician Edmund GeorgLandau symbol 9Ð>Ñ
Hermann Landau (1877-1938)] represents all functions  satisfying the rela-0
tion  as . Another curve through the point  can be0Ð>ÑÎ> Ä ! > Ä ! Ð:Ñ:
represented in a similar fashion by expressions

#
#µ µ µ
µ

3 3 33
3

>œ!

Ð>Ñ œ B  @ >  9Ð>Ñß @ œ
.

.> » .

Therefore the  between those two curves is found to bedifference

# #µ µ3 33 3Ð>Ñ  Ð>Ñ œ Ð @  @ Ñ>  9Ð>Ñ.

If those two curves are tangent to one another at the point  and have a:Ð:Ñ

common tangent vector, then one obtains . This, of course, leads to@ œ @µ 3 3

# #µ 3 3Ð>Ñ  Ð>Ñ œ 9Ð>Ñ. Hence, the closeness of two such curves is of second
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order. It is clear that a relation so defined is an equivalence relation. (2.6.2)
implies that tangent vectors at a point  of  constitute an -dimensionalx ‘7 7
linear vector space. This vector space is called the  at the pointtangent space
x of  and is denoted by . We see at once that the tangent space‘ ‘7 7X Ð Ñx
X Ð Ñ Ä X Ð Ñx x‘ ‘ ‘ ‘7 7 7 7 and  are isomorphic. The isomorphism  is provid-
ed by the linear mapping that assigns a vector  to an or-v eœ @ − X Ð Ñ3 7

3 x ‘
dered -tuple .7 Ð@ ß á ß @ Ñ −" 7 7‘

The above approach makes it possible to identify curves tangent to one
another at a point  on  as images of curves tangent to one another at the: Q
point  in the open set  under the homeomorphism . We inter-: : :Ð:Ñ ÐY Ñ "

pret an equivalence class of curves so formed as a tangent vector at a point
: − Q Q Q to the manifold . However, since  is generally not endowed
with a vector space structure we cannot emplace such vectors into the mani-
fold in the usual sense. In order to achieve this, we have to develop a new
but equivalent concept. For this purpose, the classical notion of directional
derivative of a function turns out to be very helpful.

We had denoted the set of smooth functions  on a manifold0 À Q Ä ‘
Q GÐQÑ :Þ by . We have seen that this set is an algebra [  94]. Hence-see 
forth we denote this algebra by .A!ÐQÑ

Let a point  be contained in the chart . In a neighbour-: − Q ÐY ß Ñ7 :
hood of the image point  we define an operatorx œ Ð:Ñ − ÐY Ñ ©: : ‘7

Z À Ð Ñ Äx
w ! 7A ‘ ‘ at that point as follows: this operator will assign a real

number to each smooth function  in association with a given0 − Ð Ñw ! 7A ‘
vector  at that point or, in other words, with a curve  tan-v x x eÐ Ñ @ Ð Ñ Gœ 3 w

3

gent to this vector at  by the rulex

Z Ð0 Ñ œ œ 0 œ @ Ð Ñ
.0 Ð>Ñ

.> .> `B `B

. Ð!Ñ ` `0 Ð Ñ
x
w w w 3

w

>œ!

3 w

3 3»ˆ ‰ Š ‹# #
x

x
. (2.6.3)

We know that  is the directional derivative of the function  at theZ Ð0 Ñ 0x
w w w

point along the curve , or in the direction of the vector . Hence thex vGw

operator  at the point  can be defined in the following wayZx
w x

Z œ @ œ
` .

`B .>x
w 3

3
>œ!
º . (2.6.4)

If there is no ambiguity, we can dispense with the subscript denoting with
which point the operator is associated. It is clear from the definition that for
every functions  and number , we can write0 ß 1 − Ð Ñ −w w ! 8A ‘ ! ‘

Z Ð0  1 Ñ œ Z Ð0 Ñ  Z Ð1 Ñß Z Ð 0 Ñ œ Z Ð0 Ñw w w w w w w w w w w! ! .
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Thus  is a  on . It is also evident that there corresponds aZ w linear operator ‘
unique operator to each vector . It is straightforward to see that the set ofv
all these linear operators constitutes a linear vector space. Consider the ope-
rators . We find thatZ œ @ `Î`B Z œ @ `Î`B" #

w 3 3 w 3 3
" # and 

! ! ! !" # " #" # " #
w w 3 3 3 w

3 3
Z  Z œ Ð @  @ Ñ œ @ œ Z

` `

`B `B

for every . The mapping  between two linear vector! ! ‘" #
wß − Ä Zv

spaces is an isomorphism. Indeed, this mapping is linear, because we have
v v v" # " #

w w w Ä Z  Z Ä Z, . This mapping is surjective because each! !
operator  is generated by a vector . Let us now suppose that the sameZ w v
operator is associated with two vectors  and . Consequently, for v v" # every
function  one writes0 − Ð Ñw ! 8A ‘

Z Ð0 Ñ œ @ œ @
`0 `0

`B `B
w w 3 3

" #

w w

3 3
.

When we choose the function , we obtain  and0 œ B Z ÐB Ñ œ @ œ @w 4 w 4 3 3
" #3 3

4 4$ $

@ œ @ 4 œ "ß á ß 7 œ" #
4 4

" # for  or . Thus the mapping is injective, hencev v
bijective. In this case the linear vector spaced formed by operators  is alsoZ w

7-dimensional. Practically, two isomorphic vector spaces can be considered
as the same as far as their algebraic properties are concerned. Therefore,
instead of the tangent space  at a point  we can take into conside-X Ð Ñx ‘

7 x
ration the isomorphic vector space formed by the operators  at that point.Zx

w

Let us next consider a curve  on the manifold  through the pointG Q
: − Q À M Ä Q Ð!Ñ œ : that is determined by a mapping , . We shall# #
now try to designate similarly an operator  representing the tangent vectorZ
of the curve at the point  as a derivative along the curve . Let us assume: G
that the point  is contained in a chart . For each function ,: ÐY ß Ñ 0 − ÐY Ñ: A!

we introduce the following operator at the point :

Z Ð0Ñ œ œ
.0 Ð>Ñ

.> .>

.Ð0 ‰ Ñ
:

>œ! >œ!
»ˆ ‰ º# #

. (2.6.5)

We determine the function  such that  at the point0 − Ð Ñ 0 Ð Ñ œ 0Ð:Ñw ! 7 wA ‘ x
x œ : ‘ :Ð:Ñ − 0 œ 0 ‰7 w ". Hence, this function is given by  and using
the relation , we obtain0 œ 0 ‰w :

Z Ð0Ñ œ œ œ
.Ð0 ‰ Ñ .Ð0 ‰ ‰ Ñ

.> .> .>

.0 Ð>Ñ
:

>œ! >œ!

w w

>œ!

º º »ˆ ‰# : # #
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Therefore, we can write below the defining rule for the operator :Z:

Z Ð0Ñ œ Z Ð0 Ñß Ð:Ñ:
w w

x x œ : . (2.6.6)

Thus, the action of the operator  at the point  on a function  is uniquelyZ : 0
determined by the components  of the tangent vector to the@ œ .B Ð>ÑÎ.>3 3

curve   at the point  with local coordinates  as follows:G œ ÐGÑ Bw 3: x

Z Ð0Ñ œ Z Ð0Ñ œ œ @ œ @
.0 `0 `Ð0 ‰ Ñ

.> `B `B
:

w w "

>œ!

3 3
3 3º :

. (2.6.7)

(2.6.7) now amply justifies the interpretation that  is the derivative ofZ Ð0Ñ
the function  at a point  along a curve through this point whose tangent0 :
vector there is specified by the operator . We can immediately concludeZ
from the foregoing relations that if the equality  holds forZ Ð0Ñ œ Z Ð0Ñ" #

every function , then two curves whose tangent vectors at the0 − ÐY ÑA!

point  are given by  and  are tangent to one another at . Indeed,: − Q Z Z :" #

if we insert coordinate functions  satisfying : A :4 ! 4− ÐY Ñß 4 œ "ß á ß 7 Ð:Ñ
œ B4 into (2.6.7), we find

@ œ @ @ œ @
`B `B

`B `B" # " #
3 3 3 3

4 4

3 3 3 3
4 4

  and  $ $

leading to .  is a linear operator on . The relations@ œ @ ß 4 œ "ß á ß 7 Z" #
4 4 ‘

Z Ð0  1ÑÐ:Ñ œ Z 0Ð:Ñ  1Ð:Ñ œ Z 0 Ð Ñ  1 Ð Ñ

œ Z 0 Ð Ñ  Z 1 Ð Ñ œ Z 0Ð:Ñ  Z 1Ð:Ñ

Z Ð 0ÑÐ:Ñ œ Z 0Ð:Ñ œ Z 0 Ð Ñ œ Z 0 Ð Ñ œ Z 0Ð:Ñ

ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰
w w w

w w w w

w w w w

x x
x x

x x! ! ! ! !

imply that  and . Furthermore,Z Ð0  1Ñ œ Z Ð0Ñ  Z Ð1Ñ Z Ð 0Ñ œ Z Ð0Ñ! !
the linear operator  meets the rule given first by German mathematicianZ
and philosopher Gottfried Wilhelm von Leibniz (1646-1716):

Z Ð01ÑÐ:Ñ œ Z 0Ð:Ñ1Ð:Ñ œ Z 0 Ð Ñ1 Ð Ñ œ 1 Ð ÑZ 0 Ð Ñ

 0 Ð ÑZ 1 Ð Ñ œ 1Ð:ÑZ 0Ð:Ñ  0Ð:ÑZ 1Ð:Ñ

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰ ˆ ‰
w w w w w w

w w w

x x x x
x x

whence we obtain  at a point. A linear operatorZ Ð01Ñ œ 1Z Ð0Ñ  0Z Ð1Ñ: : :

satisfying this  on an algebra is called a . When weLeibniz rule derivation
take notice that the action of the operator  on a function  is specified byZ 0
(2.6.6), we opt for denoting this operator at the point by:

Z œ œ @
. `

.> `B
:

>œ!

3
3º (2.6.8)
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with a somewhat slight abuse of notation. As we have mentioned before, the
quantity  measures the variation in a function  at a pointZ Ð0Ñ 0 − ÐQÑ:

!A
: − Q G along a curve  or, in other words, along an equivalence class gene-
rated by , at that point. Let us consider a curve in  defined byG ‘7

#3Ð>Ñ œ Ð!ß á ß !ß B  >ß !ß á ß !Ñ3 .

This curve is obviously the coordinate line in Cartesian coordinates through
the point  in . We thus obtainÐ!ß á ß !ß B ß !ß á ß !Ñ3 7‘

vx œ Ð!ß á ß !ß "ß !ß á ß !Ñ.

We now define a  on  through the point  by the curvecoordinate line Q :
G œ Ð>Ñ `Î`B3 " 3: ˆ ‰#3 . We then conclude that the operator  helps measure
the variation of a function along a coordinate line at the point .:

It is clear that all linear operators  at a point  forms a linearZ : − Q
vector space. Due to the relation (2.6.8), this vector space is evidently iso-
morphic to the tangent space  at the point . Hence, itsX Ð Ñ Ð:Ñx ‘ :7 x œ
dimension is . We call this vector space the to the manifold7 tangent space 
Q : X ÐQÑ Z at the point  and denote it by . We also regard the operators : :

as tangent vectors to the manifold  at the point  (Fig.. 2.6.1).Q :

:

G

Q

XÐQÑ
:

ÐYß Ñ:

:ÐYÑ

Bœ Ð:Ñ:

‘
7

@

:

G
w

ñ

ñ

Fig. 2.6.1. Tangent space.

While having defined a vector  at a point  by means of theZ : − Q
relation (2.6.8), we utilised the local coordinates provided by a chosen chart
at that point. In order that this definition makes sense, we have to prove that
the vector, or the operator,  is actually independent of the chosen chart.Z
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Let us take into account two charts  and  enclosing theÐY ß Ñ ÐY ß Ñ! ! " ": :
point . We denote the corresponding local coordinates by  and , re-: x x! "

spectively. The function  on the open: : : : :!" " ! ! " "!œ ‰ À ÐY Ñ Ä ÐY Ñ"

set  gives rise to a coordinate transformation  (It isY  Y œ Ð Ñ! " " !"x x: !

obvious that the summation convention will not be valid now on Greek in-
dices). We have then two representations of a curve  in  throughG Q§ ‘7

the point  that is determined by the mapping :: À M Ä Q#

# #! ! " "Ð>Ñ œ Ð>Ñ ß Ð>Ñ œ Ð>Ñ: # : #ˆ ‰ ˆ ‰.

But, in the vicinity of the point , these two representations are related by:

# #" !" !Ð>Ñ œ Ð>Ñ: ˆ ‰
whence the chain rule leads to

. `B

.> .>
œ

`B

.# #" "

!

!
3 3

4

4

.

Thus, at , the components of the tangent vector in two different coor-> œ !
dinate systems are connected by the relations

@ œ @
`B

`B
" !

"

!

3 4
3

4 . (2.6.9)

We usually call elements of the tangent space as  duecontravariant vectors
to this rule of transformation. When we consider a function , it0 − ÐQÑA!

will now have two local representations: . We can0Ð:Ñ œ 0 Ð Ñ œ 0 Ð Ñ! "! "
w wx x

thus write

Z Ð0Ñ œ @ œ @ œ @
`0 Ð Ñ

`B `B `B `B

`0 Ð Ñ `0 Ð Ñ `B`B

`B

œ @ œ @
`0 Ð Ñ `0 Ð Ñ

`B `B

" " !
" ""

" " "

! ! !! !

! !

! !
! !! !

! !

3 3 4
w

3 3 4 3

w w 53

5

4 4
w w

5 4
5

4

x x x

x x
$

which shows that the vector  is expressed in the same form in both charts.Z
Hence, the definition (2.6.8) does not depend on the chosen chart.

Theorem 2.6.1. 7 :-dimensional tangent space  at a point  ofX ÐQÑ:

an dimensional differentiable manifold  has basis vectors, or opera-7- Q
tors,  determined by a choice of a local chart.`Î`B ß 3 œ "ß á ß 73

Since the vector space  is -dimensional, the set of vectorsX ÐQÑ 7:

Ö × ÖB ×
`

`B3
, where  are local coordinates, must be linearly independent in3
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order to constitute a basis. Let us write

Z œ - œ !
`

`B
!

3
3

where ,  are arbitrary constants. Therefore, we ought to get- 3 œ "ß á ß 73

Z Ð0Ñ œ ! 0 − ÐQÑ!
! for  function . Then, if we introduce the coor-every A

dinate functions  into that expression, we find that: A4 !− ÐQÑß 4 œ "ß á ß 8

- œ - œ - œ !ß 4 œ "ß á ß 7
`B

`B
3 3 4

4

3 3
4
$ .

Consequently, the set  is linearly independent.Ö ×`Î`B3 
The set  at the point  is called the  or Ö × :`Î`B3 natural basis coordi-

nate basis of the tangent space . The local coordinates generatingX ÐQÑ:

this basis will sometimes be called . Letnatural coordinates

Z œ @3 `

`B3

be a tangent vector at the point . We then obtain for a coordinate function:

Z Ð Ñ œ @ œ @ œ @
`B

`B
: $5 3 3 5

5

3 3
5

. (2.6.10)

Thus, we can write

Z œ Z Ð Ñ
`

`B
:3

3
. (2.6.11)

Evidently, there is an isomorphism between  and  provided by theX ÐQÑ:
7‘

mapping .Ð@ ß á ß @ Ñ Ä Z" 7
:

So far we have defined a tangent space  associated with eachX ÐQÑ:

point of the manifold that contains all "vectors" tangent to the manifold at
that point. We can construct a  by a set of vectors formed byvector field
choosing a vector  at each point  of the manifold. We canZ − X ÐQÑ :: :

denote a vector field by . A vector of the field at a point  canZ Ð:Ñß : − Q :
then be enounced as

Z Ð:Ñ œ @ Ð Ñ ß œ Ð:Ñ
`

`B
3

3
x x (2.6.12):

by employing a chart . We have to note that as the point  moves onÐY ß Ñ ::
the manifold, the vector field might be represented by different local coor-
dinates originated from different charts. When we say that the coordinate
cover of the manifold  is given by , we actually mean theQ ÐB ß á ß B Ñ" 7
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union of such coordinate systems that might be different in charts covering
the manifold. If the functions  are all smooth, then we say that  @ Ð Ñ Z3 x is a
smooth vector field. When  is a smooth vector field, we deduce that it hasZ
the form  as a linear operator.Z À ÐQÑ Ä ÐQÑA A! !

2.7. DIFFERENTIAL OF A MAP BETWEEN MANIFOLDS

Let  and  be two differentiable manifolds and  be aQ R À Q Ä R7 8 9
differentiable mapping. We know that to each smooth function 1 − ÐRÑA!

there corresponds a smooth function  [ . 98]. The0 œ 1 − ÐQÑ :9 A‡ ! see 
mapping  is generated by  in the form 9 A A 9 9 9‡ ! ! ‡À ÐRÑ Ä ÐQÑ 1 œ 1 ‰
for all . We now try to find a mapping 1 − ÐRÑ À X ÐQÑ Ä X ÐRÑA 9!

‡ : Ð:Ñ9

in conjunction with the mapping  that transforms the equivalence class of9
curves that are tangent at a point  into an equivalence class of curves: − Q
that are tangent at the point . Let us now choose a vector; œ Ð:Ñ − R9
Z − X ÐQÑ Z − X ÐRÑ:

‡
Ð:Ñ and determine a vector  such that the equality9

Z Ð 1Ñ œ Z Ð1 ‰ Ñ œ Z Ð1Ñ9 9‡ ‡ (2.7.1)

is to be satisfied for  functions . We can also express this rela-all 1 − ÐRÑA!

tion for all  as follows:1 − ÐRÑA!

Ð Z ÑÐ1Ñ œ Z Ð 1Ñß À X ÐQÑ Ä X ÐRÑ9 9 9‡ ‡ :
‡

Ð:Ñ   (2.7.2)9

where . The mapping , which will also be denoted occasionallyZ œ Z‡
‡ ‡9 9

by , is called the  of the mapping  at the point .. :9 9differential
Let us assume that a curve  on a manifold  is specified by a map-G Q

ping . We also suppose that  and . The image # \ \ #À Ä Q ! − : œ Ð!Ñ G‡

of the curve  in the manifold  under the mapping  is given by the map-G R 9
ping . We consider a vector  that is tangent to the# 9 # \‡ œ ‰ À Ä R Z
curve  at the point .  For any function , we can writeG : 1 − ÐRÑA!

Z Ð1 ‰ Ñ œ œ
. Ð1 ‰ Ñ ‰ . 1 ‰ Ð ‰ Ñ

.> .>

œ œ Z Ð1Ñ
.Ð1 ‰ Ñ

.>

9
9 # 9 #

#

» »ˆ ‰ ˆ ‰

º
>œ! >œ!

‡

>œ!

‡ .

(2.7.3)

Here we make use of the associativity of the composition. We deduce from
the relation (2.7.3) that the vector  is tangent to the image curve Z G œ‡ ‡

9 9ÐGÑ Ð:Ñ − R at the point .
9‡  In fact, if we consider a realis a linear operator on real numbersÞ

number  and vectors , we see that  obeys the rules! 9Z ß Z − X ÐQÑ" # : ‡
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9 9 9 9

9 9 9 9

9 ! ! 9 !9

‡ " # " # " #
‡ ‡ ‡

‡ " ‡ # ‡ " ‡ #

‡ ‡
‡

ÐZ  Z ÑÐ1Ñ œ ÐZ  Z ÑÐ 1Ñ œ Z Ð 1Ñ  Z Ð 1Ñ

œ Z Ð1Ñ  Z Ð1Ñ œ Ð Z  Z ÑÐ1Ñ

Ð Z ÑÐ1Ñ œ Z Ð 1Ñ œ ÐZ ÑÐ1Ñ

                    

for all functions . That proves the linearity of  at the point :1 − ÐRÑ :A 9!
‡

9 9 9

9 ! !9
‡ " # ‡ " ‡ #

‡ ‡

ÐZ  Z Ñ œ Z  Z ß

Z œ Z( ) .

We now manage to endow the operator  so defined in the above with9‡

a more concrete structure by utilising local charts in manifolds  and .Q R
Let us assume that the point  belongs to a chart , and the point: − Q ÐY ß Ñ:
; œ Ð:Ñ − R ÐZ ß Ñ9 < belongs to a chart . We denote the local coordinates
by ,  fromx y x xœ Ð:Ñ œ Ð;Ñ œ Ð ‰ ÑÐ:Ñ œ Ð ‰ ‰ ÑÐ Ñ œ Ð Ñ: < < 9 < 9 : F"

which we can deduce that . Thus, the local coordinates of9 < F :œ ‰ ‰"

corresponding points under the mapping  are functionally related by 9 C œ!

F !!ÐB ß á ß B Ñß œ "ß á ß 8" 7 . By means of functions

Ð1 ‰ Ñ œ 1 ‰ ‰ − Ð Ñß

1 œ 1 ‰ − Ð Ñ

9 9 : A ‘

< A ‘

w " ! 7

w " ! 8

where , we find that . Thus,1 − ÐRÑ Ð1 ‰ Ñ œ 1 ‰ ‰ ‰ œ 1 ‰A 9 < 9 : F! w w " w

for every function , the expression (2.7.1) takes the form1 − Ð Ñw ! 8A ‘

@ œ @ œ @
`1 Ð Ñ `1 `

`C `B `C `B

`1 Ð Ñ‡ 3 3
w ww

3 3
!

! !

!y xˆ ‰F F
.

which leads to the relation

Z œ Z œ @ œ @ − X ÐRÑ
` ` `

`C `B `C
‡ ‡ 3

‡ 3 Ð:Ñ9
F!

! !

!

9 (2.7.4)

where . Consequently, we deduce that the mappingZ œ @ `Î`B − X ÐQÑ3 3
:

9‡ : ;À X ÐQÑ Ä X ÐRÑ : − Q transforms a vector at the point  with com-
ponents  in local coordinates to a vector at the point  with@ ; œ Ð:Ñ − R3 9
components

@ Ð:Ñ œ @ Ð:Ñ
`

`B
‡ 3

3
!

!ˆ ‰ Š ‹9
F

(2.7.5)

in local coordinates. This transformation is governed by the Jacobian matrix
JÐ Ñ œ Ò` Î`B Ó9 F 9 9! 3  of the mapping . If only the mapping  has an inverse
9" À R Ä Q , then the relation (2.7.5) is expressible as dependent of the
point  so that one will then be able to write; − R



122 II  Differentiable Manifolds

@ Ð;Ñ œ @ ‰ Ð;Ñ
`

`B
‡ 3 "

3
!

!’Š ‹ “F
9 .

If such is the case, one readily observes that the following relation is valid

9 9 9 9 9‡ " # ‡ " ‡ #
" ‡ " ‡Ð0Z  1Z Ñ œ Ð Ñ 0 Ð Z Ñ  Ð Ñ 1 Ð Z Ñˆ ‰ ˆ ‰

for any  and .0ß 1 − ÐQÑ Z ß Z − X ÐQÑA!
" # :

A basis vector

` `

`B `B
œ

3 43
4$

in  is transformed in view of (2.7.4) by the operator  to a vectorX ÐQÑ: ‡9

9 $
F F

‡ 3 4 33
4Š ‹` ` ` ` `

`B `B `C `B `C
œ œ

! !

! !
(2.7.6)

in . Therefore, the matrix representing the linear operator  withX ÐRÑ9Ð:Ñ ‡9

respect to  at the points  and  is the Jacobian matrix .natural bases : ; Ð ÑJ 9
Obviously, the rank of the matrix  at a point  gives the numberJÐ Ñ : − Q9
of linearly independent vectors in the tangent space . If the linearX ÐRÑ9Ð:Ñ

operator  at the point  is surjective, then the rank of  is9 9 9‡ œ . : − Q Ð ÑJ
8 Ð Ñ 7. If  is injective, the rank of  is . In that case,  is a submersion if9 9 9‡ J
9 9 9‡ ‡ is surjective at every point , whereas  is an immersion if  is: − Q
injective everywhere. When  and , then  is an isomor-7 œ 8 Ð Ñ Á !det J 9 9‡

phism and there is an inverse  at the pointÐ Ñ À X ÐRÑ Ä X ÐQÑ9‡ ;
"

Ð;Ñ9"

; − R  which is clearly represented with respect to natural bases by the in-
verse matrix . This means that the equation  has a differentiableJ y x" œ Ð ÑF
inverse  in a neighbourhood of the point  in accordance withx yœ Ð Ñ ;F"

the celebrated inverse mapping theorem  We can now introduce the map-Þ
ping . Then we immediately obtain the com-< : F :œ ‰ ‰ À R Ä Q" " w

position . Similarly, we come9 < : F : : F :‰ œ ‰ ‰ ‰ ‰ ‰ œ 3w " " w"
R

up with   implying that  and  is differentiable. We thus< 9 < 9 <‰ œ 3 œQ
"

conclude that the mapping  becomes a local diffeomorphism at the point9
: − Q : if is an isomorphism at .9‡ 

A point  is called a  of the smooth mapping  if; − R regular value 9
. À X ÐQÑ Ä X ÐRÑ : ; œ Ð:Ñ9 9: ;  is surjective at every point  such that . A
point  is then called a  of  if : − Q . À X ÐQÑ Ä X ÐRÑregular point 9 9 : Ð:Ñ9

is surjective. A point  that is not a regular value is called a ; − R critical
value of . If is such a point, then the rank of  at points  satisfying9 9; Ð Ñ :J
; œ Ð:Ñ 8Þ : − Q9 9 is less than  A point  is then called a  of  ifcritical point
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.9 is not surjective at that point. An important theorem known as the Sard
theorem [after American mathematician Arthur Sard (1909-1980)] states
that for second countable manifolds critical values constitute a subset (anull 
set of measure zero) of the manifold RÞ

Let an -dimensional smooth manifold  be and7 Q second countable, 
consequently, . It can be demonstrated that such a manifold can separable
be immersed in at most -dimensional Euclidean space   if#7 ‘ ‘#7 #7"(
7  " Ð#7  "Ñ), or it can be embedded in at most -dimensional Euclidean
space   if  is not an analytical manifold . These results are‘ ‘#7" #7( )Q
known as . Whitney's theorems We confine ourselves only to say a little bit
about the proof. We assume that an -dimensional manifold  has trans-7 Q
versal self-intersections. The main idea of the proof is the possibility of re-
moving self-intersections by embedding the space  into a higher dimen-‘7

sional Euclidean space. Whitney has shown that one can construct an
immersion  by removing all self-intersections or double-9 ‘À Q Ä7 #7

points and then resorting to the Sard theorem. Since  is locally homeo-Q
morphic to , Whitney has introduced a local immersion ‘ < ‘ ‘7 7 #7

7 À Ä
that is approximately linear outside of the unit ball containing a single
double-point. He has further assumed that the local chart is so parametrised
by ( )  that the double point is given by? ß ? ß á ß ? −" # 7

7‘

x xÐ"ß !ß á ß !Ñ œ Ð  "ß !ß á ß !Ñ .

Then we easily verify that the local mapping defined by

< ‘7 " # 7 " #
" " # " 7 #7( )? ß ? ß á ß ? œ ß ?  ß ß ? ß âß −

" #? ? ? ? ?

? ? ? ?
Š ‹

where  is an immersion for all  re-? œ Ð"  ? ÑÐ"  ? ÑâÐ"  ? Ñ 7   "# # #
" # 7

moving the double-point. In fact, we observe that

<

<
7

7

( )
( )

"ß !ß á ß ! œ Ð"ß  "ß !ß âß !Ñß

 "ß !ß á ß ! œ Ð"ß "ß !ß âß !ÑÞ

Actually, it can be verified that  is an embedding except for the double-<7

point. Furthermore, if the norm ( )  is large, then  be-l lx ? ß ? ß á ß ?" # 7 7<
comes approximately the linear embedding

<7 " # 7 " # 7( )? ß ? ß á ß ? ¸ Ð!ß ? ß !ß ? ß âß !ß ? ÑÞ

Let , ,  be three differentiable manifolds and ,Q Q Q À Q Ä Q" # $ " " #9
9# # $À Q Ä Q  be two differentiable mappings. Let us consider the com-
position . For every  and , we9 9 A# " " $ $ : "

!‰ À Q Ä Q 2 − ÐQ Ñ Z − X ÐQ Ñ
can write
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Ð ‰ Ñ Z Ð2Ñ œ Z Ð2 ‰ ‰ Ñ œ Z Ð2 ‰ Ñ ‰ œ Ð Ñ Z Ð2 ‰ Ñ

œ Ð Ñ Ð Ñ Z Ð2Ñ œ Ð Ñ ‰ Ð Ñ Z Ð2Ñ

9 9 9 9 9 9 9 9

9 9 9 9

# " ‡ # " # " " ‡ #

# ‡ " ‡ # ‡ " ‡

ˆ ‰ ˆ ‰‘ ˆ ‰ .

We thus conclude that

Ð ‰ Ñ œ Ð Ñ ‰ Ð Ñ .Ð ‰ Ñ œ . ‰ .9 9 9 9 9 9 9 9# " ‡ # ‡ " ‡ # " # "  or . (2.7.7)

This is known as the . Let us note that the relation (2.7.7) actuallychain rule
implies that

.Ð ‰ ÑÐ:Ñ œ . Ð:Ñ ‰ . Ð:Ñ9 9 9 9 9# " # " "ˆ ‰
at a point  of .: Q

Let  be the identity mapping so that we have 3 À Q Ä Q 3 Ð:Ñ œ :Q Q

for all . Accordingly one has . Since: − Q .3 À X ÐQÑ Ä X ÐQÑQ : :

 .3 Z Ð0Ñ œ Z Ð0 ‰ 3 Ñ œ Z Ð0ÑQ Q

for all , we obtain  and finally . 0 − ÐQÑ .3 Z œ Z .3 œ 3 3A!
Q Q X ÐQÑ X ÐQÑ: :

is the identity operator on the vector space .X ÐQÑ:

Let the mapping  be a diffeomorphism so that the mapping9 À Q Ä R
9 9 9" "

QÀ R Ä Q ‰ œ 3 also exists and differentiable. Hence, we get ,
9 9‰ œ 3"

R  and differentials of these mappings yield in view of (2.7.7)

.Ð ‰ Ñ œ . ‰ . œ 3 ß

.Ð ‰ Ñ œ . ‰ . œ 3

9 9 9 9

9 9 9 9

" "
X ÐQÑ

" "
X ÐRÑ

:

Ð:Ñ9
.

We thus infer that . This result implies that . œ Ð. Ñ9 9" " the linear opera-
tor  between tangent spaces and is an isomorphism.9     X ÐQÑ X ÐRÑ: Ð:Ñ9

since it is a regular operator if  is a diffeomorphism9 . If we recall the
statement made in  12  we can obviously say that :Þ # a differentiable
mapping is a local diffeomorphism at a point  if and  9 À Q Ä R : − Q
only if the linear operator  that is the differen-. Ð:Ñ À X ÐQÑ Ä X ÐRÑ9 : Ð:Ñ9

tial of is an isomorphism9 . Of course, this statement will make sense if
only if tangent spaces  and  have the same dimension.X ÐQÑ X ÐRÑ: Ð:Ñ9

While defining the differential of a mapping between manifolds  andQ
R , we come up with a rather special situation if one of these manifolds is .‘
Let us first take  where  is an open interval and define a curveQ œ ©\ \ ‘
G R À Ä R on the manifold  by the differentiable mapping . Therefore,# \
the differential of the mapping  at a point  is a linear operator # \ #> − . œ
# \ # ‘‡ > :À X Ð Ñ Ä X ÐRÑ : œ Ð>Ñ where . Since the tangent vector in  is of the
form , the tangent vector to the curve  at the point  is.Î.> G : œ Ð>Ñ − R#
given by
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Z œ ß > −
.

.>
# \‡Š ‹

In view of (2.7.3), the tangent vector, say, at a point  will satisfy#Ð!Ñ − R
the relation

Z Ð1Ñ œ ß a1 − ÐRÑ
.Ð1 ‰ Ñ

.>
º#

A
>œ!

! .

If we make use of the equality (2.7.4) and notice that the chart on  isQ
simply , we obtain the tangent vector  in terms of local coordinatesÐ ß 3 Ñ Z\ ‘

C Ð>Ñ œ Ð>Ñ œ "ß á ß 8! !: # !w ˆ ‰,   as

Z œ œ
. .C `

.> .> `C
#‡Š ‹ !

!
. (2.7.8)

Let us now take  and let  be a differentiable map-R œ À Q Ä‘ 9 ‘
ping. The chart on  is now  so it follows that R Ð ß 3 Ñ œ 3 ‰ ‰ œ‘ F 9 :‘ ‘

"

9 :‰ Z − X ÐQÑß : − Q"
:. Thus (2.7.4) yields for a vector 

Z œ Z œ @ œ Z Ð Ñ ß > −
` . .

`B .> .>
‡ 3

‡ 3
9 9 ‘

F
. (2.7.9)

Since the tangent space  is isomorphic to the linear vector space , weX Ð Ñ> ‘ ‘
can take as a basis vector  and write  so that we.Î.> È " À X ÐQÑ Ä9 ‘‡ :

obtain . Thus this interpretation allows us to say that the9 9‡Z œ Z Ð Ñ
number gives the derivative of the function  at the point. Ð:ÑZ œ Ð:ÑZ9 9 9‡

: − Q Z in the direction of . In this case the operator  assigns a real9‡

number to every vector in the tangent space . Hence, the linearX ÐQÑ:

operator  turns out to be actually a linear functional on  and,9 9‡ :œ . X ÐQÑ
consequently, it can be regarded as an element of the dual space . LetX ÐQÑ‡

:

us now consider the vector  whose components are simply Z œ `Î`B @ œ3 3

" @ œ ! 4 Á 3, , . We thus conclude that4

. œ œ
` ` `Ð ‰ Ñ

`B `B `B
9

F 9 :Š ‹
3 3 3

"

.

We now insert the coordinate function  into the foregoing general9 :œ 4

expression. Since , we obtain:4 4Ð:Ñ œ B

. œ .B œ œ Þ
` ` `B

`B `B `B
: $4 4

3 3 3

4

3
4Š ‹ Š ‹

This means that the elements  constitute a Ö.B ß á ß .B ×" 7 reciprocal basis



126 II  Differentiable Manifolds

for the dual vector space . This results inX ÐQÑ‡
:

. œ .B ß œ . œ . œ .B
` ` `

`B `B `B
9 ! ! 9 9

F F
3 3

3 3
3 3 3

Š ‹   and  

which coincides with the classical definition of differential of a function. If
we consider a vector , then we find that  andZ œ @ `Î`B .B ÐZ Ñ œ @3 3 3 3

. ÐZ Ñ œ @ ` Î`B œ Z Ð Ñ9 F 9 .3 3

Finally, let us consider the mapping  of a chart  at a: ‘ :À Y Ä ÐY ß Ñ7

point . Since , we get .: − Q Ð:Ñ œ œ . À X ÐQÑ Ä X Ð Ñ ¶: : : ‘ ‘x ‡ :
7 7

x
Consequently, we can write

. Z Ð0Ñ œ Z Ð0 ‰ Ñ: :

for any  and . On the other hand, due to (2.6.7) and0 − Ð Ñ Z − X ÐY ÑA ‘! 7
:

(2.6.6) we obtain

. Z Ð0Ñ œ Z Ð0 ‰ Ñ œ @ œ @ œ Z Ð0Ñ
`Ð0 ‰ ‰ Ñ `0

`B `B
: :

: :3 3 w
"

3 3
,

so we find that . Thus, the operator  assigns an element . Z œ Z . œ: :w v
Ð@ ß á ß @ Ñ − Z − X ÐY Ñ" 7 7

:‘  to a vector . It is straightforward to verify
that the operator  is an isomorphism.. À X ÐY Ñ Ä: ‘:

7

We now take into account the inverse mapping . Then: ‘" 7À Ä Y
we get  and we obtain . À Ä X ÐY Ñ . Z Ð0Ñ œ Z Ð0 ‰ Ñ: ‘ : :" 7 " w w "

:

œ Z Ð0Ñ 0 − ÐQÑ Z − X Ð Ñ . Z for all  and  yielding the relation A ‘ :! w 7 " w
:

œ Z . œ Ð. Ñ. We thus obtain . Hence, we conclude that the map-: :" "

ping  of a chart is a diffeomorphism.:

2.8. VECTOR FIELDS. TANGENT BUNDLE

We have seen that we can construct a vector field on a manifold Q 7

by associating a vector  in the tangent space  to each pointZ Ð:Ñ X ÐQÑ:

: − Q X ÐQÑ. If we choose the natural basis in each tangent space  a vector:

field is now expressible as

Z Ð:Ñ œ @ Ð Ñ ß œ Ð:Ñß : − Y
`

`B
3

3
x x     (2.8.1):! !

where  is a chart and . We know that if ,ÐY ß Ñ Y œ Q @ À Ä! ! !: ‘ ‘ 3 7

3 œ "ß á ß 7 Z Ð:Ñ are all smooth functions,  is called a smooth vector field.
Evidently, a smooth vector field is built by a linear combination of natural
basis vectors with functions chosen from the set . It is known thatG Ð Ñ_ 7‘
the set  is a commutative ring. If we consider a non-zero functionG Ð Ñ_ 7‘
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its inverse  does not exist at points satisfying the equation ."Î0Ð Ñ 0Ð Ñ œ !x x
Therefore, although the vector field  designates an element of a vectorZ
space at every point , it constitutes actually a   on the: − Q ÐQÑmodule É
manifold . In fact, sum of two vector fields and multiplication of a vectorQ
field by a smooth function are again vector fields. It goes without saying
that  reduces to a linear vector space on real numbers.ÉÐQÑ

Let us define a set  as the union of  tangent spaces at allX ÐQÑ disjoint
points of a manifold :Q

X ÐQÑ œ X ÐQÑ œ ÖÐ:ß Z Ñ À : − Qß Z − X ÐQÑ×
:−Q

: : . (2.8.2)

It is obvious that this set is produced as the union of sets each of which is
obtained by attaching to each point  the linear vector space  at: − Q X ÐQÑ:

that point. We shall now try to equip the set  with a differentiableX ÐQÑ
structure of -dimension. The differentiable manifold  so structured#7 X ÐQÑ
will be called the  of the manifold . The set  is namedtangent bundle Q Q
as the  and tangent spaces as the  of the fibre bundle. The base fibres natural
projection

1 1À X ÐQÑ Ä Qß Ð:ß Z Ñ œ :ß Z − X ÐQÑ: (2.8.3)

projects every vector in a tangent space to its base point  to which a: − Q
particular fibre is attached. It is clear that we can write .X ÐQÑ œ ÐÖ:×Ñ:

"1
Moreover, let us consider the set  corresponding to ani 1œ ÐY Ñ X ÐQÑ§"

open set  where  is the topology on . Because of the propertiesY − QÀ À
of the set function   we can write obviously1"

  
Y − Y − Y −

" " "

"

À À À
i 1 1 1

1

œ ÐY Ñ œ Y œ ÐQÑ œ X ÐQÑß

g œ ÐgÑ

ˆ ‰ 

.

Furthermore, if  is an index set, we have the relationsA

  

  

- A - A - A
- - - -

- - - -

− − −

" "

8 8 8

3œ" 3œ" 3œ"

" "
3

i 1 1 À

i 1 1 - A À

œ ÐY Ñ œ Y ß Y −

œ ÐY Ñ œ Y − ß Y −

ˆ ‰
ˆ ‰

3 3 3 3ß .

Therefore the class  is a topology on the setÇ i 1 Àœ Ö œ ÐY Ñ À Y − ×"

X ÐQÑ and  is an open set in . It is clear that the projection  is continu-i Ç 1
ous in this topology. The structure of the tangent bundle is schematically
depicted in Fig. 2.8.1.

We suppose that an atlas on the manifold  is given by the family ofQ
charts . The setT : ! \œ ÖÐY ß Ñ À − ×! !
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Fig. 2.8.1. Tangent bundle.

i 1! ! !œ X ÐY Ñ œ ÐY Ñ © X ÐQÑ"

will be open in the topology . Let us consider a point . TheÇ Ð:ß Z Ñ − X ÐQÑ
point  will be located inside a chart  of the manifold  and: − Q ÐY ß Ñ Q! !:
the point  will be in the open set . Hence, in terms ofÐ:ß Z Ñ œ ÐY Ñi 1! !

"

local coordinates  in the open set , ax œ ÐB ß á ß B Ñ − ÐY Ñ ©" 7 7 7‘ : ‘! !

vector  is expressible asZ − i!

Z œ @ ß œ Ð@ ß á ß @ Ñ −
`

`B
3 " 7 7

3
v ‘ .

We define the mapping  in such a way< i : ‘ ‘! ! !À Ä ÐY Ñ ‚ ©!
7 #7

that, for all points  we getÐ:ß Z Ñ − i!

< : :

‘

! ! !Ð:ß Z Ñ œ Ð:Ñß . Z

œ ÐB ß á ß B ß @ ß á ß @ Ñ −

ˆ ‰
" 7 " 7 #7.

(2.8.4)

It is clear that the mapping  is a homeomorphism. We shall now demon-<!
strate that the family  constitutes an atlas onÖ œ ÐY Ñß À − ×ˆ ‰i 1 < ! \! ! !

"

the topological space . We know that . Let us nowX ÐQÑ X ÐQÑ œ 
! \

!
−
i

consider two charts  and  (the summation convention willˆ ˆi < i <! ! " "ß Ñ ß Ñ

of course be suspended on Greek indices). We have to prove that the transi-
tion mapping

< < < < i i ‘ < i i ‘!" " ! " " !!œ ‰ À Ð  Ñ © Ä Ð  Ñ ©" #7 #7
! "
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is smooth. It follows from the relation

Ð:ß Z Ñ œ Ð ß Ñ œ Ð Ñß Ð. Ñ Ð Ñ

œ Ð Ñß . Ð Ñ

< : :

: :

" " "

" "
! ! !

! !

x v x v
x v

ˆ ‰
ˆ ‰

that

< : : : :

: : : :

!" " "! !

" "! !

Ð ß Ñ œ ‰ Ð Ñß . ‰ . Ð Ñ

œ ‰ Ð Ñß .Ð ‰ ÑÐ Ñ

x v x v
x v

ˆ ‰
ˆ ‰

" "

" " .

Since  is smooth, the differential mapping: : : ‘ ‘!" " !œ ‰ À Ä" 7 7

. X ÐQÑ #7:!"  is also smooth. Thus  acquires a structure of a -dimensional
differentiable manifold with the atlas . Local coor-Ö ÐY Ñß À − ×ˆ ‰1 < ! \"

! !

dinates of this manifold is given by .ÐB ß á ß B ß @ ß á ß @ Ñ" 7 " 7

Due to the relation (2.6.9), the linear operator  is represented by.:!"
the matrix

. œ œ
`B

`B
:!" !"

"

!

K – —3

4 . (2.8.5)

Hence  is an , . À X Ð Ñ Ä X Ð Ñ: ‘ ‘!" x x
7 7 automorphism an isomorphism

mapping a vector space onto itself at a point . We know that we can: − Q
take . Therefore, denoting the formedX Ð Ñ œx ‘ ‘7 7 general linear group 
by  regular matrices on fibres  by , we infer that7 ‚ 7 KPÐ7ß Ñ‘ ‘7

. − KPÐ7ß Ñ: ‘!" .

KPÐ7ß Ñ K © KPÐ7ß Ñ‘ ‘, or one of its subgroups , is called the structural
group of the tangent bundle. This group ascertains the global character of
X ÐQÑ and helps us distinguish different bundles defined over the same base
space. Then we deduce that in an intersection  on the fibre bundle,i i! "
the coordinate transformation is determined through the relations

x x v K v K" !" " !" ! !"œ Ð Ñß œ ß − K: ! .

If the bundle  is diffeomorphic to the product manifold , it isX ÐQÑ Q ‚ ‘7

then called . Since every tangent bundle is locallya globally trivial bundle
represented as , it is . Whether this property is alsoY ‚ ‘7 locally trivial
valid globally depends on the structural group. If the tangent bundle is trivi-
al, we can always choose points  in  for all points Ð:ß Z Ñ Q ‚ : − Q!

7‘
where  is a  vector. Hence, the inverse mapping creates a vectorZ! constant
field in  that vanishes nowhere on . This means that X ÐQÑ Q the tangent
bundle cannot be trivial if it is not possible to find a vector field that
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vanishes nowhere on the manifolds.
A  of the tangent bundle is the smooth mappinglocal cross section

5 5À Y Ä X ÐY Ñ Y © Q where  is an open set.  must possess the property
1 5 1 5 5‰ œ 3 Ð Ð:ÑÑ œ : : − Y Y œ QY , that is, one has  for all . If , then  is
called a . The mapping  will clearly assigns a vector toglobal cross section 5
each point of an open submanifold of , or itself. Hence, it prescribes aQ Q
vector field (Fig. 2.8.2).

Example 2.8.1. As the base manifold, let us choose the circle. It is
straightforward to observe that one finds easily a vector field that vanishes
nowhere on . Therefore  is a trivial bundle and it can be represented’ ’" "X Ð Ñ
as . As a matter of fact if we choose fibres as shown in Fig. 2.8.3 ,’ ‘" ‚ Ð+Ñ
then the tangent bundle becomes the Cartesian product of  and . Since’ ‘"

’" is designated by a single coordinate, the transformation of coordinates at
a point  in overlapping charts are given by : B œ ÐB Ñß @ œ O @" !" " !" !: !

Z

Fig. 2.8.2. Vector field as a cross section.

where the constant  is the value of  at . This number is aO . Î.B :!" !" !:
member of the multiplication group on  which is also the structural group‘
of the bundle. In order to find a simple representation let us cut the circle at
a point , unwrap the bundle and make it lie on . To assemble the bundle: ‘#

again all we have to do is to identify  with ,  with  and  with . In: : ? ? @ @w w w

this case, the transition mapping in overlapping charts is simply found as the
identity mapping  and the structural group of the tangentÐ:ß @Ñ Ä Ð:ß @Ñ
bundle becomes just . However, we can reassemble the bundle to formÖ"×
the  if we identify  with  and  with  by twisting the strip.Möbius band ? @ @ ?w w

In this case the tangent bundle is no longer trivial. Transition mapping in
some overlapping charts is again given by  whereas in someÐ:ß @Ñ Ä Ð:ß @Ñ
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others by  and the structural group of the bundle is nowÐ:ß @Ñ Ä Ð:ß  @Ñ
Ö"ß  "×.

Let us consider a Möbius band whose middle circle is situated at the
plane , centred at the origin with radius  and its half-width is . ItsD œ ! V A
parametric equations are given by

B œ ÒV  @ Ð?Î#ÑÓ ?ß C œ ÒV  @ Ð?Î#ÑÓ ?ß D œ @ Ð?Î#Ñcos cos cos sin sin

where  and . Indeed for  we get ! Ÿ ?  #  A Ÿ @ Ÿ A ? œ ! B œ V  @ß1
C œ D œ ! ? œ # B œ V  @ß C œ D œ ! while for  we obtain . Thus we1
obtain the description described in Fig.. 2.8.3 .Ð,Ñ

Möbius band, or strip, is named after German mathematician August
Ferdinand Möbius (1790-1868) who had introduced it on September 1858.
Strictly speaking, the band had already been found a little bit earlier by
German mathematician Johann Benedict Listing (1808-1882) on July 1858.

W

W

"

"

"

:
ñ ñ

:

: :

?

@

?

@

w

w

w

Ð+Ñ Ð,Ñ

Fig. 2.8.3. Fibre bundles:  circle,  Möbius band.Ð+Ñ Ð,Ñ

 Therefore, it would have been more appropriate to call it as Listing
band one-sided. Möbius band is perhaps the most prominent example to  and
one-edged surfaces. In fact, when we start moving on the surface we pass
eventually under the surface without crossing the edge. The representation 
of Möbius band in  is depicted in Fig. 2.8.4.‘$

Let  be a differentiable mapping between two differenti-9 À Q Ä R
able manifolds. The differential of  can now be written as an operator9
between tangent bundles as . However, we have9 9‡ œ . À X ÐQÑ Ä X ÐRÑ
to keep in mind that the linear operator  transforms pointwise the vector.9
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space  into the vector space  and its action can only beX ÐQÑ X ÐRÑ: Ð:Ñ9

embodied through the local charts at points  and . Let a smooth vector: Ð:Ñ9
field in the tangent bundle  be . Then we define  by theX ÐQÑ Z Z œ . ÐZ Ñ‡ 9
following relation again

Fig. 2.8.4. Möbius band. è

. ÐZ ÑÐ1Ñ Ð:Ñ œ Z Ð1 ‰ ÑÐ:Ñß : − Q9 9 9ˆ ‰   

for all . This implies that the diagram1 − ÐRÑA!

 

 

X ÐQÑ X ÐRÑ

Q R

Ò

Ò

.9

1 1

9

Q RÆ Æ 

is commutative, that is,  where  and9 1 1 9 1‰ œ ‰ . À X ÐQÑ Ä QQ R Q

1R À X ÐRÑ Ä R  are natural projections,
If only the mapping  has an inverse, then one can write9

Z Ð1ÑÐ;Ñ œ Z Ð1 ‰ Ñ ‰ Ð;Ñß ; − R‡ " ‘9 9 . (2.8.6)

Thus only for invertible mappings, their differentials are able to assign a
vector  at every point . In other words, if  does not exist,Z Ð;Ñ ; − R‡ "9
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then the image of a vector field on  is generally not a vector field on . Q R If
9 is a diffeomorphism, then the image of a smooth vector field becomes also
a smooth vector field . If  exists but not smooth, then the image is a9"

vector field but it may not be smooth.

2.9. FLOWS OVER MANIFOLDS

Let  be a smooth manifold and let  be a given vectorQ Z − X ÐQÑ7

field. A differentiable curve described by the smooth mapping # \À Ä Q ,
\ ‘œ Ð+ß ,Ñ © Z will be called an  of the vector field , if it isintegral curve
tangent to the field , i.e., if the relationZ

#‡ Ð ÑŠ ‹ k.

.>
œ Z # \

is satisfied. In dynamical system, this curve is also called a or antrajectory 
orbit. This relation is symbolically expressed as follows:

. Ð>Ñ

.>
œ Z Ð>Ñ ß > − Ð+ß ,Ñ

#
#ˆ ‰    . (2.9.1)

We know that the image of this curve in  is determined by expressions‘7

B œ Ð>Ñ œ Ð>Ñ − ß 3 œ "ß á ß 73 3 3# : # ‘ˆ ‰
in local coordinates.

Theorem 2.9.1. Let a vector field  on a differentiable manifold Z Q 7

be given by

Z Ð @ Ð:Ñ œ Ñ ß : œ Ð Ñ
`

`B
3 x x

3
"  .:

where  is the chart to which  belongs A curve isÐY ß : − Q: # \Ñ À Ä Q.   
an integral curve of the vector field  if and only if the coordinate functionsZ
B Ð>Ñ3 are solutions of the following system of local ordinary differential
equations in ‘7

.B

.>
œ @

3
3ˆxÐ>Ñ ß 3 œ "ß á ß 7‰ . (2.9.2)

Indeed, if we take into consideration the relation (2.7.8), we can trans-
form (2.9.1) into the form

.B ` `

.> `B `B
œ Ð>Ñ

3

3 3
@3ˆx ‰
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which can be satisfied if and only if the differential equations

.B

.>
œ @

3
3ˆxÐ>Ñ ß 3 œ "ß á ß 7‰

are held. 
We see that in order to find integral curves of a vector field on a mani-

fold  we need to generate curves in  as solutions of differential equa-Q 7 7‘
tions (2.9.2) and then carry them on  by making use of local charts.Q

Let  be a smooth vector field on . Hence, all components  areZ Q Ñ@ Ð3 x
smooth functions. If  is also a smooth manifold, then the functions Q :ÑZ Ð3

œ Ð:ÑÑ : − Q@ Ð3 :  will be smooth, either. Next, we consider a point  and a!

chart  enclosing this point. It is known from the theory of system ofÐY ß Ñ:
ordinary differential equations that [ Coddington and Levinson (1955), .see :
22, Theorem 7.1] for each point  there exist an open setx! !

7œ Ð: Ñ −: ‘
h ‘ \ ‘Ð Ñ © Ð Ñ ©x x! !

7 containing this point and an open interval  so that
for all  and  the following system of ordinary differen-x x x− h \Ð Ñ > − Ð Ñ! !

tial equations

.

.>
œ @ Ð Ñ

93
3 9 (2.9.3)

has a unique solution  satisfying the initial condition 9 9Ð>à Ñ œx xk>œ>! !

where  and  is a vector-valued smooth function of variables > − Ð Ñ >! !\ x 9
and x xœ ÐB ß á ß B Ñ" 7 . If , then we usually choose . Thus! − Ð Ñ > œ !\ ! !

the function  designate a curve in  through the point  ¯9Ð>à Ñ Ð> Ñ œx x x‘7
!

whose equation is parametrically given by

x x x x x¯Ð>Ñ œ Ð>à Ñ ß Ð> à Ñ œ9 9− hÐ Ñ! !

where  and . If we fix  and write , thenx x x x x− Ð Ñ > − Ð Ñ > Ð Ñ œ Ð>à Ñh \! ! >9 9
9> !

7À Ð Ñ Äh ‘x  denotes a  depending on thefamily of smooth mappings
parameter . For a fixed , each point  is transported> − Ð Ñ > Ð Ñ\ hx x x! !−
along the integral curve of the vector field  to the point  deter-Z Ð Ñ −9>

7x ‘
mined by this value of the parameter . > Because of the uniqueness of the
solutions such curves cannot intersect. An open neighbourhood Y œ:!

: h :" "
! ! !ˆ ‰Ð Ñ © Q : œ Ð Ñ − Qx x is associated with each point  and an

integral curve through a point  is characterised  by: − Y:!

9 : : \ \ : ‘Ð>à :Ñ œ ‰ >à Ð:Ñ ß > − œ Ð: Ñ ©"
: !9ˆ ‰ ˆ ‰

! . (2.9.4)

This function must of course satisfy the relation . Points on this9Ð> à :Ñ œ :!

curve are found by the transformation
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:Ð>Ñ œ Ð>à :Ñ œ Ð:Ñß > −¯ .9 9 \> :!

We have to point out that the definition of  by (2.9.4) is valid only for9
points  and  situated in the same chart of the manifold. A new solution¯: :Ð>Ñ
is required for a different chart. Therefore, the family of  smooth map-local
pings  transports each point  of the mani-Ö À Y Ä Qß > − × : − Y9 \> : : :! ! !

fold  along an integral curve of the vector field  through this point toQ Z
the point . Thus, in essence, the mapping  should be written in9 9>Ð:Ñ − Q
the form

9 \À Y ‚ Ä Q: :! !

where the set  is an open subset of -dimensional smoothY ‚ Ð7  "Ñ: :! !
\

manifold . Hence, it is an -dimensional smooth open subma-Q ‚ Ð7  "Ñ‘
nifold. Let us now consider open neighbourhoods  defined as above co-Y:-

vering the manifold  so that . Next, we define the interval Q Q œ Y
- A−

:- \

œ ©
- A−

: >\ ‘ \ 9
-

. Whenever  is not empty,  becomes a global mapping for

all  so that one is able to write . If  is a compact mani-> − À Q Ä Q Q\ 9>

fold, then it would be covered by finitely many open sets of the above
family. In this case,  becomes, of course, the intersection of finitely many\
open intervals. Hence, it cannot be empty. Such a family of mappings gen-
erated by a vector field on the manifold is called the  of that vectorflow
field. If , then we say that  is a . It\ ‘œ Z − X ÐQÑ complete vector field
can be shown that if the vector field is bounded, that is, if there exists a

constant  such that   for all , then the solutionO  ! l@ Ð Ñl Ÿ O −!
3œ"

7
3 7x x ‘

of  the system of differential equations (2.9.2) will be valid on the entire real
axis [ Cronin (1980), . 53]. When  is taken as a compact manifold,see : Q
then all continuous functions defined on  ought to be bounded. Conse-Q
quently, smooth vector fields defined on compact manifolds are always
complete.

We now shall try to better understand the structure of the mapping .9>

The functions  are to satisfy93Ð>à Ñx

.

.>
œ @ Ð

93
3 9Ñß 3 œ "ß á ß 7

Ð!à Ñ œ B

,

.93 3x

We have assumed without loss of generality that . Since functions ! − \ 93

are smooth, they can be expanded into a Maclaurin series in a sufficiently
small neighbourhood of the point :> œ !
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B Ð>Ñ œ Ð>à Ñ œ Ð!à Ñ 

Þ

¯
3 3 39 9x x º º

º
. " .

.> #x .>
>  >  â

 >  â
" .

8x .>

9 9

9

3 # 3

>œ! >œ!
#

#

8 3

8
>œ!

8

We can evaluate the coefficients of this series at  by using the fore-> œ !
going ordinary differential equations. As a matter of fact, if we note that we
can write

. ` `

.> ` `
œ @ œ @ œ @ œ @

9 9
$ 9

9 9

3 3
3 4 3 4 4 3

4 4 4
Š ‹

we easily obtain the following sequence

. `@ . `@ ` `

.> ` .> ` ` `
œ œ @ œ @ @ œ @

. ` `@ . ` `

.> ` ` .> ` `
œ @ œ @ @ œ @

. `

.> `
œ @ @ œ @

# 3 3 4 3

# 4 4 4 4
4 4 3 4 3

#

$ 3 3 5

$ 5 4 4 4
4 4 3 4 3

# $

8 3

8 4
4 3 4

8"

9 9

9 9 9 9
9

9 9

9 9 9 9
9

9

9

Š ‹ Š ‹
Š ‹ Š ‹ Š ‹

Š ‹ Š
ã

`

`9
9

4

8
3‹

           ã

We know that the vector field  representing the vector fieldZ − X Ð Ñw 7‘
Z − X ÐQÑ in local coordinates is denoted by

Z Ð Ñ @ Ðw 4x xœ Ñ
`

`B4
.

Thus, after having evaluated the foregoing relations at the point , we> œ !
arrive at the following result:

º
º
º

.

.>
œ @ Ð

.

.>
œ

.

.>
œ

9

9

9

3

>œ!

3

# 3

#
>œ!

$ 3

$
>œ!

xÑ œ Z ÐB Ñ

Z ÐB Ñ

Z ÐB Ñ

w 3

w# 3

w$ 3

 ã
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º.

.>
œ

8 3

8
>œ!

9
Z ÐB Ñw8 3

              ã
The operator  denotes  times composition  of theZ 8 Z ‰ Z ‰ â ‰ Zw8 w w w

operator  by itself. Hence the Taylor series aboveZ À Ð Ñ Ä Ð Ñw ! 7 ! 7A ‘ A ‘
[English mathematician Brook Taylor (1685-1731)] can be cast into the
following series

B Ð>Ñ œ Ð>à Ñ œ B  >Z ÐB Ñ  Z ÐB Ñ  â  Z ÐB Ñ  â
> >

#x 8x

œ M  >Z  Z  â  Z  â ÐB Ñ
> >

#x 8x

¯

.

3 3 3 w 3 w# 3 w8 3
# 8

w w# w8 3
# 8

9 x

Š ‹
We shall now define the  by the absolutely convergentexponential operator
operator series

exp Ð>Z Ñ œ œ Z
>

8x
w w8

8œ!

_ 8

/>Z w " (2.9.5)

where we have adopted the convention . Thus, we attain at theZ œ Mw!

formula

93 3 3
4

Ð>à Ñ œ > Ñ ÐB Ñ œ ÐB Ñ
`

`B
x xexp Š ‹@ Ð4 />Z w

or

x x x¯ (2.9.6)Ð>Ñ œ Ð>à Ñ œ Ð Ñ9 />Z w

where the operator  is introduced by/>Z w
À Ä‘ ‘7 7

/ / / />Z >Z >Z >Zw w w w

Ð Ñ œ ÐB Ñß ÐB Ñß á ß ÐB Ñ −x ˆ ‰" # 7 7‘ .

If the operators  are commutative, namely, if they satisfy the relationZ ß Zw w
" #

Z ‰ Z œ Z ‰ Zw w w w
" # # " , we find that

/ / / / /Z Z Z Z Z Zw w w w w w
" # " # # "œ ‰ œ ‰ .

In effect, if these operators commute the classical binomial expansion yields

ÐZ  Z Ñ œ Z Z œ Z Z
8 8x

5 5x Ð8  5Ñx
w w 8 w5 w85 w5 w85

" # " # " #
5œ! 5œ!

8 8" "Š ‹ .
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We thus obtain

/ œ œ
ÐZ  Z Ñ Z Z

8x 5x Ð8  5Ñx

œ œ / /
Z Z

8x 7x

Z Z

8œ! 8œ!

_ _ 8w w 8 w5 w85
" #

5œ!

" #

8œ! 7œ!

_ _
" #
w8 w7

Z Z

w w
" #

w w
" #

" ""
" " .

Since the vector addition is a commutative operation, we infer at once the
commutativity of exponential operators. It then follows from (2.9.6) that

9 9 9Ð>  =à Ñ œ Ð Ñ œ ‰ Ð Ñ œ >à Ð=à Ñx x x x/ / /Ð>=ÑZ >Z =Zw w w ˆ ‰. (2.9.7)

Next, we employ the expression (2.9.4) by assuming that  to>ß =ß >  = − \:!

reach to the relation

9 : : : :

: : 9 9 9

Ð>  =à :Ñ œ ‰ >  =à Ð:Ñ œ ‰ >à =à Ð:Ñ

œ ‰ >à Ð =à :ÑÑ œ >à Ð=à :Ñ

" "

"

9 9 9

9

ˆ ‰ ˆ ˆ ‰‰
ˆ ˆ ‰ ˆ ‰.

This relation is actually independent of the chart in question. Indeed, ac-
cording to the definition of the integral curve, both curves > È Ð>  =à :Ñ9
and  satisfy the same differential equations. The initial> È >à Ð=à :Ñ9 9ˆ ‰
conditions at  are also the same: > œ ! Ð=à :Ñ œ !à Ð=à :Ñ œ Ð=à :ÑÞ9 9 9 9ˆ ‰

Hence, the uniqueness of solutions leads also to the conclusion

9 9 9Ð>  =à :Ñ œ >à Ð=à :Ñˆ ‰. (2.9.8)

Consequently, we can write

9 9 9 9 9>= > = > =Ð:Ñ œ Ð:Ñ œ ‰ Ð:Ñˆ ‰
for all  whenever . If the interval  is not empty, then: − Y >ß =ß >  = −: :! !

\ \
(2.9.8) becomes valid for all  and the : − Q global transformation operator
9> À Q Ä Q  satisfies the relation

9 9 9>= > =œ ‰ (2.9.9)

if . This implies that the composition of smooth functions >ß =ß >  = − \ 9>

and  is again a smooth function provided that the parameters  and  are9= > =
sufficiently small if . Furthermore, if we take , then we find\ ‘Á = œ  >
9 9 9 9 9! > > Q > >

"œ ‰ œ 3 Ð Ñ œ implying that . Hence, the inverse map-
ping  is also smooth. This amounts to say that  is a family of9 9 \"

> >Ö À > − ×
diffeomorphisms. It is clear that this set constitutes a group under the
operation of composition of mappings. However, since the group structure
prevails only for limited values of the parameter  including , this group is> !
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called   of the manifold . If"-parameter group of local diffeomorphisms Q
\ ‘œ , the group is named . The"-parameter group of diffeomorphisms
flow  is represented by a family of curves that are tangent to a given vec-9>

tor field  at every point of the manifold . These curves are obtained asZ Q
images of solutions of the set of differential equations (2.9.2) on  byQ
means of charts. Due to the uniqueness of solutions of equations (2.9.2), the
curves of this family cannot intersect except at the  satisfyingcritical points
the condition  and they fill the manifold. Such a family of curvesZ Ð:Ñ œ !
is called a congruence.

The vector field  that help determine the flow is sometimes called anZ
infinitesimal generator of the flow.

The flow  can be endowed with an appearance which makes its9Ð>à :Ñ
group structure more pronounced. Provided that the points  and x̄ xÐ>Ñ − ‘7

belong to the same chart, we then deduce from the relation x̄ xÐ>Ñ œ Ð Ñ/>Z w

that

:Ð>Ñ œ Ð>à :Ñ œ Ð Ð>ÑÑ œ Ð ‰ ‰ ÑÐ:Ñ¯ ¯ .9 : : :" "x />Z w

We can now locally define an   byexponential mapping />Z À Q Ä Q

/ />Z >Zœ ‰ ‰: :" w

. (2.9.10)

It is straightforward to demonstrate that this operator possesses the follow-
ing properties:

/ / / /

/ / / /

/ / /

Ð " Ð "

" "

 "
Q

>=ÑZ >=ÑZ >Z =Z

>Z =Z >Z =Z

>Z >Z !Z

œ ‰ ‰ œ ‰ ‰ ‰

œ ‰ ‰ ‰ ‰ ‰ œ ‰

‰ œ œ ‰ 3 ‰ œ 3

: : : :

: : : :

: :

w w w

w w

,

.‘7

These properties justify our calling  as the exponential mapping and our/>Z

using the familiar notation. Moreover, for two commutative operators Z"

and  we again obtainZ#

/ / / /

/ / / /

Ð " Ð " "Z Z Ñ Z Z Ñ Z Z

Z Z Z Z

" # " # " #
w w w w

" # # "

œ ‰ ‰ œ ‰ ‰ ‰ ‰ ‰

œ ‰ œ ‰

: : : : : :

.

We can now express the flow generated by the vector field  on the mani-Z
fold  also in the formQ

9 9Ð>à :Ñ œ Ð:Ñ œ Ð:Ñ> />Z . (2.9.11)

Naturally, as the parameter  varies, (2.9.11) might tangibly be specified on->
ly through different charts.
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Let us now take a function  into consideration. We know0 − ÐQÑA!

that the function  is related to  by the equality ,0 − Ð Ñ 0 0Ð:Ñ œ 0 Ð Ñw ! 7 wA ‘ x
that is, we get . Our task is to evaluate the value of the smooth0 œ 0 ‰w ":
function  at the point . To this end, let us consider the expansion¯0 Ð>Ñw x

0 Ð>Ñ œ 0 Ð Ñ œ 0  >  â   â
.0 > . 0

.> 8x .>
w w w

>œ!

w 8 8 w

>œ! >œ!
8

ˆ ‰ ˆ ‰ k º ºx x¯ ./>Z w

Introducing the relations

k º º ˆ ‰
º » ˆ ‰

º »

0 œ 0 Ð Ñß œ œ @ Ð Ñ œ Z 0 Ð Ñ
.0 `0 .B `0

.> `B .> `B

. 0 `Z Ð0 Ñ .B

.> `B .>
œ œ Z 0 Ð Ñ ß

ã

. 0 `Z

.>
œ

w w 3 w w
>œ!

w w 3 w

>œ! >œ!
3 3

# w w 4

# 4
>œ!

w

>œ!

w# w

8 w

8
>œ!

x x x

x

   
¯

¯

¯

¯
¯

¯ wÐ8"Ñ w 4

4

>œ!

w8 wÐ0 Ñ .B

`B .>
œ Z 0 Ð Ñ ß á

¯
¯ ˆ ‰x

into that expression we arrive at

0 Ð Ñ œ 0 Ð Ñ  >Z 0 Ð Ñ  â  Z 0 Ð Ñ  â
>

8x

œ 0  >Z Ð0 Ñ  â  Z Ð0 Ñ  â Ð Ñ
>

8x

w w w w w8 w
8

w w w w8 w
8

ˆ ‰ ˆ ‰ ˆ ‰
Š ‹

/>Z w

x x x x

x

from which we conclude that

0 Ð>Ñ œ 0 Ð Ñ œ Z Ð0 ÑÐ Ñ
>

8x

œ Ð Ñ œ Ð Ñ

w w w8 w

8œ!

_ 8ˆ ‰ ˆ ‰ "x x x

x x

¯ (2.9.12)/

/ / 0

>Z

>Z Ð0 Ñ >Z w

w

w w w

On the other hand, if the equalities 0Ð:Ñ œ 0 Ð Ñß Z Ð0ÑÐ:Ñ œ Z Ð0 ÑÐ Ñßw 8 w8 wx x
8 œ "ß #ß á  are utilised in the expression

0 :Ð>Ñ œ 0 Ð:Ñ œ 0 Ð Ñ œ Z Ð0 ÑÐ Ñ
>

8x
ˆ ‰ ˆ ‰ ˆ ‰ "¯ / />Z >Zw w8 w

8œ!

_ 8
w

x x

we find that

0 :Ð>Ñ œ 0 Ð:Ñ œ Z Ð0ÑÐ:Ñ
>

8x
ˆ ‰ ˆ ‰ "¯ (2.9.13)/>Z

8œ!

_ 8
8
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œ Ð:Ñ œ Ð:Ñ/ / 0>Z Ð0Ñ >Z

Since , the foregoing expression makes sense. If a function Z Ð0ÑÐ:Ñ − 08 ‘
satisfies the equality  for every point , we say that it¯0 :Ð>Ñ œ 0Ð:Ñ : − Qˆ ‰
is  under the flow. It immediately follows from (2.9.13) that invariant the
necessary and sufficient condition for a function  to remain invariant0
under the flow generated by a vector field  isZ

Z Ð0Ñ œ !. (2.9.14)

Next, we consider a vector field , its local representationZ − X ÐQÑ
Z − X Ð Ñ −w 7 7‘ ‘, and the integral curve through a point . In view ofx
(2.9.6), we can write . Hence, we obtainx̄ xÐ>Ñ œ Ð Ñ/>Z w

@ Ð Ñ œ œ B  >Z ÐB Ñ  Z ÐB Ñ  â  Z ÐB Ñ  â
.B . > >

.> .> #x 8x

œ Z ÐB Ñ  >Z ÐB Ñ  â  Z ÐB Ñ  â
>

Ð8  "Ñx

œ M  >Z  Z  â  Z
> >

#x Ð8  "Ñx

¯ ¯
¯3 3 w 3 w# 3 w8 3

3 # 8

w 3 w# 3 w8 3
8"

w w# w8
# 8"

x  ‘

 " w 3

w 3 3 3 3

 â Z ÐB Ñ

œ Z ÐB Ñ œ @ Ð Ñ œ @ Ð Ñ œ @ Ð Ñ

‘
ˆ ‰ ˆ ‰/ / />Z >Z >Zw w w

x x x̄ .

Here, in the last line we used (2.9.12). We thus conclude that

. .

.> .>
Ð Ñ œ Z Ð Ñ Ð Ñ œ Z Ð Ñ/ / />Z >Z >Zw w w

x x x xw w

>œ!

ˆ ‰ º  and  . (2.9.15)

To summarise, one notes that a flow generated by a vector field  on aZ
manifold  is determined as a solution of symbolic differential equationQ

. Ð:Ñ

.>
œ Z Ð:Ñ ß Ð:Ñ œ :ß : − Q

9
9 9

>
> !ˆ ‰

(operation of differentiation can only be realised by means of charts) in the
form . We can also write9>Ð:Ñ œ Ð:Ñ/>Z

. .

.> .>
Ð:Ñ œ Z Ð:Ñ Ð:Ñ œ Z Ð:Ñ/ / />Z >Z >Zˆ ‰ º  and  (2.9.16)

>œ!

in accordance with relations (2.9.15).
Let us now consider a function  and try to specify its varia-0 − ÐQÑA!

tion along the flow generated by a vector field . If the local representationZ
of this function is  subordinate to a chart, we can0 œ 0 ‰ − Ð Ñw " ! 7: A ‘
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then write

.0 Ð>Ñ .0 Ð Ñ

.> .> `B
œ œ @ Ð Ñ œ Z Ð0 Ñ œ Z Ð0 Ñ

`0w w
3 w w w w

w

3 Ð>Ñ Ð Ñ

ˆ ‰ ˆ ‰ k kx x
x¯

¯ ¯
¯

.
/>Z

/

w

>Z wx x¯

Since , the above relation leads toZ Ð0Ñ œ Z Ð0 Ñw w

.0 Ð:Ñ .0 Ð:Ñ

.> .>
œ Z Ð0Ñ œ Z Ð0ÑÐ:Ñ

ˆ ‰ ˆ ‰k »/ />Z >Z

/>Z Ð:Ñ

>œ!

  and   .

Let  be a  between two differentiable manifolds.< À Q Ä R diffeomorphism
We denote the flow brought out by a vector field  on  by the relationZ Q
:Ð>Ñ œ Ð:Ñ 0 œ 1 ‰ − ÐQÑ 1 − ÐRÑ ; œ Ð:Ñ¯ . We get  for any . If />Z < A A <! !

we obtain

1 Ð:Ñ œ Ð1 ‰ Ñ Ð:Ñ œ 0 Ð:Ñ œ Z Ð0ÑÐ:Ñ
>

8x

œ Z Ð1 ‰ ÑÐ:Ñ œ Z Ð1 ‰ Ñ ‰ Ð;Ñ
> >

8x 8x

œ Z Ð1ÑÐ;Ñ œ 1 Ð;
>

8x

 ˆ ‰‘ ˆ ‰ ˆ ‰ "
" "  ‘
" ˆ

< <

< < <

/ / /

/

>Z >Z >Z

>Z

8œ!

_ 8
8

8œ! 8œ!

_ _8 8
8 8 "

8œ!

_ 8
‡8 ‡

Ñ ß‰ Z œ ÐZ Ñ‡
‡<

after having employed (2.9.13) and (2.8.6). Since this relation is in effect for
every smooth function , we infer that1

< < <ˆ ‰/ / />Z > . ÐZ Ñ > ÐZ ÑÐ:Ñ œ Ð:Ñ œ Ð:Ñ< <‡ . (2.9.17)

This simply means that  a diffeomorphism between manifolds  and Q R
transforms a flow on  onto a flow on Q R .

2.10. LIE DERIVATIVE

Let us assume that we are given two vector fields  on aY ß Z − X ÐQÑ
manifold  and the - and -congruences generated by those fields areQ Y Z
determined. We consider a curve of -congruence through a point Z : − Q
for the value of the parameter , the point of which corresponding to the> œ !
value  is the point . -congruence has now two curves through the> ; − Q Y
points  and . This situation is depicted schematically in Fig. 2.10.1.: ;

Hence, we can write . Our aim is to establish a procedure; œ Ð:Ñ/>Z

that is able to measure the variation in vectors of the vector field  whileY
one moves along a -curve. In order to realise this, we have to suggest aZ
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ñ
ñ

:
;

Z

!
>

YÐ:Ñ YÐ;Ñ

Q

Fig. 2.10.1. Two congruences on a manifold.

scheme that makes it possible to compare vectors  andY Ð:Ñ − X ÐQÑ:

Y Ð;Ñ − X ÐQÑ;  which reside on disjoint vector spaces. In other words, we
have to transport the vector  without changing its properties into theY Ð;Ñ
tangent space . To this end, we introduce a vector X ÐQÑ Y − X ÐQÑ: :

‡

depending on the parameter  of the -curve by the following relation> Z

Y Ð:à >Ñ œ Ð Ñ Y Ð:Ñ œ Ð Ñ Ð Ñ Y Ð:Ñ‡   ‡
‡ ‡/ / / />Z >Z >Z >Zˆ ‰ (2.10.1)

where the linear operator  is the dif-Ð Ñ œ Ð Ñ À X ÐQÑ Ä X ÐQÑ9" 
> ‡ ‡ ; :/ >Z

ferential of the   at the point  and places the vector inverse flow 9"
> ; Y Ð;Ñ

into the tangent space at the point . The operator  is defined as usual: Ð Ñ/>Z ‡

by . The vectors  and  now lie in the sameÐ Ñ Y œ Y ‰ Y Ð:à >Ñ Y Ð:Ñ/ />Z >Z‡ ‡

tangent space. Therefore, their difference can now be calculated without any
difficulty. We shall next define the  of a vector field  withLie derivative Y
respect to the vector field  at the point  by the following limiting processZ :

    £ . (2.10.2)Z
>Ä! >Ä!

‡  ‡
‡

Y œ œ Y Ð:Ñ
Y Ð:à >Ñ  Y Ð:Ñ Ð Ñ Ð Ñ  M

> >
lim lim

/ />Z >Z

[Although it is always referred to the name of Norwegian mathematician
Marius Sophus Lie (1842-1899), this concept was first introduced in 1931

by Polish mathematician Wladislaw Slebodzinski (1884-1972). However,Î Î
w w

the term  was coined by Dutch mathematician David vanLie derivative
Dantzig (1900-1959) in 1932]. Thus the  can beLie derivative operator
expressed in the form
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£ . (2.10.3)Z
>Ä!

 ‡
‡

œ
Ð Ñ Ð Ñ  M

>
lim

/ />Z >Z

In the second step, we attempt to evaluate concretely the Lie derivative of a
vector field  with respect to a vector field  by resorting to local charts atY Z
points  and . Let the local coordinates at the point  be  and: ; : ÐB ß á ß B Ñ" 7

those at the point  be . Thus we can write¯ ¯; œ Ð:Ñ ÐB ß á ß B Ñ/>Z " 7

Y Ð:Ñ œ ? Ð Ñ ß Y Ð;Ñ œ ? Ð Ñ
` `

`B `B
3 3

3 3
x x̄

¯
.

In accordance with the relations (2.7.4) and (2.7.5), we obtain

Y Ð:à >Ñ œ ? Ð>Ñ ß ? Ð>Ñ œ ? Ð>Ñ
` `B

`B `B
‡ ‡4 ‡4 3

4 3

4ˆ ‰ ˆ ‰ ˆ ‰x x x¯ ¯ ¯
¯

.

For very small values of the parameter , the expression  can¯> Ð>Ñ œ Ð Ñx x/>Z w

be approximated by

B Ð>Ñ œ B  >@ Ð Ñ  9Ð>Ñ¯
3 3 3 x

where the vector field  is represented as . Hence, we are ledZ Z œ @ `Î`B3 3

to a matrix whose elements are given by

`B `@

`B `B
œ  >  9Ð>Ñ¯ .

3 3

4 4

3
4$

It follows from the chain rule of differentiation that the inverse of this
matrix is prescribed by [ ] from which we find approximately¯`B Î`B3 4

`B `@

`B `B
œ  >  9Ð>Ñ

3 3

4 4
3
4

¯
.$

Indeed, it is straightforward to verify that

$ $ $

$ $

3 3 5
4 5 4

3 5 3 5

5 4 5 4

3 3
4 4

3 3

4 4

œ œ  >  >  9Ð>Ñ
`B `B `@ `@

`B `B `B `B

œ  >   9Ð>Ñ œ  9Ð>Ñ
`@ `@

`B `B

¯
¯

.

Š ‹Š ‹
Š ‹

Furthermore, the Taylor series around the point  yieldsx

? Ð>Ñ œ ?  > Ð Ñ  Ð>Ñ œ ? Ð Ñ  > @  9Ð>Ñ
`?

`B
3 3 3 5

3

5
ˆ ‰ ˆ ‰x x v x x¯ .9

We thus find
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? œ ?  > @  9Ð>Ñ  >  9Ð>Ñ
`? `@

`B `B

œ ?  > @  ?  9Ð>Ñ
`? `@

`B `B

‡4 3 5
3 4

5 3

4
3

4 5 3
4 4

5 3

Š ‹Š ‹
Š ‹

$

and obtain finally

Y Ð:à >Ñ  Y Ð:Ñ œ > @  ?  9Ð>Ñ
`? `@ `

`B `B `B
‡ 3 3

4 4

3 3 4
Š ‹ .

Since , we conclude thatlim
>Ä!

9Ð>ÑÎ> œ !

£ (2.10.4)Z 3
3 3 3 4 3 4 3

3 ß4 ß4Y œ A œ A ` œ [ ß A œ @ ?  ? @
`

`B

where we employed the abbreviations  and .Ð † Ñ œ `Ð † ÑÎ`B ` œ `Î`Bß3 3
3 3

We observe that the Lie derivative of a vector field  with respect to aY
vector field  at every point  is again a vector in the tangent space Z : X ÐQÑ:

and the vector field £  so created measures the rate of change of theZ Y
vector  at every point in the manifold along the congruence generated byY
the vector field Z .

We readily obtain from (2.10.4) the following results

£  £ . (2.10.5)`

3 3

4 3 4 4 3Z4
Y œ ß œ 

`? ` ` `@ `

`B `B `B `B `B
Š ‹

We can attribute another meaning to the Lie derivative evoking algeb-
raic connotations. We take two vector fields  into account onY ß Z − X ÐQÑ
a manifold . For any function , we get  andQ 0 − ÐQÑ Z Ð0Ñ − ÐQÑA A! !

also  so that we can writeY Z Ð0Ñ − ÐQÑˆ ‰ A!

Y Z Ð0Ñ œ ? @ œ ? Ð@ 0 Ñ œ ? @ 0  ? @ 0
` `0

`B `B
ˆ ‰ Š ‹4 3 4 3 4 3 4 3

4 3 ß3 ß4 ß3 ß34ß4 .

In a similar way, we arrive at

Z Y Ð0Ñ œ @ ? 0  ? @ 0ˆ ‰ 4 3 3 4
ß4 ß3 ß34.

Hence, we find that

Z Y Ð0Ñ  Y Z Ð0Ñ œ Ð@ ?  ? @ Ñ0  Ð? @  ? @ Ñ0ˆ ‰ ˆ ‰ 4 3 4 3 3 4 4 3
ß4 ß4 ß3 ß34.

Second order derivatives  are symmetric with respect to the indices 0 3ß 4ß34

due to the well known relation  whereas their coefficients are anti-0 œ 0ß34 ß43
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symmetric with respect to the same indices. This means that the second sum
in the foregoing relation turns out to be zero. As a result, for every function
0 − ÐQÑA! , the following equality holds

ÐZ Y  Y Z ÑÐ0Ñ œ [ Ð0Ñ

where the vector field  is given by (2.10.4). This of course implies that[

Z Y  Y Z œ [ − X ÐQÑ.

We now define the  of two vector fields ascommutator

Ò Ó Ò ÓZ ß Y œ Z ß Y œ Z Y  Y Zw w . (2.10.6)

This is tantamount to say that the Lie derivative of a vector field  withY
respect to the vector field  is expressible asZ

£ (2.10.7)Z Y œ Z ß YÒ Ó.

It clearly follows from the definition that the commutation rule Ò ÓZ ß Y œ
 Ò ÓY ß Z  is valid. Therefore, Lie derivatives of two vector fields with
respect to one another are related by

£ £ . (2.10.8)Z YY œ  Z

The commutator  is also called  or . Ò ÓZ ß Y Lie bracket Lie product Lie
product is antisymmetric and one naturally has . It might beÒ ÓZ ß Z œ !
instructive to evaluate the Lie derivative given by (2.10.4) this time by
means of the commutator:

Ò Ó Ò ÓZ ß Y œ @ ` ß ? ` œ @ ` Ð? ` Ñ  ? ` Ð@ ` Ñ

œ @ Ð` ? Ñ`  ? Ð` @ Ñ`  Ð@ ?  ? @ Ñ`

œ Ð@ ` ?  ? ` @ Ñ` œ Y

3 4 3 4 4 3
3 4 3 4 4 3

3 4 4 3 3 4 4 3
3 4 4 3 34

4 3 4 3
4 4 3 Z£ .

Let us now take . It is then immediately seen that for allZ œ ` ß Y œ `3 4

indices , we find3ß 4

Ò Ó` ß ` œ !3 4 . (2.10.9)

Thus Lie derivatives of all natural basis vectors, produced by local charts,
with respect to one another vanish.

Another geometrical meaning can easily be attributed to the Lie brack-
et, namely, the Lie derivative. Suppose that we are given two vector fields
and - and -congruences generated by them on a manifold  are deter-Y Z Q
mined. Let these families of curves are parametrised by  and , respec-> >" #

tively. We consider - and -curves through a point . Let the pointsY Z : − Q
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;ß < − Q > > be determined along respective flows for the values  and  of" #

parameters as

; œ Ð:Ñß < œ Ð:Ñ/ /> Y > Z" # .

Let us also consider the points ,  along flows. In this¯ ¯; œ Ð;Ñ < œ Ð<Ñ/ /> Z > Y# "

case, we write

; œ ‰ Ð:Ñß < œ ‰ Ð:Ñ¯  ̄ . (2.10.10)/ / / /> Z > Y > Y > Z# " " #

We denote images of these points in  by . We obtain from¯ ¯‘7 x x xÐ:Ñß Ð;Ñß Ð<Ñ
relations (2.9.6) the expression

x x x xÐ;Ñ  Ð<Ñ œ Ð  Ñ Ð:Ñ œ ß¯ ¯ / / / / / /> Z > Y > Y > Z > Z > Y# " " # # "
w w w w w w

Ò Ó

that can be thought as measuring the "difference" between the points  and ¯ ¯; <
where we wrote . On choosing ,  sufficiently small, the expan-x xÐ:Ñ œ > >" #

sions of exponential mappings yields

x x
x

Ð;Ñ  Ð<Ñ œ ÐM  > Z  > Z  âÑÐM  > Y  > Y  âÑ

 ÐM  > Y  > Y  âÑÐM  > Z  > Z  âÑ

œ M  > Y  > Z  > > Z Y  > Z  >

¯ ¯ ˜
™

˜
# "

w " "
# #

# w# w # w#
# "

" #
w " "

# #
# w# w # w#
" #

" # " #
w w w w " "

# #
# w# #
# "

w#

" # " #
w w w w " "

# #
# w# # w#
" #

" # " #
w w w w # #

" #

Y  â

 M  > Y  > Z  > > Y Z  > Y  > Z  â

œ > > ÐZ Y  Y Z Ñ  9Ð> ß > ß > > Ñ

™
˜ ™ x

x.

Next, we take the parameters  of the order  where  is a small number.> ß >" # % %
We thus conclude that

x x x
x

Ð;Ñ  Ð<Ñ œ Z ß Y Ð:Ñ  Ð Ñ

œ Y Ð:Ñ  Ð Ñ

¯ ¯
£ .

(2.10.11)% %

% %

# #

# #
Z

Ò Ó 9

9

ˆ ‰
ˆ ‰

In view of (2.10.4), this expression can be cast into the shape

B Ð;Ñ  B Ð<Ñ œ > > A  9Ð Ñ œ > > A  9Ð Ñ µ A  9Ð Ñ
`B

`B
3 3 4 # 3 # # 3 #

" # " #

3

4¯ ¯ % % % %

in terms of components. It is seen that even if we consider rather close
points , the points  and  formed as above do not coincide in general.¯ ¯:ß ;ß < ; <
But the difference is of second order and its magnitude is governed by the
Lie bracket at the point  (Fig. 2.10.2).:

If vector fields  commute, then we have  and Y ß Z Z Y œ Y Z Z ß YÒ Ó
œ ! ‰ œ ‰ œ. We know in this case that ./ / / / /> Z > Y > Y > Z > Y > Z# " " # " #

Hence (2.10.10) yields exactly . In other words, the congruence curves¯ ¯; œ <
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Fig. 2.10.2. The geometrical meaning of the Lie derivative.

through the points  and  intersects at the point  for the parameter values¯; < ;
> > Y Z" # and . This amounts to say that the - and - congruences play the part
of two families of coordinate lines on  because  and  can now beQ > >" #

regarded as two Cartesian coordinates in .‘7

Conversely, we can immediately deduce from (2.10.11) that if we get
Ò Ó Ò Ó/ />Z >Yß œ ! > Z ß Y œ ! for all  and , then we must have .x

It follows directly from the relation (2.10.4) that the Lie product is
distributive:

Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó Ò ÓZ  Z ß Y œ Z ß Y  Z ß Y ß Z ß Y  Y œ Z ß Y  Z ß Y" # " # " # " #

Therefore, for all vector fields  and  we can writeY ß Z Y ß Y ß Z ß Z" # " #

£ £ £ £ £ £Z Z Z Z Z " # Z " Z #" # " #Y œ Y  Y ß ÐY  Y Ñ œ Y  Y

whence we reach to the operator equality

£ £ £ . (2.10.12)Z Z Z Z" # " #œ 

Moreover, Lie product satisfies the . Jacobi identity Y ß Z ß [ − X ÐQÑ
are arbitrary three vector fields. Then, the following identity holds

N œ Y ß Z ß [  Z ß [ ß Y  [ ß Y ß Z œ ! ‘  ‘  ‘Ò Ó Ò Ó Ò Ó . (2.10.13)

To verify this, let us begin with the calculation of the first term:
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 ‘Y ß Z ß [ œ ? Ð@ A  A @ Ñ  Ð@ A  A @ Ñ?
`

`B

œ ? @ A  ? @ A  ? @ A

Ò Ó š ›
š

4 5 3 5 3 5 5 3
ß5 ß5 ß4ß4 ß5 ß5

4 4

3

4 5 3 4 5 3 4 3 5
ß4 ß5 ß45 ß5 ß4

    ? @ A  ? @ A  ? @ A
`

`B
4 3 5 3 5 3 5

ß45 ß4 ß4ß5 ß5
4 4

3
›

After having evaluated the other terms in (2.10.13) in a similar fashion, we
consider their sum and by eliminating terms cancelling each other we reach
to the result

N œ ? Ð@ A  @ A Ñ  @ ÐA ?  A ? Ñ  A Ð? @  ? @ Ñ
`

`B
š ›3 4 5 5 4 3 4 5 5 4 3 4 5 5 4

ß45 ß45 ß45 3
.

However, in the above sums, the terms within parentheses are antisymmet-
ric whereas mixed derivatives are symmetric with respect to relevant indices
so that we finally obtain . This result can also be found by resorting toN œ !
commutators. If we write (2.10.13) explicitly, we obtain

Y Z ß [  Z ß [ Y  Z [ ß Y  [ ß Y Z  [ Y ß Z  Y ß Z [

œ Y Z [  Y [ Z  Z [ Y  [ Z Y  Z [ Y  Z Y [  [ Y Z

 Y [ Z  [ Y Z [ Z Y  Y Z [  Z Y [ œ !

Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó

     
.

We can now equip the module  that consists of all vector fieldsÉÐQÑ
on a manifold  with a closed binary operation provided by the Lie bracketQ
that assigns a vector field to every pair of vector fields. This way ÉÐQÑ
acquires an algebraic structure. With this structure that is anticommutative
but  as is clearly implied by the Jacobi identity (2.10.13), we not associative
can now venture to say, with a slight abuse of the term, that the module
ÉÐQÑ has become a . In fact, a Lie algebra is usually defined onLie algebra
a vector space. But  is a vector space only on the field of real num-ÉÐQÑ
bers. Thus, strictly speaking, a Lie algebra can be formed on a real vector
space by defining the product of two vectors as the Lie bracket. In this case,
the Lie product turns out to be a bilinear operations so that for real numbers
! !" #ß , we can write

Ò Ó Ò Ó Ò Ó

Ò Ó Ò Ó Ò Ó

! ! ! !

! ! ! !
" " # # " " # #

" " # # " " # #

Y  Y ß Z œ Y ß Z  Y ß Z

Y ß Z  Z ß œ Y ß Z  Y ß Z .

Obviously, tangent spaces  at every point  are Lie algebras inX ÐQÑ : − Q:

the true sense of the word.
We shall now attempt to measure the change in a vector field  alongY

a -curve through the point . We can transport all vectors  in differentZ : Y
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tangent spaces at every point of the curve into the tangent space X ÐQÑ:

utilising the mapping (2.10.1). Since we can add vectors in the same tangent
space, the rate of change of the vector field  can be measured directly byY
the derivative

.Y Ð:à >Ñ Y Ð:à >  Ñ  Y Ð:à >Ñ

.>
œ

‡ ‡ ‡

Ä!
lim
7

7

7
. (2.10.14)

We know that the diffeomorphism  generated by a vector/>Z À Q Ä Q

field  on the manifold  will satisfy .Z Q œ ‰ œ ‰/ / / / /Ð> ÑZ >Z Z Z >Z7 7 7  

It then follows from the rule (2.7.7) concerning the composition of differen-
tials that one can write

Y Ð:à >  Ñ œ Ð Ñ Ð Ñ Y Ð:Ñ

œ Ð Ñ ‰ Ð Ñ ‰ Y ‰ ‰ Ð:Ñ

œ Ð Ñ ‰ Ð Ñ ‰ Ð Ñ ‰ Y ‰ Ð:Ñ

œ Ð Ñ ‰ Y Ð:à >Ñ ‰ Ð:Ñ

œ Ð Ñ

‡ Ð  Ñ Ð  Ñ ‡
‡

 
‡ ‡

  ‡
‡ ‡

 ‡
‡



7 / /

/ / / /

/ / / /

/ /

/

> Z > Z

Z >Z Z >Z

Z >Z >Z Z

Z Z

Z

7 7

7 7

7 7

7 7

7

ˆ ‰
‡

‡ ‡‰ Ð Ñ Y Ð:à >Ñ/7Z .

Hence, the derivative (2.10.14) is expressible in the form

.Y Ð:à >Ñ Ð Ñ Ð Ñ  M

.>
œ Y Ð:à >Ñ

‡  ‡

Ä!

‡ ‡lim
7

7 7/ /Z Z

7
.

If we recall the relation (2.10.3), we conclude that

.Y Ð:à >Ñ

.>
œ Y Ð:à >Ñ

‡

Z
‡£ . (2.10.15)

This is a differential equation satisfied by the operator  with the initialY ‡

condition . The solution of this equation is formally ex-Y Ð:à !Ñ œ Y Ð:Ñ‡

panded into a Maclaurin series around  as follows> œ !

Y Ð:à >Ñ œ Y Ð:à !Ñ  >  >  â
.Y Ð:à >Ñ " . Y Ð:à >Ñ

.> # .>


" . Y Ð:à >Ñ

8x .>

‡ ‡ #
‡ # ‡

>œ! >œ!
#

8 ‡

º º
º                                                          

8
>œ!

8>  â.

Since the operator £  does not depend on the parameter , we find thatZ >

º.Y Ð:à >Ñ

.>
œ Y Ð:à !Ñ œ Y Ð:Ñß

‡

>œ!
Z Z

‡£ £
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º º. Y Ð:à >Ñ .Y Ð:à >Ñ

.> .>
œ œ Y Ð:Ñß

# ‡ ‡

#
>œ! >œ!

Z
#
Z£ £ .

ã

where . We thus arrive at the formal operator seriesY Ð:à !Ñ œ Y Ð:Ñ‡

Y Ð:à >Ñ œ Y Ð:Ñ  > Y Ð:Ñ  Y Ð:Ñ  â  Y Ð:Ñ  â
> >

# 8x
‡ # 8

Z

# 8

Z Z£ £ £ .

We now define the exponential operator  in the usual way as the abso-/>£Z

lutely convergent series

 £ £ £/ œ M  >   â   â
> >

#x 8x
>£Z

Z

# 8
# 8
Z Z

whence we are led to the result

Y Ð:à >Ñ œ / Y Ð:Ñ − X ÐQÑß : − Q‡
:

>£Z . (2.10.16)

We deduce from his relation an important property of vector fields. If £Z Y
œ Z ß Y œ ! Y Ð:à >Ñ œ Y Ð:ÑÒ Ó , then we get  implying that the vector field‡

Y Z Y does not change on -congruence. In other words, the vector field  re-
mains  with respect to the vector field . On the other hand, ifinvariant Z
£ , then we have £  due to (2.10.8). Therefore, we understandZ YY œ ! Z œ !
that if the field  is invariant with respect to the field , then the field Y Z Z
becomes necessarily invariant with respect to the field .Y

We can now write the Jacobi identity in the form

£ £ £ £ £ £ .Y Z Z [ [ Y[  Y  Z œ !

Then properties of Lie derivative allows us to transform this relation into

Ð  Ñ[ œ [£ £ £ £ £Y Z Z Y Z£Y

or £ £ £ . Since this equality must hold for every vectorÒ ÓY Z Y ßZß [ œ [Ò Ó

field , we arrive at the following rather elegant result between two Lie de-[
rivative operators

Ò Ó£ £ £ . (2.10.17)Y Z Y ßZß œ Ò Ó

In exactly same way, we can define the Lie derivative of a function
0 − ÐQÑA!  as follows

£ .Z
>Ä!

>

0 œ
0Ð :Ñ  0Ð:Ñ

>
lim

/ Z
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On using charts, we have , . We can now¯0Ð:Ñ œ 0 Ð Ñ 0Ð :Ñ œ 0 Ð>Ñw > wx x/ Z ˆ ‰
approximately write . Hence, Taylor series aboutB̄ Ð>Ñ œ B  >@ Ð Ñ  9Ð>Ñ3 3 3 x
the point  yieldsx

0 Ð>Ñ  0 Ð Ñ œ 0 Ð Ñ  >@ Ð Ñ  9Ð>Ñ  0 Ð Ñ œ >Z Ð0 Ñ  9Ð>Ñ
`0

`B
w w w 3 w w w

3
ˆ ‰x x x x x¯

and we finally obtain

£ (2.10.18)Z
3

3
0 œ Z Ð0Ñ œ @

`0

`B

Thus the Lie derivative of a function  is nothing but the directional deriva-0
tive of  along the vector . If £ , then the function  remains con-0 Z 0 œ ! 0Z

stant on every curve of -congruence. Z Naturally this constant may be
different on each curve of the congruence.

Suppose now that we are given two vector fields  andY ß Z − X ÐQÑ
two smooth functions . For any function , we can0ß 1 − ÐQÑ 2 − ÐQÑA A! !

write

Ò Ó

Ò Ó

0Y ß 1Z Ð2Ñ œ 0Y 1Z Ð2Ñ  1Z 0Y Ð2Ñ œ 0Y Ð1ÑZ Ð2Ñ  01Y Z Ð2Ñ

 1Z Ð0ÑY Ð2Ñ  10Z Y Ð2Ñ œ 01 Y ß Z  0Y Ð1ÑZ  1Z Ð0ÑY Ð2Ñ

ˆ ‰ ˆ ‰ ‘ .

where we have taken into account that vector fields are actually derivations.
We thus obtain

Ò Ó Ò Ó0Y ß 1Z œ 01 Y ß Z  0Y Ð1ÑZ  1Z Ð0ÑY (2.10.19)

or equivalently

£ £ £ £ . (2.10.20)0Y Y Y ZÐ1Z Ñ œ 01 Z  0 Ð1ÑZ  1 Ð0ÑY

Let  be a differentiable mapping between manifolds 9 À Q Ä R Q
and . We know that the differential of  at a point  is the linearR : − Q9
operator . Consider two vector fields  and  on9‡ : Ð:ÑÀ X ÐQÑ Ä X ÐRÑ Y Z9

the manifold . The Lie bracket of these vector fields at  is given by theQ :
vector

Ò ÓY ß Z œ A − X ÐQÑß
`

`B

A œ ?  @
`@ `?

`B `B

3
3 :

3 4 4
3 3

4 4

in the local coordinates. In view of (2.7.4), the vector 9‡ Ð:ÑÒ ÓY ß Z − X ÐQÑ9

is expressed in the form



2.11  Distributions. The Frobenius Theorem 153

9
F

‡
‡ 3

3
Ò ÓY ß Z œ A œ A

` ` `

`C `B `C
!

! !

!

.

Here,  are the local coordinates at the point  andy œ ÐC ß á ß C Ñ Ð:Ñ − R" 8 9
are related to the local coordinates  at the point  byx œ ÐB ß á ß B Ñ : − Q" 7

a functional relation  or functions y xœ Ð Ñ C œ ÐB ß á ß B Ñß œF F !! ! " 7

"ß á ß 8 associated with the mapping . Let us now explicitly evaluate9
components :A‡!

A œ A œ ?  @
` `@ `? `

`B `B `B `B

œ ? @  @ ?  Ð@ ?  ? @ Ñ
` ` ` ` `

`B `B `B `B `B `B

œ ?  @ œ ?
`@ `? `@ `

`B `B `C `

‡ 3 4 4
3 4 4 3

3 3

4 3 4 3 4 3 4 3
4 3 4 3 3 4

#

4 4 4
‡ ‡ ‡

4 4

!
! !

! ! !

! ! ! "

"

F F

F F F

F

Š ‹
Š ‹ Š ‹

B `C `B
 @

`? `

œ ?  @ œ Y ß Z
`@ `?

`C `C

4 4
4

‡

‡ ‡
‡ ‡

‡ ‡

! "

"

" " !
! !

" "

F

9 9Ò Ó .

We thus conclude that

9 9 9‡ ‡ ‡Ò Ó Ò ÓY ß Z œ Y ß Z  (2.10.21)

or , or £ £ .Ò Ó Ò ÓY ß Z œ Y ß Z Ð Z Ñ œ Ð Z Ñ‡ ‡ ‡
‡ Y Y ‡9 99‡

2.11. DISTRIBUTIONS. THE FROBENIUS THEOREM

Let  be an -dimensional differentiable manifold. Let us consider aQ 7
subspace  of dimension  of the tangent spaceW g: : :œ ÐQÑ X ÐQÑ 5  7§

X ÐQÑ : − Q:  at every point . We may constitute a  bytangent subbundle
union of disjoint subspaces :g:ÐQÑ

g g gÐQÑ œ  ÐQÑ œ ÖÐ:ß Z Ñ À : − Qß Z − ÐQÑ× X ÐQÑ§
:−Q

: :              1)(2.11.

This subbundle is called a . We denote it by 5-dimensional distribution W
œ ÐQÑ 5g . Thus a -dimensional distribution really attaches to every point

of the manifold a -dimensional subspace of the tangent space at that point.5
In order to construct such a distribution, all we have to do is to select  line-5
arly independent vector fields. If vector fields  are linearlyY ß œ "ß á ß 5! !
independent, then the relation

+ Ð:ÑY Ð:Ñ œ !!
!
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with  can be satisfied if and only if  for .+ − ÐQÑ + Ð:Ñ œ ! œ "ß á ß 5! !A !!

Such vector fields  constitute a  of the distribution.Y! basis
A distribution  is called an if for every vectorW involutive distribution 

fields  one has , namely, if  is closed under the LieY ß Z − Y ß Z −W W WÒ Ó
product. It is clear that all Lie brackets remain in  if and only if it is possi-W
ble to find functions  such that- − ÐQÑ! A!

Ò ÓY ß Z œ - Ð:ÑY!
!

for all . Since basis vectors  are also in , a necessary condi-Y ß Z − YW ! W
tion for the distribution  to be involutive is that the relationsW

Ò ÓY ß Y œ - Ð:ÑY! " #!"
# (2.11.2)

should be satisfied for some functions . One can readily shows- − ÐQÑ!"
# A!

that this condition is also sufficient. Let us consider vectors  andY œ Y-! !

Z œ Y.! !. It follows from (2.10.19) that

Ò Ó Ò Ó Ò ÓY ß Z œ Y ß Y œ Y ß Y  Y Ð ÑY

 Y Ð ÑY œ -  Y Ð Ñ  Y Ð Ñ Y

œ - Ð:ÑY −

- . - . - .

. - - . - . . -

W

! ! !
! " ! " ! "

" " "

" " # !
" ! ! ! #

! ! ! #
!"
#

#
#

      

.

˜ ™
Due to the antisymmetry of Lie brackets, the coefficients  must be anti--!"

#

symmetric with respect to the subscripts:

- œ  -!" "!
# # . (2.11.3)

Moreover, Lie brackets of vectors in  ought to satisfy the Jacobi identity.W
For basis vectors , this identity is reduced to the formY!

 ‘  ‘  ‘Y ß Y ß Y  Y ß Y ß Y  Y ß Y ß Y œ !Þ! " # " # ! # ! "Ò Ó Ò Ó Ò Ó

On using (2.11.2), this identity yields

Ò Ó Ò Ó Ò Ó Ò Ó Ò Ó

Ò Ó

Y ß - Y  Y ß - Y  Y ß - Y œ - Y ß Y  - Y ß Y

 - Y ß Y  Y Ð- ÑY  Y Ð- ÑY  Y Ð- ÑY

œ - -  - -  -

! $ " $ # $ ! $ " $"# #! !" "# #!
$ $ $ $ $

!" "# #! !"
$ $ $ $

# $ ! $ " $ # $

"# !$ #! "$ !"
$ - $ - $˜ -  Y Ð- Ñ  Y Ð- Ñ  Y Ð- Ñ Y œ !#$ "# #! !"

- - - -
! " # -™ .

Since vectors  are linearly independent, we deduce that the coefficientsY-

-!"
#  must satisfy the following relations

      (2.11.4)- -  - -  - -  Y Ð- Ñ  Y Ð- Ñ  Y Ð- Ñ œ !"# !$ #! "$ !" #$ "# #! !"
$ - $ - $ - - - -

! " #
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for all values of indices . Because of the symmetry pro-! " # -ß ß ß œ "ß á ß 5
perties of these coefficients the number of independent relations in (2.11.4)
is considerably smaller.

We have discussed in Sec. 2.4 some techniques to specify a submani-
fold of a given manifold . We now propose another method to achieveQ
that purpose. Let  be a -dimensional submanifold of  determined byW 5 Q
the relations  and . Then at a pointB œ B Ð? Ñß 3 œ "ß á ß 7 œ "ß á ß 53 3 ! !
: − W 5 X ÐWÑ : there will be a -dimensional tangent space . But  is a point of:

Q X ÐQÑ as well and all vectors at that point belong also to . Hence, we can:

write , i.e.,  is a subspace of . Since the inclu-X ÐWÑ X ÐQÑ X ÐWÑ X ÐQÑ§: : : :

sion map  is an embedding, its differential \ \À W Ä Q . À X ÐWÑ Ä X ÐQÑ
is an injective linear operator. Because  is an identity map-\ \À W Ä ÐWÑ
ping, we can write . Thus, if we consider a vector. ÐZ Ñ œ Z ß Z − X ÐWÑ\ :

Z W : in the tangent space of  at a point , its components in tangent spaces
X ÐWÑ X ÐQÑ: : and  are related by

Z œ @ œ @ œ @ @ œ @
` ` `B ` `B

`B `? `? `B `?
3 3

3 3

3 3
! ! !

! ! !
  or  . (2.11.5)

Let . Due to (2.10.21) we obtainY ß Z − X ÐWÑ:

. Ð Y ß Z Ñ œ . ÐY Ñß . ÐZ Ñ œ Y ß Z\ \ \Ò Ó Ò Ó Ò Ó

that results in . This means that as long as  is a sub-Ò ÓY ß Z − X ÐWÑ W © Q:

manifold, Lie products of vectors in  stay in . Therefore, such aX ÐWÑ X ÐWÑ: :

subspace  is a Lie subalgebra of the Lie algebra .X ÐWÑ X ÐQÑ: :

Now, conversely, let us suppose that we are given  linearly indepen-5
dent vector fields on the manifold . In other words, we choose a -dimen-Q 5
sional subspace of the tangent space at every point of the manifold. We then
take congruences that are integral curves of those vector fields. Therefore,
we can construct a local piece of the manifold which is tangent to a linear
vector space formed by the chosen  vectors at every point of the manifold5
Q . Next we have to ask the following question: under which conditions
these small pieces of manifolds can be patched together  in order tosmoothly
produce a smooth hypersurface forming a submanifold? This question can
be quite easily answered qualitatively. When moving on an integral curve of
a vector field, the variations of other vector fields are measured by Lie de-
rivatives. In order that these integral curves stay on the hypersurface, Lie
derivatives of vector fields must lie in the chosen subspace.

Let us consider a -dimensional distribution  on a manifold . If the5 QW
tangent space at every point  of a -dimensional submanifold : − W 5 W © Q
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is identical with the subspace  of the tangent space  of , that is,W: :X ÐQÑ Q
if we have

. ÐX ÐWÑÑ œ ß a: − W\ W: : Ð:Ñœ\ (2.11.6)

where  is the embedding mapping determining the submanifold\ À W Ä Q
W W, then  is called an  of the distribution . Some-integral submanifold W
times instead of (2.11.6), we may prefer the weaker condition . ÐX ÐWÑÑ\ :

© : − W WW:œ3Ð:Ñ at each point . In this case the dimension of  may be less
than .  5 If a -dimensional distribution  possesses a -dimensional integ-5 5W
ral submanifold through every point , then  is called a: − Q W  completely
integrable distribution. A fundamental theorem concerning such distribu-
tions is provided by German mathematician Ferdinand Georg Frobenius
(1849-1917).

Theorem 2.11.1 (The Frobenius Theorem). A distribution  on aW
manifold is completely integrable if and only it is involutive.

If we assume that the distribution  is completely integrable, thenW
there exists an integral submanifold  through every point  and atW : − Q
that point the subspace  corresponds to the tangent space of .W: :§ X ÐQÑ W
Therefore, for each  one finds , namely,  is in-Y ß Z − Y ß Z −W W W: :Ò Ó
volutive.

For the proof of the converse statement, we consider a -dimensional5
involutive distribution  on an -dimensional manifold . This distribu-W 7 Q
tion is specified by  linearly independent vector fields 5 Ÿ 7 Y ß œ! !
"ß #ß á ß 5 7 X ÐQÑ in the -dimensional tangent bundle . Since  is anW
involutive distribution, there exist smooth functions  satisfying- − ÐQÑ!"

# A!

the relations  and verifying the conditions (2.11.3) andÒ ÓY ß Y œ - Ð:ÑY! " #!"
#

(2.11.4). Let us choose a new set of linearly independent vector fields by
means of the transformation

Z Ð:Ñ œ E Ð:ÑY Ð:Ñß ß œ "ß á ß 5! "!
" ! " (2.11.7)

where . The only restriction imposed on  matrix E Ð:Ñ − ÐQÑ 5 ‚ 5 œ!
" A! A ‘E Ð:Ñ Á ! : − W"

!
 is that  at each point . Thus, we can writedet A

Ò Ó Ò Ó Ò ÓZ ß Z œ E Y ß E Y œ E E Y ß Y  E Y ÐE ÑY

 E Y ÐE ÑY œ - E E  E Y ÐE Ñ  E Y ÐE Ñ Y

# $ ! " ! " ! "# # #
! ! !

$ $ $
" " "

$ !" $ $ $
" "

" ! ! ! .# # #
! ! ! !. .

#
. ‘

Let us denote the inverse matrix by , namely, the relationsA B" œ œ F ‘
"

!

E F œ F E œ# #
! # ! # !

" " "$
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will hold. Hence, (2.11.7) gives

Y Ð:Ñ œ F Ð:ÑZ Ð:Ñ! "!
" .

The commutators of vectors  then becomeZ!

Ò ÓZ ß Z œ - E E  E Y ÐE Ñ  E Y ÐE Ñ F Z

œ G Z

# $ ! ! -
. .
!" $ $ $# #

! ! !"
# .
. -

#$
-

-

 ‘ (2.11.8)

as it should be expected. We thus find that . Here, the functionsÒ ÓZ ß Z −# $ W

G − ÐQÑ#$
- A!  are given by

G œ F - E E  E Y ÐE Ñ  E Y ÐE Ñ

œ F - E E  Z ÐE Ñ  Z ÐE Ñ

#$ . #
- - .. .

!" $ $ $# #
! ! !"

! !

. #
- .. .

!" $ $#
! "

# $

 ‘
 ‘.

The vector fields  are prescribed byY!

Y œ ? Ð Ñ ß œ Ð:Ñß
`

`B
3 œ "ß á ß 7à œ "ß á ß 5

! !
3

3
x x :

!

in a chart  containing the point . Therefore, the vector fields  areÐY ß Ñ : Z: !

given by

Z œ E ?
`

`B
! ! "

" 3
3
. (2.11.9)

Since  number of vectors  are linearly independent, the rank of the5 Y!

rectangular matrix

Ò? Ó œ

? ? â ? â ?

? ? â ? â ?
ã ã â ã â ã

? ? â ? â ?

3

" " " "
" # 5 7

# # # #
" # 5 7

5 5 5 5
" # 5 7

!

Ô ×Ö ÙÖ Ù
Õ Ø

is . We rename the coordinates  if necessary to arrange this matrix in5 B3

such a way that  can be chosen as the  square matrix with non-Ò? Ó 5 ‚ 5!
"

vanishing determinant. Then (2.11.9) can be written as follows

Z œ E ?  E ? ß + œ 5  "ß á ß 7
` `

`B `B
! ! ! "

" "#
" #

+
+

. (2.11.10)

So far the matrix  was arbitrary. We now select it as the inverse of theA
matrix :Ò? Ó!"
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E ? œ ß E œ ?! "
" #

" "!
# ! !
$

"

where the smooth functions  are elements of the inverse matrix? − ÐQÑ
"

"

!
A!

Ò? Ó!"
". With this choice the structure of the expressions (2.11.10) reduces to

a much simpler form

Z œ  @
` `

`B `B
! ! !

+
+

(2.11.11)

where we have introduced the functions  by@!
+

@ œ ? ?! " !

"+ + " . (2.11.12)

On recalling that , we readily findÒ Ó` ß ` œ !3 4

Ò Ó Ò Ó œZ ß Z œ `  @ ` ß `  @ ` ` `  @ `  @ ` `

 @ ` `  @ @ `  @ @ ` `  ` `  @ `

 @ ` `  @ ` `  @ @ `  @ @ `

! " ! " ! " !! " " ! "

! ! " ! " ! "" " !

! " " ! " !" !

+ , , ,
+ , , ,ß

+ + , + , +
+ + + , +ß+ ß

+ , , + , +
+ , + ,ß,

 

`

œ ÖÐ@  @ @  Ð@  @ @ ×`

+

ß ß, ß ß,
+ , + + , +

+" ! ! " ! " " !) )

or

Ò ÓZ ß Z œ ÖZ Ð@ Ñ  Z Ð@ Ñ×
`

`B
! " ! "" !

+ +
+

. (2.11.13)

Next we insert (2.11.11) into (2.11.8) and rearrange the terms to obtain

Ò ÓZ ß Z œ G Z œ G  G @
` `

`B `B
! " #!" !" !"

# # #

# #
+

+
.

If we compare this expression with (2.11.13) we deduce that all coefficient
functions  must vanish. Hence, we conclude thatG!"

#

Ò ÓZ ß Z œ !! " . (2.11.14)

Furthermore, (2.11.13) then implies that the following conditions should al-
so be satisfied

Z Ð@ Ñ œ Z Ð@ Ñ! "" !
+ + . (2.11.15)

(2.11.14) means that in an involutive distribution  one is always able toW
find  linearly independent vector fields  generating this distribution that5 Z!
commute with respect to the Lie product. Consequently, congruences pro-
duced by those vector fields constitute a -dimensional net of coordinate5
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lines at the vicinity of each point of the manifold . In other words, theyQ
form an integral manifold. 

Making use of the information provided by the above theorem, we can
determine in a concrete way the integral manifold of an involutive distribu-
tion . Let  denote the local coordinates that give riseW Ð ß ß á ß Ñ −0 0 0 ‘" # 5 5

to   of the tangent bundle . So we can writenatural basis ÖZ × X ÐWÑ!

Z œ œ  @ ß œ "ß á ß 5à + œ 5  "ß á ß 7
` ` `

` `B `B
! ! ! !0

!+
+

.

Therefore, one has

Z ÐB Ñ œ œ  @ œ  @
`B `B `B

` `B `B
" " " " ""

3 + +
3 3 3

+

3 3
+

0
$ $

whence we conclude that

`B `B

` `
œ ß œ @ Ð Ñ

!

" !"

!
!0 0

$
+

+ x . (2.11.16)

Solutions of equations (2.11.16)  are trivially found as"

B œ  - ß œ "ß á ß 5! ! !0 ! . (2.11.17)

Since equations (2.11.16)  are generally non-linear, it is usually much more#

difficult to obtain their solutions. Utilising (2.11.17), we can put these equa-
tions into the form

`B

`
œ @ ÐB ß á ß B ß B ß á ß B Ñ

œ @ Ð  - ß á ß  - ß B ß á ß B Ñß

+ œ 5  "ß á ß 7

+
+ " 5 5" 7

+ " " 5 5 5" 7

0

0 0

! !

!

.

Let us then calculate derivatives of equations (2.11.16)  with respect to va-#

riables :0"

` B `@ `@ `B `@ `B `@ `@

` ` ` `B ` `B ` `B `B
œ œ  œ  @ œ Z Ð@ Ñ

# + + + + , + +

, ,
, +

0 0 0 0 0! " " # " " "
! ! ! ! !

#

" !" .

This implies that equations (2.11.16)  can only be solved if the compatibili-#

ty conditions , that are naturally brought about by the sym-Z Ð@ Ñ œ Z Ð@ Ñ! "" !
+ +

metries of second order derivatives, are satisfied. However, these are none
other than conditions (2.11.15) that must be elicited by functions . Thus,@!

+

equations (2.11.16)  can be integrated in principle and the set of coordinates#

ÖB ×+  are expressible in terms of variables  as below:0!
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B œ 0 Ð ß ß á ß Ñ  -+ + " # 5 +0 0 0

where  and  are  arbitrary constants. Let us now+ œ 5  "ß á ß 7 - 7  5+

define the new local coordinates by means of the relations

C œ ß C œ B  0 Ð ß ß á ß Ñ! !0 0 0 0+ + + " # 5

where  and . In the light of the above devel-! œ "ß á ß 5 + œ 5  "ß á ß 7
opments, we can thus rephrase the Frobenius theorem as follows:  Let be aW
5-dimensional involutive distribution on an dimensional manifold. Then7-
there exists local coordinates y such that the vector fields3ß " Ÿ 3 Ÿ 7 
`Î` œ `Î` ß á ß `Î` œ `Î`y y  constitute a local basis of the distri-" " 5 50 0
bution and submanifolds determined by y constantW  + œ 5  " Ÿ + Ÿ 7ß
are integral manifolds of W.

 It is now seen that a -dimensional involutive distribution on an -di-5 7
mensional manifold  generates a -dimensional smooth integral manifoldQ 5
through each point . Therefore, the manifold  can be reconstructed: − Q Q
as the union of a family of -dimensional submanifolds stacked on top of5
one another. Such a case is called a -dimensional  of the class 5 Gfoliation _

on the manifold . Each submanifold is known as a  of the foliation.Q leaf
Example 2.11.1. Let  with a coordinate cover . We de-Q œ Bß Cß D‘$

fine a -dimensional distribution  by the vector fields# W

Y œ  C  B ß
` `

`B `C

Y œ  D  C
` `

`C `D

"

#

where we take . It is easily verified that these vectorB œ Bß B œ Cß B œ D" # $

fields are linearly independent if . In fact, we write with C Á ! 0ß 1 − ÐQÑA!

0Y  1Y œ  C0`  ÐB0  D1Ñ`  C1` œ !" # B C D .

This relation is satisfied if and only if  when . On the other0 œ 1 œ ! C Á !
hand, the commutator of these vector fields becomes

Ò ÓY ß Y œ  D  B œ Y  Y −
` ` D B

`B `D C C
" # " # W.

Thus  is an involutive distribution. Let us first determine the congruencesW
produced by vector fields  and . The solutions of the following simpleY Y" #

ordinary differential equations associated with vector fields  and ,Y Y" #

respectively
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Y À œ  Cß œ Bß œ !à Ð!Ñ œ
.B .C .D

.> .> .>

Y À œ !ß œ  Dß œ Cà Ð!Ñ œ
.B .C .D

.= .= .=

"

#

¯ ¯ ¯
¯ ¯      ¯

¯ ¯ ¯     ¯ ¯ ¯

x x

x x

yield the -congruence by the following parametric equationsY"

BÐ>Ñ œ B >  C >ß CÐ>Ñ œ B >  C >ß DÐ>Ñ œ Dß¯ ¯ ¯cos sin sin cos

and -congruence by equationsY#

BÐ=Ñ œ Bß CÐ=Ñ œ C =  D =ß DÐ=Ñ œ C =  D =¯ ¯ ¯ .cos sin sin cos

It is immediately seen that both equations satisfy

BÐ>Ñ  CÐ>Ñ  DÐ>Ñ œ BÐ=Ñ  CÐ=Ñ  DÐ=Ñ œ B  C  D¯ ¯ ¯ ¯ ¯ ¯ .# # # # # # # # #

Hence, the -dimensional integral manifold through the point # œ ÐBß Cß DÑx
is a sphere whose radius is equal to the distance of this point from the origin
!. But these congruences cannot form a coordinate net on the sphere. In-
deed, let us move along  integral curve through the point  to the point Y" "x x
by the parameter , then along  integral curve from the point  to the> Y# x
point  by the parameter . We find thatx# =

B œ B >  C >ß C œ B >  C >ß D œ D

B œ Bß C œ C =  D =ß D œ C =  D =
" " "

# # #

cos sin sin cos
cos sin sin cos .

Next, we go along  integral curve from  to the point  by , and alongY >" # $x x
Y =# " % integral curve from  to the point  by . We obtainx x

B œ B >  C >ß C œ B >  C >ß D œ D

B œ B ß C œ C =  D =ß D œ C =  D =
$ # # $ # # $ #

% " % " " % " "

cos sin sin cos
cos sin sin cos

or

B œ B >  C > =  D > =ß B œ B >  C >

C œ C > =  D > =ß C œ B > =  C > =  D =

D œ D =  C =ß

$ %

$ %

$

cos sin cos sin sin cos sin
cos cos cos sin sin cos cos cos sin
cos sin

                

                D œ B > =  C > =  D =% sin sin cos sin cos

It is evident that . For instance, for  we have x x x$ % $Á > œ = œ Î# œ1
ÐDß Bß CÑ œ Ð  Cß  Dß BÑ, . In this case, it would be necessary to producex%

two commutative vector fields generating the distribution . We writeW

Z œ E Y  E Y œ  E C  ÐE B  E DÑ  E C
` ` `

`B `C `D
" " #" " " " " "

" # " " # #
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Z œ E Y  E Y œ  E C  ÐE B  E DÑ  E C
` ` `

`B `C `D
# " ## # # # # #

" # " " # #

and choose

E œ  "ÎCß E œ !ß E œ !ß E œ "ÎC" " # #
" # " #

with . We thus obtain vectorsdet A œ  "ÎC Á !#

Z œ  ß Z œ  Þ
` B ` ` D `

`B C `C `D C `C
" #

We see at once that . The congruences generated by these vectorÒ ÓZ ß Z œ !" #

fields are found as solutions of ordinary differential equations

.B .C B .D

.> .> C .>
œ "ß œ  ß œ !à Ð!Ñ œ

.B .C D .D

.= .= C .=
œ !ß œ  ß œ "à Ð!Ñ œ

¯ ¯ ¯ ¯
¯

¯ ,

¯ ¯ ¯ ¯
¯

¯ .

x x

x x

These are respectively

BÐ>Ñ œ B  >ß CÐ>Ñ œ C  #B>  > ß DÐ>Ñ œ D

BÐ=Ñ œ Bß CÐ=Ñ œ C  #D=  = ß DÐ=Ñ œ D  =
¯ ¯ ¯   ,

¯ ¯ ¯ .

# # #

# # #

As above, we now determine again the points  and  starting fromx x x x" # $ %ß ß
a point :x

B œ B  >ß C œ C  #B>  > ß D œ D

B œ Bß C œ C  #D=  = ß D œ D  =

B œ B  >ß C œ C  #B >  > ß D œ D

B œ B ß C œ C  #D =  = ß D œ D  =

" "
# # #
"

# #
# # #
#

$ # # $ #
# # #
$ #

% " " % "
# # #
% "

      ,

       ,

 ,

.

A short calculation then leads to

B œ B œ B  >ß C œ C œ C  #B>  #D=  >  = ß D œ D œ D  =$ % $ %
# # # # #
$ % .

Consequently - and -congruences form a -dimensional coordinate netZ Z #" #

on the sphere.
Let us now parametrise the integral manifolds by variables  and  via0 (

the general scheme that was given above. We thus write

` ` B ` ` ` D `

` `B C `C ` `D C `C
œ  ß œ 

0 (
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to obtain

`B `B `C B `C D `D `D

` ` ` C ` C ` `
œ "ß œ !à œ  ß œ  à œ !ß œ "

0 ( 0 ( 0 (

the integration of which yields

B œ  - Ð Ñß - Ð Ñ œ ! B œ  - ß

D œ - Ð Ñß - Ð Ñ œ " D œ  - ß

`C `-

` `
œ  #Ð  - Ñß C œ   #-  - Ð Ñß œ  #Ð  - Ñß

- Ð Ñ œ   #-  -

0 ( ( 0

( ( (

0 (
0 0 0 ( (

( ( (

" "
w
"

# #
w
#

#

" " $ #
# # $

$ # $
#

 and 
     and  

   and   C œ    #-  #-  -# # #
" # $0 ( 0 (

where  and  are arbitrary constants. We define the new coordinates- ß - -" # $

Ð ß ß <Ñ0 (  by

0 ( 0 ( 0 (ß ß < œ C    #-  #-  -# # # #
" # $.

If we eliminate variables  and  in the expression for  we find0 ( <#

< œ B  C  D  -  -  -# # # # # #
" # $.

Hence  corresponds to a spherical integral manifold.< œ constant è

Let  be a smooth function. The differential of this function0 À Q Ä ‘
is the linear operator , or a linear functional defined0 œ .0 À X ÐQÑ Ä‡ ‘
by the relation   [ . 126]. The vectors in the null space0 ÐZ Ñ œ Z Ð0Ñ :‡ see 
a Ð0 Ñ 0 X ÐQÑ‡ ‡ of the operator  that is a subbundle of  satisfy the condition
0 ÐZ Ñ œ Z Ð0Ñ œ ! Y ß Z − Ð0 Ñ 0 ÐY Ñ œ 0 ÐZ Ñ œ !‡ ‡ ‡ ‡. If , then we have  soa
that due to (2.10.21), we find  and thus0 Y ß Z œ 0 Y ß 0 Z !ß ! œ !‡ ‡ ‡Ò Ó Ò Ó œ Ò Ó
Ò ÓY ß Z − Ð0 Ñ Ð0 Ñ 0a a‡ ‡. Hence, the distribution  induced by the function  is
involutive.

We next consider a -dimensional distribution  of the tangent bundle5 W
X ÐQÑ 5. We know that this distribution is determined by  linearly independ-
ent vector fields . A function  is annihilated by the distribu-Y 0 À Q Ä! ‘
tion  if the relations ,  are met. In this case, weW !Y Ð0Ñ œ ! œ "ß á ß 5!

obtain  for all vector fields . This of course implies thatY Ð0Ñ œ ! Y − W
such a distribution must satisfy . Let us then consider the equa-W a© Ð0 Ñ‡

lities ,  with . Utilising these relations, we arriveY Ð0Ñ œ ! Y Ð0Ñ œ ! Á! " ! "
at the result

Ò ÓY ß Y Ð0Ñ œ Y Y Ð0Ñ  Y Y Ð0Ñ œ !! " ! " " !ˆ ‰ ˆ ‰ . (2.11.18)

If  for  where , then relations (2.11.18)Ò ÓY ß Y Â Á ß − Ö"ß á ß 5×! " W ! " ! "
provide additional conditions needed for the function  to be annihilated by0
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the distribution . On the other hand, if the distribution  is involutive, theW W

conditions (2.11.18) will be satisfied automatically:

Ò ÓY ß Y Ð0Ñ œ - Y Ð0Ñ œ !! " #!"
# .

In this case, the relations  would be sufficient to determine func-Y Ð0Ñ œ !!

tions annihilated by . In an involutive distribution, we can always chooseW
normal basis vectors satisfying the conditions  instead of arbi-Ò ÓZ ß Z œ !! "

trary basis vectors . The vectors  areY œ ? Ð Ñ `Î`B Z ß œ "ß á ß 5! !!
3 3x !

given by (2.11.11). Therefore,, we can take the equivalent relations
Z Ð0Ñ œ ! Y Ð0Ñ œ !! ! in lieu of . Thus, in order to determine functions
annihilated by an involutive distribution , we have to solve the followingW
set of first order partial differential equations

@ Ð Ñ œ !ß œ "ß á ß 5
`0

`B!
3

3
x ! . (2.11.19)

The components , where  are given by@ œ  @ + œ 5  "ß á 7! !!
3 +3 3

+$ $
(2.11.12). These equations can be solved by the usual method of charac-
teristics. We start with the first equation. Its characteristics are obtained as
usual by solving the set of autonomous ordinary differential equations
below

.B .B .B

@ Ð Ñ @ Ð Ñ
œ œ â œ

@ Ð Ñ

" # 7

" "
" #

"
7x x x

. (2.11.20)

Evidently, characteristics are  nothing but the integral curves of the vector
field  that are found by integrating the ordinary differential equationsZ"

.B

.>
œ @ Ð Ñ

3

"
3 x .

It is well known that the solution of equations (2.11.20) is expressible in the
form

1 Ð Ñ œ - ß 1 Ð Ñ œ - ß á ß 1 Ð Ñ œ -" " # # 7" 7"x x x    (2.11.21)

where  are given smooth functions and  are1 ß 1 ß á ß 1 - ß - ß á ß -" # 7" " # 7"

arbitrary constants. It follows from (2.11.21) that

! œ œ @ œ Z Ð1 Ñ
`1 .B `1

`B .> `B
< œ "ß #ß á ß 7  "

< 3 <

3 3"
3 <

"

.

We can thus see that the following equations
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@  @  â  @ œ !ß
`0 `0 `0

`B `B `B

@  @  â  @ œ !ß
`1 `1 `1

`B `B `B

@  @  â  @ œ !ß
`1 `1 `1

`B `B `B
ã

@  @  â  @
`1 `1

`B `B

" " "
" # 7

" # 7

" " "
" # 7

" " "

" # 7

" " "
" # 7

# # #

" # 7

" " "
" #

7" 7"

" #
7

7"

7

`1

`B
œ !

are to be held. Since , this homogeneous set of linear equations inZ Á !"

terms of  coefficient functions  can have a nontrivial solution if and7 @"
3

only if the determinant of the coefficient functions vanishes:â ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ â

`0 `0 `0

`B `B `B
â

`1 `1 `1

`B `B `B
â

`1 `1 `1

`B `B `B
â

ã ã â ã

`1 `1 `1

`B `B `B
â

œ
`Ð0ß 1 ß á ß 1

" # 7

" " "

" # 7

# # #

" # 7

7" 7" 7"

" # 7

" 7"

" # 7

Ñ

`ÐB ß B ß á ß B Ñ
œ !.

This means that the function  is not independent of functions .0 1 ß á ß 1" 7"

We thus conclude that

0 œ J Ð1 ß á ß 1 Ñ" 7" . (2.11.22)

Let us now take the equation  into account. Inserting (2.11.22)Z Ð0Ñ œ !#

into this equation, we obtain

! œ @ œ @ œ Z Ð1 Ñ
`0 `J `1 `J

`B `1 `B `1# #
3 3 <

3 < 3 <

<

# .

On the other hand, commutativity of vectors  results inZ!

Z Z Ð1 Ñ œ Z Z Ð1 Ñ œ Z Ð!Ñ œ !" # # " #
< <ˆ ‰ ˆ ‰ .

Hence, functions  are solutions of the equationZ Ð1 Ñ#
<

Z Ð1Ñ œ !" .

Thus, we must write
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Z Ð1 Ñ œ 2 Ð1 ß á ß 1 Ñ#
< < " 7" .

Consequently, we find that

Z Ð0Ñ œ 2 Ð1 ß á ß 1 Ñ œ !
`J

`1
#

< " 7"
<

.

The solution of this differential equation is similarly expressed as

J œ Ð7 ß 7 ß á ß 7 ÑY " # 7#

where the functions

7 œ 7 Ð1 ß á ß 1 Ñß

= œ "ß #ß á ß 7  #

= = " 7"

are determined just as in the previous step. If we continue this way, we
observe that every function annihilated by a -dimensional involutive distri-5
bution is represented in the form

0 œ Ð ß ß á ß Ñ¹      " # 75 . (2.11.23)

7  5 ß ß á ß B ß B ß functions  are definite functions of variables      " # 75 " #

á ß B7 obtained through all the foregoing steps. These functions constitute
a set of  if they are functionally independent, that is, if themaximal solutions
following Jacobian with an appropriate ordering of local coordinates does
not vanish

`ÐB ß B ß á ß B ß ß ß á ß Ñ

`ÐB ß B ß á ß B Ñ
œ

œ

" ! â ! â !
ã ã ã ã ã ã
! ! â " â !

` ` ` `

`B `B `B `B
â â

ã ã ã ã ã ã

`

" # 5 " # 75

" # 7

" " " "

" # 5 8

85

     

       

 

â ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ â`B `B `B `B

` ` `
â â

Á !

" # 5 8

85 85 85     

.

Such functions ,  are named as the  or M M œ "ß á ß 7  5 first integrals
integral functions of the distribution . Since we must have  forW Z Ð0Ñ œ !!

every function in the form (2.11.23), we find that
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! œ Z Ð0Ñ œ @ œ Z Ð Ñ
`0 ` `0

` `B `
! !!

3 N
N 3 N

N

   

 
  .

If we select , we then obtain0 œ  M

Z Ð Ñ œ Z Ð Ñ œ !ß œ "ß á ß 5ß M œ "ß á ß 7  5! !  $   !N M M
N .

Hence, for each vector  one getsZ − W

. ÐZ Ñ œ ÐZ Ñ œ Z Ð Ñ œ !ß M œ "ß á ß 7  5     M M M
‡ . (2.11.24)

Let us now define a subset  of the differentiable manifold  with the` Q
help of local charts as follows

`      œ Ö: − Q À Ð:Ñ œ - ß Ð:Ñ œ - ß á ß Ð:Ñ œ - ×" " # # 75 75

where  are arbitrary constants. Because of Theorem 2.4.1,- ß - ß á ß -" # 75

we understand that  is a submanifold. We generate a family of submani-`
folds, namely, a foliation of the manifold  by giving different values toQ
these constants. If we take into consideration the relations (2.11.24), it
becomes clear that the distribution is now specified by

W      œ ÖZ − X ÐQÑ À . ÐZ Ñ œ !ß . ÐZ Ñ œ !ß á ß . ÐZ Ñ œ !×" # 75 .

Hence the family  are actually integral manifolds of the involutive distri-`
bution . The linear operators  are now expressible asW  . M

.B œ .B ß

. œ .B  .B ß M œ "ß á ß 7  5
` `

`B `B

! !

!
! 

   M +
M M

+

where , . Since we have assumed that the! œ "ß á ß 5 + œ 5  "ß á ß 7
Jacobian defined above does not vanish, then the operators  areÐ.B ß . Ñ!  M

linearly independent. Let us now reconsider Example 2.11.1. We know that
the normalised basis vectors are

Z œ  ß Z œ 
` B ` ` D `

`B C `C `D C `C
" #

Hence, for a function , the solution of the equation0 œ 0ÐBß Cß DÑ

Z Ð0Ñ œ  œ !
`0 B `0

`B C `C
"

is obtainable through characteristic equations
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.B C .C .D

" B !
œ  œ

whose integrals are given as

1 œ B  C œ - ß 1 œ D œ -" # # " # #.

We thus find . Since0 œ J Ð1 ß 1 Ñ" #

Z Ð1 Ñ œ  #D œ  #1 ß Z Ð1 Ñ œ "# #
" # #

the function  must satisfyJ

 #1  œ !
`J `J

`1 `1
#

" #
.

Solution of the ordinary differential equation

 .1 Î#1 œ .1 Î"" # #

is . Therefore, we arrive at the result " " # # # # # "œ 1  Ð1 Ñ œ B  C  D œ G
0 œ J Ð Ñ œ J ÐB  C  D Ñ " # # # . Thus, integral manifolds, or leaves, of that
2-dimensional involutive distribution are spheres centred at the origin .!

II.  EXERCISES

2.1. Show that a  can be generated on a set  by choosing everydiscreet topology Q
 point in  as an open set and this topological space has the structure of a -Q !
 dimensional manifold.
2.2. The standard topology on  is given as unions of open rectangles‘#

 . Discuss whether the mapping  defined by theÐ+ß ,Ñ ‚ Ð-ß .Ñ 0 À Ò!ß # Ñ Ä1 ’"

 rule  is bijective, continuous and it is a homeomorphism0 Ð>Ñ œ Ð >ß >Ñcos sin
 with respect to relative topologies on  and .Ò!ß # Ñ1 ’"

2.3. Two differentiable structures on  are provided by atlases and‘ :  "ÐBÑ œ B
 . We know that these atlases are not compatible [ Example:#

$ÐBÑ œ B see  
 2.2.1]. Yet show that they are diffeomorphic.
2.4. An equivalence relation  is defined on the set µ W œ ÖÐBß CÑ − À C œ‘#

  by . Show that the quotient space „ "× B Á !ß ÐBß "Ñ µ ÐBß "Ñ Q œ WÎ µ
 is a locally Euclidean and second countable space, but not a Hausdorff space
 (This example is known as ).straight line with two centres
2.5.  is the sphere given by the equation . Let us consider its’# # # #B  C  D œ "
 open upper hemisphere , the open set Y œ Ö − À D  !× Z œ #

D Dx ’
  and the mapping  determined byÖÐBß CÑ − À B  C  "× Y Ä Z‘# # # 

D D:
D À

 . Similarly, on the open lower hemisphere:
D

# #ÐBß Cß "  B  C Ñ œ ÐBß CÑÈ
 , we define the mapping   by theY œ Ö − À D  !× Y Ä Z # 

D D Dx ’ :
D À
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 relation  . Show that the pairs : 
D D

# #ÐBß Cß  "  B  C Ñ œ ÐBß CÑ ÐY ß ÑÈ :
D

 and  are charts. Prove that we obtain an atlas with six charts whenÐY ß Ñ
D :

D

 we add to these two those charts ,  and ,ÐY ß Ñ ÐY ß Ñ ÐY ß Ñ  
B B C: : :  

B B C

  involving left, right and front, rear hemispheres constructed in theÐY ß Ñ
C :

C

 similar fashion.
2.6. Let  be an open set  and  be a smooth mapping. Show thatY 0 À Y Ä§ ‘ ‘#

 the   of this function is a -dimensional submanifold of .graph Ö ß 0Ð Ñ× #x x ‘$

2.7. Let  be differentiable manifolds. We take submanifoldsQ ß 3 œ "ß #ß á ß 83

  into account. Show that the Cartesian product R Q R ‚ R ‚ â ‚ R§3 3 " # 8

 is a submanifold of the product manifold .Q ‚ Q ‚ â ‚ Q" # 8

2.8. Discuss whether the following curves defined by mappings  are9 ‘ ‘3
#À Ä

 immersion or embedding:

9

9

9 9

9

"
# $

#

$ %

&

Ð>Ñ œ Ð>  "ß >  >Ñß "  >  _ß

Ð>Ñ œ >ß > ß

Ð>Ñ œ Ð# >ß #>Ñß Ð>Ñ œ # Ð# >Ñß Ð% >Ñ ß

Ð>Ñ œ Ð+>  ,

   

   arctan arctan

Š ‹
ˆ ‰

>  " >  "

#> #>
cos sin

cos sin cos sin

sin cos

sin cos

>ß +  , >Ñß +ß , − ß

Ð>Ñ œ # Ð+>  ,Ñß - .> ß +ß ,ß -ß . − Þ

‘

9 ‘' ˆ ‰
2.9. Discuss whether the following mappings  and 9 ‘ ‘ 9 ‘ ‘" #

# $ # %À Ä À Ä
 are immersions or submanifolds:

9

9

"

#

Ð?ß @Ñ œ ÐV ? @ß V ? @ß V ?Ñß

Ð?ß @Ñ œ Ð+  , ? @ß Ð+  , ? @ß , ? Ð@Î#Ñß , ? Ð@Î#ÑÞ

sin cos sin sin cos

cos cos cos sin sin cos sin cosˆ ‰ ‰
  Discuss whether the mappings    and2.10. 9 ‘ 9 ‘" #

# $ $ $À Ð!ß _Ñ Ä ß À Ð!ß _Ñ Ä
  defined below are immersions or submersions9 ‘$

# #À Ð!ß _Ñ Ä

9 9

9

" #
# #

$

Ð?ß @Ñ œ ?ß ? ß @ Î? ß Ð?ß @ß AÑ œ Ð?@Aß ?@ß AÑß

Ð?ß @ß AÑ œ Ð@A  ?ß @  ?AÑÞ

Š ‹
2.11. The mapping  is given by .9 ‘ ‘ 9À Ä Ð?ß @ß AÑ œ Ð?  @ ß ?@ß ?Aß @AÑ$ % # #

 Show that the restriction  of this mapping satisfies the relation k k9 9’ ’# #Ð:Ñ œ
  for all . Let us define the mapping  byk9 ’ < ‘ ‘’#Ð:Ñ : − À Ä# # %

  . Show that the mapping  is an embedding.< 9 <ÐÖ:ß  :×Ñ œ Ð:Ñk’#

2.12. Let us consider the manifold  with the coordinate cover ‘'
" # $ %ÐB ß B ß B ß B ß

  . We define the following subsets:B ß B Ñ& '

Q œ Ö − À B  B  B œ "ß B  B  B œ "× ß§

R œ Ö − À B  B œ "ß B  B œ "× ß§

T œ Ö − À B  B  B  B Ÿ !× §

x
x
x

‘ ‘

‘ ‘

‘ ‘

' # # # # # # '
" # $ % & '

' # # # # '
# $ & '

' # # # # '
" # $ %

 Investigate whether   are submanifolds of ,  the set Ð+Ñ Qß Rß T Ð,Ñ Q  R‘'

 is a submanifold of ,   is a submanifold of  with boundary.‘'ß Qß R Ð-Ñ T R
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2.13. Show that the composition of two immersions is an immersion and the com-
 position of two embeddings is an embedding.
2.14. Show that the subset  of matrices with positive determinants andKP Ð8ß Ñ ‘
 the set  of matrices whose determinants are  constitute submani-WPÐ8ß Ñ "‘
 folds of the manifold .KPÐ8ß Ñ‘
2.15. Let us denote by  the subset of symmetric matrices of the manifold=Ð8ß Ñ‘
 . We define a mapping  by the rule 16Ð8ß Ñ À 16Ð8ß Ñ Ä =Ð8ß Ñ Ð Ñ œ‘ 9 ‘ ‘ 9 A
 . Let  be  identity matrix. Then show that the mapping  is aAA IT

8 8 ‚ 8 9
 submersion on the subset  and it constitutes a submanifold9 ‘"

8Ð Ñ 16Ð8ß Ñ§I
 of the subset  of   satisfying theSÐ8ß Ñ − 16Ð8ß Ñ‘ ‘orthogonal matrices A
 condition .AA IT œ 8

2.16. v Let us take a fixed vector  into consideration and define a mapping!
8− ‘

  by the relation . We naturally assume that0 À KP Ð8ß Ñ Ä 0Ð Ñ œ 8
!‘ ‘ A Av

 . Show that this mapping and its restriction  to the set ofv 0! WSÐ8ß ÑÁ 1 œ 0 k ‘

 orthogonal matrices  with unit determinants are submersions. ShowWSÐ8ß Ñ‘
 further that inverse mapping Q œ 1 ÐÖ ×Ñ œ Ö − WSÐ8ß Ñ À œ ×"

! ! !v A Av v‘
 of the set  under  is a submanifold of the manifold  that isÖ × 1 WSÐ8ß Ñv! ‘
 isomorphic to the manifold .WSÐ8  "ß Ñ‘
2.17. Let  be an injective immersion between two smooth manifolds.9 À Q Ä R
 Show that the mapping  is a submersion when  is a compact manifold.9 Q
2.18. Let  be an immersion. If  is a submanifold, then show9 À Q Ä R Q Q§"

 that the restriction  is also an immersion.k9 Q"

2.19. We define the mapping  in the form0 À KP Ð8ß Ñ Ä KP Ð8  7ß Ñ ‘ ‘

0Ð Ñ œ − WSÐ7ß ÑA BA
B” •!

!
,   .‘

 Show that the restriction  is an embedding into .k0 WSÐ8  7ß ÑWSÐ8ß Ñ‘ ‘

2.20. The mapping  is defined by . Determine the image9 ‘ ‘ 9À Ä Ð>Ñ œ Ð>ß > Ñ# #

  of the vector  .9‡Y Y œ .Î.>
2.21. The curve  is given by the relations# ‘ ’À Ä #

#
1 1 1

Ð>Ñ œ BÐ>Ñß CÐ>Ñß DÐ>Ñ œ > >  ß > >  ß > 
$ $ $

ˆ ‰ ˆ ‰ ˆ ‰ ˆ ‰Š ‹cos sin sin sin cos .

 Let  denote the vector tangent to this curve at the point . DetermineZ > œ !
 images of the point  and the vector  under the stereographic projection.#Ð!Ñ Z
2.22. We define a cylinder by . Its coor-’ ‘ ‘" $ # #‚ œ ÖÐBß Cß DÑ − À B  C œ "×
 dinate cover can be taken as  in polar coordinates. On using sphericalÐ ß DÑ9
 coordinates we introduce a mapping  by the relation F ’ ’ ‘ F 9 )À Ä ‚ Ð ß Ñ# "

 . Evaluate the differential .œ Ð ß Ñ . œ9 ) F Fsin ‡

2.23.  are two vector fields. Their flows are denoted by  and ,Y ß Z − X ÐQÑ 9 <> =

 respectively. Show that  if and only if .9 < < 9> = = >‰ œ ‰ Y ß Z œ !Ò Ó
2.24. The vector field  is given by . Find the flow generat-Y − X Ð Ñ Y œ `  `‘#

B C

 ed by this vector field and show that this vector field is complete. Does this



II  Exercises 171

  vector field retain its completeness when it is defined on the manifold Q œ
 ?‘# Ö ×!
2.25. The vector field  is given by . Find theY − X Ð Ö ×Ñ Y œ  C `  B `‘#

B C!
 flow generated by this vector field and check whether it is a complete vector
 field.
2.26. Find the integral curves of the vector field  and checkÐ"  B Ñ` − X Ð Ñ#

B ‘
 whether it is a complete vector field.
2.27. The vector fields  are given byY ß Y ß Y − X Ð Ñ" # $

$‘

Y œ D  C ß
` `

`C `D

Y œ B  D ß
` `

`D `B

Y œ C  B
` `

`B `C

"

#

$

 Show that  and .Ò Ó Ò Ó Ò ÓY ß Y œ Y ß Y ß Y œ Y Y ß Y œ Y" # $ # $ " 3 1 2

2.28.  is a smooth function. We define the vector field  by0 − Ä Y − X Ð Ñ‘ ‘ ‘# #
0

Y œ 
`0 ` `0 `

`C `B `B `C
0 .

 Show that the set formed by such kind of vector fields is closed under the Lie
 product.
2.29. Let  and  be flows of vector fields , respectively. We con-9 <> > Y ß Z − X ÐQÑ
 sider the curve

# < 9 < 9Ð>Ñ œ ‰ ‰ ‰ Ð:Ñ >  > > >È È È È
   through the point . We assume that  for a sufficiently small: − Q > − Ò!ß Ó%
 . Let  be a smooth function. Show that we can write% ‘ ! 0 À Q Ä

k ˆ ‰ ˆ ‰
Ò ÓY ß Z Ð0 Ñ œ

0 Ð>Ñ  0 Ð!Ñ

>: >Ä!
lim

# #

 and we get . Verify this property in  for vector fields# ‘w $Ð!Ñ œ Y ß Z X Ð ÑÒ Ó
  and .Y œ `Î`C Z œ `Î`B  C `Î`D
2.30. Let  be a diffeomorphism. We denote flows generated by vectorF À Q Ä R
 fields  and  by  and , respect-Y − X ÐQÑ Z − X ÐRÑ À Q Ä Q À R Ä R9 <> >

 ively. We say that vector fields  and  are - if the relationY Z F related 
 , or more explicitly  for all , is satisfied.F F F‡ ‡Y œ Z Y Ð:Ñ œ Z Ð:Ñ : − Qˆ ‰
 Show that  and  are -related if and only if . If we takeY Z ‰ œ ‰F F 9 < F> >

 , this relation is satisfied identically so that we find . ThisF 9 9œ Ð Ñ Y œ Y> > ‡

 means that vector fields are conserved under their own flows.
2.31. Let  be a diffeomorphism and . Suppose that at everyF À Q Ä R Y − X ÐQÑ
 points  satisfying the condition  we have : ß : − Q Ð: Ñ œ Ð: Ñ Y Ð: Ñ" # " # ‡ "F F F
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 . Is there a vector field  that is -related withœ Y Ð: Ñ − X ÐRÑ Z − X ÐRÑF F‡ #

 the vector field  ?Y
2.32. Let  be a diffeomorphism,  and .F À Q Ä R Y ß Y − X ÐQÑ Z ß Z − X ÐRÑ" # " #

 If vector fields  and ,  and  are -related, then show that LieY Z Y Z" " # # F
 products  and  are also -related.Ò Ó Ò ÓY ß Y Z ß Z" # " #  F
2.33. Let  be a diffeomorphism. We assume that vector fieldsF À Q Ä R
  and  are -related. Show thatY − X ÐQÑ Z − X ÐRÑ F

£ £ £Y Z Y
‡ ‡ ‡Ð 1Ñ œ Ð1Ñ œ Ð1ÑF F F F‡

  for a function g .− ÐRÑA!

2.34. Let us consider  and . The flow generated by the vec-0 − ÐQÑ Y − X ÐQÑA!

 tor field  is . Show that the function  satisfies theY À Q Ä Q 0 œ 0 ‰9 9 9> >
‡
>

 following differential equation

.Ð 0 Ñ

.>
œ 0

9
9

‡
> ‡

> Y£

 along the flow.
2.35. The function  satisfies the following partial differential0 À ‚ Ä‘ ‘ ‘8

 equation and initial condition

`0Ð ß >Ñ `0Ð ß >Ñ

`> `B
œ ? Ð Ñ ß 0Ð ß !Ñ œ 1Ð Ñ

x x
x x x3

3

 where . If the vector field  is com-x xœ ÐB ß B ß á ß B Ñ − Y œ ? Ð Ñ`Î`B" # 8 8 3 3‘
 plete and its flow is , then show that the function 9 ‘ ‘>

8 8À Ä 0 Ð ß >Ñ œx
  is the solution.1 Ð Ñˆ ‰9> x
2.36. Find the solution of initial value problem given below: 

`0 `0

`> `B
œ # ß 0 ÐBß !Ñ œ BÞsin

2.37. Find the solution of initial value problem given below:

`0 `0 `0

`> `B `C
œ ÐB  CÑ  ß 0 ÐBß Cß !Ñ œ BCÞŠ ‹

2.38. Find the solution of initial value problem given below:

`0 `0 `0

`> `B `C
œ  C  B ß 0ÐBß Cß !Ñ œ B  CÞ

2.39. We consider the vector fields .  is the flow of theY ß Z − X ÐQÑ À Q Ä Q9>

 vector field . Show that the following relation is valid:Y

.

.>
Ð Ñ Z œ Ð Ñ Ð Z Ñ9 9" "

> >‡ ‡ Y£
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2.40. Vector fields  depending also on a parameter  are given asY ß Z − X Ð Ñ >‘8

 follows:

Y œ ? Ð ß >Ñ ß Z œ @ Ð ß >Ñ
` `

`B `B
3 3

3 3
x x .

  We assume that the functions  are satisfying the initial value problem@ Ð ß >Ñ3 x

`@ `@ `?

`> `B `B
œ ?  @ ß @ Ð ß !Ñ œ 1 Ð Ñ

3 3 3
4 4 3 3

4 4
x x

 for prescribed functions . If? Ð ß >Ñ3 x

K œ 1 Ð Ñ
`

`B
3

3
x

   and  is the flow generated by the vector field , then show that the vector9> Y
  represents the solution of the initial value problem.Z œ Ð Ñ K9"

> ‡

2.41. Find the solution of initial value problem given below:

`@ `@ `@

`> `B `C
œ ÐB  CÑ  ÐB  CÑ  @  @ ß @ ÐBß Cß !Ñ œ C

`@ `@ `@

`> `B `C
œ ÐB  CÑ  ÐB  CÑ  @  @ ß @ ÐBß Cß !Ñ œ B

" " "
" # "

# # #
" # # sin

2.42. Find the solution of initial value problem given below:

`@ `@ `@

`> `B `C
œ C  B  @ ß @ ÐBß Cß !Ñ œ B

`@ `@ `@

`> `B `C
œ C  B  @ ß @ ÐBß Cß !Ñ œ C

" " "
# " #

# # #
" #

2.43.  is an -dimensional smooth manifold. A -dimensional involutive distri-Q 7 5
 bution  is specified by linearly independent vector fields W § X ÐQÑ Y −!

  satisfying the conditions . SmoothX ÐQÑß œ "ß á ß 5 Y ß Y œ - Ð:ÑY! Ò Ó! " #!"
#

 functions  are denoted by .J À Q ‚ Ä J Ð:ß >Ñß : − Qß œ "ß á ß 5! !‘ ‘ !
 We consider the differential equation

Y Ð0 Ñ œ J Ð ß 0 Ñß œ ÐB ß á ß B Ñß œ "ß á ß 5! ! x x " 7 !

 where . Show that the solution  of this system of differential0 À Q Ä 0Ð Ñ‘ x
 equations may only exists if the functions  satisfy the relationsJ!

Š ‹ Š ‹Y  J ÐJ Ñ  Y  J ÐJ Ñ œ - J ß ß œ "ß á ß 5
` `

`0 `0
! ! " " " ! #!"

# ! " .

 Show further that the solution is found as the solution of the following
 differential equations
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Š ‹Y  J œ !ß œ "ß á ß 5
`

`0
! ! Y !

 when the above relations are satisfied.
2.44. We consider the manifold . Show that the vector fields Q œ  Ö × Z œ‘$ "!
 ,  and  in  give rise to a -D`  C` Z œ B`  D` Z œ C`  B` X ÐQÑ #C D D B B C

# $

 dimensional involutive distribution  Determine its integral manifold.Þ
2.45. Show that the distribution generated by vector fields  andZ œ `  B`"

C D

  in   does not possess a -dimensional integral manifold.Z œ `  C` X Ð Ñ ## %
B > ‘




