CHAPTER 1V

TENSOR FIELDS ON MANIFOLDS

4.1. SCOPE OF THE CHAPTER

In this chapter, tensors! that were defined previously on linear vector
spaces and their duals will be restructured as tensor fields in such a way that
they would inhabit in a natural fashion on differentiable manifolds. To this
end, we first construct in Sec. 4.2 the cotangent bundle by conjoining the
dual space of the tangent space at each point of the manifold to this point.
That fibre bundle is then equipped with a differentiable structure to make it
a smooth manifold. Afterwards it is demonstrated in Sec. 4.3 that multiline-
ar functionals on certain Cartesian products of tangent spaces and their
duals at a point of the manifold are represented by elements called contra-
variant and covariant tensors of a vector space defined as some tensor
products of these spaces. The basis of a tensor product space is determined
as usual as tensor products of natural bases for a tangent space and its dual.
A tensor bundle is built by attaching the associated tensor product vector
space to each point of the manifold. Tensor fields are obtained as sections of
the tensor bundle. A tensor is now being completely determined through its
components on natural bases in tangent spaces and their duals. Transforma-
tion rules of these components under the change of local coordinates are
then derived quite easily. An exterior form field on a manifold will then
reasonably be defined as a completely antisymmetric covariant tensor field
and, as it should be, the concept of exterior products is linked to the
alternation of tensor products. The contraction is defined as an operation
that produces an associated tensor to a given tensor whose order is reduced
by two compared to the original tensor. After that, the quotient rule that
helps us to recognise whether a given indicial quantity are actually com-
ponents of a particular tensor is discussed. Finally, the Lie derivative of

IThe term 'tensor' was first used in the present context by the German physicist
Woldemar Voigt (1850-1919) in 1898 while he was studying crystal elasticities.
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208 1V Tensor Fields on Manifolds

tensor products of finitely many vector fields on the tangent bundle is
calculated.

Tensor analysis is today an indispensable tool in many branches of
mathematics and physics. It was mainly developed by Italian mathemati-
cians Gregorio Ricci-Curbastro (1853-1925) and Levi-Civita, and it has
turned out to be a great impetus in the development of the theory of general
relativity. A sentence from a letter of Einstein to Levi-Civita around 1917
reflects his appraisal of the tensor analysis: "I admire the elegance of your
method of computation; it must be nice to ride through these fields upon the
horse of true mathematics while the like of us have to make our way
laboriously on foot."

4.2. COTANGENT BUNDLE

We consider an m-dimensional smooth manifold M and the tangent
space T),(M) at a point p € M. As is well known, the dual of the tangent
space is a linear vector space formed by all linear functionals on the tangent
space [see p. 11]. We denote this m-dimensional dual space by T;(M ) and
we also call it the cotangent space at the point p. When we choose the nat-
ural basis of the tangent space at the point p as the vectors {0/dz" : i =
1,...,m} generated by the local coordinates in the chart containing the
point p, we have seen on p. 125 that reciprocal basis vectors in the dual
space are given by linear functionals as differentials {dz’ : i = 1,...,m} so
that the following relations

dac’;(aij) - <d$i, aij> =5 “2.1)

are satisfied. Hence, at a point p € M, a vector V' € T,,(M) and a linear
functional w € T); (M) can be expressed as

) o
V= ULW, w=widx', v, w; € R. (4.2.2)
T

The value of the functional w on the vector V' at p then happens to be
9
V)= (w,V :< pra J_,> 423
w()”<w > widz', v/ = ( )
= wir’d; = wiv' € R,

We shall call elements of the dual space T, (M) as 1-forms at the point p.
Next, we define the set
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T (M) :ngT;(M) ={(p,w):pe M,weT/(M)}. (4.2.4)

By repeating exactly our approach in Sec. 2.8, we see that 7% (M ) can be
endowed with a differentiable structure making it a 2m-dimensional smooth
manifold which will be called henceforth as the cotangent bundle. The local
coordinates of T*(M) are evidently given by {x!,... 2™ wi,...,wn}. A
section of the bundle T*(M) as we have already done in p. 130 charac-
terises this time a 1-form field on the smooth manifold M. In terms of local
coordinates in the relevant chart, this field is of course expressible as
follows

w(p) = wi(x)dz' € T*(M), x = ¢(p). (4.2.5)

Different charts containing the point p gives rise to a coordinate transforma-
tion given by invertible functions 3" = y'(x7). When we write the 1-form w
in different local coordinates, the relation

— w.dr! = Jdyt = ,(9yid J
w(p) = wjdz’ = w;dy = Wip 5de
leads to the following relations between components of w in two different
coordinate systems
’ ayi ’ A

W; =w

Because of this transformation rule, the elements of the cotangent bundle
are usually called covariant vector or covector fields. We have already seen
that the transformation rule between components of vectors in two different
charts in the tangent bundle are given by [see (2.6.9)]

V= Oy v
oxl

J, (4.2.7)

That is the reason why we call vectors in the tangent bundle as contravari-
ant vector fields.

4.3. TENSOR FIELDS

Let us consider an m-dimensional smooth manifold M and vector
spaces T),(M) and T, (M) at a point p € M. We introduce the following
Cartesian product set whose two parts are k-times and [-times cartesian
products of 7, (M) and T),(M ), respectively
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T,(M)F :\T;(M) X - X T;(M)J x Tp(M) x -+ x T,(M).
k l

We now specify a multilinear functional 7 : T,(M)¥ — R as a k-contra-
variant and l-covariant mixed tensor. We next define a vector space
T,(M)F as a tensor product of two vector spaces formed by k-times tensor
products of 7},(M ) and [-times tensor product of 7, (M):

(M)} = T,(M) ® - @ T,(M) ® L(M)®- T/ (M) . (43.1)
k l

The tensor 7 can then be expressible as an element of T (M)F and we say
that it is a (¥)-tensor. With respect to the basis vectors produced by natural
local coordinates in 7},(M) and T}, (M) we can write 7 in the form

o ) o , , .
— fhdz i e ® — J 2. J
T =177 970 © 5t Q- ® Dpir Rdr" @ dz”? @ - @ dz”
[see p. 23]. Here the repeated indices, i.e., dummy indices, i1, i, ..., ) and
J1s Jo, - .., g1 are all taking the values from 1 to m. The coefficients t;ll '.',3-’;‘ are

called the components of the tensor 7. We frequently identify a tensor T
with its components. The value of the tensor, or multilinear functional, 7 on

Tp(M)f, or on k linear functionals (covariant vectors) wV, w® ... w®)
and [ contravariant vectors V(y), Viz), ..., V|; are prescribed by
: i (1 k) j
T(, o Vg, s, Vi) = 0wl w ol - o

It is straightforward to verify that the m**! tensor components t;lllj’j are
determined by
e =T (da", ... da™,0;,,, ..., 05).

1t is obvious that we end up with different types of k-contravariant and l-
covariant tensors if we change the ordering of spaces T,,(M) and T;(M) in
the tensor product keeping the numbers of the component spaces constant.
When we take into account a coordinate transformation y' = y'(«7) at the
point p, we can write

(3

— _ J
oy Oyt OxI’ Y= B de

J ) i
0 oz’ 9 p oy

to obtain
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.0 . .
T—t;lll ]lka“ a J1®,,_®dyjl
t/h i dz™ ...ax”Lk 8yj] 8yjl 9 R ® 9
g1 8?/“ ayik 8$m 8337” a$7n] 8$m"‘
RAr"R® - @ da™
0 0
=t R — Rdr™M ® -+ @ dx™

-y 8 my & - 8 my
whence we deduce the following relations between components of the same
tensor in different coordinate systems

t/ir--’ik- Hxr™ axmk ay.h ayjz ey

Jidi 3yil 3yik Hrm O T

If we recall the chain rule (9z7"/0y")(dy' /Ox’s) = Ox'r |Ox)s = (5 "
finally find out that the transformation rule for the components of the tensor
7T under the change of coordinates 3" = y'(«7) is given by

t'lllz U — ey ayil ayiQ ayik O™ 9z™ . ..axm

J1jedn M Gpmy 9pme - Qxme Qyiv Qylz Oy

We can immediately realise that the set

TM@%ngMMﬁ={m7%p€ALTE%M@ﬂ (4.3.2)

can be endowed with a differentiable structure as was done in Sec. 2.8 so as
it becomes an m + m**'-dimensional smooth manifold. This manifold will
be called the tensor bundle of order k + I whose local coordinates are
given by {x!,..., m,tzll Zj’; SUy ey by J1s -y g1 = 1, ..., m}. A section of
the bundle T (M)F characterises a tensor field on the manifold M. In terms
of standard local coordinates this tensor field is expressible as

b , ,
T(p) =t} ()57 ® - ® ®de’ @ - @de’.  (4.3.3)

Ozxh Oz

The sum of two tensor fields 71,7, € T(M) of the same type is the tensor
field T = 7, + T, € T(M)} whose components are given by

G5 () = 155 (00 + Eg )t ().

Similarly, if we choose f € A°(M) and 7 € T(M)}, then the tensor field

fT € (M) is determined by its components f (x)tyl;k[ (x). Hence, all
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tensor fields of the same order and of the same type constitute a module on
the commutative ring A°(M). It is obvious that one can use the representa-
tions T(M)} = T(M) and T(M)" = T*(M).

The operation of contraction on a tensor field is defined as in Sec. 1.3.
If we remove in (4.3.3) the tensor product between dx’s and 9; , and notice
that dz*(9;,) = 6}, we obtain the contracted tensor

0
— 71 -1 .
T t s Ji-1 8 i1 ® ® axik*]

whose order is now k + [ — 2. The components of a once contracted tensor
are given, for instance, by

® dzit R ® dz-1

01l 0 181t Th—1
t]l Ji-r T t “Js—18Js+17 i1 "
The contraction operation makes it possible for us to propose a rather simple
test to recognise whether a given array of coefficients as an indicial quantity
in a particular coordinate system are components of a tensor.
Quotient Rule. Let the coefficients tl/llj;k be the components of an

arbitrary (k )-tensorT of order k + 1 in a given coordinate system and let
my--

syl be an array of numbers considered to be the components of a
quantltyS of order r+ s. We introduce the quantity R =T x S with the
components 17, z‘l;’i S = tl/ll “”“Sm r. If any contraction of this indicial

~--i--~zkm1 “my

quantity such as, for instance, r- ]ml‘.,i,..

is found to be components of a
tensor ('R, then the coefficients s\ " are also components of a ( ) -tensor
S of order r + s.

Since R and 7 are tensors, their components transform according to
the well known rule under any coordinate transformations. Therefore, we
can write

la ~-~J~-a 1P Dr _
oW =

ayal e 8yj e ayak 8$]1 . 8$]l 410G P Dr o
Oxrh Ozt Oxi Oyhr Oy geeg Saegea T
(‘)yal o 8yak aypl o 8y}7r ox) o oxJt Hx™ o or™s b1y (X)
oxr Oz 9x™  Jx™ Qyhr  Oyh Jyn  Qyds ny i

whence we deduce that

my---my

pY S g1 g dx™  Pxmr Pyn Dy smu.i...n_;) =0

il.‘.q;...ik(ayj LDy oyh oyPr 9x™  Qx™
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since we can obviously cancel regular matrices [0y"*/9x'] in both sides be-
cause their determinants do not vanish. Inasmuch as these relations should
be satisfied for every tensor 7, the expressions within parentheses must be
equal to zero from which it follows that

_oy™ ‘ayp’ ox™ Oz ‘31‘”5

/P1 - Pr my-- My
s (hmj--'qs( )= Oxm - dxmr Jyn "'ayj” oyt Snllmi“-ns (x)
This relation shows clearly that S is a (2)—tensor of order r + s. (I

Let us now consider a completely antisymmetric k-covariant tensor
field w € T(M)?. In local natural coordinates, we may represent this tensor
in the following form:

w(p) = Wi (X) da! @ da” @ -+ @ dal*,
Here, the components of this tensor are completely antisymmetric, namely,
they must obey the rule w; ...i,...i,..;, (X) = — Wi, .i,...i,..i, (X) for every pair

of indices. Therefore, by making use of the generalised Kronecker deltas we
can write as in (1.4.8)

110" T
Oy e Wirin---iyy (X) = Klwpj 5 (X) = Klwj, ..., (X)
to obtain
— 1 L 5i1i2"'ikd Ji d J2 d Jk
w—gwmz.“%(x) g '@ dx? ® --- ® da’*.

Just like we did in Sec. 1.4, we can again define the exterior product of
basis vectors in the tensor bundle T (M)? as follows
dz Ada® A Adatt = 87 et @ dat @ - © dat
= klds!" ® da” ® -+ @ da™.

Hence, we reach to the conclusion

1 . 4 )

w(p) = o Wiyiy iy (X) dx™ Adz™ A -+ A dx'. (4.3.4)

At the point p € M, the tensor w(p) is an alternating k-linear functional
assigning a scalar number to k vectors Vi, Vs, ..., Vi in the tangent space
T,(M), and consequently, a smooth function to vector fields V;(p), Va(p),

ooy Vi(p). If we write
Va(p) = v, (x)0/02",a = 1,2,... ,k,



214 1V Tensor Fields on Manifolds

this function is determined by the expression

w(V1, Va, ..., Vi) (p) = Wiiye.y (X) dal™ (V7)) da™ (VR) -+ da™ (V)
= Wiiy. i, (X) fug“ (x)v(x)-- -vZ“] (x)

= Wiy (X) 01 (X) 05 (%) -0 (x)

w0 0 - ()
1 vRE(x) B (x) - vP(x
W) ) e ()

Since coefficient functions wj,...;, are completely antisymmetric, the
second and the third lines above will of course yield the same numerical
value. The completely antisymmetric k-covariant tensor given by (4.3.4)
will be called henceforth a k-exterior differential form or a k-exterior form
or simply a k-form on the manifold M.

It is evident that the exterior product will not be confined solely on co-
tangent spaces. A completely antisymmetric k-contravariant tensor field
V € T(M)} is expressible as follows in local natural coordinates

0 - 0 P 0
Oxh — Ozt Oxir

V(p) = v (x)

where the coefficient functions v"% % (x) are completely antisymmetric.
Thus, making use of generalised Kronecker deltas, we can again write

5;1;2;’:0717271\ (X) — k! U[iliz“'ik](x) — Jol it (X)

This of course leads to the representation

0 A 0 A 0
Oz Ozt Oxir’

Lo i
V(p) = 7 v *(x)

Once more, we define the exterior product of basis vectors in the tensor
bundle (M) in the following way:
0 0 0 ivig-iy O 0 0

oxit | Oz ARRENA Ok = 6j1j2"'.jk it ® Oxi2 Q- ® Ok

At the point p € M, the tensor V(p) is an alternating k-linear functional
assigning a scalar number to k covectors, or linear functionals, wy, wo, ...,
wy, in the cotangent space 7}, (M), and consequently a smooth function to
fields wy(p),w2(p),...,wr(p). It is clear that tensor fields of this form
constitute a module X*(M). If we take X°(M) = A°(M), we immediately
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observe that the direct sum X(M) = %%k(M ) is a 2™-dimensional
k=0

Grassmann algebra with respect to the exterior product operation A . It is
evident that one has X'(M) = T'(M).

It is obvious that a mixed completely antisymmetric tensor is now
expressible in the form

0

B /\.../\8 - Adrt Ao Add.
xr Xk

T(p) =137} (x)

The components t;lllj’; (x) must be completely antisymmetric functions with

respect to its subscripts and superscripts.

Although we would mainly be interested in exterior forms and their ex-
terior products in this work, it becomes now clear that the use of exterior
products are not restricted to such types of entities only.

Finally, we shall try to calculate the Lie derivative of elements in an ar-
bitrary tensor bundle with respect to a vector field V' in the tangent bundle
of a manifold M. To this end, we illustrate a fundamental property of Lie
derivatives. Let us consider the tensor product

Ui(p) @ Us(p) ®@ -+ @ Uk(p)

of vectors Uy, Us, ---,Uy. Its Lie derivative at a point p € M can now be
evaluated as in (2.10.2):

Ul (p;t) @ - @ Ui (p;t) — M@®m®%@.

(U@ @U) = hrn ;

In view of (2.10.4), we can write
Ur(p;t) =Ui(p) +tEvU; +o(t), i=1,...,k.
Hence, employing the rules of the tensor product, we obtain
Ul(pit) @ Uy (pit) ® -+ @ Up(p;t) =
@h()+tﬁdﬁ() o(t)) ®
(U2(p) + t£v Ua(p) + o(t)) @ -+ @ (Uk(p) + tev Us(p) + o)) =
U®%®® ®%U
[£VU ) @ Ua(p) @ -+ @ Uy(p)
+ Ui(p) @ £vUs(p) ® -+~ @ Ug(p) +
4+ Ui(p) @ Uz (p) ® -+ @ £y Ui(p)] + o(t).

We thus conclude that
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(U1 0U, @+ @U) =£y U1 @Us ® -+ @ Uy, (4.3.5)
+ U1 0£yU ® -+ @ Uy
+ -+ U090 ® - ®£LyUy.

This clearly means that the Lie derivative obeys the classical Leibniz' rule.
We utilise this property in Sec.5.11 to evaluate quite easily the Lie
derivative of any tensor.

IV. EXERCISES

4.1. The tensor field 7 € T(R?) is given by 7 =dz @ dz +dy ® dy. (a)
Find the value of this covariant tensor field of order 2 on the vector fields
given below

0 0 0

U= T a0 V= [P a,.

“ 8x+uy8y Y 8x+vyay
(b) Show that under the coordinate transformation x = rcosf,y = rsiné,
the same tensor can be written as 7 = dr ® dr + % df ® d#.

4.2. Letthe tensor 7 € T(R)) be givenby 7 = dz @ dz + dy @ dy + dz @ dz.
(a) Find the value of 7 on vector fields given below

Uew2 iu2 0,2 yop2.,9. .9
oz Yoy oz S "o Yoy oz
0 0 0

(b) Show that under the coordinate transformation = rcosf, y = rsin#,
z = z this tensor takes the form 7 = dr ® dr + > df @ df + dz ® dz, and
(c) under the transformation x = rcos psinf, y = rsinpsinf, z = rcosf
it becomes 7 = dr @ dr + r2df ® df + r? sinf dp ® dep.

4.3. Components of a tensor 7 € T(M)3 are given by t;#j (p). How many (%)—
tensors are obtainable through contraction operations? Further contraction
operations result in how many (é)—tensors?

4.4. Show that the components of the tensor 7 =V @ w € T(M)] are given by
t(p) = v (p) wj(p).

4.5. Let us consider T(M)" = T(M)®---@T(M). What type of a tensor can

be regarded as representing a multiline]far mapping T(M)*F — T(M)?

4.6. If the components of a (1)-tensor are the same with respect to every basis,
then show that they should be written in the form t(p) = t(p) 6.

4.7. 1If the components of a ('l")-tensor are the same with respect to every basis,
then show that either 7 = 0 or k = [.



4.8.

4.9.
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4.11.

4.12.

4.13.

4.14.

4.15.

4.16.
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If the components of a (i)-tensor is symmetric with respect to their indices,
that is, if the equalities t; =t} are numerically valid, then show that

ti(p) = t(p) 6.

..... i

1 '2. . ]
tensor and verify that these components remain unchanged in every set of
coordinates.

Let the structure constants of a Lie algebra g be c;;. Show that ¢;; = cjic} ; are

" are components of a (} )-

components of a symmetric tensor, whereas ¢;j, = cfjclk are components of

a completely antisymmetric tensor.
Assume that 7 € T(M)$ is a symmetric tensor. We define the components
of a tensor S € T(M)! by the relations

Sijkl = tigtj — itk
Verify that the following equalities
Sijkl = — Sjikl = — Sijlk, Sijkl T Sijkl + Sijkt = 0
are satisfied. Let U,V € T'(M). Show that
S(U,V,U,V)=T(U,U)T(V,V)=T(U,V)?

and, if vectors U and V' are linearly independent, then one finds for U # O
S\U,V,U,V) >0 whenever 7 (U,U) > 0.

A mapping ¢ : R? — R? is prescribed by ¢(z,y,2) = (x +y, 2y — z, 2°).
Evaluate the action of this mapping on the tensor

72313®dy®dz+yi®dx®dz+sinx3®dx®dy.
or Jy Ox

A tensor field 7 € T(R?)2 and a vector field V € T(R?) are given, respec-
tively, by
0 0 0 0 0 0 0 0
T=2—Q—Q——yP=—Q0—0 —, V=y——a?—.
m8x®8x®8y y8x®8y®3y’ Yor xf)y

Evaluate the Lie derivative £,7 .
Prove that elements (vy, va, ..., v;) of a vector space are linearly independent
ifand only if vy Avg A -+ Ay # O.
Prove that the linearly independent sets (uy,uo, ..., u;) and (vy, ve, ..., vg)

are bases of the same k-dimensional subspace of a vector space if and only if
ug Aug A~ Aug, = Avy Avg A+ Ay

where A # 0. Show further that there exist a regular £ x k matrix A = [a;-]

such that u; = a{vj and A = detA.
IfU,V € X(M) and V € X' (M), then show that one can write
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Ev(UNV)=EvUNYV +UNEy V.

4.17. Let us consider vector fields U; € X1(M),i = 1,...,k, and let us denote the
exterior product of these vectors by U = Uy A -+- A Uy, € X¥(M). We define
the Schouten-Nijenhuis bracket [Dutch mathematician Albert Nijenhuis]
(,):X(M)xX%(M) — X(M) through the following expression:

u,v) (=) UL A AUy AUt A ANUL AN EG Y

1

Il Il
-Mw |iMa~

I
—

1
S =D)™MULVIAUL A AUy AUiga A+ AU
) J=1

AVIA - AVieg AV A= AV

where U € X*(M) and V € X!(M). Assume that U € X*(M),V € X'(M),
W e X™(M),U,V € X}(M) and f,g € C*°(M). Then show that Schouten
-Nijenhuis bracket satisfies the following relations:

(a) (u,V) € %k+171(M)5 (b) (fvg) =0, (C) (Ua f) = U(f)a
(d)(U,V)=[U,V],

(e) UV AW) = (U, V) AW + (= 1)V AU, W),
(f) U V) = (-1)"v, u),

(g) the generalised Jacobi identity

(=) (U VY W) + (-D"Y W)U + (-1)" (W, U), V) =0
4.18. The fields U € X¥(M) and V € X!(M) are given by

1. 0 0 1

Ulp) = 70" () ’ 0

N = — iy
g N g V)= o MmN g

Show that
0 0

8141 /\ o /\ 8xik+l—l

(uvv> =

1 iy -1
(e Uu,v) (x)

and the coefficient functions (U, V)% %+-1(x) are determined by the
expressions

(_1)]{ et i ek O ur Ik
e el — _\ 7 su k-1 i Lou
@y = k(1 — 1)!671"'fkk1"'1fz—1v s ozt
1 LR N ¥ Ly 9k
m i deotkr -k Oz

+





