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CHAPTER IV

TENSOR FIELDS ON MANIFOLDS

4.1. SCOPE OF THE CHAPTER

In this chapter, tensors  that were defined previously on linear vector1

spaces and their duals will be restructured as tensor fields in such a way that
they would inhabit in a natural fashion on differentiable manifolds. To this
end, we first construct in Sec. 4.2 the  by conjoining thecotangent bundle
dual space of the tangent space at each point of the manifold to this point.
That fibre bundle is then equipped with a differentiable structure to make it
a smooth manifold. Afterwards it is demonstrated in Sec. 4.3 that multiline-
ar functionals on certain Cartesian products of tangent spaces and their
duals at a point of the manifold are represented by elements called contra-
variant and covariant tensors of a vector space defined as some tensor
products of these spaces. The basis of a tensor product space is determined
as usual as tensor products of natural bases for a tangent space and its dual.
A tensor bundle is built by attaching the associated tensor product vector
space to each point of the manifold. Tensor fields are obtained as sections of
the tensor bundle. A tensor is now being completely determined through its
components on natural bases in tangent spaces and their duals. Transforma-
tion rules of these components under the change of local coordinates are
then derived quite easily. An exterior form field on a manifold will then
reasonably be defined as a completely antisymmetric covariant tensor field
and, as it should be, the concept of exterior products is linked to the
alternation of tensor products. The contraction is defined as an operation
that produces an associated tensor to a given tensor whose order is reduced
by two compared to the original tensor. After that, the quotient rule that
helps us to recognise whether a given indicial quantity are actually com-
ponents of a particular tensor is discussed. Finally, the Lie derivative of

1The term 'tensor' was first used in the present context by the German physicist
Woldemar Voigt (1850-1919) in 1898 while he was studying crystal elasticities.
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208 IV  Tensor Fields on Manifolds

tensor products of finitely many vector fields on the tangent bundle is
calculated.

Tensor analysis is today an indispensable tool in many branches of
mathematics and physics. It was mainly developed by Italian mathemati-
cians Gregorio Ricci-Curbastro (1853-1925) and Levi-Civita, and it has
turned out to be a great impetus in the development of the theory of general
relativity. A sentence from a letter of Einstein to Levi-Civita around 1917
reflects his appraisal of the tensor analysis: "I admire the elegance of your
method of computation; it must be nice to ride through these fields upon the
horse of true mathematics while the like of us have to make our way
laboriously on foot."

4.2. COTANGENT BUNDLE

We consider an -dimensional smooth manifold  and the tangent7 Q
space  at a point . As is well known, the dual of the tangentX ÐQÑ : − Q:

space is a linear vector space formed by all linear functionals on the tangent
space [  . 11]. We denote this -dimensional dual space by  andsee : 7 X ÐQÑ‡

:

we also call it the  at the point . When we choose the nat-cotangent space :
ural basis of the tangent space at the point  as the vectors : Ö`Î`B À 3 œ3

"ß á ß 7× generated by the local coordinates in the chart containing the
point , we have seen on . 125 that reciprocal basis vectors in the dual: :
space are given by linear functionals as differentials  soÖ.B À 3 œ "ß á ß 7×3

that the following relations

.B œ .B ß œ
` `

`B `B
3 3 3

4 4 4Š ‹ ¢ £ $ (4.2.1)

are satisfied. Hence, at a point , a vector  and a linear: − Q Z − X ÐQÑ:

functional  can be expressed as= − X ÐQÑ‡
:

Z œ @ ß œ .B ß @ ß −
`

`B
3 3 3

3 3 3= = = ‘. (4.2.2)

The value of the functional   on the vector  at  then happens to be= Z :

= = =

= $ = ‘

ÐZ Ñ œ ß Z œ .B ß @
`

`B
œ @ œ @ −

  ¡ ¢ £3
3 4

4

3 3
4 3 3

4 .

(4.2.3)

We shall call elements of the dual space  as  at the point .X ÐQÑ :‡
: "-forms

Next, we define the set
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X ÐQÑ œ X ÐQÑ œ ÖÐ:ß Ñ À : − Qß − X ÐQÑ×‡ ‡ ‡

:−Q
: : = = . (4.2.4)

By repeating exactly our approach in Sec. 2.8, we see that  can beX ÐQÑ‡

endowed with a differentiable structure making it a -dimensional smooth#7
manifold which will be called henceforth as the . The localcotangent bundle
coordinates of  are evidently given by . AX ÐQÑ ÖB ß á ß B ß ß á ß ×‡ " 7

" 7= =
section of the bundle  as we have already done in . 130 charac-X ÐQÑ :‡

terises this time a -form field on the smooth manifold . In terms of local" Q
coordinates in the relevant chart, this field is of course expressible as
follows

= = :Ð:Ñ œ Ð Ñ.B − X ÐQÑß œ Ð:Ñ3
3 ‡x x . (4.2.5)

Different charts containing the point  gives rise to a coordinate transforma-:
tion given by invertible functions . When we write the -form C œ C ÐB Ñ "3 3 4 =
in different local coordinates, the relation

= = = =Ð:Ñ œ .B œ .C œ .B
`C

`B
4

4 w 3 w 4
3 3

3

4

leads to the following relations between components of  in two different=
coordinate systems

= = = =4 4
w w
3 3

3 4

4 3
œ œ

`C `B

`B `C
    or    . (4.2.6)

Because of this transformation rule, the elements of the cotangent bundle
are usually called  or . We have already seencovariant vector covector fields
that the transformation rule between components of vectors in two different
charts in the tangent bundle are given by [ (2.6.9)]see 

@ œ @
`C

`B
w3 4

3

4
. (4.2.7)

That is the reason why we call vectors in the tangent bundle as contravari-
ant vector fields.

4.3. TENSOR FIELDS

Let us consider an -dimensional smooth manifold  and vector7 Q
spaces  and  at a point . We introduce the followingX ÐQÑ X ÐQÑ : − Q:

‡
:

Cartesian product set whose two parts are -times and -times cartesian5 6
products of  and , respectivelyX ÐQÑ X ÐQÑ‡

: :



210 IV  Tensor Fields on Manifolds

T .: : :6 : :
5 ‡ ‡ÐQÑ œ X ÐQÑ ‚ â ‚ X ÐQÑ ‚ X ÐQÑ ‚ â ‚ X ÐQÑ

5 6
ðóóóóóóóóóóñóóóóóóóóóóò ðóóóóóóóóóñóóóóóóóóóò

We now specify a multilinear functional T  as a g ‘À ÐQÑ Ä: 6
5 5-contra-

variant -covariant mixed tensor and . We next define a vector space6
Ç: 6

5ÐQÑ 5 as a tensor product of two vector spaces formed by -times tensor
products of  and -times tensor product of :X ÐQÑ 6 X ÐQÑ:

‡
:

Ç: : :6 : :
5 ‡ ‡ÐQÑ œ X ÐQÑ Œ â Œ X ÐQÑ Œ X ÐQÑ Œ â Œ X ÐQÑ

5 6

ðóóóóóóóóóñóóóóóóóóóò ðóóóóóóóóóóñóóóóóóóóóóò. (4.3.1)

The tensor  can then be expressible as an element of  and we sayg ÇÐQÑ6
5

that it is a -tensor. With respect to the basis vectors produced by naturalˆ ‰5
6

local coordinates in  and  we can write  in the formX ÐQÑ X ÐQÑ:
‡
: g

g œ > Œ Œ â Œ Œ .B Œ .B Œ â Œ .B
` ` `

`B `B `B
3 3 â3
4 4 â4 3 3 3

4 4 4" # 5

" # 6 " # 5

" # 6

[  . 23]. Here the repeated indices, i.e., dummy indices,  andsee : 3 ß 3 ß á ß 3" # 5

4 ß 4 ß á ß 4 " 7 >" # 6
3 â3
4 â4 are all taking the values from  to . The coefficients  are" 5

" 6

called the components of the tensor . g We frequently identify a tensor g
with its components. The value of the tensor, or multilinear functional,  ong
T , or  on   (  ) : 6

5 Ð"Ñ Ð#Ñ Ð5ÑÐQÑ 5 ß ß á ßlinear functionals covariant vectors = = =
and       are prescribed by6 Z ß Z ß á ß Zcontravariant vectors Ð"Ñ Ð#Ñ Ð6Ñ

g = = = =Ð ß á ß ß Z ß ß á ß Z Ñ œ > â @ â@ .Ð"Ñ Ð5Ñ
Ð"Ñ Ð6Ñ

3 â3
4 â4 3 3

Ð"Ñ Ð5Ñ 4 4
Ð"Ñ Ð6Ñ

" 5

" "6 5

" 6

It is straightforward to verify that the    are7 >56 3 â3
4 â4tensor components " 5

" 6

determined by

> œ Ð .B ß á ß .B ß ` ß ß á ß ` Ñ3 â3
4 â4

3 3
4 4

" 5

" 6

" 5
" 6

g  .

It is obvious that we end up with different types of -contravariant and -5 6
covariant tensors if we change the ordering of spaces  and  inX ÐQÑ X ÐQÑ:

‡
:

the tensor product keeping the numbers of the component spaces constant.
When we take into account a coordinate transformation  at theC œ C ÐB Ñ3 3 4

point , we can write:

` `B ` `C

`C `C `B `B
œ ß .C œ .B

3 3 4 4

4 3
3 4

to obtain
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g œ > Œ â Œ Œ .C Œ â Œ .C
` `

`C `C

œ > â â Œ â Œ
`B `B `C `C ` `

`C `C `B `B `B `B

w3 â3
4 â4 3 3

4 4

w3 â3
4 â4

7 7 4 4

3 3 8 8 7 7

" 5

" 6 " 5

" 6

" 5

" 6

" "

" " "

5 6

5 6 5

                                                                             Œ .B Œ â Œ .B

œ > Œ â Œ Œ .B Œ â Œ .B
` `

`B `B

8 8

7 â7 8 8
8 â8 7 7

" 6

" "5 6

" 6 " 5

whence we deduce the following relations between components of the same
tensor in different coordinate systems

> â â œ >
`B `B `C `C

`C `C `B `B
w3 â3
4 â4

7 7 4 4

3 3 8 8
7 â7
8 â8

" 5

" 6

" "

" "

5 6

5 6

" 5

" 6
.

If we recall the chain rule , weÐ`B Î`C ÑÐ`C Î`B Ñ œ `B Î`B œ4 3 3 4 4 4
4
4< < < = < =

=

<$

finally find out that the transformation rule for the components of the tensor
g  under the change of coordinates  is given byC œ C ÐB Ñ3 3 4

> > â â
`C `C `C `B `B `B

`B `B `B `C `C `C
w3 3 â3
4 4 â4

7 7 â7
8 8 â8

3 3 3 8 8 8

7 7 7 4 4 4
" # 5

" # 6

" # 5

" # 6

" # " #

" # " #

5 6

5 6
œ

We can immediately realise that the set

Ç Ç g g ÇÐQÑ œ ÐQÑ œ ÖÐ:ß Ñ À : − Qß − ÐQÑ ×6 6 6
5 5 5

:−Q
: : (4.3.2)

can be endowed with a differentiable structure as was done in Sec. 2.8 so as
it becomes an -dimensional smooth manifold. This manifold will7  756

be called the  whose local coordinates aretensor bundle of order 5  6
given by . A  ofÖB ß á ß B ß > ×" 7 3 â3

4 â4
" 5

" 6
À 3 ß á ß 3 ß 4 ß á ß 4 œ "ß á ß 7" 5 " 6 section

the bundle  characterises a tensor field on the manifold . In termsÇÐQÑ Q6
5  

of standard local coordinates this tensor field is expressible as

g Ð:Ñ œ > Ð Ñ Œ â Œ Œ .B Œ â Œ .B
` `

`B `B
3 â3
4 â4 3 3

4 4" 5

" 6 " 5

" 6x .       (4.3.3)

The sum of two tensor fields  of the same type is the tensorg g Ç" # 6
5ß − ÐQÑ

field  whose components are given byg g g Çœ  − ÐQÑ" # 6
5

> Ð Ñ œ > Ð Ñ  > Ð Ñ3 â3 3 â3 3 â3
4 â4 Ð"Ñ4 â4 Ð#Ñ4 â4
" " "5 5 5

" 6 " "6 6
x x x .

Similarly, if we choose  and , then the tensor field0 − ÐQÑ − ÐQÑA g Ç! 5
6

0 − ÐQÑ 0Ð Ñ> Ð Ñg Ç 6
5 3 â3

4 â4 is determined by its components . Hence, allx x" 5

" 6
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tensor fields of the same order and of the same type constitute a module on
the commutative ring . It is obvious that one can use the representa-A!ÐQÑ
tions  and .Ç ÇÐQÑ œ X ÐQÑ ÐQÑ œ X ÐQÑ!

" ! ‡
"

The  on a tensor field is defined as in Sec. 1.3.operation of contraction
If we remove in (4.3.3) the tensor product between  and , and notice.B `4

3
=

<

that , we obtain the .B Ð` Ñ œ4
3

4
3

=
<

=

<
$ contracted tensor

g- - 4 â4
3 â3

3 3
4 4œ > Œ â Œ Œ .B Œ â Œ .B

` `

`B `B" 6"

" 5"

" 5"

" 6"

whose order is now . The components of a once contracted tensor5  6  #
are given, for instance, by

- 4 â4 4 â4 34 â4
3 â3 3 â3 33 â3> œ >

" " =" ="6" 6"

" 5" " <" <" 5" .

The contraction operation makes it possible for us to propose a rather simple
test to recognise whether a given array of coefficients as an indicial quantity
in a particular coordinate system are components of a tensor.

Quotient Rule. Let the coefficients  be the components of an>
4 â4" 6

" 53 â3

arbitrary tensor  of order   in a given coordinate system and letˆ ‰5
6 - g 5  6

=7 â7
8 â8

" <
" =

 be an array of numbers considered to be the components of a
quantity  of order  We introduce the quantity with thef f<  =Þ e gœ ‚  
components . If any contraction of this indicial< œ > =4 â4 8 â8

3 â3 7 â7 3 â3 7 â7
8 â8" " =6

" " <5

4 â4 " =" 6

" " <5

quantity such as, for instance,  is found to be components of a<4 â4 8 â3â8
3 â3â3 7 â7

" " =6

" " <5

tensor , then the coefficients  are also components of a tensor-e =7 â7
8 â8

" <
" =

ˆ ‰<
= -

f of order <  =Þ
Since  and  are tensors, their components transform according to-e g

the well known rule under any coordinate transformations. Therefore, we
can write

> = Ð Ñ œ

`C `C `C `B `B

`B `B `B `C `C
â â â > = œ

`C `C `C `

`B `B `B
â â

, â,
w+ â4â+ w: â:

; â4â;

+ 4 + 4 4

3 3 3 , , 4 â4
3 â3â3 w: â:

; â4â;

+ + :

3 3 7

" 6

" 5 " <

" =

" "

" "

5 6

5 6 " 6

" 5 " <

" =

" "

" "

5

5

y

C `B `B `B `B

`B `C `C `C `C
â â > = Ð Ñ

: 4 4 8 8

7 , , ; ;
3 â3â3

8 â3â8
7 â7

< " " =

< " " =

6

6 "4 â46

" 5

" =

" < x

whence we deduce that

> =  â â = œ !
`C `C `C `B `B

`B `B `B `C `C4 â4 " =" 6

" 5 " <
" < " =

" < " = " =

" <3 â3â3 w
4 : : 8 8

3 7 7 ; ;

: â:
; â4â; 8 â3â8

7 â7Š ‹
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since we can obviously cancel regular matrices  in both sides be-Ò`C Î`B Ó5 6

cause their determinants do not vanish  Inasmuch as these relations should.
be satisfied for every tensor , the expressions within parentheses must beg
equal to zero from which it follows that

= Ð Ñ œ â â â = Ð Ñ
`C `C `B `B `B

`B `B `C `C `C
w: â:
; â4â;

: : 8 3 8

7 7 ; 4 ; 8 â3â8
7 â7" <

" =

" < " =

" < " = " =

" <y x

This relation shows clearly that  is a tensor of order .f ˆ ‰<
= - <  = 

Let us now consider -covariant tensora completely antisymmetric 5
field . In local natural coordinates, we may represent this tensor= Ç− ÐQÑ5

!

in the following form:

= =Ð:Ñ œ Ð Ñ .B Œ .B Œ â Œ .B4 4 â4
4 4 4

" # 5
" # 5x .

Here, the components of this tensor are completely antisymmetric, namely,
they must obey the rule  for every pair= =3 â3 â3 â3 3 â3 â3 â3" : ; " ; :5 5

Ð Ñ œ  Ð Ñx x
of indices. Therefore, by making use of the generalised Kronecker deltas we
can write as in (1.4.8)

$ = = =4 4 â4
3 3 â3

3 3 â3 4 4 â4 4 4 â4" # 5

" # 5

" # " # " #5 5 5
Ð Ñ œ 5x Ð Ñ œ 5x Ð Ñx x x[ ]

to obtain

= = $œ Ð Ñ .B Œ .B Œ â Œ .B
"

5x
3 3 â3 4 4 â4

3 3 â3 4 4 4
" # 5 " # 5

" # 5 " # 5x .

Just like we did in Sec. 1.4, we can again define the  ofexterior product
basis vectors in the tensor bundle  as followsÇÐQÑ5

!

.B • .B • â • .B œ .B Œ .B Œ â Œ .B

œ 5x .B Œ .B Œ â Œ .B

3 3 3 4 4 4
4 4 â4
3 3 â3

3 3 3

" # " #5 5

" # 5

" # 5

" # 5

$
[ ].

Hence, we reach to the conclusion

= =Ð:Ñ œ Ð Ñ .B • .B • â • .B
"

5x
3 3 â3

3 3 3
" # 5

" # 5x . (4.3.4)

At the point , the tensor  is an : − Q Ð:Ñ= alternating -linear functional5
assigning a scalar number to  vectors  in the tangent space5 Z ß Z ß á ß Z" # 5

X ÐQÑ Z Ð:Ñß Z Ð:Ñß: " #, and consequently, a smooth function to vector fields 
á ß Z Ð:ÑÞ5  If we write

Z Ð:Ñ œ @ Ð Ñ `Î`B ß œ "ß #ß á ß 5! !
3 3x ! ,
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this function is determined by the expression

= =

=

=

ÐZ ß Z ß á ß Z ÑÐ:Ñ œ Ð Ñ .B ÐZ Ñ .B ÐZ Ñ â .B ÐZ Ñ

œ Ð Ñ @ Ð Ñ@ Ð Ñâ@ Ð Ñ

œ Ð Ñ @ Ð Ñ@ Ð Ñâ@ Ð Ñ

œ
"

5

" # 5 3 3 â3 # 5
3 3 3

"

3 3 â3 " #
3 33

5

3 3 â3 " #
3 3

5
3

" # 5
" # 5

" # 5

" # 5

" # 5
" # 5

x
x x x x
x x x x

[ ]

[ ]

x
Ð Ñ

@ Ð Ñ @ Ð Ñ â @ Ð Ñ

@ Ð Ñ @ Ð Ñ â @ Ð Ñ

ã ã ã

@ Ð Ñ @ Ð Ñ â @ Ð Ñ

=3 3 â3

" #
3 3 3

5

" #
3 3 3

5

" #
3 3 3

5

" # 5

" " "

# # #

5 5 5

x

x x x
x x x

x x x

â ââ ââ ââ ââ ââ ââ ââ ââ â
Since coefficient functions  are completely antisymmetric, the=3 3 â 3" # 5

second and the third lines above will of course yield the same numerical
value. The completely antisymmetric -covariant tensor given by (4.3.4)5
will be called henceforth a  or a 5 5-exterior differential form -exterior form
or simply a  on the manifold .5-form Q

It is evident that the exterior product will not be confined solely on co-
tangent spaces. A  -contravariant tensor fieldcompletely antisymmetric 5
i Ç− ÐQÑ!

5   is expressible as follows in local natural coordinates

iÐ:Ñ œ @ Ð Ñ Œ Œ â Œ
` ` `

`B `B `B
3 3 â3

3 3 3
" # 5

" # 5
x

where the coefficient functions  are completely antisymmetric.@ Ð Ñ3 3 â 3" # 5 x
Thus, making use of generalised Kronecker deltas, we can again write

$4 4 â4
3 3 â3 4 4 â4 3 3 â3 3 3 â3
" # 5

" # 5 " # " # " #5 5 5@ Ð Ñ œ 5x @ Ð Ñ œ 5x @ Ð Ñx x x[ ] .

This of course leads to the representation

iÐ:Ñ œ @ Ð Ñ • • â •
" ` ` `

5x `B `B `B
3 3 â3

3 3 3
" # 5

" # 5
x .

Once more, we define the  of basis vectors in the tensorexterior product
bundle  in the following way:ÇÐQÑ!

5

` ` ` ` ` `

`B `B `B `B `B `B
• • â • œ Œ Œ â Œ

3 3 3 3 3 34 4 â4
3 3 â3

" # " #5 5" # 5

" # 5$ .

At the point , the tensor  is an : − Q Ð:Ñi alternating -linear functional5
assigning a scalar number to  covectors, or linear functionals, 5 ß ß á ß= =" #

=5
‡
: in the cotangent space , and consequently a smooth function toX ÐQÑ

fields  It is clear that tensor fields of this form= = =" # 5Ð:Ñß Ð:Ñß á ß Ð:ÑÞ
constitute a module . If we take , we immediatelyË Ë A5 ! !ÐQÑ ÐQÑ œ ÐQÑ
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observe that the direct sum  is a -dimensionalË ËÐQÑ œ Š ÐQÑ #
5œ!

7
5 7

Grassmann algebra with respect to the exterior product operation . It is•
evident that one has .Ë"ÐQÑ œ X ÐQÑ

It is obvious that a mixed completely antisymmetric tensor is now
expressible in the form

g Ð:Ñ œ > Ð Ñ • â • • .B • â • .B
` `

`B `B
3 â3
4 â4 3 3

4 4" 5

" 6 " 5

" 6x .

The components  must be completely antisymmetric functions with> Ð Ñ3 â3
4 â4
" 5

" 6
x

respect to its subscripts and superscripts.
Although we would mainly be interested in exterior forms and their ex-

terior products in this work, it becomes now clear that the use of exterior
products are not restricted to such types of entities only.

Finally, we shall try to calculate the Lie derivative of elements in an ar-
bitrary tensor bundle with respect to a vector field  in the tangent bundleZ
of a manifold . To this end, we illustrate a fundamental property of LieQ
derivatives. Let us consider the tensor product

Y Ð:Ñ Œ Y Ð:Ñ Œ â Œ Y Ð:Ñ" # 5

of vectors  . Its Lie derivative at a point  can now beY ß Y ß âß Y : − Q" # 5

evaluated as in (2.10.2):

£ .Z " 5
>Ä!

‡ ‡
" 5 " 5

ÐY Œ â Œ Y Ñ œ
Y Ð:à >Ñ Œ â Œ Y Ð:à >Ñ  Y Ð:Ñ Œ â Œ Y Ð:Ñ

>
lim

In view of (2.10.4), we can write

Y Ð:à >Ñ œ Y Ð:Ñ  > Y  9Ð>Ñß 3 œ "ß á ß 53
‡

3 Z 3£ .

Hence, employing the rules of the tensor product, we obtain

Y Ð:à >Ñ Œ Y Ð:à >Ñ Œ â Œ Y Ð:à >Ñ œ

Y Ð:Ñ  > Y Ð:Ñ  9Ð>Ñ Œ

Y Ð:Ñ  > Y Ð:Ñ  9Ð>Ñ Œ â Œ Y Ð:Ñ  > Y Ð:Ñ  9Ð>Ñ œ

Y Ð:Ñ Œ Y Ð:Ñ Œ â Œ Y Ð:Ñ

‡ ‡ ‡
" # 5

" Z "

# Z # 5 Z 5

" # 5

ˆ ‰ˆ ‰ ˆ ‰£

£ £

          

                             £

         £

   £ .

 > Y Ð:Ñ Œ Y Ð:Ñ Œ â Œ Y Ð:Ñ

 Y Ð:Ñ Œ Y Ð:Ñ Œ â Œ Y Ð:Ñ 

â  Y Ð:Ñ Œ Y Ð:Ñ Œ â Œ Y Ð:Ñ  9Ð>Ñ


‘

Z " # 5

" Z # 5

" # Z 5

We thus conclude that
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   £ £
                                                  £
                                   

Z " # 5 Z " # 5

" Z # 5

ÐY Œ Y Œ â Œ Y Ñ œ Y Œ Y Œ â Œ Y

 Y Œ Y Œ â Œ Y

                      £ .         

(4.3.5)

 â  Y Œ Y Œ â Œ Y" # Z 5

This clearly means that the Lie derivative obeys the classical Leibniz' rule.
We utilise this property in Sec. 5.11 to evaluate quite easily the Lie
derivative of any tensor.

IV.  EXERCISES

4.1. The tensor field  is given by . g Ç ‘ g− Ð Ñ œ .B Œ .B  .C Œ .C Ð+Ñ# !
#

 Find the value of this covariant tensor field of order  on the vector fields#
 given below

Y œ ?  ? ß Z œ @  @
` ` ` `

`B `C `B `C
B C B C  .

  Show that under the coordinate transformation ,Ð,Ñ B œ < ß C œ <cos sin) )
 the same tensor can be written as .g ) )œ .< Œ .<  < . Œ .#

4.2. Let the tensor  be given by .g Ç ‘ g− Ð Ñ œ .B Œ .B  .C Œ .C  .D Œ .D3
#
!

  Find the value of   on vector fields given belowÐ+Ñ g

Y œ ?  ?  ? ß Z œ @  @  @ ß
` ` ` ` ` `

`B `C `D `B `C `D

[ œ A  A  A
` ` `

`B `C `D

B C D B C D

B C D .

  Show that under the coordinate transformation , ,Ð,Ñ B œ < C œ <cos sin) )
  this tensor takes the form , andD œ D œ .< Œ .<  < . Œ .  .D Œ .Dg ) )#

  under the transformation , , Ð-Ñ B œ < C œ < D œ <cos sin sin sin cos: ) : ) )
 it becomes .g ) ) ) : :œ .< Œ .<  < . Œ .  < . Œ .# # sin
4.3. Components of a tensor  are given by . How many -g Ç− ÐQÑ > Ð:Ñ#

$
67
345 #

"
ˆ ‰

 tensors are obtainable through contraction operations? Further contraction
 operations result in how many -tensors?ˆ ‰"

!

4.4.  Show that the components of the tensor  are given byg = Çœ Z Œ − ÐQÑ"
"

 .> Ð:Ñ œ @ Ð:Ñ Ð:Ñ4
3 3

4=

4.5. Let us consider . What type of a tensor canÇÐQÑ œ X ÐQÑ Œ â Œ X ÐQÑ

5

5 ðóóóóóóóóñóóóóóóóóò
 be regarded as representing a multilinear mapping ?ÇÐQÑ Ä X ÐQÑ5

4.6. If the components of a -tensor are the same with respect to every basis,ˆ ‰"
"

 then show that they should be written in the form .> Ð:Ñ œ >Ð:Ñ3 3
4 4$

4.7. If the components of a -tensor are the same with respect to every basis,ˆ ‰5
6

 then show that either  or .g œ ! 5 œ 6
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4.8. If the components of a -tensor is symmetric with respect to their indices,ˆ ‰"
"

 that is, if the equalities  are numerically valid, then show that> œ >3
4

4
3

 .> Ð:Ñ œ >Ð:Ñ3 3
4 4$

4.9. Show that the generalised Kronecker deltas  are components of a -$4 4 â4
3 3 â 3 5

5" # 5

" # 5 ˆ ‰
 tensor and verify that these components remain unchanged in every set of
 coordinates.
4.10. Let the structure constants of a Lie algebra  be . Show that  are  œ- œ - -34

5 5 6
34 36 54

 components of a symmetric tensor, whereas  are components ofœ œ345 6534
6œ -

 a completely antisymmetric tensor.
4.11. Assume that  is a symmetric tensor. We define the componentsg Ç− ÐQÑ#

!

 of a tensor  by the relationsf Ç− ÐQÑ%
!

= œ > >  > >3456 35 46 36 45.

 Verify that the following equalities

= œ  = œ  = ß =  =  = œ !3456 4356 3465 3456 3456 3456

 are satisfied. Let . Show thatY ß Z − X ÐQÑ

f g g gÐY ß Z ß Y ß Z Ñ œ ÐY ß Y Ñ ÐZ ß Z Ñ  ÐY ß Z Ñ#

 and, if vectors  and  are linearly independent, then one finds for Y Z Y Á !
 f gÐY ß Z ß Y ß Z Ñ  ! ÐY ß Y Ñ  !  whenever .
4.12. A mapping  is prescribed by .9 ‘ ‘ 9À Ä ÐBß Cß DÑ œ ÐB  Cß #C  Bß D Ñ$ $ $

 Evaluate the action of this mapping on the tensor

g œ $B Œ .C Œ .D  C Œ .B Œ .D  B Œ .B Œ .C
` ` `

`B `C `B
sin .

4.13. A tensor field  and a vector field  are given, respec-g Ç ‘ ‘− Ð Ñ Z − X Ð Ñ# # #
!

 tively, by

g œ B Œ Œ  C Œ Œ ß Z œ C  B
` ` ` ` ` ` ` `

`B `B `C `B `C `C `B `C
# # .

 Evaluate the Lie derivative £ .Z g
4.14. Prove that elements  of a vector space are linearly independentÐ@ ß @ ß á ß @ Ñ" # 5

 if and only if @ • @ • â • @ Á Þ" # 5 !
4.15. Prove that the linearly independent sets  and Ð? ß ? ß á ß ? Ñ Ð@ ß @ ß á ß @ Ñ" # 5 " # 5

 are bases of the same -dimensional subspace of a vector space if and only if5

? • ? • â • ? œ E@ • @ • â • @" # 5 " # 5

 where  Show further that there exist a regular  matrix E Á !Þ 5 ‚ 5 œ Ò+ ÓA 4
3

 such that  and ? œ + @ E œ Þ3 43
4 det A

4.16. If  and , then show that one can writeh i Ë Ëß − ÐQÑ Z − ÐQÑ"
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£ £ £ .Z Z ZÐ • Ñ œ •  •h i h i h i

4.17. Let us consider vector fields , and let us denote theY − ÐQÑß 3 œ "ß á ß 53
"Ë

 exterior product of these vectors by . We defineh œ Y • â • Y − ÐQÑ" 5
5Ë

 the [Dutch mathematician Albert Nijenhuis]Schouten-Nijenhuis bracket 
   through the following expression:Ø ÙÀß ÐQÑ‚ ÐQÑ Ä ÐQÑË Ë Ë

Ø Ù

Ò Ó

h iß œ Ð"Ñ Y • â • Y • Y • â • Y •

œ Ð"Ñ Y ß Z • Y • â • Y • Y • â • Y

"
""
3œ"

5
3"

" 3" 3" 5 Y

3œ" 4œ"

5 6
34

3 4 " 3" 3" 5

£

                                         

3
i

                      .• Z • â • Z • Z • â • Z" 4" 4" 6

 where  and . Assume that h i h i− ÐQÑ − ÐQÑ − ÐQÑß − ÐQÑßË Ë Ë Ë5 6 5 6

 j − ÐQÑß Y ß Z − ÐQÑ 0 ß 1 − G ÐQÑË Ë7 " _ and . Then show that Schouten
 -Nijenhuis bracket satisfies the following relations:
  ,  ,   Ð+Ñ ß − ÐQÑ Ð,Ñ 0 ß 1 œ ! Ð-Ñ Y ß 0 œ Y Ð0ÑßØ Ù Ø Ù Ø Ùh i Ë56"

  Ð.Ñ Y ß Z œ Y ß ZØ Ù Ò Óß
 Ð/Ñ ß • œ ß •  Ð"Ñ • ß Ø Ù Ø Ù Ø Ùßh i j h i j i h jÐ5"Ñ6

  Ð0Ñ ß œ Ð"Ñ ßØ Ù Ø Ùßh i i h56

    Ð1Ñ the generalised Jacobi identity

Ð"Ñ ß ß Ð"Ñ ß ß Ð"Ñ ß ß œ57 56 67  ¡   ¡   ¡Ø Ù  Ø Ù  Ø Ù !h i j i j h j h i

4.18. The fields  and  are given byh Ë i Ë− ÐQÑ − ÐQÑ5 6

h iÐ:Ñ œ ? Ð Ñ • â • ß Ð:Ñ œ @ Ð Ñ • â •
" ` ` " ` `

5x `B `B 6x `B `B
3 â3 3 â3

3 3 3 3
" 5 " 6

" 5 " 6
x x .

 Show that

Ø Ù Ø Ùh i h iß œ ß Ð Ñ • â •
" ` `

Ð5  6  "Ñx `B `B
3 â3

3 3
" 56"

" 56"
x

 and the coefficient functions  are determined by theØ Ùh iß Ð Ñ3 â3" 56" x
 expressions

Ø Ùh i $

$

ß Ð Ñ œ @
Ð"Ñ ` ?

5xÐ6  "Ñx `B

 ? Þ
" ` @

6xÐ5  "Ñx `B

3 â3 35 â5
5 4 â 4

4 â4 5 â5
3 ââ3

3

4 â4 5 â5
3 ââ3 34 â4

5 â5

3

" 56" " 6"

" 5 " 6"

" 56"
" 5

" 5" " 6

" 56" " 5"

" 6

x




