CHAPTER III

LIE GROUPS

3.1. SCOPE OF THE CHAPTER

This chapter is devoted to a concise exposition of Lie groups that help
illuminate various structural peculiarities of mappings on manifolds. These
groups are so named because it was M. S. Lie who has first studied family
of continuous functions forming a group and recognised their effectiveness
in revealing some very important and fundamental properties of differential
equations. We first define in Sec. 3.2 a Lie group as a smooth manifold en-
dowed with a group operation in which multiplication and inversion opera-
tions are supposed to be smooth functions. Some of the salient features of
Lie groups are then briefly examined. Next, in Sec. 3.3 we discuss left and
right translations generated by an element of the group that are diffeomor-
phisms mapping the manifold onto itself. Left- and right-invariant vector
fields are introduced by means of differentials of these mappings and it is
shown that they constitute Lie algebras. After that we briefly investigate in
Sec. 3.4 the group homomorphism between Lie groups that preserve group
operations. We then consider in Sec. 3.5 one-parameter subgroups of a Lie
group that are homomorphisms between the commutative Lie group of real
numbers and an abstract Lie group. We then discuss the exponential map-
ping that may help characterise such one-parameter subgroups. Afterwards
in Sec. 3.6 the group of automorphisms mapping the Lie group onto itself
and generated by elements of the Lie group itself is defined and it is shown
that this group, which is called adjoint representation, is isomorphic to the
Lie group. In Sec. 3.5 we examine some notable properties of Lie transfor-
mation groups that map a smooth manifold onto itself and form also a Lie
group. Finally, Killing vector fields were introduced.

3.2. LIE GROUPS
We assume that a binary operation * : G x G — G on a set G, which
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176 Il Lie Groups

will be called briefly as a product, satisty the following conditions:

(7). Operation is closed: g1xg2 € G forall g1, g2 € G.

(17). Operation is associative: gy *(ga*gs) = (g1*g2)*gs forall g1, g2, g3 € G.
(7i7). There is an identity element e € G: exg = gxe = g forall g € G.
(iv). For each g € G there is aninverse g ' € G: g*xg~ ' = g 'xg = e.

Then (G, *) is called a group. 1t is easily observed that the identity element
e and the inverse element g~ ! of an element g € G are uniquely specified. A
Lie group G is also a smooth manifold and the mappings

c:GxG—G and 1:G— G

defined by o(g1, g2) = g1xgo and 1(g) = g~ are smooth mappings.

These two last conditions can be combined into a single one imposing
that the mapping & : G x G — G defined by the rule (g1, g2) = g1%g; ' is
smooth. To prove this proposition, let us first introduce the smooth mapping
Z:G — G x G by the simple rule Z(g) = (e,g). We see that o7 = .
Indeed, we find at once that (7 o Z)(g) = 7(e,g) = exg ! = g~! = 1(g) for
all g € G. Since ¢ is now written as the composition of two smooth map-
pings, it turns out to be a smooth mapping as well. Similarly, let us intro-
duce the smooth mapping J : G x G — G x G through the relation

391, 92) = (91,92") = (91,(92))

from which it follows that &(J(g1,92)) = 7(g1,92") = g1%92 = (g1, g2)
for all g1, 9, € G. Thus the mapping ¢ = 7 o J is also smooth. If G is a
finite m-dimensional manifold, then it is called an m-parameter Lie group.

Let (G,*) and (H, o) be two Lie groups. The Cartesian product
G x H of the manifolds G and H can easily be equipped with a group
structure by defining the product of elements (g1, hq) and (go, he) of the
product manifold G x H where g1, g2 € G and hq, hy € H in the following
fashion

(g1, h1) ® (92, h2) = (91%g2, h1 o he) € G x H.

One checks readily that the binary operation e is a group operation since it
is solely determined by group operations on the Lie groups G and H and
smoothness requirements are clearly met. If G and H are m- and n-pa-
rameter Lie groups, respectively, then the product manifold G x H turns
out to be an (m + n)-parameter Lie group. Such a group is called a direct
product of groups G and H.

Let us now consider some examples to Lie groups.

Example 3.2.1. The smooth manifold R" (see Example 2.2.1) is a
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commutative Lie group with respect to the operation of addition in R". If
X,y € R", then we have y ! = —y so that we obtain xxy ! =x—y =
(x! —yt, ..., 2" — y™). This is obviously a smooth function.

Example 3.2.2. Let us consider the manifold GL(n,R) which we had
introduced in Example 2.2.2 and we had already called the general linear
group of degree n. It is immediately seen that this manifold becomes also a
non-commutative group with respect to the usual matrix multiplication. Let
A,B € GL(n,R). With the coordinates a’, b;€R,i,j=1,...,n these
matrices are represented by A = [a}], B = [b/] and we know that the matrix

AB™! is expressed as follows
AB" = [aib "] = [}, (cofactor b*)" /det B].

Nevertheless, this is a smooth function because it is obviously the ratio of
two polynomials. Hence G L(n, R) is a Lie group of dimension n?.

Let us now define a subset of the general linear group given by
SL(n,R) ={A € GL(n,R) : detA = 1}

It is clear that this subset is also a group with respect to matrix multiplica-
tion. In view of Theorem 2.4.1, SL(n,R) is a submanifold of dimension
n? — 1 of the general linear group. Hence, it is a Lie group. This group is
called the special linear group or the unimodular group.

We now consider the following subset

O(n) ={A € GL(n,R) : AA" =1}

of the group GL(n,R) which is formed by orthogonal matrices. Since the
product of two orthogonal matrices is again an orthogonal matrix, O(n) is a
group and Theorem 2.4.1 implies that it is a submanifold of G L(n,R) with
the dimension n?> —n(n+1)/2 =n(n —1)/2. Thus, it is a Lie group.
O(n) is called the orthogonal group. If A € O(n), then (detA)?> =1 so
that det A = =+ 1. The Lie group

SO(n) ={A € O(n) : detA =1}

whose dimension is also n(n — 1)/2 is known as the special orthogonal
group because it preserves the length of a vector x and volumes in R". In
fact, we obtain for A € O(n)

(Ax)'Ax = x'A"AXx = x'x.

The orthogonal group is in fact a disconnected Lie group that is expressible
as the union of two disjoint connected groups as
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O(n) = SO(n) UQSO(n)

where €2 is the n X n matrix

~1 0 0
o 0} 0
0 0 1

so that det Q2 = —1.

Example 3.2.3. The complex plane C — {0} is the 2-dimensional
smooth manifold R? — {(0,0)}. This manifold is also a group with respect
to the complex multiplication. On the other hand, if z;, 2o € C — {0}, then
2125 1'is a smooth function of real coordinates. Hence, this manifold is a Lie
group.

Example 3.2.4. Let us consider the smooth manifold S', the unit
circle. The points of this manifold can be determined by complex numbers
with unit moduli such as |z| = 1. If 21,23 € S, then |2120] = |21]|22] = 1
and this means that z;29 € S!. This is tantamount to say that the manifold
S! is a Lie group.

Example 3.2.5. The m-torus defined as T™ = (S')™ is a Lie group
because it is the m-fold Cartesian product of a Lie group.

Subgroup. A submanifold H of a Lie group G is called a subgroup if
for all elements h;, ho € H one finds hixhy € H and h{ I ¢ H. Therefore,
a subgroup is a submanifold of a Lie group that is closed with respect to
operations of group multiplication and inversion.

If a Lie group is connected, then the following theorem states that it
can be generated by an open neighbourhood of its identity element.

Theorem 3.2.1. Let G be a connected Lie group and U be an open
neighbourhood of the identity element e. We denote the set of all n-fold
products of elements of U by U" = {uj*ug*---xu, : u; € U}. Then one
can write

(0.9]
G = nL_JlU ",
In other words, each group element g € G is expressible as a finite product
of some elements in the open set U. Hence, we can say that U generates the
group G.

Let us choose a fixed g € G, and define a function o, : G — G by the
rule o,4(h) = o(g,h) = g*h. o, is a diffeomorphism [see Sec. 3.3]. Hence,
if U is an open set, then the set 0,(U) = {g*u: u € U} C G will also be
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open. Consequently, the set U™ is open for all n. Since ¢ is a diffeomor-
phism, the set U~ = {u™! = +(u) : u € U} is also open. We then conclude
that the sets V =U NU ! CU and V" are all open. Furthermore, the
obvious relationship V' = V ! would be valid. Because e € U and e = e~ !,
we see at once that e € V, i.e., V is not empty. Let us now define the set
H=Uv'c 0U"CG.

H is an open set since it is the union of countably many open sets, and it is,
consequently, an open submanifold [see p. 77]. Due to the property of the
set V, H will be a subgroup. We now consider the family of open sets
o4(H) = {gxh : h € H} defined for all g € G. One has evidently the rela-
tion H = oyepy(H). Thus we can obviously write

G=HU U o,H).
9eG.g¢H

But the open set H is the complement of the open set U¢ o4(H) with
geG,g¢H

respect to GG so it must also be a closed set. In a connected topological space
only the empty set or the space itself can be both open and closed. H cannot
be empty since e € H so it must be equal to G. We therefore reach to the

conclusion that G = OLj unr. O

n=1

The above theorem indicates that if a Lie group is a connected topolo-
gical space, then an open neighbourhood of the identity element determines
the entire group.

A subgroup H of the group G is called a normal or invariant sub-
group if for all h € H we get hy = g~ 'xhxg € H for all g € G so that H is
invariant under conjugation. In other words, if H is a normal subgroup, a
conjugate element h, € H corresponds to each element h € H so that

gxhy = hxg foreach g € G.

This property is symbolically reflected by the notation gxH = Hxg for all
g € G. Let H be a normal subgroup, the quotient group is defined as the set
G/H = {g«H : g € G}. The coset gxH is the subset of G defined by
{gxh :Yh € H}. It is easy to verify that G/H is actually a group. Let us
consider the direct product which can be written as follows

(g1xH)*(g2xH) = (g1%g2)*(HxH) = (g1%g2)xH € G/H

since one obviously observe the symbolic relation H+H = H because H is
a subgroup.
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3.3. LIE ALGEBRAS

Let G be a Lie group. We choose a fixed element g € GG to define a
mapping L, : G — G in such a way that

Ly(h) = o(g,h) = gxh (3.3.1)

for all h € G. L, is evidently a smooth mapping on the manifold G. The
mapping L, is called the left translation of the Lie group G by the element
g € G. We can obviously define a left translation for each element g of the
group G. It can easily be seen that the relation (L,)™' = L, is valid.
Indeed, for each h € G we can write

Ly(L,1(h)) = gxg~'xh = exh = h

so that we obtain L, o L+ = i¢. Similarly, it is found that L, o L, = ig.
Hence, the inverse mapping (L,)™' = L, is also smooth. Consequently,
the left translation L, is a diffeomorphism. The set of mappings

G1:{Lg:g€G}

constitutes a group with respect to the operation of composition of map-
pings. In fact, if L, L,, € G, then owing to the relation

Lgl (ng(h)) = 91*92*h = Lgl*gz(h’>

for all h € G, we obtain L, o Ly, = Ly,.,, € Gy since g1*g> € G. Because
L. = iq, it then follows that

LeoLy=LjoL,=1,.

Thus, the identity element of Gy is L. and the inverse of L, in G is clearly
L. Since the composition is an associative binary operation, we finalise
the realisation of the group structure of (1. Therefore, there exists a map-
ping £ : G — G such that £(g) = L,. This mapping L is evidently sur-
jective. Let us further suppose that £(g1) = L£(g2). If Ly, (h) = Lg,(h) for
all h € G, the relation gyxh = goxh then leads to g1 = go if we multiply
both sides by A~! from left which means that £ is injective, and conse-
quently is bijective. On the other hand, due to the relation L£(gixg2) =
Ly o Ly, = L(g1) o L(g2), we infer that that the mapping £ preserves group
operations. In other words, it is a group isomorphism. Hence, the groups G
and G are isomorphic.

In exactly same fashion, we can define the right translation of the Lie
group G by the element g € G as the mapping R, : G — G such that
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Ry(h) = hxg (3.3.2)

for all h € G. We can readily verify that a right translation is also a diffeo-
morphism and due to the relation Ry, (R,,(h)) = hxgakgi = Rgy.q (h) for
all h € G, one obtains R, o R;, = Ry, . It is then straightforward to
observe that the set of mappings G = {R, : g € G} constitutes a group
with respect to the operation of composition. The identity element of this
group is R, = i¢ and the inverse of an element is given by (R,) ™! = R, .
It is clear that this group is also isomorphic to GG. Therefore, the groups G
and (G5 are isomorphic to one another as well. It is now evident that left and
right translations are connected through the following relation

Ry(h) = g 'xgxhxg = g ' Ly(h)*g.

Therefore, a right translation of an element of the group G is conjugate to its
left translation, and vice versa. Moreover, it follows from (Ly, o Ry, )(h) =
g1x(hxga) = (g1%h)*gs = (Ry, o Ly, )(h) for all h € G that these mappings
commute, that is,

Ly o Ry, = Ry, 0 Ly, (3.3.3)

In case G is a commutative group, we find that L,(h) = gxh = hxg =
R,(h) for all h € G. Hence, we deduce that L, = R, for all g € G in such
an Abelian group.

Inasmuch as the mapping L, is a diffeomorphism on G, its differential
dLg|, : Th(G) — T4 (G) is an isomorphism [see p. 124] transforming vec-
tor fields onto vector fields. A vector field V' on the Lie group G is called a
left-invariant vector field if it satisfies the equality

dLy(V(h)) = V (Ly(h)) = V(gxh) (3.3.4)

for all g, h € G. This means that the image of a vector of such a field at the
point h under the linear operator dL, will be a vector of the same field at
the point g«h. Thus the operator d L, transforms a left-invariant vector field
onto itself. So it is permissible to write symbolically

dL,(V) =V
forall g € G. If we take h = e in (3.3.4), we obtain
dLy(V(e)) =V (g) (3.3.5)

for all g € G. This relation implies that a left-invariant vector field on G is
completely determined by a vector in the tangent space T.(G) of the
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identity element e of the Lie group G. So it becomes quite reasonable to
interpret left-invariant vector fields as 'constant vector fields' on the mani-
fold G [Fig. 3.3.1].

Conversely, let us suppose that the relation dLy(V (e)) = V(g) is
satisfied for all g € G. We then easily deduce that

Fig. 3.3.1. A left-invariant vector field.

V(g#h) = dLgu, (V(€)) = d(Ly 0 L) (V(e)) (3.3.6)
=dLy[dLy(V(e))] = dLy(V(h)).

According to (3.3.4), such a vector field V' is a left-invariant vector field.
We now denote the set of all left-invariant vector fields by g. It is seen at
once that g is a linear vector space on real numbers. Indeed, if Vi, V; € g
and oy, ap € R, the linearity of the operator d.L, on real numbers leads to
the result

dLg(aiVi + auVa) = audLy(Vi) + aadLy(Va) = an Vi + asVs

from which a1 V] + aoVs € g follows. If we assume, instead, o are «y are
smooth functions on (G, we realise that the invariance requirement can only
be fulfilled if admissible functions are merely constant. The foregoing ob-
servations bring to mind the possibility of the existence of a bijective map-
ping between g and 7.(G). To this end, we presently introduce a mapping
G:g— T.(G) by the rule G(V') = V(e). Owing to (3.3.5), the operator G
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must be linear. Indeed, one can write

(Vi + asVk)(g) = dLg (a1 Vi(e) + azVa(e))
= a1d Ly (Vie)) + aadLy(Va(e)) = a1Vi(g) + aaVa(g)

for all g € G. Thus we find that G(an Vi + a2Vs) = a1G(V1) + G (V).
The mapping G is injective. Suppose that G(V7) = G(V4). We then have

Vi(g) = dLg(Vl (6)) =dL, (‘/2(6)) = Va(9)

for all g € GG and we conclude that V; = V5. G is surjective. Let us consider
a vector V (e) € T.(G). The vector field defined by dL,(V (e)) = V (g) for
all g € G is a left-invariant vector field in view of (3.3.6), hence it is an ele-
ment of g. In conclusion, G is an isomorphism and the vector spaces g and
T.(G) are isomorphic. This result dictates that the dimension of g will be
the same as that of 7,.(G). It is, of course, the same as the dimension of the
manifold G.

At the identity element e, one writes dL, : T,(G) — T,(G) so that we
have (dL,)™': T,(G) — T.(G). Because of the relation L, 1(g) = e, we
obtain dL, : Ty(G) — T.(G). On the other hand, the identities L, o L
= Lg1oL;=1ig will result in the relations dL;odL,+ = I and
dLg1 0 dLy = I, (). It then follow that (dL|,) ™" = dLy|,.

Since G is a smooth manifold of dimension m, each point of GG is con-
tained in an open neighbourhood in GG and there is a homeomorphism ¢
mapping this open set onto an open set of R"™. If local coordinates of a point
h € G are prescribed by x = (z!,...,2™) and local coordinates of a point
Ly(h) = gxh € G are given by y = (y',...,y™), then we know that there
exists a functional relationship in the form y = (¢ o Ly 0 o™ !)(x) = L (x),

or y' = L!(x). Hence the definition (3.3.4) implies that the local compo-
nents of a left-invariant vector field must satisfy the following expressions

i 8Lz(x)
vy =

v(x), y=L, (x) (3.3.7)

for all x € R™ in respective charts.
We now demonstrate that the Lie bracket of vector fields Vi, V5 € g is
also a left-invariant vector field. If we recall (2.10.21) we find that

hence, [V1, V2] € g. As a result of this, we see that lefi-invariant vector

fields constitute a Lie algebra. g or T,(G) that is isomorphic to g is called
the Lie algebra of the Lie group G. Indeed, since we have [V;, V3] € g if
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Vi1, Vs € g, we understand that the relation

G([Vi, Val) = [Vi(e), Vale)] = [G(V1), G(V2)]

would also be valid. If the dimension of the manifold G is m, a basis of the
vector space g are determined by m linearly independent left-invariant vec-
tor fields {V; :i=1,...,m}. Properties of a Lie algebra will impose the
following restriction on these vectors forall ¢, 5,k =1,...,m

ViVl +[ViVil=0,.  (338)
Vi Vi, Vil] + [V, Vi, VL] + (Vi [V, VD] = 0

Since g is a Lie algebra, there must exist constants cf] so that one has
[Vi, Vi] = ¢} 3Vi. (3.3.9)

These constants are called structure constants of the Lie algebra g with res-
pect to the basis {V;}. Because of the relations (3.3.9) and (3.3.8), the
structure constants should meet the conditions

e+l =0, (3.3.10)
n .l n .l n .l __
CiiCin + CpiCjpy + CiChp = 0

for all 4,5,k,l=1,...,m [see (2.11.4)]. Structure constants holding the
conditions (3.3.10) completely determines the Lie algebra. It is clear that the
structure constants depend on the selected basis. Let us choose another basis

by the transformation V; = a}V; where A = [a!] is a regular matrix. If we

write [V, V]] = CZ“ V), we easily find that the following expressions must
be satisfied
crapV, = [a? Vp, ajVy] = ajaf[V,, V] = afdfc,, V.

L) Pq
Since the vectors V,. are linearly independent, we conclude that

b =alalbl e (3.3.11)

v 7qu

where B = A~" = [b’]. (3.3.11) clearly indicates that structure constants are

components of a third order mixed tensor. This tensor is called the structure
tensor of the Lie algebra. We have seen that the Lie algebra of left-invariant
vector fields is isomorphic to the tangent space T.(G) at the identity ele-
ment e and the integral manifold of that tangent space locally determines the
manifold G. This is tantamount to say that the Lie algebra fully determines
the Lie group locally in a neighbourhood of e. However, the correspondence
between the Lie groups and the Lie algebras is not unique. Although a given
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Lie group determines uniquely its Lie algebra, several Lie groups may
generate the same Lie algebra. But, it can be shown that among all the Lie
groups with the same Lie algebra, there is only one Lie group that is simply
connected. Therefore, a given Lie algebra gives rise to a unique simply con-
nected Lie group locally in a neighbourhood of e. Then in view of
Theorem 3.2.1 it determines the Lie group globally if the manifold G is con-
nected. Because features of a Lie algebra are entirely elucidated by its struc-
ture constants, to investigate the properties of constants satisfying the algeb-
raic relations (3.3.10) provides quite a significant information about the
associated Lie group itself.

If structure constants are all zero, we then have [V;, V}] = 0 so that g
becomes a commutative Lie algebra. Such algebras are named as Abelian
Lie algebras.

In exactly the same fashion as we have introduced the left-invariant
vectors, we can define the right-invariant vector fields through the relation
dR,(V) = V. We immediately observe that these vector fields constitute a
Lie algebra that is isomorphic to the vector space 7.(G). Let us denote Lie
algebras of left- and right-invariant vectors by g; and gg, respectively.
Since both algebras are isomorphic to the tangent space 7,(G), they are of
course isomorphic to one another through the isomorphism Gz' o Gr.

In view of (2.7.7), the relation (3.3.3) yields

dLyjodRy; = dR,odL,.
If V is a left-invariant vector field, we find
dLy(dRy(V)) = dRy(dLy(V)) = dRy(V)

for all g € G. This result means that the vector field dR,(V") turns out also
to be a left- invariant vector field. Conversely, if V' is a right-invariant vec-
tor field, then the same expression implies that the vector field dL,(V') is a
right-invariant vector field.

Example 3.3.1. Consider the affine space R" [see Example 2.2.1].
This smooth manifold is obviously a commutative Lie group with respect to
the following addition operation

r+y= (@ +y',...,2"+y")

for all z,y € R. In this case left and right translations are not different and
they are given by

L,(y) = R.(y) =z +y.
Let us denote a left-invariant vector field by V(z) = v'(x) 9;. Then (3.3.7)
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leads to the relation

Ay + ')

5 v (x) = 6;vj(m) = ' ().

vz +y) =
Hence the left-invariant vector fields are constant vector fields whose com-
ponents merely v* € R. Of course, they generate a commutative Lie algebra
with vanishing structure constant. [ |
Example 3.3.2. We wish to compute the Lie algebra of the Lie group
GL(n,R). Inasmuch as GL(n,R) is an open submanifold of the manifold
gl(n,R), its dimension is n%. Hence, the tangent space at the identity ele-
ment e = I is an n?-dimensional vector space. We can thus identify the as-
sociated Lie algebra with the space g¢l(n,RR) that consists of all n xn
matrices. We can choose as basis vectors the set of following linearly inde-
pendent n x n matrices whose only one entry is 1 and all the other entries
are 0:
%Wﬁz%%é%,@%hl:ann
where n? matrix entries x| represent the local coordinates of GL(n,R).

Left translation is naturally defined as the matrix product L,(h) = GH or

(Lg(h));€ = ghhi" in terms of components of G =[g}] and H = [h]].

Hence, according to (3.3.7), the components of a left-invariant vector field
must obey the equality

) i a(gk :Em) ) ) / o i
(V@) = “2 (Vi) = dhty ofsie] = .
Consequently we can construct left-invariant vector fields by making use of
the basis vectors

4 i 0 0
Vi(g) = ¢°6' — = " —
J (g) gj laggﬂ g] agf

for all g € GL(n,R). An element of the Lie algebra gl(n) will now be
expressible as
1 0 ;0

V :a]V7 (&} :(1/75167 :a].—,
A 1]() Zk]al’i, 281'5

where the numbers a! are entries of a matrix A. Next, we determine the

structure constants of the Lie algebra by evaluating
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[Vj?‘/}k] = [gf(ﬁngzq(;;z} = g?aagf)(g?%) o ggg;z(g?aagp)

i 0 0? O 0?
p66 Pl ——— — qépé.—
18 q +g]g[ agfagz gl q”j 8 glgj 89 agl
i p 0 ko, O i ki
:519§8—g£—5j9f8_gp:‘szvjk_5jvl~

It then follows that

i ick i
[V, V] = (6,6,6] — 5 546, VP = c]Zpr

Since (VA(e))j = a!, the left-invariant vector field generated by a

vector V4 becomes

i 0 a(gm ;n

Va(9) = (Vo)) 57 = —or ) of

J

_g ka
g gy

Therefore the Lie product (bracket) of left-invariant matrices corresponding
to matrices A and B is found to be

i m 0 9 iom 0 i 9
[VAavB](g) = [gm j a z’g b a ] = Ima; bl]ai blp 58 l_

mpJ m I\ ¢ 8 7 m 9
= (a]'b] — b} af)gma—g;- = g,,[A, B]; o Viag(9)-
where [A, B] = AB — BA is the matrix commutator. These results clearly
indicate that the Lie algebra gl(n) is actually generated by the elements of
the vector space gl(n,R) on which the Lie product of matrices A, B is
defined as the matrix commutator [A, B]. [ |

3.4. LIE GROUP HOMOMORPHISMS

Let (G,*) and (H, ¢) be Lie groups, and ¢ : G — H be a smooth
function. If, for all g1,¢2 € G, the relation ¢(g1%g2) = ¢(g1) © P(g2) is
valid, then the function ¢ is called a Lie group homomorphism. Moreover,
if the homomorphism ¢ is also a diffeomorphism, ¢ is then a Lie group
isomorphism. For the identity element e € GG, we simply obtain

P(g9) = ¢(exg) = ¢(e) © p(g).

Hence, the unique identity element e’ of the Lie group H will necessarily be
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¢ = ¢(e). Moreover, we can write €' = ¢(gxg™!) = ¢(g) © p(g7!) so that
we deduce the relation (qu(g))f1 = ¢(g'). Thus, ¢(G) C H is a subgroup.
If a left translation on G is L, then we obtain

?(Ly(g1)) = 8(gx91) = d(g) © d(g1) = Ly(y) (8(1))

for all g, g1 € G from which it follows that ¢ o L, = Ly, 0 ¢ : G — H for
all g € G. The expression (2.7.7) now leads to the rule

dp o dLy = dLy o d. (3.4.1)

Let us consider a left-invariant vector field V' on G. Since V satisfies the
relation dL, (V') =V, (3.4.1) now yields the result

dg(dLy(V)) = dp(V) = dLgyg (do(V))

valid for all g € G. This means that the vector field d¢(V') is a left-inva-
riant vector field of H on the subgroup ¢(G) C H. Let Vi, V5, be left-inva-
riant vector fields on G. On taking into account the relation dL,([V1, V5])
= [W1, V2], (3.4.1) leads to the conclusion

dp(dLy([Vi,Va])) = do([Vi, Va]) = d Ly (db([Vi, Va]))

which expresses the fact that do([Vi,V3]) = [do(V1),do(V3)] is a left-
invariant vector field on H. In other words, images of left-invariant vector
fields under the differential mapping d¢ where ¢ is a homomorphism are
elements of a Lie algebra on H. Since the homomorphism ¢ transports the
identity element e in G to the identity element ¢(e) in H, we find that
d¢ : T,(G) — Ty)(H). We denote the Lie algebras on G and H by g and
h, respectively. Via isomorphisms G : g — T.(G) and H : b — Ty (H),
which we have discussed on p. 182, we can introduce a linear operator
Y=HlodpoG:g—b. It is straightforward to see that this operator
fulfil the relation

(Vi Va]) = [ (W), $(V2)] (34.2)

for all Vi, Vs € g, that is, ¢ preserves the Lie product. We thus conclude
that 1) so defined is a Lie algebra homomorphism. The image ¢ (g) of g is
clearly a subalgebra of 1.

When ¢ is an isomorphism, v turns out to be likewise an isomorphism
and we find that h = ¢(g). In that situation, if the set of vector fields {V;}
is a basis for the Lie algebra g, then the set of vector fields {i(V;)} be-
comes a basis for the Lie algebra ). Because of relations [V}, V)] = ijVk it

follows from (3.4.2) that
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[(Va), w (V)] = %([Vi, Vi]) = wb(cf:Vi) = cfv(Vi).  (3.4.3)

Hence, such an isomorphism preserves structure constants.
3.5. ONE-PARAMETER SUBGROUPS

We consider a Lie group G. As is well known, the set R is an Abelian
Lie group with respect to the operation of addition. Let ¢ : R — G be a Lie
group homomorphism. The subset {¢(t) : t € R} = ¢p(R) C G is called a
one-parameter subgroup of G. By definition, the function ¢ must satisfy the
condition

P(t+ s) = ¢(t)xp(s) = p(s)xo(t) (3.5.1)

for all s,t € R because ¢t 4+ s = s + t. Therefore, one-parameter subgroups
would necessarily be commutative. Inasmuch as ¢ is a homomorphism, we
observe that e = ¢(0) and ((Z)(t))*l = ¢(—t). The smooth function ¢ will
evidently describe a smooth curve on the manifold G through the point e.

Theorem 3.5.1. 4 curve on a Lie group G is a one-parameter sub-
group if and only if it is an integral curve of a left-invariant or a right-
invariant vector field through the identity element e.

Let ¢ : R — G give rise to a one-parameter subgroup. As in (2.9.1),
we represent symbolically a tangent vector at an element g = ¢(t) in the
following manner

V(gb(t)) = d(flgt) (3.5.2)
Owing to the formula L) (¢(s)) = ¢(t)x¢(s) = ¢(t + s), the vector field
V (4(t)) under the differential operator d L ;) must satisfy the relation

dqb(s)) _ do(t + s) _ do(t + s)
ds ds dt

d L) (
If we insert s = 0 into this expression, we obtain
dLyp) (V(e)) = V(o(1)).

which indicates that (3.5.2) is a left-invariant vector field. It is evident that
¢(t) is an integral curve of this vector field through the point e € G. If we
associate each point g € G with a curve defined by

by(t) = gxo(t)
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we produce a congruence on G that is tangent to the left-invariant vector
field V. However, it is evident that only the curve of this congruence
through the point e corresponds to a one-parameter subgroup.

Conversely, let us now consider a left-invariant vector field V € g.
This vector field associated with a vector in 7, (G) generates a flow on G
whose member through the identity element e € G will be given just like in
(2.9.11) by

gi(e) = etV (e) € G. (3.5.3)
If we make use of the relation (2.9.17) it follows from (3.5.3) that

gt*gs = ng (gs) = ng(esv(e)) = eSdLgt(V)Lgl(e) = eSV(gt)
_ esvetV(e) _ 6tV(6)*€sV(6) _ €(t+s)V(6) = Gris

This clearly shows that the subset (3.5.3) is a one-parameter subgroup, and
we have e = gg and (¢;) ™' = g_;.

The case of right-invariant vector fields can be treated in exactly the
same manner. |

Let ¢ : R — G be a one-parameter subgroup. If we write g(t) = ¢(t),
this subgroup gives rise to a one-parameter group of transformations of left
translations { L) : G — G : t € R}. Att = 0 or equivalently at g = e, the
tangent vector is determined by V' (e) = dg/dt|,_,. Hence, the vector field
generating this group is found to be

_ ARy (9(1))
dt

dLyq(h)
dt

d
—dRr, Y

| = dRy,(V(e)) = VE(h).

t=0

t=0 ‘t—()

Thus, it is a right-invariant vector field. Similarly, one demonstrates that the
generator of a one-parameter group of transformations of right translations
{Ry1) : G — G : t € R} is a left-invariant vector field:

dRyp(h)|  _ dLn(g(t))

= _ L
dt i dt =dLy(V(e)) = VE(h). (3.5.4)

t=0

Exponential mapping exp : g — G is defined by taking ¢ = 1 in the
one-parameter group (3.5.3) generated by a vector field V' € g as follows:

exp (V) =g (V) =¢"(e) €G.

This definition leads automatically to exp (0) = e. If we regard the vector
space g as a manifold, its tangent spaces 7,(g) will be the same everywhere
and they will be isomorphic to g. On the other hand, the tangent space
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T.(G) at the point e is isomorphic to g. Since the tangent vector field of the
curve defined by (3.5.3) is V, the differential of the exponential mapping at
the vicinity of the vector V' = 0 becomes

dexp:g—T.(G) ~ g

yielding dexp (V') = V. The symbol ~ denotes isomorphism. We thus ob-
tain the identity mapping dexp|,_, = ;. We then conclude that at V' = 0,
dexp is a regular linear operator. This, of course, indicates that the function
exp is a Jocal diffeomorphism from the Lie algebra g to an open neigh-
bourhood of the identity element e of the Lie group G. Therefore, in a
neighbourhood U, of e, a group element g may be expressible in the form

g=exp(V)=exp(t'V}) €U, CG

where the set {Vi,,...,V,} is a basis for the Lie algebra. The ordered n-
tuple of real numbers (¢!, ...,t") € R" are called the canonical coordinates
of g and they must be sufficiently small in order that g € U,. Owing to some
properties of the exponential mapping illustrated in p. 139, g can also be
written in the following way for sufficiently small canonical coordinates ;,
1=1,...,n

g = exp (t'V7)xexp (t2Va) - - -xexp (t"V},).

because we can always choose commuting basis vectors for the Lie algebra.
This amounts to say that the Lie algebra determines locally the Lie group at
a neighbourhood of the group's identity element. That is the reason why a
basis of a Lie algebra is called as infinitesimal generators of a Lie group.
As we have mentioned before, it cannot be claimed that a given Lie algebra
generates a uniquely determined global Lie group. However, if a Lie group
is a connected manifold in which e has a simply connected neighbourhood,
then the Lie algebra determines globally this group [see Theorem 3.2.1].

We now try to get the isomorphism between Lie algebras g; and gr
whose existence was established on p. 185 to acquire a more concrete struc-
ture and we shall show that this isomorphism is provided by the differential
dv : Ty(G) — T, (G) of the inversion diffeomorphism ¢ : G — G that was
defined by ¢(g) = g . Since we can write

(toLy)(h) = (gxh) ' =h"txg ' = Ryu(h7)

for all h € G, we obtain (v o L,)(e) = Ry (e) for h = h™! = e from which
it follows that dv o dLgy|, = dRy+|, for all g € G. For a vector V' € T,(G),
this equality naturally implies that dv o dL,(V'|,) = dR,+(V|,) resulting in
the relation
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de(VHg)) = V(g™

for all g € G where V¥ and V¥ are left and right invariant vectors. Hence,
despite an apparent problem in the arguments, we may expect that the ope-
rator dv : gr, — g can be a possible candidate for the isomorphism that we
are hoping to find. On the other hand, if a vector field V' generates the one-
parameter subgroup by g¢(t) = exp (tV), we have g(t)~! =exp (—tV).
Thus the tangent vectors to curves g(¢) and g(¢)~! at the identity element e
are prescribed by

dg(t) dg(t)”!

at |, e g o

S—

e

Hence, at the identity element the operator d¢|, : T.(G) — T.(G) acts in the

manner di(V|,) = — V|,. It is then straightforward to realise that a right-
invariant vector field produced by a vector V' € T.(G) has to satisfy the
relation VE(g~!) = — V¥ (g). Therefore, the isomorphism between g, and

gr is now provided by
du(V*(g)) = — Vi(g). (3.5.5)

Whenever V1, V; € T.(G), we can define a vector W = [V1, V3] € T.(G).
We know that the left-invariant vector fields associated with these vectors
will satisfy the relation WL = [V{£, V;l]. We thus find

S W = (W) = du([VE V) = (V). du(Vi] = [V V]

that leads easily to the result [Vi,Vo]r = — [Vi, V2]r from which we

deduce that if the structure constants of the left Lie algebra are cf]-, then the
k

i

Let g be an n-dimensional Lie algebra of a Lie group G. A subalgebra
b of this algebra with dimension m < n is again a Lie algebra. In other
words, it is an involutive distribution. Therefore, according to the Frobenius
theorem it generates an m-dimensional smooth submanifold through the
point e. This submanifold is locally an m-parameter Lie group that is a sub-
group of G.

Example 3.5.1. We know that the Lie algebra gl(n) of the general
linear group GL(n,R) consists of n x n matrices. Hence, we can express a
matrix X € G L(n,R) in a neighbourhood of the identity element I by

structure constants of the right Lie algebra has to be — ¢

X =exp (A) = eA(I)

where A € gl(n). Let us now consider the function det : GL(n,R) — R. In



3.5 One-Parameter Subgroups 193

view of the relation (2.9.17), we have
det (e*(I)) = e A det (1) = eddet(),
Let us write A = a’ §/da}. Then the relation (2.7.9) yields

. ddet (X)

J X=I

Due to the equality ddet (X)/dz} = cofactor (x}) = X! = det (X) (X 1),
we easily arrive at the expression

. Odet (X)

J

ddet (A) =

zaﬂﬁla
k@a

= det (X) (X~ 1)

Inasmuch as we define X as the following series

X:exp(A)—I+A+2|A2+ -+ A”+

then its entries are prescribed by

) , 1 1
af =68 +af + — 57 9m SRR —'afma;’g capt ey A

Taking into account the relation

6ak am1 amn 1
my l _ ckgj am™. mn 1 1 my ¢j Mp—1 .0
9 a = 6,6}, ap:- i+ 0 6m2 my @A
J
. + 5mn,—16ja/k aml a ak a . amn—l + ak aml' .. amn—l
7 1 ¥'myP'ma 7 = Ymy mz my-'msa l

k_my My my Mp—1 __ n\k
+ amlamQ...al n— _|_...+amlam2 al n— n(A )lu
we finally find

8xl

Bt ai=[A+A%+ - ;A”wL---}f:(XA)f:(X)k (A"

(n—1)! m

Z
j
and reach to the conclusion

ddet (A) = det (X) (Xﬁl)Z(X)k (A"

(A" |y = Oaf” = ajy = tr (A),

We thus obtain the rather elegant result

det (e*) = e,
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If the matrix X belongs to the subgroup SL(n,R), then we must have
det (X) = 1. Hence, if the matrix A is an element of the Lie subalgebra
sl(n), the condition

det (e) = "M =1

must hold. This requires that tr (A) = 0. Consequently, the Lie algebra
sl(n) consists n x n traceless matrices.

Next, we consider the orthogonal group O(n). If the matrix X belongs
to that subgroup, the relation XX" = X"X = I must be satisfied. Let us take
again X = e*. It can easily be verified that X" = (¢A)" = ¢A". We thus
obtain the condition

rer =eMer or [er et ] =0.
But this leads to the conclusion [A, AT] = O [see p. 148]. Hence the relation
XXT — eAeAT — €A+AT =1

requires that A + A" = 0, or A" = — A. Therefore, the Lie algebra 0(n) of
the orthogonal group consists of antisymmetric n X n matrices. [ |

3.6. ADJOINT REPRESENTATION
Let G be a Lie group. We choose an element g € G and define a
mapping Z, : G — G by the operation of conjugation prescribed by
Z,(h) = gxhxg ' € G (3.6.1)

for all A € G. It is clear that this mapping is a diffeomorphism, Moreover,
because it satisfies the relation

Ig(hl*h,g) = g*hl*gil*g*hg*gil = Ig(hl)*zg(hg)

for all hi, hy € G, it preserves the group operation. Hence, Z, is an auto-
morphism on G called the inner automorphism. All other automorphisms
of G are named as outer automorphisms. The composition of two inner
automorphisms yield

Iy, 0 Iy, (h) = gixgaxhxgy *gi " = (grxge)xhx(gi%ga) ™" = Tyyug,(R)

for all h € G from which we deduce that Z, o Z,, = Z, .,,. We immediately
see that 7, = i is the identity mapping. Since Zyj0Z,+ =Z,1 01, =1,
= i we realise that (Z,)~' = Z,.. Furthermore, we obtain Z,(e) = e for
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all g € G. Therefore all inner automorphisms {Z, : g € G} transform any
curve on the manifold G through the identity element e to another curve
passing again through e. The definition (3.6.1) leads to

Zy(h) = Ly(Ry1(h)) = Ry (Ly(h))
for all h € G. We then conclude that
Iy=LyjoR;1 = Ryi10L,. (3.6.2)

It is now obvious that the set G = {Z, : g € G} constitutes a group with
respect to the composition of mappings. On taking into account properties
of the mappings L, and R, it is easily understood that the expressions
(3.6.2) indicate the existence of an isomorphism between this group and the
Lie group G.

If G is an Abelian group, then we obtain Z,(h) = h for each g € G so
that we get 7, = i¢;. Hence, in commutative groups the mapping Z, acquires
quite a trivial structure.

Let us now consider the differential dZ,. (3.6.2) yields naturally

dl,=dL;odR,1 = dR,10dL,. (3.6.3)
If V € gis a left-invariant vector field, then it follows from (3.6.3) that
dZ,(V)=dRy 1 odLy(V)=dRy+(V)=dLyodR, (V)
that may be expressed in the way
dL,(dZ,(V)) = dZy(V).

Thus dZ,(V') becomes also a left-invariant vector field so that we can write
dZ,(V') € g and conclude that dZ, : g — g. Since Z, is a diffeomorphism,
its differential dZ, is a regular linear operator, i.e., an isomorphism. For all
vectors V1, V5 € g, we have dZ,([V1, V5]) = [dZ,(V1),dZ,(V2)]. Therefore,
the isomorphism dZ, preserves the Lie product. In other words, it is an auto-
morphism on the Lie algebra g. Thus, to each element g € GG, there corre-
sponds an automorphism on the Lie algebra g. Let us denote the linear vec-
tor space formed by these automorphism, or to be more concrete, by regular
matrices representing these automorphisms, as Aut(g). We now rename the
operator dZ, as dZ, = Ad, : g — g for convenience. Let us next intro-
duce the mapping

Ad: G — Aut(g)
in the following manner: Ad(g) = Ad, € Aut(g) for each g € G. On the
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other hand, one can easily verify that the equality dZ, odZ, = dZ,.,,
entails the relation

Ad(gl*gg) = Ad_th @) Ade.

Hence Ad is a group homomorphism assigning to each element of the group
(G a matrix representing an automorphism. That is the reason why it is
called the adjoint representation of the Lie group GG over the Lie algebra g.
One the most outstanding successes of the group theory was to predict that
every abstract group is homomorphic to a general linear group G L(n,R)
which is called a representation or more precisely an unfaithful represen-
tation of the group. Whenever this homomorphism is an isomorphism, we
obtain a faithful representation. The theory of group representation deals
with the quite difficult, but practically very important problem of de-
termining the number n and the specific form of matrices involved in such a
representation.

It is straightforward to verify that what we have discussed above would
be equally valid when we replace an element g by its inverse ¢! in case Lie
algebra is derived from right-invariant vector fields.

Let V be a left-invariant vector field. We consider the one-parameter
subgroup exp (tV') produced by V. If we recall (2.9.17), we observe that we
can write

T, (exp (tV)) = grexp (tV)xg~ ' = T, (" (e)) (3.6.4)
= ¢td%(V) (Ig(e)) = exp (tAdg(V))

for all g € G. This result simply means that under the mapping Z,, the one-
parameter subgroup generated by the vector field V' is transformed into the
one-parameter subgroup generated by the vector field Ady (V).

Let us now consider another one-parameter subgroup generated by a
left-invariant vector field U whose elements are, of course, given by g(s)
= exp (sU). If we resort to the relation (2.10.16), we arrive at the follow-
ing expression

Adyy(V)=e™V, U,V eg (3.6.5)

which measures the change in the vector field Ad, (V') over the subgroup
exp (sU). By employing (3.6.5), we can evaluate the following expression
at the point e:

d

gAdg(s)(V) =ady(V)=£yV =[U,V],Veg. (3.6.6)
s=0
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We have already seen that Z, = i if G is an Abelian group. Hence, in this
case, we obtain Ad, = I for all g € G and (3.6.6) leads to [U,V] = 0.
Thus the Lie algebra of such a Lie group becomes also Abelian. Conversely,
it can be shown that if G is a connected Lie group whose Lie algebra is
Abelian then G, too, will be an Abelian group.

3.7. LIE TRANSFORMATION GROUPS

We assume that we are given a Lie group G of r-parameters and an m-
dimensional smooth manifold M. Let us consider a differentiable mapping
U : G x M — M on the product manifold that manifests the action of the
group G on the manifold M. We thus obtain U(g,p) = gep € M for all
g € G and p € M. We can now form a function ¥, : M — M mapping the
manifold M onto itself by the relation ¥ (p) = ¥(g,p) where g € G is a
fixed element of the group G. The set {¥,: g € G} will be called a Lie
transformation group if it possesses group properties with respect to com-
position, that is, when the conditions

(7’) \Ij!]l © \1192 = \Ilgl*gz or gl‘(QQ ’p) = (91*92)‘pfor 91,92 € G
(19) if e € G is the identity element, then VU, = iy is the identity mapping
on M so that one can write U,(p) = poreep =1p

are satisfied. Hence, the following properties are valid
Uy, (Tgo(p) = ¥ (g1, P92, ) = ¥(g1%g2, p), Ve(p) = ¥(e,p) = p.

It is easy to observe that the foregoing expressions lead to relations
U =W, U(g ', U(g,p) =p or (g 'xg)ep=p.

We say that the group G acts effectively on the manifold M if the relation

U, (p) = pforall p € M implies g = e. If the stronger condition ¥,(p) # p

unless g = e holds, then the group G acts frreely (without a fixed point) on

the manifold M. If for all p,q € M, there exists an element g € G such that

U,(p) = g¢p = g, then the group G acts transitively on the manifold M.
We now define the set

G,={9eG:Yy(p)=gep=p} CG

for a fixed point p € M. It can be demonstrated that GG, is a subgroup of G.
If g € G,, then one has g#p = p from which g~' ¢ (gep) = g~ & p follows
at once. On the other hand, we can write g~ ' ® (g#p) = (g 'xg)#p = p so
that we find g~'ep = p. Therefore, we find that g~! € G,. Next, let us
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consider g,h € G, then we obtain (gxh)ep = ge(hep) =gep=p im-
plying that gxh € G,,. Moreover, we observe that e € G, since U.(p) = p.
Thus G, is a subgroup of G. The subgroup G, so defined is known as the
isotropy group of a point p € M. The isotropy groups at the points p € M
and g&p € M are connected by the conjugation relation

Ggep = gxGpxg~ "', for any g€ G.

Indeed, for any h € G, one deduce (gxhxg ') (gep) = ge(hep) = gep
so that gxhxg™! € Gys,. This, of course, means that gxG,xg~! C Gys,.
Now, consider an element h € Gys,, so that he(gep) = (hxg)ep = gep
or (g 'xhxg)#p = p implying that g 'xhxg € G, and g 'xGye,xg C G,
from which we immediately obtain G, C g*G,xg *. Thus we arrive at
the desired equality given above. However, the statement g~ 'xh*g € G,, for
all h € G, and for all g € G implies that G), is a normal subgroup. If G is a
freely acting group, then it is clear that G, = {e} at each point p € M.
The orbit of the group G at a point py € M is defined as the set

{9¢p0:9€ G} =0, C M.

When p, g € O,,, then there are g1, g» € G such that one has p = g, ¢ py and
q = g2 ¢ po. Consequently, we can write ¢ = (go*g7!) ®p. Thus, the group
G acts transitively on any orbit O,,.

Example 3.7.1. Let us consider the smooth manifold M = R" and the
Lie group G = GL(n,R). If x = (2}, 2?,...,2") € R" and A € GL(n,R),
we define the group action on the manifold by ¥ (A, x) = Ax € R". Hence,
the isotropy group of a point xy € R” is determined by the following set

Gxo = {A S GL(TL,R) : Axg = X()}.

Thus, elements of the isotropy group can only be n X n matrices with an
eigenvalue 1 and admitting the vector x( as an eigenvector associated with
that eigenvalue. Therefore, the necessary condition imposed on matrices A
should be det (A —I) = 0. For instance, the isotropy group of the point x

= (1,0,...,0) consists of matrices of the form
I ap -+ anm 4y
0 ax - a : . o
A=|. 22 . n , detA = : : : | #0.
) ’ ) ’ Qn2 st Qpp
0 Ap2 -+ Qpp

Obviously, the condition det (A — I) = 0 are satisfied. We can easily verify
that the orbit of a point x¢ is Oy, = M — {0}. Indeed, if x 7% 0 € M is an
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arbitrary point, we can always construct a matrix A € GL(n,R) so as the
relation Axy = x is satisfied. If we choose n? — n entries of that matrix
arbitrarily, then the foregoing n equation will help determine the remaining
n entries. For example, if z'z? -2 # 0 and x{x3- -z} # 0, then we may
choose a diagonal matrix such that a;; = x'/x}, ..., ay, = 2" /2. [ |
By employing the smooth function ¥ : G x M — M represented by
U(g, p) = g#p, we can now introduce two functions for a fixed g € G and
a fixed p € M, respectively, and their differentials in the following manner

U,: M — M, VY,(p)=gep, d¥,:T,(M)— Tyep(M) (3.7.1)
U,:G— M, V,(9) =gep, d¥, : T(G) — Tye,(M).
Consider a member V' € T,(G) of the Lie algebra on G. By means of the

linear operator d¥, : T,.(G) — T,(M), we can construct a vector field
VE(p) € T,(M) on M through the relation

VE(p) =d¥,(V). (3.7.2)

Such vector fields V* are called Killing vector fields after German mathe-
matician Wilhelm Karl Joseph Killing (1847-1923). To attribute a more
concrete meaning to Killing vectors, let us consider a right-invariant vector
field V# € gr produced by the vector V' € T,(G) through the usual relation
VE(g) = dR,(V). For each h € G, we can evidently write

Uy 0 Ry(h) = Wy(hxg) = (hxg)ep = he(gep) = Wgup(h).
Thus, it follows from (3.7.2) that
VE(g-p) =d¥,,(V)=dV,o0dR,(V) = d¥,(V(g)). (3.7.3)
Hence, the Lie product of two Killing vector fields becomes
VX, VR, = T, (V). b, (V]| = dw, [V, V|
Inasmuch as [V;%, VjR] = — ¢}V, [see p. 192], then we find that
VAVl = = cldV, (V) = —ciVE, i qk=1,..r

This relation states that Killing vectors, too, constitute a Lie algebra. If an 7-
dimensional Lie algebra with structure constants clkj is given on a smooth
manifold M, then we conclude, conversely, that there exists a Lie group G
whose Lie algebra has those structure constants with respect to a basis V7,
..., V, and the local action of G on M is described by the vector fields
VE =du,(V,),i=1,...,r.
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We know that a particular vector V' € T(G) determines a one-para-
meter subgroup of the group G via the curve g(t) = exp (tV) € G and the
relation V' = dg(t)/dt|,_, is satisfied. The curve g(t) generates a group of
mappings on M through {U(g(t),p) = ¥, (p) = ¥, (g(t)) : t € R}. On
the other hand, the integral curve passing through the point p € M has to
satisfy the relation

A%y (p) _ d¥,(g(t))
dt dt

=WIT,(g(1)], ¥p(e) =p.

where W is the vector field tangent to the integral curve. Consequently, the
tangent vector to that curve at ¢t = 0 should be given by

_ 4%, (9(1) dg(t)

dt - d%(i

W(p) It

) = aw) = VEQ)

t=0

Therefore the vector field W (p) is a Killing vector field. The dimension s
of the Lie algebra of Killing vectors depends on the rank of the linear opera-
tor dV,. If the dimension of the vector space T(G) is r, then it is known
that one can write r = n(d¥,) + s where n(dV,) is the dimension of the
null space of d¥,. Thus this relation implies that s < r. If only d¥, is
injective, namely, if n(d¥,) =0, we obtain s = r. In this case, we have
VE =0 if and only if V = 0. This becomes possible if only the group G
acts effectively on the manifold M. To demonstrate this statement, let us
consider an effectively acting group G' and assume that V' = 0 for a vector
V # 0. The vector V' now determines a subgroup g(t) = exp(tV) in G.
This subgroup then generates a curve p(t) = W ;y(py) on the manifold M
going through the point py € M. Then we find of course

_ A%y (p0)

=0
dt

VE(p(1))
implying that W, (po) is constant. Hence, we obtain W (po) = We(po)
= py. However, this contradicts the effectiveness of the group G. As a
result of this, we find s = r. In other words, if the group G is acting
effectively on the manifold M, then dV, is an isomorphism if d¥, is
injective.

III. EXERCISES

3.1. The circle S! is given by |z| = 1, 2 € C. Let us consider the smooth manifold
G =R x R x S! and define an operation * : G x G — G by
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(1,91, 21) * (€2, Y2, 22) = (21 + T2, Y1 + Yo, €' 2129).
Show that (G, ) is a Lie group.
The mapping ¢ : (R, +) — SO(2) is defined by
cosf —sind
o) = | |

sin 6 cos

Show that ¢ is a Lie group homomorphism.
G is a Lie group. Show that T'(G) is also a Lie group.
We define the set of symplectic matrices by the following relation

Sp(n,R) = {A € GL(2n,R) : ATJA = J}, J = [ ! Ig]

where I, is the n X n unit matrix. Let A{, As, A3 and A; be n X n matrices.
We introduce a matrix A by

(A A
A_[Ag A4].

In order that A € Sp(n,R), show that the matrices A]A, and AJA, must be
symmetric, and the relation AJA, — A3A, = I,, must be satisfied. Prove that

Sp(n,R) is a Lie group. Find the dimension of this group. Show that if
A € Sp(n,R), then one also finds AT € Sp(n, R).
Show that the Le algebra of the Lie group Sp(n,R) is determined as follows

sp(n,R) = {B € ¢gl(2n,R) : B'"J + JB = 0}.

If we choose a matrix B € sp(n, R) in the following manner

_|B1 B
i
show that the relations Bf = — B, B} = B, and B = B, must hold.

Show that all upper triangular n x n matrices whose entries on the principal
diagonal are all 1 constitute a Lie group 7"(n, R). Evaluate the Lie algebra of
T(3,R).

Let S € GL(n,R) be a given symmetric matrix and consider the set Rg =

{A € GL(n,R) : ATSA = S}. (a) Show that Rg is a Lie group with respect
to the matrix product. (b) Show that the mapping ¢ : GL(n,R) — GL(n,R)
prescribed by the relation ¢(A) = ATSA — S is a submersion and the set
Rs = ¢71(0) is a submanifold. Find the dimension of Rg. (¢) Show that the
Lie algebra of Rg is ts = {B € gl(n,R) : B'S + SB = 0}. Show further that
if B;,Bs € v, then the commutator [B;,Bs] = B;By; — B3B; is also an
element of the algebra. (d) Which is the group that will be obtained if one
chooses S =17
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3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.
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Find bases and structure constants of Lie algebras s[(n,R), so(n) and o(n)
of the Lie groups SL(n,R), SO(n) and O(n) forn = 2and n = 3.

Show that the vector space R? acquires a Lie algebra structure with the usual
vectorial product x . We define a mapping ¢ : R® — 0(3) by the relation

0 — U3 (%]
o(v) = U3 0 —-un
— Uy U1 0

where v = (v1, v9,v3) € R3. Show that ¢ is a Lie algebra isomorphism and
the equalities

1

ouxv) =[o(w), 6], dWyv=uxv, u-v=—ctr[¢(u)s(v)]

are satisfied where - denotes the standard scalar product. Show that the
length of a vector is given by |[u]| = \/u-u = —tr (¢(u)?)/2.

Show that the mapping ¢ : R? — 0(3) in Ex. 3.9 satisfies the relation
ou) _ I sin ||ll|| ¢(u) 1 —cos HuH ¢(u)2
] ]

which is known as Rodrigues' equality [after French mathematician Benjamin
Olinde Rodrigues (1795-1851)].

Let A,B € O(3). We define the inner automorphism on O(3) by the usual
relation Z,(B) = ABA™! = ABA". By employing the foregoing mapping
¢, show that one can write Ada (¢(u)) = ¢(Au) and the relation [see (3.6.6)]
adyw) (3(v)) = [p(w), (V)] leads to p(u x v) = [$(u), 3(v)].

Show that an eigenvalue of a matrix A € SO(3) must be 1. Exploiting this
fact, prove that every matrix A € SO(3) corresponds to a rotation by an
amount  about a vector u in R? and by choosing an appropriate basis in R?
this matrix can be reduced to the form

1 0 0
A=1|0 cosf@ —sinf
0 sinf cosf

The matrices A,B € gl(n,R) are satisfying the condition AB + BAT = 0.
Show that

T
e“Be* =B.

Discuss the special cases B=1and B = J.

Show that the set of all unitary matrices that are defined by the relation
U(n) = {A € GL(n,C) : AA" = AAT =1,,} constitutes a Lie group whose
Lie algebra is given by u(n,C) = {A € gl(n,C) : A+ A" = 0}. Show also
that members of this group preserve the standard inner product z;w; in C".
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Show that the set SU(n) = U(n) N SL(n,C) is also a Lie group and its Lie
algebra is given by su(n) = {A € gl(n,C) : A+ A" = 0,tr A = 0}.

3.16. Show that the group U (n) is diffeomorphic to S' x SU (n).
3.17. Show that the SU(2) is a connected manifold and the mapping

3.18.

3.19.

3.20.

¢ : S* — SU(2) between the sphere S* C R* and SU (2) defined by

T +1xe T3+ ixy

. ., x%—l—m%—l—m%—&—xi:l
— X3 +1Try X1 —1T2

o(x) =
where X = (1, 29, 23, 74) € R* is a diffeomorphism.
Show that every matrix A € GL(n,R) can be represented in the form
A = Q;S; = S2Q, where S; and S, are positive definite symmetric matrices,
and Q; and Q. are orthogonal matrices. Prove that this operation called
polar decomposition is uniquely determined and Q; = Qy = Q so that

S; = QS:Q".

Show that every matrix A € GL(n,C) can be represented in the form
A =U;S; = S;Uy where S; and S, are Hermitean matrices [A matrix
satisfying the condition A = A" = A" is called a Hermitean matrix after
French mathematician Charles Hermite (1822-1901)] and Uy, U, are unitary
matrices. Prove that this operation is uniquely determined and U; = Uy = U
so that one gets

S, = US,U".

Show that if a matrix A satisfies the equality A = AY, then the matrix B = iA
holds the relation B = — BT, Utilising this property show that a basis for the
Lie algebra s1(2) can be chosen as (io1, io9, io3) where Pauli spin matrices
[Austrian physicist Wolfgang Ernst Pauli (1900-1958)] are given as follows

o 1 o —i [t o0
o1 = 1 070-2_ 'L 070-3_ O _1

Find the structure constants of the Lie algebra (in Quantum mechanics the
conventional basis is taken as io,/2).

3.21. (01,09,03) are the foregoing Pauli spin matrices. We define a mapping

¢ : R? — su(2) in the following manner

1, 1 —qu? —dul —u
o) = 5;uon = [ —dul + u? iu?

2
1,2 3 3
- = R°.
5 5 },u (u™,u”,u’) €

Show that (a) the inverse mapping ¢! : 51(2) — R3 is provided by
u' =itr (p(u) o), u? =itr (¢(u) 02), v’ = itr (¢(u) o3),

(b) the mapping ¢ is a Lie algebra isomorphism so that the relation ¢(u x v)
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3.22.

3.23.

3.24.

3.25.
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= [¢(u), ¢(v)] and (c) the equalities |[u||* = — det (u" o) and u-v =
2tr (¢(u) ¢(v)) are satisfied.

We define a mapping ¢ : SU(2) — GL(3,R) in such a way that for each
vector u € R?, the relation

[¢(A)u]'a; = A(u'o;))A™!, A€ SU(2)

will be satisfied. Show that (a) ¢ has the properties ¢p(A) = ¢( — A),
#(Iy) =13 and ¢(A) € SO(3) and (b) the mapping ¢ : SU(2) — SO(3) isa
submersion.

According to the celebrated Hamilton-Cayley theorem [Irish mathematician
Sir William Rowan Hamilton (1805-1865) and English mathematician Arthur
Cayley (1821-1895)] every 2 x 2 matrix A satisfies its characteristic equation

A? —tr (A) A + (detA) I =0.

Utilising this equation, show that if A € s[(2,R) and det A = ¢ the relations

cos\/gl—i—%sin\/gA, 5>0
eA={I1+A 6=0
coshy/ —61+ J%—ésinh v/ —6A 6<0

are valid. Show further that tre® > — 2. Verify whether the mapping
exp: sl(2,R) — SL(2,R)

] € SL(2,R)).

. S . . . la O
is surjective (Hint: consider the matrix [ 0 1/a
¢ : G — H is a Lie group isomorphism, and ¢ : g — h is the Lie algebra
isomorphism produced by the mapping ¢ [see p. 188]. Show that the expo-
nential mappings expg : g — G and expy : h — H satisfy the equality
¢ o expg = expy o . [ Hint: Define two one-parameter groups and evaluate
tangents of the curves 1 : t — ¢ (expe(tU)) and 7o : t — expy (tp(U) at
t = 0]. This means that the following diagram

a®n

expg T T expy
¥
g—b
commutes.

We define the length of a vector V' e T(R") by ||V ||* = 3. (v')? where v are

i

the components of V. A mapping ¢ : R™ — R” is called an isometry if the
condition ||¢. V|| = ||V is met for all vectors V € T(R™). Show that a
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vector field V' = v'(x) O; generates a one-parameter group of isometries if
and only if its components satisfy the following partial differential equations

o' N ol
Oxi ~ Oxt

=0.

Show further that this group is the Euclidian group E(n) of dimension
n(n + 1)/2 which consists of rotations and translations.

Show that the set of matrices G = { [(J): le] €EGL(2,R):z,y e R,z # 0}
forms a Lie group with respect to the matrix product. Utilise this group to
define an appropriate multiplication on R? so that a homomorphism between
them can be constructed. Consider two curves with tangent vectors d/0z and
d/0y at (1,0) € R? and verify that these vectors become 29/dz and z9/dy
under a left translation so that they generate left-invariant vector fields.
Hence, they constitute the Lie algebra g. Employing the fact that the one-
parameter subgroup associated with the vector ¢10/0x + ¢;0/0y € g must
be tangent to the vector field c12 d/dx + cox 0/0y , we deduce that it is
expressible by the relation

t 9 ( eclt _ 1)

r=e" y=
C1

which is also obtainable by evaluating the matrix exp ¢ [601 %2 } .

We define the action of the Lie group SO(3) on the manifold R? with the
mapping ¥ : SO(3) x R? — R3 where W is prescribed by

V(A ,u) = Au.

Here, A € SO(3), u € R3. Discuss the properties of this mapping (freely,
effectively or transitively acting) and show that orbits are submanifolds S?.
Determine the Killing vector fields.

We consider the product manifold Af f(n,R) = GL(n,R) x R". We define
an operation of multiplication « on A f f(n,R) as follows

(A,u) x (B,v) = (AB,Av 4 u)

where (A,u), (B,v) € Af f(n,R). Show that (Af f(n,R), ) is a Lie group
called the group of affine motions. Let us further introduce the mapping
U: Aff(n,R) x R* — R" representing the action of this group on the
manifold R" by the relation W((A,u),v) = Av+u. VU is called an affine
mapping. Discuss its properties (freely, effectively or transitively acting).

Z is the set of integers. Let us consider the group G = Z? and the manifold
M = R2, and define the mapping ¥ : G x M — M by

\If((a, b), (x,y)) = (ax — by, bx).
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Discuss the properties of this mapping (freely, effectively or transitively
acting)

The action of the Lie group G on the manifold M is given by the mapping
U :G x M — M. Show that each orbit O, is a submanifold of M and is
diffeomorphic to the quotient manifold G/G,. G, is the isotropy group of a
point p € M.

We define the action of the Lie group G on its Lie algebra manifold M = g
by the mapping ¥ : G x g — g by means of the relation ¥(g, V') = Ady (V).
Show that the Killing vector field is then given by VX (U) = [V, U] where
UeM.





