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CHAPTER III

LIE GROUPS

3.1. SCOPE OF THE CHAPTER

This chapter is devoted to a concise exposition of Lie groups that help
illuminate various structural peculiarities of mappings on manifolds. These
groups are so named because it was M. S. Lie who has first studied family
of continuous functions forming a group and recognised their effectiveness
in revealing some very important and fundamental properties of differential
equations. We first define in Sec. 3.2 a Lie group as a smooth manifold en-
dowed with a group operation in which multiplication and inversion opera-
tions are supposed to be smooth functions. Some of the salient features of
Lie groups are then briefly examined. Next, in Sec. 3.3 we discuss left and
right translations generated by an element of the group that are diffeomor-
phisms mapping the manifold onto itself. Left- and right-invariant vector
fields are introduced by means of differentials of these mappings and it is
shown that they constitute Lie algebras. After that we briefly investigate in
Sec. 3.4 the group homomorphism between Lie groups that preserve group
operations. We then consider in Sec. 3.5 one-parameter subgroups of a Lie
group that are homomorphisms between the commutative Lie group of real
numbers and an abstract Lie group. We then discuss the exponential map-
ping that may help characterise such one-parameter subgroups. Afterwards
in Sec. 3.6 the group of automorphisms mapping the Lie group onto itself
and generated by elements of the Lie group itself is defined and it is shown
that this group, which is called adjoint representation, is isomorphic to the
Lie group. In Sec. 3.5 we examine some notable properties of Lie transfor-
mation groups that map a smooth manifold onto itself and form also a Lie
group. Finally, Killing vector fields were introduced.

3.2. LIE GROUPS

We assume that a binary operation  on a set , which‡ À K ‚ K Ä K K
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176 III  Lie Groups

will be called briefly as a , satisfy the following conditions:product

Ð3ÑÞ 1 ‡1 − K 1 ß 1 − K

Ð33ÑÞ 1 ‡Ð1 ‡1 ÑœÐ1 ‡1 Ñ‡1 1 ß 1 ß 1 −K

Ð333ÑÞ

 Operation is closed:  for all .
 Operation is associative: for all .
 Ther

" # " #

" # $ " # $ " # $

e is an identity element :  for all .

 For each  there is an inverse : .

/ − K /‡1 œ 1‡/ œ 1 1 − K

Ð3@ÑÞ 1 − K 1 − K 1 ‡1 œ 1 ‡1 œ /" " "

Then  is called a . It is easily observed that the identity elementÐKß ‡Ñ group
/ 1 1 − K and the inverse element  of an element  are . " uniquely specified A
Lie group  is also a smooth manifold and the mappingsK

5 +À K ‚ K Ä K À K Ä K        and

defined by and are smooth mappings5 +Ð1 ß 1 Ñ œ 1 ‡1 Ð1Ñ œ 1" # " #
"   Þ

These two last conditions can be combined into a single one imposing
that the mapping  defined by the rule  is¯ ¯5 5À K ‚ K Ä K Ð1 ß 1 Ñ œ 1 ‡1" # "

"
#

smooth. To prove this proposition, let us first introduce the smooth mapping
\ \ 5 \ +À K Ä K ‚ K Ð1Ñ œ Ð/ß 1Ñ ‰ œ by the simple rule . We see that .¯
Indeed, we find at once that  for¯ ¯Ð ‰ ÑÐ1Ñ œ Ð/ß 1Ñ œ /‡1 œ 1 œ Ð1Ñ5 \ 5 +" "

all . Since  is now written as the composition of two smooth map-1 − K +
pings, it turns out to be a smooth mapping as well. Similarly, let us intro-
duce the smooth mapping  through the relation¼ À K ‚ K Ä K ‚ K

¼ +Ð1 ß 1 Ñ œ Ð1 ß 1 Ñ œ 1 ß Ð1 Ñ" # " " #
"
#

ˆ ‰
from which it follows that ¯ ¯5 ¼ 5 5ˆ ‰Ð1 ß 1 Ñ œ Ð1 ß 1 Ñ œ 1 ‡1 œ Ð1 ß 1 Ñ" # " " # " #

"
#

for all . Thus the mapping  is also smooth. If  is a¯1 ß 1 − K œ ‰ K" # 5 5 ¼
finite -dimensional manifold, then it is called an - .7 7 parameter Lie group

Let  and  be two Lie groups. The Cartesian productÐKß ‡Ñ ÐLß Ñˆ

K ‚ L K L of the manifolds  and  can easily be equipped with a group
structure by defining the product of elements  and  of theÐ1 ß 2 Ñ Ð1 ß 2 Ñ" " # #

product manifold  where  and  in the followingK ‚ L 1 ß 1 − K 2 ß 2 − L" # " #

fashion

Ð1 ß 2 Ñ ì Ð1 ß 2 Ñ œ Ð1 ‡1 ß 2 2 Ñ − K ‚ L" " # # " # " #ˆ .

One checks readily that the binary operation   is a group operation since itì
is solely determined by group operations on the Lie groups  and  andK L
smoothness requirements are clearly met. If  and  are - and -pa-K L 7 8
rameter Lie groups, respectively, then the product manifold  turnsK ‚ L
out to be an -parameter Lie group. Such a group is called a Ð7  8Ñ direct
product of groups  and .K L

Let us now consider some examples to Lie groups.
Example 3.2.1. The smooth manifold  (  Example 2.2.1) is a‘8 see
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commutative Lie group with respect to the operation of addition in . If‘8

x y y y x y x yß − œ  ‡ œ  œ‘8 " ", then we have  so that we obtain 
ÐB  C ß á ß B  C Ñ" " 8 8 . This is obviously a smooth function.

Example 3.2.2. Let us consider the manifold  which we hadKPÐ8ß Ñ‘
introduced in Example 2.2.2 and we had already called the general linear
group of degree n. It is immediately seen that this manifold becomes also a
non-commutative group with respect to the usual matrix multiplication. Let
A Bß − KPÐ8ß Ñ + ß , − ß 3ß 4 œ "ß á ß 8‘ ‘. With the coordinates   these3 3

4 4

matrices are represented by  and we know that the matrixA Bœ Ò+ Óß œ Ò, Ó3 3
4 4

AB" is expressed as follows

AB B" 3 " 3 5
5 4 5 4

5
œ Ò+ , Ó œ Ò+ Ð , Ñ Î Ócofactor det .T

Nevertheless, this is a smooth function because it is obviously the ratio of
two polynomials. Hence  is a Lie group of dimension .KPÐ8ß Ñ 8‘ #

Let us now define a subset of the general linear group given by

WPÐ8ß Ñ œ Ö − KPÐ8ß Ñ À œ "×‘ ‘A Adet

It is clear that this subset is also a group with respect to matrix multiplica-
tion. In view of Theorem 2.4.1,  is a submanifold of dimensionWPÐ8ß Ñ‘
8  "#  of the general linear group. Hence, it is a Lie group. This group is
called the  or the .special linear group unimodular group

We now consider the following subset

SÐ8Ñ œ Ö − KPÐ8ß Ñ À œ ×A AA I‘ T

of the group  which is formed by orthogonal matrices. Since theKPÐ8ß Ñ‘
product of two orthogonal matrices is again an orthogonal matrix,  is aSÐ8Ñ
group and Theorem 2.4.1 implies that it is a submanifold of  withKPÐ8ß Ñ‘
the dimension . Thus, it is a Lie group.8  8Ð8  "ÑÎ# œ 8Ð8  "ÑÎ##

SÐ8Ñ − SÐ8Ñ Ð Ñ œ " is called the . If , then det  soorthogonal group A A #

that det . The Lie groupA œ „ "

WSÐ8Ñ œ Ö − SÐ8Ñ À œ "×A Adet

whose dimension is also  is known as the 8Ð8  "ÑÎ# special orthogonal
group because it preserves the length of a vector  and volumes in . Inx ‘8

fact, we obtain for A − SÐ8Ñ

Ð Ñ œ œAx Ax x A Ax x xT T T T .

The orthogonal group is in fact a disconnected Lie group that is expressible
as the union of two disjoint connected groups as
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SÐ8Ñ œ WSÐ8Ñ  WSÐ8ÑH

where  is the  matrixH 8 ‚ 8

H œ

 " ! â !
! " â !
ã ã ã ã
! ! â "

Ô ×Ö ÙÖ Ù
Õ Ø

so that det .H œ "
Example 3.2.3.  The complex plane  is the -dimensional‚  Ö!× #

smooth manifold . This manifold is also a group with respect‘#  ÖÐ!ß !Ñ×
to the complex multiplication. On the other hand, if , thenD ß D −  Ö!×" # ‚
D D"

"
#  is a smooth function of real coordinates. Hence, this manifold is a Lie

group.
Example 3.2.4. Let us consider the smooth manifold , the unit’"

circle. The points of this manifold can be determined by complex numbers
with unit moduli such as . If , then lDl œ " D ß D − lD D l œ lD llD l œ "" # " # " #

"’
and this means that . This is tantamount to say that the manifoldD D −" #

"’
’" is a Lie group.

Example 3.2.5. The -torus defined as  is a Lie group7 œ Ð Ñ“ ’7 " 7

because it is the -fold Cartesian product of a Lie group.7
Subgroup. A  of a Lie group  is called a  ifsubmanifold L K subgroup

for all elements  one finds  and . Therefore,2 ß 2 − L 2 ‡2 − L 2 − L" # " #
"
"

a subgroup is a submanifold of a Lie group that is closed with respect to
operations of group multiplication and inversion.

If a Lie group is , then the following theorem states that itconnected
can be generated by an open neighbourhood of its identity element.

Theorem 3.2.1.  Let  be a connected Lie group and  be an openK Y
neighbourhood of the identity element . We denote the set of all -fold/ 8
products of elements of  by . Then oneY Y œ Ö? ‡? ‡â‡? À ? − Y ×8

" # 8 3

can write

K œ  Y
8œ"

_
8.

In other words, each group element  is expressible as a finite product1 − K
of some elements in the open set . Hence, we can say that  generates theY Y
group KÞ

Let us choose a fixed , and define a function  by the1 − K À K Ä K51

rule .  is a diffeomorphism [ Sec. 3.3]. Hence,5 5 51 1Ð2Ñ œ Ð1ß 2Ñ œ 1‡2 see 
if  is an open set, then the set  will also beY ÐY Ñ œ Ö1‡? À ? − Y51 × K§
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open. Consequently, the set  is open for all . Since  is a diffeomor-Y 88 +
phism, the set  is also open. We then concludeY œ Ö? œ Ð?Ñ À ? − Y ×" " +
that the sets  and  are all open. Furthermore, theZ œ Y  Y Y§" Z 8

obvious relationship  would be valid. Because  and ,Z œ Z / − Y / œ /" "

we see at once that , i.e.,  is not empty. Let us now define the set/ − Z Z

L œ © © Z  Y
8œ" 8œ"

_ _
8 8 G.

L  is an open set since it is the union of countably many open sets, and it is,
consequently, an open submanifold [   77]. Due to the property of thesee :Þ
set ,  will be a subgroup. We now consider the family of open setsZ L
51ÐLÑ œ Ö1‡2 À 2 − L× 1 − K defined for all . One has evidently the rela-
tion . Thus we can obviously writeL œ ÐLÑ51−L

K œ L   ÐLÑ
1−Kß1ÂL

15 .

But the open set  is the complement of the open set   withL  ÐLÑ
1−Kß1ÂL

15

respect to  so it must also be a closed set. In a connected topological spaceK
only the empty set or the space itself can be both open and closed.  cannotL
be empty since  so it must be equal to . We therefore reach to the/ − L K

conclusion that .K œ  Y
8œ"

_
8 

The above theorem indicates that if a Lie group is a connected topolo-
gical space, then an open neighbourhood of the identity element determines
the entire group.

A subgroup  of the group  is called a  or L K normal invariant sub-
group if for all  we get for all  so that  is2 − L 2 œ 1 ‡2‡1 − L 1 − K L1

"

invariant under . In other words, if  is a normal subgroup, aconjugation L
conjugate element  corresponds to each element  so that2 − L 2 − L1

1‡2 œ 2‡1 1 − K1    for each .

This property is symbolically reflected by the notation  for all1‡L œ L‡1
1 − K L. Let  be a normal subgroup, the is defined as the setquotient group 
KÎL œ Ö1‡L À 1 − K× 1‡L K. The  is the subset of  defined bycoset 
Ö1‡2 À a2 − L× KÎL. It is easy to verify that  is actually a group. Let us
consider the direct product which can be written as follows

Ð1 ‡LÑ‡Ð1 ‡LÑ œ Ð1 ‡1 Ñ‡ÐL‡LÑ œ Ð1 ‡1 Ñ‡L − KÎL" # " # " #

since one obviously observe the symbolic relation  because  isL‡L œ L L
a subgroup.
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3.3. LIE ALGEBRAS

Let   be a Lie group. We  choose  a  fixed element  to define aK 1 − K
mapping  in such a way thatP À K Ä K1

P Ð2Ñ œ Ð1ß 2Ñ œ 1‡21 5 (3.3.1)

for all .  is evidently a smooth mapping on the manifold . The2 − K P K1

mapping  is called the  of the Lie group  by the elementP K1 left translation
1 − K 1. We can obviously define a left translation for each element  of the
group . It can easily be seen that the relation  is valid.K ÐP Ñ œ P1

"
1"

Indeed, for each  we can write2 − K

P P Ð2Ñ œ 1‡1 ‡2 œ /‡2 œ 21 1
"ˆ ‰"

so that we obtain . Similarly, it is found that .P ‰ P œ 3 P ‰ P œ 31 K 1 K1 1" "

Hence, the inverse mapping  is also smooth. Consequently,ÐP Ñ œ P1
"

1"

the left translation The set of mappingsP1 is a diffeomorphism. 

K œ ÖP À 1 − K×" 1

constitutes a group with respect to the operation of composition of map-
pings. In fact, if , then owing to the relationP ß P − K1 1 "" #

P P Ð2Ñ œ 1 ‡1 ‡2 œ P Ð2Ñ1 1 " # 1 ‡1" # " #
ˆ ‰

for all , we obtain  since . Because2 − K P ‰ P œ P − K 1 ‡1 − K1 1 1 ‡1 " " #" # " #

P œ 3/ K, it then follows that

P ‰ P œ P ‰ P œ P/ 1 1 / 1 .

Thus, the identity element of  is  and the inverse of  in  is clearlyK P P K" / 1 "

P1" . Since the composition is an associative binary operation, we finalise
the realisation of the group structure of . Therefore, there exists a map-K"

ping  such that . This mapping  is evidently sur-_ _ _À K Ä K Ð1Ñ œ P" 1

jective. Let us further suppose that . If  for_ _Ð1 Ñ œ Ð1 Ñ P Ð2Ñ œ P Ð2Ñ" # 1 1" #

all , the relation  then leads to  if we multiply2 − K 1 ‡2 œ 1 ‡2 1 œ 1" # " #

both sides by  from left which means that  is injective, and conse-2" _
quently is . On the other hand, due to the relation bijective _Ð1 ‡1 Ñ œ" #

P ‰ P œ Ð1 Ñ ‰ Ð1 Ñ1 1 " #" # _ _ _, we infer that that the mapping  preserves group
operations. In other words, it is a  . Hence, group isomorphism the groups K
and  are isomorphicK" .

In exactly same fashion, we can define the  of the Lieright translation
group  by the element  as the mapping  such thatK 1 − K V À K Ä K1
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V Ð2Ñ œ 2‡11 (3.3.2)

for all . We can readily verify that a right translation is also a diffeo-2 − K
morphism and due to the relation   forV V Ð2Ñ œ 2‡1 ‡1 œ V Ð2Ñ1 1 # " 1 ‡1" # # "

ˆ ‰
all , one obtains . It is then straightforward to2 − K V ‰ V œ V1 1 1 ‡1" # # "

observe that the set of mappings  constitutes a groupK œ ÖV À 1 − K×# 1

with respect to the operation of composition. The identity element of this
group is  and the inverse of an element is given by  .V œ 3 ÐV Ñ œ V/ K 1

"
1"

It is clear that this group is also isomorphic to . Therefore, the groups K K"

and  are isomorphic to one another as well. It is now evident that left andK#

right translations are connected through the following relation

V Ð2Ñ œ 1 ‡1‡2‡1 œ 1 ‡P Ð2Ñ‡11 1
" " .

Therefore, a right translation of an element of the group  is conjugate to itsK
left translation, and vice versa. Moreover, it follows from ÐP ‰ V ÑÐ2Ñ œ1 1" #

1 ‡Ð2‡1 Ñ œ Ð1 ‡2Ñ‡1 œ ÐV ‰ P ÑÐ2Ñ 2 − K" # " # 1 1# "  for all  that these mappings
commute, that is,

P ‰ V œ V ‰ P1 1 1 1" # # " . (3.3.3)

In case  is a commutative group, we find that K P Ð2Ñ œ 1‡2 œ 2‡1 œ1

V Ð2Ñ 2 − K P œ V 1 − K1 1 1 for all . Hence, we deduce that  for all  in such
an .Abelian group

Inasmuch as the mapping  is a diffeomorphism on , its differentialP K1k.P À X ÐKÑ Ä X ÐKÑ :1 2 1‡22  is an isomorphism [ . 124] transforming vec-see 
tor fields onto vector fields. A vector field  on the Lie group  is called aZ K
left-invariant vector field  if it satisfies the equality

 (3.3.4).P Z Ð2Ñ œ Z P Ð2Ñ œ Z Ð1‡2Ñ1 1ˆ ‰ ˆ ‰
for all . This means that the image of a vector of such a field at the1ß 2 − K
point  under the linear operator  will be a vector of the same field at2 .P1

the point . Thus the operator  transforms a left-invariant vector field1‡2 .P1

onto itself. So it is permissible to write symbolically

.P ÐZ Ñ œ Z1

for all . If we take  in (3.3.4), we obtain1 − K 2 œ /

.P Z Ð/Ñ œ Z Ð1Ñ1ˆ ‰ (3.3.5)

for all . This relation implies that a left-invariant vector field on  is1 − K K
completely determined by  a vector in the tangent space of theX ÐKÑ/
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identity element  of the Lie group . / K So it becomes quite reasonable to
interpret left-invariant vector fields as '  ' on the mani-constant vector fields
fold  [Fig. 3.3.1].K

Conversely, let us suppose that the relation  is.P Z Ð/Ñ œ Z Ð1Ñ1ˆ ‰
satisfied for all . We then easily deduce that1 − K

ì
ñ

K

2
1‡2

ZÐ2Ñ
ZÐ1‡2Ñ.P1

X ÐKÑ1‡2

Fig. 3.3.1. A left-invariant vector field.

Z Ð1‡2Ñ œ .P Z Ð/Ñ œ .ÐP ‰ P Ñ Z Ð/Ñ

œ .P .P Z Ð/Ñ œ .P Z Ð2Ñ

1‡2 1 2

1 2 1

ˆ ‰ ˆ ‰ ˆ ‰‘ ˆ ‰ .

(3.3.6)

According to (3.3.4), such a vector field  is a left-invariant vector field.Z
We now denote the set of all left-invariant vector fields by . It is seen at 
once that  is a linear vector space on real numbers. Indeed, if    Z ß Z −" #

and , the linearity of the operator  on real numbers leads to! ! ‘" # 1ß − .P
the result

.P Ð Z  Z Ñ œ .P ÐZ Ñ  .P ÐZ Ñ œ Z  Z1 " " # # " 1 " # 1 # " " # #! ! ! ! ! !

from which  follows. If we assume, instead,  are  are! ! ! !" " # # " #Z  Z −  
smooth functions on , we realise that the invariance requirement can onlyK
be fulfilled if admissible functions are merely constant. The foregoing ob-
servations bring to mind the possibility of the existence of a bijective map-
ping between  and . To this end, we presently introduce a mapping  X ÐKÑ/

Z   Z ZÀ Ä X ÐKÑ ÐZ Ñ œ Z Ð/Ñ/  by the rule . Owing to (3.3.5), the operator 
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must be linear. Indeed, one can write

Ð Z  Z ÑÐ1Ñ œ .P Z Ð/Ñ  Z Ð/Ñ

œ .P Z Ð/Ñ  .P Z Ð/Ñ œ Z Ð1Ñ  Z Ð1Ñ

! ! ! !

! ! ! !

" " # # 1 " " # #

" 1 " # 1 # " " # #

ˆ ‰ˆ ‰ ˆ ‰
for all . Thus we find that .1 − K Ð Z  Z Ñ œ ÐZ Ñ  ÐZ ÑZ ! ! ! Z ! Z" " # # " " # #

The mapping  is . Suppose that . We then haveZ Z Zinjective ÐZ Ñ œ ÐZ Ñ" #

Z Ð1Ñ œ .P Z Ð/Ñ œ .P Z Ð/Ñ œ Z Ð1Ñ" 1 " 1 # #ˆ ‰ ˆ ‰
for all  and we conclude that .  is . Let us consider1 − K Z œ Z" # Z surjective
a vector . The vector field defined by  forZ Ð/Ñ − X ÐKÑ .P Z Ð/Ñ œ Z Ð1Ñ/ 1ˆ ‰
all  is a left-invariant vector field in view of (3.3.6), hence it is an ele-1 − K
ment of . In conclusion,  is an isomorphism and the vector spaces  and   Z
X ÐKÑ/  are isomorphic. This result dictates that the dimension of  will be 
the same as that of . It is, of course, the same as the dimension of theX ÐKÑ/

manifold .K
At the identity element , one writes  so that we/ .P À X ÐKÑ Ä X ÐKÑ1 / 1

have . Because of the relation , weÐ.P Ñ À X ÐKÑ Ä X ÐKÑ P Ð1Ñ œ /1 1 /
"

1"

obtain . On the other hand, the identities  .P À X ÐKÑ Ä X ÐKÑ P ‰ P1 11 / 1" "

œ P ‰ P œ 3 .P ‰ .P œ M1 11 K 1 X ÐKÑ" " will result in the relations  and
1

.P ‰ .P œ M Ð.P Ñ œ .P1 11 1X ÐKÑ /
"

1
" "

/
. It then follow that .k k

Since  is a smooth manifold of dimension , each point of  is con-K 7 K
tained in an open neighbourhood in  and there is a homeomorphism K :
mapping this open set onto an open set of . If local coordinates of a point‘7

2 − K œ ÐB ß á ß B Ñ are prescribed by  and local coordinates of a pointx " 7

P Ð2Ñ œ 1‡2 − K œ ÐC ß á ß C Ñ1
" 7 are given by , then we know that therey

exists a functional relationship in the form L ,y x xœ Ð ‰ P ‰ ÑÐ Ñ œ Ð Ñ: :1
"

1

or . Hence the definition (3.3.4) implies that the local compo-C œ P Ð Ñ3 3
1 x

nents of a left-invariant vector field must satisfy the following expressions

@ Ð Ñ œ @ Ð Ñß œ Ð Ñ
`P Ð Ñ

`B
3 4

3
1

4
y x y x

x
L (3.3.7)1

for all  in respective charts.x − ‘7

We now demonstrate that the Lie bracket of vector fields  isZ ß Z −" #  
also a left-invariant vector field. If we recall (2.10.21) we find that

.P Ð Z ß Z .P ÐZ Ñß .P ÐZ Ñ Z ß Z1 " # 1 " 1 # " #Ò ÓÑ œ Ò Ó œ Ò Ó,

hence, . As a result of this, we see that Ò ÓZ ß Z −" #   left-invariant vector
fields constitute a Lie algebra. or  that is isomorphic to  is called    X ÐKÑ/

the  of the Lie group . Indeed, since we have  ifLie algebra K Z ß Z −Ò Ó" #  
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Z ß Z −" #  , we understand that the relation

Z Z ZÐ Z ß Z Ñ œ Z Ð/Ñß Z Ð/Ñ œ ÐZ Ñß ÐZ ÑÒ Ó Ò Ó Ò Ó" # " # " #

would also be valid. If the dimension of the manifold  is , a basis of theK 7
vector space  are determined by  linearly independent left-invariant vec-  7
tor fields . Properties of a Lie algebra will impose theÖZ À 3 œ "ß á ß 7×3

following restriction on these vectors for all 3ß 4ß 5 œ "ß á ß 7

Ò Ó Ò Ó

Ò Ó Ò Ó Ò Ó

Z ß Z  Z ß Z œ !ß

Z ß Z ß Z  Z ß Z ß Z  Z ß Z ß Z œ !

3 4 4 3

3 4 5 4 5 3 5 3 4 ‘  ‘  ‘ . (3.3.8)

Since  is a Lie algebra, there must exist  so that one has  constants -34
5

Ò ÓZ ß Z œ - Z3 4 534
5 . (3.3.9)

These constants are called  of the Lie algebra  with res-structure constants  
pect to the basis . Because of the relations (3.3.9) and (3.3.8), theÖZ ×3

structure constants should meet the conditions

-  - œ !ß

- -  - -  - - œ !

34 43
5 5

45 38 53 48 34 58
8 6 8 6 8 6

(3.3.10)

for all  [  (2.11.4)]. Structure constants holding the3ß 4ß 5ß 6 œ "ß á ß 7 see
conditions (3.3.10) completely determines the Lie algebra. It is clear that the
structure constants depend on the selected basis. Let us choose another basis
by the transformation  where  is a regular matrix. If weZ œ + Z œ Ò+ Ó4

w 3 3
4 43 A

write , we easily find that the following expressions mustÒ ÓZ ß Z œ - Zw w w5 w
3 4 534

be satisfied

- + Z œ + Z ß + Z + + Z ß Z + + - Z34 5 :;
w5 < <

< : ; : ; <3 4 3 4 3 4
: ; : ; : ;Ò Ó œ Ò Ó œ .

Since the vectors  are linearly independent, we conclude thatZ<

- œ + + , -34 < :;
w5 5 <

3 4
: ; (3.3.11)

where . (3.3.11) clearly indicates that structure constants areB Aœ œ Ò, Ó" 3
4

components of a third order mixed tensor. This tensor is called the structure
tensor of the Lie algebra. We have seen that the Lie algebra of left-invariant
vector fields is isomorphic to the tangent space  at the identity ele-X ÐKÑ/

ment  and the integral manifold of that tangent space locally determines the/
manifold . This is tantamount to say that the Lie algebra fully determinesK
the Lie group locally in a neighbourhood of . However, the correspondence/
between the Lie groups and the Lie algebras is not unique. Although a given
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Lie group determines uniquely its Lie algebra, several Lie groups may
generate the same Lie algebra. But, it can be shown that among all the Lie
groups with the same Lie algebra, there is only one Lie group that is simply
connected. Therefore, a given Lie algebra gives rise to a unique simply con-
nected Lie group locally in a neighbourhood of  Then in view of/Þ
Theorem 3.2.1 it determines the Lie group globally if the manifold  is con-K
nected. Because features of a Lie algebra are entirely elucidated by its struc-
ture constants, to investigate the properties of constants satisfying the algeb-
raic relations (3.3.10) provides quite a significant information about the
associated Lie group itself.

If structure constants are all zero, we then have  so that Ò ÓZ ß Z œ !3 4  
becomes a commutative Lie algebra. Such algebras are named as Abelian
Lie algebras.

In exactly the same fashion as we have introduced the left-invariant
vectors, we can define the  vector fields through the relationright-invariant
.V ÐZ Ñ œ Z1 . We immediately observe that these vector fields constitute a
Lie algebra that is isomorphic to the vector space . Let us denote LieX ÐKÑ/

algebras of left- and right-invariant vectors by  and , respectively.   P V

Since both algebras are isomorphic to the tangent space , they are ofX ÐKÑ/

course isomorphic to one another through the isomorphism .Z Z"
V P‰

In view of (2.7.7), the relation (3.3.3) yields

.P ‰ .V œ .V ‰ .P1 1 1 1.

If  is a left-invariant vector field, we findZ

.P .V ÐZ Ñ œ .V .P ÐZ Ñ œ .V ÐZ Ñ1 1 1 1 1ˆ ‰ ˆ ‰
for all . This result means that the vector field  turns out also1 − K .V ÐZ Ñ1

to be a left- invariant vector field. Conversely, if  is a right-invariant vec-Z
tor field, then the same expression implies that the vector field  is a.P ÐZ Ñ1

right-invariant vector field.
Example 3.3.1. Consider the affine space  [  Example 2.2.1].‘8 see

This smooth manifold is obviously a commutative Lie group with respect to
the following addition operation

B  C œ ÐB  C ß á ß B  C Ñ" " 8 8

for all . In this case left and right translations are not different andBß C − ‘
they are given by

P ÐCÑ œ V ÐCÑ œ B  CB B .

Let us denote a left-invariant vector field by . Then (3.3.7)Z ÐBÑ œ @ ÐBÑ `3
3
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leads to the relation

@ ÐB  CÑ œ @ ÐBÑ œ @ ÐBÑ œ @ ÐBÑ
`ÐC  B Ñ

`B
3 4 4 3

3 3

4 4
3
$ .

Hence the left-invariant vector  fields are constant vector fields whose com-
ponents merely . Of course, they generate a commutative Lie algebra@ −3 ‘
with vanishing structure constant. è

Example 3.3.2. We wish to compute the Lie algebra of the Lie group
KPÐ8ß Ñ KPÐ8ß Ñ‘ ‘. Inasmuch as  is an open submanifold of the manifold
16Ð8ß Ñ 8‘ , its dimension is . Hence, the tangent space at the identity ele-#

ment  is an -dimensional vector space. We can thus identify the as-/ œ 8I #

sociated Lie algebra with the space  that consists of all 16Ð8ß Ñ 8 ‚ 8‘
matrices. We can choose as basis vectors the set of following linearly inde-
pendent  matrices whose only one entry is  and all the other entries8 ‚ 8 "
are :!

Z Ð/Ñ œ ß 3ß 4ß 5ß 6 œ "ß á ß 8
`

`B4
3

5
3 6

4
5
6

$ $

where  matrix entries  represent the local coordinates of .8 B KPÐ8ß Ñ# 6
5 ‘

Left translation is naturally defined as the matrix product  orP Ð2Ñ œ1 GHˆ ‰P Ð2Ñ œ 1 2 œ Ò1 Ó œ Ò2 Ó1 6

5
7
5 7 3 3

6 4 4 in terms of components of  and .G H
Hence, according to (3.3.7), the components of a left-invariant vector field
must obey the equality

ˆ ‰ ˆ ‰Z Ð1Ñ œ Z Ð/Ñ œ 1 œ 1
`Ð1 B Ñ

`B4 4 7 4
3 3 5 5

6 ;

5 : 7 ; 3 : 37
5 7

6

;
: : ;6 64$ $ $ $ $ .

Consequently we can construct left-invariant vector fields by making use of
the basis vectors

Z Ð1Ñ œ 1 œ 1
` `

`1 `14 4 4
3 5 5

6

3

6
5 5

3

$

for all . An element of the Lie algebra  will now be1 − KPÐ8ß Ñ Ð8Ñ‘  ¥
expressible as

Z œ + Z Ð/Ñ œ + œ +
` `

`B `B
A 3 3 4 3

4 4 4
4
3

5
3 6

5
6

3
4$ $

where the numbers  are entries of a matrix . Next, we determine the+3
4 A

structure constants of the Lie algebra by evaluating
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Ò ÓZ ß Z œ 1 ß 1 œ 1 1  1 1
` ` ` ` ` `

`1 `1 `1 `1 `1 `1

œ 1  1 1  1  1 1
` ` ` `

`1 `1 `1 `1 `1 `

3 5
4 6 4 4 4

: ; : ; ; :

3 3 3
: ; : ; ; :6 6 6

5 5 5

4 4 4 4
: : ; ; ; :

:
; 3 5

6 6 6 6
5 5 5
; : ; : ;

# #

3 3
;
:

’ “ Š ‹ Š ‹
$ $ $ $

1

œ 1  1 œ Z  Z
` `

`1 `1

3
:

6 6 6
3 5 3 5

4 4 4
: :

5
: :

3

5 3
4 6$ $ $ $ .

It then follows that

Ò ÓZ ß Z œ  Z œ - Z3 5 : :
4 6 ; ;6 6 46:

3 5 ; 5 3 ;
: :4 4

35;ˆ ‰$ $ $ $ $ $ .

Since , the left-invariant vector field generated by aˆ ‰Z Ð/Ñ œ +A 4

3
4
3

vector  becomesZA

Z Ð1Ñ œ Z Ð1Ñ œ + œ 1 +
` ` `

`1 `1 `1

`Ð1 B Ñ

`B
A Aˆ ‰

4

3

4 4 4
3 3 3

7
3 7

4

6
5 6 5 4

5 3 5 .

Therefore the Lie product (bracket) of left-invariant matrices corresponding
to matrices  and  is found to beA B

Ò Ó

Ò Ó

Z ß Z Ð1Ñ œ 1 + ß 1 , œ 1 + ,  1 , +
` ` ` `

`1 `1 `1`1

œ Ð+ ,  , + Ñ1 œ 1 ß œ Z Ð1Ñ
` `

`1 `1

A B

A B

’ “7 4 : 7 4 : 4
3 7 5 3 7 3 6

4 4
3 3 36 6 6

: :

6
5

4

6

4 4 7 7 6
7 7 3 3 7

6 6
4 4

6 6
3 3 ßA B Ò Ó .

where is the . These results clearlyÒ ÓA B AB BA  ß œ  matrix commutator
indicate that the Lie algebra  is actually generated by the elements of ¥Ð8Ñ
the vector space  on which the Lie product of matrices  is16Ð8ß Ñ ß‘ A B
defined as the matrix commutator .Ò ÓA Bß è

3.4. LIE GROUP HOMOMORPHISMS

Let  and  be Lie groups, and  be a ÐKß ‡Ñ ÐLß ˆ Ñ À K Ä L9 smooth
function. If, for all , the relation  is1 ß 1 − K Ð1 ‡1 Ñ œ Ð1 Ñ ˆ Ð1 Ñ" # " # " #9 9 9
valid, then the function  is called a  . Moreover,9 Lie group homomorphism
if the homomorphism  is also a diffeomorphism,  is then a 9 9 Lie group
isomorphism. For the identity element , we simply obtain/ − K

9 9 9 9Ð1Ñ œ Ð/‡1Ñ œ Ð/Ñ ˆ Ð1Ñ.

Hence, the unique identity element  of the Lie group  will necessarily be/ Lw
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/ œ Ð/Ñ / œ Ð1‡1 Ñ œ Ð1Ñ ˆ Ð1 Ñw w " "9 9 9 9. Moreover, we can write    so that

we deduce the relation . Thus,  is a subgroup.ˆ ‰9 9 9Ð1Ñ œ Ð1 Ñ ÐKÑ © L
" "

If a left translation on  is , then we obtainK P1

9 9 9 9 9ˆ ‰ ˆ ‰P Ð1 Ñ œ Ð1‡1 Ñ œ Ð1Ñ ˆ Ð1 Ñ œ P Ð1 Ñ1 " " " "Ð1Ñ9

for all  from which it follows that  for1ß 1 − K ‰ P œ P ‰ À K Ä L" 1 Ð1Ñ9 99

all . The expression (2.7.7) now leads to the rule1 − K

. ‰ .P œ .P ‰ .9 91 Ð1Ñ9 . (3.4.1)

Let us consider a left-invariant vector field  on . Since  satisfies theZ K Z
relation ,  (3.4.1) now yields the result.P ÐZ Ñ œ Z1

. .P ÐZ Ñ œ . ÐZ Ñ œ .P . ÐZ Ñ9 9 9ˆ ‰ ˆ ‰1 Ð1Ñ9

valid for all . This means that the vector field  is a left-inva-1 − K . ÐZ Ñ9
riant vector field of  on the subgroup . Let  be left-inva-L ÐKÑ © L Z ß Z9 " #

riant vector fields on . On taking into account the relation K .P Ð Z ß Z Ñ1 " #Ò Ó
œ Z ß ZÒ Ó" # , (3.4.1) leads to the conclusion

. .P Ð Z ß Z Ñ œ . Ð Z ß Z Ñ œ .P . Ð Z ß Z Ñ9 9 9ˆ ‰ ˆ ‰1 " # " # " #Ð1ÑÒ Ó Ò Ó Ò Ó9

which expresses the fact that  is a left-. Ð Z ß Z Ñ œ . ÐZ Ñß . ÐZ Ñ9 9 9Ò Ó Ò Ó" # " #

invariant vector field on . In other words, images of left-invariant vectorL
fields under the differential mapping  where   is a homomorphism are.9 9
elements of a Lie algebra on . Since the homomorphism  transports theL 9
identity element  in  to the identity element  in , we find that/ K Ð/Ñ L9
. À X ÐKÑ Ä X ÐLÑ K L9 / Ð/Ñ9 . We denote the Lie algebras on  and  by  and 

¡   ¡, respectively. Via isomorphisms  and ,Z [À Ä X ÐKÑ À Ä X ÐLÑ/ Ð/Ñ9

which we have discussed on  182, we can introduce a :Þ linear operator
< [ 9 Zœ ‰ . ‰ À Ä"   ¡. It is straightforward to see that this operator
fulfil the relation

< < <Ð Z ß Z Ñ œ ÐZ Ñß ÐZ ÑÒ Ó Ò Ó" # " # (3.4.2)

for all , that is,  preserves the Lie product. We thus concludeZ ß Z −" #   <
that  so defined is a Lie algebra homomorphism. The image  of  is< <Ð Ñ   
clearly a  of subalgebra .¡

When  is an isomorphism,  turns out to be likewise an isomorphism9 <
and we find that . In that situation, if the set of vector fields ¡  œ Ð Ñ ÖZ ×< 3

is a basis for the Lie algebra , then the set of vector fields  be-  Ö ÐZ Ñ×< 3

comes a basis for the Lie algebra . Because of relations  it¡ Ò ÓZ ß Z œ - Z3 4 534
5

follows from (3.4.2) that
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Ò Ó Ò Ó< < < < <ÐZ Ñß ÐZ Ñ œ Ð Z ß Z Ñ œ Ð- Z Ñ œ - ÐZ Ñ3 4 3 4 5 534 34
5 5 . (3.4.3)

Hence, .such an isomorphism preserves structure constants

3.5. ONE-PARAMETER SUBGROUPS

We consider a Lie group . As is well known, the set  is an AbelianK ‘
Lie group with respect to the operation of addition.   Let be a Lie9 ‘À Ä K
group homomorphism. The subset is called a  Ö Ð>Ñ À > − × œ Ð Ñ © K9 ‘ 9 ‘
one-parameter subgroup of  K. By definition, the function  must satisfy the9
condition

9 9 9 9 9Ð>  =Ñ œ Ð>Ñ‡ Ð=Ñ œ Ð=Ñ‡ Ð>Ñ (3.5.1)

for all  because . Therefore, one-parameter subgroups=ß > − >  = œ =  >‘
would necessarily be commutative. Inasmuch as  is a homomorphism, we9

observe that  and . The smooth function  will/ œ Ð!Ñ Ð>Ñ œ Ð >Ñ9 9 9 9ˆ ‰"

evidently describe a smooth curve on the manifold  through the point .K /
Theorem 3.5.1. A curve on a Lie group  is a one-parameter sub-K

group if and only if it is an integral curve of a left-invariant or a right-
invariant vector field through the identity element ./

Let  give rise to a one-parameter subgroup. As in (2.9.1),9 ‘À Ä K
we represent symbolically a tangent vector at an element  in the1 œ Ð>Ñ9
following manner

Z Ð>Ñ œ
. Ð>Ñ

.>
ˆ ‰9

9
. (3.5.2)

Owing to the formula , the vector fieldP Ð=Ñ œ Ð>Ñ‡ Ð=Ñ œ Ð>  =Ñ9Ð>Ñˆ ‰9 9 9 9

Z Ð>Ñ .Pˆ ‰9  under the differential operator  must satisfy the relation9Ð>Ñ

.P œ œ
. Ð=Ñ . Ð>  =Ñ . Ð>  =Ñ

.= .= .>
9Ð>ÑŠ ‹9 9 9

If we insert  into this expression, we obtain= œ !

.P Z Ð/Ñ œ Z Ð>Ñ9Ð>Ñˆ ‰ ˆ ‰9 .

which indicates that (3.5.2) is a left-invariant vector field. It is evident that
9Ð>Ñ / − K is an integral curve of this vector field through the point . If we
associate each point  with a curve defined by1 − K

9 91Ð>Ñ œ 1‡ Ð>Ñ
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we produce a congruence on  that is tangent to the left-invariant vectorK
field . However, it is evident that only the curve of this congruenceZ
through the point  corresponds to a one-parameter subgroup./

Conversely, let us now consider a left-invariant vector field .Z −  
This vector field associated with a vector in  generates a flow on X ÐKÑ K/

whose member through the identity element  will be given just like in/ − K
(2.9.11) by

1 Ð/Ñ œ Ð/Ñ − K> />Z . (3.5.3)

If we make use of the relation (2.9.17) it follows from (3.5.3) that

1 ‡1 œ P Ð1 Ñ œ P Ð/Ñ œ P Ð/Ñ œ Ð1 Ñ

œ Ð/Ñ œ Ð/Ñ‡ Ð/Ñ œ Ð/Ñ œ 1

> = 1 = 1 1 >

Ð>
>=

> > >
ˆ ‰/ / /

/ / / / /

=Z = .P ÐZ Ñ =Z

=Z >Z >Z =Z =ÑZ

1>

.

This clearly shows that the subset (3.5.3) is a one-parameter subgroup, and
we have  and ./ œ 1 Ð1 Ñ œ 1! > >

"

The case of right-invariant vector fields can be treated in exactly the
same manner. 

Let  be a one-parameter subgroup. If we write ,9 ‘ 9À Ä K 1Ð>Ñ œ Ð>Ñ
this subgroup gives rise to a one-parameter group of transformations of left
translations . At  or equivalently at , theÖP À K Ä K À > − × > œ ! 1 œ /1Ð>Ñ ‘

tangent vector is determined by . Hence, the vector fieldZ Ð/Ñ œ .1Î.>k>œ!

generating this group is found to be

º º»ˆ ‰ ˆ ‰.P Ð2Ñ

.> .> .>
œ œ .V œ .V Z Ð/Ñ œ Z Ð2Ñ

.V 1Ð>Ñ .11Ð>Ñ

>œ! >œ!

2

>œ!

2 2
V .

Thus, . Similarly, one demonstrates that theit is a right-invariant vector field
generator of a one-parameter group of transformations of right translations
ÖV À K Ä K À > − ×1Ð>Ñ ‘  is a left-invariant vector field:

º º ˆ ‰.V Ð2Ñ

.> .>
œ œ .P Z Ð/Ñ œ Z Ð2ÑÞ

.P Ð1Ð>ÑÑ1Ð>Ñ

>œ! >œ!

2
2

P (3.5.4)

Exponential mapping exp À Ä K > œ "   is defined by taking  in the
one-parameter group (3.5.3) generated by a vector field  as follows:Z −  

exp ÐZ Ñ œ 1 ÐZ Ñ œ Ð/Ñ − K" /Z .

This definition leads automatically to . If we regard the vectorexp Ð Ñ œ /!
space  as a manifold, its tangent spaces  will be the same everywhere  X Ð Ñ1  
and they will be isomorphic to . On the other hand, the tangent space 
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X ÐKÑ //  at the point  is isomorphic to . Since the tangent vector field of the 
curve defined by (3.5.3) is , the differential of the exponential mapping atZ
the vicinity of the vector  becomesZ œ !

. À Ä X ÐKÑ ¶exp    /

yielding . The symbol  denotes isomorphism. We thus ob-. ÐZ Ñ œ Z ¶exp
tain the identity mapping . We then conclude that at ,k. œ 3 Z œ !exp Z œ!  

.exp is a regular linear operator. This, of course, indicates that the function
exp is a  diffeomorphism from the Lie algebra  to an open neigh-local  
bourhood of the identity element  of the Lie group . Therefore, in a/ K
neighbourhood  of , a group element  may be expressible in the formY / 1/

1 œ ÐZ Ñ œ Ð> Z Ñ − Y © Kexp exp 3
3 /

where the set  is a basis for the Lie algebra. The ordered -ÖZ ß ß á ß Z × 8" 8

tuple of real numbers  are called the Ð> ß á ß > Ñ −" 8 8‘ canonical coordinates
of  and they must be sufficiently small in order that . Owing to some1 1 − Y/

properties of the exponential mapping illustrated in . 139,  can also be: 1
written in the following way for sufficiently small canonical coordinates > ß3

3 œ "ß á ß 8

1 œ Ð> Z Ñ‡ Ð> Z Ñ‡â‡ Ð> Z Ñexp exp exp" # 8
" # 8 .

because we can always choose commuting basis vectors for the Lie algebra.
This amounts to say that the Lie algebra determines locally the Lie group at
a neighbourhood of the group's identity element. That is the reason why a
basis of a Lie algebra is called as  of a Lie group.infinitesimal generators
As we have mentioned before, it cannot be claimed that a given Lie algebra
generates a uniquely determined global Lie group. However, if a Lie group
is a connected manifold in which  has a simply connected neighbourhood,/
then the Lie algebra determines globally this group [ Theorem 3.2.1].see 

We now try to get the isomorphism between Lie algebras  and    P V

whose existence was established on . 185 to acquire a more concrete struc-:
ture and we shall show that this isomorphism is provided by the differential
. À X ÐKÑ Ä X ÐKÑ À K Ä K+ +1 1"  of the   that wasinversion diffeomorphism
defined by . Since we can write+Ð1Ñ œ 1"

Ð ‰ P ÑÐ2Ñ œ Ð1‡2Ñ œ 2 ‡1 œ V Ð2 Ñ+ 1
" " " "

1"

for all , we obtain  for  from which2 − K Ð ‰ P ÑÐ/Ñ œ V Ð/Ñ 2 œ 2 œ /+ 1 1
"

"

it follows that  for all . For a vector ,k k. ‰ .P œ .V 1 − K Z − X ÐKÑ+ 1 // 1 /
"

this equality naturally implies that  resulting in. ‰ .P ÐZ Ñ œ .V ÐZ Ñ+ 1 / /1k k"

the relation
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. Z Ð1Ñ œ Z Ð1 Ñ+ˆ ‰P V "

for all  where  and  are left and right invariant vectors. Hence,1 − K Z ZP V

despite an apparent problem in the arguments, we may expect that the ope-
rator  can be a possible candidate for the isomorphism that we. À Ä+    P V

are hoping to find. On the other hand, if a vector field  generates the one-Z
parameter subgroup by , we have .1Ð>Ñ œ Ð>Z Ñ 1Ð>Ñ œ Ð>Z Ñexp exp"

Thus the tangent vectors to curves  and  at the identity element 1Ð>Ñ 1Ð>Ñ /"

are prescribed by

º ºk k.1Ð>Ñ .1Ð>Ñ

.> .>
œ Z ß œ  Z

>œ! >œ!
/ /

"

.

Hence, at the identity element the operator  acts in thek. À X ÐKÑ Ä X ÐKÑ+ / / /

manner . It is then straightforward to realise that a right-. ÐZ Ñ œ  Z+ k k/ /

invariant vector field produced by a vector  has to satisfy theZ − X ÐKÑ/

relation . Therefore, the isomorphism between  andZ Ð1 Ñ œ  Z Ð1ÑV " V
P 

 V is now provided by

. Z Ð1Ñ œ  Z Ð1Ñ+ˆ ‰P V . (3.5.5)

Whenever , we can define a vector .Z ß Z − X ÐKÑ [ œ Z ß Z − X ÐKÑ" # / " # /Ò Ó
We know that the left-invariant vector fields associated with these vectors
will satisfy the relation . We thus find[ œ Z ß ZP P P

" #Ò Ó

 [ œ . Ð[ Ñ œ . Ð Z ß Z Ñ œ . ÐZ Ñß . ÐZ Ñ Z ß ZV P P P P P V V
" # " # " #+ + + +Ò Ó Ò Ó œ Ò Ó

that leads easily to the result   from which weÒ Ó Ò ÓZ ß Z œ  Z ß Z" # V " # P

deduce that if the structure constants of the left Lie algebra are , then the-34
5

structure constants of the right Lie algebra has to be . -34
5

Let -dimensional Lie algebra of a Lie group . A subalgebra  be an 8 K

¡ of this algebra with dimension  is again a Lie algebra. In other7  8
words, it is an involutive distribution. Therefore, according to the Frobenius
theorem it generates an -dimensional smooth submanifold through the7
point . This submanifold is locally an -parameter Lie group that is a sub-/ 7
group of .K

Example 3.5.1. We know that the Lie algebra  of the general ¥Ð8Ñ
linear group  consists of  matrices. Hence, we can express aKPÐ8ß Ñ 8 ‚ 8‘
matrix  in a neighbourhood of the identity element byX I − KPÐ8ß Ñ‘

X A Iœ Ð Ñ œ / Ð Ñexp A     

where . Let us now consider the function det . InA − Ð8Ñ À KPÐ8ß Ñ Ä ¥ ‘ ‘
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view of the relation (2.9.17), we have

det .ˆ ‰/ Ð Ñ œ / Ð Ñ œ /A A AI I. Ð Ñ . Ð Ñdet detdet

Let us write . Then the relation (2.7.9) yieldsA œ + `Î`+4 4
3 3

. Ð Ñ œ +
` Ð Ñ

`+
det .A

X
4
3

4
3

œ

»det

X I

Due to the equality cofactor det ,` Ð ÑÎ`B œ ÐB Ñ œ \ œ Ð Ñ Ð Ñdet X X X6 6 5 5
5 5 6 6"

we easily arrive at the expression

+ œ Ð Ñ Ð Ñ +
` Ð Ñ `B

`+ `+4 5 4
3 6 3

4 4
3 3

6
5det

det .
X

X X"

Inasmuch as we define  as the following seriesX

X A I A A Aœ Ð Ñ œ    â   âß
" "

#x 8x
exp # 8

then its entries are prescribed by

B œ  +  + +  â  + + â+ +  â
" "

#x 8x6 6 6 7 6 7 7 7
5 5 5 5 7 5 7 7

6
7$

" # 8"

" 8# 8" .

Taking into account the relation

`+ + â+

`+
+ œ + â + +  + â + +

â  + + â + œ + + â +  + + â +

7 7
5 7

6
7

4
3

3 5 4 7 3 4 5 3
4 3 7 7 4 7 7 46 6

7 7 7
3

3
7 7 7

6 6 6
4

7 7 4 7 7 7 7
5 7 3 5 7 5 7

" #
" 8"

" # # "

" 8" " 8"

8" 8" 8

" # " # " #

" " "

$ $ $ $

$ $ "

" # " #

" "8" 8" + + â +  â  + + â + œ 8Ð Ñ ß7 7 7 7 6
5 7 5 7 8 5

6 6
7 7 A

we finally find

`B "

`+ Ð8  "Ñx
+ œ   â  â œ Ð Ñ œ Ð Ñ Ð Ñ6

5

4
3

3 # 8 5 5 7
4 6 7 66

5 ‘A A A XA X A  

and reach to the conclusion

. Ð Ñ œ Ð Ñ Ð Ñ Ð Ñ Ð Ñ œ œ + œ Ð Ñdet A X X X A A¸det tr ."
5 7 6 7 6 7
6 5 7 6 7 7

œX I $ +

We thus obtain the rather elegant result

det Ð/ Ñ œ /A Atr Ð Ñ.
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If the matrix belongs to the subgroup , then we must haveX WPÐ8ß Ñ‘
det . Hence, if the matrix is an element of the Lie subalgebraÐ Ñ œ "X A 
¬¥Ð8Ñ, the condition

det Ð/ Ñ œ / œ "A Atr Ð Ñ

must hold. This requires that tr . Consequently, the Lie algebraÐ Ñ œ !A
¬¥Ð8Ñ 8 ‚ 8 consists  traceless matrices.

Next, we consider the orthogonal group . If the matrix  belongsSÐ8Ñ X
to that subgroup, the relation  must be satisfied. Let us takeXX X X IT Tœ œ

again . It can easily be verified that . We thusX Xœ / œ / œ /A A AT Tˆ ‰ T

obtain the condition

/ / œ / / / ß /A A A A A AT T T
   or   Ò Ó œ !.

But this leads to the conclusion  [  . 148]. Hence the relationÒ Ó œ !A Aß :T see

XX IT œ / / œ / œA A A AT T

requires that , or . Therefore, the Lie algebra  ofA A A A œ œ  Ð8ÑT T! ¨
the orthogonal group consists of antisymmetric  matrices.8 ‚ 8 è

3.6. ADJOINT REPRESENTATION

Let  be a Lie group. We choose an element  and define aK 1 − K
mapping  by the operation of  prescribed by\1 À K Ä K conjugation

\1
"Ð2Ñ œ 1‡2‡1 − K (3.6.1)

for all . It is clear that this mapping is a diffeomorphism, Moreover,2 − K
because it satisfies the relation

\ \ \1 " # " # 1 " 1 #
" "Ð2 ‡2 Ñ œ 1‡2 ‡1 ‡1‡2 ‡1 œ Ð2 Ñ‡ Ð2 Ñ

for all , it preserves the group operation. Hence,  is an auto-2 ß 2 − K" # 1\
morphism on  called the . All other automorphismsK inner automorphism
of  are named as  The composition of two innerK outer automorphisms.
automorphisms yield

\ \ \1 1 " # " # " # 1 ‡1# "
" " "

" # " #‰ Ð2Ñ œ 1 ‡1 ‡2‡1 ‡1 œ Ð1 ‡1 Ñ‡2‡Ð1 ‡1 Ñ œ Ð2Ñ

for all  from which we deduce that . We immediately2 − K ‰ œ\ \ \1 1 1 ‡1" # " #

see that  is the identity mapping. Since \ \ \ \ \ \/ K 1 1 /1 1œ 3 ‰ œ ‰ œ" "

œ 3 Ð Ñ œ Ð/Ñ œ /K 1 1
"

1 we realise that . Furthermore, we obtain  for\ \ \"
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all . Therefore all inner automorphisms  transform any1 − K Ö À 1 − K×\1

curve on the manifold  through the identity element  to another curveK /
passing again through . The definition (3.6.1) leads to/

\1 1 11 1Ð2Ñ œ P V Ð2Ñ œ V P Ð2Ñˆ ‰ ˆ ‰" "

for all . We then conclude that2 − K

\1 1 11 1œ P ‰ V œ V ‰ P" " . (3.6.2)

It is now obvious that the set  constitutes a group withZ \œ Ö À 1 − K×1

respect to the composition of mappings. On taking into account properties
of the mappings  and , it is easily understood that the expressionsP V1 1

(3.6.2) indicate the existence of an isomorphism between this group and the
Lie group .K

If  is an Abelian group, then we obtain  for each  soK Ð2Ñ œ 2 1 − K\1

that we get . Hence, in commutative groups the mapping  acquires\ \1 K 1œ 3
quite a trivial structure.

Let us now consider the differential . (3.6.2) yields naturally.\1

. œ .P ‰ .V œ .V ‰ .P\1 1 11 1" " . (3.6.3)

If  is a left-invariant vector field, then it follows from (3.6.3) thatZ −  

. ÐZ Ñ œ .V ‰ .P ÐZ Ñ œ .V ÐZ Ñ œ .P ‰ .V ÐZ Ñ\1 1 11 1 1" " "

that may be expressed in the way

.P . ÐZ Ñ œ . ÐZ Ñ1 1 1ˆ ‰\ \ .

Thus  becomes also a left-invariant vector field so that we can write. ÐZ Ñ\1

. ÐZ Ñ − . À Ä\ \ \1 1 1      and conclude that . Since  is a diffeomorphism,
its differential  is a regular linear operator, i.e., an isomorphism. For all.\1

vectors  . Therefore,Z ß Z − . Ð Z ß Z Ñ œ . ÐZ Ñß . ÐZ Ñ" # 1 " # 1 " 1 # , we have \ \ \Ò Ó Ò Ó
the isomorphism  preserves the Lie product. In other words, it is an auto-.\1

morphism on the Lie algebra . Thus, to each element , there corre-  1 − K
sponds an automorphism on the Lie algebra . Let us denote the linear vec- 
tor space formed by these automorphism, or to be more concrete, by regular
matrices representing these automorphisms, as . We now rename theE?>Ð Ñ 
operator  as . . œ E. À Ä\ \1 1 1     for convenience. Let us next intro-
duce the mapping

E. À K Ä E?>Ð Ñ 

in the following manner:  for each . On theE.Ð1Ñ œ E. − E?>Ð Ñ 1 − K1  
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other hand, one can easily verify that the equality . ‰ . œ .\ \ \1 1 1 ‡1" # " #

entails the relation

E.Ð1 ‡1 Ñ œ E. ‰ E." # 1 1" # .

Hence  is a group homomorphism assigning to each element of the groupE.
K a matrix representing an automorphism. That is the reason why it is
called the  of the Lie group  over the Lie algebra .adjoint representation K  
One the most outstanding successes of the group theory was to predict that
every abstract group is homomorphic to a general linear group KPÐ8ß Ñ‘
which is called a  or more precisely an representation unfaithful represen-
tation of the group. Whenever this homomorphism is an isomorphism, we
obtain a .  dealsfaithful representation The theory of group representation
with the quite difficult, but practically very important problem of de-
termining the number  and the specific form of matrices involved in such a8
representation.

It is straightforward to verify that what we have discussed above would
be equally valid when we replace an element  by its inverse  in case Lie1 1"

algebra is derived from right-invariant vector fields.
Let  be a  vector field. We consider the one-parameterZ left-invariant

subgroup  produced by . If we recall (2.9.17), we observe that weexp Ð>Z Ñ Z
can write

\ \

\

1 1
" >Z

> . ÐZ Ñ
1 1

ˆ ‰ ˆ ‰
ˆ ‰ ˆ ‰exp exp

exp

Ð>Z Ñ œ 1‡ Ð>Z Ñ‡1 œ / Ð/Ñ

œ / Ð/Ñ œ >E. ÐZ Ñ 

(3.6.4)
\1

for all . This result simply means that under the mapping , the one-1 − K \1

parameter subgroup generated by the vector field  is transformed into theZ
one-parameter subgroup generated by the vector field .E. ÐZ Ñ1

Let us now consider another one-parameter subgroup generated by a
left-invariant vector field  whose elements are, of course, given by Y 1Ð=Ñ
œ Ð=Y Ñexp . If we resort to the relation (2.10.16), we arrive at the follow-

ing expression

E. ÐZ Ñ œ / Z ß Y ß Z −1Ð=Ñ
=£Y   (3.6.5)

which measures the change in the vector field  over the subgroupE. ÐZ Ñ1

exp Ð=Y Ñ. By employing (3.6.5), we can evaluate the following expression
at the point :/

º.

.=
E. ÐZ Ñ œ +. ÐZ Ñ œ Y ß Z Z −1Ð=Ñ

=œ!
Y £ .Y Z œ Ò Óß   (3.6.6)
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We have already seen that  if  is an Abelian group. Hence, in this\1 Kœ 3 K
case, we obtain  for all  and (3.6.6) leads to .E. œ M 1 − K Y ß Z œ !1   Ò Ó
Thus the Lie algebra of such a Lie group becomes also Abelian. Conversely,
it can be shown that if  is a  Lie group whose Lie algebra isK connected
Abelian then , too, will be an Abelian group.K

3.7. LIE TRANSFORMATION GROUPS

We assume that we are given a Lie group  of -parameters and an -K < 7
dimensional smooth manifold . Let us consider a mappingQ differentiable 
G À K ‚ Q Ä Q  on the product manifold that manifests the  of theaction
group  on the manifold . We thus obtain  for allK Q Ð1ß :Ñ œ 1 : − QG 
1 − K : − Q À Q Ä Q and . We can now form a function  mapping theG1

manifold  onto itself by the relation  where  is aQ Ð:Ñ œ Ð1ß :Ñ 1 − KG G1

fixed element of the group . The set  will be called a K Ö À 1 − K×G1 Lie
transformation group if it possesses group properties with respect to com-
position, that is, when the conditions

Ð3Ñ ‰ œ 1 Ð1 :Ñ œ Ð1 ‡1 Ñ : 1 ß 1 − K

Ð33Ñ / − K œ 3

       
     
G G G

G
1 1 1 ‡1 " # " # " #

/ Q

" # " # or for
if is the identity element, then is the identity mapping 

 

  

 on  so that one can write or Q G/Ð:Ñ œ : / : œ : 

are satisfied. Hence, the following properties are valid

G G G G G G G1 1 " # " # /" #
ˆ ‰ ˆ ‰Ð:Ñ œ 1 ß Ð1 ß :Ñ œ Ð1 ‡1 ß :Ñß Ð:Ñ œ Ð/ß :Ñ œ :.

It is easy to observe that the foregoing expressions lead to relations

G G G G" " "
1 1œ ß 1 ß Ð1ß :Ñ œ : Ð1 ‡1Ñ : œ :" ˆ ‰    or   .

We say that the group  acts  on the manifold  if the relationK Qeffectively
G G1 1Ð:Ñ œ : : − Q 1 œ / Ð:Ñ Á : for all  implies . If the stronger condition 
unless  holds, then the group  acts  ( ) on1 œ / K freely without a fixed point
the manifold . If for all , there exists an element  such thatQ :ß ; − Q 1 − K
G1Ð:Ñ œ 1 : œ ; K Q , then the group  acts  on the manifold .transitively

We now define the set

K œ Ö1 − K À Ð:Ñ œ 1 : œ :× K§: 1G 

for a   . It can be demonstrated that  is a subgroup of .fixed point : − Q K K:

If , then one has  from which  follows1 − K 1 : œ : 1 Ð1 :Ñ œ 1 ::
" "   

at once. On the other hand, we can write  so1 Ð1 :Ñ œ Ð1 ‡1Ñ : œ :" "  
that we find . Therefore, we find that . Next, let us1 : œ : 1 − K" "

:
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consider , then we obtain  im-1ß 2 − K Ð1‡2Ñ : œ 1 Ð2 :Ñ œ 1 : œ ::    
plying that . Moreover, we observe that  since .1‡2 − K / − K Ð:Ñ œ :: : /G
Thus  is a subgroup of . The subgroup  so defined is known as theK K K: :

isotropy group of a point . The isotropy groups at the points : − Q : − Q
and  are connected by the conjugation relation1 : − Q

K œ 1‡K ‡1 ß 1 − K1 : :
"

 for  any  .

Indeed, for any , one deduce 2 − K Ð1‡2‡1 Ñ Ð1 :Ñ œ 1 Ð2 :Ñ œ 1 ::
"     

so that . This, of course, means that .1‡2‡1 − K 1‡K ‡1 © K" "
1 : : 1 : 

Now, consider an element  so that 2 − K 2 Ð1 :Ñ œ Ð2‡1Ñ : œ 1 :1 :    
or  implying that  and Ð1 ‡2‡1Ñ : œ : 1 ‡2‡1 − K 1 ‡K ‡1 © K" " "

: 1 : : 

from which we immediately obtain . Thus we arrive atK © 1‡K ‡11 : :
"



the desired equality given above. However, the statement  for1 ‡2‡1 − K"
:

all  and for all  implies that  is a  If  is a2 − K 1 − K K K: : normal subgroup.
freely acting group, then it is clear that  at each point .K œ Ö/× : − Q:

The  of the group  at a point  is defined as the setorbit K : − Q!

Ö1 : À 1 − K× œ © Q ! :b ! .

When , then there are  such that one has  and:ß ; − 1 ß 1 − K : œ 1 :b: " # " !! 
; œ 1 : ; œ Ð1 ‡1 Ñ :# ! #

"
" . Consequently, we can write . Thus, the group

K acts transitively on any orbit .b:!

Example 3.7.1. Let us consider the smooth manifold  and theQ œ ‘8

Lie group . If  and ,K œ KPÐ8ß Ñ œ ÐB ß B ß á ß B Ñ − − KPÐ8ß Ñ‘ ‘ ‘x A" # 8 8

we define the group action on the manifold by . Hence,G ‘Ð ß Ñ œ −A x Ax 8

the isotropy group of a point  is determined by the following setx!
8− ‘

K œ Ö − KPÐ8ß Ñ À œ ×Þx!
A Ax x‘ ! !

Thus, elements of the isotropy group can only be  matrices with an8 ‚ 8
eigenvalue  and admitting the vector  as an eigenvector associated with" x!

that eigenvalue. Therefore, the necessary condition imposed on matrices A
should be . For instance, the isotropy group of the point det Ð  Ñ œ !A I x!

œ Ð"ß !ß á ß !Ñ consists of matrices of the form

A Aœ œ Á !

" + â +
! + â +
ã ã ã ã
! + â +

+ â +
ã ã ã

+ â +

Ô ×Ö ÙÖ Ù
Õ Ø

â ââ ââ ââ ââ ââ â
"# "8

## #8

8# 88

## #8

8# 88

,  .det

Obviously, the condition  are satisfied. We can easily verifydet Ð  Ñ œ !A I
that the orbit of a point  is . Indeed, if  is anx x! bx! œ Q  Ö × − Q! Á !
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arbitrary point, we can always construct a matrix  so as theA − KPÐ8ß Ñ‘
relation is satisfied. If we choose  entries of that matrixAx x !

#œ 8  8
arbitrarily, then the foregoing  equation will help determine the remaining8
8 B B âB Á ! B B âB Á ! entries. For example, if  and , then we may" # 8 " # 8

! ! !

choose a diagonal matrix such that .+ œ B ÎB ß á ß + œ B ÎB"" 88
" " 8 8

! ! è

By employing the smooth function  represented byG À K ‚ Q Ä Q
GÐ1ß :Ñ œ 1 : 1 − K , we can now introduce two functions for a fixed  and
a fixed , respectively, and their differentials in the following manner: − Q

G G G

G G G
1 1 1 : 1 :

: : : 1 1 :

À Q Ä Qß Ð:Ñ œ 1 :ß . À X ÐQÑ Ä X ÐQÑ

À K Ä Qß Ð1Ñ œ 1 :ß . À X ÐKÑ Ä X ÐQÑ






 .
(3.7.1)

Consider a member  of the Lie algebra on . By means of theZ − X ÐKÑ Ke

linear operator , we can construct a vector field. À X ÐKÑ Ä X ÐQÑG: / :

Z Ð:Ñ − X ÐQÑ QO
:   on   through the relation

Z Ð:Ñ œ . ZO
:G ˆ ‰. (3.7.2)

Such vector fields  are called  after German mathe-Z O Killing vector fields
matician Wilhelm Karl Joseph Killing (1847-1923). To attribute a more
concrete meaning to Killing vectors, let us consider a right-invariant vector
field  produced by the vector  through the usual relationZ − Z − X ÐKÑV

V / 
Z Ð1Ñ œ .V ÐZ Ñ 2 − KV

1 . For each , we can evidently write

G G G: 1 : 1 :‰ V Ð2Ñ œ Ð2‡1Ñ œ Ð2‡1Ñ : œ 2 Ð1 :Ñ œ Ð2Ñ    .

Thus, it follows from (3.7.2) that

Z Ð1 † :Ñ œ . ÐZ Ñ œ . ‰ .V ÐZ Ñ œ . Z Ð1ÑO V
1†: : 1 :G G G ˆ ‰. (3.7.3)

Hence, the Lie product of two Killing vector fields becomes

¸ ¸ ¸Ò Ó œ Ò Ó œ Ò ÓZ ß Z . ÐZ Ñß . ÐZ Ñ . Z ß Z3 4 3 4 3 4
O O V V V V

1 : 1 1: : : G G G .

Inasmuch as  [  . 192], then we find thatÒ ÓZ ß Z œ  - Z :V V 5 V
3 4 34 5 see

Ò ÓZ ß Z œ  - . ÐZ Ñ œ  - Z ß 3ß 4ß 5 œ "ß á ß <Þ3 4 34 5 34 5
O O 5 V 5 O

:G

This relation states that Killing vectors, too, constitute a Lie algebra. If an -<
dimensional Lie algebra with structure constants  is given on a smooth-34

5

manifold , then we conclude, conversely, that there exists a Lie group Q K
whose Lie algebra has those structure constants with respect to a basis Z ß"

á ß Z K Q< and the local action of  on  is described by the vector fields
Z œ . ÐZ Ñß 3 œ "ß á ß <3

O
: 3G .
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We know that a particular vector  determines a one-para-Z − X ÐKÑe

meter subgroup of the group  via the curve  and theK 1Ð>Ñ œ Ð>Z Ñ − Kexp
relation  is satisfied. The curve  generates a group ofZ œ .1Ð>ÑÎ.> 1Ð>Ñk>œ!

mappings on  through . OnQ Ö 1Ð>Ñß : œ Ð:Ñ œ 1Ð>Ñ À > − ×G G G ‘ˆ ‰ ˆ ‰1Ð>Ñ :

the other hand, the integral curve passing through the point  has to: − Q
satisfy the relation

. Ð:Ñ

.> .>
œ œ [ Ò 1Ð>Ñ Óß Ð/Ñ œ :

. 1Ð>ÑG G
G G

1Ð>Ñ :
: :

ˆ ‰ ˆ ‰ .

where  is the vector field tangent to the integral curve. Consequently, the[
tangent vector to that curve at  should be given by> œ !

[ Ð:Ñ œ œ . œ . ÐZ Ñ œ Z Ð:Ñ
. 1Ð>Ñ

.> .>

.1Ð>Ñ»ˆ ‰ Š ‹ºG
G G

:

>œ!

: :
>œ!

O .

Therefore the vector field  is a Killing vector field. The dimension [ Ð:Ñ =
of the Lie algebra of Killing vectors depends on the rank of the linear opera-
tor . If the dimension of the vector space  is , then it is known. X ÐKÑ <G: e

that one can write  where  is the dimension of the< œ 8Ð. Ñ  = 8Ð. ÑG G: :

null space of . Thus this relation implies that . . = Ÿ <G: If only  is.G:

injective namely, if , we obtain,  . In this case, we have8Ð. Ñ œ !G: = œ <
Z œ ! Z œ ! KO  if and only if . This becomes possible if only the group 
acts effectively on the manifold . To demonstrate this statement, let usQ
consider an effectively acting group  and assume that  for a vectorK Z œ !O

Z Á ! Z 1Ð>Ñ œ Ð>Z Ñ K. The vector  now determines a subgroup  in .exp
This subgroup then generates a curve  on the manifold :Ð>Ñ œ Ð: Ñ QG1Ð>Ñ !

going through the point . Then we find of course: − Q!

Z :Ð>Ñ œ œ !
. Ð: Ñ

.>
O 1Ð>Ñ !ˆ ‰ G

implying that  is . Hence, we obtain G G G1Ð>Ñ 1Ð>Ñ! ! / !Ð: Ñ Ð: Ñ œ Ð: Ñconstant
œ : KÞ!. However, this contradicts the effectiveness of the group  As a

result of this, we find . In other words,   = œ < Kif the group is acting
effectively on the manifold , then is an isomorphism if   isQ   . .G G: :

injective.

III.  EXERCISES

3.1. The circle  is given by . Let us consider the smooth manifold’ ‚" lDl œ "ß D −
   and define an operation  byK œ ‚ ‚ ‡ À K ‚ K Ä K‘ ‘ ’"
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ÐB ß C ß D Ñ ‡ ÐB ß C ß D Ñ œ ÐB  B ß C  C ß / D D Ñ" " " # # # " # " # " #
3C B" # .

 Show that  is a Lie group.  ÐKß ‡Ñ
3.2. The mapping  is defined by9 ‘À Ð ß  Ñ Ä WSÐ#Ñ

9 )
) )
) )

Ð Ñ œ
” •cos sin

sin cos
.

 Show that  is a Lie group homomorphism.9
3.3.  is a Lie group. Show that  is also a Lie group.K X ÐKÑ
3.4. We define the set of  by the following relationsymplectic matrices

W:Ð8ß Ñ œ Ö − KPÐ#8ß Ñ À œ ×ß œ


‘ ‘A A A 0 I
I 0

TN N N ” •8

8

 where  is the  unit matrix. Let  and  be  matrices.I A A A A8 " # $ %8 ‚ 8 ß ß 8 ‚ 8
 We introduce a matrix byA 

A A A
A Aœ ” •" #

$ %
.

 In order that , show that the matrices  and  must beA A A A A− W:Ð8ß Ñ‘ T T
" $ %2

 symmetric, and the relation   must be satisfied. Prove thatA A A A IT T
" $% # 8 œ

  is a Lie group. Find the dimension of this group. Show that ifW:Ð8ß Ñ‘
 , then one also finds .A A− W:Ð8ß Ñ − W:Ð8ß Ñ‘ ‘T

3.5. Show that the Le algebra of the Lie group  is determined as followsW:Ð8ß Ñ‘

¬©Ð8ß Ñ œ Ö − 16Ð#8ß Ñ À  œ ×‘ ‘B B B 0TN N .

 If we choose a matrix  in the following mannerB − Ð8ß Ñ¬© ‘

B B B
B Bœ ” •" #

$ %
,

 show that the relations  and  must hold.B B B B B BT T T
" $% $

œ  ß œ œ2 2

3.6. Show that all upper triangular  matrices whose entries on the principal8 ‚ 8
 diagonal are all  constitute a Lie group . Evaluate the Lie algebra of" X Ð8ß Ñ? ‘
 .X Ð$ß Ñ? ‘
3.7. S Let  be a given symmetric matrix and consider the set − KPÐ8ß Ñ V œ‘ W

 .  Show that  is a Lie group with respectÖ − KPÐ8ß Ñ À œ × Ð+Ñ VA A SA S‘ T
W

 to the matrix product.  Show that the mapping Ð,Ñ À KPÐ8ß Ñ Ä KPÐ8ß Ñ9 ‘ ‘
 prescribed by the relation is a submersion and the set9Ð Ñ œ A A SA S T

  is a submanifold. Find the dimension of .  Show that theV œ Ð Ñ V Ð-ÑW W
"9 !

 Lie algebra of  is . Show further thatV œ Ö − 16Ð8ß Ñ À  œ ×W «¬ B B S SB 0‘ T

 if , then the commutator  is also anB B B B B B B B" # " # " # # "ß − ß œ «¬ Ò Ó
 element of the algebra.  Which is the group that will be obtained if oneÐ.Ñ
 chooses ?S Iœ
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3.8. Find bases and structure constants of Lie algebras ,  and ¬¥ ¬¨ ¨Ð8ß Ñ Ð8Ñ Ð8Ñ‘
 of the Lie groups ,  and  for  and .WPÐ8ß Ñ WSÐ8Ñ SÐ8Ñ 8 œ # 8 œ $‘
3.9. Show that the vector space  acquires a Lie algebra structure with the usual‘$

 vectorial product . We define a mapping (3) by the relation‚ 9 ‘À Ä$ ¨

9Ð Ñ œ
!  @ @
@ !  @

 @ @ !
v

Ô ×
Õ Ø

$ #

$ "

# "

 where . Show that  is a Lie algebra isomorphism andv œ Ð@ ß @ ß @ Ñ −" # $
$‘ 9

 the equalities

              tr9 9 9 9 9 9Ð ‚ Ñ œ Ð Ñß Ð Ñ Ð Ñ œ ß œ  Ð Ñ Ð Ñ
"

#
u v u v u v u v u v u vÒ Óß ‚ †  ‘

 are satisfied where  denotes the standard scalar product. Show that the†
  of a vector is given by tr .length  l l Èu u u uœ œ † ˆ ‰9Ð Ñ Î##

3.10. 3.9 Show that the mapping (3) in Ex.  satisfies the relation9 ‘À Ä$ ¨

/ œ  Ð Ñ  Ð Ñ
" 9Ð Ñ #u I u u

u u
u u

sin cosl l l ll l l l9 9
#

 which is known as  [after French mathematician BenjaminRodrigues' equality
 Olinde Rodrigues (1795-1851)].
3.11. A B Let . We define the inner automorphism on  by the usualß − SÐ$Ñ SÐ$Ñ
 relation  . By employing the foregoing mapping\AÐ Ñ œB ABA ABA" œ T

 , show that one can write  and the relation [  (3.6.6)]9 9 9E. Ð Ñ œ Ð ÑAˆ ‰u Au see
 leads to .+. Ð Ñ œ Ð Ñß Ð Ñ Ð Ñ œ Ð Ñß Ð Ñ9Ð Ñu ˆ ‰9 9 9 9 9 9v u v   u v u vÒ Ó ‚ Ò Ó

3.12. A Show that an eigenvalue of a matrix  must be . Exploiting this− WSÐ$Ñ "
 fact, prove that every matrix  corresponds to a rotation by anA − WSÐ$Ñ
 amount  about a vector  in  and by choosing an appropriate basis in ) ‘ ‘u $ $

 this matrix can be reduced to the form

A œ
" ! !
! 

Ô ×
Õ Øcos sin

sin cos
) )
) )0

.

3.13. A B AB BA 0 The matrices  are satisfying the condition .ß − 16Ð8ß Ñ  œ‘ T

 Show that

/ / œ> >A AB B.
T

 Discuss the special cases  and .B I Bœ œ N
3.14. Show that the set of all  that are defined by the relationunitary matrices
  constitutes a Lie group whose¯Y Ð8Ñ œ Ö − KPÐ8ß Ñ À œ œ ×A AA AA I‚

T †
8   

 Lie algebra is given by  . Show also®Ð8ß Ñ œ Ö − 16Ð8ß Ñ À  œ ×‚ ‚A A A 0†

 that members of this group preserve the standard inner product  in .D A3 3
8‚
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3.15. Show that the set  is also a Lie group and its LieWY Ð8Ñ œ Y Ð8Ñ  WPÐ8ß Ñ‚
 algebra is given by tr .¬®Ð8Ñ œ Ö − 16Ð8ß Ñ À  œ ß œ ×A A A 0 A 0‚ †

3.16. Show that the group  is diffeomorphic to .Y Ð8Ñ ‚ WY Ð8Ñ’"

3.17. Show that the  is a connected manifold and the mappingWY Ð#Ñ
  between the sphere  and  defined by9 ’ ’ ‘À Ä WY Ð#Ñ WY Ð#Ñ§$ $ %

9Ð Ñ œ ß B  B  B  B œ "
B  3B B  3B

 B  3B B  3B
x ” •" # $ %

$ % " #

# # # %
" # $ %

 where  is a diffeomorphism.x œ ÐB ß B ß B ß B Ñ −" # $ %
%‘

3.18. A Show that every matrix  can be represented in the form− KPÐ8ß Ñ‘
  where  and  are positive definite symmetric matrices,A Q S S Q S Sœ œ" " # # " #

 and  and  are orthogonal matrices. Prove that this operation calledQ Q" #

  is uniquely determined and  so thatpolar decomposition Q Q Q" #œ œ

S QS Q# "œ T.

3.19. A Show that every matrix  can be represented in the form− KPÐ8ß Ñ‚
  where  and  are Hermitean matrices [A matrixA U S S U S Sœ œ" " # # " #

 satisfying the condition  is called a  after¯A A Aœ œ
T † Hermitean matrix

 French mathematician Charles Hermite (1822-1901)] and ,  are unitaryU U" #

 matrices. Prove that this operation is uniquely determined and U U U" #œ œ
 so that one gets

S US U# "œ †.

3.20. A A A B A Show that if a matrix satisfies the equality , then the matrix œ œ 3†

 B Bholds the relation . Utilising this property show that a basis for theœ  †

 Lie algebra  can be chosen as  where ¬®Ð#Ñ Ð3 ß 3 ß 3 Ñ5 5 5" # $ Pauli spin matrices
 [Austrian physicist Wolfgang Ernst Pauli (1900-1958)] are given as follows

5 5 5" # $œ ß œ ß œ
! " !  3 " !
" ! 3 ! !  "” • ” • ” •.

 Find the structure constants of the Lie algebra (in Quantum mechanics the
 conventional basis is taken as ).3 Î#55

3.21.  are the foregoing Pauli spin matrices. We define a mappingÐ ß ß Ñ5 5 5" # $

   in the following manner9 ‘À Ä Ð#Ñ$ ¬®

9 ‘Ð Ñ œ ? œ ß œ Ð? ß ? ß ? Ñ −
" "

#3 #

 3?  3?  ?

 3?  ? 3?
u u5 " # $ $

5

$ " #

" # $5 ” • .  

 Show that  the inverse mapping  is provided byÐ+Ñ À Ð#Ñ Ä9 ‘" $¬®

? œ 3 Ð Ñ ß ? œ 3 Ð Ñ ß ? œ 3 Ð Ñ" # $
" # $tr tr tr ,ˆ ‰ ˆ ‰ ˆ ‰9 9 9u u u5 5 5

  the mapping  is a Lie algebra isomorphism so that the relation Ð,Ñ Ð Ñ9 9 u v‚
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  and  the equalities  and œ Ð Ñß Ð Ñ Ð-Ñ œ  Ð? Ñ œÒ Ó †9 9 5u v u u vl l# 5
5det

 tr  are satisfied.# Ð Ñ Ð Ñˆ ‰9 9u v
3.22. We define a mapping  in such a way that for each9 ‘À WY Ð#Ñ Ä KPÐ$ß Ñ
 vector , the relationu − ‘$

 ‘9Ð Ñ œ Ð? Ñ ß − WY Ð#ÑA u A A A3
3 3

3 "5 5

 will be satisfied. Show that   has the properties Ð+Ñ Ð Ñ œ Ð  Ñß9 9 9A A
  and  and  the mapping  is a9 9 9Ð Ñ œ Ð Ñ − WSÐ$Ñ Ð,Ñ À WY Ð#Ñ Ä WSÐ$ÑI I A# $

 submersion.
3.23. According to the celebrated  [Irish mathematicianHamilton-Cayley theorem
 Sir William Rowan Hamilton (1805-1865) and English mathematician Arthur
 Cayley (1821-1895)] every  matrix  satisfies its characteristic equation# ‚ # A

A A A A I 0#  Ð Ñ  Ð Ñ œtr .det

  Utilising this equation, show that if  and  the relations A A− Ð#ß Ñ œ¬¥ ‘ $det

/ œ

  !

 œ !

    !

A

ÚÝÝÛÝÝÜ
È È
È È

cos sin

cosh sinh

$ $ $

$

$ $ $

I A

I A

I A

"

"



È

È

$

$

ß

 are valid. Show further that tr . Verify whether the mapping/    #A

exp À Ð#ß Ñ Ä WPÐ#ß Ñ¬¥ ‘ ‘

  is surjective ( : consider the matrix ).Hint ” •+ !
! "Î+

− WPÐ#ß Ñ‘

3.24.  is a Lie group isomorphism, and  is the Lie algebra9 <À K Ä L À Ä  ¡
 isomorphism produced by the mapping  [   188]. Show that the expo-9 see :Þ
 nential mappings  and  satisfy the equalityexp expK LÀ Ä K À Ä L  ¡
 . [ : Define two one-parameter groups and evaluate9 <‰ œ ‰exp expK L Hint
 tangents of the curves  and  at# 9 # <" K # LÀ > Ä Ð>Y Ñ À > Ä > ÐY Ñˆ ‰ ˆexp exp
 ]. This means that the following diagram> œ !

K LÒ

Ò

9

<

exp expK LÅ Å     

  ¡

 commutes.

3.25. We define the length of a vector  by  where  areZ − X Ð Ñ Z œ Ð@ Ñ @‘8 3 # 3#

3œ"

8l l !
 the components of . A mapping  is called an  if theZ À Ä9 ‘ ‘8 8 isometry
 condition  is met for all vectors . Show that al l l l9 ‘‡

8Z œ Z Z − X Ð Ñ
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 vector field  generates a one-parameter group of isometries ifZ œ @ Ð Ñ `3
3x

 and only if its components satisfy the following partial differential equations

`@ `@

`B `B
 œ !

3 4

4 3
.

 Show further that this group is the  of dimensionEuclidian group IÐ8Ñ
  which consists of rotations and translations.8Ð8  "ÑÎ#

3.26. Show that the set of matrices K œ − KPÐ#ß Ñ À Bß C − ß B Á !
B C
! "

š ›” • ‘ ‘

 forms a Lie group with respect to the matrix product. Utilise this group to
 define an appropriate multiplication on  so that a homomorphism between‘#

 them can be constructed. Consider two curves with tangent vectors  and`Î`B
  at  and verify that these vectors become  and `Î`C Ð"ß !Ñ − B`Î`B B`Î`C‘#

 under a left translation so that they generate left-invariant vector fields.
 Hence, they constitute the Lie algebra . Employing the fact that the one- 
 parameter subgroup associated with the vector  must- `Î`B  - `Î`C −" #  
 be tangent to the vector field  , we deduce that it is- B `Î`B  - B `Î`C" #

 expressible by the relation

B œ / ß C œ Ð/  "Ñ
-

-
- > - >#

"

" "

 which is also obtainable by evaluating the matrix exp .>
- -
! !” •" #

3.27. We define the action of the Lie group  on the manifold  with theWSÐ$Ñ ‘$

 mapping  where  is prescribed byG ‘ ‘ GÀ WSÐ$Ñ ‚ Ä$ $

GÐ ß Ñ œA u Au.

 Here, , . Discuss the properties of this mapping freely,A u− WSÐ$Ñ − Ð‘$

 effectively or transitively acting  and show that orbits are submanifolds Ñ Þ’#

 Determine the Killing vector fields.
3.28. We consider the product manifold . We defineE00Ð8ß Ñ œ KPÐ8ß Ñ ‚‘ ‘ ‘8

 an operation of multiplication  on  as follows‡ E00Ð8ß Ñ‘

Ð ß Ñ ‡ Ð ß Ñ œ Ð ß  ÑA u B v AB Av u

 where . Show that  is a Lie groupÐ ß Ñß Ð ß Ñ − E00Ð8ß Ñ ÐE00Ð8ß Ñß ‡ÑA u B v ‘ ‘
 called the . Let us further introduce the mappinggroup of affine motions
  representing the action of this group on theG ‘ ‘ ‘À E00Ð8ß Ñ ‚ Ä8 8

 manifold  by the relation .  is called an‘ G G8 ˆ ‰Ð ß Ñß œ A u v Av u  affine
 mapping. Discuss its properties freely, effectively or transitively acting .Ð Ñ
3.29.  is the set of integers. Let us consider the group  and the manifold™ ™K œ #

 , and define the mapping  byQ œ À K ‚ Q Ä Q‘ G#

Gˆ ‰Ð+ß ,Ñß ÐBß CÑ œ Ð+B  ,Cß ,BÑ.
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 Discuss the properties of this mapping freely, effectively or transitivelyÐ
 actingÑ
3.30. The action of the Lie group  on the manifold  is given by the mappingK Q
 . Show that each orbit  is a submanifold of  and isG bÀ K ‚ Q Ä Q Q:

 diffeomorphic to the quotient manifold .  is the isotropy group of aKÎK K: :

 point .: − Q
3.31. We define the action of the Lie group  on its Lie algebra manifold K Q œ  
 by the mapping  by means of the relation .G   GÀ K ‚ Ä Ð1ß Z Ñ œ E. ÐZ Ñ  1

 Show that the Killing vector field is then given by  whereZ ÐY Ñ œ Z ß YO Ò Ó
 .Y − Q




