CHAPTER IX

PARTIAL DIFFERENTIAL EQUATIONS

9.1. SCOPE OF THE CHAPTER

We can say with a little bit of hyperbolism that to study partial differ-
ential equations on smooth manifolds via exterior forms is actually reduced
to dealing with a kind of algebraic theory of these equations. The formal
treatment of this subject must be based on the theory of jet bundles. How-
ever, we prefer here to follow a more direct and concrete path and we
attempt to characterise partial differential equations by contact manifolds
obtained by extending the main manifold. In Sec. 9.2, we first extend a set
of partial differential equations of finite order to a system of first order
equations by introducing auxiliary variables. We then show that solutions of
this system coincide with solutions of a closed ideal of an exterior algebra
defined on an extended manifold. The coordinate cover of this manifold
consists of independent and dependent variables, and auxiliary variables
corresponding to various order partial derivatives of dependent variables
with respect to independent variables. The higher is the order of original
system, the huger will be the dimension of the extended manifold. We call
1-forms connecting partial derivatives and auxiliary variables as contact
forms and the closure of the ideal generated by them as the contact ideal.
The structure of this ideal plays a significant part in the so-called algebraic
theory of partial differential equations. The fundamental ideal is constructed
through exterior forms describing differential equations together with the
contact forms. The first approach that comes to mind to find solutions of the
fundamental ideal seems to determine its characteristic vectors in order to be
able to apply the Cartan theorem. But, this method proves to be quite
unfruitful except for a first order non-linear partial differential equation with
one dependent variable. That is the reason why we have chosen to
concentrate our efforts to discuss in detail the symmetry transformations
that enable us to generate a new family of solutions from a known solution.
Since we know that symmetry transformations are generated by isovectors
of an ideal, we are first concerned with unravelling the structure of the
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488 IX Partial Differential Equations

isovector fields of the contact ideal in Sec. 9.3. Sec. 9.4 is devoted to the
derivation of determining equations of isovector components of the
fundamental ideal, especially the balance ideal associated with balance
equations. Sec. 9.5 deals with the similarity solution that remains invariant
under a symmetry transformation. In order to benefit substantially from a
symmetry transformation, we need first to find a solution, albeit simple, of
the system. This of course creates a serious problem. To overcome this
obstacle to some extent, we present a method of generalised characteristics
in Sec. 9.6 by making use of the isovector fields that helps us to generate a
solution from given initial data satisfying certain conditions on an initial
manifold. We propose another method in Sec.9.7 by generalising the
contact forms as to include undetermined coefficient functions so that one
may be able to explore various possibilities to generate a solution. Some
closed horizontal ideals of the exterior algebra introduced that way may
prove to be instrumental in obtaining certain solutions. Finally, we investi-
gate in Sec. 9.8 the groups of equivalence transformations that are much
more general than the symmetry transformations. When we are given a
family of partial differential equations, by means of such a transformation
we can transform a member of the family to another member of the same
family. The general solutions of the determining equations of isovector
fields inducing these kind of transformations are also provided.

9.2. IDEALS FORMED BY DIFFERENTIAL EQUATIONS

We consider an n-dimensional smooth manifold M". A set of partial
differential equations with A number of members of order m involving the
dependent variables u“, o = 1,..., N might be locally represented by

F"’(:L‘i,u“,uﬁ,uﬁj,... UGy ) =0,a=1,..., A (9.2.1)
where the local coordinates =/, = 1, ..., n in the n-dimensional open set of
a chart of the atlas in M denote the independent variables. We assume that
all functions F'* are differentiable with respect to their arguments. We de-
fine all partial derivatives of order r of u® with respect to the independent
variables x* as follows

«

aru(y
m = Wirigeip> L <viy,dg, - ir <1
where i1 +io + -+ + ¢, = r and 0 < r < m. We adopt the convention that
the index iy does not exist, hence u(jo = u® for r = 0. In order to identify
the global properties of solutions of the system of partial differential equa-
tions, we have to solve a rather difficult problem of joining smoothly the
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results found in local charts, To avoid this problem we shall usually select
our manifold as the Euclidean space M" = R" and we shall suppose that
the system of differential equations are defined on an open set D, C R". In
other words, this will mean that all future developments in this chapter will
actually be of local character.

In order to study a system of partial differential equations via exterior
forms we have to enlarge this system to that of first order partial differential
equations by introducing auxiliary variables because of the fact that only the
first order exterior derivatives are not identically nil. Introduction of auxili-
ary variables requires necessarily to enlarge the dimension of the relevant
smooth manifold extensively.

The (n + N)-dimensional product manifold G = R" x RY = RV
whose local coordinates are {z’,u®: 1 < i <n,1 < a < N} will be called
the graph space. A smooth mapping ¢ : D,, — G will be propounded as a
regular mapping if it carries the property

T (9.2.2)

where 1 = dzt A -+ A da™ is the volume form in R". This mapping ¢ may
be designated by smooth functions z' = ®'(&),u® = (&), 1 <j<n
where (€1, €2,...,€") € D,. However, if ¢ is a regular mapping we ought
to have

i

x 0P 1 2 n
& u_det(a£j>d§ ANAEEA - NdE" 0
due to the condition (9.2.2) which leads to det (0®'/0&7) # 0. Hence, at
least locally the variables & are expressible in terms of the variables z so

that the mapping ¢ may be equally represented by
u® = 0*(¢(z")) = ¢ (a") (9.2.3)

without loss of generality. A function in the form (9.2.3) constitutes a
solution of the system of differential equations (9.2.1) when inserted in those
expressions the equality

F (@', 6% 65 Gijs -+ > Bliriy-i)

is satisfied identically.

We shall now try to represent a system of partial differential equations
via exterior differential forms. In order to achieve this, we have to transform
a system of higher order partial differential equations into a much larger
system of first order partial differential equations by introducing auxiliary
variables as we had mentioned above. To this end, let us define

0
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(9.2.4)

where 0 < r <m,1<1y,...,7 <n. We take of course v = u®. Due to
their definition, the auxiliary variables vf . ; of order r are completely sym-
metric in indices 41, ...,%,. Thus their number reduces to N (”’+:_1) from
Nn'. Hence, when we incorporate the variables u® (r = 0) into auxiliary
variables, their total number reaches to

m _1 '
D:NZ n+r _N n+m :NM
T m n!'m!

r=0

which may be quite a huge number if m is large. The (n + D)-dimensional
manifold whose coordinate cover is given by {2/,v¢; ; :0 <r < m} is
called the jet bundle on the base manifold M. The theory of jet bundles that
makes it possible to define various order partial derivatives on smooth man-
ifolds has been brought forward first by French mathematician Charles
Ehresmann (1905-1979). Since we will be interested in a local approach
here, we shall not treat partial differential equations within the formalism of
jet bundles. That is the reason why we call this manifold by a more familiar
term as the mth order contact manifold and we denote by C,,. We shall
now introduce the following 1-forms on C,,

o oo=dvl, =, det € ANCy) (9.2.5)

iliz-“ir Zligﬂ-ir ilig*--i,‘l

where 0 < r < m — 1. Their number is obviously given by N (”:ﬁ;l) We
name these forms as contact 1-forms. In accordance with our convention,
we evidently get off =0 = du® —v'dz’ for r = 0. Since the exterior
product of all contact 1-forms may be written as

A o =

) Q192 iy
1<a<N;1<i,<n,0<r<m-—1

A dv +--#0

. i102° iy
1<a<N;1<i,<n,0<r<m-—1

we see that they are linearly independent on the manifold C,,.

The system of mth order partial differential equations (9.2.1) is now
reduced to a system of first order partial differential equations described by
the relations (9.2.4) and the algebraic equations

Fo(z',u®,v%, Vijs ey Vi) = 0, a =1, A (9.2.6)
(9.2.6) merely represents a functional relation among the coordinates of the
contact manifold. Therefore, they only help to define a submanifold of C,,.
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We can now lift a regular mapping ¢ : D,, — G depicted by u® = ¢°(z*) to
the regular mapping ¢ : D,, — C,, if we choose this mapping in such a way
that the pull-back relations

(e} a i *ra
¢ 7172 gy (Ui1i2~-~7:,,,7: - v717277) dz' =0, ¢"F*=0
are satisfied, in other words, we get
.
212921
Viigoii = — 57 0<r<m-—1L
r oz’

On applying successively the above equality, we immediately observe that
the independent coordinates in the manifold C,, are reduced to the form
Viyiy = Phiy iy 0 <7 < m and the mapping ¢ constitutes a solution of
the system of partial differential equations. According to Theorem 5.8.2 we
find that ¢*dF* = d(¢*F®) = 0. Thus, this solution is also a solution of
the ideal
J(ofy i, 0<r<m—1;dF")

generated by 1-forms. Since an ideal generated solely by 1-forms is com-
plete (see Theorem 5.13.1), then the ideal J contains all forms annihilated
by the solution of the system (9 2. 1) Furthermore, because of the commuta-

tion relation ¢*dof;, ; = d(¢*of; ;) = 0 the mapping ¢ annihilates also
the closure
J(08s,.53dof, i ;dF1<a<N,1<i,<n,0<r<m-1,1< a<A)

of J. Thus, with the purpose of applying the Cartan theorem we can take the
closed ideal J into account instead of the ideal J. However, due to the sym-

metries of vl‘*@ i with respect to their subscripts, we can write

dof. . = —dvt ANdxl = — 0%, Adxt — dxd A dx’

2112+ *p L1L2 7Z 2112 7’L 2112 77,]

= —o¢ A dx

7,17,2 Z 1

for 0 < r < m — 2. This means that the forms do7}; ., ,0 <7 < m —2 are
already in the ideal J. Therefore, it becomes sufficient to add only the forms

dof;, .,  that cannot be expressed in this way to the ideal to obtain its
closure. The closed ideal
I - I(U 021 ) 01112’ te O-'io;iQ"'i7n—l; dagiQ"‘i7n—l)

will henceforth be called the mth order contact ideal. On the other hand,
we have to consider in essence the closed ideal
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~ ~ « (o fo
=J(c", 0%, 08 ,...,08 . o, . i dos
‘J ’J( > Yy Vi) 72 -2 T 2102 1) 1182 " *Tm—1"

dF(L)

called the fundamental ideal. The most systematic method that we may
have recourse to find a solution of this ideal is to determine its characteristic
vector fields to utilise Theorem 5.13.5. We first wish to implement this pro-
cedure on a rather simple example. Let a first order partial differential
equation with a single variable be given by

F(z',u,u;) =0, 1<i<n (9.2.7)

Since m = 1, we write v; = u ;. (2n + 1)-dimensional contact manifold C;
has the coordinate cover {z', u, v; }. On this manifold, we define the forms

o=du—vids' do = —dv; A da’ dF—a—Fd +8_qu+8Fd
ox’ ou ov;

A vector field

X'
V= oz’ ou "D,

is a characteristic vector field of the closed ideal J; = J(c, do, dF) if one is
able to find functions \, u € A%(Cy) so that the relations below are satisfied

iv(0) =0, iy(dF)=V(F)=0, iy(do)= Ao+ pdF

from which one obtains the following equations that must be satisfied by the
components of the characteristic vector field:

oF oF oF

_ iXi =0, X — =0, 2.8
U—-v 0 £y ey U+ 90 7IV 0 (9.2.8)
; ; B oF oF ; oF
—Vidz"+ X' dv; = (A—FM%)du— ()\vz _u(?xi>d$ +'LL(91)7;
(9.2.8)3 and (9.2.8); lead to the result
oF 4 oF oF oF OF
= —pi— X' =p— =AU Vi= — P\ {7V »
A Hau Mavi’ v M(%iv Vi “(au” axl)

Hence, the characteristic vector field is determined as follows:

oF 0 8F6_<8F 8F>8}

V=ilgnar " Yavon \oz T aa") vl

(9.2.9)

This vector field is 1-dimensional. We verify at once that (9.2.8), becomes
identically zero when we insert into it the vector field (9.2.9). As is well
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known, the solution manifold is produced by the integral curves of the char-
acteristic vector field (9.2.9). If we denote the parameter of the curve by ¢,
then 2n 4 1 autonomous ordinary differential equations determining this fa-
mily of characteristic curves on the manifold C; are given by

dz! B oF du oF

dvi _ (8F 8_Fv,>
dt ozt ou '

where we have chosen 1 = 1 in (9.2.9) without loss of generality. The vari-
ation of the function F' along a characteristic curve is found to be

dj_aFdxi+ajdﬁ+adei
dt — Oxi dt = Ou dt v dt

when we take (9.2.10) into consideration. Thus, F' remains constant along a
characteristic curve. This means that if the differential equation is satisfied
at a point of the manifold C;, it is then satisfied along the characteristic
curve through that point. A solution in the form u(z?,...,2") —u = 0 of
the equation (9.2.7) represents an n-dimensional submanifold, or a hyper-
surface, in the graph space. The normal vector to this hypersurface is deter-
mined by its components (v; = u;,1 < i <mn; — 1). Since we have
du  Ou dz’ dx' oF

= :’[}4—:’[)7:—

dt ozt dt " dt ov;

on this hypersurface, characteristic curves are also on it. However, to each
point of the curve we attach a surface element perpendicular to the normal at
that point. Hence, we form a characteristic strip as was reflected in the clas-
sical terminology. In order to find the solution we need to consider charac-
teristic strips emanating from an (n — 1)-dimensional initial manifold S that
is not tangent to the characteristic vector field and prescribed by the initial
conditions. Let us assume that initial submanifold S is depicted through pa-

rameters s = (s',s%,...,5" 1) as follows:

o =axl(s), i=1,...,n.

We suppose that the initial data on this manifold are given by the relations

uw=uy(s), v;=1(s),i=1,...,n

in terms of parameters s = (s!,s%,... 5" 1). But, these data cannot be
chosen arbitrarily. They have to satisfy the conditions
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dug 0z
ds> ' Os™’

F(xh,up,v)) = 0; a=1,...,n—1.
We thus obtain n equations to determine n initial conditions . We shall
assume that these equations have at least one solution. Let us now denote
the solution of ordinary differential equations (9.2.10) under the initial con-
ditions ' (0) = x{(s), u(0) = up(s), v;(0) = v¥(s) by the relations

i =X (t;s), u=U(L;s), v;=Vi(t;s).

Since we have assumed that the characteristic vector field does not belong
to the tangent bundle of the initial manifold, we can write

ox! oxt  oxt
=
oL, X2, xmy |9XF o 0x?  0x?
a(st,...,s" 1 t) —|ast o 9t ot
oX" QX" DA™
ast sl ot
ox! oxt  oF
R e
0x? 0x?> OF
— |35t 7 sl G, | #0.
dxX"  9x"  9F
9st T st ov,

Hence, in the neighbourhood of the initial manifold, n variables ¢, s“ can be
expressed in terms of variables ' by resorting to the inverse mapping theo-
rem whence we arrive at the solution of the partial differential equation
(9.2.7) in the following form

w=Ut(x),s(x)) = u(z!, 2, ..., 2").

We shall now deal with some applications of the general solution discussed
above.
Example 9.2.1. We consider the equation

n 8 2 n
F:;%Z) —1:;1)?—1:0

known as the eiconal equation in the geometrical optics. Since
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oF oOF oF
N W P

the characteristic equations (9.2.10) take the form

dz! du & dv;
=2, — =2 2=92 — =0
at ~ 7" ;U’ dt

from which we reach to the conclusion
z' =200 (s)t + i (s); u =2t +up(s); v =v(s), (b)) = 1.

Thus, we can express the solution implicitly as

vt =0)(s)[u—ug(s)] +zh(s), Y () =1, of 833 -0

i=1

by eliminating the parameter ¢. Consequently, the solution manifold z‘(s)
corresponding to a chosen value for u is obtained by translating the initial
manifold by an amount u — uy(s) along a unit vector field v’(s) which is
orthogonal to that manifold and the solution u = u(x) is determined by this
family of (n—1)-dimensional level manifolds in R". u
Example 9.2.2. Quasilinear Equations. Let us consider the equation

a'(x,u) —b(x,u) = 0.

ou
ox'
Since F' = a'(x,u)v; — b(x,u) = 0, we find
OF _ . OF _0d ob OF 00 0
v, 7 Ou Ou ' Ou ort  drt "’ 9x’

Hence, the equations (9.2.10);_» take the form

dﬁ =a'(x,u), d_QtL = a'(x,u)v; = b(x,u).

The solution of a first order quasilinear equation then follows from the solu-
tion of the above ordinary differential equations. [ ]
Example 9.2.3. Hamilton-Jacobi equation.
The Hamilton-Jacobi partial differential equations governing the mo-
tion of a dynamical system of n degrees of freedom [see (11.5.18)] [after
mathematicians Hamilton and Jacobi] are given by
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oS
——G—H(ql,...,q”,t

= a8 85)20

where S = S(q,t). We denote the generalised coordinates by (¢!, ..., q"),
time by ¢ and the action function by S. Generalised momenta are defined by
p; =090S/0q",i=1,...,n. H is the Hamiltonian function. If we introduce
p = 05/0t, we obtain

F:p+H(q17"'7qn:t7p17"'7pn) =0.

If we denote the parameter of a characteristic curve by s, then it follows
from (9.2.10); that

at.  oF

ds 0Op
Thus, we can choose s = ¢ without loss of generality. Since 9F /9SS =0,
then equations associated with characteristic strips are found to be

d¢¢ _OF _OH

dt_api_api7

ds oF oF 0H O0H
E:pia—piﬂLpa—p:pia—piﬂLp:pia—pi—
dp ~ OF  9H dp  OF  OH
dt ot ot dt  o¢ g’

As a result, we obtain the well known Hamilton equations of analytical me-
chanics:

d¢ 9H dp.  9H dS  9H dp  9H

_ S R R -
dt  op, dt g’ dt  Pop, di ot

The method of characteristics that works quite well for the partial dif-
ferential equation involving a single dependent variable turns out to be ra-
ther ineffective when looking for the solution of the general system (9.2.6).
Let us denote the characteristic vector field V' of the ideal J,, generated by
that system as follows

0 . 0 . 0 N 0
oz’ +U ou® +Vi o ot “731)?1

0 <N 0
ox! + TZ_OV;“” ove

i1,

V=X

“tm

— X!

If we note that
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F* .~ OF°
dF® — 9 dxl—i—zaaT dvi.

- %
Oz =0 IVir---i,

then the vector field V' must satisfy the relations

iv(of, )=V, —v X =0, (9.2.11)
oF* . & OF“
iv(dF*) =V (F*) = - X' — VY. =0
iy (dF") = V(") = G X'+ 3 gV,
iv(dofy, i, ) = = Vi, pde’ + X dof
m—1
; “6
= Z)\ggll N 'gm—l 071 ° 75 + Aloi : 'imfladFa
s=0
where MG AR L € AY(Cp), 0<s<m—1. (92.11), then
yields
e =0 X, 0<r<m-—1, (9.2.12)
a m—1 a a
<8F4+ oF_ H>Xﬁ+ oF . _
81‘2 — 8,006 110t a,UOZ 11 tm
r=0 11y 11t

whereas (9.2.11)3 results in

« i 7 (e}
= Vi, ade+ X doy

= oFe
_ i o 3
- |:>\f3il"'im—l + Ail"'im—la 8 ﬁ i| dlvjljé
s=0 Ujpow g
m—1

+ [A® @ _Z)\Ofﬁl"'js P da
11 lp—10 8]}7 ﬂil"'im—l ‘]1]52

s=0
Fo
+ A9 0

(A0 'im—la ﬂ
avjl' ) 'jm

We thus see that the following relations must be satisfied
oF*

)\gili:ﬁl = — g‘i"'%rkl“aT’ 0 S S S m — 1 (9213)
Ui js
a m—1 a
o« _ _po [EJrZai”g ]
1 tm—110 1" tm—1a al,z avg ) Jioest|?

s=0
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- OF® 3
devioi-»-i 1z:A?11 laidv%'...‘ .
m— m— ﬂ Ji - JIm
9vj,...j,
It then follows from (9.2.13)3 and (9.2.12), that
i ca L Jm—1 oF*
X'656;,--6, = Aial"'im—laiavﬂ (9.2.14)

oF° >j<87Fb = 9Ft m)

cip1b [0 7 1] J1grt
i o' 1Z v,

(xer — A

o 'im—li

After having performed contraction operations on indices («, ), (j1, 1), - - -
(Jm—1,%m—-1) of Kronecker deltas on the left hand side of the expression
(9.2.14); we find that

) Fa
n"INX' =AY 0

21--'i —1a o
G
17 tm—10

(9.2.15)

If we insert the above expression in (9.2.14);_5, we deduce that the func-

. o . .
tions A{ , , must satisfy the equations
A7 oF" ag Jm-—1 m—1 7 A or
k‘]"'k’mf](l 8,1)7 . 5[3 il o '6im—1 -n N Z‘1"'im—la 8 ﬂ - 07
k?]"'k?m,ll ,Ujl.]m—ll
C a
a L 5‘1 — nmleAq . L X
i1 im-1€ Go o b i im-1b 5o

7/1"'7;171—17: Zl"'im—li

(8Fb &R OF ):0'

. v ..
o' g Vv
=0 0Y5,..,

When N > 1, we can always pick out the indices o and [ as to be a # (.
In this case, if all partial differential equations are of order m, then none of

a
the derivatives «=0and X' =0.

vanish implying that A
v

g -
Ju Jm-r

Consequently, we find VL?Z = 0 for 0 < r < m. Hence, the dimension of
the characteristic vector space is zero and we end up only with the trivial
solution that consists of constants satisfying the equations (9.2.1). If N =1
and m > 1, then we immediately see that we obtain the same result. If some
equations in the system have lesser orders than m, some coefficients
Af . ;. may not be necessarily zero. In the case N =1, m =1, A > 1,
the first set of equations above are satisfied identically. On arranging the

second equations, we obtain
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F™A, =0
where the antisymmetric A x A matrix F is given by

OF*9F"  OF"OF* ‘(8Fa8Fb_8FbaFa>
Ui\ Bu Ov; ou Ov; /°

P = — P = —— —

ozt Ov; ozt Ov;
If only det F = 0 (when A is an odd number this determinant will always be
zero) then all coefficients A, do not have to vanish and we may have the
opportunity to write

XizAag, UazvozAa%Zw, V= —Aa(g+gvi),
oF® s 0 0 oF* QF¢ 0
V=[G (o oge) ~ (G B o)

The dimension of the characteristic subspace is equal to the number of inde-
pendent functions A,. On the other hand, if N =1, m =1, A = 1 then we
arrive at the previously found solution

X AL, U= Vo= AT u, Vie —A(ge+ S,
oF s 0 1o} oF OF 0
V= A[@vi (&ri 02%> B (ari %vi> a_vj

A nontrivial solution is likewise obtained for a system of quasilinear
first order partial differential equations with same principal parts

a'(x, u) ZZ; b (x,u) = 0.

In this case, the characteristic vector field can be written as follows

d 0 0 0 0
Oz’ U ou® +Vi o

V=X

On the other hand, since we have to take F'* = a'(x, u)v® — b*(x,u) = 0,
then the equations (9.2.12-13-14) lead to the relations

oF" oOF"

Ue = qu7 a_ _ A« ,,X’iéa:Aa :Aaé“/z:Aa i
'Uz ) y aud 06 y 8/1)? o4 ﬂa ﬂa
whence we deduce that A§ =65 and \§ = — 9F*/ Ou’. Therefore, the

components of the characteristic vector field are found as
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OF* OF“ ﬁ) ‘

X'=a", U"=9vd, V, __(ﬁxi auﬂvi

K3
These components satisfy identically the relation (9.2.12),. Since one must
write a'v® = b®, the solution of the system of partial differential equations
is constructed by means of the solutions of the following system of ordinary
differential equations

dz’ -
SO,
d «

(Z = b"(x,u).

To study general solutions of differential equations we usually make
use of Lie transformation groups. In such kind of methods, the isovectors of
closed ideals generated by differential equations play quite a significant
part. Although symmetry groups have emerged at the beginning of 20th
Century, their investigation through exterior differential forms started by a
seminal paper published on 19711,

9.3. ISOVECTOR FIELDS OF THE CONTACT IDEAL

Let C,,, be the contact manifold defined in Sec. 9.2. We first consider
the closed ideal

In=Z(c% 08 0, ....00 do{ ) (9.3.1)

17 Y iqiy? iz i1 @ dyige iy

which we have called the mth order contact ideal. The properties of this
ideal will remain the same for all system of mth order partial differential
equations. We know that a vector field V' € T'(C,,) is an isovector field of
the ideal Z,, if it satisfies the relation £yZ,,, C Z,,. On the other hand, since
the ideal

Z(o?, O'ﬁ, Uﬁw, e 0%2,“%71) (9.3.2)
is generated by forms of the same degree (1-forms in the present case),
1sovector fields of this ideal will be the same as those of its closure Z,, in
accordance with Theorem 5.12.4. We may represent a vector field V' by the
expression

IHarrison, B. K., Estabrook, F. B., Geometric Approach to invariance groups and
solution of partial differential systems, Journal of Mathematical Physics, 12, 653-
666, 1971.
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m

8:1:1 Z

=0 Vi,

V=

€ T(Cp) (9.3.3)

where X', V;* ;, € A(Cy,) with 0 <r < m. Here, we adopt the conven-

Uy

tions
Ve =V =U"
and
m 8
=0 v},
0 o 0 o O o 0
U 8ua+‘/lla—a+‘/lllzaa +‘/; Zma,u

2122 el

There are of course summations on all repeated dummy indices. Since the
variables v%_ . are completely symmetric with respect to their subscripts for
r > 2, only the completely symmetric parts of corresponding components
V2 ; will survive in summations above. Therefore, without loss of gener-
ality we may assume that V;,..; are completely symmetric with respect to
their subscripts for » > 2. As is well known, the necessary and sufficient
conditions for a vector field V' to be an isovector of the ideal (9.3.2) are the

satisfaction of the following relations

m—1

L0t = )\gg’;“'?rg@ - k=0,1,....,m—1 (9.3.4)

11 sl Jrege?
r=0

for certain functions X”l jﬁ' € A(C,n),0 < k,7 < m — 1. The discussions

presented in this section and the subsequent one are borrowed from the
work cited below?. On employing the formula (5.11.5) to calculate the Lie
derivative, we obtain

£Va'fi =iy (d ) + le( )
= — V;la i 'dl' —|-de1)- i +d(Va XZ 0 W)
= VO AV 0 dX
by recalling the relation dagi__ik_ = —dvz-.-iki Ada'. Therefore, (9.3.4)

yields

2Suhubi, E. S., Isovector fields and similarity solutions for general balance equa-
tions, International Journal of Engineering Science, 29, 133-150, 1991.



502 IX Partial Differential Equations

aV;laﬂr —Ua aX] _VO/ dl’7
oxt iq- ik o' [ARRR7%)
mTOVE OX
+ E [ R LU T ]dv
3 il ﬂ Jie g
r=0 avjl"'jr a ]r
m—1 5 5
aji-jr ]
=D Mgy (V5 = VG da’)

r=0

On equating the coefficients of linearly independent like 1-forms at both
sides of the foregoing expression, we arrive at the following relations

m—1 . . ava ) an
ajijr, B _ i
- Asgill“'ikvjl"'jrj_ ale - - U;?lr"ik,j i - V7 W,O <k<m-1
r=0
. 8V.a » oXi
G = s i———, 0<k,r<m—1 (9.3.5)
Biv- iy, 9 [i it g 8 ) )
,UJIJI v]]jr
oV oX!
T ,U;l ‘il :Oa 0<k<m-—1
(91)]51 J " ov 5 i

Equations (9.3.5), determine the functions )\gﬁ Insertlng these functions

into equations (9.3.5);, we reach to the recurrence relations given below that
relate the components V"', ; to the components V" ; and X"

ove 0X7
V;]azkz = le - ’Ug..im% (936)
m—1 aVa ) 8Xj
+Z[ = e | Y 0 Sk <m— L
o) welkg o 6 Jieeget?
=0 L0V}, 0v,...;,

Let us now consider equations (9.3.5); and start with equations corres-
ponding to k = m — 1. If we differentiate these equations with respect to
the variables U,Zl, ., » e then find that

82‘/;(1 Z‘m 1 _ ,U aQXZ
ﬁ oy 7m lZ ﬂ Yy
8vjl"‘jmavkl”'km 8 Jmavkl"'k/‘m
i
aghi  shughe OX'
— 6088 Z2 =0,
oy .
JrJm

When we take into account the symmetry of the second order derivatives
with respect to the variables v, . ; , the above equations give rise to
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k km* J— j ]VL*
636111 e 6imfll a/vﬂ - 556i11. . 6in1—11 a,U’Y (9'3'7)
JlJm kl"'km
Contraction operations on indices (a,7), (k1,%1), ..., (km-1,%m—1) lead to the
result
O XFm 0Xm
Nnm™t = . (9.3.8)
o’ o’
jl"'jm—ljm jl"'jmflkm
Introducing (9.3.8) into the right hand side of (9.3.7), we get
DX L X
v ok Km— _ v CJ Jm— m—1
635i11' ’ .6im—ll o 3 - 6[(;6711 o 6in,,11 Nn 8,0”/ ]
Ujljm k]"'km—ljm
Contracting this time the indices (o, 3), (j1,%1),---5 (Jm-1,%m—1) above, we

finally reach to the conclusion

8Xkﬂl
(N*p2m=h 1) =0.
afl}kl' . 'kmfl]‘m
When we take partial differential equations into consideration, we clearly
have n > 1. Furthermore, if we assume that m > 1, then for N > 1 we get
Nn™ 1 =£ 1. When m = 1 we will have to distinguish the case N = 1 fiom

the case N > 1. We thus find
X'

=0 (9.3.9
8
8Ujl"‘jm
and it follows from equations (9.3.5)3 that
Ve
=0, k=0,1,....,m—1 (9.3.10)
81}51 J

This means that the functions X’ and V,* ; cannot depend on the variables

i ik

vf..;, - Let us now write the relation (9.3.6) for k = 0,1,...,m — 2:

i1t

o j m—2 a J
0 VR . 0XT RRTOVRL, . XTI )5
Wl i RESUYEP TN Z B etk o 0 Jueegrt
=0 L0V, Ovj,...j,
ove ., 0X’
11k _va . _ /Uﬂ . OSkSm—Q
B i1k 3 J1Jm—12?
81} 81}
J1 Im—1 Ji o Jm—1
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Because of (9.3.10), the functions V7 ; ; must be independent of the vari-

ikl

ables vfi. —.jm_yi» Nence their coefficients have to vanish:
ove . OXJ
i g mgg——*zaoékém—2. (9.3.11)

JreJm—1 *Jm—1

Equations (9.3.11) carry the same structural properties as equations (9.3.5)s.
Therefore, they lead similarly to

X' ove
=0, bl =0 k=0,1,...,m—2
o’ o’
]1”‘.77”,*1 ]1”'.7777,71

if Nn™=2 2 1. Starting from this result we can verify by mathematical in-
duction that the following relations are to be satisfied if Nn™ 571 #£ 1

oxX' ovVe
— =0, 77” =0, (9.3.12)
o' o'
_71 ]ms ]1 ]m s
where k =0,1,..., m—s—1,s=0,1,...,m — 2. We have shown above

that these relations are true for s = 0, 1. We shall now assume that they are
true for s and try to prove that they are also true for s 4+ 1. On writing the

relation (9.3.6) for k = 0,1,..., m — s — 2, we obtain
7 8‘6?11; e X/
i1eeigt Ot i1 i ori
m—2—§ ava (9Xj
o 5
+ [ T Viisi g i (Vi
r=0 j]"']r Ji g
ove ¢ ‘
7“—7)?1 mi oo H0<kE<m-—s—2
87) a ﬂ J1Jm—s—1
J1 e Jm—s—1 “Jm—s—1
But because of (9.3.12), the functions V. ; ; cannot depend on variables
v_’?l, —jm_o,i SO that their coefficients must vanish:
ove 0X/
— e —————— =0, k=0,1,...,m—s—2.
ol I o)

J1Jm—s—1 ©Jm—s—1
We thus obtain in the similar fashion

X' Ve
57———:0,——Li—zo,k:QL“wm—s—Q
V.

3
Jr s Jm—s—1 avjl' “Jm—s—1
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if Nn™=5=2 £ 1. This justifies the proposition (9.3.12). However, we have
to be a little bit more careful for the case s = m — 1. If we write the relation
(9.3.6) for k = 0, we then find

ou« 0XJ

ve=20 et (
! ozt U]8x1+

ou“ LOXIN 4 ou” LOXEN 5
8uﬂ B U‘j 8’[1/3 )/Ui ( afu[j Y ayﬁ )Uﬂ
J J
On the other hand, the functions V,* must be independent of the variables
vz so that one gets
ou“ ¢
— — v ——= =0. (9.3.13)
v’ " o)
Next, we differentiate (9.3.13) with respect to the variables v]. The sym-
metry of the second order derivatives leads eventually to the result
oX* X'

Vol Ve

A contraction on indices (a, ) gives
ox* B 0X'
ol ov)

7

(9.3.14)

On inserting this result into the above expression and contracting this time
on indices («, ), we finally obtain

oxk

o
v,

(N? —1) =0. (9.3.15)
In evaluating this inequality, we have to distinguish two cases:

(). We assume that N > 1. Hence the number of dependent variables
is more than one. In this case (9.3.15) and (9.3.13) yield

Xi «
9 =0 and ou =0.
80? (91),?
We thus obtain
X'=X'(x,u), VS=U"=U"x,u). (9.3.16)

Thus X’ and U*® components of the isovector field have to depend solely on
coordinates x' and u® of the graph space. If the components (9.3.16) are
inserted into (9.3.6) on taking notice of (9.3.12), we realise that other
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components of isovector fields of the contact ideal are determined by the
following recurrence relations

o Vi, o 0X
Vi i = 81;;2 i /Uiy"ikj% (9.3.17)
oV ox/
i [ aﬁls”‘ - W o
+Zh iy “ bk =0,1,...,m— 1.
’U
JieeJr
Let us now define a set of vector fields, or differential operators, D,EM where
i=1,...,n,k=0,1, ...,m — 1 as follows
0
DM = e (9.3.18)
13 a Z Zl 7 7,6 Zal 74]
0 + vy 0 +v 8 +--+v 0
= - v; L
ort b Oue 178 (1 71 Y 8,0?/

1k
This operator may also be defined by the recurrence relations
0 _ 0 o 0 k1) _ k) |, o« 0
.D _D a.%J + Ui au” 9 'DZ - D7 + 'U7l 7L+17 r

Tk+1

By employing the operator defined in (9.3.18), we can express the recur-
rence relations (9.3.17) connecting isovector components in the form

Ve =DPwe )=, .DP(x7) = ¥ — 02X

1 gt i Q1] i 21 ik Q10
where 0 < k < m — 1. By introducing the functions

AR

we can also write

Ve =D ) =D (i (0f.,)). (9.3.19)

SRRy X SRR ) [ERRR T

Next, we define vector fields V; € T'(G) by

, 0 0
VG = XZ(X, u)% + Ua(X, u) 811,04 .

Since T'(G) is a Lie algebra, these vectors generate a Lie group of diffeo-
morphisms mapping the manifold G onto itself. On the other hand, we

(9.3.20)
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know that isovectors of an ideal of the exterior algebra constitute a Lie
subalgebra of the tangent bundle, or the module, of the manifold involved.
We denote the Lie algebra of the isovectors of the contact ideal Z,, by
£z, CT(Cp). A mere choice of n+ N smooth functions X’(x,u) and
U%(x, u) determines a uniquely defined member

0
V=Vs+ ;D (Fe ., 1)8% -
of the Lie algebra £7, . Therefore, this expression can be regarded as the /ift
of a vector Vi € T'(G) to a vector V € £7 C T'(C,,). Since £7, is a Lie
algebra, it generates a Lie group of diffeomorphisms on C,,. It is evident
that this group is a subgroup of the Lie group of diffeomorphisms on C,,
generated by the Lie algebra T'(C,,). But it is the only group preserving
contact 1-forms. If we regard the manifold C,, as a fibre bundle on the base
(5, then the isovector V' is called the mth order prolongation of the vector
V. We adopt the notation £7, = pr™ (T(G)). The rather complicated

structures of prolongations are clearly illustrated in the two examples below:

oue  0XI  SoU° |, 50X

Ve = = — v Eye + v 907 UiV 5o (9.3.21)
o ove o oxk o cave aXh 5 OV
i (auﬁ Uik By ﬁ) Vi o)
RUe o*Xk QU 4 QU LU
= 5500 ~ " a00 ¥ 5arae ¥ swaws T ew
o OXE L OXt 2 X* Xk .
ih g Uk g i kajaﬂ 7 kaxauﬁ
s 0T 5.0 X" a?xk

Uik + Ukv + Ui Ujk‘

UiV gurous ( )auﬁ B

If we recall that the variables vf; are symmetric with respect to the indices
i,j , we observe in the above relation the components V7 become symmet-
ric with respect to the same indices as it should be.

(i2). We now assume that N = 1, that is, there is only one dependent
variable. If we write vz-ll__,ir = j...i,,7=0,1,...,m, then the isovector
field may be represented by

m

V=X 8,+U3+ZV-.., 9

9 1 1y
oxt ou —1 ! 78vi1...ir
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where we denote 1/;37 = Vj,...;,. In this case, the relation (9.3.14) becomes
oxt X!
ov;  Ouy
The solution of this set of equations is found to be
, , oF
X' =X == 9.3.22
(xuv) = =5 93.22)

where F' = F(2', u,v;) is an arbitrary smooth function of 2n + 1 variables.
Due to this structure of functions X*, equations (9.3.7) are then satisfied
automatically. With U! = U, equatlons (9.3.13) lead to

U _ X OF
(%i =Y 8vi N Y 87)ja’l)i
0 oF
= a—(a— - F)

The integration of the above differential equations involves an arbitrary
function of variables ' and u. Absorbing this function into the arbitrary
function F', we obtain

oF

U= U(X,U,V) =F —’UJ%
J

(9.3.23)

Other components of the isovector field are clearly given by the relations
k k) [ vj
Vi = DV Vi) = vi,a DI (XF) (9.3.24)

where the operator D ) of (9.3.18) should now be expressed as

ka) 8 + szl z,z

Z1 77

The recurrence relations (9.3.24) make it possible to determine all compo-
nents of the isovector field uniquely once one chooses a smooth function
F(x,u,v). The components X* and U are then determined uniquely through
the relations (9.3.22) and (9.3.23). The relation (9.3.24) may be explicitly
expressed as

Vi, i

ox’ 1 Axidu;

Vi =
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+ (L/k O°F ) O°F (9.3.25)

Viyoini o Vi T VikViy- iy j
ou Y Qudv; " Qg Qv

k

OV

+) )i 8@? L0<k<m—1.
r=1 Ji-Jr

In general, the vector

< 0 0

Vo = Xl(x,u,v)@ + U(x, u,v)%

is no longer dependent only the coordinates of the graph space. Hence, we

cannot interpret the isovector field as a prolongation of a vector field V in

T(G). In order that an isovector is a prolongation of a member of 7'(G), the

functions X’ and U must be independent of variables v. On the other hand,

we easily see that in order to be able to obtain X’ = X(x,u), the equation
OF /0v; = — X'(x,u) requires that the function F' must have the form

F= — X'(x,u)v; + G(x,u)

In such a case, (9.3.23) yields U = G(x,u). Hence, isovectors are found to
be mth order prolongations of vectors Vi € T(G) if only F is an affine
function of variables v;. Otherwise, isovectors may be interpreted as pro-
longations of the tangent bundle 7'(C;) and one may then write Jz, =
pr™=U(T(Cy)).

The structure of isovectors corresponding to the case N = 1 might be
illustrated to some extent by the following examples:

X= - gi, U:F—vig—i, F = F(x,u,V) (9.3.26)
OF oF
Vi= oz’ * i
Voo OF O°F PP OF ~O°F
0= oo Vouow T Vouor T dupowi T dupon
oF 0*F 0’F 0*F
+ Y 5 + Vivi sy + (vivje + Ujvik)m + 'Uik'Ujlm

We can collect the cases (¢) and (42) discussed above in the theorem
below:

Theorem 9.3.1. 4 vector field V = X'0/0x' + > V., 0/0v} . ; of
r=0

i1

T(Cy,) is an isovector field of the contact ideal L, if and only if the
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relations V" ;. = Dl(.k)

SRR X!

—v¢ X)) for 0<k<m-—1 are

1 tk]

satisfied. The operators ng) are given by (9.3.18). To determine isovector
components completely one has to prescribe n + N smooth functions X' =
X'(x,u) and U= U%x,u) when N > 1, whereas a single function F =
F(x,u,v) would be sufficient when N = 1 through which the components
X' and U are found as X' = — OF /Ov;,U = F — v;(OF | 0v;). O

Since isovectors forming a Lie algebra produce groups of diffeomor-
phisms, we can state that this theorem is a somewhat generalised version of
the celebrated Bécklund theorem for N > 1 [Swedish mathematician Albert
Victor Backlund (1845-1929]: The most general diffeomorphisms on C,,
preserving the contact structure are prolongations of diffeomorphisms of
the graph space. Since this result restricts substantially admissible diffeo-
morphisms on C,,, it creates a rather significant obstacle one has to sur-
mount in determining solutions of partial differential equations by resorting
to transformations preserving contact structures. We shall be able to over-
come this obstacle later by choosing a more convenient ideal of A(C,,)
instead of the contact ideal Z,,, [see Sec. 9.7].

The next step after having found isovector fields of the contact ideal
would be to determine linearly independent isovector fields of the closed
ideal generated by the given system of partial differential equations. Thus, it
will become possible to obtain Lie groups of symmetry transformations that
leave the system of partial differential equations invariant through which
one can obtain families of new solutions from a given solution. However,
this approach proves to be quite fruitful as far as the analytical procedures
are concerned in balance equations derived from conservation laws. Since
natural laws are generally of this form, many field equations encountered in
physics and engineering fall naturally into this category. Thus, we can say
that balance equations are come across most frequently in practical applica-
tions. This subject will be discussed in detail in the subsequent section.
However, we shall try here to elucidate the approach that we use to employ
in determining isovectors associated with a given system of first order par-
tial differential equations through a somewhat complicated example.

Example 9.3.1. We consider the partial differential equations intro-
duced in Example 8.7.3. The functions u(z,t) and c(z,t) satisfy the fol-
lowing first order partial differential equations

11"k

1
U + uty + accy, =0, ¢ +ucy + —cu, =0, a#1
o

where (z,t) € R?. The physical origins of these equations was also ex-
plained in that example. In order to simplify a little these equations, let us
make the transformations
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r=u-+aoac, Ss=u-—ac
to readily arrive at
re+f(r,s)r, =0, s +g(r,s)s, =0

where the functions | and g are defined by

a+1 a—1 a—1 a+1
f(r,s) = o r 4+ o s, g(r,s) = 5 r+ 70 s.
We now introduce the forms wy,ws € A?(IR?) as follows
wi = —dr Adz+f(r,s)dr Adt,
wy = —dsANdzx+g(r,s)ds Adt.

The coordinate cover of the manifold G = R* is given by (x,t,r,s). If we
define a solution mapping ¢ : R? — R* by relations (z,¢,7(z, 1), s(z, 1)),
we then obtain

Pwy = [Tt + §(r, s)rx] dx Adt =0,
P wy = [st + g(r, s)sx] dx Ndt = 0.
Thus, the solution mapping ¢ annihilates the ideal generated by the forms

wy and wy. We can easily check that the exterior derivatives of the forms w;
and wy are found to be as

_1
O ar Ads Adt
[0

dw1: —dwgz -

a—1
=—(ds A dr A ws).
2(7"—8)( S Awy +dr Aws)
Hence, the ideal generated by the forms w; and ws is closed. Since the dif-
ferential equations are of first order, we can just take the isovector field in
the form below
0 0 0 0
V=X—+T—+R—+5—.
oz + ot + or + Os
The components X, T, R, S are smooth functions of the variables x, ¢, 7, s.
In order that V' becomes an isovector field we have to find smooth functions
A11, A\12, Aa1, Moo (2, £, 7, s) so that the relations

Lywi = AMiwr + Apwr, £ywr = Agqwi + Agaws

are satisfied. If we employ the expressions
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iv(w1) = — Rdx + §(r, s) Rdt + [ X — f(r,s) T]dr
iv(ws) = — Sda +g(r,s) Sdt + [X — g(r,s) T]ds

. . a—1
iv(dw) = —iy(dwy) = —

(Rds N dt — Sdr Adt +Tdr Ads)
in the Cartan magic formula, we obtain

fyrwy = [Rt + §(r, S)Rx]dl‘ Adt — [Rr + X, — f(r, s)Tx]dr A dx

1 1
[O“; R+ 8 () (Re + ) — X ]dr At

+ §(r, s)Rsds A dt + [ X — f(r, s)T]ds A dr =
— Andr Adz + Mif(r, s) dr A dt — Aads A dx + Ajag(r, s)ds A dt
£ywy = [St + g(r, s)Sw] dx N dt — [Ss + X, — g(r, s)TT,] ds Ndx
—1 1
~Sedrnde+ [© R+ a; S+ a(r,8)(S + Th) — X]ds A dt
+ [X, — g(r,s)T,]dr Ads + g(r, s)Spdr A dt =
— Aordr A dx + Xorf(r, ) dr A dt — Xaads A dx + Agog(r, s)ds A dt

— Rsds Ndx +

from which we extract the following system of equations

)\11 =R, + X, — f(T‘, S)Tw, )\12 = RS, (9327)
)\21 - Sr y )\22 = Ss + Xx - 9(7”, S)TT
1
Ry +§(r,s)R, =0, a(r —$s)Rs =0, X;—f(r,s)Ts =0
a+1 a—1
o R+ o S—Xi+f(r,s)[— Xo + T1 +§(r, $)T,] =0
1

St + g(r, S)Sx = 05 - a(r - S)ST = 05 X, — 9(7“, S)TT =0

a—1 a+1
R+ S—Xt—i—g(r,s)[—Xm—|—Tt+g(r,s)Tx]:0
2c 20

where we have noted that

r—s

f(?“, 8) - g(ra 5) =

(%

Equations (9.3.27)¢ and (9.3.27), yield obviously
R = R(z,t,r), S=S5(z,t,s).

Next, let us differentiate (9.3.27)s and (9.3.27)9 with respect to s and r to
find, respectively
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a—1 a—1
2a e =0, 2a

S, =0
and, consequently, R; = 0 and S; = 0. We thus get
R =R(r), S=5(s).
On writing the equations (9.3.27)7 and (9.3.27)1; in the form

-1 -1
(X —§(r,s)T],+ =T =0, [X—g(r,)T] + = —T=0,
s o} r 2a
we obtain
(X —§(r,s)T], = [X —g(r,s)T]...
This expression implies that the following relations are obtainable
X—f(r,s)T'=o,, X-—g(rs)T=2,, (9.3.28)
T— _ 2a ®, — a(®s — ;)
a—1 r—s

where ® = ®(z,t,r, s). Hence, the function ® must satisfy the partial dif-
ferential equation

2(r —8)®,5 + (a — 1)(®5 — ®,) = 0. (9.3.29)
It follows from (9.3.27)g and (9.3.27);2 that

R(r) = X; +rX, — 1T} — i [(37“ s+ ;23)2]%

S(s) = X; + sX, _3]}-1-%[(7“—33)(7“4-8) _(r ;QS)Q]Tz.

By adding the first two expressions in (9.3.28) and using the third one we
obtain
[(a+1)r+(a—1)s]® — [(a—1)r+ (a+1)s]®,

2(r —s) '

Inserting this expression for X together with (9.3.28); into R(r) and S(s)
given above, we find that
ZR(T) = - ((X - 1)((I)t9 + g(?", S)(I)Tq) + (OZ + 1)((1)17” + f(ra S)(I)mr)a
25(s) = (a+ 1) (P + g(r, 8)Pus) — (0 — 1) (P4 + §(r, 5) Py ) -
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This result means that the derivatives of the right hand side of the first equa-
tion with respect to variables z,¢, s, and the derivatives of the right hand
side of the second equation with respect to variables x, ¢, 7 must vanish. The
derivatives with respect to ¢ give

—(a—1) ((I>tts + g(r, S)q)xts) + (a+1) ((I)ttr + f(r, S)(I)m)
(a+ 1) (Pus + 9(r, 8)Pats) — (@ — 1) (Piy + (7, 5)Pury)

’

0
0
whence we deduce that
Dy +§(r, 8) Pyt =0, Dy +9(r, 5)Ppst =0
since o # 0. So we can write
Dy + f(r, s)Py = fAL(x, 7, 8), Pis + a(r, 8)Pys = gB.(x, 7, 8)
where A and B are arbitrary functions. We then easily obtain
O, = A(z,r,s)+ ¢, 8), &5 = Blx,r,s)+(n,r,s)
where the characteristic variables are
E=x—f(r,s)t, n=x—g(r,s)t.
Similarly, the following equations must hold
Dy + §(r, 8)Ppry =0, Pisp + 9(r, 8)Ppse =0
from which we get
Ay =0, By, =0.
We thus conclude that
A(z,r,s) = a(r,s)z + b(r,s), Blx,r,s)=c(r,s)x+d(r,s).

Functions A, B, ¢, ¥ must satisfy the compatibility condition ®,; = ®,,,

that is, the following equation must hold

a—1
2

((15 - cr)x - (¢§ - 1/177)75 +bs—d, + ¢s - wr =0.

If we calculate the variables x and ¢ in terms of ¢ and 7, and insert them into

the above equation, we obtain

A=, ey - 56— 0330

+bs—d, + s — Y, =0.
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On differentiating this expression successively with respect to variables &
and 7, we find that

a—1
2(r —s)

(stf + %7;) =0.

We thus have to take
bee(E,7,8) = — (7, 8) = 2k(r, 5)
whence we deduce that
$(&,7,8) = k(r, )€ + m(r, s) +n(r,s),
b(n,r,s) = = k(r, sy’ + p(r, s)n +q(r, 5).

If we introduce these functions into (9.3.30) and arrange the resulting terms,
we then get the following polynomial in £ and 7

a—1 a—1 1
[y + S € 4 [ — 2] + G [(a = 1)(m - p)
— [(a=1Dr+ (a+1)s](as — ) +2(r — s)ms]f
+ ﬁ[— (a—1)(m—p) + [(@+ Dr+ (a —1)s] (a; — )

=200 = )|+ b+ ) — (d+). =0,

The coefficients above must be zero so that we obtain
k(r,s) =ci(r — )", (a+m)s = (c+p)y, (b+n)s = (d+ )
Therefore, we can write
m=w,—a, p=ws—c,n=~Q,—b,q¢q=0Q—d
where w = w(r, s), Q2 = Q(r, s). Thus the only equation to be satisfied is

(a — 1)(a — ¢) + 2afas — 2age, + (a — 1) (ws — wy) (9.3.31)
—2(r —s)wps =0

so that we arrive at the result

O, =c(r—s)*No—ft)? +wr — f(w, — a)t +Q,,
O, = —c(r—s)""z—gt)’ +we — glws — )t + Q.

When we insert these relations into (9.3.29), we see first that we have to
take ¢; = 0 and the remaining terms give rise to the following equations
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2(r — S)wps + (0 — 1) (ws —wy) =0, (9.3.32)
2(r —s)Qs + (a— 1)(Q2s — Q) =0,
(a—Dgla—c)+ (a—1)glws —w,) — 2(r — s)f(as — wys) = 0.

On the other hand, we can now write

2R(r) = — (o — 1)ge + (a + 1)fa,
25(s) = (a+ 1)ge — (a — 1)fa.

Because of the relations R, = .S, = 0, the equations below must be held
— (a—1)(gc)s + (a + 1)(fa)s = 0, (@ +1)(gc)r — (a — 1)(fa), = 0.

If we differentiate the first equation with respect to r and the second one
with respect to s, we find that

(fa)rs =0, (gc)rs =0

whence we obtain

fo = M)+ p(s), ge = 2= )+ () b2 9333)
and
R() = —2A ) — (a = ey
S(s) = =2 u(s) + (a+ V.

a+1

If we insert the expressions (9.3.33) into equations (9.3.31) and (9.3.32)3,
solve the resulting expressions for (o — 1)(ws — w,) and 2(r — s)w,s and
put them into the equation (9.3.32); we reach to the equation

—2(a—DA+2(a+Dp+ (r—s)[(a = DN + (a+ )]  (9.3.34)
+2(a? —1)¢; = 0.
Differentiating (9.3.34) successively with respect to r and s, we are led to
—(a=DN'(r)+ (a+1)u"(s) =0
from which we find
a—1

A(r) = 027"2 +oe3r4cq, p(s) = a1 6282 + c58 + cg

On inserting these expressions into (9.3.34) we obtain
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A(r) = cor? + 37 + ey,
(s) a—1 2+a_lcs oa—1
s) = CoS
a a+1 2 a+1 a+1
If we employ these relations in (9.3.33) and, (9.3.31) and (9.3.32)3, we
come up with the relations

cy— (a—1)c.

ala—1) 20 er(r — 5)
Wpg = — ————C, Ws —Wp = ——— —5).
at+l at+1”
Integration of the first equation yields
—1
w= — %CQTS + m(r) + n(s)

while the second equation then results in
acy(r —s) +m/(r) —n'(s) = 0.

The solution of this equation is easily found as

1

m(r) = — 50402?“2 + c5r + cg,
1 2

n(s) = — gaces + 58 + ¢

Hence, by replacing the arbitrary constant ¢ + c7 by cg, we get

-1 1
40[(&0; . )027“5 — 50402(7‘2 + 52) +c5(r+8) + 6.

w(r,s) = —
On making use of these expressions where they are pertinent and defining
new arbitrary constants as appropriate combinations of old constant, we ulti-
mately obtain isovector components depending on constants a1, ao, as, a4
and a function Q(r, s), being a solution of the partial differential equation
(9.3.32),, as follows

X =az+ {az — ar(a+1)[alr+s)* — (r—s)’] }¢ (9.3.35)
N a[f(r, s)Qs — g(r, S)QT] ’
r—s
T = 4c’a1z — [as — as + da(o + L)ay (r + s)]t + a((is__;m,
R = 4aar® + aor + as, S = 4daas* + ass + as.

Therefore, the linearly independent isovectors are given by
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Vi= —(a+Da(r+s)?—(r— s)Z]tQ

ox
d 0 d
+dafaz — (a+ 1)(r+ s)t ]8—4—4@7“ §+40zs 95’
0 d 8 0 g 0 9 0
o) 0 0
Vo = T_S[[f(r,s)QS—g(r, D] 5=+ (2 - )5 |

To determine the symmetry groups we have to solve the following autono-
mous ordinary differential equations

dz _ dt _ dr ds

T =X@ELTE), o =T@LES), - =RE), - =56)
under the initial conditions Z(0) =z, t(0) =¢, 7(0) =r and 35(0) = s
where € is taken as the flow parameter. Hence, the one-parameter Lie group
generated by the isovector field V; becomes

Z(e) = [(4are — 1)(4ase — 1)] T [(2a(a —1)(r+ s)e — 160°7rs€?
+ 1)z + ((r—s)> —a®(r+s)* — dars + 8a*(a + 1)rs(r + s)e)et]

a—1

t(e) = [(4are — 1)(4ase —1)] 2 [4a2x6 + (1 = 2a(a+ 1)(r + s)e)t]
7(e) = —r/(4are — 1), S(e) = — s/(4dase — 1)

Similarly, the isovector field V5 leads up to the Lie group
T(e) =z, te) =te™, Tle) =re, 5(e) = se,
the isovector field V3 to the Lie group
T(e)=x+et, t(e)=t, T(e) =r+e, 3(c) =s +e,
and the isovector field V} to the Lie group
Z(e) =xe, tle) =teS, T(e) =1, 3(e) = s.

On the other hand, the function Q(r,s) satisfying (9.3.32), generates the
Lie group

T(e) =z + & [f(r, $)Qs — g(r, S)Q,.]e,
t(e) = (Qs — Q. )e, T(e) =71, 3(e) = s.
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If we wish to pass to the physically meaningful dependent variables
(u, c), then the isovector field should be depicted by
0 0 0

0
V—X%+T&+U%+C%.

If we take into account the relations
0 1,0 10 0 1,0 10
or = 3(ge tave) 3 )

ds  2\0u adc

Ju «adc
we readily obtain

Ulu,c) = R(u—l—ac);—S(u—ac)’

R(u+ ac) —S(u — ac)‘
2

C(u,c) =

Thus, it follows from (9.3.35) that
2
X = asz + [az — da(a + Day (u? — ac®)]t + 29, — —UQC,
ac
1
T = 4c’a1x — [ag —ayg+ 8afa + l)alu]t - —Q,,
2acc
U= 4aa1(u2 + a*c?) + agu + as,
C = 8aaiuc + asc
where the function Q(u, ¢) has now to be taken as a solution of the partial
differential equation

a—1

a2Quu - Qcc - Qc = 0.

Hence, the linearly independent isovectors become

Vi= —4da(a+1)(u? — och)tg + dafaz — 2(a + 1)ut] 9

Ox ot
+ do(u® + aQCQ)aau + Saucgc,
Vo= —t;+ui+ci, ngt(,ijt(i, Wz:z:(i%—tgt,
Vo =2(0 - 0) 5 - ]

It is easily seen that the Lie transformation group generated by the isovector
V] is now given by
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z(e) = [1 — 8aue + 160 (u* — a’c?)e’] T {14 4af(a—1)u—
o?(u? — a?c?)el)z — da(a + 1){(u* — ac®) — dau(u + ac)2e}et],
t(e) = [1 — Baue + 160*(u® — a’c®)e?] £ [40’ze

+ {1 — 4a(a — 1)ue}t],

_ u — da(u? — a?c?)e

u(e) = ;
1 — 8aue + 1602 (u? — a?c?)e?

_ c

c(e)

" 1—8aue+ 1602 (u? — a?c?)e?’
Similarly, the isovector V5 gives rise to the Lie group

Z(e) =z, tle) =te *, ule) =ue, ¢(e) = ce,
the isovector V3 to the Lie group

Z(e) =z +et, t(e) =t, ule) =u-+e, ¢cle) =c,
and the isovector V} to the Lie group
Z(e) =xe, tle) =te, ule) =u, ¢(e) =c.

The function Q(u, ¢) generates the Lie group

Z(e) = _

z(e) =z + 2((2u o Qc>e, [ ]
- 1 _ _

te)=t— TQCQCG, u(e) =u, ¢(e) =c.

9.4. ISOVECTOR FIELDS OF BALANCE IDEALS

Before dealing with partial differential equations in the form of general
balance equations, we would like first to consider the system of non-linear
partial differential equations given by (9.2.1). This time we shall represent
this system via n-forms

Ww'=F'peAN(Cp), a=1,..., A

defined on the mth order contact manifold C,,. The volume form of the ma-
nifold M is the n-form p = dx' A --- A dz™. We shall also need the forms
pi = ig (1) € A""1(M). The reason why we use n-forms in association
with the field equations instead of O-forms as before is that they happen to
be more beneficial in determining isovector fields. The regular solution
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mapping ¢ : D,, — C,, introduced on p. 489 gives rise to the relation

W = (¢"F*)(¢"u) =0
since ¢*p # 0 and ¢* F'* = 0. Thus, it annihilates the forms w”. Let us now
consider the fundamental ideal

(0} (0} (0} . (0} . (1)
i Tivins > Tigige iy 1) A4y iy 3 W

In=ZI(c% 0

This ideal is closed. Indeed, if we make use of the definitions (9.2.5), we
obtain

a a aFa ) - 8Fa «
' = dF* A = (W da'+ o ) Ap
—0 i1y
oF" %2 9Ft | P RNOF
- Kaxi +Zava . “) de +Zaw . U} o
r=0 111 r=0 1ty
OF" oo A
- ag; ERRY luim
81}%"'1'771 o '
m—1
. oF® oF*® , ~
== ;37)?1...@.“ Ao, — W”Z Ndoj,..;. € Im

where we have utilised the known relations da’ A = 0, da? A p; = &)
and dv%_,,iwli7n A= dvé’i--»im,ﬂ Adx' A Wi = — alaf;,__iw1 A ;. In order
to determine the isovector fields of this ideal, we first consider the isovector
field V' of the contact ideal whose general structure has been fully revealed
in Sec. 9.3. According to Theorem 5.12.5, we have to impose further the
condition £y w® € J,, on this vector. If we evaluate the Lie derivative of w*
by noting the relations

iy (w*) = F* X', iy(dw) = V(F)p— X'dF* A p;
we thus conclude that the following conditions should be satisfied

fyw' =V (F )+ FdX" A p

m—1
= MF 4+ > N A A A do?
r=0

r=|

'im—l )

But, we must of course show that it is possible to find forms \¢ € A°(C,,),
Nt e AnL(C) e = 0,1, ... m, A2t € APT2(C,,)  satisfying  the
above relations. If we recall that X’ = Xi(x,u) if N > 1, the foregoing
expressions require that we have to take



522 IX Partial Differential Equations

0X!
ou®

A\ = (_1)n—1Fa

«

iy A = 0,1 <7 <m—1; A =0

and the coefficient of y there yields

V(F) + [(%f + gf: o )e - 2| =o.

However, we know that the system of differential equations has to comply
with the conditions ¢*F“ = 0. Hence, the isovector components must sa-
tisfy the relations

SV(F") = ¢ [8F“ +§:88FG Ve =00 F =0

for 1 < a < A. The functions X*(x,u) and U“(x, u) determining complete-
ly the isovector components can be found in principle from the above equa-
tions. These equations are exactly the same as the determining equations for
infinitesimal generators of Lie symmetry groups obtained by the classical
approach [see Olver (1986), Ch. 2]. Consequently, it is not possible to get
useful information about isovector components without knowing explicitly
the structure of functions F'*. The case N = 1 can likewise be discussed in
a similar manner.

On the other hand, when partial differential equations are of balance
type we can attain to much more feasible results than those obtained above.
An (m + 1)th order balance equations with n independent variables x’ and
N dependent variables u® are specified by

82&1‘
ox’

Y =0,i=1,2,...,n;a=12,...,N (9.4.1)

where X% and X are smooth functions of variables z’,u® and partial
derivatives uf,uS;, ..., uS;, ; of functions u® = u®(z') up to and in-
cluding mth order Because of the physical significance, we shall assume
that the number of equations are equal to the number of unknowns. How-
ever, methods that we shall explore fully in this section and some of sub-
sequent sections will be equally applicable to a case in which the number of
equations differs from the number of unknowns, that is, to balance equa-
tions in the form

82(17
oxt

+X=0,a=12,..., A
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As we have mentioned earlier, we suppose that the differential equations are
defined on an open set D,, C R". If we integrate equations (9.4.1) on the
region D, whose exterior unit normal is n and make use of the divergence
theorem, we obtain the following integral relation

/ Yn;dS = —/ x4dV.
oD, D,

We call X%n; as the flux along the boundary of the region and — X as the
source inside the region. Thus the total flux is balanced by the total source.
In order to say that the set (9.4.1) is of (m + 1)th order, at least one of the
functions X% must contain an mth order derivative ufjm_,,im. The explicit

form of equations (9.4.1) is found by resorting to the chain rule as follows

m azai s 620&
Z 3 Uiy iy + oxt
ou x

sivdge iy

£y =0 (9.4.2)
r=0

where we have again adopted the convention

Zm: ox" s _azaiu“razm’uﬂ ey 0% 4
3 il iyl T 8 i 8 it [E] NARRE A
r=0 8“,1'11'2' iy du a%l 8%1- i

In understanding the real extent of above expressions we should recall that
all repeated dummy indices indicate summations over their ranges. As we
said if the order of this set of partial differential equations is m + 1, then at
least one of the coefficients 9% /8u€1.__im must be different from zero.

Since equations (9.4.2) are linear with respect to (m + 1)th order deriva-
tives, they constitute a set of quasilinear partial differential equations. In or-
der to utilise exterior forms the set (9.4.2) has to be transformed to a system
of first order partial differential equations by introducing again auxiliary
variables. Through the auxiliary variables Ugiamir =u ,0<r<m
that are completely symmetric in its subscripts defined as in (9.2.4), we can
readily enlarge our system to the following first order system

(%
501027 Uy

(07 _ (67 . o o
Viigeviy = Vigigeiy iy 0 ST <My 03 = u
a2 ox™
> Vit o =0
b J5) 21027 sl oxt
r=0 OVj iy i,

Let us now consider the contact 1-forms (9.2.5)

ol = dvf — ;ﬂ;dl‘i e A'(Cn), 0<r<m-—1

ivin- iy ivine iy ivig- i
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and N balance n-forms
@ =dN A 4+ X € A"(Cp). (9.4.3)

In this section, we shall frequently find the opportunity of using the rela-
tions (5.5.10-13-14). (9.4.3) balance forms may be explicitly written as

azai m 8Eai
W = ( 4 za)u + il A (9.4.4)
Oz ;(%flmir A

A regular mapping ¢ : D,, — C,, becomes a solution of balance equations if
it satisfies the relations

0'1122 —0,0ST’Sm—l; ¢*wa:0’

In fact, the equations

* _(a fel i __
¢ Umz i, —(”mz drd  VYirig- ii)dx =0, 0<r<m-—1

. 8EOLL azm p
¢w“=[a +Z“+Z vﬁ...ihi}u:o

=0 11 Z

j— [0/ « (0% — (e} 3
yield vf;, ., ; = vi;,.; ;o and v =u®, v, =wuf, ., from which we

recover the differential equations (9.4.2). We shall now consider the ideal
below of the exterior algebra A(C,,)

_I( Oiig- z’0<r<m_1 dalllz lm17wa)

where 1 <a <N, 1<i4,.<n,0<r<m-—1.7,, will be called henceforth
as the balance ideal or the fundamental ideal. We can immediately verify
that the balance ideal J,, is closed. On using the definition of contact 1-
forms, we obtain

dw® = dX* A

ll ’L, /\/’L

11 “ir

L2 oxne 5 oxe

= | (=1)" P

[( ) Za 2 B 1% A lev-.zr avZ...jmfﬂ i A dU 1

that amounts to say that dw® € J,,. Solutions of balance equations in ques-
tion annihilate the ideal J,,. We shall now attempt to determine isovector
fields of the closed balance ideal J,,. To this end, we resort to Theorem
5.12.5. Let V € T'(C,,) be an isovector field of the contact ideal obtained in
the previous section. We shall now try to specify the particular structure of
this vector that permits us to determine appropriate forms \§ € A%(C,,);
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A5 € AT (C),r = 0,1, m — LT € AP2(C,,) such that
the following relations are satisfied

m—1

£r0 = A’ +ZV% Ao AT A da) (9.4.5)

i

Since we can write
iy (dw®) = iy (dS*)u — dX* Ay (u) = V() u — X'dES* A p
iy (W) =iy (dX")p; — dx* A iy (i) + X%y (1)
= V(S — X2dX™ A pji + X5,
the Cartan formula £yw® = iy (dw®) 4 diy (w®) then leads to
Lyw® = V(S + [dV(EY) + SdX'] A (9.4.6)
— dX7T NdS™ A .

Let us recall that

of of
V(f)_Xaxl+Z ip- Zra 1e% GAO(Cm)
Zl Z
for a smooth function f € A°(C,,). We now have to take into consideration
two different cases concerning isovectors of the contact ideal.
(¢). Let N > 1. Therefore we have to choose X' = X'(x,u), U*=
U“(x,u) and the components V;* , ;1 <7 < m are found from (9.3.19). If

we evaluate (9.4.6) under this constraint we obtain

oV E‘” L OV ()
o =V | P e ) T a4
=0 ’U“ Z
o 0X 0X
+2 (8xd agdu>]/\ui
0XJ ko ox’ ox« ox« 3
<8mkd Wdu>/\[8 dx_'_zﬁv Wy ?]/\‘uﬂ

21 Z
By making use of the relation da’ A p; = (5? w we cast (9.4.7) into

Lyw” = A%+ Aj idu’ A i + Aa”duﬂ Adu’ A i

+ ZA‘”“ ki dv“ AT ZAW“ Z’dvzl 4 AN duT A



526 IX Partial Differential Equations

where the smooth functions

oV () 130, CNG) SelNoD. CANNNG) Yalto), ¢
@ = @ —_— 3 - - — — - -
A v )+ oz’ '+ Bwf +}8xl Baqj '8333 ox!
Ao — oV (L) Lo o0X* n 0x 9 X* B 0x™ 9 X
B b ouP ozl Oub ox) Oub
X 90X’ 9x™ 9X!
ouP OxJ oub OxJ
. o gneli gxil
aij _opqefi o gaif
AJS’Y - Aﬂ’y - A’y@ - oul® ou] (948)
_ 1poxvox/ 9% 9x’ N ¥ oX'  9x™ 9X/
4L 0ub our ouP our our Oub our Oub
oV (3) Ox¥ 9XJ ¥ 9Xx'!
A _ . 1<r<
g 87)27 * 81}‘2”.7; OxJ 81}?1“.7:“ oxi’ =r=m
o Lo gxeli §xil
aijiry ity iy
e N

Z‘1"'27"
11 %% 9XJ oxY 9Xxi Lere
== - r<m
20g?  our oyt . ouw ) - -

iy, iy,

are all elements of A°(C,,). It is obvious that the functions Agi“”'i’ and
Agiﬁl”'i’ are completely symmetric in indices ¢1,...,%,. The antisymmetry
in indices 14, j arise from the antisymmetry of forms p;; € A" (M) and
antisymmetry with respect to indices 3,7 in A3 from the exterior product
du® A du?. If we make the transformations

Vi, = Oy, + Vg da’, 0<r<m—1
in the expression above for £,,w® and use the relations
k k k
dz" A pji = 65 i — 6; pj,
ke l kol kol

we arrive at
Eyw® =AY+ AF] + 2A50000] + ) C(AG (9.4.9)
r=1

+ QA;?“'”':"v})vgi__iri] w+ (Ag”l'“i’" + 2Ag;ﬂllvj) dvﬁ.__im A i
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m—1

+{-[ay + 4Ag§fuj—QZAigfil"'ifvg..,i,,j] i
Aal]'uﬂ A O.’Y Aaz]ll ‘i i A dvzl lm}/\ Oﬁ

m—1

(1A 245 ) = AT g o] Ao,

i
r=1

The functions in (9.4.8) comprise now solely presently arbitrary functions

X'(x,u) and U%x, u) as unknowns. On the other hand (9.4.4) can thereby
be written as

oy m=l gyai 8 ) N HNai

- VoL
gz o) BT ous

U

azaz 820@‘
—i—Z g.-i,‘/\ﬂi"‘ d’ . A L.

Zl Z v

= (Ea+ o A p

21 tm

On inserting this expression together with (9.4.9) into the relation (9.4.5)
and equating the coefficients of linearly independent like forms in both
sides we end up with the following result

) =)

\@ (Zﬁ A il ) - 9.4.10
A oxt + ;(%Z. iy O ( )
m—1

A" 4 A 2450007 + Z (AG g g AG ]) -
ox
= (1N G
1
_1\n—1 mg ’y ~ aijiy-- 7,
+(=1) g ﬁ"/ Yj ZA ciyg | i
- Aa”lu’.ﬂ /\ O.’y + A'o\/ééﬂl ’LL]Z /\ dvil"'im
i Uy nyo 8272

i1l

+( )n 1(Aazzl Z’—{—QAM]“ iy )Mi
—Aglj“ uﬁ/\a, 1<r<m-1

whereas the last /N equations to be satisfied take the form
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Agiin g g geiningy yo OFT N g
8 15 21" tm
vy .
= = Fgllu.lmil /\ dv?l"'imflim /\ dwim
when we write do , = —dv] ,  Ada'. The composition of this

expressions suggests that it would be rather adequate to choose the forms
LGt e A"2(C,y,) as follows

ng‘l..~im 1 _,y[cm z,,HZJMJ“ Pygﬂ “im—11] c AO(Cm).

Since the forms jj; are antisymmetric in indices ¢, j, we can take without
loss of generality 'ya“ it — 5" We thus obtain

_ ngl'"inrl /\ de . . /\ dl‘im

“tm—1tm

= A N A e

“tm—1tm

— ,ygil"'imflijd,ufl.”' YN da:im A /-L]Z

tm—1tm

= A A (g — 8 )

tm—1tm

_ Qbyc Ty 110 . Qi -1m] X X X .
= =7 " mdvz A i + Vg Ay i N G

1 tm—1%m

_ Qg -1t
- 273 dvil"'imflim /\ lu/l
whence we deduce that

Qi1 -1 Qityeel oifiy---i 8277
2,)/ "1 tin—1tm? Aﬂ 1" tm + 2A J 1" "tm /Y )\3 8
’U

“tm

But, because of the antisymmetry of functions 'y”“ m-tinl wwith respect to
indices ¢, i,,,, we see that the following relations must be satisfied

iy ip1imt g 00 i1l qadiy g1, mm “Im—1%m Y
475 = 4 = Ay + 24, v

J
. . . ’YL PYZ‘
o Aalmll"-lmfﬂ 2A117m.771 “Um-11 'Y )\@ 82 _ az "
8 By o’ 9
11 tm—1tm 11" tm—12
Qli - lyp—1%m Oﬂjzl Um—1%m Y Qlply Ip—10 Qi Jix--im-1%, Y
0= AY 249 ol + Aj 24 o]
N o> O Vim
~ G Y
/U 7m lZm /Uil"'im—li

Consequently, we can state the theorem below:
Theorem 9.4.1. In order that an isovector field V' of the contact ideal
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becomes also an isovector of the balance ideal, n+ N + N 2 number of
functions X' (x,u), U°(x,u), Ay € A°(C,,) ought to satisfy the determining
equations

AG (Zﬂ +

on R o
0] i) = (9.4.11)

gai T Zaou]

0 %

A+ A% 24570007 + Z AT AT T Yo

By “i ] [RRR %)
N o X Vim
)‘(53, ,+avf?. .):
21 tm—1tm 217 tm—10
Qi i1t Qi d1 Up—11 aL]ZI Lm llm alm]h me]i Y
A5 + A +2(A5" + A Wl
whenever N > 1. (I

The number of the equations (9.4.11) that help determine isovector
components, or infinitesimal generators in the nomenclature of the classical
theory of Lie symmetry groups, are considerably less than those in the
classical theory because exterior products are quite effective in eliminating
some of the redundant equations. However, it is still a large number. It can
easily be checked that there can be at most N + 1NV 2(”;T12)n(n +1)
number of determining equations. Therefore, we must expect that the num-
ber of the determining equations would be much larger than that of un-
knowns. This property amounts to say that the shape of the solutions would
perhaps be restricted to a great extent even if they exist.

If m = 0, that is, if functions entering the balance equations are in the
form ¥ (x,u) and X%(x,u), we get a system of first order equations. In
that case we do not need the contact ideal and only the components X’ and
U® of the isovector field survive. One can readily verify that the deter-
mining equations are then reduced to
az&> A%, )\“6 > ol A“’J = 0.
8$i Y 8 153

(i¢). Let N = 1. Hence, the components of an isovector field V' of the
contact ideal become X' = X'(x,u,v), U= U(X,u,v) generated from a
function F' = F(x, u,v) via the relations (9.3.22-23) and V;,...; € A°(C,,),
1 < r < 'm determined by (9.3.25). In this case, the single balance equation
takes the form

G (Zﬂ +

+2X=0

ox!
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and the balance n-form producing this equation is given by

w—dEZ/\,umLE,u—(gEZ +E)u+za o dvi,.i A .

Zl Z,«

The vector V' will be an isovector field of the balance ideal if one is able to
find suitable forms X € A%(C,,);y" " € A" 1(Cp), 7 =0,1,...,m — 1;
[ivin-t € A"2(C,,) so that the relation

m—1

Lrw=Aw+ > VT Aoy AT Aoy, (94.12)

is satisfied. The Lie derivative of the balance form w with respect to the vec-
tor V' follows from (9.4.6) as

Evw = V(D) + [dV(E) + BdX] A pi — dXT A dDTA i

However, because of the possible dependence of the components X’ on the
variables v; the above expression may now lead to a different result from
(9.4.7):

fyw=V(Z)u+ [w dz! + zm:w dvi,...;

0! Lt Dy,
ox: . 09X 0X! 0XJ
j , _
+E(8x]d9&+ 8 du+8jdvj>]/\uz (&ck T
o M G d“k) [ o Zavu 7 P ]“‘”

We can arrange this expression into the following form
fyw=Ap+ A" du A p; + AV dvj A p; + B duy, A du A L (9.4.13)

m
+ CM duy A duy, A i + ZAiilmi'dvir--% N i
r=2
m

+ ZBU“ lrdvu i Ndu N g+ + chk“ Zrdvn i, N AU N i
r=2 r=2

where the smooth functions
VvV (h) 150, CINN )3 D, CANNG) YD, €/

ozt +2 oxt + ozt Oxi  Ox) O

(9.4.14)

A=V(D)+



9.4 Isovector Fields of Balance Ideals 531

VvV (%) Xt 0¥ oX'  9X 09X/
= +3 -

A ou ou + ori Ou Oz Ou
¥ X/ B 07 0X'!
Oou Oz’ ou OxI
i ; k o vi i 9vk
go_ V() | OXT ostoxt o oX
v, dv;  OzF Qv;  dx* Jv,
n 8_278Xk B Xk 9 X!
v, Ox* v, Ox*
RS> ) N> )

v, Ou  u vy,
1[8_2778Xj B oY) 0X' n 0¥’ 0X* B @@]
2 L0v, Ou v, Ou ou Ovy, ou Ovy,
e _ OB 0X7]
(%[l (%k]
1 [@ 0XJ B 07 0X! n oY1 0X'! B @@]
87.11 (%k 87.11 8vk 8Uk 87.11 8vk avl

Cukl - _ Cjikl = _C

T4
i _ OV (5 N oy’ 89X/ 9% X’
N 81;1'1..% (%il...iT 8$j 81]1'1...1',‘ 8:1:17
o o Xl oxil
Bt — gl —
87}2‘1-'% ou
_1{ o% 9x/ 9y axi}
- 2lov,.q Ou Qv Ou L’
o o oxl Hxil
Czykumzr - _ C]zkzlmzr —
8%14..1} 8’Uk

1 { ox' 9x/  9xl aXZ}
N 2 8vi1..,ir 8vk 8%1...2‘7, avk
are elements of A°(C,,). By writing again dvj,...;, = 0j,...;, + i,...;.; da,

0 <r<m—1 and arranging suitably the resulting expression, we can
express the Lie derivative £ w in the following manner:

fyw = [A Al + Al 4 2B + 200y (9.4.15)
m—1

Z(Am”'i" + 2By 4 20T Y |
r=2

+ (Aiilmim + 2Biji1mim1)j + 2Cijkilmimvkj) d’l}jl...im N Wi
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m—1

+ |:A7' . QBijkvkj _ QZBUH'”Z—"U“,”Z‘M‘] oA W
r=2
+ Bijilmimdvi]‘..im No A Hji
.. . . . . /,n71 . .e .
+ [A” + 2By, + ACH Iy — 23 ORIy ko A
r=2
— BHg A ojA g+ CF i du o Ao A g+ CFlop Ao A g
m—1
+ Z(A”ll' + QBUilmi”Uj + QCijkilmir’Uk]‘) (o O AAY 1%

r=2

m—1 S m—1 S
_ B i g A Oy, A i — chjkn...uo.k NGy N i

r=2 r=2

Next, we transform (9.4.12) into

i m—1 i
£rw= A [(2 + gii + Zaai v)u + 882

i i
O—Aui—i_a—’vjo—j/\ui

iy

m—1 8ZZ 821 j
+ p) i, ir/\m—i——dvil..‘im/\ui +"}//\O'+’Y /\O'j
r=2 UZ] (2 8 (3] "i7n
+ Z’}/“".Z" AN A [otmet A d’U,L‘]..AiWAZ‘m A dx'™
r=2

and compare it with (9.4.14) to obtain

oy R 9%
)\(E + oy + Zoi(%il. N Uz’y--iri) (9.4.16)
=A+ Aivi + Aijvﬁ + ZBijk’Ujvki
m—1
+ QCijklvk]‘UZi + Z(A”ll7 + QBijil‘”iTUj + QCijkilu'%‘Ukj)vil...iri
r=2
v=(-1) Uk Z Viy--ipj 9 Hi
r=2 u
+ B g A dwgy. g,
¥ = = BN Ao+ CF g A dwg,., + C g Aoy

n |:(_1)n—1(Aij 4 2By, + 4CHy,,
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ax’y
90,1

m—1
-2 Zcikﬂlmwvil...irk - A
r=2
S = ( _1)n71 (Az‘i]-ni, 1 QBijilm'iT,Uj
o oY
+ 20k gy A—> ‘
kj 8111-1‘.% Hi
— Biﬂl"'i’pﬁ No — Cijkil”'”,uﬁ Nog, 2<r<m-—1
while the remaining expression is given by
(Aiil--~im + 2Biji1--»imvj + 20ijkiy~-imvkj
oy

AT Ydvig App = — D A doy

A dzin
8/Ull ° 'im

lm—1tm

whose structure suggests that it would really be appropriate to choose the
forms T in-1 € A"~%(C,,) as follows

R P AT T B
1—‘ m — 7 m //l'jl

where 4/ n117 € A%(C,,). Due to the antisymmetry of the forms yj; with
respect to the indices i,j, we can take without loss of generality
G = — g We thus get

— it Aduy, Adx'™
— _ Afrime1ify, o
= =" g A dviyg, iy,

— 9n b1 1l o .
- 2’}/ e dvil"'lm—llm A MZ

“tm—1%m

A dxim

whence we conclude that

4,-)/51 S Um—10ml — 4,-)/51 “Um—1[im] — A”l “Im—1%m + QBL]ZI . 'im—limvj
+ 202]]“1 S lm—1tm ,Ukj _ Almll‘ Um—1t QBzmﬂl o 'Zm—ll,Uj _ QCZm]k“' . "meﬂvkj
o )3
)
(9111‘1.4.%71% 81)1‘1..

0 — Aiil"'imflim + 2Bi.jil"'im71im,vj + 201.7]”12#1711771016] + Aim,il"'imf]i

'im—li

oL Coo ot O im
4 QBimdicimerigy Qszijr--szﬂv o )\( + )
J & 8111»1. 81}1‘1..

"imflim 'im—li

Therefore, we can state the theorem below:

Theorem 9.4.2. An isovector field V' of a contact ideal generated by a
single dependent variable u can also be an isovector field of the balance
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ideal created by a single balance equation (N = 1) if and only if the
smooth functions F' = F(X,u,V) producing the isovector components and
X\ € A%(C,,) must satisfy the determining equations

F3) S o) 3
r=0 1l

= A+ Alv; + Aijvji + QBijkvjvki + QC’ijklvlivkj

)\<2+

m—1
+ S (A g By g 9y
r=2
)\ ( 822 + aZZm ) — A”l “lm—10m _'_ Aimil“ “Im—11 (9.4‘17)
iy i Qi

+ 2(BZ.]ZI “Um—1%m + Bim.jil' : '7:7”—17:)1]7_
4 2(Cljkll"'2m—1lm + Cl’"’]k“ml"””)vkj O

The above theorem looses its validity for m = 1. In this case, the isovector
field is represented by

T

V=X oxt ou ov;

and its components are given by (9.3.26);_3. The expression (9.4.6) takes of
course now the form

B oV (2 j oV (%) oV (%) ‘
fyw=V(E)u+ [ 50 dz’ + 9 du + I, dv;
oxX' . 0X' X' X/
J . P e
—I—E(axj dz’ + 9 du + av; dv])} A i ((%Uk dz
0X/ oX/ oxt ., oY oy
+ Du du + —c%k dvk) A [83:1 dx' + 0 du + a0, dvl] N Wji.

By employing the transformation du = o + v; dx’ on the above relation, we
can finally obtain

fyw=(A+ Av)p+ Ao A p; + (AY + QBikjvk) dvj A i
+ B due Ao A i + C¥ dv A dvg N i

On the other hand, (9.4.12) can now be cast into
oxt 9%t

ozt + ou

£Vw:>\w+7/\a+F/\da:)\(E+ vi),u+



9.4 Isovector Fields of Balance Ideals 535

ox!
+)\8—dvjAui+'y/\a—F/\dvm/\dxm
Uj

where A € A°(C,,), v € A" Y(Cp), T € A" 2(C,,). In order to be able to
compare the two expressions above for £w, let us choose this time
D =iy + 7 do A pige, - 7777 € A(Co).

Because of the antisymmetry of the forms y;j, € A*(M), we can take the
functions 7! as completely antisymmetric with respect to indices i, j, k
without loss of generality. Since (5.5.16), allows us to write

dz"™ A pigr = 6, ik + 65 ki + 0y, i
we easily obtain

—T Advp Adz™ = —dvy, Adz™ AT = —~dv, Adz™ N Wi
+ M dvn, A dog A dz™ N Wijhe = 79 (= dv; A pi 4+ dvj A i)
+ ’yijkl(dvi Adup A g + doj A dop A g + dog A dog A )
= 27”'de A i + S'yijkldvl A dvy A i
But, exterior products appearing in the second form on the right hand side in
the last line above are antisymmetric in indices k& and [. This entails that the

functions 4*' should be completely antisymmetric with respect to all super-
scripts. We thus arrive at the following relations

oY ox i
)\(E+ i + %’Uz) =A+A Vi,
Aaz 27 = A 4 2B*iy,,
81}]'

v = (— 1)n71Ai/L7; + Bijk,u,ji AN dvk,
gl — ikl

Since the functions 7%/, 7"7*! are completely antisymmetric, we then obtain

0% 82J>
81)j (%i ’

dryli = AU A (BRI Bl A(
3kl — Glikl) — Lkl

where in the last line, we have made use of antisymmetries of the functions
CVk with respect to pairs of indices (i, j) and (k, (). Hence, the determining
equations for the isovector components corresponding to the case m = 1



536 IX Partial Differential Equations

take the following special forms

oy’ oy Z.
)\(E + o+ %ui) — A+ Ay, (9.4.18)
oXi ox g ; . .
A = Al 4 A 9B 4 phil
<8Uj + avi) + ( + )V
Cijkl + Ctk]l = 0.

We know that isovector fields of the balance ideal constitute a Lie al-
gebra, and this algebra in turn induces a Lie group of transformations. This
group is called the symmetry group of the system of differential equations.
If we obtain r linearly independent isovectors V, from the determining
equations, then any isovector field may be represented by V' = c¢*V,, where
c*e€R,a=1,...,r are arbitrary constants. In this case, the symmetry
group becomes an r-dimensional Lie group. If arbitrary functions are in-
volved in isovector components, then the Lie group turns out to be infinite
dimensional. Let a regular mapping ¢ : D,, — C,, be a solution of the ba-
lance ideal J,, satisfying the conditions ¢*of;, , =0,7=0,1,...,m — 1;
¢*w® = 0. If V is an isovector field of this ideal, we had already shown in
Theorem 5.13.7 that the mappings

pv(t)=eV op: D, — Cn,

where ¢ is a real parameter, constitute a 1-parameter family of solutions of
the ideal J,,. Let us recall that the mapping ¢ : D, — C,, is obtained by
lifting the solution mapping ¢ : D,, — G specified by u® = ¢*(x"). Hence,
to determine the family of solutions ¢y (¢) : D,, — C,, when N > 1, we
have to solve the following set of autonomous ordinary differential equa-
tions

dvy..

dt

under the initial conditions X(0) = x, u(0) =w, 7., (0) = v{. ;, where

i1 iy IERRR

r=1,...,m. Let us now consider the vector field

+ U%x, u) 0

, 0
Vo = X'(x,u) e

oxt

which is the projection of the isovector onto the tangent bundle of the graph
space (G. We know that this vector induces a Lie group of diffeomorphisms
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mapping the manifold G onto itself. Let us suppose that a solution
¢ : D, — G of the system of differential equations is depicted by the given
expressions u® = ¢(z'). If we represent the solution of n + N ordinary
differential equations (9.4.19);_» under the initial conditions X(0) = x and
u(0) =uby

T = (txu), T =90t x,u)
we find
T =y (tx,¢(x) =V (tx), T =y (X ¢(x) = ¥'(t;x)

when we insert the original solution u = ¢(x) into these relations. On solv-
ing the variables 2’ in terms of Z' from the first set of equations and intro-
duce the result into the second set, we ultimately obtain the family of solu-
tions ¢y (t) : D, — G in the form u® = ®¢(7'). Hence, this procedure
based on isovectors of the graph space enables us to produce a family of
new, probably more complicated, solutions if we have at hand a solution,
however simple, of the set of partial differential equations. But, it is clear
that if we do not know a particular solution, this approach cannot help us at
all to generate any new solution.

In the case of N = 1, the components X’ and U of the isovector fields
will depend on the variables x', u, v;. Hence, we can project isovectors only
on the tangent bundle of the manifold C;. Consequently, to determine the
group of transformations, we have to solve the following set of ordinary
differential equations

dz’ OF du F__‘a_F dv; OF _ OF

dt —  ow dt

Vigs at oz Von’

under the initial conditions Z'(0) = %, u(0) = u, v;(0) = v;. Here, the
function F' = F'(x,u,v) determines the isovector components. When we
accomplish to integrate these differential equations, we arrive at the result

T :W(t;x,u,v), u =Yt x,u,v), T =(t;x,u,v).

Since, the transformations between (z', ) and (Z',%) now involve deriva-
tives u ;, they become now Bécklund transformations forming a group. A
Bécklund transformation reduces to a Lie transformation if and only if the
function F' is an affine function of variables v;.

The approach we have developed so far to determine isovector fields
of balance equations may also be used to find isovector fields associated
with mth order non-linear partial differential equations given by (9.2.1) and
taken into account at the beginning of this section. In this case, we have to
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take X% =0 and we write w” = X(z',u®, v¢,..., v, )u. Evidently,
the fundamental ideal induced by n-forms w” is closed. Thus, if V' is an iso-
vector field of the contact ideal, then the functions X* and U® should be
found from equations (9.4.11) such that V(3%) = 0 when X =0 or the
function F' from equations (9.4.17) or (9.4.18) such that V(X) = 0 when
> = 0. This is quite a difficult procedure to accomplish. Nonetheless, if we

consider a first order equation in the form X (z’,u,u ;) = 0, the isovector

field can be found easily. In this case, we may choose F(z',u,v;) = — %
to find the isovector components as follows
)Y 0% ox 0%
X =02 U= =S, Vi= = (5t ). 042
8112 g, ov;’ ox’ v ou (9.4.20)

We thus obtain
oY 0% 19)) ox oY oY\ 0% 0Y

(0,2 o) (C2 L, 22
ov; Oxt (vz ov; > ou (8901 + ou ) ov; ou >

V(D) =

implying that V' (¥) = 0 whenever ¥ = 0. In this situation, we can obvious-
ly write

iv(o)=U —v,X' =% =0, iy(w) = SX'u; =0,
o)) o))
iy (d —Vida' + X'dv; =dY + —0 = —
iy(do) = x4 v + 527 = 9u°"
Hence, this isovector field is likewise a characteristic vector field of the ide-
al. Consequently, we again find the previously given solution (9.2.10) by
employing this isovector field.
Example 9.4.1. The time-dependent, one-dimensional heat equation in
a homogeneous medium, or more generally the one-dimensional diffusion
equation modelling various physical phenomena is given by

Ou _ i( (u )8u
ot Oz ox
where w is the temperature, ¢ is the time, z is the spatial variable and x(u) is

a constitutive quantity called the coefficient of thermal diffusivity that may
be dependent on temperature and h is the heat source. Let us denote

) + h(z,t,u) (9.4.21)

r=zab, t=2% v =uy Vs =y, p=dxANdt, up =dt, po = —dx.
Then we arrive at the balance equation

ox!  ox?

——+t 55 +X=0

ox! = Ox?

where
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Y= k(u)v, 2= —u, ¥ =nh(z' 2% u).
In this case, the isovector field must be prescribed by

0 0 0 0 0
V=X X’ +U V; V;
81+ 922 +8+181+28U2
and its components are specified by relations (9.3.26);_5 through an arbit-
rary function F' = F(x!, 2%, u,v1,v9) = F(x,t,u,v,v2). With these data,
non-zero coefficient functions in (9.4.13) become

V(Zl) = rk'viU + KV,

V(¥ = —U,
Oh Oh oh
Y) =X — + X?— —
V) =X 5 % UG,
oUu oV, oU oX' o0Xx?
A=VE)+ g+ ngt = (e )
oU ovi X! 0X?> ox!
1_ 1, 2 1
A—ﬂUlU-I—lﬂh(9 +rVi+k M +h8 + K'vp—— BN +_8t
oU 0X? oXx! 0X?
2 oA~ oA, OA"
A" = - Ou +h ou ox U ox
oU oV 0X! 0X?
All — _1
/fU—l—Hvlal—i-navl—i—havl n—at
A22 _ _ 8_U 8X2
87.)2 87.12
oU oV o0X!
12 _ 1
A _I{Ulag—'— 8’[)2 havg
g OU L 0X7 0X?
oy o, oz’
0x? ox! 0xX?
9 g2l _ .
8u 8111 v 8’01 ’
oX! 0X?
122 o
2B = —81}2 K vl—aw .

Hence, the determining equations (9.4.18) are found to be

MKV —vy + h) =

A+ Al’l}l + AQ'UQ,

Ak = A+ 2By,

AZZ

— 2By, =0,
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A2 4 A% — 2By, 4 2By, = 0

whence we extract, respectively, the following four equations to be satisfied
by the single function ¥

., oh OF OF
Movy — h — &'v}) + (Fc' U%—F@—)F—FQH 1}18——1—(2/4/ Ug)a—u

_a_F_(//z 8_h+% )6_F_( ",2 +6h+8h )6F
ot U8 T ou" oo, V2T 5 T au ™ o,
+ (ve—h — mv)( O°F +82F +v O°F +wv O°F )
2 VN\ozdv, ' 0tovy | oudv, > Ouduvy
82 82 82
Wt g e g =0
OF OF O°F OF
/ _ o _ 1,2 -
/{(F ”181 U28v2>+(v2 h — mv1)82+f£< >\+8u
O*F O*F O*F O*F
— 4.22
t ozon,  otowy " oudw, auavg) 0, (9422)
, 9 0?F
(2 —h — kv %>W_O’
O’F O’F O’F
(v —h—r Ul)(%l(%g +ﬂ<8m8v2 o 8u8v2) 0.
(9.4.22)3 yields

F = f(z,t,u,v1) vo + g(x, t,u,v1).
On inserting this expression into the equation (9.4.22),, we find that
of of )2 of of
- — h)— =0
(8:13+ 16u> (w1 + )8 1+ 28111

from which we obviously obtain
0 0
af o 0f 0
oy ou ox
Hence, we see that F' must take the form
F = f(t) vy + g(.f, t7 u, Ul)‘

Let us now introduce this function F' into equations (9.4.22);_5 and elimi-
nate the function A between these two equations so obtained. If we then
equate the coefficient of the variable v3 to zero in this expression, we are led
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to the simple partial differential equation 9%g/0v? = 0 whose solution is
immediately obtained as

g= a(x, t: ’LL)’Ul + 5(1’, t? U)
The coefficient of vy in the same expression gives

0 0
—a+2n—av1 =0

! /
REHRB 2R du

whence we deduce da/0u = 0 and g = a(x,t) v1 + B(x,t, u). Let us insert
this function g into that expression. Then the vanishing of the coefficients of
variables vy, v? and vy together with the remaining expression lead, respect-
ively, to the equations

Ja , 0% ,00 , 0°3 _

B Ty P -
ot T e T e T A

g 0?3
"o N2 1 OP 29 P
(kK" — (K')?] B+ kK 8u+/-i 9 0,
g
or
k' Oh da  0f ap oh oh B
(%~ 381 (25, + ) -0

0, (9.4.23)

—wkf + KB+ 2k 0,

ot ot T % " "oa?
The second order differential equation in (9.4.23), can be written as

/

0’8 K Op K\, 9’8 0 [k B
9 raet () 0= 50 5a(08) =0
from which we get
B K,
EV ;5 = n(z,1)
yielding
9 (58) = n(z, (w)
5, (£8) = n(a, D) (u).
We thus obtain
1

where m and n are arbitrary functions of their arguments and we introduce
the indefinite integral K (u) = /m(u) du so that we have k(u) = K'(u).
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When we insert this expression into the first equation in (9.4.23), we get

oo on 0%«
- E —i—n(u)(?% + W) =0.

Whenever the function (u) is not a constant, the foregoing equation can
only be satisfied if

a=alr), n= —id(x)+ny(t)

Therefore, the function F' must be in the form

F=f({t)ve+alx)v + K’;(u) [m(a,t) + [ — Lo/ (2) + no (1) K (u)]

Furthermore, the third and the fourth equations in (9.4.23) should also be
satisfied:

K'(u)2(2a'(;€) + f'(t) +
K" (u) [m(ac,t) + (no(t) — %o/(x))K(u)} =0

30[
K'(w)h(z,t,u) (2n0(t) + 3¢/ (z)) + K (u) {QTL/Q(t) + K/(U)gwg, +
(o () — QnO(t))‘;Z] + 2(%7: - m(x,t)gZ) + 2K (u) (f(t)glz
oh  O*m
)5~ Ger) =

These equations restrict the admissible forms of functions f(t), a(x), no(t),
m(x,t) and structures of physical data x(u) and h(z,t,u) so that isovector
fields are realisable. Interested readers can determine admissible choices
without experiencing too much difficulties by scrutinising these equations.
It is clearly seen that the function F is an affine function of the variables v;
and vy. Therefore, in this case isovectors will be prolongations of the
vectors V.

As a special case, we take x = 1, h = 0. Hence, the field equation
becomes

ou  0%u

ot ox?
This equation is obtained by non-dimensionalising the heat conduction
equation in the absence of the heat source and by assuming that the coeffi-
cient of thermal diffusivity is constant. Equations (9.4.23) are reduced in
this case to the form
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da O’ 0% B

ot "o P amon
6 _, 98 98 _,

ou2 ot ox2
, Ja

—f' 25 =0.

The second and the fourth equations yield
1
B= Az, tyu+ (1), o= 't +(b).
If we insert these expressions into the first and the third equations, we

obtain

1. / A _ N PN op Pp
of W=7 +25 =0 5r =55 =0 50~ 52 =

We then introduce the function

1 1 1 !/
A= gf ()’ + 37 (t)z +6(1),

found from integrating the first equation above, into the second equation,
we arrive at

1 " 1 " / 1 " _
/(07" + 57 (0w +8'(t) = 2f"(t) =0

whence we obviously deduce the relations

1
f(t) =0, ¥'(t) =0, &)= zf”(t)-
We therefore find
f(t) = 4cit? + 2ot + ¢35, (t) =2c4t +¢5, 6(t) = 2e1t + cg

where cy, ..., cg are arbitrary constants. Hence, the function F' is expressible
as follows
F = [(401t + o) + 2¢4t + 05] vy + (401t2 + 2c¢ot + ¢3)v9
+ [e1(2? + 2t) + ez + 6] u + p(x, t)
= 1 [4tzv) + 4705 + (27 + 2t)u]
+ co(wvy 4 2tvs) + c3v9 + c4(2tvy + xu) + csv1 + cgu + p(x, t).
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82
The function p(z,t) is any solution of the linear equation a—’l: - a—/; =
X
Thus, the linearly independent isovectors are found to be
0 0 0 0
Vi= —dat— — 4’ — 2t u— >+ 6t 2zu) —
x 5 at+($ + )ua + [(m + 6t)v; + a:u] o
0
+ [4zvr + (2% 4 10t)vs + 2u] —,
67)2
0 8 0 0 0 3}
Vie —g 2 — yo—, Vi= - V2= — —
Yor %ot T a0 T 00, ot e
0 0 3} 0
Vi= —2t— — — +(2 —
5, T Uzt (quocvl)av1 + (2u; +m2)802,
3} 0 3} 0 Ou 0 Ou 0
VO =u— V, =
“au T "o T " any’ L T T T T

That these vectors constitute a Lie algebra as it should be can be observed at
once from the relations

VLV =2V [VL V3] =4v2 4 2VC [V VY =0, [V, V5] = 2V,
VLvo=o0, V3,V = —2V? [V2,V']= V' [VEV]=V",
V2, ve=o0, [V3iVv=-2v® [VV°]=0, [V? v‘f] =0,

[V47 Vs] = VG: [V4> VG] = 07 [V5’ V6] = O [V3 #] = #H
[‘/1 M] = - 2V 2 2ut+-4at pu+4t2 15 [‘/2 u] - .L/lx+2tut7
[V4 u] - Iu+2t;m [V Vu] = = Vum [VG, u] = = Vw [Vm V,,] =0

Here, we have defined p, = Ou/0x and p; = Ou/0t. Since isovectors are
prolongations of vectors of the form Vi, it would suffice to integrate the
differential equations (9.4.19); 2 in order to determine the associated sym-
metry groups. To simplify the operations, let us take isovectors into consi-
deration one by one:

The isovector V! gives rise to the ordinary differential equations

z _ o dt o du 9 ex

ds Th s T ds (@ +2t)w
whose solutions under the initial conditions Z(0) = z,¢(0) = ¢,u(0) = u
are readily found to be

Z(s) = ’ t(s) = t u(s) = u(z,t)\/ 1+ 4st e

1+ 4st’ 1+43t

It then follows from these relations that
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T . t
r=—"" = _.
1 —4st’ 1 —4st

We thus manufacture a 1-parameter family of new solutions of the partial
differential equation
ou _ o'
ot 07
from a given solution u(z, t) by the following manner
_ T t 1 sz
u(,t;s) = u( a ) e .

1—4st’ 1 —4st/) /1 _ 4sf

In other words, if a function u(x,t) is a solution of the heat conduction
equation under consideration, then the family of functions

( x t ) 1 o
u e
1—4st’1—4st/) /1 — 4st

become also solutions of the same equation. For instance, the trivially
obtained simple solution u(z,t) = 1 gives rise to the family of new solu-

bLZ
tions u(z,t) = e~ /y/1 — 4st.
If we consider the equations
dz _dt . du

G g, Ty
T ds " ds

=

corresponding to the isovector V2, we obtain
Z(s) =xe®, I(s)=te
u(s) = u.

This result implies that a solution is invariant under a scaling transforma-
tion: u(z,t) = u(\x, \*t) where ) is a constant.
The isovector V* generates the differential equations
dz _dt du

—= -2 —=0, —=7Tu
ds ds
whose solution is
Z(s) =x —2st, t(s) =t, u(s) = ues Tt

Hence, if u(z, t) is a solution, then the function
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u(x + 2st,t) i

provides a family of solutions. For example, the trivial solution v = x + a
leads to

u=(x+2st+a) s

We can easily check that the isovectors V3, V° and V9, respectively,
give rise to transformations

T=ux, t=t—s, U=u;
T=x —s, t=t u=u;
T=ux, t=1t u=ue’.

These transformations mean that solutions are invariant under translations in
the temporal and spatial variables, and by multiplications with constants.
The isovector V, gives

T=ux, t=t, u=u+su(z,t).

This is an expected result associated with linear equations reflecting the fact
that solutions may be superimposed. [ |

Example 9.4.2. As a more complicated example, let us consider the
non-homogeneous Korteweg-de Vries equation [after Dutch mathematici-
ans Diederik Johannes Korteweg (1848-1941) and Gustav de Vries (1866-
1934)]

ou ou  Ou

where ¢ and x denote the time and the space variables. This equation models
the propagation of solitons in a medium. We denote the independent varia-
bles by 2! = x, 22 = t. We introduce the auxiliary variables v; = u 1, vy =
U9, Vi1 = W11, U2 = U2z and vi2 = vo; = w 2. Hence, (9.4.24) is trans-
formed into the first order equation

ov
—H+UU1+’U2—f:O.
ox

We thus have

El = V11, 22 :O,
¥ =wuv + vy — f.

The isovector field is prescribed by
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9 9 9 9 9 9
_ 1 2
V=X ga T8 a2 T Va t Vg, T Vg, TG0,
9 9
—1—V128 - +V228v22

The components of this vector field are given by the expressions (9.3.26).
Because of the relations

V(EHY=Vu, V() =0,
of af of
V) = - XL - x2S U (v - 2) 4 Vie+ W
) ar ot TU\M T g e
we realise that we need only to know explicit forms of the following rele-
vant components

Xt = _2_51’ X% = —g—i,
U_F—mg—i—wg—i,
1 g—];-i-vlg—];a
‘/2—68—];4-1)22—5,
V”:gg”“aya " %222
2 2 2 2
+om (2 aaa 20 aiaul ?95) +2“12<ai£2 o ai;;&)

N , O°F . , O°F Ly O2F
U U V110
Hop? 7 12 g2 M2 50,00

where F' = F'(x,t,u,v1,v9) is presently an arbitrary function. The coeffi-
cients given in (9.4.13) that are not identically zero can now be evaluated as
follows

of of of oV
A= X Xat+U<“1 au)+‘/1“+‘/2+ oz
0°F  O°F
— (uvr +vp — f)<8x(%1 + (92?(%2)’
oV 0’F O’F
1_ _ 2 _ _ _ .
A - au (UU1+UQ f)auavl7 A (UU1+1)2 f)auaUQ)
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oV O*F
11 11 22
A= on —(uvl—i—vg—f)a—v%, A% = — (uvy + 9
oVn 0*F
A2 — _ _ 21 _
0, (uvr +v2 — f) FII (uvy + vy
AN oV B OF H2 _ 4121 _ oV A122
Ovyy  Otdvy’ dvyy’
4211 — O*F A212 g2 g222 _ .
8%8’02’ ’
O*F
g2l _ gl
8’(1,61)2’
1 0°F
crul oo C1211 _ _ 21211
2 c%lc%g’

Thus (9.4.17), takes the form

o' ox"
A <avmn * avmi

+ 2(C7ijmn + ankmi)vkj-

>°F
6—7.}%7
2
—f)aag ;
V1009
0V
= T’

—f)

10°F
2 Ovs

) — AZT?L7L+A7L7’ILZ +2<BZ]7YL7L+B7L]mZ)Uj

If we introduce the coefficient calculated above into these expressions, we

end up with the independent equations given below

oV,  O°F 0*F 0*F 0*F
— — vy — D —
Oviy Otdve  Oudvsy 2 0v10v9 12 o3 22
O*F O*F y +82Fv N O*F y
O0xdvy  Oudvy ! v} 12 O0v10v9 1
(9.4.25), yields first

or_ or
81}% Qv Ovy

=\ (9.4.25)

= 0.

and consequently ' = a(z, t,u)vy + ((z,t,u, v1). We then get

oo

or  du

oo

so we find that

F= a(t)UQ + ,8($, tu, Ul)'
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Hence, it follows from (9.4.25), that

2 2 2
AR I i

A=2 2 =Py —
0x0v; * Oudv; T By ov? i

o (t).

Therefore, the expression

AMuvy +v9 — f) =
A4 Alvp + A%vy + A%y + Avgy + (A 4+ A Yoy

given by (9.4.17); can be written as

%3”?’1 + 3(832@% vt a(z;il * aiiaiﬁ”i +3( - g%?(”‘““ -9
3 2 3 2 3
+ 8525111 o %vl + 285621?81}1 vt ﬁigu 85251}1)
3 2 2
t (%iai? - Saiaﬁm“ - g_qi)”% (o4 %g_fl + 3aiailf -
33226)1 ur Saizgu>vl - (3%1’“ + Sa?jaﬂm vt 3&2?@1 —a)uy

of of 0B o op 0B 0*B *B
“ 3P 5 ason Tan o T st T anae T O

From the coefficient of vy, we first obtain
0%
W =0 and /B: ¢($,t,U)’Ul +w<x7ta 'LL),

1

then the relation

¢ 26, N\
35an T (35, /() =0
leads to
96 .0 .
50 =0 35 —a(t)=0

from which we obtain ¢ = ¢(z,t), and

(z,1) = %o/(t):n (1),

If we insert these relations into the above equation, we see that coefficients
of U% and v%l vanish automatically while the coefficient of vy, gives
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Py PP

W”l + ozxou 0

whence we get
Pz, t,u) = plt)u +v(z,1).

If we introduce this function into the remaining expression above and set
the coefficient of v; to zero, we get

2

(1) = 00w+ vl 1) +7(1) + " (B =0

from which we obtain
2

plt) = 20'(1), vl 1) = — za" (e — 7 (1),

The remaining term imposes the following restriction on the admissible
forms of the functions f, o and ~

(%o/(t)m +(0)) gi +alt) ‘Z{ + (%o/’(t)x () - %o/(t)u) ai
+ ga’(t)f + %a"(t)u - %o/"(t)m —9"(t)=0

in order that a nontrivial symmetry group exists. Together with this side
condition, the function F' is expressible as

1 2 1
F= (ga’(t)x n 'y(t))vl +altyu + 50/ (Hu = o (e = (1)
depending on somewhat arbitrary functions «(t) and ~+(t). Therefore,
isovectors are prolongation's of vectors Vi in tangent bundle of the graph
space. Their components are given by
1
X'= = 2dte-alt), X*= -a(),
2 ! ]' ! /
U=zd{t)u—zd )z —~'(t).

3 3
In homogeneous Korteweg-de Vries equation we have f = 0 so that the
functions «(t) and (¢) ought to satisfy the additional constraint

1

1
—O/H(t)$ _ ’Y”(t) — 0

i
t —
o (t)u 3
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whence we immediately obtain
at) = 3eit + ¢z, (1) = st + .
Hence, the relevant isovector components become
X! = —c1x — et — ¢y, X2 = —3cit — o, U = 2¢ciu — c3

Consequently, parts of linearly independent isovectors in the tangent bundle
of the graph space are designated as follows

o 0 9 9
1 Y v i 2_ _ 2
Vi= sy w8ty t2ug, v o’
‘ 8 9 9
3_ .Y Y 4_ _ 7
Ve = tax ou’ v ox’

As an example, let us determine the admissible form of the function f lead-
ing to these isovectors. Assuming ¢; # 0, we define new constants by ¢y /c;
= ay, c3/c1 = ag, c4/c1 = ay. Then the general solution of the differential
equation

s, 0 0
(x+a3t+a4)8—£ +(3t+a2)a—{+(a3—2u)a—£ +5f=0

is found by resorting the method of characteristics as

f(xa t, U) = (a3 - 2”)5/29(£a 77)

where the characteristic variables are defined by

1
T — §(a2a3 — 2a4 + ast)

&= (3t + ay)1/3 ’
1
n= (3t + ax)**(u — 5(13)

It is immediately observed that the isovector V! generates the scaling trans-
formation

T=Ar, t=MNt, 1=u/N
with A = e~* whereas the isovector VV* produces the group
T=x—st, t=t, u=u—s.

The isovectors V2 and V* induce, respectively, translations in the temporal
and spatial variables.
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We have to determine the integral curves of the isovector field in order
to derive a family of solutions from a known solution w(z, t). The differen-
tial equations to be integrated are

dT o
il — ca(aT + bt + ¢),
%: —c2(3at + 1),

du

% (20 —

s c2(2aw —b), ca #0

where we have defined c¢;/co = a,c3/co = b,cs/co = c. These equations
are to be solved under the initial conditions Z(0) = z,#(0) = t,u(0) = u.
This solution is easily found as

~ 2(b—3ac) + 3[2a%x + 2ac — b(1 + at)]e”* 4 b(1 + 3at)e 32

6a?
_ (14 3at)e 325 — 1
t =
(s) o )
2 t) —ble** +b
a(s) = Lon D M .
a

Example 9.4.3. As an example to the case N > 1, we shall treat the
boundary layer equations associated with a semi-infinite flat plate along x-
axis placed in a unidirectional flow of an incompressible viscous fluid. The
field equations governing this flow are given by

0%u ou ou Oou  Ov

I/a—yQ — g —va—y +U(z)U (x) =0, %+a—y =0
where u and v are velocity components along x- and y-axes, respectively,
and the constant v is the kinematic viscosity. U(z) is the velocity field in
the direction of z-axis before the plate is installed into the flow. The second
equation above represents the incompressibility condition. Boundary layer
equations are highly useful approximations to exact equations of viscous
flow known as Navier-Stokes equations [see Exercise 9.15] Let us denote
t=r, 2’ =y, u! =u, v’ =00l =u, vl =us, v =0v; and v3 = v,.
Field equations then become

o 1
Va—vg — o] — vy + f(2') =0, vl+13=0 (9.4.26)
T
where f = UUL'. Since the variable v3 is eliminated by v3 = — v, the iso-

vector field can be taken as
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0 0 0 0
x2_ 9 1 9 2
81+ 82+U81+U8
0 0

0
Vi + Vi — + V.
* lc%%jL 28U%+ L ow?

V=X

Indeed, the relation dv} + dv3 = 0 yields V2 = — Vj'. The functions X',
X2, U' and U? depend only on the variables x', 22, u!, u%. The other com-
ponents of the isovector field of the contact ideal follow from (9.3.21);:

oU! oxXt oU! ouU! 0X? oxX!

1 1 2 1 12
Vi = or! (E)xl B 0u1) + ou? Ui Oxl Y2 oul (v1)
ox? ,, oxt,, ox*,,

T But 1T G2 11T g2 2

(9.4.27)

oU? 0X? 0U? oU? 0X! 0X?
2 2 2 242
‘/2:6m2_<8m2_82) aulv%_aﬁvl_@tﬂ(%)
8X221 8X122 oxt |,
utl 22T 2t Jul 21

oul  ox! 0x% Ul ouU! oX!
1 _ 1 1 2 1.2
Ve or2 8962 (8:1:2 B 8u1> 2 ¥ ou? Y2 ou? U1%
X2 ox! 0X?
= ar (W)~ Tt — v

oU?  9X? oU? oxX' oU? 0X?
2 _ - 2 1 _ 2 YA g2
VIi= G0 ~ a2 T g (89:1 au2) ot 12
X! ox! 0Xx2
- W(U%)Q - WU}U% - W”%”%

If we replace v3 in these expressions by — v}, we see that the condition the
V2 + V! = 0 is fulfilled provided that equations below are satisfied

oUul  oU?

3o+ 5 =0, (9.4.28)
oxX' o0Xx?* oU' oU? 0
ozl 0x?  Oul + o

ox' oU! 0

oz ou:

0X? 0oU? 0

Ozt oul

ox'  0X?

oat T oar

In view of the balance equation (9.4.26);, we have to take
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Y =pulsl, = —ulel —uPl + f.

We thus find V (2!!) = 0 and

V(ZP?) = vV,

VEhH = —0jU' —ojU? — o'V} — 2V + X f
We then obtain from (9.4.8) that

Al = X1 2l —0lU? — 'V — PV +ug‘;22
ox'  ax?
1,1 2,1
+(f_uv1_uv2)<81+ax2>a
-l ax
A,}? = a Qﬂ 62 (f ulv% —’U,2U%)a B’
, vl oxt o0x? ¢
14 2 7 i 1ij
A = v[ S8+ (Gor + 5or ) 883 — 55 8dsh], Ay =0,
: ; X7 . 98X
lijk 1jik
24 = — 24" = v (G 8- T 5]) 556}

Hence, the equations (9.4.11) can now be written as

)\(8212 8211

g4l 1i,,3

onr T Vi T ) = A+ A5,
oxt  9xl 1ij 15 Likj 1jkiy, ¥
A(—av? +_8U?)_Aﬁ + A 24 4 A

whose explicit forms become

1
Mf —ulo] —uPv)) = X f — ’U%UI—U%U2—U1V11—U2V21+I/%
ovy 4 L1 2 /00X 9X?*  oX
+V8uﬂv2+(f_u v —u UQ)(axl + 922 +8 5 Z> (9.4.29)

) 1 )
oxsisish = 22 51 4 ‘ZV; 6]
j Ui
ox'  ox*  ox* )
+2<ax1+a ko k)ééég

- (5 + )= (5

92 " our 2
The second set of equations above leads immediately to
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vy | ax'  ax' | 9X!
= 802% + ot Gt T g (9.4.30)

Ul ox' 9x*  9x? |
= + — +

oul ~ dx' 0z Ou?
vy axt  ox' | oxX'

0= vl oz oul vt et
_ 81/21 B a‘/?l
o Ovt

Because we had replaced v3 by — v} the equations (9.4.30)3 are satisfied
identically whereas (9.4.30), gives

ox!  oU! oX! 1 oxt  9Xx?2 1
G0N DU 0N (050X
Ox? ou? ou? oul ou?
whence we extract the relations
oX! _0 Ut B _28X1 0X? _28X1
ou: 7 ou? ox2’ w2 T oul’

If we insert these results into equations (9.4.28)s 5, we find that

ox! _8X1 _6X2 _8U1 0
ox2  Oul O o

Consequently, at this stage we reach to the following components
Xt =¢(ah), X=X (ot 2% ul),
Ul = U2t 2%, ub).

Introducing these together with the relation (9.4.30); into (9.4.29),, taking

v3 = — v} and arranging the resulting expression, we conclude that
02 X? 3 0?Ut ,0X? 92 X? 1\2 10X? |
Z/(9(u1)2(02) _(V&(ul)2 - ou! _2V8w28u1)(v2) 2u ut 172
02 X? L0X? 5 0X? 0X? o0*U! 9\ 1
—<V8($2) +u 81_u—8:1:2+3f81+2ya 281—U)v2+

o0x?  dx!

0X? d¢ 0*U! 3U oUt
1 1,1 2
[u (2 ) U }Ul V@(:vQ)Q +ul Ozl T ox?
Ut x>
i gu ~ M g —H=0



556 IX Partial Differential Equations

Equating the coefficients of powers of v} and v} to zero, we readily see that
the following relations are to be satisfied

2 2171

?9); =0, ;(u[{)Q =0, (9.4.31)
1 2 v2
0= G R T 2 G X

These relations imply that

If we insert these expressions into equations (9.4.28), then the first equation
yields

&'z — (') =0 and a(z') = € (2") + .

The other equations are satisfied identically. The last equation (9.4.31) takes
the form

§'(u')? +&f + Ba+e)f =0
so that we obtain £’ = 0 and
E(xt) = crzt + o, az?) =c1 + ¢y = cs.
Therefore, the relevant components of the isovector field are found as

X' =zt + ¢, X? = cz2® + B(2h), (9.4.32)
Ul = (c; —2c3)ut, U? = (zYHu' — esu®.

We see that the function f must satisfy (ciz! + o) f’ + (4c3 —c1)f = 0.
On assuming ¢; # 0 and writing ¢y /c; = a,c3/c; = b we realise that f has
to be chosen in the form

S0P = f@h) = Ala’ +a)

to be admitted by the symmetry group. Thus, the admissible velocity field is
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Azl + q)20-20)
U') = \/BjL : 1—;b

If we take ¢; = 0, then we get f(z') = Ae " where ¢ = 4c3/cy. Linearly
independent isovectors are then given by

0 0

V1:x1%+u18 T

s 0

%(; 0 0

3 2 1 2
Ve=zx 922 -2 Jul —u Wl
V, :ﬁ(:cl)i—i-ﬁ'(ytl)uli [

g Oz? ou?’

Example 9.4.4. As an example to a problem to determine symmetries
of which proves to be quite difficult by using classical methods, we consider
the equations governing the motion of a hyperelastic body!. In order to
simplify the discussion, we shall employ Cartesian coordinates. We had de-
noted the location of a particle in the undeformed body by material coor-
dinates Xg with K = 1,2, 3 and the location of the same point at time ¢ by
spatial coordinates x; with k = 1,2, 3 [see p. 453]. The motion of the body
was specified by a diffeomorphism represented by relations x; = x; (X, t).
We know that a homogeneous hyperelastic medium is characterised by a
given stress potential ¥.(C) where C = F'F is the deformation tensor.
F = [z} ] is the tensor of deformation gradients. Here, we use the notation

ox
Fri = T K = ﬁ

The equations of motion of an hyperelastic material are designated by

8 82 ka 8113 k
— =2 =0 = 9.4.33
8XK ( 8fL‘k7K ) po 8t o Uk 8t ( )
in the absence of body forces [see (8.7.4-5)]. These equations will turn out
to be an example to the case m = 1,n = 4, N = 3. In order to utilise direct-

ly the determining equations (9.4.11), let us introduce the notations

1 Adetailed discussion of this problem involving heterogenous materials can be
found in the following work: Suhubi, E. S. and A. Bakkaloglu, Symmetry groups
for arbitrary motions of hyperelastic solids, International Journal of Engineering
Science, 35, 637-657, 1997.
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ox
4 s kK( ) OFx ) k4(V) POV

Hence, the equations of motion are reduced to the form

ox b))

B 0%14 _ o

00Xk 0X4

We take the isovector field as follows
0 0 0 0 0
V=-0,—-V Q % Vi
K@XK 8t+ k@ k+ kKaFkK+ ka’Uk

where the functions @y, U, €, depend only on the variables Xy, t, x; and
for the components Vi and Vj, we have the expressions below

oy 0P, ov oy 00, ov
Vi F F F. F F
kK = e + kLaX +vk8XK+ Ika + Frr lKa + IK'Uka o
o0y 0P, ov oy 0o, ov
Vi = I F
k= ot + Fpr—F— ot + v —— ot + = oz, + Frrvy—7— o7, + vpv— oz

We thus obtain
Big =V (Zx) = CexitVie, V(Zra) = — poVi
where we had defined

XLk 92y

= =Cirpx.
0F,  OFyx0F HRR

Crrir =

We had already called the tensor Cg;r(F) enjoying the block symmetry
shown above as the elasticities of the material in Example 8.7.4. Hence, the
coefficients appearing in the determining equations (9.4.11) become

Ay, = Bix x — poVky, At = Bixy, A = — poVis,
0By, .
Agrm = L Crrin(Parar + V) + Coann®r s
ok,
oV}, 0D, .
Asr = — POW + CrrirV k., Aran = 6le — po®@x Oni,
oV
App = — PO% + po®x K Oty Aarikim = — Aramkim = §CkL1M‘I’,m,

1
Agravkim = — ALK MEm = §(CkLlM‘I>K,m — Crxin®rm),
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1
Ayrakim = — Araaiim = §p0(I>L,m Okt

where an overdot (-) denotes the derivative with respect to the time variable
t. All other coefficients turn out be zero. Therefore, the equations (9.4.11)

take the form

0¥k
ANop— = A + A1 F A
ki oX, kT Akl + Aagivg
0k 00X
Am( ):A A 2 Asert iim -+ ALasickim ) Fon
k OF, OFix kikl + Arkr + 2(Ax apkim + ALy kkim) Fmar

+ 2(Axarkim + ALakkim)Vm
— poil = Asarr + 2Au0akim Frnr
0 = Agarr + Aarrr + 2Aurkkim Fmr + 2A K 14kmVm

where Ay, are arbitrary functions of the coordinates (X, ¢, xy, Fix, vi) of
the contact manifold. The above equations thus yield the following result

Bik,x — poVi + Bk Fig — poVigvi = 0, (9.4.34)

0B 0B, ,
Nem (Crkir + Conig) = 8T];f + BFZ — (Crxir + Crnig ) (Parvr + ¥

+ ot s + Vv ) + Coanin®x v + Ceanie P
+ (Crai®rm + Cranir ®rm) Foont,

oV,
A = — — (Pr i + PrrmFnar) O

61)1
0Bk
8@;

oVi

— o0 ® 5 8171 — P ———
POPK Okl PanZK

+ Crrik (Y p + V0 Fonn) — poPx mVUmbi = 0

Because of the relations

= Coprc (T + U, Four),
o, vk (Y + 9 For) OFin

the equation (9.4.34), takes the form

(Crrir + Crri ) (Y 1 + U 0 Frr) — 200(@r + Pyt )0 = 0

= ((I)K + (I)K,mvm)ékl

Since the components Chyr, + Crrix are coefficients of the terms like
x k1, in the field equations (9.4.33), they cannot be all zero. It then follows
from the above equation that

Pgp =0, P =0, ¥V, =0, ¥, =0.
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Thus, we must have i = P, (X), ¥ = U(¢). In this case, we get

Bix = Crrir(ur + Fine@orr + FrnrQum),
Mt = Qi+ (¥ — g )0

so that (9.4.34); can be written as

Crrir [Urx + Fiu®uix + FnrQmi + (Qzm + ForQmn) Frnk |

—pPo [mevﬂ)m + ({I}(Skl + QQM)UZ + Qk] =0. (9.4.35)
This requires that we have to take
92y, 9’ 1.
— = - = — —W(t) Opy.
0,0z, T Ox0t 2 () &

These equations yield easily
(X, 1,%) = — (0 + (X + Tr(X, 8) = A (X, 1) + Tu(X, 1
where we have defined

Aa(X,1) = = SB(0)6 + (X,

Then the equations (9.4.34), reduce to the form

(Curcir + Conrirr)m — (Crrcmr + Crrmic ) Qi + {2(Crrir + Crrix )W
— (Crrine + Cranir )Prar — (Cranir + Crring) P (9.4.36)
— (Crrizmar + Crrigmar)(Qmanr + Foon @ oar + FontQnp)} =0

where we have introduced the tensor

o*y
OF,kOF10F

Crkitmm =

The block symmetries manifested by this tensor are obvious. It is plainly
observed that the term within braces in the expression (9.4.36) is symmetric
in indices k£ and [ due to the block symmetry of the components Cixir.
Hence, the antisymmetric part of that expression must satisfy the relations

(Corir + Conir) Qe + Qi) = (Coker + Conkr ) (Qum + Q).

Let us define matrices AEL) via A,(fL) = Crrir + Crrnix. These matrices
are symmetric. Consequently, we obtain
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KL KL KL KL
Uy A = A"ty 08 A A = A Ay

Thus, the symmetric part of the matrix A commutes with every symmetric
matrix ARL) According to the well known Schur lemma of the group
theory A ;) can only be a multiple of the unit matrix. Therefore, on noting
that Apx;; may be represented by an axial vector a,,, we can write

A = Ay + Apy = Ao(X, 8)0p1 + erimanm (X, 1)

whence we get

1.

Yty (X) = [AO(th) + §‘I’(t)} 611 = Mo (X)bxi,

Ykt (X) = €ktm@m (X).
We thus conclude that

1.
X, 1x) = [M(X) = U071+ exman (X +Te(X, ).
If we insert this expression into (9.4.35-36) and equate the coefficients of z,,
to zero, we get U = 0 together with
)\O,Mf Omn + CmnrAr M = 0

and consequently Ao as = 0, a, s = 0 leading to

M(X) =ap, ar(X) = ag,
W(t) = byt® + 2bot + b.

The equation (9.4.35) now takes the form
Crexiz(Tipx + Fin®n px)—pol's = 0.
We differentiate this expression with respect to F},,3s to obtain
Crritmv(Tiox + FIN®N k) + CrkmrPoarx =0

that can be satisfied for any non-linear elastic material if only ®y; . =0
andI'; L = 0. This of course implies that ', = 0. We thus easily obtain
O (X) = Agr X1 + Br,
(X, t) = (axrt + Ber ) Xk + prt + vy

Replacing the functions in (9.4.36) by the above expressions, we see at once
that the coefficient of the variablet vanishes if only we take b; = 0 and
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arx = 0. If we take into consideration the identity

D) 0?2 0
FnN = ( nN )

OFxkO0F 1 0F  OFy0FL OF
— Crmm 6niONL — Cirmar 6nkONK

Fon Crgiomm =

the remaining terms in the expressions (9.4.36) can be arranged in the fol-
lowing manner

O*F O*F
+ - (9.4.37)
0Fx0F  O0F.0Fk
where the function F is defined as
ox
F=[AnmFun + (a0 — b2) Forr + €xtm@Finr + Bnnr| 5o—
OF
— 2(@0 + bQ)E

A rather straightforward but somewhat tedious calculation for details of
which we may refer to the work cited above shows that the solution of the
equations (9.4.37) is expressible as

1 1
F= §’Y€k:lm€KLMF ki Fir Foar + §’YmM€klm€KLMFkKEL
+ Orr P + 6.
If we recall identities
1
J = detF = §€kzm6KLMFkKELFmM

.J ‘
0Fk

1
—1
=JFyg, = §€klm€KLJ\1FkKFlL
where F ]}i are entries of the inverse matrix F~!, F can also be written in the
form

F =~J + v Fip + Orx Frx + 6.

We had emphasised the fact that the stress potential X is actually dependent
on the components Cx; = Fyx Fjr of the deformation tensor. Once this
transformation is fulfilled, we see that we have to take 5,,ar = Yex = Ork
= 0 in order to remove the dependence on F. The relevant components of
the isovector field are then given by

& = Ax X1 + Br,
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U = 2byt + b3,
W, = (ap — ba) Tk + epim@m@y + puxt + vy,
and the admissible functions 3. must be solutions of the equation

15D
0Ckr

2[Anr + (a0 — b2)6r1]) Cren —2(ap + b2)¥ = vV detC + 6.

In the components €2, the terms v}, indicate that the space is homogeneous
whereas the terms ey, a,,7; = —(a X x); imply that the space is isotropic.
The terms (ag — b2)xy + pipt mean that the field equations are invariant
under a Galilean transformation [Italian physicist and astronomer Galileo
Galilei (1564-1642)]. Of course, these symmetry groups must be present in
all classical mechanical system modelled correctly. |

9.5. SIMILARITY SOLUTIONS

As we have mentioned several times we can produce a new family of
solutions from a known solution of a system of partial differential equations
if we possess an isovector field of the fundamental ideal generating a sym-
metry group of transformations. In this section, however, we shall try to de-
termine structural properties of certain solutions that remain invariant under
a particular symmetry group. If a mapping ¢ : D,, — C,,, corresponds to a
solution to a system of partial differential equations which remains invariant
with respect to an isovector field V/, then it has to satisfy the requirement
oy (t) o = eV o ¢ = ¢. Let us suppose that such a solution is given in the
form f* = ¢*(x) — u® = 0. If these functions are to be invariant under the
flow generated by an isovector V', then it must satisfy the condition

£ [ =V () =0

[see (2.9.14)]. This means that a group-invariant solution, in other words, a
similarity solution must satisfy the system of quasilinear partial differential
equations

X' (27,7 (x)) % —U(2?,¢7(x)) =0 9.5.1)
when N > 1, or the non-linear partial differential equation
o o ,
X' (27, (x), ¢(x) ) a:fi —U (2, ¢(x),9(x);) =0 (9.5.2)

when N = 1. These partial differential equations usually specify the
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structure of a similarity solution in the following manner
Y=9¢%¢&"), a=12,...,p<n

where ¢ are known functions of independent variables x‘. After having
installed these functions in the original system of differential equations we
are led to a new set of partial differential equations with a smaller number of
novel independent variables since z' are replaced by £*. That is why we
expect that to solve them may be somewhat easier compared to original
equations. If we manage to find a solution of these equations we then reach
to the functional form of a similarity solution. Inserting this form into origi-
nal field equation we can find an explicit solution. If we denote a solution of
a given system of partial differential equations by a regular mapping
¢ : D, CR" — (C,,, then the relations (9.5.1) or (9.5.2) require that the
mapping ¢ must satisfy the condition

¢*(iv(c*)) =0 (9.5.3)
to be a similarity solution associated with an isovector V. In fact, this result
follows immediately from iy (0%) = U* — v? X" and ¢*0f = u. Actually,

we readily observe that a similarity solution satisfies as well the condition
¢*iv(Z,,) = 0 where Z,, is the contact ideal defined in (9.3.1). If we take

i Z“D(k)(Xj) for iso-
vector components of the contact ideal given by (9.3.19) in the expression
lV( 1112 17) VY@? P ;ll...iriXZ,We get

¢ (iV(Ug---i,)) = (gb*vz?zr,l) ir U’z oy 1l(¢ XZ) i ,Ol{l*--i,z¢*Xi
= (¢*‘/;?-~i,,l - ,11 Ay 11¢ XZ) [¢ (iv(gioi"'ir—l))] i

SOy

into account the relatlons Ve o= D( ) ) — ¥

21" lkl Zl lk

If we continue to utilise this recurrence relation successively, we finally
obtain

¢*(iv(o7...;)) = [¢"(iv(eM)] ... =0
where r = 0,1,...,m — 1. We thus conclude that
¢V (qﬁ*Xi)ufjl__,m, r=0,1,...,m—1
On the other hand, we have

¢ (iv(do?.; )= —¢" (V. da'—X'dov} ., ;)
- (¢*Vz? i — (07X Ju ,il-»-i,,,,lij)dlj-

But inserting the relation
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¢*V;‘10{--im,1i = (¢*V;1 “n— 1) ((b X]) z lm—1]
into the foregoing expression, we find
¢ (iv(dof, ., ) = 6Vl — (0" X)) uf 1) da’ =0

whence we draw the conclusion ¢*iy(Z,,) = 0. Next, we consider the
balance ideal J,, and write

¢* (iv (W) = ¢* (iv (dZ A p; + X))
= 6" (V(5™) — XIdX A pjs + XI5p,)).

However, because of the relations

o) = [0 Sy ]

Zl Z

* 82% - * j a(gb*zm)
:(¢X][ +ZU“ 7]8 ﬁ“ Z:|:(¢X7)T
* ai 8(¢* m) j
we obtain
1o *Eai o *Zai o *Em
o i) = (o) [HGE, - MO, OOED,

6 ()] = (6" X)) [ S5 + 0@ |y = 0
so we arrive at the result ¢*iy (J,,,) = 0. It is clear that this property will be
equally valid for a fundamental ideal generated by forms w” = 3.
Example 9.5.1. Let us consider the isovector field obtained previously
in Example 9.4.1 for the heat conduction equation
0 0 0
— Vi =dat— + 47— — 2t)u——
G =ty HAC G — @ 2ug
except for a sign difference. The similarity solution associated with this vec-
tor field must satisfy the partial differential equation

Ou 20U _
4xt% + 4t 5 + (z°+2)u=0

whose characteristics are described by the ordinary differential equations
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dx dt du

dot 42 (224 20)u’

Hence the solution becomes

u(z,t) =

where T'(€) is an arbitrary function. On inserting this expression into the
field equation u; = u,,, we simply obtain 7” = 0. Thus, this similarity
solution takes the form

e 4 X
u(m,t) = —F <C1— + CQ) |

Example 9.5.2. We now consider an isovector field associated with the
Korteweg-de Vries equation given by

0 0 0
—_vi_evd = - - _ — o) —
¢ @+et) ox 3t ot (2u—c) ou

where c is a constant. The similarity solution associated with this isovector
must satisfy the partial differential equation

ou ou
) +3t—+2u—c=0
(x+c)8x+ 5 T2u—c
whose characteristics are determined via the ordinary differential equations
dr  dt du
t4+ct 3t 2u—c

Hence, the solution is found as

u(z,t) = g + o3, e =713 (a: - %ct).

where ¢(&) is an arbitrary function. If we insert this expression into the
equation u; + ut; + Uy, = 0, we deduce the following non-linear ordinary
differential equation

3¢" + (3¢ — £)¢' —2¢ = 0. (9.5.4)

In order to get an idea about the structure of solutions of this equation, a
numerically obtained solution under the initial conditions ¢(0) =0,
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¢'(0) =1, ¢"(0) = 1 is depicted in Fig. 9.5.1.

20

10

[

Fig. 9.5.1. A numerical solution of the equation (9.5.4).

As another isovector, we choose

0 0
— OV VI =C—+ =
ox * ot
where C' is a constant. The similarity solution now satisfies the simple par-
tial differential equation
ou  Ou
C—+——=0
ox + ot
whose solution is in the form u = u(§) where £ = x — C't. Hence, we have
to solve the non-linear equation

' +u —Cu' =0

or its first integral

u’ + 1u2 —Cu=c.
2
The general solution of this equation can be found in terms of elliptic
functions. However, if we impose the condition ©v — 0 for £ — =+ oo, we
have to take ¢; = 0. In this case, the solution is expressible in elementary
functions and the advancing wave type of a solution of Korteweg-de Vries
equation yields the well known soliton solution
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01/2
u(z,t) = 3C sech? [T(a: — Ct) +6].

Starting from this particular solution, we can construct a new family of solu-
tions parametrically by making use of the relations obtained at the end of
Example 9.4.2 as follows

~ 2(b—3ac) + 3[2a%z + 2ac — b(1 + at)]e™* + b(1 + 3at)e 3

z(s) = 62
_ (1 + 3at)e 395 — 1
i(s) =
(s) "
01/2
[6aCsech?[——(z — Ct) + 8] - ] e + b
u(s) = o
where s is the parameter of the family. |
Example 9.5.3. We consider the isovector field
0 0 0 0
= —_ 41 (1 =20 u— — by—
Va ($+a)8x+by8x+( b)uau bvav

associated with partial differential equations governing the boundary layer
flow past a flat plate discussed in Example 9.4.3. Equations (9.5.1) now take
the form

ou ou ov

v
(:U—i-a)%—l—by%—(l—%)u—o, (x+a)%+bya—x+bv—0

the solution of which is easily obtained as

u(z,y) = (z+a) 76 (8), v(z,y) = (z +a) "Y(E€); E = y(z +a)”’

where ¢(&) and () are arbitrary functions. Introduction of these expres-
sions together with the admissible function f(z!) = A(z! + a)'~* into the
field equations (9.4.26) gives rise to the following set of ordinary differen-
tial equations

v +bEpe’ — (1 —2b)¢" — ¢' + A =0, (9.5.5)
bes' — ' — (1—2b)$ =0
A numerical solution of the above equations corresponding to b = 1/2,
v =1, A = 1 under the initial conditions ¢(0) = 0,¢'(0) =0,¢"(0) = 1.5

and 1 (0) = 0 that may not reflect an actual physical situation is depicted in
Fig. 9.5.2.
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Fig. 9.5.2. Numerical solutions of the equations (9.5.5). |

9.6. THE METHOD OF GENERALISED CHARACTERISTICS

We have seen in Sec. 9.2 that the solution of a first order non-linear
partial differential equation can be constructed by means of characteristics
starting from a given initial submanifold. We shall now try to generalise this
method by employing isovectors of the ideal J,, of A(C,,) associated with a
system of partial differential equations. Let us denote the n = n + D num-
ber of local coordinates {z',v{;, ., : 0 <r <m} of the contact manifold
Cn by 2%, a =1,...,n. Consider a vector field V = v*(z) 9/02* € T(C,,).
We know that its integral curves are obtained as solutions of the following
ordinary differential equations and initial conditions

a
L), co==

in the form ¢* = ¢°(t;z) = ¢y (t)2* = €'V (2%). We wish to get the para-
meter ¢ acquired a status of a coordinate to appreciate its independent varia-
tions. Therefore, we embed the integral curves into the graph manifold
L., = C,, x R whose coordinates are prescribed by {z%,¢}. Thus the con-
tact manifold C,,, might be specified as a submanifold of the manifold L,,
obtained by ¢ = 0. It appears to be advantageous now to extend the mapping
¢y describing the flow as ¢y : L,,, — L;, such that

ov({2°,t}) = {¢* = eV (2%), t}. (9.6.1)

We can naturally define a canonical projection 7 : L,, — C,, as follows




570 IX Partial Differential Equations

m({2% 1)) = {="}.

The operator 7o ¢y : L,, — C,, induces naturally the pull-back operator
(mogy)* = ¢y o™ : A(Cp,) — A(Ly,) along trajectories of the vector
field V. In order to illustrate the properties of this mapping, let us consider a
form w € A¥(C,,) given by

1

W= Way-ap (Z) A2 A oo A dz™.

Since the flow carries the forms dz® in the neighbourhood of ¢ = 0 to the
forms d(® = ¢y, o m(d2") = dz® + v*(z) dt, the pulled back form can be
written at ¢ = 0 as follows

1
Wiy =T Wy = T Warra (z) (dz™ +v"dt) A --- A (dz™ 4 v™dt)

1
- (k—1)! Wa,.oqr (Z)VdE AN A2 N - AN d2™
:u)—i-dt/\iv(W).

where we have employed the complete antisymmetries of both the coeffici-
ents wy,...q, and exterior products. Hence, in view of the relation (5.11.14)
the form w* can be expressed as

w*(t;z) = ¢y o mw(z) = eV (w+ dt Ay (w)). (9.6.2)

Next, we introduce an operator Ey : A(C,,) — A(L,,) that maps an exterior
algebra into a larger exterior algebra by the rule

Eyw=w+dt Niy(w) € A(Ly,), w e ACp). (9.6.3)
The operator Ey has the following properties:
(1). By (w1 + wy) = Eyw; + Eyws, (9.6.4)
Ey(fw) = fEyw, f € A%(Cp),
(ZZ) Ev(uJ1 A (.4)2) = FEyw A Eyws,
(MZ) d(EVw) = Ev(du}) —dt A £Vw,
) £V(va) = EV (.fvu)),
(v). (¢} o) w =™ Eyw.

The relations in (9.6.4) can easily be verified:

(7). This is evident because of the properties of the operator iy. Hence, Fy
is a linear operator on the exterior algebra A(C,,).

(ii). To see this, it suffices to note that
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Ev(w1 /\wg) =wiAws +dt A iv(wl) N wo + (—1)d€gwldt Awi A iv(WQ)
Eyuwi A Bywy = wi A wsy + (—l)de‘qwldt/\ w1 A iv(CUQ) +dt A iv(wl)/\ wo.

(4i7). This follows from the relation
d(Byw) = dw — dt A diy (w) = dw + dt N iy (dw) — dt A Eyw

where we have employed the Cartan magic formula.
(7v). This is immediately seen if we take notice of the relations £y dt =
dV (t) = 0 and £y (iv (w)) = iv (£v(w)) [see (5.11.8),].
(v). This is in fact just the relation (9.6.2).
According to the properties (9.6.4);_o, we see that the set

Ay (L) ={Eyw:we ACy)} C A(Ly)

becomes an exterior algebra. We can now prove the theorem below.

Theorem 9.6.1. If a vector field V € T'(C,,) is an isovector field of a
closed ideal J of the exterior algebra A(C,,), then it is also an isovector
field of the ideal Ev3J of the exterior algebra Ay (Ly,).

If wy,ws € J, we have of course wy + wo € J and then (9.6.4); leads to
Eyw; + Eywy = Ey (w1 +wsy) € EyJ. Similarly, if w € J, we find that
v Aw € T withy € A(Cy,). Since a form v € Ay (L,,) must now be written
as v = Ey~y where v € A(C,,), we thus get ¥ A Eyw = Eyy A Eyw =
Ey(yAw) € EyJ due to (9.6.4),. Therefore, the set EyJ is an ideal of the
exterior algebra Ay (L,,). However, this ideal is no longer closed since we
have the relation d o E'y # Ey o d because of the property (9.6.4)3. If the
vector field V' is an isovector field of the closed ideal J, then we get dw € J
and £yw € J for all forms w € J. On the other hand, because of (9.6.4)4 and
(5.11.9) the relations

£V(va) = Ev(;ﬁvu)) € Evj
£V(Evdw) = FEy (£de) = Fy (dfvw) e ByJ

are satisfied. Hence V' is also an isovector field of the ideal Fy/J. O

Let D,_; C R"! denote a connected, open subset whose local coordi-
nates are provided by {s!,...,s""!}. We next suppose that the mapping
Y : D, 1 — C, prescribed by smooth functions 2% = %(st, ... s" 1)
specifies an initial data submanifold in C,,. Let us then determine the
integral curves of an isovector field V' of a closed ideal J of A(C,,) as
solutions of the ordinary differential equations

agt
dr

Ua(g)a Ca(o) = W(S); a=1,...,n (9.6.5)
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where 7 is a real parameter. It becomes now possible to introduce a mapping
V:D,=D,1xR— C, through the relations

2% = (Y0 (s);T) = (st ..., 8" ). (9.6.6)

We have already mentioned that C,, is a submanifold of L,, specified by
t =0. We now define a simple extension ¢ : D, 1 x R — L,, of the
mapping ¢ as follows

~

D(st, .., 8" T) = {2 =0 (st s, t =T (9.6.7)
In this case, the mapping ¥ : D,, — C,,, can be expressed as
U=rogyop=noe’ o (9.6.8)

when we recall (9.6.1). In the light of the information acquired so far, the
following theorem can be proposed.

Theorem 9.6.2. Let V' € T'(C,,) be an isovector field of a closed ideal
J of A(Cp) and D, 1 CR" ! be a connected open set whose local
coordinates are given by {s',...,s"'}. The mapping v : D, 1 — Cp,
determines an initial data submanifold in C,, through the smooth functions
2% = %(s),a = 1,...,n. If the extension ¥ of 1 holds the condition

~

(¥)" (Ey3) =0, (9.6.9)

then the mapping ¥ = 7o ¢y o qAb satisfies the relation V*J = 0. Hence, the
mapping ¥ : D,,_1 X R — C,, becomes a solution of the ideal 3.

The proof of this theorem is rather straightforward at the first glance. If
we keep in mind the relation (9.6.4)5, the pull-back operator ¥* may be
expressible as

U3 = (() o ¢} om*)T = () (e (EvT)). (9.6.10)

But, according to Theorem 9.5.1, the isovector field V' is also an isovector
field of the ideal EyJ. We thus find e*' (EyJ) C EyJ. Hence, it follows
from (9.6.9) that (¢)* (¢! (Ey3)) = 0, and as a consequence ¥*J = 0. It is
obvious that the condition (9.6.9) imposes a restriction on admissible forms
of initial data. If we pay attention to the definition (9.6.7), we observe that
(¥)*dz® = ¢*dz® and (1)*dt = dr. In this case, we can also express the
condition (9.6.9) as

(@) (Byw) = *w+ dr A (iy (w)) =0 (9.6.11)

for all w € J. On the other hand, one can write
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" oy e ot
dJalza:a ds? +Wd + - +an1ds
and since 1-forms ds!,ds?,...,ds" !, dr are all linearly independent, we
then conclude that the condition (9.6.11) is satisfied if and only if one has
Y'w=0, ¥ (iv(w) =0 (9.6.12)
for all w € J. Let us now assume that the closed ideal J is generated by 27
forms {w®,dw® : & = 1,2, ...,r}. Then it becomes clear that the conditions

(9.6.12) are satisfied if and only if we have
YWt =0, P (iv(w)) =0; Pdw* =0, ¢¥*(iv(dw”)) =0

for a = 1,2,...,r. Actually, we immediately see that the second set of
equations involving exterior derivative are automatically satisfied in case
the first set of conditions are met. Indeed, we obtain ¥*dw® = dy*w* = 0
in accordance with Theorem 5.8.2. On taking into account the Cartan for-
mula, we have ¥*iy (dw®) = Y £yw® — ¥*diy (w®). Since V is an isovec-
tor field of the ideal, we can write £, w® )\“ Aw? + Aa Adw’ € 3. We
thus obtain ¢*£yw® =0 and ¢*iy(dw®) = — dyp*iy(w*) = 0. In this
situation, the conditions (9.6.12) concerning the initial data are recovered if
and only if we are assured that the relations

P =0, ¢ (iv(w“)) =0, a=1,...,r (9.6.13)

are satisfied. O

We now consider a closed fundamental ideal associated with a given
system of partial differential equations and an isovector field V' of this ideal.
Let the mapping ¢ : D,,_; — C,,, specify again an initial data submanifold.
We assume that the mapping v is satisfying the transversality condition

¢*(iv(p) # 0

for the volume form p in D,,. The transversality condition implies that the
rank of ¢ is n — 1 since its domain is the (n — 1)-dimensional region D,,_;.

Moreover, we find ())*;t = ¢*1u = 0 on D,,_; since i is an n-form. There-
fore, we can write

V= () (¢ (Bvp) = (@) [ (dt Ay ()]

Att =0 we get U pul,_, = ()" (dt Niv(p)) = dr Ay*(iv(u)) # 0. Thus,
the condition U*y #£ 0 is satisfied about 7 = 0 on the set D,, = D,,_; x R.
Consequently, the mapping ¥ defined by (9.6.5) or (9.6.6) is regular. In this
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case, we can enounce the following theorem that turns out to be actually a
direct descendant of Theorem 9.6.2.

Theorem 9.6.3. Let V' be an isovector field of a closed fundamental
ideal 3., associated with a given system of partial differential equations. If
the mapping 1 : D, — C,, specifying an initial data submanifold holds
the conditions

V(v () #0, ¥ 3, =0, ¥*(iv(3n)) =0,  (9.6.14)

then the mapping ¥ = wo ¢y o 17} : D, — C,, prescribed by the equations
(9.6.5) and (9.6.6) on D, = D, 1 x R satisfies the condition V*J,, =0,
that is, it becomes a solution of the ideal J,,. O

We had called ¢(D,,—1) C C,, the initial data submanifold. We regard
(9.6.5) as the equations determining the characteristics corresponding to the
pair (V1)) satisfying the transversality condition. (9.6.14),_3 represent res-
trictions imposed on initial data on the relevant submanifold. ¥ is then
called as a generalised characteristic solution associated with a chosen V.

Generally, characteristic solutions of a system of partial differential
equations have to satisfy some additional conditions.

Theorem 9.6.4. If V is the generalised characteristic solution generat-
ed by an isovector field V' of the closed fundamental ideal J,, associated
with a system of partial differential equations, then the condition

U (iv(In)) =0 (9.6.15)

should be satisfied on the domain of V. Therefore, the generalised charac-

teristic solutions have to fulfil a specific set of additional constraints. How-

ever, if iy (J,,) C J,,, namely, if the isovector field is also a characteristic

vector field of the ideal, then these conditions are automatically satisfied.
We can realise at once that, we can write

FEviy (w) = iv(u)) +dt Ny oiy (w) =iy (w)
for a form w € J,, due to (5.4.5). Therefore (9.6.10) yields
U (iv (W) = ()" [e" (iv(w))].

But the relation £y (iy (w)) = iy (£y (w) implies that for every natural num-
ber k, we can write £}, (i (w)) = iv (£ (w)). Hence, we reach to the result

ettv (iv(w)) =iv (et£" (w)).

We have eV (w) € J,, since V is an isovector field. Because of (9.6.12),,
we get U* (iy(w)) = 0 as well. We have seen in Sec. 9.5 that it suffices to
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satisfy the relation
U (i (%)) =0

in order that the constraint (9.6.15) is fulfilled. In the light of this constraint
we can say that, the generalised characteristic solutions are nothing but cer-
tain group-invariant solutions. However, if the isovector field V is at the
same time a characteristic vector of the fundamental ideal, that is, if one has
iv(Jm) C Iy, then ¥*(J,,) = 0 implies that U* (iy(J,,)) = 0. In this case
the additional constraint is of course redundant. (|

The determination of solution of a given system of partial differential
equations satisfying prescribed initial conditions by the method of generalis-
ed characteristics seems at the first glance the same as the construction of si-
milarity solutions investigated in Sec. 9.5. But, in order to obtain a tangible
benefit from a similarity solution we need to solve first analytically partial
differential equations (9.5.1) or (9.5.2). Furthermore, boundary and/or initial
conditions have to comply totally with the structure of the similarity solu-
tion whereas in the method of generalised characteristics the mapping ¥ is
determined by solving a system of ordinary differential equations if the
initial data manifold is suitably chosen as to comply with the imposed re-
strictions. It is of course much easier to find numerical solutions of ordinary
differential equations to construct a solution of partial differential equations
at least approximately.

Example 9.6.1. We consider the non-linear partial differential equation

_ Ju ou
Oz 02?2

— ku =0, k = constant
where n = 2, N = 1. Introducing v = u1,v2 = up, we characterise this
equation by the following 2-form

w=Yu = (vjvy — ku) dz* A dz’.

As we already mentioned on p. 538 in Sec. 9.4, we can determine an isovec-
tor field by taking F'(z', 22, u, v, v2) = — ¥ = ku — v v,. Hence, we get

X! = Vo, X2:v1, U = ku+ vive, V1 = kvy, Vo = kvs.

We define the mapping ¢ : R — C; specifying the initial data submanifold
by the relations below depending on a single parameter s

'rl =S, .’,C2 = 07 U= 17[)()(8), V1 = ¢1(5)a V2 = ¢2(5)-

Since we have o = du — vida! — vodz?, iy (o) = U — v X! — 12 X2, the
constraints
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U (iv(p) = " (X' da® — X2 da') = —4i(s)ds # 0
o= (Y —1)ds =0,
Yy (o) = ¥ (ku — vive) = kibg — 13he = 0
on the initial data yield
k
Y1 #£0, =1, = 1/?0-
%o
Equations (9.6.5) can now be written as
dz! dz? du dvy dvy
dr = vy, ar = V1, ir = ku + vivy, o = kv, ar = kv,
xl(o) =3, 372(0) =0, U(O) = 77[}0(5)7
kwo(s)
JE— l JR—
Ul(o) - ¢0(5)7 02(0) - w()(s)

whose solution is easily found to be

st Yo(s) (e — 1), 22 = Py (s) (1),

¥o(s) k
u = ¢0(S ) 62k7—
v1 = h(s) T, vy = kq;zo((;)) et

These relations create a solution in the form u = u(z!, z?) after having ex-
pressed the parameters (s, 7) in terms of independent variables = and 2% by
inverting, at least in principle the relations for ! and z2.

As a very simple example, let us suppose that 1y(s) = cs where ¢ is a
constant. We then obtain

=5+ s(eh - 1), 2? = %(e’” -1)
whence we easily deduce that
1
s = xik’ T =14 222
1+ EIL‘2 c

Hence the solution becomes simply

k
u(zt, %) = cx! (1 + —xQ).
c
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On the other hand, if we take 9y(s) = cs?, we have

1 2c

=5+ §S(€k7— —1), 2* = ?s(eh -1)
and we find
k ka?
s=at— —z2, =1+ *
de 2cat — EIQ
2
so that the corresponding solution becomes
k
2cx! + ~a?
k 2 2
u(z!, %) = c(m1 - 4—:c2> [7]%] . [ |
¢ 2cxl — 5332

Example 9.6.2. As a more difficult example, let us consider the partial
differential equation characterised by the 2-form

w=dfi Ndfy € N(Ky), fr = (z)? + 03, fo = (2%)? + 0}

where we have againn = 2, N = 1 and v; = u 1, v2 = u . The form w may
explicitly be written as

W= 4(x1x2d:r1/\ dz® + 2t dzt A dvy + 2?vedva A da? + vivedug A duy)
If we choose a mapping u = ¢(z!, 2?) annihilating the form w, then ¢*w =
0 yields quite a complicated non-linear second order partial differential
equation

10201102 — P1¢2(12)° — (211 + 27 2) 12 — x'z® = 0.

This partial differential equation is known as the non-homogeneous Monge-
Ampére equation [French mathematicians Gaspard Monge (1746-1818) and
André Marie Ampere (1775-1836)]. Let V' € T'(Cy) be an isovector field of
the contact ideal. By definition, we get dw = 0. We thus obtain

fyw =diy(w) =dV (f1) Ndfs —dV (fa) Ndfi
where
V() = 20" X+ 20Va, V(fo) = 222X + 20, V4.

We now wish so specify a simple isovector field as to be V' (f1) = V(f2)
= 0 implying £;w = 0. If we take the function F' = F(z!, 2, u, v1, v2)
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into account, then it follows from (9.3.26) that this special function F' must
satisfy the equations
OF 5 OF L OF oF 5 OF 2 OF

T ——=0,v7 +7]

Vg TR T g I A P

The solution of the first equation is easily found to be as F' = F'(£,n) where
characteristic variables are & = x'2% + vjvy, n = u — x%vy. Inserting this
result into the second equation we obtain ((z?)* + v})9F /01 = 0 implying
that F' is independent of 7. Thus, we see that each smooth function of the
form F = F(z'x® 4+ vivy) generates an isovector field. As a simple
example, let us just take F' = z'2? + vvy. Hence, we find that

0 0 1 0 0 0

2 2 1
Vg—r — V] ——= Tr—vvy)— + 1 — + 1 —
28x1 18$2+( 12) + +

V== 8u 81}1 8’02

We choose the mapping ¢ : R — C; as follows
ot =5, 2% =1, u=o(s), v1 = V1(s), va = Ya(s).

The expression ¢*c = 0 yields again 11 = 1/, while the constraint ¢)*iy (o)

= *(z'x? + v1v9) = 0 requires that ¢y = — s/1). Because of the rela-
tion iy (1) = — voda? + vida?, the transversality condition ¥* (iy (1)) # 0
is met if 1), = ¢) # 0. To deduce the solution mapping ¥, we have to solve
the ordinary differential equations

del A du_
dr V2, dr U1, dr =Tz V19,
@ _ 2 @ — 5l
dr 7 dr
2'(0) = s, 22(0) =1, u(0)=1y(s),
S
0) = 9y 0)= —
Ul( ) 17[)0(8)7 UQ( ) 1/}6(3)
from which we readily obtain the parametric solution
z! = scosT + ,S sinT, x2 = cos T — ¢j(s) sinT,
¥ (s)
s
vy = sinT + ) (s) cosT, vg = sSINT — ——— COS T
1 0( ) 2 7/16(5)
s 1
u=1y(s +ssin27——<¢’ s ——) 1 —cos2T

If we would be able to eliminate the parameters s and 7, we might obtain
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the corresponding solution in the form u = u(x!, z?). [ |

Example 9.6.3. Let us take into account Korteweg-de Vries equation
studied in Example 9.4.2. The most general isovector field associated with
this equation would be

0 0 0
V= —(c1o+cst + 04)8—3; — (Bt + @)a + (2c1u — 63)%

0 0
+ 3011118—1)1 + (cgv1 + 501@2)871)2'

We define the mapping ¢ : R — C, specifying the initial data submanifold
by the relations

x=s,t=0, u=1vy(s), vi =Y1(s), va = Ya(s),
V11 = 1/111(8), V12 = ¢12(8), V12 = ¢11(8)

where U1 =U1, V2 =Ug2, Vi1 = U11, V12 = U312, V22 = U22. Because
¥* (iv (1)) = c2 ds, the tranversality condition is satisfied if we take ¢5 # 0.
1-forms generating the contact ideal are

o =du — vidx — vy dt,
g1 = dv1 — V11 dx — V12 dt,
g9 = dvg — V12 dx — V92 dt.

Hence, the expressions

Vo= (Y —1)ds =0,

P (01) = (Yy — Yu)ds =0,

P (09) = (5 — P12)ds = 0

yield 1(s) = h(s), ¥nr(s) = ¥i(s) = i(s), ials) = vi(s). On the
other hand, we find ¢* iy (o) = 2¢199 — ¢c3 + (15 + ¢4)11 + by = 0 and,
consequently

(s) = 1 [e3 = 2e190(s) — (e1s + ca)iby(s)].

C2

The balance form is given by w = dvy; A dt + (uvy + vy — f) dx A dt.
Therefore, the relation ¢¥*dt = 0 leads to ¥*w = 0 and it follows from

1/1* iv(u)) = 021/1* [dvu + (U’U1 + v9 — f) dx] =0

that ¢}, + o1 + ¥ — f(s,0,%9) = 0. Hence, the admissible initial data
1o (s) has to satisfy the following non-linear, third order ordinary differen-
tial equation
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o (s) + [wo(s) —as — c] Po(s) — 2atho(s) + b — f(s, 0, 1,!)0(5)) =0

where new constants are defined as ¢1/co = a,c3/co =b,cy/co =c. In
order to obtain the mapping ¥ we must solve the linear ordinary differential
equations

d dt d

d—f = —c(ax +bt+c), priai c2(3at + 1), d—:_t
under the initial conditions z(0) = s,(0) = 0,u(0) = 1y(s). The solution
is easily found to be

2(b — 3ac) + 3(2a%s + 2ac — b)e 207 + pe~3c207
33(3: 7—) = 62

6—362(17' —1 (2a¢0(5) - b) 6262(17' +b
i .
3a 2a

= c2(2au — b)

t(s,7) =

As a simple application, we take a = b = 0 and f = 0. In this case, ¥y must
satisfy the non-linear differential equation

o' (5) 4+ (Yo(s) — e)y(s) = 0
whose solution is known to be

1/2
Yo(s) = 3csech? (CTS + d)

Since, in the limita — 0,0 — 0 we get
r=8—coeT, t= —cor, u=Yy(s)

we have s = x — ct and the soliton solution

1/2
u=1(x —ct) =3¢ sech’ (%(x —ct) + d>

is obtained as a generalised characteristic solution. [ |
Example 9.6.4. This time we choose n = 2, N = 2 and consider the
partial differential equations

Ou  Ov ] Oudv
Ox

b T
ot T Ot Ox

where c is a real constant. If we eliminate u or v between these equations,
we see that v and v dependent variables have to satisfy separate non-linear
wave equations
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- =c"— -
ot/ Ox? o2’ \ox
Let us write ' = 2, 2> = ¢, u' = u and u® = v so that v] = ul}, v) = u,
v =k, 03 = u?Q . The contact forms in C; are given by

ol = du!' —vlda! —vida?, 0% = du® — vida' — vida®.

The relevant components of the isovector field V' of the contact ideal may
be extracted from (9.4.27). We know that X = X(x,u), U = U(x,u) ap-
pearing in those expressions are arbitrary functions. O-forms inducing the
differential equations become

Fl=vl4+vi-1=0, FP=vi} -c*=0.

We shall be looking for a simpler kind of an isovector field. Hence, we want
to satisfy the conditions £ydF' =0 and £ydF? = 0. Since iy (F') =

iy (F?) = 0, they are reduced to iy (dF') = 0 and iy (dF?) = 0. These rela-
tions lead to

Vi+ V=0, V2V +ulVE =0.

If we insert the expressions v3 = 1 — v} and v? = ¢2/v!} into (9.4.27) we get
the following polynomial identity in terms of the variables v} and v}

OXT  OX2\, 1.,  (OU? 90X OX%\, |,
- <au1 + au2)(”1) v2 (aul T ow ax1>(”2) +
<8U1 o +28X2 ax! . 8X2> . (8U2 . U . oU?
oul ou? ou? ox! 0x? U102 ou? ox! Ox?
ox2 . ox! ox? aUul  ax!  ax!

_ 2 o 2 _ 1 2 _ _
I+ 57~ gu ax2>”2+c <8u2 ou? ax2)

X2 oU?  HX?  9X? aX!
SN + (Gor = G + Bor U0 + S (0]
oUu?  ,0X* 90X\, | ,(OXY  OX%\
(61‘1 —C oul Ozl )(02) — 2 <8u1 8u2)
_CQ(OU1 oXx! 8X1) L 2<8U1 ou?  _ox?

-2
ou? + ou? + Ox? vt oul + ou? ou?

ox'  ox? out Ul oxX!
T 9t >v% + 02( c? ) =0.

ou? + ozz  ou?

Hence, we deduce 13 equations below obtained by setting the coefficients
of v} and v} to zero:
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OX' OX* _ L oUP oxX* ox* _, Ul ox' ox'_,
oul ouz 7 oul oul Azl T ou? w2 Qa2
oUt ot ox* X' ox' . U’ axX’ oxX’ _
oul  ou? + ou? Ozl + ox2 7 oul  oul + ort
ou?  oU' QU oX?  L,0X' x> . X’

—(1+¢? - - =05 =— =0"
Ou? + Ozt + 0z? (L+e )8u2 ¢ Bul Ox? T Out ’
ox' _ 08 ou* 2 0xX* 0X® _ o X' 0x® _ 0w
Ou? T Oxt Oul ozt Tou! ou? ’
Ut ax'  ax' Ut au'  L,ax'
pr— —_— pr— 0
ou? + ou? + Ox? 0, ou? + 02~ ¢ a2 ’

out N ouU? _28X2 B ox! B 0X?

i3
oul Ou? Ou? Ozt Ox? =0

Equations 1 and 10 together with equations 7 and 8 give rise to

X! = Xl(xl,x2), X? = XQ(xl,xQ)

On employing these relations, it follows from equations 3 and 11 and equa-
tions 2 and 5 that

X' =g(a'), X* =h(z?),
U =U' 2!, 2% Y, U* = U?(a!, 2, u?).
Thus equations 12 and 9 yield
Ul =Ul ' ub), U? = U*(a?u?).
If we add and subtract equations 4 and 13, we obtain

ou!t ou?
a1 = g/(ﬂ’?l)y VR h/(332)

whose integrations result in
Ul = ¢ (zYHu! +~(zh), U? = W' (H)u? + 6(z?).
If we introduce these expressions into the equation 6, we find that
g (@' + B (2*)u® + 4 (2') + 8 (%) = 0
whence we deduce that
J' () =0, B"(2*) =0, /(') = = §(2*) = constant

Hence, we are led to the conclusion
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1 2 1 2
g=cr +c, h=c32" +c4, y=c50 +¢6, 6 = — 50 + cr.
Thus, the functions determining the isovector components become
X! :clxl—l—CZ, X2 203x2+04,
1_ 1 1 2 _ .2 2
U =cu +cx + cg, U? = c3u” — csx” + c5.

This means that the isovector field in question is the prolongation of the
vector field

0
+ (esxt + crut + c) =

0
+ (631'2 + 04)7 oul

0
VG = (leL‘l + CQ) 8%2

a 1

J— 5 2 —_—
+ (= esz® + c3u +C7)6u2.

In order to easily produce a characteristic solution, we select a particular
form of the vector field Vi by taking ¢y = a,c5 = 1,¢c5 = b,co = c4 = ¢4
= C7 = 0:
0 0 0 0
VG—axﬁ+$%+(bw —|—au)a1 52
We define the mapping ¢ : R — C; through the given smooth functions
et=s, 2?=1, ul=ygs), @ =)

= ¢%<5)7 U% :1/}%(3)7 'U% = %(8)7 ’U% = %(S)
The transversality condition is met if ¢* (iy (p)) = az'dz? — 22dz' # 0.
The constraints on initial data must satisfy the relations

w% = (¢é)/a w% = (wg)/a

Wy = bs + vy — as(dy)',

Y3 = —b+ g —as(¥p)’,

YF = () — b+ 45 — as(¥p) — 1 =0,

W= [bs + ans) — as(l) ] (43) = ¢
This amounts to say that to generate the characteristic solution correspond-

ing to our present choice, the initial data ¢} and v} must satisfy the ordinary
non-linear differential equations

(%) + 45 — as(¥g) = b+1, [bs + avy — as(vy)'](v5) = ¢

The solution of this non-linear system is obviously not easy to find. But, we
can try out to obtain a particular solution. Let us choose

(—ba? +u?)—
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Yo(s) = as + Bslogs, V7 (s) =~ +blogs.

Introducing these functions into the differential equations, we see that the
coefficients must satisfy the following relations

a+fB+y—ab+ (B+6)logs=b+1, (b—ap)s=c".

If we take 6 = — (3, then the second equation implies that 5 ought to be
chosen as a root of the quadratic equation

af? = b3 —c*=0.
We therefore reach to the conclusion
Yo(s) = as + Bslogs, Y2 (s)=b+1—p3(1+a)—a—Flogs

where « is also an arbitrary constant. To determine the characteristic solu-
tion associated with the isovector field taken into consideration, we have to
solve the ordinary linear differential equations

dx! | da? 9

— =ax, — =17,

dr dr

du' du?
di:bxl—l—aul, dl_ — b +u?
T T

under the initial conditions z'(0) = s, 22(0) = 1, u!(0) = 3 (s), u*(0) =
1?2 (s). We thus obtain

ot =se", 2*=¢e", u'=s(a+ Blogs+ br)e,

w=1[b+1-pB(1+a)—a—pBlogs—br|e"

describing the solution parametrically. |

9.7. HORIZONTAL IDEALS AND THEIR SOLUTIONS

The most general transformation preserving the structure of a contact
ideal Z,, = Z(o0?, O Oy Ol i 1 dagir--imq) has been determined in
Sec. 9.3. Especially for NV > 1, we know that this transformation is found as
a prolongation of a point transformation in the graph space. This limitation
creates, however, a major obstacle in obtaining solutions of a system of par-
tial differential equations by using transformation methods This obstacle
can be overcome to some extent by enlarging the contact ideal in an appro-
priate way. To this end, we would like first to determine linearly independ-

ent vector fields V; € T(C,,), i = 1, ..., n as to satisfy the relations
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iy, (da’) = ¢, (9.7.1)
i, oy, 0---oiy, (W) =0, 1<k <n, VweZ,NAYC,).

We call such a set of vector fields as a canonical system. A canonical sys-
tem generates an n-dimensional submodule of the tangent bundle 7'(C,, ), so
they constitute a basis for the n-dimensional module of Cartan annihilators
of the contact ideal Z,,. It is easily seen that the conditions (9.7.1)y are
fulfilled if and only if the following relations are satisfied:

iv,(of.;)=0,0<r<m-—1; (9.7.2)
lV © lV <d Zl - l) = 0

Indeed, if the conditions (9.7.1) hold, then the conditions (9.7.2) are auto-
matically satisfied since the generators of' .. ; and dof,, .,  of'theideal Z,,
are, respectively 1- and 2- forms. Conversely, let us assume that the condi-
tions (9.7.2) are met. Let w € Z,, be a k-form in the ideal. Therefore, we

have to write
m—1

w= ZXO}Z Nog. i+ Arimt A dot
p—

2 Zm 1

where A\ ¢ AF1(C,,) and A i1 € AF=2(C,,). But, we have
iVil O:+--0 ivlk()\zll“) = O, ivll O+ 0 iVik,l (Agmz’”’l) =0
because of the degrees of those forms. Then we immediately observe that
we get
m—1

iy, 0+ oy, ( E i, o---oiy, (M) Aaf

wo--~onv;.,g,1<Aa~-fm>Ada 0

00 -1

provided the relations (9.7.2) are satisfied. Let us represent a vector field
Vi e T(Cy,) by

. a m 8
Vi=X]o—+ ) Vi
L 8 Tz:% 221" L7 8 ;11 i,
where X7 Vit € AO(Cp). It is clear that the smooth functions V2., are
to be taken as completely symmetric in subscripts iy, ..., i, without loss of
generality. The condition (9.7.1); yields simply
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X/ =&

7 (3

whereas we find from (9.7.2); that

. « o j o (03 J—
lVi(dvil-»-ir = Uipiyj dz’) = Viiveoi, = Vipeoiyi = 0
and Vi i =0 for 0 < r < m — 1. On the other hand, we can write
dagwwl = — d”g--»im,lk A dx* so that we arrive at the following interior
products
iv.(dof..; )= — Vi wdo” +dvf.
3 * (0} . o [0} .
l‘/J ° l‘/L (do—il"'im—l) - ‘/’L’Lllm 1.7 + V]ZI Lm—li - O'
—_ [0} 1
This implies the symmetry property Vi\.., .= V3. ; amounting to say

that the coefficients Vg, .; must be completely symmetrzc with respect to all
their subscripts. Therefore the general form of a canonical system involving
n linearly independent vector fields and satisfying the conditions (9.7.1) is
given by

a m—1 8 a
4 i + Vi . 9.7.3
8xl + g ULl' U avzal + 271 Lm a a ( )

“lr Z i

V. =

Thus a contact manifold of order m admits infinitely many canonical sys-
. . + N(n+m)!

tems associated with N (") = %

functions V', € A°(C,). We next consider another vector V; of the ca-

nonical system by

number of arbitrary smooth

m—1 5 )
j afEJ + Z + V]Jl Jm a ﬂ
Si jl t J9 J
Successive application of the operators V; and V; results in the following ex-
pression after some manipulations
0? 0? 0?

ViVi= Ve gy O
! 836183:J+ et 9o L Qad Vi Qo Ol

21 tm 21 tm

m—1 2 2
wrtt g oxd T Qo Ot
r= 101y ity

m—1m—1 62

o«
+ Zvil--»iri”n--jﬁjm

r=0 s=0 SRR P FRRRY N
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m—1 ﬂ 82

« «
: :[‘/”1 “im ]1 ,]r] + ‘/j“ ‘I jl]y :| 8 o 8 ﬂ
r=0 71 Zm Jl ,]7

m—1 a a

(67 «
+ § :/Uil'“ir'flij v . + ‘/jjl"‘im—lj o .
r=1 (SRR L1t
0
«
V (‘/7741 Zm) a’U

inz

where we have renamed the dummy indices whenever necessary. Hence, the
Lie product of these two vector fields is easily found to be

[V, Vj] = ViV, = V}V; (9.7.4)
0
= [Vi(Vii..,) = Vi(Vii, )]

Jti- 27" a
v;
(A 7m

The differential of a function f € A(C,,) can now be expressed as

of ;N Of .
o d:c—i—z b dvili__ir (9.7.5)

m—1
[8:1% +Z i ”8 a +V’l?1'“lmava—f}d$i

Zl Uy 1l

df =

m—1
of o Of s
2 G T T g S

r=0 1y 110

f)dz’ +m§:1 of i+ Of _ sa € AY(Cn)
2o due . hin

Z 1 7m

In order to obtain this relation we have first replaced 1-forms duvj,...;, with 1-
forms oy,...;, +of ;dz' for 0 <r <m —1 and then we have further
introduced 1- forms E?l ., appearing in the above expression. However,
their definition will be given a little bit later in (9.7.7).

The vertical ideal of the exterior algebra A(C,,) is identified as the

closed ideal prescribed as follows
V= I(dz!, da?, ... dz"). (9.7.6)

On the D-dimensional submanifold {z’ = c¢’;i = 1,...,n} where c''s are
constants, this ideal is obviously annihilated. In other words, the ideal V,,
vanishes when restricted to the fibres of the ideal C,, over D,,. This, of
course, justifies our use of the term 'vertical'. Let us now take into account



588 IX Partial Differential Equations

the forms

N o=do . = Ve dat € A(Cp). (9.7.7)

01 21 tm 181 iy

We shall call them as horizontal 1-forms. A horizontal ideal of the exterior
algebra A(C,,) will now be defined as

Mo =Z(0F.,,0 <7 <m—1; 52, ). (9.7.8)

We know that dof). ., € H,, for 0 < r < m—2. For r = m — 1, due to the

iy

relation dof ;= —dv? ; . Adz' we find immediately that
daz‘ci-~-im,1 = —%0 ., iAda' V2, 17d:1: Adz? (9.7.9)
= - X Adz' € Hyp

lm 1Z
Moreover on using (9.7.5), the relation

s —dV§. ., ANda’

i iy
leads to

« « J = 8‘/;?1 I J
d¥i . o= = Vi(Vi. ) dz' A da? — 781} i, N\ AT
11

8‘/.7(;1 lm Ea

avﬁ 21y

A dz’

from which we deduce that

dxs +1[V(V” )= ViV

AR L 2 Ji- Z 21 Z

)]da' Ada? € Hyp. (9.7.10)

Therefore, we get dX3 ;€ Hy, if and only if the conditions

'i,

VitV i) =V;(Vii i) (9.7.11)

g1 21-

are satisfied. In this case, the horizontal ideal 'H,, turns out to be a closed
ideal. In view of (9.7.4), we see at once that the relation (9.7.11) becomes
possible if and only if

ViVl =0, 1<i,j<n 9.7.12)

that is, if the canonical system consists of commuting vector fields.

We denote the characteristic subspace of the ideal H,, which will be
called henceforth as the horizontal module by Sy, . Thus, if U € T'(C,,) is
a characteristic vector of H,,, then the relation iy (H,,) C H,, must be
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satisfied. Since all generators of the horizontal ideal are 1-forms, it becomes
possible to comply with this condition if and only if we have

lU( Ty, ) 07 OST‘Sm—L (Ea )_0 (9713)

21 Zm

Let us take a vector field

U=

X+ 30

21 7,
into consideration. Then (9.7.13) requires that
Ut =v X, 0<r<m-1; U2, =V, X

Uy 11 1 Z AR Zm

Hence, any vector U € Sy,, can be written as

b m—1 o ) )
U=X(5+ For Vi ):XW;;.
Thus, canonical system constitutes a basis of the horizontal module as well.
Consequently, to each choice of completely symmetric smooth functions

Ve . € AY(Cy,) there corresponds a horizontal ideal of A(Cy). The

101 iy
horizontal module of this ideal coincides with both the modules of charac-
teristic vectors of 'H,, and Cartan annihilators of the contact ideal I,,. It is
clear that the vectors V; satisfy naturally the characteristic conditions
(9.7.13). In this situation the canonical system produces the distribution
Sy,,. In case the conditions (9.7.11) are also met, this distribution proves to
be involutive. We can now show the following theorem.

Theorem 9.7.1. The horizontal module Sy, is the module of isovectors
of the horizontal ideal H,, if and only if the ideal 'H,, is closed.

In order that a vector field V' € Sy, is to be an isovector field of the
horizontal ideal H,,, the conditions fvoi.; € Hm where 0 <r <m-—1
and £33 ;€ Hy, should be satisfied. If we note (9.7.13), we get
iy (d%i. ;).

2 Zm

'im

«
£VUZ'1...

The relations (9.7.9) and (9.7.10) lead to £y 07 .
together with

lv(dO'Zl g, ) £VZQ

21 Z

e Hyfor 0 <r<m-—1

i,

1 , .
£ye L+ Q[V(Va i) = ViV ) iv(da' Ada?) € Ho.

g1 (2%

If we write V = X'V, then we find iy (dz’ A dz/) = X' da’/ — X7 dx'.
Therefore, the last terms belong obviously to the vertical ideal. Thus, we
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find £y37 ;€ H,, if and only if the conditions

VilVii) = VilVii,)

Ji1 i 11 i

v

are again satisfied. (9.7.11) constitute the necessary and sufficient condi-
tions for a horizontal ideal H,, to be closed. We had seen that they were
equivalent to the conditions [V;, V;] = 0. O

According to Theorem 5.13.4, the closed horizontal ideals are com-
pletely integrable. Let £),, denote the set of all closed horizontal ideals. We
can readily demonstrate that this set is not empty. For instance, we may con-
sider the smooth functions f* € A°(M) and define the functions

N 8m+1 f(y (X)

7/7/1 : 'im = m '

These function plainly verify both the condition of complete symmetry and
the relations (9.7.11). When we consider a member of §),,,, the vectors V;,
1 <4 < n generate n-dimensional integral manifolds in C,, annihilating the
closed ideal H,,. Since the dimension of C,, is n + D, we know that these
manifolds are obtainable from the independent solutions g* € A°(C,,), a =
1,..., D of the linear partial differential equations

Vi(g)=0,i=1,...,n

by setting g* = c® where c“ are real constants. The general solution of the
above equations may be written as g = G(g', ..., g"”) = G(g*). Hence, the
closed ideal H,, provides an n-dimensional foliation on the manifold C,,
[see Sec. 2.11]. Each choice of constants characterises a leaf.

Next, we shall try to calculate all isovector fields of a horizontal ideal
Him € Him. If U is an isovector, then the relations £y07. ; € Hy, for
0<r<m-—1and £y3f ,; € H, must be satisfied. If we make use of

the Cartan formula £yw = d(iU(w)) + iU(dw), we get

tyol . =d(iv(ol. ;) —iv(ol. ;) da’ +ig(da’) o, ,,

£ =d(ip(S0., ) —iv (V. )da' +iy(dz’)dV® .,

'im 3!

where 0 < r < m — 2. Let us represent the isovector U as

) m o
U= )(7‘/'Z + ZUZ?Z’@UT
r=0 i1y

without loss of generality where X', U2, € A°(Cy,) for 0 <7 <m are
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smooth functions. Since members of the canonical system are characteristic
vectors of H,,, we eventually obtain

n=loue 8
i i1 Uy
tyop. ;= [Vz(Uszz) - Uff”]dxl + 857107:1.‘45

5=0 OVj ..,

ou . ,

eyl 4 X L, 0<r<m-—2
P 8 i TR
,UZI"'Zm
£Uo-$i"'imfl = [‘/i(UiOl["'imfl) - Ula Zm lZ dx + Z Z lm 1 ir
r=0 iy
+ aU? -1 Z + Xzza
8’Uﬂ 21 Zm Zm 1Z

(20 'Zm

Thus, in order to get £UU7:Cf.~7:,, € Hpm, 0 < r <m — 1 we have to set
U7?77 = ‘/Z(U7?7)7 0<r<m-1L

The solution of this recurrence relation is clearly given by

Uniyi = Vi, Viy Vi, (U, 0<r<m (9.7.14)
in terms of N functions U® € A° (Cn) where we have adopted the conven-
tion that Ug =U% On the other hand, the relation

L2 (VU2 )= UV )+ XVi(Ve . )] da

27+ Jui
=oUp ouy
11 tm ﬁ L] Zm ﬁ

gy

wlovy oV

+XJ[Z—j?1"'imaf...i.+ e
r=0 avi% 1 87)ﬁ ‘I

requires that we have to satisfy the following equations

ViU ) = UV, ) + XTVi(VEL, ) =0

21 Zm Jii--

in order to get £/ 3 ; € Hy,. Thereby we obtain the expressions

im Z i L’”+X’[V(Vz§? i) = ViVl

Because H,, is closed, the relations (9.7.11) are to be satisfied. Hence, the
smooth functions U® ought to verify the restrictions
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m Ve
Vzvzl‘/zm(Ua) — V; ‘/;T(UB)# (9.7.15)
Zrzo Vi,
ove . oV Vi i
_ Uﬁ Giy--im v, Uﬁ iy i R VAN 12 Uﬁ — Y tm
auﬁ + 1( ) 8’Uﬂ + + 1 m( )81)6

1 il"‘im

For U® = 0, (9.7.15) is trivially fulfilled. Therefore we arrive at the follow-
ing theorem.

Theorem 9.7.2. In terms of n functions X' € A°(C,,) and N functions
U € A(C,,) satisfying (9.7.15), all isovector fields of a closed horizontal
ideal H,, are expressible in the form

U= XVt Y Vi Vi (U 50

—0 i1y

(9.7.16)

Canonical system constitutes also the module of isovectors of closed H,, if
only one chooses U“ = 0. |
When the ideal H,, is closed, the canonical system is a Lie algebra and
n-dimensional submanifold & it produces annihilates this ideal. The map-
ping ¢ : & — C,, prescribing the manifold G is a solution mapping of the
ideal, that is, one has ¢*H,, = 0. Since the Lie products of vectors V;
vanish, they generate a coordinate mesh on G. We can determine the map-
ping ¢ by means of congruences that are integral curves of vector fields V;.
Let us denote n = n + D number of coordinates of the manifold C,,, by
{xi,v%mir 0<r<m}={z":1<a<n}
as in Sec. 9.6. Let us take into consideration characteristic vector fields, or
Cartan annihilators V; = v$(z)0/02* € T(C,,) of the horizontal ideal H,,.
We know that Lie products of these vector fields vanish. Their trajectories
are found as usual by integrating the ordinary differential equations
act

At = (C): Cu(o)zza

where #' is a real parameter. In order to determine the mapping ¢, we start
with the vector field V;. We can formally express the solution of the ordi-
nary differential equations

S
dt!

=01(¢1), ¢i(0) = 2"

as (f(t';z) = et'Vi (2%). In the second step, the solution of the equations
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dcs
dt?

=v5(G2), ¢5(0) = (i (ts2)

can be written as (3 (1%;¢1) = e"V2(¢1) = e V2e!'Vi(2%). Since the vectors
V1 and V5 commute, we then find that

G (3Gt 2) = M),

If we continue in this fashion, the mapping ¢ = ¢(t;z) is specified by the
relation

¢ = ez, (9.7.17)

This expression determines n-dimensional solution manifold of a closed
ideal H,,, through any point z of C,, or, in other words, a leaf of the foliation
annihilating the ideal H,, passing through a point z*. The integration para-
meters t!,¢%, ..., t" form the natural coordinates of the solution manifold.
The action of the mapping ¢ on the coordinates x' of the manifold M

can easily be evaluated. Since 1)3 = 6’;, the differential equations

dxt p p p

i 65, ='(0) =z

yield immediately the simple solution
x' = xh+ 1. (9.7.18)

Thus, coordinates of the open set D,, of R" over which differential equa-
tions are defined and local coordinates of the solution manifold are connect-
ed by a simple translation. In this case, we have ¢*dz’ = dt' and as a result
of this we obtain

o' p=¢*(dz' Ndz* A+ Ada") = dt' AdEP A A dE

On writing ¢*u® = ¢“(t) and noting that ¢*o7 , =0 and ¢*X¢ , =0,
we draw the conclusion
8r¢a (t) am+1¢a (t)
W =—t 2 0<r<m-—1; ¢V  =—
O Vi, ot o ="=m O Viiievi OOt - Otim

Hence, selected functions V¢! ; provide information about (1 + 1)th or-
der partial derivatives of functions 4 on the solution manifold.

If we take notice of the relation (9.7.9), we immediately realise that ¢
is a solution mapping of the contact ideal. Instead of the closed fundamental
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ideal J,, [see p. 521], let us now introduce a new balance ideal by

B, =I(o]. ,;,0<r<m— 157, sw”)

(20 '7an )

where n-forms w® are given in (9.4.3). If Hp, € 9y, then By, is closed. In
fact, since dz* A u = 0 then (9.7.5) for the function 3“ implies that

dw® =dX* A € Hyy C By,
On the other hand, we can similarly write
W = dZ A+ 0 = [Vi(EY) + 2 u
"Li x5 9%

Uy

zﬁ“_im} A i € A"(Cy).

Introducing the smooth functions
Fo =Vy(24) + 5 € A°C,), (9.7.19)
we readily observe that
w* = Fu € Hp. (9.7.20)
Therefore, we obtain
P = ¢ FUp = FOAtt ANdtE A - A dE"

for the solution mapping of the horizontal ideal. Consequently, we conclude
that ¢p*w® = 0 if and only if p*F“ = 0. Hence, only in this case the solution
mapping ¢ of H,, corresponds to a solution of the new balance ideal as
well. Since F(z) € A°(C,,) are 0-forms, we get ¢*F* = 0 if only if F©
= 0. Let us define the submanifold P,,, C C,, by

Pn={2€Cpn:F(2z)=0, a=1,...,N}. (9.7.21)

Hence, we see that the relations ¢*F® = 0 can only be realised on the re-
gion R,,, C C,, that is determined by non-empty intersections of submani-
fold P,,, with the leaves of the foliation generated by the mapping ¢. More-
over, because the set D,, C R" over which differential equations are defined
is open, the set ¢*R,, must also be open. Therefore, it is clear that we can
obtain such a solution under rather restricting conditions. However, the de-
pendence of the ideal H,, on functions V;;’l, that offer some freedom of
choice despite they have to obey certain rules might offer various alterna-
tives. That makes it possible to find some useful solutions by clever choices.

We now attempt to determine isovector fields of the balance ideal B,,.
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Let U be an isovector field of the closed horizontal ideal H,, given by
(9.7.16). It then follows from (9.7.20) that

frw® — £y(F%u) € Hop.
Furthermore, we can write
£0(Fop) = £0(F)p+ FLy(p) = U(F )+ FOAX' A p;
whence we deduce
£7(Fp) = [U(F) + FVi(X)]p+ G, G € Hp

on utilising (9.7.5). Since w® ¢ H,,,, in order to obtain £yw® € B, we may
write Agwﬁ = Ag]-' A pmod H,, in view of w® = F*umod H,, for functions
A% € A%(C,) so that the conditions

[U(F*) +FVi(X)] = A§F
lead to the result
£rw” = Ajw’ mod H,, € B,

In other words, we have to find some functions \§ € A°(C,,) so thatthe
relations

: < oF°
UF?) = XViF?) + Y Vi Vi (U”) =5

r=0 iy iy

= \F" (9.7.22)

must be satisfies. Here, we have defined A\§ = Aj — V;(X ") 65. Equations
(9.7.22) help us to determine the admissible functions X’ and U® comply-
ing with the conditions (9.7.15) for isovectors of the closed ideal H,, to be
isovectors of the balance ideal 8,, as well. Knowing isovectors of the ba-
lance ideal makes it possible for us according to Theorem 5.13.7 to elicit
new families of solutions if we have a solution at hand. If we take U% = 0,
then we have U = X'V; and if we write \§ = A%, X" without loss of gene-

rality, we must be able to find functions A, € A°(C,,,) such that
Vi(F*) = A3, 77

in order that canonical system coincides with set of isovectors of the balance
ideal. These relations pave the way to produce some solutions of the balance
ideal by suitably choosing somewhat arbitrary functions V., characteris-

W1,
ing the horizontal ideal H,,.
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(7). Let us suppose that the completely symmetric functions Vi
may be so chosen that the conditions (9.7.11) and the relations
fa — ‘/'Z(Eal) 4 Za

o8 = o% ox
= o T i Vi g + =0
axz Z (SRR 81)“ 21" b 81)“ )

“tm

“Im

= i
are satisfied. In this case every leaf of H,,, proves to be a solution manifold
of the balance ideal, and, consequently, of the system of partial differential
equations.

(ii). Let us suppose that the completely symmetric functions V¢! ; in

subscripts may be so chosen that the conditions (9.7.11) and the relations
ViF?) = V() 4 Vi(2%) = 0
are satisfied by taking A3, = 0. In this case, we know that we can write
F*=F"g"), Vi(g")=0, ¢ € A°(Cn), a=1,...,D.

Leaves of the ideal H,, are obtained by setting g* = c* where c® are real
constants. Out of these leaves, those corresponding to solution manifolds
can be found by determining the constants satisfying the algebraic equations
Fo(ct,e?,...,cP) =0wherel1 < a < N.

(idi). Let us suppose that the completely symmetric functions V;¢'
may be so chosen that the conditions (9.7.11) and the relations

Vz(fa) = A?Z:Jfﬁ

are satisfied for functions A, € A°(Cy,) that are not all equal to zero. In this

case each leaf of the foliation of H,, intersecting the set P,, given by
(9.7.21) becomes the graph of a solution mapping of the balance ideal.

(7v). Finally, let us assume that the distribution Sy, is not involutive,
but the restriction Sy, |, belongs to the tangent bundle T'(7;,) and is invo-
lutive. In this case, although the horizontal ideal H,, is not completely in-
tegrable over the manifold C,,, its restriction on the submanifold P,, is com-
pletely integrable. In order to implement this, we have to choose the com-

pletely symmetric functions V;7' ; in such a way that we might be able to

find functions Af; Jienine AGi € A°(C,,) such that the relations
0
[Vi,Vi] = A%ijilwimfﬂa,UT? Vi(F?) = Agi}—ﬁ

or on noting (9.7.4)
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ViV ) = VilVio) -

Jii- Zm 1 7m

FPVi(FY) = /\ﬁl]-" ,

ﬁmh ‘i

are to be satisfied. The functions A% are antisymmetric in indices ¢, j

Bifi1: - im
and completely symmetric in indices 41, ..., i,,. In this situation, some solu-
tions of the balance ideal can be found by determining the integral curves of
the canonical system passing through P,,.

Example 9.7.1. As an example to the case N = 1,n = 2, let us consi-

der the Gordon equation [ German physicist Walter Gordon (1893-1939)]
0%u ,
owor = T W

where ® is a smooth function of its argument. The reason why this function

is introduced into the equation as a derivative is to facilitate the calculations.
Let us take

xlzx, x2=t, Uy = V1, U = V2,

w=drANdt, pp =dt, puo = — du.
Then the ideal H; is generated by the following 1-forms

o =du— vdr —vydt,
Y1 = dvy — Vindx — Vydt,
22 = dvg - V12 dr — VQQ dt.

Symmetry condition is met by taking V5, = Vjo. We denote the canonical
system by

0 0 0 0
V1=8—+U18 +V118 +V128v2

0 0 0 0
VQ_aﬂLwa —i-V12a +V2282-

The balance form will now be written as
w= —dv Ndx — ' (u)dx Adt = dX* A g+ Zp

so that we have X! =0,%% =v;,¥ = — & (u). Consequently, (9.7.19)
takes the form

F=Vo(E) 4+ X =Vjp — & (u).

Hence, if we choose V12 = ®'(u), then we get F = 0. Thus, each leaf of H;
will constitute a solution manifold. Furthermore, the conditions (9.7.11) are
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reduced to
Vi(Vig) = Va(Vin), Vi(Vag) = Va(Vio)

so that we get the partial differential equations below to determine the func-
tions Vi1 and Vo

oV oV oV oV

T + Vo D0 + @' (u) 0, + Voo —— 50y = 019" (u),
8%2 6%2 8%2 / 8‘/22 _ 17
5 4+ == o + V== or + &' (u) 0, = 0@ (u).

Evidently, we will not be able to find the general solution of these non-line-
ar equations for an arbitrary function ®. However, we may try a particular
solution in the form

Vii = 20 (1), Vip = 28/ (u).
(%) V1

It is a very simple exercise to show that this choice satisfies the above equa-
tions identically. Therefore, the canonical system corresponding to this case
are given by

o 0 0 , (%1 0 0
‘/1——$+v1—u+¢>(u)(——+—>,

0 0 vy 0vy  Ovg
0 0 , 0 vy 0
Vo= g g, + ¥ (50 + D)

In order to determine the foliation of the closed ideal H; we have to solve
the following linear partial differential equations

of of v Of of

i(f) = Oz v 16u +& (U)UQ vy )8112 0,
af af of ro\v2 Of
V()= G+ gt w2l —o,

To this end, we apply the method of characteristics. From the first equation,
we get the ordinary differential equations

dx 1 dt _0 du

P P N

dvy V1 dvy

— =9 (u)— —= = d'(u).
7 (U)v27 T ()

The trivial characteristic variable is ¢ = ¢y. From the fourth and fifth
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equations we obtain the characteristic variable

U1
5:—:01
V2

while the third and fourth equations yield
dvy 19 (u)

du 1

whose integral provides another characteristic variable
Ly
=50 a1 ®P(u) = co.
Finally, the first and third equations lead to
du
— = =1/2|1®
dl’ V1 [Cl (u) + CQ]

whose solution gives the last characteristic variable

=z

Czl‘—/ du
V21/c1® () + s

Consequently, the general solution of the first partial differential equation
becomes f = F'(&,7n,(,t). On introducing this function into the second
partial differential equation, we find

oF 10F 0

ot C1 8C N
whose solution is obviously f = F'(£,n, 1) where ¢ =t + ¢1( = c3. There-
fore, the leaves of the horizontal ideal H; are characterised by the functions
below

91 t+c {:c / du } &
= 1 - = (3,
V2 /1@ () + ¢
2 _ U 3 14

g=,=w g=3u a1 ®(u) = e

Hence, a solution is given implicitly by
d
e (9.7.23)
V2J) e®w) + e

depending on three arbitrary constants. As a simple example, let us take
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0%*u B
Oxdt Y

2
We thus have ®(u) = % If we define new constants by

202 C3

a1:\/a, az = —, a3:ﬁ,

C1

then the expression (9.7.23) assumes the form

[u—i— u2+a2] :i—i-alm—ag
ai

/ du
—— =log
Vu?+as
whence we arrive at the solution

11 + —a: —(+ —a:
u(x,t) _ 5 [ealJralx as ase (al—O—alaz a‘g):| ‘

Finally, let us consider the sine-Gordon equation
82

9201 +smnu = 0.

In this case, we have ®(u) = cosu. If we introduce the new constants by
a; = \/c1,a9 = ca/cy,a3 = c3/4/c1, then it follows from (9.7.23) that

/ du 2 F(u 2 >> t n
= o\ = —+4+ar—a
\/cosu + as \as +1 2 as+ 1 ai ! 3

where F' is the Legendre elliptic integral of the first kind [French mathema-
tician Adrien-Marie Legendre (1752-1833)] defined by

¢ do
Fo k)= | —Z2
(9, k) /0 1 — k2sin%6

The solution of the equation F'(¢, k) = 9 for ¢ in terms of 1) is expressible
as sin ¢ = sn where sn denotes the Jacobi elliptic function and the func-
tion 7 = sn ¢ is found as the solution of the non-linear ordinary differential
equation

o= V=P

Hence, a particular solution of the sine-Gordon equation may be written as
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LS )]

u(x,t) = 2arcsin sn [ 5 . + a1 — ag
depending on three parameters. |
Example 9.7.2. We consider n partial differential equations
ou

involving a single dependent variable where ¢;(x,u) are given functions.
We look for the solution u = u(x). But, because of the symmetry relations
u;j = u_j;, the functions ¢; must satisfy the compatibility conditions

99 8¢i¢‘: 9¢; " 9¢;
dxi ~ Ou "’ Ox ou

b (9.7.24)

for the existence of a solution. The horizontal ideal H; is now be generated
solely by 1-forms

o=du—vdr', % =dv;—Vjd

The functions Vj; € A°(Cy) are presently arbitrary except for satisfying the
symmetry condition V;; = V};. Despite there exists just one dependent vari-
able, namely, N = 1, there are n balance equations (A = n). Therefore, we
choose balance n-forms as

wi = Nip = (vi = ¢i(X,u))p, p=dr' A Ada".

The canonical system will now have the form

0 ) o)
Vi= G Toigy Vg,
From (9.7.19), we obtain
Fi = v — ¢i(x,u). (9.7.25)

Hence, the submanifold P; of C; is specified by the relations F; = 0, or
v; = ¢i(x,u), 1<i<n.
Next, let us choose the functions V;; as

09 | O¢;
Vij = OxJ + ou

;. (9.7.26)
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Because of the compatibility conditions (9.7.24), the symmetry relations are
automatically satisfied. However, if we consider the case (iv), the equality
(9.7.11) must be satisfied at least on the submanifold P;. For this purpose,
let us evaluate the expressions V;(F;) and V;(V;;) — V;(V4;) and employ the
relations (9.7.24) to obtain

9%, 1

Vi(Fj) = — 9

and

Vi(Vij) = VilVii) = V(% 4 %%) (g@lf n %¢7>
(P P Ay D
~ (3o * 3t u 5 )”
¢ O’y am O
~ (5o + St + S ) F

Since F; = 0 on Py, the relations V;(F;) = 0 and VL»(ij) — Vi(Vii) = 0 are
also satisfied on the same submanifold. Therefore, the solutions to our sys-
tem of differential equations are obtained via the integral curves of the vec-
tor fields

Vi=

9 (0@ 09;

ox it Z%+ oxJ ¢7) ov;

passing through the submanifold P;. As a special case, let us take n = 2,

2! =z, 2> = t and choose the functions ¢; and ¢, as follows

t—u T+t
¢ =

x+et’ T +et’

¢ =

We can easily verify that these functions satisfy the compatibility conditions
(9.7.24) [see Edelen and Wang (1992), p. 144]. Hence, the relations (9.7.26)
yield at once

(u—t)[e"(t —u+2) + 2z]

= (x+ev)?
(x4 e)?—(z+t)e
Vo = (x +ev)?
Vig = Vg = (z+e")? —(z+e")(z+t)+e"(u—t)(z+1)

(x4 ev)?

In this case, the solution mapping must be found by solving the differential
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equations Vi (f) = 0 and V5(f) = 0 by using the method of characteristics.
However, we might reach to a particular solution by a simple observation.
Let us define a mapping ¢ : G — C; by the relations x =z, t = ¢, u = u,
v = ¢1, V9 = ¢Po. We then immediately see that ¢*>; = 0,7 = 1, 2 whereas
the expression ¢*o = 0 gives

t— t
$o=du— " gy T g
xr + e¥ xr + et
1 u
:x+eu[(1‘+e)du-l—(u—t)dx—(:v-i—t)dt]
1 1
= d<e”+xu— —¢? —:ct) =0.
x + ev 2

Therefore, some implicit solutions of the partial differential equations

ou t—u ou T+t

Or x+ev Ot xteu

are provided by
u 1 2
e +rxu— -t"—xt=c

where c is an arbitrary constant.
An exemplary plot of this function is depicted in Fig. 9.7.1. |

Fig. 9.7.1. A plot of €" + zu — §t* — xt = 10.
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9.8. EQUIVALENCE TRANSFORMATIONS

Several system of partial differential equations, particularly modelling
natural laws, contain some arbitrary functions or parameters reflecting phys-
ical constitution of materials involved. Almost all field equations of classi-
cal continuum physics fall into this category. Thus, such systems are actual-
ly family of equations whose fundamental structures remain unchanged but
show some differences in their physical constitutions from one material to
another through some constitutive functions or parameters. For instance, the
field equations of hyperelastic solids are of the same type and only the
particular form of the stress potential distinguishes one material from the
other. The equivalence groups are defined as groups of continuous transfor-
mations that leave a given family of equations invariant. In contrast to a
symmetry transformation that transforms one set of equations into them-
selves, an equivalence transformation maps an arbitrary member of the
family onto another member of the same family which may possess some-
what different physical properties. Meanwhile, it transforms a solution of
the one member onto a solution of another member of that family.

In other words, if we manage to determine an equivalence transforma-
tion, we can employ a solution corresponding to a certain material to obtain
a solution associated with another material of the same sort whose physical
properties obey the rules dictated by the appropriate equivalence transfor-
mation. Although the concept of equivalence transformations is well-known
in the theory of ordinary and partial differential equations, we owe their first
systematic treatment within the realm of classical Lie groups to Russian
mathematician and engineer Lev Vasil'evich Ovsiannikov (1919) [see
Ovsiannikov (1982)]. In this section, we will try to treat equivalence trans-
formations of balance equations by employing exterior differential forms.

We know that an (m + 1)th order system of balance equations with n
independent variables x and N dependent variables u® are given by (9.4.1)

82&1‘
ox’

+%°=0, i=12,....,n; a=1,2,...,N.

As we have mentioned on p. 522, a difference between numbers of the
equations and the dependent variables does not create undue difficulties in
our general approach. In order to be able to determine equivalence transfor-
mations, we have first to enlarge the manifold C,, to a much bigger mani-
fold C,,, by adding new auxiliary independent variables to the coordinate
cover of C,, to take into account ¥, ¥ and their derivatives with respect
to their argument in order to identify their functional forms. To this end, we
introduce the new auxiliary variables
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sgi = O i o O (9.8.1)
; — 7 8.
Oz v,
ox” — ox”
=" t T =—5—, 0<r<m.
x ovy 4.
It is clear that the variables ngz and tg“7 are completely symmetric in
the indices 41, - - -, %,.. Hence, the coordinate cover of the manifold /C,, that is

enlarged significantly compared to that of the manifold C,, are given by
{a, 20,20 85 40 (o, s5 7 tE 0 < <
We can easily verify that the dimension of the manifold /C,, is at most

(n—i—m)!'

2
n+(1+n)°N+[1+(n+1)N]N "

Let A(KC,,) be the exterior algebra on the manifold K,,. Contact 1-
forms in the manifold KC,,, are now defined by

of o =dv. ; —f i idat € ANK,), 0<r<m—1, (9.8.2)

21 11"-Z‘T il'--i7-l

m
Q= A5 — s%da? =Y sy ), e AN(K),
r=0
QO = ds® —t0da’ = 5 dv] e AN(K).
r=0

Balance n-forms are again given by
W = dSY A pi + X% € A(K,).

Let D,, denote the balance ideal of A(K,,) generated by forms w®, Q%, O,

dQ*, dQ*, {o¢., : 0<r<m—1} and do?". ; . Exterior derivatives
of 1-forms are
doy . = —dvy Adz', 0<r<m-—1,

i1y i1

m
A = —ds? Adad = dsy T Ad]
r=0

m
dQY = —dt} Ndx' — E atg" " Advg
r=0

The ideal ®,,, is closed. Indeed, we can easily verify that
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m—1
dut = dS* Ap= Q" Ap+ Y 15" o) Ap
r=0

_ (yll . '7:m—lim ﬂ .
t‘g do_il"'im—l /\ 'UWL”T 6 QH’L'

If a mapping ¢ : M — KC,,, annihilates the ideal 2,,, that is, if the pull-
back operator ¢* : A(K,,) — A(M) satisfies the relations

ol =0,0<r<m—1, ¢"Q¥ =0, ¢"Q* =0, ¢*'w* =0

then we easily observe that ¢ is a solution mapping of the given system of
partial differential equations. In order to determine the equivalence transfor-
mations, we have to find isovector fields that leave the closed balance ideal
®,, invariant. A vector field V € T'(K,,) can now be represented by the
expression

0 0 0 0 0

ai - 4+ T ai T — 8.3
o t° azw* oxe T8 g T g ©.83)

7

L o o o
San]--w, ~ _ +TCY’L]-~-Z,. - i >
Z( i 8 a g &ng'“lr g atgnmzr

71 T

V=X

All coefficients in the vector field (9.8.3) are smooth functions of the coor-
dinates of the manifold /C,,. Let us first take into consideration the ideal
I({op . ; :0<r<m—1}Q% Q). Since this ideal is produced by 1-
forms only, Theorem 5.12.4 secures us that the isovectors of this ideal and
its closure

Cn=I({o} ; :0<r<m-—1},doj., |, Q' Q% dQ™, dQ*)

are the same. Therefore, to determine the isovector fields of the closed con-
tact ideal €,,,, we have to show the existence of smooth functions ,
OL] ]r i1+ r r
)\5111 ‘a0 Kg“llk’ gil"'ik’ 'U’g“l ! MB]’ Mala ml ! Nﬂz, Nﬁ

belonging to A°(K,,,) such that the following relations are satisfied

11 Zk ZAa]l + KﬂLLl Zk Qﬁ? + LO/ LkQﬁ, (984)

Bir- iy, ]1 “Jr

£ Q% = ZW“ oy i+ Mg QY+ ME QP
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m—1

Zy‘”l L+ NG QT 4+ NS QP

where 0 < k < m — 1. To this end, we start with the equations (9.8.4),. For
0 < k <m — 1, the relations

Flllk =1y O-il-..ik - ‘/Yllzk - Uir--ikiX s (985)
i a = a i i3,
1y dUZ‘1~..ik = - Vi1-~-ikidx + X dvir--iki
lead to
a = . et i
Lvol i =dF,. — Vo da’ + X' o),
_ o a i
= d‘/zlzk - ‘éllkldaj - Uz‘l...i“‘dX

If we introduce the above expressions into (9.8.4); after having calculated
the differentials dFj,...;, and dV},..,;,, and arrange the resulting expression,
we then find that

z ¥ aj B
[ V7a ““7 5 +Z)\5111 i, Jl JZ_’_KﬁJn iy Si

LS .t da 8FQ - K% ax’
+ By thz J} + azgl Biiy-- i,
oFe ]
{ azﬂ = L }dz
+ ﬂdsm + 8F“—“‘dtﬂ
88?1 ! o)
m—1 8Vp¢ . 8XZ ) )
8 AR T% ] By iy
r=0 8vj1"'jr 9 JreJr s
+K'(y1221 usgwl ]T_‘_Lfyln th K d’U]I “Jr

ﬁw
+ Z Bl]l )

av.a 4 o0Xt
5] Jr ucl
+Z 5]1 JT B [ B Yiy.. Lkla ﬂ

ijl o 'jm ]m

@ YijirJm a4 Yj1Im _
+ KW”L iS5 + LWl t dvh Jm 0

from which we get the following relations for £ =0,1,...,m — 1 and
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608
r=0,1,....m—1
o OF
. Tyl o AR
K. = 7821352' o LG, 7@%35 ) (9.8.6)
aFZClK““ =0 OFi,. iy = 8F?Z’“ = 8FZ?“‘ =0,0<r<m
38?2 ’ 875? ’ 88%‘71”% ? atfy}]l“'ﬁ =1 ="
—1
o aF‘l@;u +Tnz:>\aj1"‘j7-vﬂ + aFl?M S@j 8Fl?lk tﬂ
ik T T i - Bix---ig g1 OB i oxs v
r=
gjl"'jr - 8Vlf’lk 0 o0X* 8Fﬁlk Sz,ijlmjr
iveik T g 6 ekt g 3 i
AV}, AV}, 0%
oOF~ .
8,212”/%‘152331 or=0,1,...,m—1,
8Vz?zk . ox' 8E?Zk S’ﬂjl"'jm + aFl?lk t’le”'jm -0
a’ e gl o 78 oxr -
Jl.v']ﬂ’l

The equations (9.8.6)3.¢ indicate that the functions Fg ., 0< k<m-1
cannot depend on the variables séﬁ, ¢, P i 0 < <m. If
k < m — 1, then it follows from (9.8.5); that

0x' B oFy .

[e%
a‘/ir o o

B weiig 5 o3
81)]-1, : 'jm avjl‘ . 'jm 81)]-1, : 'jm

Hence (9.8.6.); takes the form

OF . oFc . oF® .
i1 ik idk i gm il i gm _
o) Tomn f T gy o T =00sk<m =2
J1Jm
whence we deduce, respectively,
8ﬁ&”:Qégéﬁzﬂhm?”kzak:QL“qm—z

o
Let us now take £ = m — 1. This time (9.8.5); gives rise to the relation

oOF

i1 1
7 =
8/0]'1, . 'jm
o i S
a‘/741“ tm-1 U()/ ) ) 8X _ 0/6]16]2. . _é‘]m—lé‘]m X7
0 i1 i1l o 3 B Viy Um—1 0 :
v o, ..
Ji - Jm

jl' : 'jm
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We then insert this expression into (9.8.6); for k = m — 1 to obtain

[e% a
6 6]16]2 6?7!1—16.iji + 8F;:l"'irrz—l + 8 01 -1 S'ﬂ]l]m
B %1 Yia im-1 1 P oY B
JiJm
OZ
+ 8 110 -1 t/‘”l “Jm — O
X

When N > 1, we can always choose the indices « and (3 in such a way that
« # (3. In that case, we find that

8FZOIL Im—1 aﬂ? Im—1 8}7‘71(1)Z “Tm—1
827L - 07 82,-y - 07 a ﬂ - 0’ « # /6'
J1 “Jm

Thus if 0 < k <m — 1, then the functions Fg o and consequently the
functions X' and V7, = F. , +f ;X' cannot depend on variables
¥, 37 and vi i whenever « # (3. Therefore, (9.8.6);5 reduce to the
expressions

L ¢

[0}

Viieai = " T Yieai g
m—1 aVL? i " oXJ ﬁ
+Z[av T Vg 5 | Vi
Jidr Yjiojy

ove 0X’

D e o =0, k=0,1,...,m— 1.
o’ R

JiJm Ji - Jm

The above equations are exactly the same as the equations (9.3.5); and
(9.3.6). Hence, their solutions are again given by the recurrence relations

Xi = Xq(X U)a Ue = Ua("?“) (987)
o Vi, 0XT ViR, o 09Xy
V. L= 8xl LB vil“‘ikj 83’,‘7’ [ auﬁ - ,Uil-wik]- 8”3 Y
ove

+ZUJ1 Gy 85 k7 k=0,1,....m—1
Jr

[see (9.3.16) and (9.3.17)]. Let us now take the relations (9.8.4), into ac-
count. By employing the relations

m
iVQai — Sai _ szsz o ngiiln.ir%?--ir — Fozi (988)

r=0
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ivdQ* = — 5Yda’ + XTdsY’

=D (sG], =V dsyT
r=0

we can evaluate Lie derivatives through the Cartan formula. Let us then

make the transformation d”g--.z, = Jﬁ_uir + U?l“_md:vi for0<r<m-—1,

arrange the resulting expression and equate the coefficients of independent
1-forms to zero to obtain

) aFai ) 8F(u aF(m ) ) 8Fai
P — L — _— = ast J _—
Mg; iR Mg SR 0, 656, X7 + 57 0.
J J
OF" OF°
i =0, 5?511/25 +—5= =0, 0<r<m,
3t yii: Yyl asé]zl i
'uoml .- ﬁam Saiilmir
63 - g
aFai aFai N aFai . .
Qg Yjit Yire iy .
Ig = 507 82778 +—327 g , 0<r<m—1,
ity
. m—1 [}
ai _ Q@ Qi iy
S;' =5 ZS ) S
r=0
—ai 8F0” = iy . OFi gk, OF° i 5
SJ =55t Z + OYBk Sj oxb t
L 8F(“ 8F0ﬂ L aFm L
Qe VIt tm Yire =y,
5 B IR AL tos e T

i1l

As is clearly seen from the above relations, there are no restrictions on func-
tions S5, r =0,1,...,m — 1, hence they can be selected totally arbit-

rarily. Finally, let us take the equations (9.8.4)3 into account. The Lie deri-
vatives evaluated by using the relations

Q=T — X' — Zt‘”l oL =G (9.8.9)

and

m m
idea _ TZO/dIL‘Z + Xidt? _ ZTEH'"“dUz{?--iT + Zvﬂ dtom

r=0

lead eventually to the results
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oG* oG 0G* . 0G”
N =——, Nf=—, — =0, 65X+ =0;
ane TP 9w gl 7 ot
oG* oG”
e =0,0< 7 <m, 82V, T —0,0<r<m,
sy o
Vgilmzr _ 7;21 Tgciynir’
o0G* o0G* ... OGY i .
—Quiy YLyl Yty _
Vg —7(%@ 4 + 827i85 + o5 s ,0<r<m—1,
i1y
m—1 ;
o _ r
=T, - ZT% ! 51 iy
r=0
e 0GR 0G* 5, 9G° 4
Ti = %“—Zoljﬂl vil“-iﬂ azﬂ] Z + 825 ti’
r=
—_— oG” 8Ga i o0G* —
(1 R 7 . ’Y”l"'lm "YLI _ =01y
Ts A T s % o s ~ Vs '
11 tm
where the functions T[‘,’“”'i’, r=20,1,...,m — 1 may be chosen totally ar-

bitrarily. Thus, isovector fields of the contact ideal are characterised in the
following manner

' Y o ;0 0 —ai O
oxt + ; iy iy a'l)?l.,.ir + oy + one + j (95]0!1
o 0 i ; 0 o )
T Saul m_ Y iy
+ ) 8ta + s aml U, I3 8tml i
+V1+V;

where the vectors fields V) and V5 are defined by

m—1 . 0 8 0
QL
Vi=) S (W ~ i)
J

r=0

m—1 o
ZTMI < — q/.; . —)
Bta“ Uy 11t 875;1

..,m —1. On the other hand, we can easﬂy demonstrate that the Lie
derivatives of the generators of the contact ideal with respect to the vector
fields V7 and V; satisfy the relations
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;Evloﬁ_,% = 0, £VIQa = 0, £Vlwa = 0,

m—1
£VlQai — ngmm“(vgmirjdmj — dyﬁ ir)
r=0

iy
m—1

_ aiiy---ip 3

= - § :SB )
r=0

Lol =0, £,0%=0, £,w" =0,

m—1
£V2Q(y — ZTgllh(vglﬂdlj _ d,l}zﬂllr)
r=0

m—1
_ iy iy B
= - § :Td Oy,
r=0

so that they are automatically isovectors of the contact ideal without impos-
ing any restriction on the coefficient functions. Hence, these trivial isovec-
tor fields can be discarded without loss of generality because they will not
be operative in determining the equivalence groups. The rather simple dif-
ferential equations for the functions F'* and G appearing in the first and
second lines in the foregoing sets of relations concerned with the coeffici-
ents in equations (9.8.4) can readily be integrated to yield

m
ol iy ity iey 70 i
F% = —s'X E S5 Vi +F%,
r=0

m
Gr = —te Xy vl g
r=0

where the functions F** and G depend only on the variables

j j 3
DD YLD Vel {Uﬁ»l, r=0,1,...,m}.

-

When we insert the above expressions into the equations (9.8.8); and
(9.8.9)1, we see at once that we can write

Sai — jz-ai T — ga
Therefore, the isovector fields of the contact ideal are entirely specified by
n+ 2N + nN functions X', U depending only on z*, u® and S, T only
on 29, %%, %% v . 0 <r<m They are presently chosen arbitrarily.

In order to determine the isovector fields of the balance ideal, we
next have to consider the following relations
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m—1 m—1
Ly w = v+ ol L NAGTT N dol L ABYTT
r=0

r=0 =
+ QY ACE +dQY A DS+ Q7 A C§ +dQ A D
and show that the forms v € A°(KC,,); AC”1 ",.C5,Cy3 € A" (K,,);and
Bg“” i Dg;, D € A""2(K,,) can be so found as to satisfy the above
expressions. On inserting the expressions

L£yw® = iv(d wa) + d(iyw“)
= T + (dS + X°dX") A i + dX A dX7 A i
05 X' 05 X'

- (e e (o

: : ne du’ A p;
oxt ozt 8uﬂ * oub ) wA M
58 58
+ Z 1}71 iy A :uL o0i dzﬁ] A Hi
asm ). CAN OxI
d23 — AN A i —— AN
T o A A
OX7J ui

into £y w”, we immediately see that we have to take D% = 0 and Dj = 0.
Let us note that we can write

fo] _ -« o )
dvy..; =0 +v.de', 0<r<m-—1,

dO’gi../L‘r = - d’l)g_“iri A d.’I}Z
= — O-’g"'iri /\dxl, 0 <r<m-— 2’
dof, = —dvi,_,, ;Nda’
dzai — Qai + ( ai +Z Qidy - Z'Uﬁ w) d:C
m—
Z Qi 7, 71 77_}_8(}771 7md’071 o
=0

dxe (t“+2t”“ o))

+ Zt(“l Zr ’Ll i tgll 7md,U

1 7m

and then introduce these transformations into proper places in the invariance
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relations connected with Lie derivatives of forms w® with respect to an iso-
vector field V' and arrange the resulting expressions suitably to arrive at the

equations below

{Fa—l/ﬁ<2ﬂ+sm+z Py Z’v“ 77>]u

o0xXJ .
+0’ﬂ/\ |irﬂ i — 81},5 5, oA i
X/ aii a
_ yas’gl'ul _ 5 37 1 andy iy, A Hji — Aﬁ]

m—1

_}_Zo_zﬁl? |:Fm71 iy _Vf:zsgll1 77 Aml Ay —|—d$l' /\Bml . 1}

+ dv i (I‘g”l2 i — y“sg“l L’”,ui +dx'™ A Bgil'”im”)
+ Q% A (T — gf; 6307 A i — v i — C5;)
+Q7 A (%M - c5) =o.
The coefficient functions T'*, T'}’, T'3} and Fg“l”'i’, r=1,...,m appearing

in these equations and derived from essentially unknown functions X', S,
T are listed below

08 0X'! 08 0S8
+ ox! + oz’ + (ﬁuﬂ tx auﬂ)v +Z 11 i Fie

{own (o + 5 - (5o 2‘555 J}%}

m—1
<5i7 + ZSA/M i 1171777> (92[5 <t + Zt iy “ ; 7)
r=0

Wi 08 OXT (98 oxt axk
s = oub 2 ou” +{82w’ + K@x’f + oub Uk)‘s'

(5 + Gt G+ G (e S )

j m—1
_ aX Sqi + Sm‘ilwirv’y N
ous \7J § : v i1 iy
r=0

(9.8.10)
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rye - 20 {zéiii ‘ [<%—i§: g %X;" )8
g;z;w@fh%ff k>«v (O + 225)]os

To satisfy the foregoing equations, the coefficient functions must verify the
conditions

F v (Zﬁ + Sﬂl + Zsﬁ“l UleiJ) = Oa
r=0
= <F(':3” B ? gl)//[/ W(S?;ZO"Y _'_ Sgnlu.zmdvzl'”im> /\ Nj“
Agilwir — (Fgur-'z o I/O‘SZ;“ “)Nz‘ + dmir A Bgil"'ir—l7

o ot ol XZ « « 8Sai
Chy = (T — V5O — 550507 N pugin Cf = Zog i

(DG — w8 sy gy + da’ A BT =0,

To fully exploit the last relation above, let us take

B[c;n--~lm—1 — th'%mAUMij

where Bgil'”i’”’lij = — Bgil'”i’”’lﬁ € A°(K,,) are arbitrary functions. On
employing the relation
dzim A Bgir--imq _ Bgil..‘iﬁliljjdxi’m' N
— Bgnlm—ﬂ’](élmﬂj _ 6lmul)

_ B(Wl T~ 17m] Ball Tm—100m

g
— QBSH' . '7'm—17m7 HL

i

we get

Qi G- 1tmt _ ity iy ey Vi1 i
285 = —(I'5 vysy ).
However, the left hand side above is antisymmetric with respect to its last
two superscripts. Hence, the symmetric part of the right hand side with res-
pect to indices ¢ and ¢,, must vanish. Therefore, the determining equations
for the isovector components X', S, T and the functions v are found
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eventually to be
I'* = = Vg (Zﬂ + sﬂl + Z Biiy-- U“mm)7 (9.8.11)
I‘\glll ‘U + Fglmll — V}y,(sﬁﬂll “im + Sgimil...i)‘

These equations do not impose any restriction on the isovector components
U*®. Nonetheless, if some variables do not appear in the coordinate cover of
the manifold IC,,, due to a particular structure of the balance equations, that
might entail some new restrictions on the isovector components because the
corresponding isovector components must then be set to zero. Equivalence
transformations are now obtained by solving the following autonomous or-
dinary differential equations

dz! du®

d ? ’ d ) )
dv}: 6 , ‘
Moy (@) 00 1<
s 5 s
de —faZ(a:JZJZ,fIJ) 0<r<m,
dx" Bi =B —
T =gz, 5, 5", f} L) 0<r<m

under the initial conditions

0) =270, (0) =0 ,,0<r<m

11

SU(0) = 2, 5°(0) = %

For m = 0, that is, for the first order balance equations we have to take
% (x,u) and X%(x, u), and we have to modify our analysis substantially. In
this case, the coordinates of KC,, are merely {z?, u®, X% % s 3”, sg7, i, 15 }
[see (9.8.1)]. The contact ideal is now constructed by the following 1- forms

O = d — s¥dal — siidu’, QF = dS* — tda’ — thdu”.

An 1sovector field of the balance ideal must then be taken as

9 9 9 9 9 9
:X7 (e} (642 _ T()( Oﬂ
V=X itV e T gz 7 1 g Sﬂaal+5ﬁa(“
o . d

T+ T
T o T g
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In order that this vector turns out to be an isovector of the contact ideal, one
has to satisfy the relations

ivQY = L30Y + LYQ7, iy Q* = MGQ" + MgQ’

from which we easily deduce that

L OFY . OFC L 0GY ., 9G°

= gem 1= gy Mi= g M = g

Fai Fai o «

o =0, o =0, 86;% -0, a_c’;%:o,

ot PYE s PY

i OF O "o pai p oFei e e OF
S = 5a T oS T st S8 = gar T a5t T gnyth
L 0GT 9G" 4 OG" . 0GT 9G" . 9G°
1= a T oxa® t ot T =g o T am e
X7856;, + aF ——=X'65 + 05y, Ulsss; + or” -=U"89 + 8G7 =0.

8 ] tz Sﬂ 8tg

Here, we have defined
iy QY =FY = 8% - XI5y U sy, iyQ* = G* = T* — X't7 — U"t

If we scrutinise carefully the above equations, we immediately reach to the
conclusion

X' = X2, u?, 2% 55, U =U2’,u?, 5%, %7
and
FY = — XIs0 —U s + F, G = — X't = U't§ + G
where F* and G* depend only on the variables =/, v, ¥% ¥.%. Ultimately,
let us consider the relations
£y w® =vjw’ + Q7 A CE 4+ dQY A DG 4+ QF AC§ +dQ° A DS
We readily observe that D, = 0, D = 0. We thus obtain
[ — Vg(Eﬁ + S?Z)]u +(G§ F‘”tW — s ’7) du’ A p&

ox*

i o7} gl aik
+ Qﬂj/\ [ — ng + (ng — Vg 6_7‘):“42' - (F"/ﬂj du” + 8257

+ Fgﬁ? duP A du? A g

Qal> A ,u;m}
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—i—Qﬂ/\[ C3 +F5 i — ZZﬂ(Qm +s’” du”) A pji| = 0.
Smooth functions I'®, ng, ﬁ , Fg;, F%Jk and Fa” in the module A°(Ky)
appearing in the above equations are given as follows

=T G G+ (38 i+ s
~ o)t + (57 + )t
- gt - sé”fs;“') - gg;w )
6 = 2‘*322 | |
(3 " s s 36 )%
O el = DX (st b
g;]ijk (sgzsjk — sgk M) + %(tﬁy — tngkéé),
5= g;; + 3¢ g;‘;j %Xl (61,65 — 6,616
- )
‘ k i
(g™~ g+ Gt~ it
= et~ (gl + st + 5ol
O = - gXﬂ (e + art)es

Hence, we have to take

A A ox*
a ai i aik %)
C5; = (05 = v8ms — (T35 du” + 5= ) A,
«a ai aX ai ai
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in order to satisfy the above equations. Thus, we reach to the following de-
termining equations

I —v§(2° +5") =0, (9.8.12)
Gai Fo‘itA/ - VQSZ; =0,

alij] _
F[ﬁ'r] =0

The foregoing results will loose their validity in the case N = 1, that
is, if there is only a single dependent variable. Evidently, we do not need to
employ the Greek indices anymore since they all take only the value 1. In
that case, we have to consider obviously just one balance equation which is
represented by

+X=0.

8 i
The coordinate cover of the contact ideal K ,,, then becomes
{xi, ¥y, sz», ti, {vi.q, st 0 < < m}}

where we have naturally defined the auxiliary variables by
B X!
Jj @7
_ o’
vy,
0%
- Ozt

ox

til-.»ir — S , 0 S r S m.
11y

Consequently, an isovector field of IC,,, that is a member of the tangent
bundle T'(/C,,,) must be represented by

o 0 o o o
X i yrZ 15 1
V= az+Sazz+ o5 +SJaZ B

D 0
10yl 11l
+ Z( i g + St Ol ir + 17 3152‘1---2'7-)'

21

On making use of exactly the same sort of operations as we had done in the
case of N > 1, we obtain in this situation the following expressions for
0<k<m-1
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m—1
8F- i
‘/il'--iki = (921'7 ZA{; 2]1: Jregrt ahzjlk 8?
OF, ...
R SR Y
| + st
)\” g — Vi — Vi) iy 0x + aFil"fik ghivdr
ik 81}]‘1...jr v (911]'14..]; ot
+ #tﬂ”'”, 0<r<m-—1, (9.8.13)
8‘/11“ — s .. 8Xl aFLlZ}‘ i.jl"'jm
A iy it .
8vj1"'jm 1 ' avjl"'j'fl 821
+ a}:{;lzlk hdm — 0,
4 OF! oG
%Wlmir‘i‘m :Vil'”i”—i_atir--ir =0, 0<r<m,
.. OF! - 0G
X'+ —]=X"+ =0
* Osh ot

where the functions F},..;, ', G € A°(K,,) are defined by the relations
Fiip = Vi — Ui1 m‘Xi, (9.8.14)

=8 — sl X7 — Zs Vi,
G=T-t:X"=) t""V ;.

r=0

Furthermore, we immediately observe that Fj,..; cannot depend on the
variables s}, ¢; and {gtvir tiv-ir . ) < r < m} while F' is independent of
the Varlables t; and {t"":0 <7 <m}, and G is independent of the
variables s’ and {s" " :0 <r <m}. For k <m —1, it follows from

J
(9.8.13); and (9.8.14), that
OFy &  OFu s oo OFi i o
v m t]l Jm — 0
81}.71' : 'jm + azl i + 82
which gives rise to
OFy.i - OFy. - OFy.
— Lk =0, ——F =0, —* =0, 0<k<m-—2.
oxi ’ 1)) ’ ﬁvjli..jm ’ =h=m
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By taking £ = m — 1 in the relation (9.8.13)3, we get

. 3 P ; . 8Fl "'7:m— 8E "‘imf g1 g
(5211(52;"'51{%1165 Xit aUIJ jl + ézz L gij1im
1" Jm
4 OFbivs i
0%

On the other hand, according to the relations (9.8.13), 5, the functions X'
and V;,..;, cannot depend on the variables si, ¢; and {s"" " ¢} where
0 < r < m. But, this leads us to the conclusion

OF, OF),..,

1"'i/€ _
0 [)>

= < k< —
oy 0, 0<k<m-1.

Therefrom, we arrive at the previously derived solutions (9.3.22), (9.3.23)
and (9.3.25) for the components X*, U and V;,...;,. In a similar fashion, we
deduce the following expressions

m
Fie — s XI=3 6 4
r=0
m

G=—t:X'"=) "V, +G
r=0

from (9.8.13), 5 where the functions F' and G depend only on the variables
2/, ¥, ¥ and {v;,..; : 0 <r < m}. In conclusion, isovector fields of the
contact ideal are to be expressed as

;0 - 0 .0 0 —i 0 = 0
v=xiL v, —2 4 % 0% 59 7%
D IR il R r
) 0
givvin_ 9 opivein__ 9 4y Ly
+ asuln-zm _'_ at11~~zm + 1+ 2

Trivial isovector fields that can be discarded without loss of generality are
given by

Vi = Tnz_lsii""i7'<as£..-ir - ’Uil...irjaisz>,

r=0

Vp = mZ_IT (atf“ir - ”£>

r=0

as dependent upon arbitrarily selected functions S % and T with
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0 <7 < m — 1. The remaining isovector components are listed below

Si=F, T=g, (9.8.15)
i OFT T, 9F oF . . 9F .
.= DY L5 R 7 DR 5 R 24 3 o
5 i ;(01@1...” o5 > S t )”f
OF'" OF
ot oy b
_ G =, 8G G .. . 0G . .
Ti = - gl —— gt I
oz ;<avil.m+ays ot i
L 96 5,96,
%t T e
L OF! oOFt .. oOFt . .
;e — . JUL tll"'lm
5 81)1'1...% oY s + ox ’
i i — oG + oG it im %tz‘lmz‘m
N 8112-1...% 821 82 '

They are entirely determined in terms of n + 2 functions
F(lﬂ:? U, Ui): St = fj(xja Ej: X, Uil"'ir)a T = g(l,j, Zja X, Uiy“ir)

with 0 < r < m. In order that this vector field becomes also an isovector
field of the balance ideal, we have to show ‘Achet existence of the forms
veA(K,);, Avi B, Be AN"YK,); Cvr, D, DeAN2(K,),
0 < r < m — 1 such that the following relation is satisfied
Lyw="Tp— X"dS A p; +d(S' i — XTdE" A pji + XX ;)
=Tu+(dS"+SdX) A p; — dXI NdE A pyi = Ty

(G st s (G

+ (gi: + E%f;)dvj A i

+ 7: %dvh...l, A pi + gg; d¥ A ;i

+ ZSEZ dX A p; — (gf;dxk + aaxujdu + gﬁjd@ A dS' A i
m—1

= vw + Zam AATTE L VA B+ QA B
r=0
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m—1
+ Zdoil...ir Al + A A D; +dQ A D.
r=0

If we follow a path similar to what we have followed in the case of N > 1,
we easily obtain the expression

m—1
D= v(Stsi+ Y™ v i) [p o A= A=vsip) (98.16)
r=0
+o; A (’}’Z A Vs”,ujdﬂ A C) + Zair“ir A (,Yn.nzr — Al
r=2

—us" I 4 A C“”'i’*l) + QAN — Bi — vp)

+ QA (g—gui—3>

+ (I‘iil"'im _ Vsiil"'im) dUi]'*-im /\ HZ
+ dviy~~im Adx'™ NC"™ et = 0,

The functions and forms entering into the single equation (9.8.16) are essen-
tially associated with unknown functions X’, S*, T’ and are given by

oSt 98! as!

X’  9X' X’ vﬁ)

P=1+ %5z +%”i+a_vj”ﬁ+2(azi "5 " By,
m—1 aSz ;
08’ oxXk oxk oXk
* [ﬁ + (8:1:k + au F + ovy vlk>6j
oX'  9X! X' “
B (8xj + ou vit Oy, vk])} (S +Zsm i ”)
i m—1

B {asi . X' L8 9S' . (aXf . HX7 . OX7 ) Z.
7= ou ou oyt T oy dal " du Ui g, R
Xt X! OX' . ol
— . . J ]Zl iy
<8x1 + ou + Ovy Uk]) (s + ZS Yir-: '”)

_ _8Xj (577 +mis“1'“i"v- ; )] i + (an - %5 )a N [
U J o iy | | Hi v U ou kA i



624 IX Partial Differential Equations

an m—1 § ) an ) A
_ 78'“ (Zsl“'"ho—il'“ir A\ /1,]-,;) — 50 Smmlmdvil-nim A i 6An—l (]Cm),
r=2

» K oxXt 98!
J— = gki
T [811‘,- T2 Tonrt T oy

oX 0x 0xX 4 _—
B (89:’“ * ou + oy, Ulk) ’ + (Sk +ZS Vir-irk )

085" j+(8Xk ox* 6X"’v )s”
Oxk ou oy I

m—1 k

oxX" |
(Sk _I_Zsm 271}11 /k)]ﬂ 8 SZZO—] Aﬂki

an m—1 o
— av ' ( Slll..-h,o_il”.ir /\ ,U,]ﬂ>
J

r=2
ox*
oy
a8 oxt 9x*k ox* . 0Xt oX!
A= [ﬁ (83{:’“ + Ju vkt o vlk>6?_<w+%
or vkj)}ui + 5. A pij + I Apij € ANHK),
ieiy a8 5! g, 0S5’ i
T {a%...“ Tt T toant
((’)Xj N 0X/ - 0X/
oxi  Ou 7 Oy,
- (Zi:(l + 88)5 vj + Zii vkj)sﬁ]”'i’}ui eN"HKL),2<r<m—1,
08’ n 98" i n @tzlz
dvi. g O 9%
+ <8Xj + 0X7 v+ anv ,)Siil...m
R A
B (8Xi N X' - X'
oxd  Ou 7’ Oug

st g

tm

A i € AHKL),

Uj

+

Ukj) st

1—‘”1 i —

vkj) shin e AO(IC,,).

To satisty the equation (9.8.16), it would suffice now to select
A=y—vsp, A=+ — Z/Sji/J:j +dz' A C,

os'

e Tt

At = At gt dgt ACTTT 0 < r<m—1

BZ:AZ'—I/,LLZ', B =

In this case, (9.8.16) reduces to
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m—1
|:F — I/(Z + S: + ZSiil”'%‘Ui]...iri)} 7
r=0
4 (TPt — g™ i) duy A g
+ vy, Adain A O =,

If we introduce the forms

Cll‘ “lm-1 — C’Zl' : '7417%11]/1/”, c An_Q(IC’m),
Chimiy — i imeaji o AO(lCm)
we find
dvir iy, A dxlm A Cll‘ : ‘717717114711/”
= — dvi1-~-im A d:Clm A C““-’Lmi”]ﬂji
i lyp—12] i

= —C"m gy N dT™ N
— _ C’Ll-. .Z7n712]dvi1- iy A (6;rnui _ 6;771 /’L])
— il‘ : 'im—liim . . .
= -2C dvi,...i,, N .

We thus obtain

m—1
[F — l/(Z + )+ Zsiilmirvil~~~i,<i>:| H
r=0
(D ygiinein g intiin) gy A = ()

implying that the coefficients of independent forms p and dv;,...;,, A p; must
vanish. Obviously the antisymmetric parts of the terms I in — pgiitim
with respect to indices 4 and i,, will determine the coefficients 2Ct" " m-1iim
that are antisymmetric in those two indices. Thus the symmetric parts of
these terms with respect to the same indices should vanish. Hence, the deter-
mining equations for isovector components take eventually the forms below

m—1
r— V(E + 5!+ Zsiil“'irvili..iro =0, (9.8.17)
r=0
P | Piwited y(giein y giniv) — ),

We cannot extract the determining equations corresponding to the case
m = 1 directly from (9.8.17). The relation

frw=vw+oANA+docAB+Q ANC,+QAC
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can now be written as
[F—U(Z+s§—|—siv7;)],u—|—a/\(f‘i,u7;—A—Vsi,ui)
+ VA= G = v8i ) + QA (G2 = C) + S Ao Ay
ox’ . oXx’ " oxJ .
st — s ) o Adug A i + — QA dog A i
(8vk8 Bu )a Ui A i+ ov, Ve A K
+(Fij—I/Sij)dvj/\ui—i-dvi/\da:i/\B—i—I’ijkldvl/\dvk/\uﬁ =0

where we defined
oS’ LOXT  (9ST 09X S
F=T+ awi+zaxi +<8u +28u )Uri-az (ti + tv;)
os' 0X* i 0X' J J X/ i i
+ <OEJ + Ok 6]- = o0 ) (si +s vi) + W(Sivj - Sjvi),

08 0X’ 28t o9x' . o9X! .98t
Y = N o kj J
oo, "0, © (azk T 0 T B )S Ton !
oxkt .. oxt . oxXk . 9X' 4
8vj (sk + s vk) + 8vj (sk + s vk) + ( ou 87 — £ s )vk,
g 3 g 1/ ..0X7 L OXI L OX? OX?
szkl — _F]zk:l — _lek N ik jk _J
4 <S v, s v, ts o, y v, )

1 ox"
— U 6kl mq )
4 Omnpa® v,
To combine the form B € A"2(K;) with other terms, we take it in the form
B = Bjkujk + Bjkl7”dvm A k- Antisymmetry properties impose the res-
trictions B* = — Bki pikim — BUkIm ¢ AO(IC;). We thereby find

—dv; Ndx' AN B = ZBijdvj A i + 3B du, A dug A L
On the other hand, by selecting

) ) X’ . 9XxJ .
A= (FZ — VO'Z),Ui + (6TSZ - aTSlk)dUk A i
k

05!
C= st
) ) oX7 o0XJ
Ci = (I —vé)u; + 0’ N i + a—vkdvk N i

we arrive at the relation
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[T — (S + s+ s'v)|p+ (T —vs? —2BY)dvj A
+ (D9 — 3B dy A duy A pii =10
which requires that 2BY = 'l — yslidl and 3B7* = Uk Hence, the
determining equations are reduced to
F=v(X+si+ov), TVHIV =7+, (9.8.18)
Fijkl + Fikjl — <é‘Lj 6kl + 6Zk 6Jl )qu oxX"

mn" pq mn " pq ov
p

=0.

The third set of equations in (9.8.18) govern the dependence of functions
X'(x?,u,v;) on variables v;. In fact, these equations imply that the coeffi-
cients of the variables s¢ vanish if only the relations

ox" 0
v,

mn%pq mn%pq

are satisfied. Contractions on indices (i, m) and ([, ¢) above yield

. L OX"
200jck | sk _
(n —1)%(6},0, + 6,6;) ooy 0
whence we obtain the equations
¢ n ox* _0
Oy, ovj -

for n > 1. The solution of this set of partial differential equations can be
written simply as

X' = a(2”, w)v; + bi(zk, u), ¥ = —a.
We then see that o’/ must also satisfy the conditions
(St o s = o
that can be expanded into
a'8),6, + a6, 68 — o8],y + asy 6, + aM6), 87 — a6} 6] = 0.
By contractions on the indices (k, m) and (I, ¢), we get

(n? — 1)a" = 0.

Therefore, we have to take a’/ = 0 for n > 1. Consequently, we finally
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reach to the conclusion X' = b’ (2", u).

For m =0, the case N =1 does not need a special care. Since all
Greek indices are equal to 1, the determining equations are directly deduced
from (9.8.12) as

I—v(X+s)=0, G' 4+ Tt —vs' = 0.

We can easily reproduce the determining equations for the symmetry
groups discussed in Sec. 9.4 from the determining equations for the equi-
valence groups. To this end, it suffices to note that in symmetry transforma-
tions ¥ and X (N > 1), and their derivatives with respect to their argu-
ments can no longer be chosen as independent variables as we have done in
equivalence transformations. Therefore, the only surviving isovector com-
ponents should be X i and Vlf‘L, 0 < r < m. Moreover, we have to keep in
mind that the basis vectors 9/dz" and 9/ v ;. 0 <r < m appearing in
(9.8.3) are calculated by holding X% and X% as constants. On taking into
notice of the functional forms of ¥ and ¥¢, we immediately conclude that
we have to write by using the chain rule

0 _8_826”' 0 9x* 90
0" | si g Ozt Qxi 0% Qxi 9
0 0 _(92[” o oxs 0 0<r<m
o - a oy o ov , 0¥A Qv oxFT T T T
Thus an isovector field is now expressible as
+Z + [SY — V(2] 0
8x7 ey 8@ i, oxoi
0
T - V(X* .
+ [ ( )] 8204

However, the coefficients of the vectors 9/9%" and 0/ oxrs must vanish.
Hence, it is obvious that we are compelled to take S = V(X) and T* =
V(2%). As is well-known, we define

VI(f) =

+Z L? iy

7,1 Z,«

for a function f € A%(C,,). If we also recall the definitions (9.8.1) and insert
all we have found so far into the determining equations (9.8.11), we readily
observe that we can recover the determining equations (9.4.11). The case N
= 1 can be treated in exactly similar fashion. We find S* = V(XF), T' =
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V(X) and it is straightforward to verify that the equations (9.8.17) give rise

to the equations (9.4.17).
We shall now try to determine the general solutions of the determining

equations (9.8.11) or (9.8.17).
The case N > 1: The explicit form of the equations (9.8.11) can be

written as

oy 250 zﬂ(aXZ 63— vg) + <asw + 3o 8Xl)vf (9.8.19)

0u' da oub " 7 ud
95% 4 95 10Xk Xk N
+3 o, {555+ [(Gor + 3 h)®

—(‘fo+3§ ) -} (2 i)

‘2;0; (t +Zt6“ vl ) —0

Ag”l “Um—1m + Aglln“ Tm—11 — 0

Here, we have introduced the following functions

ERRE {z;i; (55 + )

If we carefully examine the equations (9.8.19);, we realise that the coeffi-
cients v/§ cannot depend on the variables s[‘j“l i and ta“ ‘i whereas the
ai tO{

equations (9.8.19), imply that they are independent of the variables s§', t;
and {sg”l o tg“ ho<r<m-— 1}. We thus obtain

vg = ug(:zci, {UZ”_Z-T,O <r<m}, X7 E”’).

Therefore, on recalling arguments of X*, S% and 7%, we realise at once that
(9.8.19); makes way for the following relations

85ai

57 =0 (9.8.20)

7

OL Z

Y3 9j azﬂj

_85‘” [<8Xk ox* 7>6Z-'_(8X73 0X’ )}%’

Oxk ouv U oxJ t ouw ou” Y
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855”
o 15
T+ —— + % (

=)o (55 +w35)1
" oo =0.

71 Ul

+ZS

1 7
Let us now define the functions

089 <8X77 oX' ”);}

51 = o8 — \ u T our

If we contract the indices ¢ and j in (9.8.20), and take into consideration the
equations (9.8.20), we reach to the relation

X* Xk
N (8 0 ) 50 —

Vﬂ_ + =

ak
ozF " Qur 'k 63’“

= fﬁ(f, {v].;,0<r<m}, 5.
where fg are arbitrary functions of their arguments. Eventually, (9.8.20),
would lead to

& — Gg,’w—o or e

Differentiating the above expression with respect to 27 we get

A

oxligyk gk T gnfik

The extreme right hand side in the foregoing relation arises from the sym-
metry of second order derivatives with respect to the variables % requiring
that this expression must be invariant under interchanges (/3,~) and (j, k).
A contraction on indices ¢ and j yields

0 fﬁ _ 0 Iy
"ot T gnh
Hence, we can write
ofy o 9ff

ox = sk

and on contracting the indices ¢ and k, we arrive at the result
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0 15
827]'

(n* —1) =0.

Since n > 1 in partial differential equations, we conclude that the functions
fg must be independent of Y% that is, their explicit dependence should be
given as follows

fﬂ _fﬁ( u’y7v7,17v71227”'71)2/1"'7;771)'

Then, we easily obtain

X' 89X |
R L j)z‘” 9.8.21)

+ X (2 ﬁ,vﬁ,...,vﬁ_“im)

o _ pasfi | (

where x* are arbitrary functions. With these relations at hand, we find from
(9.8.20)3 that

98 = 98«
"2

[e% (&)
= f35l — — Vi (9.8.22)
81’2 81}51 . [ARRR )
On the other hand, we can write
AQdiin as>  Ofy i 0o
p ot o’
11 tm 11 Un 11l
where we assume that m # 1. Then (9.8.19), gives
8 CV a (e} ) 8 o7} a Ay,
i =7+ %Z% =0, ;3( - 6X =0
ov; o, . . ov; ov;

11ty 21" tm—10 i1 lm AR Y
On differentiating the first set of equations with respect to X%, we get

ofr . of of:
57 o, + 57 o' =0 or (n+1)—;

8vi1"'im avil"'im—li 8U11

=0

where we have performed contraction on the indices ¢ and k. Thus, the func-
tions fj possess the following form

fg = fﬁ (x Ql;y’“z’/U;YNZ7 T 7/U;;/l"'im—l)'
If we recall that the variables vf|. ; are completely symmetric in their

subscripts, the partial differential equations satisfied by the functions y®
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may be cast into the form

B i o aj
ﬂX i ﬁX =0. (9.8.23)
81}]‘1’1"'2‘777,71 a,Uiil"'im—l

The number of variables in this system is N (”+;’7'j_1) whereas the number of

n(n+1) (n+m—2

equations is N2 ) Hence, the number of equations is larger by

2 m—1
a factor V % than the number of variables. In order to find the solu-
tion of (9.8.23), let us start by taking ¢ = j to get
Oy
BX =0
ov’,

(AR 'im—l

for all 1 < 4,41, -+, 4,1 < n. Let us recall that the summation convention
will be suspended on underlined indices. The above equations mean that the
functions x“ cannot depend on vgl .To simplify the notation, let us in-
troduce the sets vy,..;, , = {Uﬂl"'lm—l’ N and Wi =

{Viiy iy 13 V2iyeipy 1 -+ s Viiyoiy,, - We can thus write

= (Wi M Viigein 1 ), 1< a <N

where the symbol \ denotes the set difference. For notational simplicity, we

omit the dependence of f* on the variables z!, u® V5 vzm, ce v We
now differentiate the equations (9.8.23) with respect to vm gy With j 4
to obtain
62 at 82 aj
o’ ng * o’ 21}7 =0
iil"'im—l .Zjl"'.jm—l Z.il"'im—l ijl"'jm—l
Because of the relations 94/ dvj; . =0, wefind
82 o
o’ igvﬁy =0
Jia- -ty i gm—1
implying that
aXmﬁ
0 p ﬂalﬂl o (Wil"'im—l \{Viil“-imq » Vi i1 -
v,

Jii-- 'im—l

ijiy--

Obviously, the functions f " are subject to the restrictions
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faijh”'imq - _ fa.jiil"'im—l
B B :

On the other hand, because of the symmetry of mixed derivatives, we have

2. i Qi iy im—1 ik -1
a X 8f B 8f7 'm

g 2 v o 8 '
Qi OV kejijm-1 Vi, i,

Since the functions f2/*/"J/»-1 cannot depend on vy;.. we get at once

'jmfl >

a? alJll “Im—1

=0
O, O
leading to the relations
aQXai afg”“ St
B Y - o -
81}]“ -1 8vk]1 Jm-1 avk]l s Jm—1

i i . .
fa” e (Wll Slm—1 \{V”l -1 Vﬂl Clme1) Vkil' -1 })7 ¢ # j # k

ki b — 1 'm—
where the functions f”” e dme e Jmet

must satisfy the following symmetry
conditions

fa”kll Um—1J1"" Jm—1 — faﬂkll Tm—1J1"""Jm—1 — fﬂﬂkﬂl Clm—1J10 0 Jm—1
ol :

Continuing this way, we can readily reach to the recurrence relations

1) (1) (r) ()

8r+1xozi afa“l B S |
(€51 Q1 Qr41 =
ov' ORI R 87} (1) (1) ov (r1) (1)
LS R r+1%p “tm—1 ZH’” -1
iy iy i)
) o Y rn m . . .. . . . . . . .
17 Qg (le ©Jm—1 \{vlll Jm—19 Vllll' S Jm—19 ) vlr+lll' Jm—1 })

whence by taking » = n — 2 we draw the conclusion

-1, ai n— (n—
oy =
— Ja1Qp-1
o™ e QU
L) (D (n—1)  (n-1)
21

1 s Z" 1 1

simce W]l “Jm-1 \{V711 “Jm-13 vllll S Jme1 e V7’n 1 '.jm—l} = @- Thls 1s tanta-
W, o AT

mount to say that the functions fo . g 1 =1 are independent
of the variables vf;, . ; . Thus it becomes rather straightforward to integrate

those hierarchical system of partial differential equations for Y in the
backward direction starting from the last equations above. We then readily
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obtain the polynomial expressions

(1) k) (k)

(IZZ] L’\JI Im-1N Im—1,,01 (673 ai
E Jou- Vow o Uy w +f (9.8.24)
2110 Jm—1 J1 JIm—1
(1)
_ pai ’1”1]1 “Im1, 0
="+ fo Uy
i1 1 Im=1
(1) 2) (2
+fa“”2-71) ']f,L),lj§>"']E”),1/UO{1 (12
Q10 (1)) (2)  L2)
o Im=1 72j1 Jm=1
L) () (2 2 3 3
fanll?lijl i Im-1d1 Im=1J1 I, Q0 ,UO‘2 ,UOZS
1 o w Ve o Ve e
a0 Vo (1) ()3 ; aq)
1]gl) J(nlz)l 7"7”(1” 1)_',]57711711) 1101 Im—1 *2J1 Im—1 301 Jm—1
. (1 (1 [(n—1 (n—1
+ - alzl---znflﬂi)"'75,11“'](1 )'“’5”71) (3] el
QyeQp—1 c (1)) . (n=1)  (n-1)
111 Jm—1 n—1J1 Jm—1
iy i) ) 4
The functions fu,...q, "0 """ 7 "' where 1 <k <n—1and f* are
: 7,0 o
arbitrary and depend only on the variables ', u®, of, v, ,...,v5..; . We

aiir- Tju),,_ju RO
can easily verify that the functions f,,. boodme el where o= 1,

,n— 1 enjoy several symmetry requlrernents. There are antisymmetry
with respect to first two roman superscripts and complete symmetry within
the groups of indices, (il,jgl), : ,jfn) I P (S ,gﬁ” b ,jfg 11))
Furthermore, we immediately observe that block symmetrles Wlth respect to
the groups of indices (al,il,jgl),- ,jf,ll) s oov s (ak,ik,jgk), X -,jf,}f)_l) must
be obeyed.

We thus see that all components of the isovector fields characteris-
ing equivalence transformations of balance equations are determined by
RO SR

O‘“l ij CIm-r I Im—t

means of arbitrary functions X', U 5 fo and fa,.
where 1 < k < n — 1 depending on certain coordinates of KC,, through the
relations (9.8.7), (9.8.21), (9.8.22) and (9.8.24). When £ and/or ¥ are in-
dependent of some coordinates, the components of isovector fields corres-
ponding to them must of course vanish. That kind of restrictions removes
naturally to some extent the arbitrariness in the determining functions X?,
e, 5 X"

When m =1, namely, when we take into account second order
balance equations, we have to modify slightly the previous analysis. In this
case, we have again

A = peii _ g = 95 o
/ B Y ﬂ 8’05

But, this time, (9.8.21) yields
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a .
Agij — a gl E“ﬂ? + 8X Eozj aXm
81}? ou’ (%?

Hence, the solution of the equations Ag” + Agﬁ = ( is found has a distinct
structure from above as

i

af aX
fg(x ,u”,v}) = —

ow Zéﬂ +gﬂ($ ’LL)

where g7 are arbitrary functions. The solution of the equations
8Xai 8Xaj

e (&)
ov i ov;

=0

can be extracted from the foregoing general solution as follows
Z A W (W),

Thus, the relevant isovector components are found as

X' = X'(x,u), U*=U"x,u),
ou*  9XxJ our 5 oX/

a « a, 3
Vit = ori Oz vt ou? vi T ou? il
, , aX 3Xi , 8X
ai o pi aj ﬂ ai az
6X 8g 8g
T = goxf — 22 gy — ZOypi I8 s 9.8.25
—IBE T e i Bu ©-8.25)

62Xz 82Xz 5 . 8Xm axm 3
S (ZE TR ) yei O OX 8.
((9:61(9:13(7 T orow UJ) ari  oul

If m = 0, that is, when we consider first order balance equations, then

we have to search for the solution of the equations (9.8.12). The equations
(9.8.12)3 lead to

¢ ¢ ¢

EAR I

We thus get X’ = X*(x). The form of the equations (9.8.12), reﬂects the
fact that the functions v must be independent of the variables s7'. Hence,

the relations (9.8.12)s reduce to the equations
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=0

L T S COUR COU
5 o+ (G + G- 8]67_V6>

the satisfaction of which requires that
95« 05« o ci ;
o = axr =0 0= g T gak O gu
We therefore find $* = S (27, $%) and, consequently, v§ = v (2!, %)

Similar to the approach employed previously, we immediately obtain after
some calculations

05 <8X’“ 8Xi>5a

65@1

. ox
Egj _fd( E’Yk)é

oxJ

from which we deduce that 0§/ 0¥ = 0 for n > 1 by considering second

order derivatives of functions S with respect to the variables $7%. This of
course means that f§ = f§(x). We then obtain S by simply integrating

o5

the above equations. If we introduce these expressions into (9.8.12);, we get
the isovector components 7. The results so obtained are listed below:

X' = Xi(x), (9.8.26)
U =U*x,u, 2%, %%,

) G
i __ pa Bi Q i
S = F(0)S7 4 S0 4 g (x),
of3(x) _ . 2 x A o
fﬂ( )Eﬂz "X na _89 (X)

J

= fi0x" - oxt - OxidT oxt

where X', U, f§ and g*(x) are arbitrary functions.

The case N = 1: In the case of only one dependent variable, we have
to look for the solution of the equations (9.8.17). The explicit form of these
equations are given below

98" 9! 98" nl gl

T+ 8951 + %Ui + aivjl)ji + ;781)1'1. . Viy--ipi (9.8.27)
oX' o0X' 0X" 05" oxt oxk
* E( ox' ou vi ov; i V) [62? ( ox* ou Uk
ox* oxX* o0Xt 0X" . _—
* ov; Utk V)(S] B ( oz’ u + Oy, vk,ﬂ(sz +ZS]1 iy Z”)
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m—1
E t“mhvili..irl‘) =0
r=0

Aiil"'im—lim + Aimil”'im—li — 0

where we have defined

At im _ oS’ {asi <an N ox* N ox* V) 5

C v, Loy ox* du " ouy " i

B (a)(Z N X! . oX! >i| i im n iytil“'iwrz
oz ou ovy, ki) | ® o

— 1—‘”12777 _ VS”IZm

When we carefully scrutinise the equations (9.8.27), we realise that v is in-
dependent of the variables s, t;, s and t'1"i» so that one writes

V= l/(xi, {’Uil.‘.j,,,o S r S m}72ia Z)

It then follows from (9.8.27); that

S’
5 :asi oxt oxk oX* si X' oxX'  9x'
YO 82-7+<8xk T 0 T oy, ”““) j (aw‘ T o0 T gy, ”’“ﬂ)’

o5 o5’ o5 ¥d s
ari | ou 8vjvﬂ = Jvj,..,

E(%fg + %Xuivi + 8Xiv~ — V) =0.

Vi iyi

T+

Hence, the functions S° are independent of 3. With the definition

i

X’ N 8Xiv»+ 8Xiv )
OxJ ou 7 vy, &
we deduce from (9.8.27), that

0X'  oX' 0X' 1
V_<8wi+8uvi (r‘)vjvﬁ>_56i_f

where f(x%,u,v;,...,v;..i,, %) is an arbitrary function. Thus (9.8.28),

takes the form
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Py <8Xi X' aXivkj) (9.8.29)

= £ :
oy I g T e T By
whence we get

s of ., of

, = = 5!
oxiox™ ox™ Y oyl "

and consequently

of _

This equation signifies that the function f is independent of X7 if n > 1.
Then, the integration of the simple partial differential equations (9.8.29)
leads to the result

X 9X’ ax'

S =fu (S S S )T X (9830
/ oxJ ou 7 v X ( )
where x(z7, u,v;,, ..., v;,..;, ) are arbitrary functions. Hence, the functions
A#rin can be written in the form
A im — 98" of i X’

= +
81}1‘1.4.% 8111‘1‘..1'"1 8’01‘1..4"1
and the equations (9.8.27), lead to the conclusion

0 ; 0 ; ox’ ox'm
Fosiy OF g OX . Ox
8’01‘1...% 81}1‘14..2‘ 8’01‘1..4"1 (91}1‘1.44

=0.

Therefrom, we easily arrive at the partial differential equations

of 3% ox’

=0, + =0.
81)“‘1..

aviil"'im—l 8vji1"‘im—l Um—1

Hence, we have f = f(z',u,v;,,...,v;...;, ,) and the integration of the set
of equations for x' yield

i 0Ji1- T i 0Ji1- T 301 T
X :Oéjl mlvjil”'im,,l—i_ﬂ? O[Jl mlz_a]l m—1

where the functions o/t =-1 and 3* depend on the variables z*, u,v; , ...,
Vi, . @1 are completely symmetric with respect to indices 7,1,
19, ..., 4m—1. Finally, we obtain from (9.8.28)3 that
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i

m—1
9.8.31
2;811,1 i ( )

Consequently, isovector components characterising equivalence transforma-
tions of a single balance equation are determined through arbitrary functions
F, f, o/ in-1 and 3. Naturally, particular structures of the functions X
and ¥ may limit arbitrariness on these functions.

In case m = 1, we have to modify slightly the analysis above. The de-
termining equations for isovector components are now given by (9.8.18). If
we closely examine these equations, we realise at once that the function v
must be independent of the variables ¢; and ¢. This, in turn, implies that we
get 95'/0% = 0, namely, S' = S*(27, u,v;, 7). If we eliminate the func-
tion v between the first two equations in (9.8.18), we then obtain

(Fij + Fji) (E + s’,z + Ukvk) = F(sij + sﬁ).

The explicit form of the above relations become

R2XY 4 58U+ (1A}, + 8LAL)s™ +
ox* OX* N/ !
a—vj(sl 8 6 }(sk—l-svk)}
+ SY(sf + sfop) + (81AL + 8LAL )™ (sf + sFoy)
8Xk6 ox*
dv; 1 O
= [T + Dy S* + D XY + Af (s}, + slvk)} (68,69 + 6°67 )s™"

{225} -

+ [Xijéf — } (sh. + s'o) (81 + 8™v,)

where we defined

o b - 0X' 9XxI
D, = i ) XY = ?
o T Vaa 8Uj+8vi
98T 98I
SY =
v, + ov;’
.08 k i
,4]. 57 —i—(SDkX - D;X
If we recall that
; oF OF i i j
Xi— _ o U:F—Ui%7 St=F (IA],’I,L,’U]‘,Z])

i i
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where F' = F(z',u,v;), we immediately observe that the following equa-
tions must be satisfied when X #£ 0:

gi-+255:0 (9.8.32)
i j k k
2(%2-+%§35#—%§?&¢-%%qﬁ:o
i j k k
(T + ) o = Gy = T 6 =0
From the last two equations in (9.8.32), we get
oxX'  oXx/ O*F
ov; + ov; - Qaviavj =0
whence we obtain
F(x,u,v) = ¢ (x,u)v; + (X, u)
where ¢ and yare arbitrary functions. We thus find X! = — ¢'(x,u). In

these circumstances, the remaining terms give, after some rather simple ma-
nipulations

(%%+ﬁ%ﬂT+Dﬁ@:A |
Eﬂq(ay —DWW>+&(§§1—DmX0}

gz gz
(6181 + 5160 (‘;_gj - D) -
(2 o) ()t

On contracting the indices (k,[) and (j,n) in the second set of equations
above, we obtain

a5’ . 1,05"

«—DmX%:—(——f

oxm n \ Xk

— Dka>6fn = (2’, u, vj, ¥y 6l

while the relations
S ov
OYIoxk — 9xk I T gxi

result in 9v/0%F = 0 for n > 1. We thus have ¢ = (27, u, v;). But, in
this case the integration of the equations

8
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yields simply
. 08 O o
' =yu - (afj + aqi “j)zj + X' (27, u, ;)

where ' are arbitrary functions. The equations (9.8.32), are now expressed
as follows

0

{(8_1/;_8;457>y N (81/1 _8;&)62]2k+axi ox

ov; Ou K ov;  Ou ovj + ov;

so that we find

O 0PN (0% 0¢TN

((%j B 8u>6k+<8vi 8u)6k_0’
o' oy B

81)]‘ + a’(}i -

0.

Contraction on indices (j, k) in the first set of equations above gives

o 0’ 0!
ov;  Ou ou

and ¢ =

v; + w(x, u)
whereas the solution of the second set is known to be
Xi = O‘ij(xa U)Uj + ﬂi(xa u): aij(xa u) = - aﬁ (X7 u)

The isovector component 7' is determined by the relation

T =% — D;S".

Hence, the relevant isovector components are given as follows

X'= —¢'(x,u), (9.8.33)

U =~v(x,u),

_ Oy, Oy, (0¢ OF
Vim gar i+ (g + 075, ) 0
i_ 9¢’ i (99 '\ | i i
5= w—’_%%)E B <8xj + U 8u>2 +atu +

(
T= (o )= (it we) =+ (s + i)™
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- (aaij +v-aaij>v- — o8 +vaﬁi
oz " ou /) drt " ou’
When ¥ =0, we are compelled to take 7" = 0. This imposes additional
conditions on the foregoing solution leading to the relations
09’ o 9 9p
YSo0 TO ow T ou or =0

where c is a constant. A detailed discussion of this case is left to the reader
as an exercise.

The case m = 0 presents no difficulty in determining the isovector
components which can be found as

X = X'(x), (9.8.34)
U = U(X7 u7 EZ7 2)7

. ) GV
St=fx)X + =¥ + ¢ (x),

O/
_ Of(X) i _ X' o, 0g'(x)
T=10%- oz’ > 833’@142 o oxi

Any reader who wish to get more detailed information about calcula-
tions concerning this section may be referred to the works below!.

Example 9.8.1. Non-linear wave equation. Let us consider a second
order non-linear partial differential equation

[f(‘r?tau:ulaut)]x — Uyt + g(x7t7u7ux7ut) =0.

Sincen = 2, N =1 and m = 1, let us write

1 Suhubi, E. S., Equivalence Groups for Second Order Balance Equations,
International Journal of Engineering Science, 37, 1901-1925, 1999.

Suhubi, E. S., Explicit Determination of Isovector Fields of Equivalence Groups for
Second Order Balance Equations, International Journal of Engineering Science,
38, 715-736, 2000.

Ozer, S. and E. S. Suhubi, E. S, Equivalence Transformations for First Order
Balance Equations, International Journal of Engineering Science, 42, 1305-1324,
2004.

Suhubi, E. S., Equivalence Groups for Balance Equations of Arbitrary Order - Part
I, International Journal of Engineering Science, 42, 1729-1751, 2004.

Suhubi, E. S., Explicit Determination of Isovector Fields of Equivalence Groups for
Balance Equations of Arbitrary Order - Part II, International Journal of
Engineering Science, 43, 1-15, 2005.
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xlzx, x2:t, V] =Uy =P, Vg =U; =V

so that we have
El:f($7t7u7p7/v)7 22: _v’ Z:g($’t’u,p’1})-

Hence, we have to take into account the submanifold of the manifold Ky
specified by

3%20, s%zO, 32:0, 821:0, s2 = —1.
In the relations (9.8.33), let us denote
o' =z, t,u), ¢ =p(x,tu), o = — o = \a,t,u)
Bl =W(z,t,u), §°=d(z,t,u).

As is clearly observed, S? is no longer an independent component of the
isovector field, but it is equal to — V5. After having resorted to (9.8.33);
and (9.8.33)4, we find that

Vo =3+ aip+ (nu + B)v + aupv + Bu0?,

52 = - (w + Qyp + ﬂuv)v - (ﬁr + ﬁup)f + (/Bt + ﬂuv)v - )\p + .

Thus the relation S? = — V; leads to
ﬂuv2 + (at - )\)p + (251 + Yu — w)v + d + Tt — (/81 + ﬂup)f = 0.

Whenever f is an arbitrary function, it follows from this equality that the
following equations must be satisfied

ﬁx“'ﬁupzoa ﬁuzov at_>\:0:
28 + Yy —w =10, P+ =0

whence we obtain 3, = 0, 8, = 0 and consequently
’B:ﬁ(t)7 )\:ata w:264+7u7 P = - "t

The components 3’? and S% of the isovector field must also vanish. But,
because of the relation F? = — 55X/ — s*U — sV, 4+ S% = 0 these two
conditions are satisfied identically. Therefore, the relevant components of
the isovector field are determined as follows

X! = —alz, t,u), X2 = — B(t),
U :’y(x,t,u),
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Vl =Y+ (az + 'Yu)p + aup27
Vo= — S? = Ve + aup + (/Bf + 711,)7) + o, pv,
St =26 — aw + 7)) f + o’ + 200+ 0,
T = [0z — You + POy — Yuu)1f + (260 + 70 + aup)g
+ 0 (You — u) + Pl — V) +0(By — 2000 + 272) + e — U
where a(x,t,u), B(t),y(z,t,u) and ¥(z,t,u) are functions which may be

chosen arbitrarily.
As a simple example, let us take

a=0, =0, y=au’, T=0
so that we obtain

X'=X2=0, U=au?, Vi =2aup, Vo= 2auv,
St =2auf, T = —2apf+ 2aug + 2av*.

In order to determine the equivalence group associated with this isovector,
we have to solve the following ordinary differential equations

dz dt di 5 dp__ __ dv

0 = =0 - QaUTD. — — 20U
de " de ©de M e WP e auv
d — dg _

af _ 2aif, & = — 2apf + 2aug + 207

de de

under the initial conditions 7(0) = x,#(0) = ¢,%(0) = u,p(0) = p, v(0) =
v, f(0) = f,g(0) = g. We can then easily reach to the particular equiva-
lence transformation in which independent variables remain unchanged

u

T=uz, t=t, u(e)=

1 —cau’
_ b v
ple) =

(1 — eau)?’ ole) = (1 — eau)?
< f g — ea(2pf + ug — 2v*)

Jle) = (1 — eau)?’ 9le) = (1 — eau)?

As a simple application to equivalence transformations, let us apply this
group of diffeomorphisms to the linear wave equation

Ugy — Ugr = 0

where f = u, and g = 0. We know that the general solution of this equa-
tion is given by



9.8 Equivalence Transformations 645

u(z,t) = ¢z +t) +Y(x —t).
¢ and 1) are arbitrary functions of their arguments. If we employ the inverse
transformation, we can write
u
u =
1+ku

where k = ea, then the foregoing linear partial differential equation is cast
into a family of quasilinear second order equations

— Ty — 2kE—L =0.
Ugy — Ut I+ ka

by this particular equivalence transformation. We can then readily verify by
inspection that a solution of that non-linear, second order partial differential
equation is indeed given by

wot) = @D+ U=
T Tk ) + dla - )

where ¢(x + t) and ¢(x — t) are arbitrary functions.
As a slightly more general case, let us assume that

a=0, =0, v=au’+bu, ¥=0.
We thus obtain

X'=X?=0, U=au’+bu, Vi =2au+0b)p, Vo= (2au+b)v,
St = (2au+0b)f, T = —2apf + (2au + b)g + 2av*.

To find the corresponding equivalence transformation we have to integrate
the differential equations below

dT dt du o, . dp _ _dv _ _
0 =0 — = bu, — = (2 b)p, — = (2 b
dc 0, 7 0, 7 = 9w b, (2au + b)p, P (20w + b)v
d — dg —

d—f:(2aﬂ+b)f, d—g: — 2apf + (207 + b)g + 247>

€ €

under the initial conditions 7(0) = =, #(0) = ¢,%(0) = u,p(0) = p, v(0) =
v, f(0) = f,g(0) = g. We then easily find that

. _ . bebeu
T b=k ) = e
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_ b2e"p
ple) = [b— a(ebs — 1)u]?’
o(e) = blebew
[b— a(eb; — 1)u)?
<N b2ebe f
f&”‘gza@m—1yp’ 2
_, . be[bg —a(e” —1)2pf +ug — 2v7)]
9e) = b — a(et — 1)u]® ‘

If we write
bu
beb + a(ebc — 1)u

u =

then the one-dimensional homogeneous wave equation is transformed into

2a(eb — 1) (u? — u?)
[bete — a(ebs — 1) u)

me — Uyt =0.

Therefore a solution for this family of quasilinear second order differential
equations is expressible in the form

oo blp(x +t) + b(x — t)]
YT beb (e = D)[ple+ 1) + (@ — b))

depending on the parameter € and constants a and b. [ |

Example 9.8.2. Homogeneous hyperelasticity. We have discussed the
symmetry transformations of the equations of motion of a homogeneous
hyperelastic material in Example 9.4.4. The equations of motion depend
heavily on the stress potential ¥ = X(F) characterising the physical consti-
tution of the material, thus differing for different types of materials. Hence,
they constitute a family of balance equations. We shall now try to determine
the equivalence transformations associated with that family. Since, we will
be employing the notations introduced earlier, we abstain from repeating
them here. The equations of motion corresponding to the case m =1, n =
4, N = 3 can be now written

0%k | 0¥
0X g + 0X, 0

with X, =t and k, K take the values 1, 2, 3. Then, the coordinates of the
manifold X; is easily identified as
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ox

OF
6ZkK . 822 _ avk
OF, ~ OF0F, "M " oy

spair = 0, sexr = 0, spa = 0, Spar = 0, Spaa = 0.

e (X, F) = , Yo = — g, ¥ =0, vnr = Frx, Vpa = g,

SLKIL = = — O, Skka =0,

In this circumstance, the coordinate cover of the manifold XC; should be
taken as {XK, t, Tk, Fk](, Vk, Zk}(, SkKlL}- ObViOLlSly, the variables SEKIL
enjoy the block symmetry s.x;;, = sizrx. We denote the isovector field by

0 5] 0 0
V=-— — — =+ U, Vi Vi —
oK 5 w L L
0
S Sk .
+ Sk ENE + SkKIL OSriL

We may assume without loss of generality that Siyxir = Sizrx. Negative
signs above are inserted for convenience, We know that the isovector com-
ponents ¢g, v, Uy, are functions only of the variables X, ¢, x;. Further-
more, we have to impose the restrictions

Spu= —Via= = Vi, Tpy = 0, k11 = 0, Spuir =0, S =0

Sika =0, Spax =0, Sgaa =0 (9.8.35)
on the isovector components. In order not to confuse the functions F
defined in (9.8.8) with the components of the deformation gradients Fj,

we will replace the functions FKE by Gix. We also have to take Fk =0,
We thus get

Grg = — skxitVie + Sk (9.8.36)
and the conditions
Spak =0, Skar =0, Sgur=0

are satisfied identically. We can then directly deduce from (9.8.25) that

Vik = Upx + O xFrr + Vv + Up i Fig + ¢riFrerFix + Yo Fig,

Vi = U + o Fri + ¢ vp + Upgog + ¢ 1 Frcvr + ¥ o0y,
Six = guSik —(¢x.p + dx i Fin) Sk + (o5 + dxvi) ve
+(rFin+ Y v)Erk + frx pvaimn Fin Fnarvn

+ fexpvimEFir Fnnvr + frrpamFirvm
+ fixnFir + fexav + frxs
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Sk = — grvi — (V. + ¥ Fi) Sk + ¥ + v v (9.8.37)
— (b b1 + Yav)ve + frarmnNimn FinFnav Fon
+ frarvimFrr Fpnr + franiFin + fra,
Ty = — Skx.x — Sk — Skxt Fie — Spagvr.

gr; and all multi-indexed functions f depend only on the variables X, ¢ and
x. The functions f must be so chosen as to obey the symmetry requirements
on capital and small indices (Greek and roman superscripts and subscripts in
general expressions) for n = 4 and N = 3. An overdot represent the deriva-
tive with respect to the time variable ¢.

Let us first deal with the relation (9.8.35);. It follows from (9.8.37) that
we have to satisfy the equations

V=0, V=0, gu=2%6u~+ Ui, drinOkm — Ortm Okn = 0,
fraki = — O Ony fra= — Uy frarsnimn =0, frariim = 0.

The contraction on indices (k,m) in the fourth equation above yields ¢/,
= 0. We thus obtain

ox = ox(X,t), ¥ =1(1).
On the other hand, we get from p. 610 that
Skir = G + Grr, i Fir = 0,Spra = G + G, o = 0,

oG
Skkia = a;]K = 0.

Hence, the functions Gpx must be independent of v;. We then further
deduce from above the relations

Grx1=0, Gigz =0, Gg=0.
On the other hand, we get
Vik = Upx + ¢,k Frr, + Uiy Fik.

This implies that the functions V;x do not depend on v;. When we take the
relation (9.8.36) into consideration, we reach to the conclusion

Vi, =0, Vig,p =0, Vig =0, (9.8.38)
0SkK
(%l

=0, Sixk1=0, Spx. =0, Spx =0.

The isovector components Sy can now be written as
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S = (20 61 + Up))Sire — dx 230 + dxevr
+ fexrmamn FiL Foarvn + frxoanmFinFoam
+ fexramFirvm + fiknFir + fikav + fix

and (9.8.38), leads to
b kp + frrcap + fexrnsaimp Fir Fonr + frrrup Fip =0

from which we find that

frrcraaimn =0, frorxram =0, fika = — ¢x Ok
However, because of the relation frxy = — frax; We get (;5 x = 0, hence
we obtain
¢x = ¢x (X).

Derivatives of V}.x with respect to ¢, x,,, and X give, respectively,
U =0, Up; =0, Upcm =0, Uptm =0, Upersr =0, ¢ s = 0.

Similar expressions for Sy leads to the equation ¢(¢) = 0 implying further
that all non-zero functions f must be constants. Thus, if we recall the anti-
symmetry properties, we are able to write

Y =ait+ az, fukLMIm = €KLM €lmn Cn,
frxn = exom Cvkl,  frk = Ckk

where ¢y, ey and ¢ are constants. exras, ernn are, of course, three-
dimensional permutation symbols. The solutions of the differential equa-
tions satisfied by the functions ¢ and Uy, are readily obtained as

¢ = Bxr X1 + Br, Up = apz + A X + Ax(t)
where Bk, Br, ag;, Arx are constants. Finally, we find from (9.8.37); that
T, = Vi + Vigu = 0.
This equations yield /;, = 0 or A; = 0 and
Ag(t) = agt + Ayg.
Hence, the relevant isovector components take the form

¢k = BxrXr + Bg, ¥ = a1t + ag, Uy, = apx; + Apx X + gt + Ay,
Vik = BrxFrr + anFix + Ak, Vi = (@16 + ap)vr + ou,
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Sk = (2a16k + ar) ik — Brr.Xkr + €Ly €mn Cen Fir Finr
+exrmcemn Fio + ek

The equivalence transformation is then found by integrating the ordinary
differential equations

dX - dt -
R — — (Bxr X1 + Br), = — (@t + ap),

de €

dT - <

d—ek = apT + Arg X i + apt + Ay,
dF — = dv

dlzK = BrgFirr + auFix + Ak, d—ek = (alékl‘f‘akl)@l‘i‘ak
ax - = T

dlzK = (2a161 + ap) X1k — BrrYkr + €M €imn Chn Fin Finm

+exrmenn Fin + crr.

under the initial conditions X (0) = Xg,#(0) = ¢,74(0) = xy, Frx (0) =
Fix, U:(0) = vy, and Y5 (0) = Xpx . € is the group parameter. That Yy x
are actually dependent on the deformation tensor C = F'F instead of F may
impose additional restrictions on some constants appearing in the above ex-
pressions. Since Yyx = 0% /0F)k the transformed expressions help us to
determine the stress potential 3. [ |

Example 9.8.3. As a last example, we consider the third order non-
linear partial differential equation

[tar + S(,t, u)]x + U = Uggy + Oy + G +up = 0. (9.8.39)

We may regard this equation as a kind of generalised Korteweg-de Vries
equation. If we take ¢ = u?/2, we obtain the known form of the Korteweg-
de Vries equation. In this case, it is clear that we have m = 2, N =1 and
n = 2. The manifold ICy is now generated by taking

ot =z, 2 =1, v = Uy, Uy = Up, V11 = Uy, V1g = Vg1 = Uy,
1 2
v =u, N =vn+¢, X=u, =0,
1 1 1 2 111
31:¢1732:¢t73:¢ua‘3:173 =1.
Therefore, the coordinate cover of the enlarged manifold /Cy is specified by
the following list

1 .1 1
{x,t,’l)l,’l)g,’l)ll,’l)lg,’l)m, ¢7 51,89, 8 }

Hence, an isovector field should be represented by
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0 0 0 0 0 0 0
=X — 4+ X2 = —
Vv o + 8t+U8 +V1(9 +V282+V118 +V12(%12
0 0 =10 =10 1 0
+%26v22+¢8¢+5181+5281+5 88111

However, if we note the forms of ! and X2, we see that we can write

0 0 0P 0 0

ou Ou 9¥* Ou  Ou 9%

) I N) v .
61}11 - 8’[)11 + 821 6?}11 N 61}11 + 621,
o 993t 0

9 0%l 9  ox

so that the isovector field is expressed in the standard form in terms of
quantities entering into the balance equation as follows

0 0 0 0 0 0 0
X—+7T
V= o + 8t+U8 —l—Vlav +V262+V11611+V126v12
0 . 0 5 O -1 0 =10 1w 0
+V228v22+5 £ S 557 Sla +526%+S T
It is straightforward to notice that
Slz‘/ll—i_q)a

S?2="U.

We know that some of the isovector components are determined by a
presently arbitrary function F' = F'(x,t,u,v,vy) through relations given
below [see (9.3.26)]:

oF oF oF OF
X'=X=-" X’=7T=— F— — Ug—
Ov’ 81}2 U= T ou, ovy v2 Ovy
oF oF oF oF
Vl—&*i‘”l%, VQ—E—FW% (9.8.40)
0*F 0*F 0*F O*F 0*F oF
= 2 2 2 ar
Vi ox? + e Ozou T ou? +v11( dzdv, + v oudv, + 8u>
+o ( 0*F N O*F ) N , O°F +g O*F o , O°F
2\ 5200, " Oudu, g av? T2 90 00, Uiz R
Ve — 0*F N 0’F n 0*F n 62_F+ (62F N 82F >
2= 500t T Motou T Pozou oz T "\ otau, T oudn,
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0*F 0*F 0*F 0*°F  OF 0*F
+ U12<8t8v2 T dn T ozon, T oudn T 5 2(81:(%2 +
v62—F>+vv82—F+(vv +v2)i+vva2—F
lﬁuavg 11012 902 11022 12 90100, 12022 OU%’
2 2 2 2 2
Vi = ?975 202 aata + 3?%2 2012 (aat@}; o ai(;j)l) + ”22@_5
+282F + 2v O°F )—l—v O°F + 2vp9v O°F + v3 O°F
otdvy | " dudv, 29p2 T T2 0000, T 2 002

On the other hand, the relations (9.8.8) indicates that we may introduce the
functions

F'= — 51X — 537 —s'U — Vi3 + S*
= —sIX—slT —s'U+ 9,
F?= —U+S5=0.

Moreover, the relations

OF' _ 00\ OF'_ 0B

g2 _
Ovi2 Ovi2 Ovy Ovy

imply that the function ® must be independent of the variables v15 and wvs.
The isovector components that are obtained from the zero function £ will
naturally become zero. The isovector components S* and S? follow from
the general definitions as

Sl——(a2F + 82Fv+a2Fv + O°F v )(v +¢)
N Oxdv;  Oudvy ! ov? 1 0v10v9 12\
O’F 9’F O’F O*°F
+ /o +0) = (8t8v1 T a0 2T 92" T Guron, Sore; )
+ ooy + a2y + 5 ) (9.8.41)
O’F O*F 0’F 82
S* = fu-—
fu (6x6v2 T Pu0n " T duon ™ T 9 ”12><”“ +9)
( 0*F N 0*F n 32 n O*F )
— v v —— V99 u
vy | Oudvy Ot dviduy T dd
_ = a2, + B2
where f,a'?! = —a?!! o!?? = — o*2 ! and (3% are arbitrary functions

of the variables z, ¢, u, v; and vo. But we can readily observe that to satisfy
the constraint
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S*P=U = F—vi5— — vy o (9.8.42)
1

we are required to take

O*F O*F O*F O*F
_0 _0 _ 121 _ 122 _ o
Ov10v9 " Ovs " 0xOv9 + Oudvy n =00 @ 0

These equations lead obviously to
F = a(x,t,u,v1) + B(t)ve.
Then (9.8.42) reduces to the equation

. (o'
# = (B = Huta—vig-.
U1
An overdot denotes again the derivative with respect to the variable ¢. On
the other hand, since the expression

fo e fote fote
o= (f- - -
(f Ox0vy  Oudv; v ov? vn
o P a o 1
- <8t8v1 * 5u00, 1 52 we)ut B 5 —dug o
, 0% (2 Foate! fote 8a> Pa

—v — + 20 ———— Vil — —5 U
L 9u2 ov? 1

0x0v; Oudv; + ou

)(1}11 + )
0% 9%

does not depend on vy, we get 9°a/dvi =0 the integration of which
yields simply

a = ANz, t,u)vy + p(x, t, u).
We thus conclude that
G? = [ﬁ(t) — f(m,t,u,vl,vg)]u + p(z,t,u), U = p(z,t,u). (9.8.43)
Finally, the condition 7" = 0 leads us to the equation
ast 95 oS! d5? oSt oS!

=0
ox + ot + ou vt ou vzt oy vt 81)21)12

whose explicit form can be written as

- ()\uuu + )\sz)Ule - (Atuu + At)vl + (,UJu - )\uxu)v2 - )\xtu + p +
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0
+ (Ull + ¢) [fm - )\mc - )\uzvl + (fu - >\um - )\uuvl)vl + (6f - )\u>vll
V1
of op! op! op! gt
8—1&”12} + 8—111UH + <8—v2 — )\uu)vm + 8—uv1 + 97 0
whence we evidently deduce the following equations
fx - Amx - )\uxvl + (fu - Auz - Auuvl)vl = 0, (9844)
of of B 08!
——)\u:O,—:O,—:O,——)\u =Y
81}1 8’02 (91)1 81)2 Y 0

— (Auu)yv1v2 + [511, — (Nw)u]vr 4 (. — M) v + By — Mgt + 1y = 0.
We first obtain from (9.8.44),_3 that
=X+ @z, t,u).
Then (9.8.44); gives rise to
Oz = Az + (Pu — Auz)v1 =0 0r 0 = Ay, Py = Aua-
These equations determine, in turn, the function ¢ in the form
=X +P(t).
Once again, (9.8.44),_5 yields easily
B = vy + bz, t,u).
Thus, the equation (9.8.44)¢ is reduced to the form
(b — (Nw)] v + pruvs + by — A — py = 0
whence we find that
by — (Mu)y =0, py =0, by — Agyu—py =0
and, respectively,
b= u+v(x,t), p=px,t), v+ pu =0.

Therefore, we obtain i = m, and v = — m; where m = m(z,t) is an ar-
bitrary function. We can thus write

61 = A\uv2 + \ju — mi, f = A\U1 + Az + ¢(t)

On the other hand, (9.8.43) leads us to the relation
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52 = (ﬁ — A — Auvl)u + my

where the arbitrary function ¢)(¢) is absorbed into the function ((t) which is
arbitrary as well. Consequently, the relevant isovector components that will
be used in determining equivalence transformations are obtained as follows

X'= — A, t,u), X*= —B(t), U=myz,1),
Vi= )\uv% + Apv1 + Mgy,
‘/11 - Auuv:{) + ZAuxU% + )\acxvl + (2>\x + 3)\uv1)vll + Mygg,
St =y(t)(on + ¢) —my = (1) —my
where the functions A(x,t,u), B(t), m(z,t) and (¢) are arbitrary. The

equivalence transformations are then obtained as the solution of the follow-
ing ordinary differential equations

dz - dt _ du -

& A@TED), Z = - BE), = ma(T, D),

7 @i, T = 5@, o)

dv, . _

d—e = )\E’U% + )\f’l)l + Mmzz,

dvq . _3 _9 —N—

g Aaa¥] + 2Xaz0] + Azzv1 + (2Az + 3A7U1)011 + Mazz,
€

=’

under the initial conditions Z(0) = x, ¢(0) = ¢,u(0) = u, v1(0) = v1,711(0)
= V11 and il(O) = El. |
IX. EXERCISES

9.1. Discuss the solutions of the equation below:

n

9.2. Discuss the solutions of the equation below:
uly +uy —1=0
9.3. Discuss the solutions of the set of equations below:
(u+v)u; + (u—v)u, —u> =0, (u+v)v, + (u—v)v, — 20> =0

9.4. Find the symmetry groups of Laplace equation ., + u,, = 0 and explore its
similarity solutions.
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9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

IX Partial Differential Equations

Find the symmetry groups of the wave equation u,, — u,, = 0 and explore
its similarity solutions.

Find the symmetry groups of the equation u,, + u,, = f(u) and admissible
forms of the function f. Explore its similarity solutions.

Find the symmetry groups of the equation u,, — u,, = f(u) and admissible
forms of the function f. Explore its similarity solutions.

Find the symmetry groups of non-dimensionalised Fokker-Planck equation
Uy = Uy, + xu, + u [after Dutch physicist Adriaan Dani€l Fokker (1887-
1972) and German physicist Max Karl Ernst Ludwig Planck (1858-1947)]
encountered in statistical mechanics and explore its similarity solutions.

Find the symmetry groups of non-dimensionalised Burgers equation
Uy + Uty + Uy = 0 [after Dutch physicist Johannes Martinus Burgers
(1895-1981)] encountered in fluid mechanics and modelling of traffic flow
and explore its similarity solutions.

Find the symmetry groups of the n-dimensional heat conduction equation
uy = u 4 where x € R".

Discuss the symmetry groups of the biharmonic equation A%y = u ;;;; = 0 in
the manifold R".

Find the symmetry groups of Helmholtz equation t; + tyy + u.. + Au =0
encountered in the propagation of waves in R?. X is a constant.

Let us consider the first order, homogeneous partial differential equation

V(u) =v'(x)u; =0, V=1v(x)0; € T(R")

in R™. Show that a vector field U = u’(x) 9; € T(R") generates a symmetry
group of this differential equation if and only if it satisfies the condition
[V,U] = A(x) V. A(x) is a scalar-valued function.

Find the symmetry groups of Euler equations

((%L/c‘%) + ViV = — Di, Vi = 0, i=1,2,3

governing the motion of incompressible fluids where v; are components of
the velocity vector and p is the pressure.
Determine the symmetry groups of non-dimensional Navier-Stokes equations

(6’07/80 + VjVi; = — D + (1/R@)’U7;7]‘]', Vii = 0, 1= 1, 2, 3

[after Stokes and French engineer and mathematician Claude Louis Henri
Navier (1785-1836)] governing the motion of incompressible viscous fluids.
The constant R, is called Reynolds number [after English engineer and
mathematician Osborne Reynolds (1842-1912)].

Determine equivalence transformations of the non-linear, 1-dimensional heat
conduction equation

ou 0 ou
Pl ﬁ(n(u)%> + h(z,t,u)





