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CHAPTER IX

PARTIAL DIFFERENTIAL EQUATIONS

9.1. SCOPE OF THE CHAPTER

We can say with a little bit of hyperbolism that to study partial differ-
ential equations on smooth manifolds via exterior forms is actually reduced
to dealing with a kind of algebraic theory of these equations. The formal
treatment of this subject must be based on the theory of jet bundles. How-
ever, we prefer here to follow a more direct and concrete path and we
attempt to characterise partial differential equations by contact manifolds
obtained by extending the main manifold. In Sec. 9.2, we first extend a set
of partial differential equations of finite order to a system of first order
equations by introducing auxiliary variables. We then show that solutions of
this system coincide with solutions of a closed ideal of an exterior algebra
defined on an extended manifold. The coordinate cover of this manifold
consists of independent and dependent variables, and auxiliary variables
corresponding to various order partial derivatives of dependent variables
with respect to independent variables. The higher is the order of original
system, the huger will be the dimension of the extended manifold. We call
"-forms connecting partial derivatives and auxiliary variables as contact
forms and the closure of the ideal generated by them as the contact ideal.
The structure of this ideal plays a significant part in the so-called algebraic
theory of partial differential equations. The fundamental ideal is constructed
through exterior forms describing differential equations together with the
contact forms. The first approach that comes to mind to find solutions of the
fundamental ideal seems to determine its characteristic vectors in order to be
able to apply the Cartan theorem. But, this method proves to be quite
unfruitful except for a first order non-linear partial differential equation with
one dependent variable. That is the reason why we have chosen to
concentrate our efforts to discuss in detail the symmetry transformations
that enable us to generate a new family of solutions from a known solution.
Since we know that symmetry transformations are generated by isovectors
of an ideal, we are first concerned with unravelling the structure of the
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isovector fields of the contact ideal in Sec. 9.3. Sec. 9.4 is devoted to the
derivation of determining equations of isovector components of the
fundamental ideal, especially the balance ideal associated with balance
equations. Sec. 9.5 deals with the similarity solution that remains invariant
under a symmetry transformation. In order to benefit substantially from a
symmetry transformation, we need first to find a solution, albeit simple, of
the system. This of course creates a serious problem. To overcome this
obstacle to some extent, we present a method of generalised characteristics
in Sec. 9.6 by making use of the isovector fields that helps us to generate a
solution from given initial data satisfying certain conditions on an initial
manifold. We propose another method in Sec. 9.7 by generalising the
contact forms as to include undetermined coefficient functions so that one
may be able to explore various possibilities to generate a solution. Some
closed horizontal ideals of the exterior algebra introduced that way may
prove to be instrumental in obtaining certain solutions. Finally, we investi-
gate in Sec. 9.8 the groups of equivalence transformations that are much
more general than the symmetry transformations. When we are given a
family of partial differential equations, by means of such a transformation
we can transform a member of the family to another member of the same
family. The general solutions of the determining equations of isovector
fields inducing these kind of transformations are also provided.

9.2. IDEALS FORMED BY DIFFERENTIAL EQUATIONS

We consider an -dimensional smooth manifold . A set of partial8 Q 8

differential equations with  number of members of order  involving theE 7
dependent variables   might be locally represented by? ß œ "ß á ß R! !

J ÐB ß ? ß ? ß ? ß á ß ? Ñ œ !ß + œ "ß á ß E+ 3
ß3 ß34 ß3 3 â3

! ! ! !
" # 7

(9.2.1)

where the local coordinates  in the -dimensional open set ofB ß 3 œ "ß á ß 8 83

a chart of the atlas in  denote the independent variables. We assume thatQ
all functions  are differentiable with respect to their arguments. We de-J +

fine all partial derivatives of order  of  with respect to the independent< ?!

variables  as followsB3

` ?

`B `B â`B
œ ? ß " Ÿ 3 ß 3 ß âß 3 Ÿ 8

<

3 3 3 ß3 3 â3 " # <

!
!

" # < " # <

where  and . We adopt the convention that3  3  â  3 œ < ! Ÿ < Ÿ 7" # <

the index  does not exist, hence  for . In order to identify3 ? œ ? < œ !! ß3
! !

!

the global properties of solutions of the system of partial differential equa-
tions, we have to solve a rather difficult problem of joining smoothly the
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results found in local charts, To avoid this problem we shall usually select
our manifold as the Euclidean space  and we shall suppose thatQ œ8 8‘
the system of differential equations are defined on an open set . InW ‘8

8©
other words, this will mean that all future developments in this chapter will
actually be of local character.

In order to study a system of partial differential equations via exterior
forms we have to enlarge this system to that of first order partial differential
equations by introducing auxiliary variables because of the fact that only the
first order exterior derivatives are not identically nil. Introduction of auxili-
ary variables requires necessarily to enlarge the dimension of the relevant
smooth manifold extensively.

The -dimensional product manifold Ð8  RÑ K œ ‚ œ‘ ‘ ‘8 R 8R

whose local coordinates are  will be calledÖB ß ? À " Ÿ 3 Ÿ 8ß " Ÿ Ÿ R×3 ! !
the . A smooth mapping  will be propounded as agraph space 9 WÀ Ä K8

regular mapping if it carries the property

9 .‡ Á ! (9.2.2)

where  is the volume form in . This mapping  may. ‘ 9œ .B • â • .B" 8 8

be designated by smooth functions B œ Ð Ñß ? œ Ð Ñß " Ÿ 4 Ÿ 83 3 4 4F 0 F 0! !

where . However, if  is a regular mapping we oughtÐ ß ß á ß Ñ −0 0 0 W 9" # 8
8

to have

9 . 0 0 0
F

0
‡ " # 8

3

4
œ . • . • â • . Á !

`

`
det Š ‹

due to the condition (9.2.2) which leads to . Hence, atdet Ð` Î` Ñ Á !F 03 4

least locally the variables  are expressible in terms of the variables  so04 3B
that the mapping  may be equally represented by9

? œ ÐB Ñ œ ÐB Ñ! ! !F 0 9ˆ ‰4 3 3 (9.2.3)

without loss of generality.  (9.2.3) A function in the form constitutes a
solution of the system of differential equations when inserted in those(9.2.1) 
expressions the equality

J ÐB ß ß ß ß á ß Ñ ´ !+ 3
ß3 ß34 ß3 3 â39 9 9 9! ! ! !

" # 7

is satisfied identically.
We shall now try to represent a system of partial differential equations

via exterior differential forms. In order to achieve this, we have to transform
a system of higher order partial differential equations into a much larger
system of first order partial differential equations by introducing auxiliary
variables as we had mentioned above. To this end, let us define
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? œ @ œ @! ! !
ß3 â3 3 â3 3 â3 ß3" < " < " <" <

(9.2.4)

where . We take of course . Due to! Ÿ < Ÿ 7ß " Ÿ 3 ß á ß 3 Ÿ 8 @ œ ?" < 3
! !
!

their definition, the auxiliary variables of order  are completely sym-@ <!
3 â 3" <

metric in indices . Thus their number reduces to  from3 ß á ß 3 R" <
8<"

<
ˆ ‰

R8 ? Ð< œ !Ñ<. Hence, when we incorporate the variables   into auxiliary!

variables, their total number reaches to

H œ R œ R œ R
8  <  " 8  7 Ð8  7Ñx

< 7 8x 7x
"Œ  Œ 
<œ!

7

which may be quite a huge number if  is large. The -dimensional7 Ð8  HÑ
manifold whose coordinate cover is given by  isÖB ß @ À ! Ÿ < Ÿ 7×3

3 3 â3
!
" # <

called the  on the base manifold . The theory of jet bundles thatjet bundle Q
makes it possible to define various order partial derivatives on smooth man-
ifolds has been brought forward first by French mathematician Charles
Ehresmann (1905-1979). Since we will be interested in a local approach
here, we shall not treat partial differential equations within the formalism of
jet bundles. That is the reason why we call this manifold by a more familiar
term as the  and we denote by . We shall7th order contact manifold V7

now introduce the following -forms on " V7

5 A V! ! !
3 3 â3 3 3 â3 3 3 â3 3

3 "
7" # < " # < " # <

œ .@  @ .B − Ð Ñ (9.2.5)

where . Their number is obviously given by . We! Ÿ < Ÿ 7  " Rˆ ‰87"
7"

name these forms as . In accordance with our convention,contact -forms1
we evidently get  for . Since the exterior5 5! ! ! !

3 3
3

!
œ œ .?  @ .B < œ !

product of all contact -forms may be written as"

• œ

• .@  â Á !

"Ÿ ŸRà"Ÿ3 Ÿ8ß!Ÿ<Ÿ7"
3 3 â3

"Ÿ ŸRà"Ÿ3 Ÿ8ß!Ÿ<Ÿ7"
3 3 â3

!

!

!

!
<

" # <

<
" # <

5

    

we see that they are linearly independent on the manifold .V7

The system of th order partial differential equations (9.2.1) is now7
reduced to a system of first order partial differential equations described by
the relations (9.2.4) and the algebraic equations

J ÐB ß ? ß @ ß @ ß á ß @ Ñ œ !ß + œ "ß á ß E+ 3
3 34 3 3 â3

! ! ! !
" # 7

. (9.2.6)

(9.2.6) merely represents a functional relation among the coordinates of the
contact manifold. Therefore, they only help to define a submanifold of .V7
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We can now lift a regular mapping  depicted by  to9 W 9À Ä K ? œ ÐB Ñ8
3! !

the regular mapping  if we choose this mapping in such a way9 W VÀ Ä8 7

that the pull-back relations

9 5 9‡ 3 ‡ +
3 3 â3 3 3 â3 ß3 3 3 â3 3
! ! !
" # < " # < " # <

œ Ð@  @ Ñ .B œ !ß J œ !

are satisfied, in other words, we get

@ œ ß ! Ÿ < Ÿ 7  "
`@

`B
!

!

3 3 â3 3
3 3 â3

3" # <

" # <   .

On applying successively the above equality, we immediately observe that
the independent coordinates in the manifold  are reduced to the formV7

@ œ ß ! Ÿ < Ÿ 7! !
3 3 â3 ß3 3 â3" # < " # <

9 9 and the mapping  constitutes a solution of
the system of partial differential equations. According to Theorem 5.8.2 we
find that . Thus, this solution is also a solution of9 9‡ + ‡ +.J œ .Ð J Ñ œ !
the ideal

¼ 5Ð ß !Ÿ<Ÿ 7"à .J Ñ!
3 3 â3

+
" # <

generated by -forms. Since an ideal generated solely by -forms is com-" "
plete ( Theorem 5.13.1), then the ideal  contains all forms annihilatedsee ¼
by the solution of the system (9.2.1). Furthermore, because of the commuta-
tion relation  the mapping  annihilates also9 5 9 5 9‡ ‡

3 3 â3 3 3 â3. œ .Ð Ñ œ !! !
" # < " # <

the closure

¼ 5 5 !Ð à . à .J à "Ÿ ŸRß "Ÿ 3 Ÿ8ß !Ÿ<Ÿ 7"ß "Ÿ +ŸEÑ! !
3 3 â3 3 3 â3

+
<" # < " # <

of . Thus, with the purpose of applying the Cartan theorem we can take the¼
closed ideal  into account instead of the ideal . However, due to the sym-¼ ¼
metries of  with respect to their subscripts, we can write@!3 3 â3" # <

. œ  .@ • .B œ  • .B  @ .B • .B

œ  • .B

5 5

5

! ! ! !

!

3 3 â3 3 3 â3 3 3 3 â3 3 3 3 â3 34
3 3 4 3

3 3 â3 3
3

" # < " # < " # < " # <

" # <

for . This means that the forms  are! Ÿ < Ÿ 7  # . ß ! Ÿ < Ÿ 7  #5!3 3 â3" # <

already in the ideal . Therefore, it becomes sufficient to add only the forms¼
.5!3 3 â3" # 7"

 that cannot be expressed in this way to the ideal to obtain its
closure. The closed ideal

\ \ 5 5 5 5 57 3 3 3 3 3 â3 3 3 â3œ Ð ß ß ß á à . Ñ¯ ! ! ! ! !
" " # " # 7" " # 7"

will henceforth be called the . On the other hand,7th order contact ideal
we have to consider in essence the closed ideal
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¼ ¼ 5 5 5 5 5 57 3 3 3 3 3 â3 3 3 â3 3 3 â3
+œ Ð ß ß ß á ß ß à . à .J Ñ! ! ! ! ! !

" " # " # 7# " # 7" " # 7"

called the . The most systematic method that we mayfundamental ideal
have recourse to find a solution of this ideal is to determine its characteristic
vector fields to utilise Theorem 5.13.5. We first wish to implement this pro-
cedure on a rather simple example. Let a first order partial differential
equation with a single variable be given by

J ÐB ß ?ß ? Ñ œ !ß " Ÿ 3 Ÿ 83
ß3 (9.2.7)

Since , we write . -dimensional contact manifold 7 œ " @ œ ? Ð#8  "Ñ3 ß3 "V
has the coordinate cover . On this manifold, we define the formsÖB ß ?ß @ ×3

3

5 5œ .?  @ .B ß . œ  .@ • .B ß .J œ .B  .?  .@
`J `J `J

`B `? `@
3 3 3

3 3 3
3

3
.

A vector field

Z œ \  Y  Z − X Ð Ñ
` ` `

`B `? `@
3

3 3 "
3

V

is a characteristic vector field of the closed ideal  if one is¼ ¼ 5 5" œ Ð ß . ß .J Ñ
able to find functions  so that the relations below are satisfied- . A Vß − Ð Ñ!

"

i i iZ Z ZÐ Ñ œ !ß Ð.J Ñ œ Z ÐJ Ñ œ !ß Ð. Ñ œ  .J5 5 -5 .    

from which one obtains the following equations that must be satisfied by the
components of the characteristic vector field:

Y  @ \ œ !ß \  Y  Z œ !ß
`J `J `J

`B `? `@

 Z .B  \ .@ œ  .?  @  .B  .@
`J `J `J

`? `B `@

3 3
3 3

3
3

3 3 3 3
3 3 3

3
3

Š ‹ Š ‹- . - . . .

(9.2.8)

(9.2.8)  and (9.2.8)  lead to the result$ "

- . . . .œ  ß \ œ ß Y œ @ ß Z œ  @ 
`J `J `J `J `J

`? `@ `@ `? `B
3

3 3
3 3 3 3

Š ‹.

Hence, the characteristic vector field is determined as follows:

Z œ  @   @
`J ` `J ` `J `J `

`@ `B `@ `? `B `? `@
.’ Š ‹ “

3 3 3
3 33 3 . (9.2.9)

This vector field is -dimensional. We verify at once that (9.2.8)  becomes" #

identically zero when we insert into it the vector field (9.2.9). As is well
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known, the solution manifold is produced by the integral curves of the char-
acteristic vector field (9.2.9). If we denote the parameter of the curve by ,>
then  autonomous ordinary differential equations determining this fa-#8  "
mily of  on the manifold  are given bycharacteristic curves V"

.B `J .? `J

.> `@ .> `@
œ ß œ @ ß

.@ `J `J

.> `B `?
œ   @

3

3 3
3

3

3 3

   (9.2.10)

Š ‹
where we have chosen  in (9.2.9) without loss of generality. The vari-. œ "
ation of the function  along a characteristic curve is found to beJ

.J `J .B `J .? `J .@

.> `B .> `? .> `@ .>
œ   œ !

3

3

3

3

when we take (9.2.10) into consideration. Thus,  remains constant along aJ
characteristic curve. This means that if the differential equation is satisfied
at a point of the manifold , it is then satisfied along the characteristicV"

curve through that point. A solution in the form  of?ÐB ß á ß B Ñ  ? œ !" 8

the equation (9.2.7) represents an -dimensional submanifold, or a hyper-8
surface, in the graph space. The normal vector to this hypersurface is deter-
mined by its components . Since we haveÐ@ œ ? ß " Ÿ 3 Ÿ 8à  "Ñ3 ß3

.? `? .B .B `J

.> `B .> .> `@
œ œ @ œ @

3

3 3

3 3
3

on this hypersurface, characteristic curves are also on it. However, to each
point of the curve we attach a surface element perpendicular to the normal at
that point. Hence, we form a  as was reflected in the clas-characteristic strip
sical terminology. In order to find the solution we need to consider charac-
teristic strips emanating from an -   thatÐ8  "Ñ dimensional initial manifold W
is not tangent to the characteristic vector field and prescribed by the initial
conditions. Let us assume that initial submanifold  is depicted through pa-W
rameters  as follows:s œ Ð= ß = ß á ß = Ñ" # 8"

B œ B Ð Ñß 3 œ "ß á ß 83 3
! s .

We suppose that the initial data on this manifold are given by the relations

? œ ? Ð Ñß @ œ @ Ð Ñß 3 œ "ß á ß 8! 3
!
3s s

in terms of parameters . But, these data cannot bes œ Ð= ß = ß á ß = Ñ" # 8"

chosen arbitrarily. They have to satisfy the conditions
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J ÐB ß ? ß @ Ñ œ !à œ @ ß œ "ß á ß 8  "
`? `B

`= `=! 3 3
3 ! !

!
! !

3

! !
! .

We thus obtain  equations to determine  initial conditions . We shall8 8 @!
3

assume that these equations have at least one solution. Let us now denote
the solution of ordinary differential equations (9.2.10) under the initial con-
ditions  by the relationsB Ð!Ñ œ B Ð Ñß ?Ð!Ñ œ ? Ð Ñß @ Ð!Ñ œ @ Ð Ñ3 3 !

! ! 3 3s s s

B œ Ð>à Ñß ? œ Ð>à Ñß @ œ Ð>à Ñ3 3
3 3k h is s s .

Since we have assumed that the characteristic vector field does not belong
to the tangent bundle of the initial manifold, we can write

`Ð ß ß á ß Ñ

`Ð= ß á ß = ß >Ñ
œ

` ` `

`= `= `>
â

` ` `

`= `= `>
â

ã ã ã ã
` ` `

`= `= `>
â

œ

k k k

k k k

k k k

k k k

" # 8

" 8"

" " "

" 8"

# #

" 8"

#

8 8 8

" 8"

â ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ ââ âââââââââââ ââ ââ ââ ââ â

âââââââââ

` ` `J

`= `= `@
â

` ` `J

`= `= `@
â

ã ã ã ã
` ` `J

`= `= `@
â

Á !

k k

k k

k k

" "

" 8"
"

# #

" 8"
#

8 8

" 8"
8

.

Hence, in the neighbourhood of the initial manifold,  variables  can be8 >ß =!

expressed in terms of variables  by resorting to the inverse mapping theo-B3

rem whence we arrive at the solution of the partial differential equation
(9.2.7) in the following form

? œ Ð>Ð Ñß Ð ÑÑ œ ?ÐB ß B ß á ß B Ñh x s x " # 8 .

We shall now deal with some applications of the general solution discussed
above.

Example 9.2.1. We consider the equation

J œ  " œ @  " œ !
`?

`B
" "Š ‹
3œ" 3œ"

8 8

3

#
#
3

known as the  in the geometrical optics. Sinceeiconal equation
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`J `J `J

`B `? `@
œ !ß œ !ß œ #@

3
3

3

the characteristic equations (9.2.10) take the form

.B .? .@

.> .> .>
œ #@ ß œ # @ œ #ß œ !

3

3

3œ"

8
#
3

3"
from which we reach to the conclusion

B œ #@ Ð Ñ>  B Ð Ñà ? œ #>  ? Ð Ñà @ œ @ Ð Ñß Ð@ Ñ œ "3 ! 3 ! ! #
3 ! 3 3! 3

3œ"

8

s s s s " .

Thus, we can express the solution implicitly as

B œ @ Ð Ñ ?  ? Ð Ñ  B Ð Ñß Ð@ Ñ œ "ß @ œ !
`B

`=
3 ! 3 ! # !

3 ! 3 3!

3œ"

8
!
3

s s s ‘ "
!

by eliminating the parameter . Consequently, the solution manifold > B Ð Ñ3 s
corresponding to a chosen value for  is obtained by translating the initial?
manifold by an amount  along a unit vector field  which is?  ? Ð Ñ Ð Ñ!

!s v s
orthogonal to that manifold and the solution  is determined by this? œ ?Ð Ñx
family of -dimensional  in .Ð8"Ñ level manifolds ‘8 è

Example 9.2.2. . Let us consider the equationQuasilinear Equations

+ Ð ß ?Ñ  ,Ð ß ?Ñ œ !
`?

`B
3

3
x x .

Since , we findJ œ + Ð ß ?Ñ@  ,Ð ß ?Ñ œ !3
3x x

`J `J `+ `, `J `+ `,

`@ `? `? `? `B `B `B
œ + ß œ @  ß œ @ 

3

3
3 4

3 43 3 3
.

Hence, the equations (9.2.10)  take the form"#

.B .?

.> .>
œ + Ð ß ?Ñß œ + Ð ß ?Ñ@ œ ,Ð ß ?Ñ

3
3 3

3x x x .

The solution of a first order quasilinear equation then follows from the solu-
tion of the above ordinary differential equations. è

Example 9.2.3. Hamilton-Jacobi equation.
The Hamilton-Jacobi partial differential equations governing the mo-

tion of a dynamical system of  degrees of freedom [ (11.5.18)] [after8 see 
mathematicians Hamilton and Jacobi] are given by
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`W `W `W

`> `; `;
 L ; ß á ß ; ß >ß ß á ß œ !Š ‹" 8

" 8

where . We denote the generalised coordinates by ,W œ WÐ ß >Ñ Ð; ß á ß ; Ñq " 8

time by  and the action function by . Generalised momenta are defined by> W
: œ `WÎ`; ß 3 œ "ß á ß 8 L3

3 .  is the Hamiltonian function. If we introduce
: œ `WÎ`>, we obtain

J œ :  LÐ; ß á ß ; ß >ß : ß á ß : Ñ œ !" 8
" 8 .

If we denote the parameter of a characteristic curve by , then it follows=
from (9.2.10)  that"

.> `J

.= `:
œ œ ".

Thus, we can choose  without loss of generality. Since ,= œ > `J Î`W œ !
then equations associated with characteristic strips are found to be

.; `J `L

.> `: `:
œ œ ß

.W `J `J `L `L

.> `: `: `: `:
œ :  : œ :  : œ :  L

.: `J `L .: `J `L

.> `> `> .> `; `;
œ  œ  ß œ  œ 

3

3 3

3 3 3
3 3 3

3

3 3
.

As a result, we obtain the well known Hamilton equations of analytical me-
chanics:

.; `L .: `L .W `L .: `L

.> `: .> `; .> `: .> `>
œ ß œ  ß œ :  Lß œ 

3

3 3

3

3 3 . è

The method of characteristics that works quite well for the partial dif-
ferential equation involving a single dependent variable turns out to be ra-
ther ineffective when looking for the solution of the general system (9.2.6).
Let us denote the  of the ideal  generated bycharacteristic vector field Z ¼7

that system as follows

Z œ \  Y  Z  â  Z
` ` ` `

`B `? `@ `@

œ \  Z
` `

`B `@

3
3 3 3 â3

3 3 â3

3
3

<œ!

7

3 â3
3 â3

! ! !
! ! !

!
!

" " 7

" " 7

" <

" <

" .

If we note that
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.J œ .B  .@
`J `J

`B `@
+ 3

+ +

3
<œ!

7

3 â3
3 â3"

" <

" <!
! ,

then the vector field  must satisfy the relationsZ

i

i

i

Z 3 3 â3 3 â3 3 â3 3
3

Z
+ + 3

+ +

3
<œ!

7

3 â3
3 â3

Z 3 3 â3 3 â3 3 3 â3 3
3 3

Ð Ñ œ Z  @ \ œ !ß

Ð.J Ñ œ Z ÐJ Ñ œ \  Z œ !
`J `J

`B `@

Ð. Ñ œ  Z .B  \ .@

5

5

! ! !

!
!

! ! !

" # < " < " <

" <

" <

" # 7" " 7" " 7"

"

œ  .J"
=œ!

7"

3 â3
4 â4

4 â4 3 â3 +
+- 5 A"

! " !
" 7"

" =

" = " 7"

(9.2.11)

where , . (9.2.11)  then- A A V"
! !

3 â3
4 â4

3 â3 +
!

7 "#
" 7"

" =

" 7"
ß − Ð Ñ ! Ÿ = Ÿ 7  "

yields

Z œ @ \ ß ! Ÿ < Ÿ 7  "ß

`J `J `J

`B `@ `@
 @ \  Z œ !

3 â3 3 â3 3
3

+ + +

3
<œ!

7"

3 â3 3 â3
3 â3 3 3 â3

3

" < " <

" < " 7

" < " 7

! !

! !
! !Š ‹"

(9.2.12)

whereas (9.2.11)  results in$

 Z .B  \ .@

œ  .@
`J

`@

  @
`J

`B

! !

"
! !

"
"

!
"
! "

3 â3 3 3 â3 3
3 3

=œ!

7"

3 â3
4 â4

3 â3 +

+

4 â4
4 â4

3 â3 +

+

3
=œ!

7"

3 â3
4 â4

4

" 7" " 7"

" 7"

" =

" 7"

" =

" =

" 7" " 7"

" =

"

"’ “
’ "
- A

A - â4 3
3

3 â3 +

+

4 â4
4 â4

=

" 7"

" 7

" 7

“.B

 .@
`J

`@
A!

"
" .

We thus see that the following relations must be satisfied

- A

A

"
! !

"

! !
"

"

3 â3
4 â4

3 â3 +

+

4 â4

3 â3 3 3 â3 +

+ +

3
=œ!

7"

4 â4
4 â4 3

" 7"

" =

" 7"

" =

" 7" " 7"

" =

" =

œ  ß ! Ÿ = Ÿ 7  "
`J

`@

Z œ   @ ß
`J `J

`B `@
’ “"

(9.2.13)
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\ .@ œ .@ Þ
`J

`@

3
3 â3 3 3 â3 +

+

4 â4
4 â4

! !
"

"
" 7" " 7"

" 7

" 7
A

It then follows from (9.2.13)  and (9.2.12)  that$ #

\ â œ
`J

`@

\   @ œ !
`J `J `J

`@ `B `@

3
3 3 3 â3 +

+

4 â4 3

3 +
, 3 â3 ,

+ , ,

3 â3 3
3

<œ!

7"

4 â4
4 â4 3

$ $ $ A

$ A

"
! !

"

!
! "

"

" 7"

4 4" 7"

" 7"

" 7"

" 7"

" 7" " <

" <
Š ‹Š ‹"

(9.2.14)

After having performed contraction operations on indices Ð ß Ñß Ð4 ß 3 Ñß á! " " "

Ð4 ß 3 Ñ7" 7"  of Kronecker deltas on the left hand side of the expression
(9.2.14)  we find that"

8 R\ œ
`J

`@
7" 3

3 â3 +

+

3 â3 3

A! !" 7"

" 7"

. (9.2.15)

If we insert the above expression in (9.2.14) , we deduce that the func-"#

tions  must satisfy the equationsA!3 â 3 +" 7"

A $ $ $ A

A $ A

#
# "

! !
"

! !
! !

5 â5 +

+ +

5 â5 3
3 3

7"
3 â3 +

4 â4 3

3 â3 - , 3 â3 ,

- +

3 â3 3 3 â

+ 7"

" 7"

" 7"

" 7"

4 4" 7"

" 7"

" 7"

" 7" " 7"

" 7" "

`J `J

`@
â  8 R œ !ß

`@

`J `J

`@ `@
 8 RŠ

3 3

, ,

3
<œ!

7"

4 â4
4 â4 3

7"

" <

" <

‹
Š ‹"

‚

`J `J

`B
 @ œ !Þ

`@"
"

When , we can always pick out the indices  and  as to be .R  " Á! " ! "
In this case, if all partial differential equations are of order , then none of7

the derivatives  vanish implying that  and .
 

`J

`@
œ ! \ œ !

+

4 â4 3
3 â3 +

3

" 7"

" 7""
!A

Consequently, we find  for . Hence, the dimension ofZ œ ! ! Ÿ < Ÿ 73 â3" <

!

the characteristic vector space is zero and we end up only with the trivial
solution that consists of constants satisfying the equations (9.2.1). If R œ "
and , then we immediately see that we obtain the same result. If some7  "
equations in the system have lesser orders than , some coefficients7
A!3 â3 +" 7"

 may not be necessarily zero. In the case   ,R œ "ß 7 œ "ß E  "

the first set of equations above are satisfied identically. On arranging the
second equations, we obtain
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J œ !+,
,A

where the antisymmetric  matrix  is given byE ‚E F

J œ  J œ   @ 
`J `J `J `J `J `J `J `J

`B `@ `B `@ `? `@ `? `@
+, ,+

+ , , + + , , +

3 3
3 3 3 3

3Š ‹.

If only  (when  is an odd number this determinant will always bedet F œ ! E
zero) then all coefficients  do not have to vanish and we may have theA+

opportunity to write

\ œ ß Y œ Z œ @ ß Z œ   @ ß
`J `J `J `J

`@ `@ `B `?

Z œ  @   @ Þ
`J ` ` `J `J `

`@ `B `? `B `? `@

3
+ ! + 3 3 + 3

+ + + +

3 3
3

+ 3 3

+ + +

3 3
3 3

A - A

A

! Š ‹
’ Š ‹ Š ‹ “

The dimension of the characteristic subspace is equal to the number of inde-
pendent functions . On the other hand, if ,  then weA+ R œ " 7 œ "ß E œ "
arrive at the previously found solution

\ œ ß Y œ Z œ @ ß Z œ   @ ß
`J `J `J `J

`@ `@ `B `?

Z œ  @   @
`J ` ` `J `J `

`@ `B `? `B `? `@

3

3 3
! 3 3 33

3 3
3 33 3

A A A

A

Š ‹
’ Š ‹ Š ‹ “.

A nontrivial solution is likewise obtained for a system of quasilinear
first order partial differential equations with same principal parts

+ Ð ß Ñ  , Ð ß Ñ œ !
`?

`B
3

3
x u x u

!
! .

In this case, the characteristic vector field can be written as follows

Z œ \  Y  Z
` ` `

`B `? `@
3

3 3
3

! !
! ! .

On the other hand, since we have to take ,J œ + Ð ß Ñ@  , Ð ß Ñ œ !! ! !3
3x u x u

then the equations (9.2.12-13-14) lead to the relations

Y œ @ \ ß œ  ß \ œ œ + œ +
`J `J

`? `@

! ! ! ! ! ! ! !
" # " # # "

# #

" " "
#

3
3 3 3 3

3

- A $ A A $ A

whence we deduce that  and . Therefore, theA $ -! ! ! ! "
" " "œ œ  `J Î`?

components of the characteristic vector field are found as
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\ œ + ß Y œ @ + ß Z œ   @
`J `J

`B `?
3 3 3

3 3 3 3
! ! !

! !

"

"Š ‹.

These components satisfy identically the relation (9.2.12) . Since one must#

write , the solution of the system of partial differential equations+ @ œ ,3
3
! !

is constructed by means of the solutions of the following system of ordinary
differential equations

.B

.>
œ + Ð ß Ñß

.?

.>
œ , Ð ß Ñ

3
3 x u

x u
!

! .

To study general solutions of differential equations we usually make
use of Lie transformation groups. In such kind of methods, the isovectors of
closed ideals generated by differential equations play quite a significant
part. Although symmetry groups have emerged at the beginning of 20th
Century, their investigation through exterior differential forms started by a
seminal paper published on 1971 .1

9.3. ISOVECTOR FIELDS OF THE CONTACT IDEAL

Let  be the contact manifold defined in Sec. 9.2. We first considerV7

the closed ideal

\ \ 5 5 5 5 57 3 3 3 3 3 â3 3 3 â3œ Ð ß ß ß á ß à . Ñ¯ (9.3.1)! ! ! ! !
" " # " # 7" " # 7"

which we have called the . 7th order contact ideal The properties of this
ideal will remain the same for all system of th order partial differential7
equations. We know that a vector field  is an isovector field ofZ − X Ð ÑV7

the ideal  if it satisfies the relation £ . On the other hand, since\ \ \7 Z 7 7§
the ideal

\ 5 5 5 5Ð ß ß ß á ß Ñ! ! ! !
3 3 3 3 3 â3" " # " # 7"

(9.3.2)

is generated by forms of the same degree ( -forms in the present case),"
isovector fields of this ideal will be the same as those of its closure  in\7

accordance with Theorem 5.12.4. We may represent a vector field  by theZ
expression

1Harrison, B. K., Estabrook, F. B., Geometric Approach to invariance groups and
solution of partial differential systems, Journal of Mathematical Physics, 12, 653-
666, 1971.
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Z œ \  Z − X Ð Ñ
` `

`B `@
3

3
<œ!

7

3 â3
3 â3

7"
" <

" <

!
! V (9.3.3)

where  with . Here, we adopt the conven-\ ß Z − Ð Ñ ! Ÿ < Ÿ 73 !
3 â3 7" <

! A V

tions

Z œ Z œ Y30

! ! ! 

and

"
<œ!

7

3 â3
3 â3

3 3 3 3 â3
3 3 3 3 â3

Z œ
`

`@

Y  Z  Z  â  Z
` ` ` `

`? `@ `@ `@

" <

" <

" " # " 7

" " # " 7

!
!

! ! ! !
! ! ! !                      .

There are of course summations on all repeated dummy indices. Since the
variables  are completely symmetric with respect to their subscripts for@!3 â3" <

<   #, only the completely symmetric parts of corresponding components
Z3 â3" <

!  will survive in summations above. Therefore, without loss of gener-
ality we may assume that  are completely symmetric with respect toZ3 â3" <

their subscripts for . As is well known, the necessary and sufficient<   #
conditions for a vector field  to be an isovector of the ideal (9.3.2) are theZ
satisfaction of the following relations

£ (9.3.4)Z 3 â3
<œ!

7"

3 â3
4 â4

4 â45 - 5!
"
! "

" 5 " 5

" <

" <
œ ß 5 œ !ß "ß á ß 7  ""

for certain functions . The discussions- A V"
!

3 â3
4 â4 !

7
" 5

" < − Ð Ñß ! Ÿ 5ß < Ÿ 7  "

presented in this section and the subsequent one are borrowed from the
work cited below . On employing the formula (5.11.5) to calculate the Lie2

derivative, we obtain

£

                  

                  

Z Z Z3 â3 3 â3 3 â3

3 â3 3 3 â3 3 3 â3 3 â3 3
3 3 3

3 â3 3

5 5 5! ! !

! ! ! !

!

" " "5 5 5

" " " "5 5 5 5

" 5

œ Ð. Ñ  . Ð Ñ

œ  Z .B  \ .@  .ÐZ  \ @ Ñ

œ  Z

i i

.B  .Z  @ .\3 3
3 â3 3 â3 3
! !
" "5 5

by recalling the relation . Therefore, (9.3.4). œ  .@ • .B5! !
3 â3 3 â3 3

3
" "5 5

yields

2Þuhubi, E. S., Isovector fields and similarity solutions for general balance equa-
tions, International Journal of Engineering Science, 29, 133-150, 1991.
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" 5 " <

" 5

" <

" < "
- 4 3

3
<

.B Ñ

On equating the coefficients of linearly independent like -forms at both"
sides of the foregoing expression, we arrive at the following relations

 @ œ  @  Z ß ! Ÿ 5 Ÿ 7  "
`Z

`B `B

`\

œ  @
`Z

`@

`\

"
<œ!

7"

3 â3
4 â4

4 â4 3
3 â3

3 33 â3 4 3 â3 3

4

3 â3
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4 â4
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-

-

"
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!
! !
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!

"
!

" 5

" <

" <

" 5

" "5 5

" 5

" < " 5

" <

" 5
              

3
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3 â3

4 â4 4 â4

3 â3 3
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`@
ß ! Ÿ 5ß < Ÿ 7  "

`Z

`@ `@
 @ œ !ß ! Ÿ 5 Ÿ 7  "

`\
" <

" 5

" 7 " 7

" 5

"

!

" "
!

    (9.3.5)

                               

Equations (9.3.5)  determine the functions . Inserting these functions# 3 â3
4 â4-"

!

" 5

" <

into equations (9.3.5) , we reach to the recurrence relations given below that"

relate the components  to the components  and Z Z \! !
3 â3 3 3 â3

3
" "5 5

Z œ  @
`Z

`B `B

`\

  @ @ ß ! Ÿ 5 Ÿ 7  "
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`@ `@
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4 â4 4 â4
3 â3 4

4

4 â4 3

" "5 5

" 5
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" 5 " <
"” • .

(9.3.6)

Let us now consider equations (9.3.5)  and start with equations corres-$

ponding to . If we differentiate these equations with respect to5 œ 7  "
the variables , we then find that@5 â5" 7

#

` Z

`@ `@ `@ `@
 @

` \

 â

#
3 â3

4 â4 4 â45 â5 5 â5

3 â3 3

# 3

3 3
5

!

" "# #
!

#
!

" 7"

" 7 " 7" 7 " 7

" 7"

" 7

"                                                         $ $ $
"

7" 7

" 7

5 5
3

3

4 â4

$
`\

`@
œ !

"
.

When we take into account the symmetry of the second order derivatives
with respect to the variables , the above equations give rise to@!3 â3" 7
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$ $ $ $ $ $# "
! !

" #3 3 3 3
5 5

5 4

4 â4

4 4

5 â5
" 7" " 7"

" 7"
7 7

" 7

" 7"

" 7

â œ â
`\ `\

`@ `@
(9.3.7)

Contraction operations on indices  lead to theÐ ß Ñß Ð5 ß 3 Ñß á ß Ð5 ß 3 Ñ! # " " 7" 7"

result

R8 œ
`\ `\

`@ `@

7"
5 4

4 â4 4 4 â4 5

7 7

" 7" 7 " 7" 7

" "
. (9.3.8)

Introducing (9.3.8) into the right hand side of (9.3.7), we get

$ $ $ $ $ $# "
! !

" #3 3 3 3
5 5

5 5

4 â4

4 4 7"

5 â5 4
" 7" " 7"

" 7"
7 7

" 7

" 7"

" 7" 7

â œ â R8
`\ `\

`@ `@
.

Contracting this time the indices above, weÐ ß Ñß Ð4 ß 3 Ñß á ß Ð4 ß 3 Ñ! " " " 7" 7"  
finally reach to the conclusion

ÐR 8  "Ñ œ !
`\

`@
# #Ð7"Ñ

5

5 â5 4

7

" 7" 7

# .

When we take partial differential equations into consideration, we clearly
have . Furthermore, if we assume that , then for  we get8  " 7  " R   "
R8 Á "7" . When  we will have to distinguish the case  from7 œ " R œ "
the case R  ". We thus find

`\

`@
œ !

3

4 â4" 7

"
(9.3.9)

and it follows from equations (9.3.5)  that$

`Z

`@
œ !ß 5 œ !ß "ß á ß 7  "

!

"
3 â3

4 â4

" 5

" 7

   . (9.3.10)

This means that the functions  and  cannot depend on the variables\ Z3
3 â3
!
" 5

@ 5 œ !ß "ß á ß 7  #3 â3" 7

! . Let us now write the relation (9.3.6) for :

Z œ  @   @ @
`Z `Z

`B `B

`\ `\
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  @
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" 5

"” •
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"

" 7""
"•@ ß ! Ÿ 5 Ÿ 7  #4 â4 3  



504 IX  Partial Differential Equations

Because of (9.3.10), the functions  must be independent of the vari-Z !
3 â 3 3" 5

ables , hence their coefficients have to vanish:@"4 â4 3" 7"

`Z

`@ `@
 @ œ !ß ! Ÿ 5 Ÿ 7  #

`\!

" "
!3 â3

4 â4 4 â4
3 â3 4

4
" 5

" 7" " 7"

" 5
. (9.3.11)

Equations (9.3.11) carry the same structural properties as equations (9.3.5) .$

Therefore, they lead similarly to
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œ !ß œ !ß 5 œ !ß "ß á ß 7  #

`Z3
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" 7" " 7"
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if . Starting from this result we can verify by mathematical in-R8 Á "7#

duction that the following relations are to be satisfied if R8 Á "7 "=

`\

`@ `@
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(9.3.12)

where  . We have shown above5 œ !ß "ß á ß 7  =  "ß = œ !ß "ß á ß 7  #
that these relations are true for . We shall now assume that they are= œ !ß "
true for  and try to prove that they are also true for . On writing the= =  "
relation (9.3.6) for  , we obtain5 œ !ß "ß á ß 7  =  #
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But because of (9.3.12), the functions  cannot depend on variablesZ !
3 â 3 3" 5

@"4 â4 3" 7 "=
 so that their coefficients must vanish:

`Z

`@ `@
 @ œ !ß 5 œ !ß "ß á ß 7  =  #Þ
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= =

We thus obtain in the similar fashion

   
`\

`@ `@
œ !ß œ !ß 5 œ !ß "ß á ß 7  =  #
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" 7 " " 7 "
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" "

!



9.3  Isovector Fields of the Contact Ideal 505

if . This justifies the proposition (9.3.12). However, we haveR8 Á "7=#

to be a little bit more careful for the case . If we write the relation= œ 7  "
(9.3.6) for , we then find5 œ !

Z œ  @   @ @   @ @
`Y `\ `Y `\ `Y `\

`B `B `? `? `@ `@

! ! ! !
! ! !

" "

" "
" "3 4 4 53 3

4 4 5

3 43
4 4

Š ‹ Š ‹ .

On the other hand, the functions  must be independent of the variablesZ !
3

@"43 so that one gets

`Y `\

`@ `@
 @ œ !

!

" "
!

3 3
4

4

. (9.3.13)

Next, we differentiate (9.3.13) with respect to the variables . The sym-@5
#

metry of the second order derivatives leads eventually to the result

$ $! !
# "" #

`\ `\

`@
œ

`@

5 3

3 5

.

A contraction on indices  givesÐ ß Ñ! #

R œ
`\ `\

`@ `@

5 3

3 5
" "

. (9.3.14)

On inserting this result into the above expression and contracting this time
on indices  we finally obtainÐ ß Ñ! " ,

ÐR  "Ñ œ !
`\

`@
#

5

3
# . (9.3.15)

In evaluating this inequality, we have to distinguish two cases:
Ð3ÑÞ We assume that . Hence the number of dependent variablesR  "

is more than one. In this case (9.3.15) and (9.3.13) yield

`\ `Y

`@
œ ! œ !

`@

3

4 3
!

!

"
   and   .

We thus obtain

\ œ \ Ð ß Ñß Z œ Y œ Y Ð ß Ñ3 3
3x u x u     . (9.3.16)! ! !
!

Thus  and  components of the isovector field  have to depend solely on\ Y3 !

coordinates  and  of the graph space. If the components (9.3.16) areB ?3 !

inserted into (9.3.6) on taking notice of (9.3.12), we realise that other
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components of isovector fields of the contact ideal are determined by the
following recurrence relations

Z œ  @
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`B `B

`\

  @ @
`Z

`? `?
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” •
" .

(9.3.17)

Let us now define a set of vector fields, or differential operators,  whereH
Ð5Ñ
3

3 œ "ß á ß 8 5 œ !ß "ß á ß 7  " ,  as follows

H œ  @  @
` ` `

`B `? `@
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` ` ` `
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3 3 43 3 â3 3
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"
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(9.3.18)

This operator may also be defined by the recurrence relations

H œ H œ  @ ß H œ H  @
` ` `

`B `? `@
3

Ð!Ñ Ð5"Ñ Ð5Ñ
3 3 33 3 3 â3 3

3 â3

! !
! !   

" 5"

" 5"

By employing the operator defined in (9.3.18), we can express the recur-
rence relations (9.3.17) connecting isovector components in the form

Z œ H ÐZ Ñ  @ H Ð\ Ñ œ H ÐZ  @ \ Ñ! ! ! ! !
3 â3 3 3 â3 3 â3 4 3 â3 3 â3 4

Ð5Ñ Ð5Ñ Ð5Ñ
3 3 3

4 4
" " " " "5 5 5 5 5

where . By introducing the functions! Ÿ 5 Ÿ 7  "

J œZ  @ \ œ Ð Ñ − Ð Ñ! ! ! !
3 â3 3 â3 3 â3 4 3 â3

4 !
Z 7" " " "5 5 5 5

i 5 A V

we can also write

Z œ H ÐJ Ñ œ H Ð Ñ! ! !
3 â3 3 3 â3 3 â3

Ð5Ñ Ð5Ñ
3 3 Z" " "5 5 5

ˆ ‰i 5 . (9.3.19)

Next, we define vector fields  byZ − X ÐKÑK

Z œ \ Ð ß Ñ  Y Ð ß Ñ
` `

`B `?
K

3
3

x u x u!
!

. (9.3.20)

Since  is a Lie algebra, these vectors generate a Lie group of diffeo-X ÐKÑ
morphisms mapping the manifold  onto itself. On the other hand, weK
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know that isovectors of an ideal of the exterior algebra constitute a Lie
subalgebra of the tangent bundle, or the module, of the manifold involved.
We denote the Lie algebra of the isovectors of the contact ideal  by\7

¿ V\7
§ X Ð Ñ 8  R \ Ð ß Ñ7

3. A mere choice of  smooth functions  andx u
Y Ð ß Ñ! x u  determines  a  defined memberuniquely

Z œ Z  H ÐJ Ñ
`

`@
K

<œ"

7
Ð<"Ñ
3 3 â3

3 â3

"
< " <"

" <

!
!

of the Lie algebra . Therefore, this expression can be regarded as the ¿\7
lift

of a vector  to a vector . Since  is a LieZ − X ÐKÑ Z − X Ð Ñ§K 7¿ V ¿\ \7 7

algebra, it generates a Lie group of diffeomorphisms on . It is evidentV7

that this group is a subgroup of the Lie group of diffeomorphisms on V7

generated by the Lie algebra . But it is the only group preservingX Ð ÑV7

contact -forms. If we regard the manifold  as a fibre bundle on the base" V7

K Z, then the isovector  is called the  of the vectormth order prolongation
Z œ X ÐKÑK

Ð7Ñ. We adopt the notation pr . The rather complicated¿\7
ˆ ‰

structures of prolongations are clearly illustrated in the two examples below:

Z œ  @  @  @ @
`Y `\ `Y `\

`B `B `? `?

Z œ  @   @ @  @
`Z `\ `Z `\ `Z

`B `B `? `? `@

œ  @
` Y ` \

`B `B `B `B

! ! !
! !

" "

" "

! ! !
! ! !

" "

" "
"

!
!

3 4 43 3

4 4

3 3

34 35 35
3 3 3
4 4

5 5

4 54
5

# # 5

3 4 3 45

Š ‹
 @  @  @ 

` Y ` Y `Y

`B `? `B `? `?

@  @  @ @  @ @ 
`\ `\ ` \ ` \

`B `B `B `? `B `?

@ @  Ð@ @  @ @
` Y

`? `?

" " "
! ! !

" " "

! ! ! !" "

" "

# " " "
!

# "
! !

3 4 34

# #

4 3

35 45 5 5

5 5 # 5 # 5

4 3 4 33 4

3 4 4 3

#

35 5 4 3 3 445 5

5 # 5

 @ @ Ñ  @ @ @
`\ ` \

`? `? `?
" "! !

" " #

# .

(9.3.21)

If we recall that the variables  are symmetric with respect to the indices@!34
3ß 4 Z , we observe in the above relation the components  become symmet-!

34

ric with respect to the same indices as it should be.
Ð33ÑÞ We now assume that , that is, there is only one dependentR œ "

variable. If we write , then the isovector@ œ @ ß < œ !ß "ß á ß 7"
3 â 3 3 â 3" < " <

field may be represented by

Z œ \  Y  Z
` ` `

`B `? `@
3

3
<œ"

7

3 â3
3 â3

"
" <

" <
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where we denote . In this case, the relation (9.3.14) becomesZ œ Z"
3 â3 3 â3" < " <

`\ `\

`@ `@
œ

5 3

3 5
.

The solution of this set of equations is found to be

\ œ \ Ð ß ?ß Ñ œ 
`J

`@
3 3

3
x v (9.3.22)

where  is an arbitrary smooth function of  variables.J œ J ÐB ß ?ß @ Ñ #8  "3
4

Due to this structure of functions , equations (9.3.7) are then satisfied\5

automatically. With , equations (9.3.13) lead toY œ Y"

`Y `\ ` J

`@ `@ `@ `@
œ @ œ  @

œ  @  J
` `J

`@ `@

3 3 4 3
4 4

4 #

3 4
4Š ‹

The integration of the above differential equations involves an arbitrary
function of variables  and . Absorbing this function into the arbitraryB ?3

function , we obtainJ

Y œ Y Ð ß ?ß Ñ œ J  @
`J

`@
x v 4

4
. (9.3.23)

Other components of the isovector field are clearly given by the relations

Z œ H ÐZ Ñ  @ H Ð\ Ñ3 â3 3 3 â3 3 â3 4
Ð5Ñ Ð5Ñ
3 3

4
" " "5 5 5

(9.3.24)

where the operator  of (9.3.18) should now be expressed asH
Ð5Ñ
3

H œ  @  @
` ` `

`B `? `@
Ð5Ñ
3 3 3 3 â3 3

<œ"

5

3 â3

"
" <

" <

The recurrence relations (9.3.24) make it possible to determine all compo-
nents of the isovector field uniquely once one chooses a smooth function
J Ð ß ?ß Ñ \ Yx v . The components  and  are then determined uniquely through3

the relations (9.3.22) and (9.3.23). The relation (9.3.24) may be explicitly
expressed as

Z œ  @ 
`Z ` J

`B `B `@
3 â3 3 3 â3 4

3 â3

3 3

#

4
" "5 5

" 5
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  @ @  @ @
`Z ` J ` J

`? `?`@ `@ `@

 @ ß ! Ÿ 5 Ÿ 7  "
`Z

`@

Š ‹
"

3 â3
3 â3 4 3 35 3 â3 4

# #

4 5 4

<œ"

5

4 â4 3
3 â3

4 â4

" 5

" "5 5

" <

" 5

" <

(9.3.25)

    .  

In general, the vector

Z œ \ Ð ß ?ß Ñ  Y Ð ß ?ß Ñ
` `

`B `?
K

3
3

x v x v

is no longer dependent only the coordinates of the graph space. Hence, we
cannot interpret the isovector field as a prolongation of a vector field  inZK

X ÐKÑ X ÐKÑ. In order that an isovector is a prolongation of a member of , the
functions  and  must be independent of variables . On the other hand,\ Y3 v
we easily see that in order to be able to obtain , the equation\ œ Ð ß ?Ñ3 3k x
`J Î`@ œ  Ð ß ?Ñ J3

3k x  requires that the function  must have the form

J œ  Ð ß ?Ñ@  KÐ ß ?Ñk 3
3x x

In such a case, (9.3.23) yields . Hence,  Y œ KÐ ß ?Ñx isovectors are found to
be th order prolongations of vectors  if only  is an affine7 Z − X ÐKÑ JK

function of variables @3. Otherwise, isovectors may be interpreted as pro-
longations of the tangent bundle  and one may then write X Ð Ñ œV ¼" \7

pr .Ð7"Ñ
"ˆ ‰X Ð ÑV

The structure of isovectors corresponding to the case  might beR œ "
illustrated to some extent by the following examples:

\ œ  ß Y œ J  @ ß J œ J Ð ß ?ß Ñ
`J `J

`@ `@

Z œ  @
`J `J

`B `?

Z œ  @  @  @  @
` J ` J ` J ` J ` J

`B `B `?`B `?`B `@ `B `@ `B

 @  @ @ 
`J ` J

`? `?

3

3 3
3

3 33

34 3 4 35 45

# # # # #

3 4 4 3 4 3
5 5

34 3 4

#

#

x v

Ð@ @  @ @ Ñ  @ @
` J ` J

`@ `? `@ `@
3 45 4 35 35 46

# #

5 5 6

(9.3.26)

We can collect the cases  and  discussed above in the theoremÐ3Ñ Ð33Ñ
below:

Theorem 9.3.1. A vector field ofZ œ \ `Î`B  Z `Î`@3 3

<œ!

7

3 â3 3 â3
!

" < " <

! !  

X Ð ÑV7  is an isovector field of the contact ideal if and only if the\7 
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relations for areZ œ H ÐZ  @ \ Ñ! ! !
3 â3 3 3 â3 3 â3 4

Ð5Ñ
3

4
" " "5 5 5

  ! Ÿ 5 Ÿ 7  "

satisfied. The operators  are given by . To determine isovectorH
Ð5Ñ
3 (9.3.18)

components completely one has to prescribe  smooth functions 8  R \ œ3

\ Ð ß Ñ Y œ Y Ð ß Ñ J œ3 x u x u  and when , whereas a single function ! ! R  "
J Ð ß ?ß Ñx v   would be sufficient when  through which the componentsR œ "
\ Y \ œ  `J Î`@ ß Y œ J  @ Ð`J Î`@ Ñ3 3

3 3 3  and are found as . 
Since isovectors forming a Lie algebra produce groups of diffeomor-

phisms, we can state that this theorem is a somewhat generalised version of
the celebrated Bäcklund theorem for  [Swedish mathematician AlbertR  "
Victor Bäcklund (1845-1929]: The most general diffeomorphisms on V7

preserving the contact structure are prolongations of diffeomorphisms of
the graph space. Since this result restricts substantially admissible diffeo-
morphisms on , it creates a rather significant obstacle one has to sur-V7

mount in determining solutions of partial differential equations by resorting
to transformations preserving contact structures. We shall be able to over-
come this obstacle later by choosing a more convenient ideal of A VÐ Ñ7

instead of the contact ideal  [  Sec. 9.7].\7 see
The next step after having found isovector fields of the contact ideal

would be to determine linearly independent isovector fields of the closed
ideal generated by the given system of partial differential equations. Thus, it
will become possible to obtain  thatLie groups of symmetry transformations
leave the system of partial differential equations invariant through which
one can obtain families of new solutions from a given solution. However,
this approach proves to be quite fruitful as far as the analytical procedures
are concerned in balance equations derived from conservation laws. Since
natural laws are generally of this form, many field equations encountered in
physics and engineering fall naturally into this category. Thus, we can say
that balance equations are come across most frequently in practical applica-
tions. This subject will be discussed in detail in the subsequent section.
However, we shall try here to elucidate the approach that we use to employ
in determining isovectors associated with a given system of first order par-
tial differential equations through a somewhat complicated example.

Example 9.3.1. We consider the partial differential equations intro-
duced in Example 8.7.3. The functions  and   satisfy the fol-?ÐBß >Ñ -ÐBß >Ñ
lowing first order partial differential equations

?  ??  -- œ !ß -  ?-  -? œ !ß Á "
"

> B B > B B! !
!

where . The physical origins of these equations was also ex-ÐBß >Ñ − ‘#

plained in that example. In order to simplify a little these equations, let us
make the transformations
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< œ ?  -ß = œ ?  -! !

to readily arrive at

<  Ð<ß =Ñ< œ !ß =  Ð<ß =Ñ= œ !> B > BŸ  

where the functions  and  are defined byŸ  

Ÿ  
! ! ! !

! ! ! !
Ð<ß =Ñ œ <  =ß Ð<ß =Ñ œ <  =

 "  "  "  "

# # # #
.

We now introduce the forms  as follows= = A ‘" #
# %ß − Ð Ñ

= Ÿ

=  
"

#

œ  .< • .B  Ð<ß =Ñ .< • .>ß

œ  .= • .B  Ð<ß =Ñ .= • .>.

The coordinate cover of the manifold  is given by . If weK œ ÐBß >ß <ß =Ñ‘%

define a solution mapping  by relations ,9 ‘ ‘À Ä Bß >ß <ÐBß >Ñß =ÐBß >Ñ# % ˆ ‰
we then obtain

9 = Ÿ

9 =  

‡
" > B

‡
# > B

œ <  Ð<ß =Ñ< .B • .> œ !ß

œ =  Ð<ß =Ñ= .B • .> œ !

 ‘ ‘ .

Thus, the solution mapping  annihilates the ideal generated by the forms9
= = =" # " and . We can easily check that the exterior derivatives of the forms 
and  are found to be as=#

. œ  . œ  .< • .= • .>
 "

#

œ Ð.= •  .< • Ñ
 "

#Ð<  =Ñ

= =
!

!
!

= =

" #

" # .

Hence, the ideal generated by the forms  and  is closed. Since the dif-= =" #

ferential equations are of first order, we can just take the isovector field in
the form below

Z œ \  X  V  W
` ` ` `

`B `> `< `=
.

The components , , ,  are smooth functions of the variables , , , .\ X V W B > < =
In order that  becomes an isovector field we have to find smooth functionsZ
- - - -"" "# #" ##ß ß ß ÐBß >ß <ß =Ñ so that the relations

£ £Z " "" " "# # Z # #" " ## #= - = - = = - = - =œ  ß œ 

are satisfied. If we employ the expressions
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i
i

i i

Z "

Z #

Z " Z #

Ð Ñ œ  V.B  Ð<ß =Ñ V.>  \  Ð<ß =Ñ X .<

Ð Ñ œ  W.B  Ð<ß =Ñ W.>  \  Ð<ß =Ñ X .=

Ð. Ñ œ  Ð. Ñ œ  ÐV.= • .>  W.< • .>  X .< • .=Ñ
 "

#

= Ÿ Ÿ

=    

= =
!

!

 ‘ ‘

in the Cartan magic formula, we obtain

£

                           

Z " > B < B B

= < > >

=

= Ÿ Ÿ

! !

! !
Ÿ

Ÿ

œ V  Ð<ß =ÑV .B • .>  V  \  Ð<ß =ÑX .< • .B

 V .= • .B  V  W  Ð<ß =ÑÐV  X Ñ  \ .< • .>
 "  "

# #
 Ð<ß =ÑV .

 ‘  ‘
 ‘

= • .>  \  Ð<ß =ÑX .= • .< œ

 .< • .B  Ð<ß =Ñ .< • .>  .= • .B  Ð<ß =Ñ.= • .>

œ W  Ð<ß =ÑW .B • .>  W  \  Ð<ß =ÑX .= • .B

 W .< • .B 

 ‘
 ‘  ‘



= =

"" "" "# "#

Z # > B = B B

<

Ÿ

- - Ÿ - -  

=    

!

£
 "  "

# #
V  W  Ð<ß =ÑÐW  X Ñ  \ .= • .>

 \  Ð<ß =ÑX .< • .=  Ð<ß =ÑW .< • .> œ

 .< • .B  Ð<ß =Ñ .< • .>  .=

! !

!
 

   

- - Ÿ -

= > >

< < <

#" #" ##

‘
 ‘                           

  • .B  Ð<ß =Ñ.= • .>-  ##

from which we extract the following system of equations

- Ÿ -

- -  

Ÿ Ÿ
!

! !

! !
Ÿ Ÿ

"" < B B "# =

#" < ## = B B

> B = = =

> B >

œ V  \  Ð<ß =ÑX ß œ V ß

œ W ß œ W  \  Ð<ß =ÑX

V  Ð<ß =ÑV œ !ß Ð<  =ÑV œ !ß \  Ð<ß =ÑX œ !
"

 "  "

# #
V  W  \  Ð<ß =Ñ  \  X  Ð<ß =ÑX B

> B < < <

> B > B

‘

 ‘

œ !

W  Ð<ß =ÑW œ !ß  Ð<  =ÑW œ !ß \  Ð<ß =ÑX œ !
"

 "  "

# #
V  W  \  Ð<ß =Ñ  \  X  Ð<ß =ÑX œ !

   
!

! !

! !
   

(9.3.27)

where we have noted that

Ÿ  
!

Ð<ß =Ñ  Ð<ß =Ñ œ
<  =

.

Equations (9.3.27)  and (9.3.27)  yield obviously' 10

V œ VÐBß >ß <Ñß W œ WÐBß >ß =Ñ.

Next, let us differentiate (9.3.27)  and (9.3.27)  with respect to  and  to5 * = <
find, respectively
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! !

! !

 "  "

# #
V œ !ß W œ !B B

and, consequently,  and . We thus getV œ ! W œ !> >

V œ VÐ<Ñß W œ WÐ=Ñ.

On writing the equations (9.3.27)  and (9.3.27)  in the form( ""

 ‘  ‘\  Ð<ß =ÑX  X œ !ß \  Ð<ß =ÑX  X œ !
 "  "

# #
Ÿ  

! !

! != <
,

we obtain

 ‘  ‘\  Ð<ß =ÑX œ \  Ð<ß =ÑXŸ  
= <

.

This expression implies that the following relations are obtainable

\  Ð<ß =ÑX œ ß \  Ð<ß =ÑX œ ß

X œ  œ
# Ð  Ñ

 " <  =

Ÿ F   F

! ! F F

!
F

< =

<=
= <

(9.3.28)

where . Hence, the function  must satisfy the partial dif-F F Fœ ÐBß >ß <ß =Ñ
ferential equation

#Ð<  =Ñ  Ð  "ÑÐ  Ñ œ !F ! F F<= = < . (9.3.29)

It follows from (9.3.27)  and (9.3.27)  that) "#

VÐ<Ñ œ \  <\  <X  Ð$<  =ÑÐ<  =Ñ  X ß
" Ð<  =Ñ

%

WÐ=Ñ œ \  =\  =X  Ð<  $=ÑÐ<  =Ñ  X Þ
" Ð<  =Ñ

%

> B > B

#

#

> B > B

#

#

’ “
’ “

!

!

By adding the first two expressions in (9.3.28) and using the third one we
obtain

\ œ
Ð  "Ñ<  Ð  "Ñ=  Ð  "Ñ<  Ð  "Ñ=

#Ð<  =Ñ

 ‘  ‘! ! F ! ! F= <
.

Inserting this expression for  together with (9.3.28)  into  and \ VÐ<Ñ WÐ=Ñ$

given above, we find that

#VÐ<Ñ œ  Ð  "Ñ  Ð<ß =Ñ  Ð  "Ñ  Ð<ß =Ñ ß

#WÐ=Ñ œ Ð  "Ñ  Ð<ß =Ñ  Ð  "Ñ  Ð<ß =Ñ Þ

! F   F ! F Ÿ F

! F   F ! F Ÿ F

ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰>= B= >< B<

>= B= >< B<
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This result means that the derivatives of the right hand side of the first equa-
tion with respect to variables , and the derivatives of the right handBß >ß =
side of the second equation with respect to variables  must vanish. TheBß >ß <
derivatives with respect to  give>

 Ð  "Ñ  Ð<ß =Ñ  Ð  "Ñ  Ð<ß =Ñ œ !ß

Ð  "Ñ  Ð<ß =Ñ  Ð  "Ñ  Ð<ß =Ñ œ !

! F   F ! F Ÿ F

! F   F ! F Ÿ F

ˆ ‰ ˆ ‰ˆ ‰ ˆ ‰>>= B>= >>< B><

>>= B>= >>< B><

whence we deduce that

F Ÿ F F   F><> B<> >=> B=> Ð<ß =Ñ œ !ß  Ð<ß =Ñ œ !

since . So we can write! Á !

F Ÿ F Ÿ F   F  >< B< B >= B= B Ð<ß =Ñ œ E ÐBß <ß =Ñß  Ð<ß =Ñ œ F ÐBß <ß =Ñ

where  and  are arbitrary functions. We then easily obtainE F

F 9 0 F < (< =œ EÐBß <ß =Ñ  Ð ß <ß =Ñß œ FÐBß <ß =Ñ  Ð ß <ß =Ñ

where the characteristic variables are

0 Ÿ (  œ B  Ð<ß =Ñ>ß œ B  Ð<ß =Ñ>.

Similarly, the following equations must hold

F Ÿ F F   F><B B<B >=B B=B Ð<ß =Ñ œ !ß  Ð<ß =Ñ œ !

from which we get

E œ !ß F œ !BB BB .

We thus conclude that

EÐBß <ß =Ñ œ +Ð<ß =ÑB  ,Ð<ß =Ñß FÐBß <ß =Ñ œ -Ð<ß =ÑB  .Ð<ß =Ñ.

Functions , , ,  must satisfy the compatibility condition ,E F œ9 < F F<= =<

that is, the following equation must hold

Ð+  - ÑB  Ð  Ñ>  ,  .   œ !
 "

#
= < = < = <

!

!
9 < 9 <0 ( .

If we calculate the variables  and  in terms of  and , and insert them intoB > 0 (
the above equation, we obtain

! ( Ÿ 0  ! ( 0
9 <

9 <

Ð  Ñ Ð  "ÑÐ  Ñ

<  = #Ð<  =Ñ
Ð+  - Ñ  Ð  Ñ

 ,  .   œ !

= <

= < = <

0 (

    .

(9.3.30)
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On differentiating this expression successively with respect to variables 0
and , we find that(

 Ð  Ñ œ !
 "

#Ð<  =Ñ

!
9 <00 (( .

We thus have to take

9 0 < (00 ((Ð ß <ß =Ñ œ  Ð ß <ß =Ñ œ #5Ð<ß =Ñ

whence we deduce that

9 0 0 0

< ( ( (

Ð ß <ß =Ñ œ 5Ð<ß =Ñ  7Ð<ß =Ñ  8Ð<ß =Ñß

Ð ß <ß =Ñ œ  5Ð<ß =Ñ  :Ð<ß =Ñ  ;Ð<ß =ÑÞ

#

#

If we introduce these functions into (9.3.30) and arrange the resulting terms,
we then get the following polynomial in  and 0 (

’ “ ’ “ ’
 ‘ “

’  ‘

5  5  5  5  Ð  "ÑÐ7  :Ñ
 "  " "

<  = <  = #Ð<  =Ñ

 Ð  "Ñ<  Ð  "Ñ= Ð+  - Ñ  #Ð<  =Ñ7

  Ð  "ÑÐ7  :Ñ  Ð  "Ñ<  Ð  "Ñ= Ð+  - Ñ
"

#Ð<  =Ñ

 #Ð

= <
# #

= < =

= <

! !
0 ( !

! ! 0

! ! !

<  =Ñ:  Ð,  8Ñ  Ð.  ;Ñ œ !< = <“( .

The coefficients above must be zero so that we obtain

5Ð<ß =Ñ œ - Ð<  =Ñ ß Ð+  7Ñ œ Ð-  :Ñ ß Ð,  8Ñ œ Ð.  ;Ñ" = < = <
"! .

Therefore, we can write

7 œ  +ß : œ  -ß 8 œ  ,ß ; œ  .= = H H< = < =

where . Thus the only equation to be satisfied is= = H Hœ Ð<ß =Ñß œ Ð<ß =Ñ

      (9.3.31)
                                                                
Ð  "ÑÐ+  -Ñ  # +  # -  Ð  "ÑÐ  Ñ

 #Ð<  =Ñ œ !

! !Ÿ !  ! = =

=
= < = <

<=

so that we arrive at the result

F Ÿ = Ÿ = H

F   =   = H

< " < < <
" #

= " = = =
" #

œ - Ð<  =Ñ ÐB  >Ñ  B  Ð  +Ñ>  ß

œ  - Ð<  =Ñ ÐB  >Ñ  B  Ð  -Ñ>  Þ

!

!

When we insert these relations into (9.3.29), we see first that we have to
take  and the remaining terms give rise to the following equations- œ !"
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#Ð<  =Ñ  Ð  "ÑÐ  Ñ œ !ß

#Ð<  =Ñ  Ð  "ÑÐ  Ñ œ !ß

Ð  "Ñ Ð+  -Ñ  Ð  "Ñ Ð  Ñ  #Ð<  =Ñ Ð+  Ñ œ !Þ

= ! = =

H ! H H

!   !   = = Ÿ =

<= = <

<= = <

= < = <=

(9.3.32)

On the other hand, we can now write

#VÐ<Ñ œ  Ð  "Ñ -  Ð  "Ñ +ß

#WÐ=Ñ œ Ð  "Ñ -  Ð  "Ñ +

!   ! Ÿ

!   ! Ÿ .

Because of the relations , the equations below must be heldV œ W œ != <

 Ð  "ÑÐ -Ñ  Ð  "ÑÐ +Ñ œ !ß Ð  "ÑÐ -Ñ  Ð  "ÑÐ +Ñ œ !!   ! Ÿ !   ! Ÿ= = < < .

If we differentiate the first equation with respect to  and the second one<
with respect to , we find that=

Ð +Ñ œ !ß Ð -Ñ œ !Ÿ  <= <=

whence we obtain

Ÿ - .   - .
! !

! !
+ œ Ð<Ñ  Ð=Ñß - œ Ð<Ñ  Ð=Ñ  #-

 "  "

 "  "
" (9.3.33)

and

VÐ<Ñ œ Ð<Ñ  Ð  "Ñ- ß
#

 "

WÐ=Ñ œ Ð=Ñ  Ð  "Ñ-
#

 "

!

!
- !

!

!
. !

"

".

If we insert the expressions (9.3.33) into equations (9.3.31) and (9.3.32) ,$

solve the resulting expressions for  and  andÐ  "ÑÐ  Ñ #Ð<  =Ñ! = = == < <=

put them into the equation (9.3.32)  we reach to the equation"

 #Ð  "Ñ  #Ð  "Ñ  Ð<  =Ñ Ð  "Ñ  Ð  "Ñ

 #Ð  "Ñ- œ !

! - ! . ! - ! .

!

 ‘w w

#
"                   .

(9.3.34)

Differentiating (9.3.34) successively with respect to  and , we are led to< =

 Ð  "Ñ Ð<Ñ  Ð  "Ñ Ð=Ñ œ !! - ! .ww ww

from which we find

- .
!

!
Ð<Ñ œ - <  - <  - ß Ð=Ñ œ - =  - =  -

 "

 "
# $ % # & '

# #

On inserting these expressions into (9.3.34) we obtain
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-

. !
! ! !

! ! !

Ð<Ñ œ - <  - <  - ß

Ð=Ñ œ - =  - =  -  Ð  "Ñ-
 "  "  "

 "  "  "

# $ %
#

# $ % "
# .

If we employ these relations in (9.3.33) and, (9.3.31) and (9.3.32) , we$

come up with the relations

= = =
! ! !

! !
<= # = < #œ  - ß  œ - Ð<  =Ñ

Ð  "Ñ #

 "  "
.

Integration of the first equation yields

=
! !

!
œ  - <=  7Ð<Ñ  8Ð=Ñ

Ð  "Ñ

 "
#

while the second equation then results in

!- Ð<  =Ñ  7 Ð<Ñ  8 Ð=Ñ œ !#
w w .

The solution of this equation is easily found as

7Ð<Ñ œ  - <  - <  - ß
"

#

8Ð=Ñ œ  - =  - =  -
"

#

!

!

# & '
#

# & (
# .

Hence, by replacing the arbitrary constant  by , we get-  - -' ( '

= !
! !

!
Ð<ß =Ñ œ  - <=  - Ð<  = Ñ  - Ð<  =Ñ  -

Ð  "Ñ "

 " #
# # & '

# # .

On making use of these expressions where they are pertinent and defining
new arbitrary constants as appropriate combinations of old constant, we ulti-
mately obtain isovector components depending on constants , , , + + + +" # $ %

and a function , being a solution of the partial differential equationHÐ<ß =Ñ
(9.3.32) , as follows#

\ œ + B  +  + Ð  "Ñ Ð<  =Ñ  Ð<  =Ñ >

 ß
Ð<ß =Ñ  Ð<ß =Ñ

<  =

X œ % + B  +  +  % Ð  "Ñ+ Ð<  =Ñ >  ß
Ð  Ñ

<  =
V œ % + <  + <  + ß W œ % + =

% $ "
# #

= <

#
" # % "

= <

" # $ "
#

˜  ‘™ ‘
 ‘

! !

! Ÿ H   H

! ! !
! H H

! ! #
# $ + =  + Þ

(9.3.35)

Therefore, the linearly independent isovectors are given by



518 IX  Partial Differential Equations

Z œ  Ð  "Ñ Ð<  =Ñ  Ð<  =Ñ >
`

`B

 % B  Ð  "ÑÐ<  =Ñ>  % <  % = ß
` ` `

`> `< `=

Z œ  >  <  = ß Z œ >   ß Z œ B  >
` ` ` ` ` ` ` `

`> `< `= `B `< `= `B `>

Z œ Ð<ß
<  =

"
# #

# #

# $ %

! !

! ! ! ! !

!
Ÿ

 ‘
 ‘

’H =Ñ  Ð<ß =Ñ  Ð  Ñ
` `

`B `>
H   H H H= < = <‘ “

To determine the symmetry groups we have to solve the following autono-
mous ordinary differential equations

.B .> .< .=

. . . .
œ \ÐBß >ß <ß =Ñß œ X ÐBß >ß <ß =Ñß œ VÐ<Ñß œ WÐ=Ñ

% % % %

under the initial conditions , ,  and BÐ!Ñ œ B >Ð!Ñ œ > <Ð!Ñ œ < =Ð!Ñ œ =
where  is taken as the flow parameter. Hence, the one-parameter Lie group%
generated by the isovector field  becomesZ"

BÐ Ñ œ Ð% <  "ÑÐ% =  "Ñ # Ð  "ÑÐ<  =Ñ  "' <=

 " B  Ð<  =Ñ  Ð<  =Ñ  % <=  ) Ð  "Ñ<=Ð<  =Ñ >

>Ð Ñ œ Ð% <  "ÑÐ% =  "Ñ %

% ! % ! % ! ! % ! %

! ! ! ! % %

% ! % ! % !

 ‘ ˆ
‰ ˆ ‰ ‘
 ‘ 

!

!

"
#

"
#

$ #

# # # #

#B  "  # Ð  "ÑÐ<  =Ñ >

<Ð Ñ œ  <ÎÐ% <  "Ñß =Ð Ñ œ  =ÎÐ% =  "Ñ

% ! ! %

% ! % % ! %

ˆ ‰ ‘
Similarly, the isovector field  leads up to the Lie groupZ#

BÐ Ñ œ Bß >Ð Ñ œ > / ß <Ð Ñ œ < / ß =Ð Ñ œ = / ß% % % %% % %

the isovector field  to the Lie groupZ$

BÐ Ñ œ B  >ß >Ð Ñ œ > ß <Ð Ñ œ <  ß =Ð Ñ œ =  ß% % % % % % %

and the isovector field  to the Lie groupZ%

BÐ Ñ œ B / ß >Ð Ñ œ > / ß <Ð Ñ œ <ß =Ð Ñ œ =% % % %% % .

On the other hand, the function  satisfying (9.3.32)  generates theHÐ<ß =Ñ #

Lie group

BÐ Ñ œ B  Ð<ß =Ñ  Ð<ß =Ñ ß
<  =

>Ð Ñ œ >  Ð  Ñ ß <Ð Ñ œ <ß =Ð Ñ œ =
<  =

% Ÿ H   H %
!

% H H % % %
!

 ‘= <

= < .
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If we wish to pass to the physically meaningful dependent variables
Ð?ß -Ñ, then the isovector field should be depicted by

Z œ \  X  Y  G
` ` ` `

`B `> `? `-
.

If we take into account the relations

` " ` " ` ` " ` " `

`< # `? `- `= # `? `-
œ  ß œ Š ‹ Š ‹

! !

we readily obtain

Y Ð?ß -Ñ œ ß
VÐ?  -Ñ  WÐ?  -Ñ

#

GÐ?ß -Ñ œ
VÐ?  -Ñ  WÐ?  -Ñ

#

! !

! !

!
.

Thus, it follows from (9.3.35) that

\ œ + B  +  % Ð  "Ñ+ Ð?  - Ñ >  #  ß
#?

-

X œ % + B  +  +  ) Ð  "Ñ+ ? >  ß
"

# -
Y œ % + Ð?  - Ñ  + ?  + ß

G œ ) + ?-  + -

% $ " ? -
# #

#
" # % " -

" # $
# # #

" #

 ‘
 ‘

! ! ! H H
!

! ! ! H
!

! !

!

    

where the function  has now to be taken as a solution of the partialHÐ?ß -Ñ
differential equation

! H H H
!#

?? -- -  œ !
 "

-
.

Hence, the linearly independent isovectors become

Z œ  % Ð  "ÑÐ?  - Ñ>  % B  #Ð  "Ñ?>
` `

`B `>

 % Ð?  - Ñ  ) ?- ß
` `

`? `-
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` ` ` ` ` ` `

`> `? `- `B `? `B `>

Z œ #  
? `

- `B

"
# #

# # #

# $ %

? -

! ! ! ! ! !

! ! !

H H
!

 ‘

Š ‹H
" `

# - `>
Þ

!
H- “

It is easily seen that the Lie transformation group generated by the isovector
Z" is now given by
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BÐ Ñ œ "  ) ?  "' Ð?  - Ñ Ö"  % ÒÐ  "Ñ? 

Ð?  - Ñ " B  % Ð  "ÑÖÐ?  - Ñ  % ?Ð?  -Ñ × > ß

>Ð Ñ œ "  ) ?  "' Ð?  - Ñ
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# # # # #

# # # # # # #
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?Ð Ñ œ
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! ! %
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# # #

# # # # #
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ß

-Ð Ñ œ
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Similarly, the isovector  gives rise to the Lie groupZ#

BÐ Ñ œ Bß >Ð Ñ œ > / ß ?Ð Ñ œ ? / ß -Ð Ñ œ - / ß% % % %% % %

the isovector  to the Lie groupZ$

BÐ Ñ œ B  >ß >Ð Ñ œ > ß ?Ð Ñ œ ?  ß -Ð Ñ œ - ß% % % % % %

and the isovector  to the Lie groupZ%

BÐ Ñ œ B / ß >Ð Ñ œ > / ß ?Ð Ñ œ ?ß -Ð Ñ œ -% % % %% % .

The function  generates the Lie groupHÐ?ß -Ñ

BÐ Ñ œ B  #  ß
?

-

>Ð Ñ œ >  ß ?Ð Ñ œ ?ß -Ð Ñ œ -
"

# -

% H H %
!

% H % % %
!

Š ‹? -

- .

è

9.4. ISOVECTOR FIELDS OF BALANCE IDEALS

Before dealing with partial differential equations in the form of general
balance equations, we would like first to consider the system of non-linear
partial differential equations given by (9.2.1). This time we shall represent
this system via -forms8

= . A V+ + 8
7œ J − Ð Ñß + œ "ß á ß E

defined on the th order contact manifold . The volume form of the ma-7 V7

nifold  is the -form . We shall also need the formsQ 8 œ .B • â • .B. " 8

. . A3 `
8"œ Ð − ÐQÑ 8i

3
Ñ . The reason why we use -forms in association

with the field equations instead of -forms as before is that they happen to!
be more beneficial in determining isovector fields. The regular solution
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mapping  introduced on . 489 gives rise to the relation9 W VÀ Ä :8 7

9 = 9 9 .‡ + ‡ + ‡œ Ð J ÑÐ Ñ œ !

since  and . Thus, it annihilates the forms . Let us now9 . 9 =‡ ‡ + +Á ! J œ !
consider the fundamental ideal

¼ \ 5 5 5 5 5 =7 3 3 3 3 3 â3 3 3 â3
+œ Ð ß ß ß á ß à . à Ñ! ! ! ! !

" " # " # 7" " # 7"

This ideal is closed. Indeed, if we make use of the definitions (9.2.5), we
obtain

. œ .J • œ .B  .@ •
`J `J

`B `@

œ  @ .B  •
`J `J `J

`B `@ `@


`J

`@

= . .

5 .

+ + 3
+ +

3
<œ!

7

3 â3
3 â3

+ + +

3
<œ! <œ!

7" 7"

3 â3 3 â3
3 â3 3 3 â3

3

+

3 â

Š ‹"
’Š ‹ “" "

!
!

! !
! !

!

" <

" <

" < " <

" < " <

"

 

3
3 â3 3

8

<œ!

7" + +

3 â3 3 â3
3 â3 3 â33 7

7

" 7" 7

" < " 7

" < " 7"7

. •

œ Ð"Ñ •  • . −
`J `J

`@ `@

5 .

. 5 . 5 ¼

!

! !
! !"

where we have utilised the known relations , .B • œ ! .B • œ3 4
3 3

4
. . $ .

and . In order.@ • œ .@ • .B • œ  . •! ! !
3 â3 3 3 â3 3 3 â3

3
3 3" 7" 7 " 7" " 7"7 7

. . 5 .

to determine the isovector fields of this ideal, we first consider the isovector
field  of the contact ideal whose general structure has been fully revealedZ
in Sec. 9.3. According to Theorem 5.12.5, we have to impose further the
condition £  on this vector. If we evaluate the Lie derivative of Z 7

+ += ¼ =−
by noting the relations

i iZ 3 Z 3
+ + 3 + + 3 +Ð Ñ œ J \ ß Ð. Ñ œ Z ÐJ Ñ  \ .J •= . = . .

we thus conclude that the following conditions should be satisfied

£

.

Z 3
+ + + 3

, 3 â3 3 â3
+ , +3 â3 +3 â3

<œ!

7"

= . .

- . - 5 A 5

œ Z ÐJ Ñ  J .\ •

œ J  •  • ." ! !
! !" < " 7

" < " 7"

-1

But, we must of course show that it is possible to find forms - A V,
+ !

7− Ð Ñß
- A V A A V! !

+3 â3 8" +3 â3 8#
7 7

" < " 7− Ð Ñß < œ !ß "ß á ß 7ß − Ð Ñ-1  satisfying the
above relations. If we recall that  if , the foregoing\ œ \ Ð ß Ñ R  "3 3 x u
expressions require that we have to take
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- . - A! ! !!
+ 8" + +3 â3 +3 â3

3

3œ Ð"Ñ J à œ !ß " Ÿ < Ÿ 7  "à œ !
`\

`?
" < " 7-1

and the coefficient of  there yields.

Z ÐJ Ñ   @  J œ !
`\ `\

`B `?
+ + + ,

3 3

3 3 , ,’Š ‹ “
!

! $ - .

However, we know that the system of differential equations has to comply
with the conditions . Hence, the isovector components must sa-9‡ +J œ !
tisfy the relations

9 9 9‡ + ‡ 3 ‡ +
+ +

3
<œ!

7

3 â3
3 â3Z ÐJ Ñ œ \  Z œ !ß J œ !

`J `J

`B `@
’ “"

!
!

" <

" <

for . The functions  and  determining complete-" Ÿ + Ÿ E \ Ð ß Ñ Y Ð ß Ñ3 x u x u!

ly the isovector components can be found in principle from the above equa-
tions. These equations are exactly the same as the determining equations for
infinitesimal generators of Lie symmetry groups obtained by the classical
approach [ Olver (1986), Ch. 2]. Consequently, it is not possible to getsee 
useful information about isovector components without knowing explicitly
the structure of functions . The case  can likewise be discussed inJ R œ "+

a similar manner.
On the other hand, when partial differential equations are of balance

type we can attain to much more feasible results than those obtained above.
An th order balance equations with  independent variables  andÐ7  "Ñ 8 B3

R ? dependent variables  are specified by!

`

`B
 œ !ß 3 œ "ß #ß á ß 8à œ "ß #ß á ß R

D
D !

!
!

3

3
(9.4.1)

where  and  are smooth functions of variables  and partialD D! ! !3 3B ß ?
derivatives  of functions  up to and in-? ß ? ß á ß ? ? œ ? ÐB Ñ! ! ! ! !

ß3 ß34 ß3 3 â3
3

" # 7

cluding th order. Because of the physical significance, we shall assume7
that the number of equations are equal to the number of unknowns. How-
ever, methods that we shall explore fully in this section and some of sub-
sequent sections will be equally applicable to a case in which the number of
equations differs from the number of unknowns, that is, to balance equa-
tions in the form

`

`B
 œ !ß + œ "ß #ß á ß E

D
D

+3

3
+ .
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As we have mentioned earlier, we suppose that the differential equations are
defined on an open set . If we integrate equations (9.4.1) on theW ‘8

8©
region  whose exterior unit normal is  and make use of the divergenceW8 n
theorem, we obtain the following integral relation

( (
`

+3 +
3

W W8 8

D D8 .W œ  .Z .

We call  as the  along the boundary of the region and  as theD D+3 +
38 flux

source inside the region. Thus the total flux is balanced by the total source.
In order to say that the set (9.4.1) is of th order, at least one of theÐ7  "Ñ
functions  must contain an th order derivative . The explicitD! !3

ß3 3 â37 ?
" # 7

form of equations (9.4.1) is found by resorting to the chain rule as follows

"
<œ!

7 3 3

ß3 3 â3
ß3 3 â3 3 3

` `

`?
?   œ !

`B

D D
D

! !

"
" !

" # <

" # <
(9.4.2)

where we have again adopted the convention

"
<œ!

7 3 3 3 3

ß3 3 â3 ß3 ß3 â3
ß3 3 â3 3 ß3 ß3 3 ß3 â3 3

` ` ` `

`? `? `?
? œ ?  ?  â  ?

`?

D D D D! ! ! !

" " "
" " " "

"
" # < " " 7

" # < " " 7
.

In understanding the real extent of above expressions we should recall that
all repeated dummy indices indicate summations over their ranges. As we
said if the order of this set of partial differential equations is , then at7  "

least one of the coefficients  must be different from zero.` Î`?D! "3
ß3 â3" 7

Since equations (9.4.2) are linear with respect to th order deriva-Ð7  "Ñ
tives, they constitute a set of  partial differential equations. In or-quasilinear
der to utilise exterior forms the set (9.4.2) has to be transformed to a system
of first order partial differential equations by introducing again auxiliary
variables. Through the auxiliary variables , @ œ ? ! Ÿ < Ÿ 7! !

3 3 â3 ß3 3 â3" # < " # <

that are  defined as in (9.2.4), we cancompletely symmetric in its subscripts
readily enlarge our system to the following first order system

@ œ @ ß ! Ÿ < Ÿ 7à @ œ ?

` `

`@
@   œ !

`B

! ! ! !

! !

"
" !

3 3 â3 3 3 â3 ß3 3

<œ!

7 3 3

3 3 â3
3 3 â3 ß3 3

" # < " # <" < !

" # <

" # <

  

" D D
D

Let us now consider the contact -forms (9.2.5)"

5 A V! ! !
3 3 â3 3 3 â3 3 3 â3 3

3 "
7" # < " # < " # <

œ .@  @ .B − Ð Ñß ! Ÿ < Ÿ 7  "   
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and  R balance -forms8

= D . D . A V! ! !œ . •  − Ð Ñ3 8
3 7 . (9.4.3)

In this section, we shall frequently find the opportunity of using the rela-
tions (5.5.10-13-14). (9.4.3) balance forms may be explicitly written as

= D . .
D D! !
! !

"
"œ   .@ •

` `

`B `@
Š ‹ "3 3

3
<œ!

7

3 â3
3 â3 3

" <

" <
. (9.4.4)

A regular mapping  becomes a solution of balance equations if9 W VÀ Ä8 7

it satisfies the relations

9 5 9 =‡ ‡
3 3 â3
! !
" # <

œ !ß ! Ÿ < Ÿ 7  "à œ !  .

In fact, the equations
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9 = D .
D D
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3
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œ Ð@  @ Ñ .B œ !ß ! Ÿ < Ÿ 7  "
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” •"
yield  and ,  from which we@ œ @ @ œ ? @ œ ?! ! ! ! ! !

3 3 â3 3 3 3 â3 ß3 3 3 3 â3 ß3 3 â3" # < " # < ! " # < " # <

recover the differential equations (9.4.2). We shall now consider the ideal
below of the exterior algebra A VÐ Ñ7

¼ \ 5 5 =7 3 3 â3 3 3 â3œ Ð ß !Ÿ < Ÿ 7 "à . à Ñ! ! !
" # < " # 7"

where , , .  will be called henceforth" Ÿ ŸR " Ÿ 3 Ÿ8 ! Ÿ < Ÿ 7"! ¼< 7

as the  or the . We can immediately verifybalance ideal fundamental ideal
that the balance ideal  is closed. On using the definition of contact -¼7 "
forms, we obtain

. œ . • œ .B •  .@ •
` `

`B `@

œ Ð"Ñ •  • .
` `

`@ `@

= D . . .
D D

D D
. 5 . 5

! !
! !

"
"

! !

" "
" "

3
3

<œ!

7

3 â3
3 â3

8

<œ!

7"

3 â3 3 â3 3
3 â3 3 â33

"
” •"

" <

" <

" < " 7"

" < " 7"

that amounts to say that . Solutions of balance equations in ques-. −= ¼!
7

tion annihilate the ideal . We shall now attempt to determine isovector¼7

fields of the closed balance ideal . To this end, we resort to Theorem¼7

5.12.5. Let  be an isovector field of the contact ideal obtained inZ − X Ð ÑV7

the previous section. We shall now try to specify the particular structure of
this vector that permits us to determine appropriate forms - A V"

! − Ð Ñà!
7
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# A V > A V" "
! !3 â3 3 â38" 8#

7 7
" < " 7"− Ð Ñß < œ !ß "ß á ß 7  "à − Ð Ñ such that

the following relations are satisfied

      £ . (9.4.5)Z

<œ!

7"
3 â3 3 â3

3 â3 3 â3= - = # 5 > 5! ! "
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£ (9.4.6)
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for a smooth function . We now have to take into consideration0 − Ð ÑA V!
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two different cases concerning isovectors of the contact ideal.
Ð3ÑÞ Let . Therefore we have to choose , R  " \ œ \ Ð ß Ñ Y œ3 3 x u !

Y Ð ß Ñ Z ß " Ÿ < Ÿ 7! !x u  and the components  are found from (9.3.19). If3 â3" <

we evaluate (9.4.6) under this constraint we obtain
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(9.4.7)

By making use of the relation  we cast (9.4.7) into.B • œ4
3 3

4
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where the smooth functions
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are all elements of . It is obvious that the functions   andA V!
7

33 â3Ð Ñ E"
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E 3 ß á ß 3"#
!343 â3

" <
" <  are completely symmetric in indices . The antisymmetry
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On inserting this expression together with (9.4.9) into the relation (9.4.5)
and equating the coefficients of linearly independent like forms in both
sides we end up with the following result
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(9.4.10)

whereas the last  equations to be satisfied take the formR
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Consequently, we can state the theorem below:
Theorem 9.4.1.   In order that an isovector field of the contact idealZ
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becomes also an isovector of the balance ideal,  number of8  R  R #
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whenever .R  " 
The number of the equations (9.4.11) that help determine isovector

components, or  in the nomenclature of the classicalinfinitesimal generators
theory of Lie symmetry groups, are considerably less than those in the
classical theory because exterior products are quite effective in eliminating
some of the redundant equations. However, it is still a large number. It can
easily be checked that there can be at most R  R 8Ð8  "Ñ"

# 7"
# 87#ˆ ‰

number of determining equations. Therefore, we must expect that the num-
ber of the determining equations would be much larger than that of un-
knowns. This property amounts to say that the shape of the solutions would
perhaps be restricted to a great extent even if they exist.

If , that is, if functions entering the balance equations are in the7 œ !
form  and , we get a system of first order equations. InD D! !3Ð ß Ñ Ð ß Ñx u x u
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and the -  producing this equation is given bybalance form8
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We can arrange this expression into the following form
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where the smooth functions
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Therefore, we can state the theorem below:
Theorem 9.4.2. An isovector field  of a contact ideal generated by aZ

single dependent variable  can also be an isovector field of the balance?
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without loss of generality. Since (5.5.16)  allows us to write#

.B • œ  7
345 45 53 343 4

7 7 7
5. $ . $ . $ .

we easily obtain

 • .@ • .B œ  .@ • .B • œ  .@ • .B •

 .@ • .@ • .B • œ Ð  .@ •  .@ • Ñ

 Ð.@ • .@ •  .@ • .@ •  .@ • .@ • Ñ

œ # .

> > # .

# . # . .

# . . .

#

7 7 7 34
7 7 34 7

3456 7 34
7 6 345 3 4 4 3

3456
3 6 45 4 6 53 5 6 34

34 @ •  $ .@ • .@ •4 3 6 5 43
3456. # .

But, exterior products appearing in the second form on the right hand side in
the last line above are antisymmetric in indices  and . This entails that the5 6
functions  should be completely antisymmetric with respect to all super-#3456

scripts. We thus arrive at the following relations

- D
D D

- #
D

# . .

#

Š ‹  @ œ E  E @ ß
` `

`B `?
`

`@
 # œ E  #F @ ß

œ Ð "Ñ E  F • .@ ß

$ œ G

3 3

3 3 3
3

3

4

34 34 354
5

8" 3 345
3 43 5

3456 3456.

Since the functions  are completely antisymmetric, we then obtain# #34 3456ß

% œ E  E  ÐF  F Ñ@   ß
` `

`@ `@

$ œ G œ G

# -
D D

#

34 34 43 534 543
5

3 4

4 3

3456 3456 3 45 6

Š ‹
[ ] [ ]

where in the last line, we have made use of antisymmetries of the functions
G Ð3ß 4Ñ Ð5ß 6Ñ3456 with respect to pairs of indices  and . Hence, the determining
equations for the isovector components corresponding to the case 7 œ "
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take the following special forms

- D
D D

-
D D

Š ‹
Š ‹

  @ œ E  E @ ß
` `

`B `?
` `

`@ `@
 œ E  E  #ÐF  F Ñ@

G  G œ !

3 3

3 3 3
3

3 4

4 3

34 43 534 543
5

3456 3546

  (9.4.18)

,

.

We know that isovector fields of the balance ideal constitute a Lie al-
gebra, and this algebra in turn induces a Lie group of transformations. This
group is called the  of the system of differential equations.symmetry group
If we obtain  linearly independent isovectors  from the determining< Z+

equations, then any isovector field may be represented by  whereZ œ - Z+
+

- − ß + œ "ß á ß <+ ‘  are arbitrary constants. In this case, the symmetry
group becomes an -dimensional Lie group. If arbitrary functions are in-<
volved in isovector components, then the Lie group turns out to be infinite
dimensional. Let a regular mapping  be a solution of the ba-9 W VÀ Ä8 7

lance ideal  satisfying the conditions ¼ 9 57
‡

3 3 â3
!
" # <

œ !ß < œ !ß "ß á ß 7  "à

9 =‡ ! œ ! Z. If  is an isovector field of this ideal, we had already shown in
Theorem 5.13.7 that the mappings

9 9 W VZ 8 7Ð>Ñ œ ‰ À Ä ß/>Z

where  is a real parameter constitute a -parameter family  of  solutions of> ß "
the ideal . Let us recall that the mapping  is obtained by¼ 9 W V7 8 7À Ä
lifting the solution mapping  specified by . Hence,9 W 9À Ä K ? œ ÐB Ñ8

3! !

to determine the family of solutions  when , we9 W VZ 8 7Ð>Ñ À Ä R  "
have to solve the following set of autonomous ordinary differential equa-
tions

.B .?

.> .>
œ \ Ð ß Ñß œ Y Ð ß Ñ

.@

.>
œ Z Ð ß ß @ ß á ß @ Ñß < œ "ß á ß 7

¯ ¯
¯ ¯ ¯ ¯

¯
¯ ¯ ¯ ¯

(9.4.19)
3

3

3 â3
3 â3 3 3 â3

x u x u

x u

!
!

!
! !" <

" < " " <

under the initial conditions , ,  where¯ ¯ ¯x x u uÐ!Ñ œ Ð!Ñ œ @ Ð!Ñ œ @! !
3 â3 3 â3" < " <

< œ "ß á ß 7. Let us now consider the vector field

Z œ \ Ð ß Ñ  Y Ð ß Ñ
` `

`B `?
K

3
3

x u x u!
!

which is the projection of the isovector onto the tangent bundle of the graph
space . We know that this vector induces a Lie group of diffeomorphismsK
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mapping the manifold  onto itself. Let us suppose that a solutionK
9 WÀ Ä K8  of the system of differential equations is depicted by the given
expressions . If we represent the solution of  ordinary? œ ÐB Ñ 8  R! !9 3

differential equations (9.4.19)  under the initial conditions  and¯"# x xÐ!Ñ œ
u u¯   byÐ!Ñ œ

B œ Ð>à ß Ñß ? œ Ð>à ß Ñ¯ ¯
3 3< <x u x u! !

we find

B œ Ð>à ß Ð ÑÑ œ Ð>à Ñß ? œ Ð>à ß Ð ÑÑ œ Ð>à Ñ¯ ¯
3 3 3 3< G < Gx x x x x x9 9! !

when we insert the original solution  into these relations. On solv-u xœ Ð Ñ9
ing the variables  in terms of  from the first set of equations and intro-¯B B3 3

duce the result into the second set, we ultimately obtain the family of solu-
tions  in the form . Hence, this procedure¯ ¯9 W FZ 8 >

3Ð>Ñ À Ä K ? œ ÐB Ñ! !

based on isovectors of the graph space enables us to produce a family of
new, probably more complicated, solutions if we have at hand a solution,
however simple, of the set of partial differential equations. But, it is clear
that if we do not know a particular solution, this approach cannot help us at
all to generate any new solution.

In the case of , the components  and  of the isovector fieldsR œ " \ Y3

will depend on the variables , , . Hence, we can project isovectors onlyB ? @3
3

on the tangent bundle of the manifold . Consequently, to determine theV"

group of transformations, we have to solve the following set of ordinary
differential equations

.B `J .? `J .@ `J `J

.> `@ .> `@ .> `B `?
œ  ß œ J  @ ß œ  @ ß¯ ¯ ¯

¯ ¯ ¯ ¯
¯ ¯

3

3 3
3 3

3

3

under the initial conditions , , . Here, the¯ ¯ ¯B Ð!Ñ œ B ?Ð!Ñ œ ? @ Ð!Ñ œ @3 3
3 3

function  determines the isovector components. When weJ œ J Ð ß ?ß Ñx v
accomplish to integrate these differential equations, we arrive at the result

B œ Ð>à ß ?ß Ñß ? œ Ð>à ß ?ß Ñß @ œ Ð>à ß ?ß Ñ¯ ¯ ¯ .3 3
3 3< < <x v x v x v

Since, the transformations between  and  now involve deriva-¯ ¯ÐB ß ?Ñ ÐB ß ?Ñ3 3

tives , they become now  forming a group. A?ß3 Bäcklund transformations
Bäcklund transformation reduces to a Lie transformation if and only if the
function  is an affine function of variables .J @3

The approach we have developed so far to determine isovector fields
of balance equations may also be used to find isovector fields associated
with th order non-linear partial differential equations given by (9.2.1) and7
taken into account at the beginning of this section. In this case, we have to
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take  and we write . Evidently,D = D .+3 + + 3
3 3 3 â3´ ! œ ÐB ß ? ß @ ß á ß @ Ñ! ! !

" # 7

the  induced by -forms  is closed. Thus, if  is an iso-fundamental ideal 8 Z=+

vector field of the contact ideal, then the functions  and  should be\ Y3 !

found from equations (9.4.11) such that  when  or theZ Ð Ñ œ ! œ !D D+ +

function  from equations (9.4.17) or (9.4.18) such that  whenJ Z Ð Ñ œ !D
D œ !. This is quite a difficult procedure to accomplish. Nonetheless, if we
consider a first order equation in the form , the isovectorDÐB ß ?ß ? Ñ œ !3

ß3

field can be found easily. In this case, we may choose J ÐB ß ?ß @ Ñ œ 3
3 D

to find the isovector components as follows

\ œ ß Y œ   @ ß Z œ   @
` ` ` `

`@ `@ `B `?
3

3 3
3 3 33

D D D D
D Š ‹. (9.4.20)

We thus obtain

Z Ð Ñ œ  @    @ œ 
` ` ` ` ` ` ` `

`@ `B `@ `? `B `? `@ `?
D D D

D D D D D D D D

3 3 3
3 33 3Š ‹ Š ‹

implying that  whenever . In this situation, we can obvious-Z Ð Ñ œ ! œ !D D
ly write

i i

i

Z 3 Z 3
3 3

Z 3 3
3 3

Ð Ñ œ Y  @ \ œ œ !ß Ð Ñ œ \ œ !

Ð. Ñ œ  Z .B  \ .@ œ .  œ
` `

`? `?

5 D = D .

5 D 5 5
D D

,

.

Hence, this isovector field is likewise a characteristic vector field of the ide-
al. Consequently, we again find the previously given solution (9.2.10) by
employing this isovector field.

Example 9.4.1. The time-dependent, one-dimensional heat equation in
a homogeneous medium, or more generally the one-dimensional diffusion
equation modelling various physical phenomena is given by

`? ` `?

`> `B `B
œ Ð?Ñ  2ÐBß >ß ?ÑŠ ‹, (9.4.21)

where  is the temperature,  is the time,  is the spatial variable and  is? > B Ð?Ñ,
a constitutive quantity called the  that maycoefficient of thermal diffusivity
be dependent on temperature and  is the heat source. Let us denote2
B œ B ß > œ B @ œ ? @ œ ? ß œ .B • .> œ .> œ  .B" #

" B # > " # , ,  , , .. . .
Then we arrive at the balance equation

` `

`B `B
  œ !

D D
D

1

1

#

#

where
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D , D D" # " #
"œ Ð?Ñ @ ß œ  ?ß œ 2ÐB ß B ß ?Ñ.

In this case, the isovector field must be prescribed by

Z œ \  \  Y  Z  Z
` ` ` ` `

`B `B `? `@ `@
" #

" # " #
" #

and its components are specified by relations (9.3.26)  through an arbit-"#

rary function . With these data,J œ J ÐB ß B ß ?ß @ ß @ Ñ œ J ÐBß >ß ?ß @ ß @ Ñ" #
" # " #

non-zero coefficient functions in (9.4.13) become

Z Ð Ñ œ @ Y  Z ß
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"
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`Y `Z `\ `\

`@ `@ `@ `>

E œ   2 ß
`Y `\

`@ `@

E œ
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"
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w
"

# # #

"
"

#"

" "
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`Y `Z `\
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`Y `\ `\

`@ `@ `B

#F œ   @ ß
`\ `\ `\

`? `@ `@
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`@ `@

,

,

, ,

, .

Hence, the determining equations (9.4.18) are found to be

- ,

-,

Ð @  @  2Ñ œ E  E @  E @ ß

œ E  #F @ ß

E  #F @ œ !ß

w # " #
" # " #

"" "#"
#

## "##
"
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E  E  #F @  #F @ œ !"# #" "#" "##
" #

whence we extract, respectively, the following four equations to be satisfied
by the single function J

- , , , ,

, ,

Ð@  2  @ Ñ  @  J  # @  Ð# @  @ Ñ
`2 `J `J

`? `B `?

  @   @ Ð @ @   @ Ñ
`J `2 `2 `J `2 `2 `J

`> `B `? `@ `> `? `@



# " #
w # ww # w w #

" " "

ww $ ww #
" "" # #

" #

Š ‹
Š ‹    

          Ð@  2  @ Ñ   @  @
` J ` J ` J ` J

`B`@ `>`@ `?`@ `?`@

  # @  @
` J ` J ` J

`B `B`? `

# " #
w #

"

# # # #

" # " #
# # #

# "
#
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,

, , ,

Š ‹
                                              

?
œ !ß

J  @  @  Ð@  2  @ Ñ   
`J `J ` J `J

`@ `@ `?`@

   @  @ œ !ß
` J ` J ` J ` J

`B`@ `>`@ `?`@ `?`@

#

w w #
" # #
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"

#

"
#

# # # #

" # " #
" #

, , , -Š ‹ Š
‹                       (9.4.22)

Ð@  2  @ Ñ œ !ß
` J

`@

Ð@  2  @ Ñ   @ œ !Þ
` J ` J ` J

`@ `@ `B`@ `?`@

#
w #

"

#

#
#

# "
w #

"

# # #

" # # #

,

, ,Š ‹
(9.4.22)  yields$

J œ 0ÐBß >ß ?ß @ Ñ @  1ÐBß >ß ?ß @ Ñ" # " .

On inserting this expression into the equation (9.4.22) , we find that%

, ,Š ‹`0 `0 `0 `0

`B `? `@ `@
 @  Ð @  2Ñ  @ œ !" #

w #
"

" "

from which we obviously obtain

`0 `0 `0

`@ `? `B
œ !ß œ !ß œ !

"
.

Hence, we see that  must take the formJ

J œ 0Ð>Ñ @  1ÐBß >ß ?ß @ Ñ# " .

Let us now introduce this function  into equations (9.4.22)  and elimi-J "#

nate the function  between these two equations so obtained. If we then-
equate the coefficient of the variable  to zero in this expression, we are led@#

#
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to the simple partial differential equation  whose solution is` 1Î`@ œ !# #
"

immediately obtained as

1 œ ÐBß >ß ?Ñ@  ÐBß >ß ?Ñ! ""

The coefficient of  in the same expression gives@#

 0   #  # @ œ !
` `

`B `?
, , " , ,

! !w w
"

whence we deduce  and . Let us insert` Î`? œ ! 1 œ ÐBß >Ñ @  ÐBß >ß ?Ñ! ! ""

this function  into that expression. Then the vanishing of the coefficients of1
variables  and  together with the remaining expression lead, respect-@ ß @ @" #

#
"

ively, to the equations

   #  # œ !ß
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`B `B
 œ !ß,
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#

(9.4.23)

The second order differential equation in (9.4.23)  can be written as#

` ` ` `

`? `? `? `?
  œ  œ !

# w w # w

# #

" , " , " ,

, , ,
" "Š ‹ Š ‹w

from which we get

`

`?
 œ 8ÐBß >Ñ

" ,

,
"

w

yielding

`

`?
Ð Ñ œ 8ÐBß >Ñ Ð?Ñ," , .

We thus obtain

"
,

ÐBß >ß ?Ñ œ 7ÐBß >Ñ  8ÐBß >ÑOÐ?Ñ
"

Ð?Ñ
 ‘

where  and  are arbitrary functions of their arguments and we introduce7 8

the indefinite integral  so that we have .OÐ?Ñ œ Ð?Ñ .? Ð?Ñ œ O Ð?Ñ( , , w
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When we insert this expression into the first equation in (9.4.23), we get

  Ð?Ñ #  œ !
` `8 `

`> `B `B

! !
, Š ‹#

#
.

Whenever the function  is not a constant, the foregoing equation can,Ð?Ñ
only be satisfied if

! ! !œ ÐBÑß 8 œ  ÐBÑ  8 Ð>Ñ"
#

w
!

Therefore, the function  must be in the formJ

J œ 0Ð>Ñ @  ÐBÑ @  7ÐBß >Ñ  Ò  ÐBÑ  8 Ð>ÑÓOÐ?Ñ
"

O Ð?Ñ
# " !w

"
#

w! ! ‘
Furthermore, the third and the fourth equations in (9.4.23) should also be
satisfied:

O Ð?Ñ # ÐBÑ  0 Ð>Ñ 

O Ð?Ñ 7ÐBß >Ñ  8 Ð>Ñ  ÐBÑ OÐ?Ñ œ !

O Ð?Ñ2ÐBß >ß ?Ñ #8 Ð>Ñ  $ ÐBÑ  OÐ?Ñ

w # w w

ww
!

"
#

w

w w
!

ˆ ‰
’ “ˆ ‰

ˆ ‰

!

!

!

                                      

’
ˆ ‰ “ Š ‹ Š

‹

#8 Ð>Ñ  O Ð?Ñ 
`

`B
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`2 `7 `2 `2

`? `> `? `>
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!
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! .

These equations restrict the admissible forms of functions , , ,0Ð>Ñ ÐBÑ 8 Ð>Ñ! !

7ÐBß >Ñ Ð?Ñ 2ÐBß >ß ?Ñ and structures of physical data  and  so that isovector,
fields are realisable. Interested readers can determine admissible choices
without experiencing too much difficulties by scrutinising these equations.
It is clearly seen that the function  is an affine function of the variables J @"

and . Therefore, in this case isovectors will be prolongations of the@#

vectors .ZK

As a special case, we take . Hence, the field equation, œ "ß 2 œ !
becomes

`? ` ?

`> `B
œ

#

#
.

This equation is obtained by non-dimensionalising the heat conduction
equation in the absence of the heat source and by assuming that the coeffi-
cient of thermal diffusivity is constant. Equations (9.4.23) are reduced in
this case to the form
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   # œ !ß
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The second and the fourth equations yield

" - . ! #œ ÐBß >Ñ?  ÐBß >Ñß œ 0 Ð>ÑB  Ð>Ñ
"

#
w .

If we insert these expressions into the first and the third equations, we
obtain
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We then introduce the function

- # $œ 0 Ð>ÑB  Ð>ÑB  Ð>Ñß
" "

) #
ww # w

found from integrating the first equation above, into the second equation,
we arrive at

" " "

) # %
0 Ð>ÑB  Ð>ÑB  Ð>Ñ  0 Ð>Ñ œ !www # ww w ww# $

whence we obviously deduce the relations
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www ww w ww, , .# $

We therefore find

0Ð>Ñ œ %- >  #- >  - ß Ð>Ñ œ #- >  - ß Ð>Ñ œ #- >  -" # $ % & " '
#       # $

where  are arbitrary constants. Hence, the function  is expressible- ß á ß - J" '

as follows
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The function  is any solution of the linear equation ..
. .

ÐBß >Ñ  œ !
` `

`> `B

#

#

Thus, the linearly independent isovectors are found to be
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That these vectors constitute a Lie algebra as it should be can be observed at
once from the relations
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Here, we have defined  and . Since isovectors are. . . .B >œ ` Î`B œ ` Î`>
prolongations of vectors of the form , it would suffice to integrate theZK

differential equations (9.4.19)  in order to determine the associated sym-"ß#

metry groups. To simplify the operations, let us take isovectors into consi-
deration one by one:

The isovector  gives rise to the ordinary differential equationsZ "

.B .> .?

.= .= .=
œ  %B >ß œ  %> ß œ ÐB  # >Ñ?

# #

whose solutions under the initial conditions BÐ!Ñ œ Bß >Ð!Ñ œ >ß ?Ð!Ñ œ ?
are readily found to be

BÐ=Ñ œ ß >Ð=Ñ œ ß ?Ð=Ñ œ ?ÐBß >Ñ "  %=> /
B >

"  %=> "  %=>
È =B#

"%=> .

It then follows from these relations that
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B œ ß > œ
B >

"  %=> "  %=>
.

We thus manufacture a -parameter family of new solutions of the partial"
differential equation
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#

#

from a given solution  by the following manner?ÐBß >Ñ
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In other words, if a function  is a solution of the heat conduction?ÐBß >Ñ
equation under consideration, then the family of functions
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B > "

"  %=> "  %=> "  %=>
Š ‹È

=B#
"%=>

become also solutions of the same equation. For instance, the trivially
obtained simple solution  gives rise to the family of new solu-?ÐBß >Ñ œ "

tions .?ÐBß >Ñ œ / Î "  %=>
=B#

"%=> È
If we consider the equations

.B .> .?

.= .= .=
œ  B ß œ  #>ß œ !

corresponding to the isovector , we obtainZ #

BÐ=Ñ œ B / ß >Ð=Ñ œ > / ß

?Ð=Ñ œ ?

= #=

.

This result implies that a solution is invariant under a scaling transforma-
tion:  where  is a constant.?ÐBß >Ñ œ ?Ð Bß >Ñ- - -#

The isovector  generates the differential equationsZ %

.B .> .?

.= .= .=
œ  #>ß œ !ß œ B ?

whose solution is

BÐ=Ñ œ B  #=>ß >Ð=Ñ œ >ß ?Ð=Ñ œ ? /=B= >#

.

Hence, if  is a solution, then the function?ÐBß >Ñ
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?ÐB  #=>ß >Ñ /=B= >#

provides a family of solutions. For example, the trivial solution ? œ B  +
leads to

? œ ÐB  #=>  +Ñ /=B= >#

.

We can easily check that the isovectors  and , respectively,Z ß Z Z$ & '

give rise to transformations

B œ Bß > œ >  =ß ? œ ?à

B œ B  =ß > œ >ß ? œ ?à

B œ Bß > œ >ß ? œ ? /=.

These transformations mean that solutions are invariant under translations in
the temporal and spatial variables, and by multiplications with constants.

The isovector  givesZ.

B œ Bß > œ >ß ? œ ?  = ÐBß >Ñ. .

This is an expected result associated with linear equations reflecting the fact
that solutions may be superimposed. è

Example 9.4.2. As a more complicated example, let us consider the
non-homogeneous  [after Dutch mathematici-Korteweg-de Vries equation
ans Diederik Johannes Korteweg (1848-1941) and Gustav de Vries (1866-
1934)]

`? `? ` ?

`> `B `B
 ?  œ 0ÐBß >ß ?Ñ

$

$
. (9.4.24)

where  and  denote the time and the space variables. This equation models> B
the propagation of solitons in a medium. We denote the independent varia-
bles by , . We introduce the auxiliary variables , B œ B B œ > @ œ ? @ œ" #

" ß" #

? @ œ ? @ œ ? @ œ @ œ ?ß# "" ß"" ## ß## "# #" ß"#, ,  and .  Hence, (9.4.24) is trans-
formed into the first order equation

`@

`B
 ?@  @  0 œ !

""
" # .

We thus have

D D

D

" #
""

" #

œ @ ß œ !ß

œ ?@  @  0 .

The isovector field is prescribed by
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Z œ \  \  Y  Z  Z  Z
` ` ` ` ` `

`B `B `? `@ `@ `@

 Z  Z
` `

`@ `@

" #
" # " # ""

" # ""

"# ##
"# ##

.

The components of this vector field are given by the expressions (9.3.26).
Because of the relations

Z Ð Ñ œ Z ß Z Ð Ñ œ !ß

Z Ð Ñ œ  \  \  Y @   Z ?  Z
`0 `0 `0

`B `> `?

D D

D

" #
""

" #
" " #Š ‹

we realise that we need only to know explicit forms of the following rele-
vant components

\ œ  ß \ œ  ß
`J `J

`@ `@

Y œ J  @  @ ß
`J `J

`@ `@

Z œ  @ ß
`J `J

`B `?

Z œ  @ ß
`J `J

`> `?

Z œ  #@  @
` J ` J ` J

`B `B`? `?

 @ #  #@
` J ` J

`B`@ `?

" #

" #

" #
" #

" "

# #

"" "

# # #

# #
#
"

"" "

# #

"
    Š

`@ `? `B`@ `?`@
  #@  @

`J ` J ` J

 @  @  #@ @
` J ` J ` J

`@ `@ `@ `@

" # #
"# "

# #

# #
"" "#

# # #

" #
# # "" "#

" #

‹ Š ‹

where  is presently an arbitrary function. The coeffi-J œ J ÐBß >ß ?ß @ ß @ Ñ" #

cients given in (9.4.13) that are not identically zero can now be evaluated as
follows

E œ  \  \  Y @   Z ?  Z 
`0 `0 `0 `Z

`B `> `? `B

 Ð?@  @  0Ñ  à
` J ` J

`B`@ `>`@

E œ  Ð?@  @  0Ñ ß E œ  Ð?@  @  0Ñ à
`Z ` J ` J

`? `?`@ `?`@

" #
" " #

""

" #

# #

" #

" #""
" # " #

# #

" #

Š ‹
Š ‹



548 IX  Partial Differential Equations

E œ  Ð?@  @  0Ñ ß E œ  Ð?@  @  0Ñ ß
`Z ` J ` J

`@ `@ `@

E œ  Ð?@  @  0Ñ ß E œ  Ð?@  @  0Ñ à
`Z ` J ` J

`@ `@ `@ `@ `@

E œ 
`Z ` J

`@

"" ##""

"
" # " #

# #

" #
# #

"# #"""

# " # " #
" # " #

# #

""" ""

""

#

 

`>`@ `@ `@
ß E œ E œ ß E œ ß

`Z `Z

E œ ß E œ E œ E œ !à
` J

`B`@

F œ !à G œ !

F œ  F œ  ß
` J

`?`@

G œ  G

# "# ##

""# "#" "##"" ""

#"" #"# ##" ###
#

#
345 3456

"#"" #"""
#

#

"#""" #""""

     

;

 

œ  ß G œ  G œ 
" ` J " ` J

# `@ `@ # `@

# #

" #

"##"" #"#""

#
# .

Thus (9.4.17)  takes the form#

-
D DŠ ‹` `

`@ `@
 œ E  E  #ÐF  F Ñ@

 #ÐG  G Ñ@

3 8

78 73

378 873 3478 8473
4

34578 84573
54.

If we introduce the coefficient calculated above into these expressions, we
end up with the independent equations given below

`Z ` J ` J ` J ` J

`@ `>`@ `?`@ `@ `@
  @  @  @ œ

`@

` J ` J ` J ` J

`B`@ `?`@ `@ `@
 @  @  @ œ !

`@

""

"" # # " #

# # # #

# "# ##
#
#

# # # #

# # " #
" "# ""

#
#

-

.

(9.4.25)

(9.4.25)  yields first#

` J ` J

`@
œ œ !

`@ `@

# #

#
#

" #

and consequently . We then getJ œ ÐBß >ß ?Ñ@  ÐBß >ß ?ß @ Ñ! "# "

` `

`B `?
œ œ !

! !

so we find that

J œ Ð>Ñ@  ÐBß >ß ?ß @ Ñ! "# " .
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Hence, it follows from (9.4.25)  that1

- !
" " " "

œ #  # @   # @  Ð>Ñ
` ` ` `

`B`@ `?`@ `? `@

# # #

" "
" ""#

"

w .

Therefore, the expression

-Ð?@  @  0Ñ œ

E  E @  E @  E @  E @  ÐE  E Ñ@

" #

" # "" ## "# #"
" # "" ## "#

given by (9.4.17)  can be written as"

  
` ` ` ` `

`@
@  $ @   @  $  Ð?@  0Ñ

`?`@ `B`@ `@`?`@

 @  @  # @   @ 
` ` ` ` `

`? `@ `? `B`?`@ `B`? `B `@

$ $ # $ #

$ # # #
"

$ #
"" ""

" " "
" "

"

$ # $ # $

# # #
" " "

#
" " " ""

" " " " "

" " " " "

Š ‹ Š
‹ `

`?
@

 $  $ ?  @    $ 0 
` ` ` `0 ` `

`B`? `?`@ `@ `? `@ `?`@

$ ?  $ @  $ @  $ @  $ 
` ` ` ` `

`B`@ `B `? `?`@ `B`@`@

$

$
$
"

$ # #

#
" " " "

#
"

# $ # # #

" " "
# " "" "#

"

w

"

" " " " "
"

" " " " "
!

Š ‹ Š
‹ Š ‹@

    0   ?  $0  œ !
`0 `0 `0 ` ` ` ` ` `

`? `> `B `@ `? `> `B `B`@ `B

#

" "

# $

$
" !

" " " " " "
.

From the coefficient of , we first obtain@#

`

`@
œ ! œ ÐBß >ß ?Ñ@  ÐBß >ß ?Ñ

#

#
"

"
"

" 9 <     and     ,

then the relation

$ @  $  Ð>Ñ œ !
` `

`? `B

9 9
!"

wŠ ‹
leads to

` `

`? `B
œ !ß $  Ð>Ñ œ !

9 9
!w

from which we obtain , and9 9œ ÐBß >Ñ

9 ! #ÐBß >Ñ œ Ð>ÑB  Ð>Ñ
"

$
w .

If we insert these relations into the above equation, we see that coefficients
of  and  vanish automatically while the coefficient of  gives@ @ @$ #

"" "" ""
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` `

`? `B`?
@  œ !

# #

# "
< <

whence we get

< . /ÐBß >ß ?Ñ œ Ð>Ñ?  ÐBß >Ñ.

If we introduce this function into the remaining expression above and set
the coefficient of  to zero, we get@"

Š ‹. ! / # !Ð>Ñ  Ð>Ñ ?  ÐBß >Ñ  Ð>Ñ  Ð>ÑB œ !
# "

$ $
w w ww

from which we obtain

. ! / ! #Ð>Ñ œ Ð>Ñß ÐBß >Ñ œ  Ð>ÑB  Ð>Ñ
# "

$ $
w ww w .

The remaining term imposes the following restriction on the admissible
forms of the functions  and 0ß! #

Š ‹ Š ‹" `0 `0 " # `0

$ `B `> $ $ `?
Ð>ÑB  Ð>Ñ  Ð>Ñ  Ð>ÑB  Ð>Ñ  Ð>Ñ?

 Ð>Ñ0  Ð>Ñ?  Ð>ÑB  Ð>Ñ œ !
& " "

$ $ $

! # ! ! # !

! ! ! #

w ww w w

w ww www ww

in order that a nontrivial symmetry group exists. Together with this side
condition, the function  is expressible asJ

J œ Ð>ÑB  Ð>Ñ @  Ð>Ñ@  Ð>Ñ?  Ð>ÑB  Ð>Ñ
" # "

$ $ $
Š ‹! # ! ! ! #w w ww w

" #

depending on somewhat arbitrary functions  and . Therefore,! #Ð>Ñ Ð>Ñ
isovectors are prolongation's of vectors  in tangent bundle of the graphZK

space. Their components are given by

\ œ  Ð>ÑB  Ð>Ñß \ œ  Ð>Ñß
"

$

Y œ Ð>Ñ?  Ð>ÑB  Ð>Ñ
# "

$ $

" w #

w ww w

! # !

! ! # .

In homogeneous Korteweg-de Vries equation we have  so that the0 œ !
functions  and  ought to satisfy the additional constraint! #Ð>Ñ Ð>Ñ

" "

$ $
Ð>Ñ?  Ð>ÑB  Ð>Ñ œ !! ! #ww www ww



9.4 Isovector Fields of Balance Ideals 551

whence we immediately obtain

! #Ð>Ñ œ $- >  - ß Ð>Ñ œ - >  -" # $ %.

Hence, the relevant isovector components become

\ œ  - B  - >  - ß \ œ  $- >  - ß Y œ #- ?  -" #
" $ % " # " $

Consequently, parts of linearly independent isovectors in the tangent bundle
of the graph space are designated as follows

Z œ  B  $>  #? ß Z œ  ß
` ` ` `

`B `> `? `>

Z œ  >  ß Z œ  Þ
` ` `

`B `? `B

" #

$ %

   

   

As an example, let us determine the admissible form of the function  lead-0
ing to these isovectors. Assuming , we define new constants by - Á ! - Î-" # "

œ + - Î- œ + ß - Î- œ +# $ " $ % " %,  . Then the general solution of the differential
equation

ÐB  + >  + Ñ  Ð$>  + Ñ  Ð+  #?Ñ  &0 œ !
`0 `0 `0

`B `> `?
$ % # $

is found by resorting the method of characteristics as

0ÐBß >ß ?Ñ œ Ð+  #?Ñ 1Ð ß Ñ$
&Î# 0 (

where the characteristic variables are defined by

0

(

œ ß
B  Ð+ +  #+  + >Ñ

"

#
Ð$>  + Ñ

œ Ð$>  + Ñ Ð?  + Ñ
"

#

# $ % $

#
"Î$

# $
#Î$

It is immediately observed that the isovector  generates the Z " scaling trans-
formation

B œ Bß > œ > ß ? œ ?Î- - -$ #

with  whereas the isovector  produces the group - œ / Z= $

B œ B  =>ß > œ > ß ? œ ?  =.

The isovectors  and  induce, respectively, translations in the temporalZ Z# %

and spatial variables.
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We have to determine the integral curves of the isovector field in order
to derive a family of solutions from a known solution . The differen-?ÐBß >Ñ
tial equations to be integrated are

.B

.
œ  - Ð+B  ,>  -Ñß

.>

.
œ  - Ð$+>  "Ñß

.?

.
œ - Ð#+?  ,Ñß - Á !

¯
s ¯ ¯

¯
s

¯

¯
s ¯

#

#

# #

where we have defined . These equations- Î- œ +ß - Î- œ ,ß - Î- œ -" # $ # % #

are to be solved under the initial conditions .¯ ¯¯BÐ!Ñ œ Bß >Ð!Ñ œ >ß ?Ð!Ñ œ ?
This solution is easily found as

BÐ=Ñ œ
#Ð,  $+-Ñ  $ #+ B  #+-  ,Ð"  +>Ñ /  ,Ð"  $+>Ñ/

'+

>Ð=Ñ œ ß
Ð"  $+>Ñ/  "

$+

?Ð=Ñ œ
#+?ÐBß >Ñ  , /  ,

#+

¯

¯

¯                     

 ‘

 ‘

#  

#



- = $- =

$- =

#- =

# #

#

#

                                             è

Example 9.4.3. As an example to the case , we shall treat theR  "
boundary layer equations associated with a semi-infinite flat plate along -B
axis placed in a unidirectional flow of an incompressible viscous fluid. The
field equations governing this flow are given by

/ h h
` ? `? `? `? `@

`C `B `C `B `C
 ?  @  ÐBÑ ÐBÑ œ !ß  œ !

#

#
w

where  and  are velocity components along - and -axes, respectively,? @ B C
and the constant  is the kinematic viscosity.  is the velocity field in/ hÐBÑ
the direction of -axis before the plate is installed into the flow. The secondB
equation above represents the incompressibility condition. Boundary layer
equations are highly useful approximations to exact equations of viscous
flow known as Navier-Stokes equations [  Exercise ] Let us denotesee  9.15
B œ B B œ C ? œ ? ? œ @ @ œ ? @ œ ? @ œ @ @ œ @" # " # " " # #

" # " #ß" ß# ß" ß#, ,  , , , ,  and .
Field equations then become

/
`@

`B
 ? @  ? @  0ÐB Ñ œ !ß @  @ œ !#

"

#
" " # " " " #

" # " #   (9.4.26)

where . Since the variable  is eliminated by , the iso-0 œ @ @ œ  @hh w # # "
# # "

vector field can be taken as
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Z œ \  \  Y  Y
` ` ` `

`B `B `? `?

 Z  Z  Z
` ` `

`@ `@ `@

" # " #
" # " #

" " #
" # "" " #

" " "

.

Indeed, the relation  yields . The functions ,.@  .@ œ ! Z œ  Z \" # # "
" # # " "

\ Y Y B B ? ?# " # " # " #,  and  depend only on the variables , , , . The other com-
ponents of the isovector field of the contact ideal follow from (9.3.21) :"

        

                   

Z œ   @  @  @  Ð@ Ñ
`Y `\ `Y `Y `\ `\

`B `B `? `? `B `?

 @ @  @ @  @ @
`\ `\ `\

`? `? `?

" " " # "
" " # " " #

" " " " # "

" " " # " "

# " #

" # #" # " " # "
" " " # " #

Š ‹
             (9.4.27)

Z œ   @  @  @  Ð@ Ñ
`Y `\ `Y `Y `\ `\

`B `B `? `? `B `?

 @ @  @ @  @ @
`\ `\ `\

`? `? `?

Z œ
`Y

# # # " #
# # " # # #

# # # # " #

# # # " # #

# " "

" # "# # # " # "
# " # # " #

#
"

Š ‹

" " # " " "

# # # " # #" # # " #
" " # " #

# " #

" " ## " # # #
" # " " # "

" # "
# # "

# # #

" " "

`B `B `B `? `? `?
 @   @  @  @ @

`\ `\ `Y `Y `\

 Ð@ Ñ  @ @  @ @
`\ `\ `\

`? `? `?

Z œ  @  @ 
`Y `\ `Y `

`B `B `?

Š ‹

Š \ `Y `\

`B `? `?
 @  @ @

 Ð@ Ñ  @ @  @ @
`\ `\ `\

`? `? `?

" # #

" # "" " #
# " #

" " #

# " #" " " # "
# # " # # #

‹

If we replace  in these expressions by , we see that the condition the@  @# "
# "

Z  Z œ !# "
# "  is fulfilled provided that equations below are satisfied

`Y `Y

`B `B
 œ !ß

`\ `\ `Y `Y

`B `B `? `?
   œ !ß

`\ `Y

`B `?
 œ !ß

`\ `Y

`B `?
 œ !ß

`\ `\

`? `?
 œ !

" #

" #

" # " #

" # " #

" "

# #

# #

" "

" #

" #
.

(9.4.28)

In view of the balance equation (9.4.26) , we have to take"
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D / $ D"3 " 3 " " " # "
# # " #œ @ ß œ  ? @  ? @  0 .

We thus find  andZ Ð Ñ œ !D""

Z Ð Ñ œ Z ß

Z Ð Ñ œ  @ Y  @ Y  ? Z  ? Z  \ 0

D /

D

"# "
#

" " " " # " " # " " w
" # " #

    

.

We then obtain from (9.4.8) that

E œ \ 0  @ Y  @ Y  ? Z  ? Z 
`Z
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`\ `\
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E œ
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"

4

/
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Š ‹

’
" " "

" " # #
3 3 " "

" # 3

" # ## #
4 4 "34

"345 "435 4
4 3

# #
3 5 "
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   ß E œ !ß
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`B `B `B

#E œ  #E œ  Þ
`\ `\

`? `?
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Š ‹

$ $ $ $ $

/ $ $ $ $

" " "#

"# "# # # "

Hence, the equations (9.4.11) can now be written as

- D
D D

-
D D

Š ‹
Š ‹
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`B `?
 @  œ E  E @ ß
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!

"
"

" " " " "# "#
#

whose explicit forms become

  

         (9.4.29)
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/
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" "Š ‹
# œ 

`Z `Z

`@ `@

 #   @
`\ `\ `\

`B `B `?

  @  
`\ `\ `\

`B `? `B

- $ $ $ $ $
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#
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#
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The second set of equations above leads immediately to
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- œ   @  @
`Z `\ `\ `\

`@ `B `? `?

œ    @  # @  @
`Y `\ `\ `\ `\ `\

`? `B `B `? `? `?
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(9.4.30)

Because we had replaced  by  the equations (9.4.30)  are satisfied@  @# "
# "

$

identically whereas (9.4.30)  gives2

#   $ @  #  @ œ !
`\ `Y `\ `\ `\

`B `? `? `? `?

" " " " #

# # # " #
" "
" #Š ‹

whence we extract the relations

`\ `Y `\ `\ `\

`? `? `B `? `?
œ !ß œ  # ß œ #

" " " # "

# # # # "
.

If we insert these results into equations (9.4.28) , we find that$ß&

`\ `\ `\ `Y

`B `? `? `?
œ œ œ œ !

" " # "

# " # #
.

Consequently, at this stage we reach to the following components

\ œ ÐB Ñß \ œ \ ÐB ß B ß ? Ñß

Y œ Y ÐB ß B ß ? Ñ

" " # # " # "

" " " # "

0

.

Introducing these together with the relation (9.4.30)  into (9.4.29) , taking" "

@ œ  @# "
# " and arranging the resulting expression, we conclude that
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Equating the coefficients of powers of  and  to zero, we readily see that@ @" "
" #

the following relations are to be satisfied

`\ ` Y

`? `Ð? Ñ
œ !ß œ !ß

Y œ  # ? ß Y œ ?  ? ß
.\ `\ `\ `\

.B `B `B `B
`Y ` \

`B `ÐB Ñ
œ !ß œ !ß

! œ ?  ?  0  #0  \ 0
`Y `Y `Y `\

`B `B `? `B

# # "

" " #

" " # " #
" # # #

" # " #

" # #

# # #

" # " w
" " " #

" # " #

Š ‹

.

(9.4.31)

These relations imply that

\ œ ÐB ÑB  ÐB Ñß

Y œ ÐB Ñ  # ÐB Ñ ? ß

Y œ ÐB ÑB  ÐB Ñ ?  ÐB Ñ?

# " # "

" w " " "

# w " # w " " " #

! "

0 !

! " !

 ‘
 ‘ .

If we insert these expressions into equations (9.4.28), then the first equation
yields

0 ! ! 0ww " w " " w "
!ÐB Ñ  ÐB Ñ œ ! ÐB Ñ œ ÐB Ñ  -   and  .

The other equations are satisfied identically. The last equation (9.4.31) takes
the form

0 0 !ww " # w
!Ð? Ñ  0  Ð$  - Ñ0 œ !

so that we obtain  and0ww œ !

0 !ÐB Ñ œ - B  - ß ÐB Ñ œ -  - œ -" " "
" # " ! $.

Therefore, the relevant components of the isovector field are found as

\ œ - B  - ß \ œ - B  ÐB Ñß

Y œ Ð-  #- Ñ? ß Y œ ÐB Ñ?  - ?

" " # # "
" # $

" " # w " " #
" $ $

            (9.4.32)

    .

"

"

We see that the function  must satisfy .0 Ð- B  - Ñ0  Ð%-  - Ñ0 œ !" # $ "
" w

On assuming  and writing  we  realise that  has- Á ! - Î- œ +ß - Î- œ , 0" # " $ "

to be chosen in the form

"

#
Ð Ñ œ 0ÐB Ñ œ EÐB  +Ñh# w " " "%,

to be admitted by the symmetry group. Thus, the admissible velocity field is
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hÐB Ñ œ F 
EÐB  +Ñ

"  #,
"

" #Ð"#,ÑÊ .

If we take , then we get  where . Linearly- œ ! 0ÐB Ñ œ E/ - œ %- Î-" $ #
" -B"

independent isovectors are then given by

                               

.                     

Z œ B  ? ß
` `

`B `?

Z œ ß
`

`B

Z œ B  #?  ? ß
` ` `

`B `? `?

Z œ ÐB Ñ  ÐB Ñ?
` `

`B `?

" " "
" "

#
"

$ # " #
# " #

" w " "
# #" " "                   è

Example 9.4.4. As an example to a problem to determine symmetries
of which proves to be quite difficult by using classical methods, we consider
the equations governing the motion of a hyperelastic body . In order to1

simplify the discussion, we shall employ Cartesian coordinates. We had de-
noted the location of a particle in the undeformed body by material coor-
dinates  with  and the location of the same point at time  by\ O œ "ß #ß $ >O

spatial coordinates see  with  [   453]. The motion of the bodyB 5 œ "ß #ß $ :Þ5

was specified by a diffeomorphism represented by relations .B œ B Ð ß >Ñ5 5 X
We know that a homogeneous hyperelastic medium is characterised by a
given   where  is the deformation tensor.stress potential DÐ Ñ œC C F FT

F œ ÒB Ó5ßO  is the tensor of deformation gradients. Here, we use the notation

J œ B œ
`B

`\
5O 5ßO

5

O

The equations of motion of an hyperelastic material are designated by

` ` `@ `B

`\ `B `> `>
 œ !ß @ œ

O 5ßO
! 5

5 5Š ‹D
3 (9.4.33)

in the absence of body forces [  (8.7.4-5)]. These equations will turn outsee
to be an example to the case . In order to utilise direct-7 œ "ß 8 œ %ß R œ $
ly the determining equations (9.4.11), let us introduce the notations

1Adetailed discussion of this problem involving heterogenous materials can be
found in the following work: Þuhubi, E. S. and A. Bakkaloðlu, Symmetry groups
for arbitrary motions of hyperelastic solids, International Journal of Engineering
Science, 35, 637-657, 1997.
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\ œ >ß Ð Ñ œ ß Ð Ñ œ  @
`

`J
% 5O 5 ! 5

5O
D D 3

D
F v4 .

Hence, the equations of motion are reduced to the form

` `

`\ `\
 œ !

D D5O 5%

O %
.

We take the isovector field as follows

Z œ     Z  Z
` ` ` ` `

`\ `> `B `J `@
F G HO 5 5O 5

O 5 5O 5

where the functions  , ,  depend only on the variables , ,  andF G HO 5 O 5\ > B
for the components  and , we have the expressions belowZ Z5O 5

Z œ  J  @  J  J J  J @
` ` ` ` ` `

`\ `\ `\ `B `B `B

Z œ  J  @  @  J @  @ @ Þ
` ` ` ` ` `

`> `> `> `B `B `B

5O 5P 5 6O 5P 6O 6O 5
5 P 5 P

O O O 6 6 6

5 5P 5 6 5P 6 5 6
5 P 5 P

6 6 6

H H

H H

F G F G

F G F G

We thus obtain

F œ Z Ð Ñ œ G Z ß Z Ð Ñ œ  Z5O 5O 5O6P 6P 5% ! 5D D 3

where we had defined

G œ œ œ G Þ
` `

`J `J `J
5O6P 6P5O

5O

6P 5O 6P

#D D

We had already called the tensor  enjoying the block symmetryG Ð Ñ5O6P F
shown above as the elasticities of the material in Example 8.7.4. Hence, the
coefficients appearing in the determining equations (9.4.11) become

E œ F  Z ß E œ F ß E œ  Z ß
†

E œ  G Ð  Ñ  G ß
`F

`J
†

E œ   G ß E œ  ß
`Z `F

`J `@
†

5 5OßO ! 5 O56 5Oß6 %56 ! 5ß6

OP56 5O6P QßQ 5Q6P OßQ
5O

6P

%P56 ! 5O6P ßO O%56 ! O 56
5 5O

6P 6

3 3

F G F

3 G 3 F $

E œ   ß E œ  E œ G
`Z "

`@ #

E œ  E œ ÐG  G Ñß
"

#

%%56 ! ! OßO 56 %PQ567 P%Q567 5P6Q ß7
5

6

OPQ567 POQ567 5P6Q Oß7 5O6Q Pß7

3 3 F $ G

F F

,
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E œ  E œ
"

#
%P%567 P%%567 ! Pß7 563 F $

where an overdot  denotes the derivative with respect to the time variableÐ†Ñ
>. All other coefficients turn out be zero. Therefore, the equations (9.4.11)
take the form

-
D

-
D D

3 -

56 5 O56 6O %56 6
6O

5

57 OP56 PO56 OQP567 PQO567 7Q
7O 7P

6P 6O

O%P567 P%O567 7

! 56 %%56 %Q%567 7

`

`\
œ E  E J  E @

` `

`J `J
 œE  E  #ÐE E ÑJ

 #ÐE  E Ñ@

 œ E  #E J

Š ‹
Q

O%56 %O56 %PO567 7P O%%567 7! œ E  E  #E J  #E @

where  are arbitrary functions of the coordinates  of-57 O 5 5O 5Ð\ ß >ß B ß J ß @ Ñ
the contact manifold. The above equations thus yield the following result

F  Z  F J  Z @ œ !ß
†

ÐG  G Ñ œ   ÐG  G ÑÐ 
`F `F

`J `J
†

 J  @ Ñ  G  G

 ÐG

5OßO ! 5 5Oß6 6O ! 5ß6 6

57 7O6P 7P6O 5O6P 5P6O QßQ
5O 5P

6P 6O

Qß7 7Q ß7 7 5Q6P OßQ 5Q6O PßQ

5Q

3 3

- F G

F G F F

6P Oß7 5Q6O Pß7 7Q

56 OßO Qß7 7Q 56
5

6

5O 5

6 6O
! O 56 ! 5P6O

F F

- F F $

3 F $ 3

 G J ß

œ  Ð  J Ñ
`Z

`@
`F `Z

`@ `J
   G Ð

†

‘
                                              

G G 3 F $ßP ß7 7P ! Oß7 7 56 J Ñ @ œ !

(9.4.34)

Because of the relations

`F `Z

`@ `J
œ G Ð  J Ñß œ Ð  @ Ñ

†5O 5

6 6O
5P6O ßP ß7 7P O Oß7 7 56G G F F $

the equation (9.4.34)  takes the form%

ÐG  G ÑÐ  J Ñ  # Ð  @ Ñ œ !
†

5O6P 5P6O ßP ß7 7P ! O Oß7 7 56G G 3 F F $

Since the components  are coefficients of the terms likeG  G5O6P 5P6O

B5ßOP in the field equations (9.4.33), they cannot be all zero. It then follows
from the above equation that

F F G GOß7 O ßP ß7œ !ß œ !ß œ !ß œ !
†

.
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Thus, we must have , . In this case, we getF F G GO Oœ Ð Ñ œ Ð>ÑX

F œ G Ð  J  J Ñß

œ  Ð  Ñ
†

5O 5O6P 6ßP 6Q QßP 7P 6ß7

56 5ß6 OßO 56

H F H

- H G F $

so that (9.4.34)  can be written as"

  

     .                   (9.4.35)

G  J  J  Ð  J ÑJ

 @ @  Ð  # Ñ@  œ !
ÞÞ † ÞÞ

5O6P 6ßPO 6Q QßPO 7P 6ß7O 6ßP7 8P 6ß78 7O

! 5ß67 6 7 56 5ß6 6 5

 ‘
 ‘H F H H H

3 H G$ H H

This requires that we have to take

` ` "

`B `B `B `> #
œ !ß œ  Ð>Ñ

ÞÞ# #
5 5

6 7 6
56

H H
G $ .

These equations yield easily

H G # > A >5 5 56 6 5 56 6 5Ð ß >ß Ñ œ  Ð>ÑB  Ð ÑB  Ð ß >Ñ œ Ð ß >ÑB  Ð ß >Ñ
"

#
†X x X X X X

where we have defined

A G $ #56 56 56Ð ß >Ñ œ  Ð>Ñ  Ð Ñ
"

#
†X X .

Then the equations (9.4.34)  reduce to the form#

ÐG  G Ñ  ÐG  G Ñ  Ö#ÐG  G Ñ
†

 ÐG  G Ñ  ÐG  G Ñ

 ÐG  G

7O6P 7P6O 5ß7 5O7P 5P7O 7ß6 5O6P 5P6O

5O6Q 5Q6O PßQ 5Q6P 5P6Q OßQ

5O6P7Q 5

H H G

F F                    (9.4.36)

P6O7Q 7ßQ 7R RßQ 8Q 7ß8ÑÐ  J  J Ñ× œ !H F H

where we have introduced the tensor

G œ
`

`J `J `J
5O6P7Q

$

5O 6P 7Q

D
.

The block symmetries manifested by this tensor are obvious. It is plainly
observed that the term within braces in the expression (9.4.36) is symmetric
in indices  and  due to the block symmetry of the components .5 6 G5O6P

Hence, the antisymmetric part of that expression must satisfy the relations

ÐG  G ÑÐ  Ñ œ ÐG  G ÑÐ  Ñ7O6P 7P6O 5ß7 7ß5 7O5P 7P5O 6ß7 7ß6H H H H .

Let us define matrices  via . These matricesAÐOPÑ
56
ÐOPÑ

5O6P 5P6OE œ G  G
are symmetric. Consequently, we obtain
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H H A AÐ5ß7Ñ Ð7ß6Ñ Ð57Ñ Ð76Ñ76 57 76 57
ÐOPÑ ÐOPÑ ÐOPÑ ÐOPÑ

E œ E E œ E    or    

Thus, the symmetric part of the matrix commutes with every symmetricA 
matrix . According to the well known  of the groupAÐOPÑ Schur lemma
theory  can only be a multiple of the unit matrix. Therefore, on notingAÐ56Ñ

that  may be represented by an axial vector , we can writeA[ ]56 7+

A A A A $56 56 ! 56 567 7Ð56Ñœ  œ Ð ß >Ñ  / + Ð ß >Ñ[ ] X X

whence we get

# A G $ - $

#

Ð56Ñ ! 56 ! 56

56 567 7

Ð Ñ œ Ð ß >Ñ  Ð>Ñ œ Ð Ñ ß
"

#
†

Ð Ñ œ / + Ð Ñ

X X X

X X

’ “
[ ] .

We thus conclude that

H - G >5 ! 5 567 7 6 5Ð ß >ß Ñ œ Ð Ñ  Ð>Ñ B  / + Ð ÑB  Ð ß >Ñ
"

#
†X x X X X’ “ .

If we insert this expression into (9.4.35-36) and equate the coefficients of B8

to zero, we get  together withG
ÞÞÞ

œ !

- $!ßQ 78 78< <ßQ / + œ !

 and consequently  leading to-!ßQ <ßQœ !ß + œ !

-

G

! ! 5 5

" # $
#

Ð Ñ œ + ß + Ð Ñ œ + ß

Ð>Ñ œ , >  #, >  ,

X X
.

The equation (9.4.35) now takes the form

G Ð  J Ñ œ !
ÞÞ

5O6P 6ßPO 6R RßPO ! 5> F 3 > .

We differentiate this expression with respect to  to obtainJ7Q

G Ð  J Ñ  G œ !5O6P7Q 6ßPO 6R RßPO 5O7P QßPO> F F

that can be satisfied for any non-linear elastic material if only FQßPO œ !
and . This of course implies that . We thus easily obtain> >6ßPO 5œ ! œ !

ÞÞ

F

> ! " . /
O OP P O

5 5O 5O O 5 5

Ð Ñ œ E \  F ß

Ð ß >Ñ œ Ð >  Ñ\  > 

X
X .

Replacing the functions in (9.4.36) by the above expressions, we see at once
that the coefficient of the variable  vanishes if only we take  and> , œ !"
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!5O œ !. If we take into consideration the identity

J G œ J œ J
` ` `

`J `J `J `J `J `J
 G  G

8R 5O6P7Q 8R 8R

$ #

5O 6P 7Q 5O 6P 7Q

5O7Q 86 RP 6P7Q 85 RO

D D

$ $ $ $

Š ‹

the remaining terms in the expressions (9.4.36) can be arranged in the fol-
lowing manner

` `

`J `J `J `J
 œ !

# #

5O 6P 5P 6O

Y Y
(9.4.37)

where the function  is defined asY

Y "
D

œ E J  Ð+  , ÑJ  / + J 
`

`J

 #Ð+

 ‘RQ 7R ! # 7Q 567 6 5Q 7Q
7Q

                                                                                   ! # , ÑD.

A rather straightforward but somewhat tedious calculation for details of
which we may refer to the work cited above shows that the solution of the
equations (9.4.37) is expressible as

Y œ
"

$x
# #

$

/ / J J J  / / J J
"

#
 J

567 OPQ 5O 6P 7Q 7Q 567 OPQ 5O 6P

5O 5                                                                               O  Þ$

If we recall identities

N œ œ / / J J J

`N "

`J #
œ N J œ / / J J

det F "

$x
567 OPQ 5O 6P 7Q

5O
O5
"

567 OPQ 5O 6P

where  are entries of the inverse matrix , JO5
" "F Y can also be written in the

form

Y # # $ $œ N  N J  J 5O 5O 5OO5
" .

We had emphasised the fact that the stress potential  is actually dependentD
on the components  of the deformation tensor. Once thisG œ J JOP 5O 5P

transformation is fulfilled, we see that we have to take " # $7Q 5O 5Oœ œ
œ ! in order to remove the dependence on . The relevant components ofF

the isovector field are then given by

FO OP P Oœ E \  F ß
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G

H . /

œ #, >  , ß

œ Ð+  , ÑB  / + B  > 
# $

5 ! # 5 567 7 6 5 5

and the admissible functions  must be solutions of the equationD

# E  Ð+  , Ñ G  #Ð+  , Ñ œ 
`

`G
 ‘ È

QP ! # QP OQ ! #
OP

$ D # $
D

det C .

In the components , the terms  indicate that the space is homogeneousH /5 5

whereas the terms )  imply that the space is isotropic./ + B œ Ð567 7 6 5a x‚
The terms  mean that the field equations are invariantÐ+  , ÑB  >! # 5 5.
under a Galilean transformation [Italian physicist and astronomer Galileo
Galilei (1564-1642)]. Of course, these symmetry groups must be present in
all classical mechanical system modelled correctly. è

9.5. SIMILARITY SOLUTIONS

As we have mentioned several times we can produce a new family of
solutions from a known solution of a system of partial differential equations
if we possess an isovector field of the fundamental ideal generating a sym-
metry group of transformations. In this section, however, we shall try to de-
termine structural properties of certain solutions that remain  underinvariant
a particular symmetry group. If a mapping  corresponds to a9 W VÀ Ä8 7

solution to a system of partial differential equations which remains invariant
with respect to an isovector field , then it has to satisfy the requirementZ
9 9 9 9Z Ð>Ñ ‰ œ ‰ œ/>Z . Let us suppose that such a solution is given in the
form . 0 œ Ð Ñ  ? œ !! ! !9 x If these functions are to be invariant under the
flow generated by an isovector , then it must satisfy the conditionZ

£Z 0 œ Z Ð0 Ñ œ !! !

[ (2.9.14)]. This means that a , in other words, asee group-invariant solution
similarity solution must satisfy the system of quasilinear partial differential
equations

\ B ß Ð Ñ  Y B ß Ð Ñ œ !
`

`B
3 4 4

3
ˆ ‰ ˆ ‰9 9

9" ! "
!

x x (9.5.1)

when , or the non-linear partial differential equationR  "

\ B ß Ð Ñß Ð Ñ  Y B ß Ð Ñß Ð Ñ œ !
`

`B
3 4 4

ß4 ß43
ˆ ‰ ˆ ‰9 9 9 9

9
x x x x (9.5.2)

when . These partial differential equations usually specify theR œ "
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structure of a similarity solution in the following manner

? œ Ð Ñß + œ "ß #ß á ß :  8! !9 0+  

where  are known functions of independent variables . After having0+ 3B
installed these functions in the original system of differential equations we
are led to a new set of partial differential equations with a smaller number of
novel independent variables since  are replaced by .  That is why weB3 +0
expect that to solve them may be somewhat easier compared to original
equations. If we manage to find a solution of these equations we then reach
to the functional form of a similarity solution. Inserting this form into origi-
nal field equation we can find an explicit solution. If we denote a solution of
a given system of partial differential equations by a regular mapping
9 W ‘ VÀ © Ä8 7

8 , then the relations (9.5.1) or (9.5.2) require that the
mapping  must satisfy the condition9

9 5‡
Zˆ ‰i Ð Ñ œ !! (9.5.3)

to be a similarity solution associated with an isovector . In fact, this resultZ
follows immediately from  and . Actually,iZ 3 3 ß3

3 ‡Ð Ñ œ Y  @ \ @ œ ?5 9! ! ! ! !

we readily observe that a similarity solution satisfies as well the condition
9 \ \‡

Z 7 7i Ð Ñ œ ! where  is the contact ideal defined in (9.3.1). If we take

into account the relations  for iso-Z œ H ÐZ Ñ  @ H Ð\ Ñ! ! !
3 â3 3 3 â3 3 â3 4

Ð5Ñ Ð5Ñ
3 3

4
" " "5 5 5

vector components of the contact ideal given by (9.3.19) in the expression
iZ 3 3 â3 3 â3 3 â3 3

3Ð Ñ œ Z  @ \5! ! !
" # < " < " <

, we get

9 5 9 9 9

9 9 9 5

‡ ‡ ‡ 3 ‡ 3
Z ß3 ß33 â3 3 â3 ß3 â3 3 ß3 â3 3

‡ ‡ 3 ‡
3 â3 ß3 â3 3 3 â3ß3 Z ß

ˆ ‰
 ˆ ‰‘i

i
Ð Ñ œ Ð Z Ñ  ? Ð \ Ñ  ? \

œ Ð Z  ? \ Ñ œ Ð Ñ

! ! ! !

! ! !
" < " <" " <" " << <

" <" " <" " <"<       
3<.

If we continue to utilise this recurrence relation successively, we finally
obtain

9 5 9 5‡ ‡
Z Z3 â3 ß3 â3

ˆ ‰  ˆ ‰‘i iÐ Ñ œ Ð Ñ œ !! !
" < " <

where . We thus conclude that< œ !ß "ß á ß 7  "

9 9‡ ‡ 3
3 â3 ß3 â3 3Z œ Ð \ Ñ ? ß < œ !ß "ß á ß 7  "! !
" < " <

.

On the other hand, we have

9 5 9

9 9

‡ ‡ 3 3
Z 3 â3 3 â3 3 3 â3 3

‡ ‡ 4 3
3 â3 3 ß3 â3 34

ˆ ‰
ˆ ‰i Ð. Ñ œ  ÐZ .B  \ .@ Ñ

œ  Z  Ð \ Ñ? .B Þ

! ! !

! !
" 7" " 7" " 7"

" 7" " 7"

But inserting the relation



9.5  Similarity Solutions 565

9 9 9‡ ‡ ‡ 4
3 â3 3 ß3 â3 43 â3 ß3 ß3Z œ Ð Z Ñ  Ð \ Ñ ?
" 7" " 7"" 7"

! !

into the foregoing expression, we find

9 5 9 9‡ ‡ ‡ 4 3
Z ß33 â3 3 â3 ß3 â3 4

ˆ ‰i Ð. Ñ œ Ð Z  Ð \ Ñ ? Ñ .B œ !! ! !
" 7" " 7" " 7"

whence we draw the conclusion . Next, we consider the9 \‡
Z 7i Ð Ñ œ !

balance ideal  and write¼7

9 = 9 D . D .

9 D . D . D .

‡ ‡ 3
Z Z 3

‡ 3 4 3 4
3 43 4

ˆ ‰ ˆ ‰
ˆ ‰i iÐ Ñ œ Ð. •  Ñ

œ Z Ð Ñ  \ . •  \ Ñ

! ! !

! ! ! .

However, because of the relations

9 D 9
D D

9 9
D D 9 D

9 D
9 D

‡ 3 ‡ 4
3 3

4
<œ!

7

3 â3
3 â3

‡ 4 ‡ 4
3 3 ‡ 3

4 4
<œ!

7

ß3 â3 4
ß3 â3

‡ 3
‡ 3

ˆ ‰ ’ “"
’ “"

Z Ð Ñ œ \  Z
` `

`B `@

œ Ð \ Ñ  ? œ Ð \ Ñ
` ` `Ð Ñ

`B `B`?

. œ
`Ð Ñ

`B

!
! !

"
"

! ! !
"

"

!
!

" <

" <

" <

" <

4
4.B

we obtain

9 = 9 . . .
9 D 9 D 9 D

9 D . 9 9 D .
9 D

‡ ‡ 4
Z 3 3 4

‡ 3 ‡ 3 ‡ 3

4 4 3

‡ ‡ 4 ‡
4 4

‡ 3

3

ˆ ‰ ’
“ ’ “

i Ð Ñ œ Ð \ Ñ  
`Ð Ñ `Ð Ñ `Ð Ñ

`B `B `B

 Ð Ñ œ Ð \ Ñ  Ð Ñ œ !
`Ð Ñ

`B

!
! ! !

! !
!

so we arrive at the result . It is clear that this property will be9 ¼‡
Z 7i Ð Ñ œ !

equally valid for a fundamental ideal generated by forms .= D .+ +œ
Example 9.5.1. Let us consider the isovector field obtained previously

in Example 9.4.1 for the heat conduction equation

 Z œ %B>  %>  ÐB  #>Ñ?
` ` `

`B `> `?K
" # #

except for a sign difference. The similarity solution associated with this vec-
tor field must satisfy the partial differential equation

%B>  %>  ÐB  #>Ñ? œ !
`? `?

`B `>
# #

whose characteristics are described by the ordinary differential equations
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.B .> .?

%B> %> ÐB  #>Ñ?
œ œ 

# #
.

Hence the solution becomes

?ÐBß >Ñ œ X Ð Ñß œ
/ B

> >

 B#

%>È 0 0  .

where  is an arbitrary function. On inserting this expression into theX Ð Ñ0
field equation , we simply obtain . Thus, this similarity? œ ? X œ !> BB

ww

solution takes the form

?ÐBß >Ñ œ -  -
/ B

> >



" #

B#

%>È Š ‹ è

Example 9.5.2. We now consider an isovector field associated with the
Korteweg-de Vries equation given by

 Z  -Z œ ÐB  ->Ñ  $>  Ð#?  -Ñ
` ` `

`B `> `?
" $

where  is a constant. The similarity solution associated with this isovector-
must satisfy the partial differential equation

ÐB  ->Ñ  $>  #?  - œ !
`? `?

`B `>

whose characteristics are determined via the ordinary differential equations

.B .> .?

B  -> $> #?  -
œ œ  .

Hence, the solution is found as

?ÐBß >Ñ œ  Ð Ñ> ß œ > B  ->
- "

# #
9 0 0#Î$ "Î$Š ‹.

where  is an arbitrary function. If we insert this expression into the9 0Ð Ñ
equation , we deduce the following non-linear ordinary?  ??  ? œ !> B BBB

differential equation

$  Ð$  Ñ  # œ !9 9 0 9 9www w . (9.5.4)

In order to get an idea about the structure of solutions of this equation, a
numerically obtained solution under the initial conditions 9Ð!Ñ œ !ß
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9 9w wwÐ!Ñ œ "ß Ð!Ñ œ "  is depicted in Fig. 9.5.1.

Fig. 9.5.1.  A numerical solution of the equation (9.5.4).

As another isovector, we choose

 GZ  Z œ G 
` `

`B `>
% # .

where  is a constant. The similarity solution now satisfies the simple par-G
tial differential equation

G  œ !
`? `?

`B `>

whose solution is in the form  where . Hence, we have? œ ?Ð Ñ œ B  G>0 0
to solve the non-linear equation

?  ??  G? œ !www w w

or its first integral

?  ?  G? œ -
"

#
ww #

".

The general solution of this equation can be found in terms of elliptic
functions. However, if we impose the condition  for , we? Ä ! Ä „ _0
have to take . In this case, the solution is expressible in elementary- œ !"

functions and the advancing wave type of a solution of Korteweg-de Vries
equation yields the well known  solutionsoliton
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?ÐBß >Ñ œ $G ÐB  G>Ñ 
G

#
sech .#

"Î# ‘$
Starting from this particular solution, we can construct a new family of solu-
tions parametrically by making use of the relations obtained at the end of
Example 9.4.2 as follows

BÐ=Ñ œ
#Ð,  $+-Ñ  $ #+ B  #+-  ,Ð"  +>Ñ /  ,Ð"  $+>Ñ/

'+

>Ð=Ñ œ
Ð"  $+>Ñ/  "

$+

?Ð=Ñ œ
'+G ÐB  G>Ñ   , /  ,

G

#
#+

¯

¯

¯
sech

 ‘

  ‘ ‘

# - = $- =

#

$- =

#
"Î#

#- =

" "

"

"$

where  is the parameter of the family.= è

Example 9.5.3. We consider the isovector field

Z œ ÐB  +Ñ  ,C  Ð"  #,Ñ?  ,@
` ` ` `

`B `B `? `@
K

associated with partial differential equations governing the boundary layer
flow past a flat plate discussed in Example 9.4.3. Equations (9.5.1) now take
the form

ÐB  +Ñ  ,C  Ð"  #,Ñ? œ !ß ÐB  +Ñ  ,C  ,@ œ !
`? `? `@ `@

`B `B `B `B

the solution of which is easily obtained as

?ÐBß CÑ œ ÐB  +Ñ Ð Ñß @ÐBß CÑ œ ÐB  +Ñ Ð Ñà œ CÐB  +Ñ"#, , ,9 0 < 0 0

where  and  are arbitrary functions. Introduction of these expres-9 0 < 0Ð Ñ Ð Ñ
sions together with the admissible function  into the0ÐB Ñ œ EÐB  +Ñ" " "%,

field equations (9.4.26) gives rise to the following set of ordinary differen-
tial equations

/9 099 9 9 <

09 < 9

www w # w

w w

 ,  Ð"  #,Ñ   E œ !ß

,   Ð"  #,Ñ œ !

(9.5.5)

A numerical solution of the above equations corresponding to , œ "Î#ß
/ 9 9 9œ " E œ " Ð!Ñ œ !ß Ð!Ñ œ !ß Ð!Ñ œ "Þ&,  under the initial conditions w ww

and  that may not reflect an actual physical situation is depicted in<Ð!Ñ œ !
Fig. 9.5.2.
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Fig. 9.5.2.  Numerical solutions of the equations (9.5.5). è

9.6. THE METHOD OF GENERALISED CHARACTERISTICS

We have seen in Sec. 9.2 that the solution of a first order non-linear
partial differential equation can be constructed by means of characteristics
starting from a given initial submanifold. We shall now try to generalise this
method by employing isovectors of the ideal  of  associated with a¼ A V7 7Ð Ñ

system of partial differential equations. Let us denote  num-the § œ 8  H
ber of local coordinates  of the contact manifoldÖB ß @ À ! Ÿ < Ÿ 7×3

3 3 â3
!
" # <

V š V7 7 by  . Consider a vector field .D ß œ "ß á ß Z œ @ Ð Ñ `Î`D − X Ð Ñš š š§ z
We know that its integral curves are obtained as solutions of the following
ordinary differential equations and initial conditions

.

.>
œ @ Ð Ñß Ð!Ñ œ D

'
'

š
š š š'

in the form . We wish to get the para-' 9 9š š š šœ Ð>à Ñ Ð>ÑD œ ÐD Ñz œ Z />Z

meter  acquired a status of a coordinate to appreciate its independent varia->
tions. Therefore, we embed the integral curves into the graph manifold
P œ ‚ ÖD ß >×7 7V ‘ whose coordinates are prescribed by . Thus the con-š

tact manifold  might be specified as a submanifold of the manifold V7 7P
obtained by . It appears to be advantageous now to extend the mapping> œ !
9 9Z Z 7 7 describing the flow as  such thatÀ P Ä P

9 'Z ÐÖD ß >×Ñ œ Ö œ ÐD Ñß >×š š š/>Z . (9.6.1)

We can naturally define a canonical projection  as follows1 VÀ P Ä7 7
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1ÐÖD ß >×Ñ œ ÖD ×š š .

The operator  induces naturally the pull-back operator1 9 V‰ À P ÄZ 7 7

Ð ‰ Ñ œ ‰ À Ð Ñ Ä ÐP Ñ1 9 9 1 A V AZ 7 7
‡ ‡ ‡

Z  along trajectories of the vector
field . In order to illustrate the properties of this mapping, let us consider aZ
form  given by= A V− Ð Ñ5

7

= =œ Ð Ñ .D • â • .D
"

5x
š š

š š
" 5

" 5
â z .

Since the flow carries the forms  in the neighbourhood of  to the.D > œ !š

forms , the pulled back form can be. œ ‰ Ð.D Ñ œ .D  @ Ð Ñ .>' 9 1š š š š‡ ‡
Z z

written at  as follows> œ !

k k= 1 = =

= =

= =

‡ ‡
>œ! >œ! â

â

Z

œ œ Ð Ñ Ð.D  @ .>Ñ • â • Ð.D  @ .>Ñ
"

5x

œ  Ð Ñ@ .> • .D • â • .D
"

Ð5  "Ñx

œ  .> • Ð Ñ

š š
š š š š

š š
š š š

" 5
" " 5 5

" 5
" # 5

z

z

i .

where we have employed the complete antisymmetries of both the coeffici-
ents  and exterior products. Hence, in view of the relation (5.11.14)=š š" 5â

the form  can be expressed as=‡

= 9 1 = = =‡ ‡ ‡ >
Z ZÐ>à Ñ œ ‰ Ð Ñ œ /  .> • Ð Ñz z i£Z ˆ ‰. (9.6.2)

Next, we introduce an operator  that maps an exteriorI À Ð Ñ Ä ÐP ÑZ 7 7A V A
algebra into a larger exterior algebra by the rule

I œ  .> • Ð Ñ − ÐP Ñß − Ð ÑZ Z 7 7= = = A = A Vi . (9.6.3)

The operator  has the following properties:IZ

Ð3ÑÞ I Ð  Ñ œ I  I ß

I Ð0 Ñ œ 0I ß 0 − Ð Ñ

Ð33ÑÞ I Ð • Ñ œ I • I

Ð333ÑÞ .ÐI Ñ œ I Ð. Ñ  .> • ß

Ð3@ÑÞ ÐI Ñ œ I Ð Ñß

Ð

  

  ,
 ,

 £   
 £ £

Z " # Z " Z #

Z Z 7
!

Z " # Z " Z #

Z Z Z

Z Z Z Z

= = = =

= = A V

= = = =

= = =

= =

@ÑÞ Ð ‰ Ñ œ / I Þ9 1 = =‡ ‡ >
Z Z

£Z

(9.6.4)

The relations in (9.6.4) can easily be verified:
Ð3Ñ I. This is evident because of the properties of the operator . Hence, iZ Z

is a linear operator on the exterior algebra .A VÐ Ñ7

Ð33Ñ. To see this, it suffices to note that
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I Ð • Ñ œ •  .> • Ð Ñ •  Ð"Ñ .> • • Ð Ñ

I • I œ •  Ð"Ñ .>• • Ð Ñ  .> • Ð Ñ• Þ

Z " # " # Z " # " Z #
./1

Z " Z # " # " Z # Z " #
./1

= = = = = = = =

= = = = = = = =

i i
i i

=

=

"

"

Ð333ÑÞ This follows from the relation

.ÐI Ñ œ .  .> • . Ð Ñ œ .  .> • Ð. Ñ  .> •Z Z Z Z= = = = = =i i £

where we have employed the Cartan magic formula.
Ð3@ÑÞ .> œ This is immediately seen if we take notice of the relations £Z

.Z Ð>Ñ œ ! Ð Ñ œ Ð Ñ and £ £  [  (5.11.8) ].Z Z Z Z #ˆ ‰ ˆ ‰i i= = see
Ð@Ñ. This is in fact just the relation (9.6.2).

According to the properties (9.6.4) , we see that the set"#

A = = A V AZ 7 Z 7 7ÐP Ñ œ ÖI À − Ð Ñ× © ÐP Ñ

becomes an exterior algebra. We can now prove the theorem below.
Theorem 9.6.1. If a vector field  is an isovector field of aZ − X Ð ÑV7

closed ideal  of the exterior algebra then it is also an isovector¼ A VÐ Ñ7 , 
field of the ideal  of  the exterior algebra .I ÐP ÑZ Z 7¼ A

If , we have of course  and then (9.6.4)  leads to= = ¼ = = ¼" # " # "ß −  −
I  I œ I Ð  Ñ − I −Z " Z # Z " # Z= = = = = ¼¼. Similarly, if , we find that
# = ¼ # A V # A• − − Ð Ñ − ÐP Ñ with . Since a form  must now be written7 Z 7

w

as  where , we thus get # # # A V # = # =w w
Z 7 Z Z Zœ I − Ð Ñ • I œ I • I œ

I Ð • Ñ − I IZ Z # Z# = ¼ ¼ due to (9.6.4) . Therefore, the set  is an ideal of the 
exterior algebra . However, this ideal is no longer closed since weAZ 7ÐP Ñ
have the relation  because of the property (9.6.4) . If the. ‰ I Á I ‰ .Z Z $

vector field  is an isovector field of the closed ideal , then we get Z . −¼ = ¼
and £  for all forms . On the other hand, because of (9.6.4)  andZ %= ¼ = ¼− −
(5.11.9) the relations

£ £
£ £ £

Z Z Z Z Z

Z Z Z Z Z Z Z

ÐI Ñ œ I Ð Ñ − I

ÐI . Ñ œ I Ð . Ñ œ I Ð. Ñ − I

= =

= = =

¼

¼

are satisfied. Hence  is also an isovector field of the ideal .Z IZ ¼ 
Let  denote a connected, open subset whose local coordi-H ©8"

8"‘
nates are provided by . We next suppose that the mappingÖ= ß á ß = ×" 8"

< V <À H D œ Ð= ß á ß = Ñ8" 7
" 8"Ä  prescribed by smooth functions š š

specifies an  in . Let us then determine theinitial data submanifold V7

integral curves of an isovector field  of a closed ideal  of  asZ Ð Ñ¼ A V7

solutions of the ordinary differential equations

.

.
œ @ Ð Ñß Ð!Ñ œ Ð Ñß œ "ß á ß

'

7
' < š

š
š š š' s § (9.6.5)
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where  is a real parameter. It becomes now possible to introduce a mapping7
G ‘ VÀ H œ H ‚ Ä8 8" 7 through the relations

D œ Ð Ñà œ Ð= ß á ß = à Ñš š › š' < 7 G 7ˆ ‰s " 8" . (9.6.6)

We have already mentioned that  is a submanifold of  specified byV7 7P

> œ ! À H ‚ Ps. We now define a simple   of theextension < ‘8" 7Ä
mapping  as follows<

< 7 < 7s Ð= ß á ß = à Ñ œ ÖD œ Ð= ß á ß = Ñß > œ ×" 8" " 8"š š . (9.6.7)

In this case, the mapping  can be expressed asG VÀ H8 7Ä

G 1 9 < 1 <œ ‰ ‰ œ ‰ / ‰s s
Z

Z7 (9.6.8)

when we recall (9.6.1). In the light of the information acquired so far, the
following theorem can be proposed.

Theorem 9.6.2. Let  be an isovector field of a closed idealZ − X Ð ÑV7

¼ ‘ of and  be a connected open set whose local  A VÐ Ñ7 H ©8"
8"

coordinates are given by . The mapping Ö= ß á ß = ×" 8" < VÀ H8" 7Ä
determines an initial data submanifold in through the smooth functionsV7 
D œ Ð Ñß œ "ß á ß sš š< š < <s §. If the extension   of holds the condition

Ð Ñ ÐI Ñ œ !ßs< ‡
Z ¼ (9.6.9)

then the mapping  satisfies the relation . Hence, theG 1 9 < Gœ ‰ ‰ s
Z

‡¼ œ !
mapping  becomes a solution of the ideal .G ‘ VÀ H ‚ Ä8" 7 ¼

The proof of this theorem is rather straightforward at the first glance. If
we keep in mind the relation (9.6.4) , the pull-back operator  may be&

‡G
expressible as

G < 9 1 <‡ ‡ ‡ ‡ ‡ >
Z Z¼ ¼ ¼œ œ ÑˆÐ Ñ ‰ ‰ Ð Ñ / ÐIs s‰ ˆ ‰£Z . (9.6.10)

But, according to Theorem 9.5.1, the isovector field  is also an isovectorZ
field of the ideal . We thus find Hence, it followsI / ÐI IZ Z Z

>¼ £Z ¼ ¼Ñ § . 
from (9.6.9) that , and as a consequence . It isÐ Ñ / ÐI œ !s< G‡ > ‡

Zˆ ‰£Z ¼ ¼Ñ œ !

obvious that the condition (9.6.9) imposes a restriction on admissible forms
of initial data. If we pay attention to the definition (9.6.7), we observe that
Ð Ñ .D œ .D Ð Ñ .> œ .s s< < < 7‡ ‡ ‡š š  and . In this case, we can also express the
condition (9.6.9) as

Ð Ñ ÐI Ñ œ . • Ð Ñ œ !s< < 7 < =‡ ‡ ‡
Z Z= =  ˆ ‰i (9.6.11)

for all . On the other hand, one can write= ¼−
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<
< < <‡ " # 8"

" # 8"
.D œ .=  .=  â  .=

` ` `

`= `= `=
š

š š š

and since -forms  are all linearly independent, we" .= ß .= ß á ß .= ß ." # 8" 7
then conclude that the condition (9.6.11) is satisfied if and only if one has

< < =‡ ‡
Z= œ !ß ˆ ‰i Ð Ñ œ ! (9.6.12)

for all . Let us now assume that the closed ideal  is generated by = ¼ ¼− #<
forms . Then it becomes clear that the conditionsÖ ß . À œ "ß #ß á ß <×= = !! !

(9.6.12) are satisfied if and only if we have

< < = < < =‡ ‡ ‡ ‡
Z Z= =! !œ !ß œ !ßˆ ‰ ˆ ‰i iÐ Ñ œ !à . Ð. Ñ œ !! !

for  . Actually, we immediately see that the second set of! œ "ß #ß á ß <
equations involving exterior derivative are automatically satisfied in case
the first set of conditions are met. Indeed, we obtain < <‡ ‡. .= =! !œ œ !
in accordance with Theorem 5.8.2. On taking into account the Cartan for-
mula, we have £ . Since  is an isovec-< = < = < =‡ ‡ ‡

Z Z Zi iÐ. Ñ œ  . Ð Ñ Z! ! !

tor field of the ideal, we can write £ . WeZ = - = A = ¼! ! " ! "
" "œ •  • . −

thus obtain £  and . In this< = < = < =‡ ‡ ‡
Z Z Z

! ! !œ ! Ð. Ñ œ  . Ð Ñ œ !i i
situation, the conditions (9.6.12) concerning the initial data are recovered if
and only if we are assured that the relations

< < = !‡ ‡
Z=! œ !ß ˆ ‰i Ð Ñ œ !ß œ "ß á ß <! (9.6.13)

are satisfied. 
We now consider a closed fundamental ideal associated with a given

system of partial differential equations and an isovector field  of this ideal.Z
Let the mapping  specify again an initial data submanifold.< VÀ H8" 7Ä
We assume that the mapping  is satisfying the < transversality condition

< .‡
Zˆ ‰i Ð Ñ Á !

for the volume form  in . The transversality condition implies that the. H8

rank of  is  since its domain is the -dimensional region .< 8  " Ð8  "Ñ H8"

Moreover, we find  on  since  is an -form. There-Ð Ñ œ œ ! H 8s< . < .‡ ‡
8" .

fore, we can write

G < <‡ ‡ > ‡ >
Z Z. . .œ ÑÐ Ñ / ÐI œ Ð Ñ / Ð.> • Ð Ñs sˆ ‰  ‰‘£ £Z Z i .

At  we get . Thus,> œ ! Ð Ñ Ð.> • Ð Ñ œ . • Ð Ñ Á !sk ‰ ˆ ‰G < 7 < .‡ ‡ ‡
Z Z. .>œ! œ i i

the condition  is satisfied about  on the set .G 7 ‘‡
8 8". Á ! œ ! H œ H ‚

Consequently, the mapping  defined by (9.6.5) or (9.6.6) is regular. In thisG
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case, we can enounce the following theorem that turns out to be actually a
direct descendant of Theorem 9.6.2.

Theorem 9.6.3. Let  be an isovector field of a closed fundamentalZ
ideal  associated with a given system of partial differential equations. If¼7

the mapping specifying an initial data submanifold holds< VÀ H8" 7Ä  
the conditions

< . < <‡ ‡ ‡
Z Zˆ ‰ ˆ ‰i iÐ Ñ Á !ß Ð Ñ œ !ß¼ ¼7 7œ !ß (9.6.14)

then the mapping prescribed by the equationsG 1 9 < Vœ ‰ ‰ À H Äs
Z 8 7 

(9.6.5)  (9.6.6)  and on satisfies the condition ,H œ H ‚8 8"
‡‘ G ¼7 œ !

that is, it becomes a solution of the ideal .¼7 
We had called  the . We regard< VÐH Ñ §8" 7 initial data submanifold

(9.6.5) as the equations determining the  corresponding to thecharacteristics
pair  satisfying the transversality condition. (9.6.14)  represent ÐZ ß Ñ< #$ res-
trictions imposed on initial data on the relevant submanifold.  is thenG
called as a   associated with a chosen .generalised characteristic solution Z

Generally, characteristic solutions of a system of partial differential
equations have to satisfy some additional conditions.

Theorem 9.6.4. If  is the generalised characteristic solution generat-G
ed by an isovector field  of the closed fundamental ideal associatedZ ¼7 
with a system of partial differential equations, then the condition

G‡
Zˆ ‰i Ð Ñ œ !¼7 (9.6.15)

should be satisfied on the domain of . Therefore, the generalised charac-G
teristic solutions have to fulfil a specific set of additional constraints. How-
ever, if , namely, if the isovector field is also a characteristiciZ Ð Ñ §¼ ¼7 7

vector field of the ideal, then these conditions are automatically satisfied.
We can realise at once that, we can write

I Ð Ñ œ Ð Ñ  .> • ‰ Ð Ñ œ Ð ÑZ Z Z Z Z Zi i i i i= = = =

for a form  due to (5.4.5).  Therefore (9.6.10) yields= − ¼7  

G = < =‡ ‡ >
Z Zˆ ‰  ˆ ‘i iÐ Ñ œ Ð Ñ / Ð Ñs £Z ‰ .

But the relation £ £  implies that for every natural num-Z Z Z Zˆ ˆi iÐ Ñ Ð Ñ= =‰ œ

ber , we can write £ £ . Hence, we reach to the result5 Ð Ñ œ Ð Ñ5 5
Z ZZ Zˆ ‰ ˆ ‰i i= =

/ Ð Ñ / Ð Ñ> >
Z Z

£ £Z Zˆ ˆi i= =‰ ‰œ .

We have  since  is an isovector field. Because of (9.6.12) ,/ Ð Ñ − Z>
7 #

£Z = ¼
we get  as well. We have seen in Sec. 9.5 that it suffices toG =‡

Zˆ ‰i Ð Ñ œ !
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satisfy the relation

G‡
Zˆ ‰i Ð Ñ œ !5!

in order that the constraint (9.6.15) is fulfilled. In the light of this constraint
we can say that, the generalised characteristic solutions are nothing but cer-
tain group-invariant solutions. However, if the isovector field  is at theZ
same time a characteristic vector of the fundamental ideal, that is, if one has
i iZ 7 7 Z

‡ ‡Ð Ñ Ð Ñ œ ! Ð Ñ œ !§¼ ¼ G G, then  implies that . In this case¼ ¼7 7ˆ ‰
the additional constraint is of course redundant. 

The determination of solution of a given system of partial differential
equations satisfying prescribed initial conditions by the method of generalis-
ed characteristics seems at the first glance the same as the construction of si-
milarity solutions investigated in Sec. 9.5. But, in order to obtain a tangible
benefit from a similarity solution we need to solve first analytically partial
differential equations (9.5.1) or (9.5.2). Furthermore, boundary and/or initial
conditions have to comply totally with the structure of the similarity solu-
tion whereas in the method of generalised characteristics the mapping  isG
determined by solving a system of ordinary differential equations if the
initial data manifold is suitably chosen as to comply with the imposed re-
strictions. It is of course much easier to find numerical solutions of ordinary
differential equations to construct a solution of partial differential equations
at least approximately.

Example 9.6.1. We consider the non-linear partial differential equation

D œ  5? œ !ß 5 œ
`? `?

`B `B" #
constant

where . Introducing , we characterise this8 œ #ß R œ " @ œ ? ß @ œ ?" ß" # ß#

equation by the following -form#

= D.œ œ Ð@ @  5?Ñ .B • .B" #
" #.

As we already mentioned on  538 in Sec. 9.4, we can determine an isovec-:Þ
tor field by taking . Hence, we getJ ÐB ß B ß ?ß @ ß @ Ñ œ  œ 5?  @ @1 2

1 2 D " #

\ œ @ ß \ œ @ ß Y œ 5?  @ @ ß Z œ 5@ ß Z œ 5@ Þ" #
# " " # " " # #

We define the mapping  specifying the initial data submanifold< ‘ VÀ Ä "

by the relations below depending on a single parameter =

B œ =ß B œ !ß ? œ Ð=Ñß @ œ Ð=Ñß @ œ Ð=Ñ" #
! " " # #< < < .

Since we have , , the5 œ .?  @ .B  @ .B Ð Ñ œ Y  @ \  @ \" # Z " #
" # " #i 5

constraints
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< . < <

< 5 < <

< < < < <

‡ ‡ " # # "
Z "

‡ w
! "

‡ ‡
Z " # ! " #

ˆ ‰i

i

Ð Ñ œ Ð\ .B  \ .B Ñ œ  Ð=Ñ .= Á !

œ Ð  Ñ .= œ !ß

Ð Ñ œ Ð5?  @ @ Ñ œ 5  œ !5

on the initial data yield

< < < <
<

<
" " #!

w !

!
w

Á !ß œ ß œ
5

   .

Equations (9.6.5) can now be written as

.B .B .? .@ .@

. . . . .
œ @ ß œ @ ß œ 5?  @ @ ß œ 5@ ß œ 5@ ß

B Ð!Ñ œ =ß B Ð!Ñ œ !ß ?Ð!Ñ œ Ð=Ñß

@ Ð!Ñ œ Ð=Ñß @ Ð!Ñ œ
5 Ð=Ñ

Ð=Ñ

" #

# " " # " #
" #

" #
!

" #!
w !

!
w

7 7 7 7 7
<

<
<

<

           

       

whose solution is easily found to be

B œ =  Ð/  "Ñß B œ Ð/  "Ñß
Ð=Ñ Ð=Ñ

Ð=Ñ 5

? œ Ð= Ñ /

@ œ Ð=Ñ / ß @ œ /
5 Ð=Ñ

Ð=Ñ

" 5 # 5!

!
w

!
w

!
#5

" #!
w 5 5!

!
w

< <

<

<

<
<

<

7 7

7

7 7

 

.

These relations create a solution in the form  after having ex-? œ ?ÐB ß B Ñ" #

pressed the parameters  in terms of independent variables  and  byÐ=ß Ñ B B7 " #

inverting, at least in principle the relations for  and .B B" #

As a very simple example, let us suppose that  where  is a<!Ð=Ñ œ -= -
constant. We then obtain

B œ =  =Ð/  "Ñß B œ Ð/  "Ñ
-

5
" 5 # 57 7 

whence we easily deduce that

= œ ß / œ "  B
B 5

"  B -

"

5
-

#

5 #7 .

Hence the solution becomes simply

?ÐB ß B Ñ œ -B "  B Þ
5

-
" # " #Š ‹
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On the other hand, if we take , we have<!
#Ð=Ñ œ -=

B œ =  =Ð/  "Ñß B œ =Ð/  "Ñ
" #-

# 5
" 5 # 57 7 

and we find

= œ B  B ß / œ " 
5 5B

%-
#-B  B

5

#

" # 5
#

" #

7

so that the corresponding solution becomes

?ÐB ß B Ñ œ - B  B Þ
5

%-

#-B  B
5

#

#-B  B
5

#

" # " #
# #

" #

" #
Š ‹ ’ “ è

Example 9.6.2. As a more difficult example, let us consider the partial
differential equation characterised by the -form#

= Aœ .0 • .0 − ÐO Ñß 0 œ ÐB Ñ  @ ß 0 œ ÐB Ñ  @" # " " #
# " # # # # #

# "

where we have again  and . The form  may8 œ #ß R œ " @ œ ? ß @ œ ?" ß" # ß# =
explicitly be written as

= œ %ÐB B .B • .B  B @ .B • .@  B @ .@ • .B  @ @ .@ • .@ Ñ" # " # " " # #
" " # # " # # "

If we choose a mapping  annihilating the form , then ? œ ÐB ß B Ñ œ9 = 9 =" # ‡

! yields quite a complicated non-linear second order partial differential
equation

9 9 9 9 9 9 9 9 9 9ß" ß# ß"" ß## ß" ß# ß"# ß" ß# ß"#
# " # " # Ð Ñ  ÐB  B Ñ  B B œ !.

This partial differential equation is known as the non-homogeneous Monge-
Ampère equation [French mathematicians Gaspard Monge (1746-1818) and
André Marie Ampère (1775-1836)]. Let  be an isovector field ofZ − X Ð ÑV"

the contact ideal. By definition, we get . We thus obtain. œ !=

£Z Z " # # "= =œ . Ð Ñ œ .Z Ð0 Ñ • .0  .Z Ð0 Ñ • .0i

where

Z Ð0 Ñ œ #B \  #@ Z ß Z Ð0 Ñ œ #B \  #@ Z" # # # " "
" " # # .

We now wish so specify a simple isovector field as to be Z Ð0 Ñ œ Z Ð0 Ñ" #

œ ! œ ! J œ J ÐB ß B ß ?ß @ ß @ Ñ implying £ . If we take the function Z =
1 2

1 2
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into account, then it follows from (9.3.26) that this special function  mustJ
satisfy the equations

@  @  B œ !ß @  @  B œ !
`J `J `J `J `J `J

`B `? `@ `B `? `@
# "# "

# " # #
# "

" #
.

The solution of the first equation is easily found to be as  whereJ œ J Ð ß Ñ0 (
characteristic variables are , . Inserting this0 (œ B B  @ @ œ ?  B @" # #

" # #

result into the second equation we obtain  implyingˆ ‰ÐB Ñ  @ `J Î` œ !# # #
" (

that  is independent of . Thus, we see that each smooth function of theJ (
form  generates an isovector field. As a simpleJ œ J ÐB B  @ @ Ñ" #

" #

example, let us just take . Hence, we find thatJ œ B B  @ @" #
" #

Z œ  @  @  ÐB B  @ @ Ñ  B  B
` ` ` ` `

`B `B `? `@ `@
# " " #" #

" # # "

" #

We choose the mapping  as follows< ‘ VÀ Ä "

B œ =ß B œ "ß ? œ Ð=Ñß @ œ Ð=Ñß @ œ Ð=Ñ" #
! " " # #< < < .

The expression  yields again  while the constraint < 5 < < <‡ w ‡
" Z!œ ! œ Ð Ñi 5

œ ÐB B  @ @ Ñ œ ! œ  =Î< < <‡ " # w
" # # ! requires that . Because of the rela-

tion , the transversality condition i iZ # " Z
# " ‡Ð Ñ œ  @ .B  @ .B Ð Ñ Á !. < .ˆ ‰

is met if . To deduce the solution mapping , we have to solve< < G" !
wœ Á !

the ordinary differential equations

.B .B .?

. . .
œ  @ ß œ  @ ß œ B B  @ @ ß

.@ .@

. .
œ B ß œ B

B Ð!Ñ œ =ß B Ð!Ñ œ "ß ?Ð!Ñ œ Ð=Ñß

@ Ð!Ñ œ Ð=Ñß @ Ð!Ñ œ 
=

Ð=Ñ

" #

# " " #
" #

" ## "

" #
!

" #!
w

!
w

7 7 7

7 7
<

<
<

    

    

  

from which we readily obtain the parametric solution

B œ =  ß B œ  Ð=Ñ ß
=

Ð=Ñ

@ œ  Ð=Ñ ß @ œ = 
=

Ð=Ñ

? œ Ð=Ñ  = #  Ð=Ñ  Ð"  # Ñ
= "

# Ð=Ñ

" # w

!
w !

" #!
w

!
w

! !
w

!
w

cos sin cos sin

sin cos sin cos

sin cos

7 7 7 < 7
<

7 < 7 7 7
<

< 7 < 7
<

Š ‹
If we would be able to eliminate the parameters  and , we might obtain= 7
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the corresponding solution in the form .? œ ?ÐB ß B Ñ" # è

Example 9.6.3. Let us take into account Korteweg-de Vries equation
studied in Example 9.4.2. The most general isovector field associated with
this equation would be

Z œ  Ð- B  - >  - Ñ  Ð$- >  - Ñ  Ð#- ?  - Ñ
` ` `

`B `> `?

 $- @  Ð- @  &- @ Ñ
` `

`@ `@

" $ % " # " $

" " $ " " #
" #

.

We define the mapping  specifying the initial data submanifold< ‘ VÀ Ä 2

by the relations

B œ =ß > œ !ß ? œ Ð=Ñß @ œ Ð=Ñß @ œ Ð=Ñß

@ œ Ð=Ñß @ œ Ð=Ñß @ œ Ð=Ñ

    < < <

< < <
! " " # #

"" "" "# "# "# ""

where , , , , . Because@ œ ? @ œ ? @ œ ? @ œ ? @ œ ?" ß" # ß# "" ß"" "# ß"# ## ß##

< .‡
Z # #ˆ ‰i Ð Ñ œ - .= - Á !, the tranversality condition is satisfied if we take .

"-forms generating the contact ideal are

5

5

5

œ .?  @ .B  @ .>

œ .@  @ .B  @ .>ß

œ .@  @ .B  @ .>

" #

" " "" "#

# # "# ##

,
 

.

Hence, the expressions

< 5 < <

< < <

< < <

‡ w
! "

‡ w
" ""

‡ w
# "#

œ Ð  Ñ .= œ !ß

Ð Ñ œ Ð  Ñ.= œ !ß

Ð Ñ œ Ð  Ñ.= œ !

      

                        
5

5
"

#

yield , , . On the< < < < < < <" "" "#! " ! #
w w ww wÐ=Ñ œ Ð=Ñ Ð=Ñ œ Ð=Ñ œ Ð=Ñ Ð=Ñ œ Ð=Ñ

other hand, we find  and,< < < <‡
Z " ! $ " % " # #i Ð Ñœ #-  -  Ð- =  - Ñ  - œ !5

consequently

< < <# $ " ! " %
#

!
wÐ=Ñ œ -  #- Ð=Ñ  Ð- =  - Ñ Ð=Ñ

"

-
 ‘.

The balance form is given by .= œ .@ • .>  Ð?@  @  0Ñ .B • .>"" " #

Therefore, the relation  leads to  and it follows from< < =‡ ‡.> œ ! ´ !

< = <‡ ‡
Z # "" " #i Ð Ñ œ - .@  Ð?@  @  0Ñ .B œ ! ‘

that . Hence, the admissible initial data< < < < <w
"" ! " # !   0Ð=ß !ß Ñ œ !

<!Ð=Ñ has to satisfy the following non-linear, third order ordinary differen-
tial equation
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< < < < <! !
www w

! ! !Ð=Ñ  Ð=Ñ  +=  - Ð=Ñ  #+ Ð=Ñ  ,  0 =ß !ß Ð=Ñ œ ! ‘ ˆ ‰
where new constants are defined as . In- Î- œ +ß - Î- œ ,ß - Î- œ -" # $ # % #

order to obtain the mapping  we must solve the linear ordinary differentialG
equations

.B .> .?

. . .
œ  - Ð+B  ,>  -Ñß œ  - Ð$+>  "Ñß œ - Ð#+?  ,Ñ

7 7 7
# # #

under the initial conditions . The solutionBÐ!Ñ œ =ß >Ð!Ñ œ !ß ?Ð!Ñ œ Ð=Ñ<!

is easily found to be

BÐ=ß Ñ œ
#Ð,  $+-Ñ  $Ð#+ =  #+-  ,Ñ/  ,/

'+

>Ð=ß Ñ œ ß ?Ð=ß Ñ œ
/  "

$+ #+

#+ Ð=Ñ  , /  ,

7

7 7
<

#  $

#

$
!

#

- + - +

- + - +

# #

# #

7 7

7 7ˆ ‰
.

As a simple application, we take  and . In this case,  must+ œ , œ ! 0 œ ! <!

satisfy the non-linear differential equation

< < <! !
www w

!Ð=Ñ  Ð=Ñ  -Ñ Ð=Ñ œ !ˆ
whose solution is known to be

<!
#

"Î#

Ð=Ñ œ $- =  .
-

#
sech Š ‹

Since, in the limit  we get+ Ä !ß , Ä !

B œ =  - - ß > œ  - ß ? œ Ð=Ñ# # !7 7 <

we have  and the soliton solution= œ B  ->

? œ ÐB  ->Ñ œ $- ÐB  ->Ñ  .
-

#
<!

#
"Î#

sech Š ‹
is obtained as a generalised characteristic solution.  è

Example 9.6.4. This time we choose  and consider the8 œ #ß R œ #
partial differential equations

`? `@ `? `@

`B `> `> `B
 œ "ß œ -#

where  is a real constant. If we eliminate  or  between these equations,- ? @
we see that  and  dependent variables have to satisfy separate non-linear? @
wave equations
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Š ‹ Š ‹`? ` ? ` ? `@ ` @ ` @

`> `B `> `B `> `B
œ - ß œ -

# ## # # #

# # # #
# # .

Let us write ,  and  so that B œ B B œ >ß ? œ ? ? œ @ @ œ ? ß @ œ ? ß" # " # " " " "
" ß" # ß#

@ œ ? ß @ œ ?" ß" # ß#
# # # #

" . The contact forms in  are given byV

5 5" " " " " # # # # " # #
" # " #œ .?  @ .B  @ .B ß œ .?  @ .B  @ .B .

The relevant components of the isovector field  of the contact ideal mayZ
be extracted from (9.4.27). We know that ,  ap-X X x u U U x uœ Ð ß Ñ œ Ð ß Ñ
pearing in those expressions are arbitrary functions. -forms inducing the!
differential equations become

J œ @  @  " œ !ß J œ @ @  - œ !" " # # " # #
" # # " .

We shall be looking for a simpler kind of an isovector field. Hence, we want
to satisfy the conditions £  and £ . Since Z Z Z

" # ".J œ ! .J œ ! ÐJ Ñ œi
i i iZ Z Z

# " #ÐJ Ñ œ ! Ð.J Ñ œ ! Ð.J Ñ œ !, they are reduced to  and . These rela-
tions lead to

Z  Z œ !ß @ Z  @ Z œ !" # " # # "
" # # " " #        .

If we insert the expressions  and  into (9.4.27) we get@ œ "  @ @ œ - Î@# " " #
# " # # "

the following polynomial identity in terms of the variables  and @ @" #
" "

  Ð@ Ñ @    Ð@ Ñ 
`\ `\ `Y `\ `\

`? `? `? `? `B
`Y `Y `\ `\ `\ `Y `Y `Y

`? `? `? `B `B `? `B `B
  #   @ @   

 Ð"  - Ñ
`

Š ‹ Š ‹
Š ‹ Š

" # # # #

" # " " "" # #
" # " " #

" # # " # # " #

" # # " # # " #" #
" "

# \ `\ `\ `Y `\ `\

`? `? `B `? `? `B
 -  @  -   œ !

`\ `Y `\ `\ `\

`? `? `? `B `?
Ð@ Ñ Ð@ Ñ    @ Ð@ Ñ  - Ð@ Ñ

  -
`Y

`B

# " # " " "

# " # # # #
# " #

#

# # # # "

" " " " #" # " # "
" # " # " " # # " #

#

"
#

‹ Š ‹
Š ‹

Š `\ `\ `\ `\

`? `B `? `?
 Ð@ Ñ  #-  @ @

 -   @  -   #
`Y `\ `\ `Y `Y `\

`? `? `B `? `? `?

  @  - 
`\ `\ `Y `

`B `B `?

# # " #

" " " ## " #
" # # " "

# " #
" " " " # #

# # # " # #"

" # "

" # ##
" #

‹ Š ‹
Š ‹ Š

‹ Š Y `\

`B `?
 - œ !

" "

# #
# ‹ .

Hence, we deduce 13 equations below obtained by setting the coefficients
of  and  to zero:@ @" #

" "
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`\ `\ `Y `\ `\ `Y `\ `\

`? `? `? `? `B `? `? `B
 œ ! ß   œ ! ß   œ ! ß

`Y `Y `\ `\ `\ `Y `\ `\

`? `? `? `B `B `? `? `B
  #   œ ! ß   œ ! ß

" # # # # " " "

" # " " " # # #
" # $

" # # " # # # #

" # # " # " " "
% &

`Y `Y `Y `\ `\ `\ `\

`? `B `B `? `? `B `?
   Ð"  - Ñ  -  œ ! ß œ ! ß

`\ `Y `\ `\ `\ `\

`? `B `? `B `? `?
œ ! ß  -  œ ! ß  œ ! ß

`Y `\

`? `


# " # # " # #

# " # # " # "
# # ' (

" # # # " #

# " " " " #
) # * "!

" "

# ? `B `? `B `?
 œ ! ß   - œ ! ß

`\ `Y `Y `\

`Y `Y `\ `\ `\

`? `? `? `B `B
  #   œ !

# # # # #

" " " "
"" # "#

" # # " #

" # # " #
"$.

Equations  and  together with equations  and  give rise to" "! ( )

\ œ \ ÐB ß B Ñß \ œ \ ÐB ß B Ñ" " " # # # " #

On employing these relations, it follows from equations  and  and equa-$ ""
tions  and  that# &

\ œ 1ÐB Ñß \ œ 2ÐB Ñß

Y œ Y ÐB ß B ß ? Ñß Y œ Y ÐB ß B ß ? Ñ

" " # #

" " " # " # # " # # .

Thus equations  and  yield"# *

Y œ Y ÐB ß ? Ñß Y œ Y ÐB ß ? Ñ" " " " # # # # .

If we add and subtract equations  and , we obtain% "$

`Y `Y

`? `?
œ 1 ÐB Ñß œ 2 ÐB Ñ

" #

" #
w " w #

whose integrations result in

Y œ 1 ÐB Ñ?  ÐB Ñß Y œ 2 ÐB Ñ?  ÐB Ñ" w " " " # w # # ## $ .

If we introduce these expressions into the equation , we find that'

1 ÐB Ñ?  2 ÐB Ñ?  ÐB Ñ  ÐB Ñ œ !ww " " ww # # w " w ## $

whence we deduce that

1 ÐB Ñ œ !ß 2 ÐB Ñ œ !ß ÐB Ñ œ  ÐB Ñ œww " ww # w " w ## $ constant

Hence, we are led to the conclusion
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1 œ - B  - ß 2 œ - B  - ß œ - B  - ß œ  - B  -" # $ % & ' & (
" # " ## $ .

Thus, the functions determining the isovector components become

\ œ - B  - ß \ œ - B  - ß

Y œ - ?  - B  - ß Y œ - ?  - B  -

" " # #
" # $ %

" " " # # #
" & ' $ & (.

This means that the isovector field in question is the prolongation of the
vector field

Z œ Ð- B  - Ñ  Ð- B  - Ñ  Ð- B  - ?  - Ñ
` ` `

`B `B `?

 Ð  - B  - ?  - Ñ
`

`?

K " # $ % & " '
" # " "

" # "

& $ (
# #

#
.

In order to easily produce a characteristic solution, we select a particular
form of the vector field  by taking Z - œ +ß - œ "ß - œ ,ß - œ - œ -K " $ & # % '

œ - œ !( :

Z œ +B  B  Ð,B  +? Ñ  Ð  ,B  ? Ñ
` ` ` `

`B `B `? `?
K

" # " " # #
" # " #

We define the mapping  through the given smooth functions< ‘ VÀ Ä "

B œ =ß B œ "ß ? œ Ð=Ñß ? œ Ð=Ñ

@ œ Ð=Ñß @ œ Ð=Ñß @ œ Ð=Ñß @ œ Ð=Ñ

" # " " # #
! !

" " " " # # # #
" " # # " " # #

< <

< < < < .

The transversality condition is met if .< .‡ " # # "
Zˆ ‰i Ð Ñ œ +B .B  B .B Á !

The constraints on initial data must satisfy the relations

< < < <

< < <

< < <

< < < <

< < < <

" " w # # w
" ! " !
" " " w
# ! !
# # # w
# ! !
‡ " " w # # w

! ! !
‡ # " " w # w #

! ! !

œ Ð Ñ ß œ Ð Ñ ß

œ ,=  +  +=Ð Ñ ß

œ  ,   +=Ð Ñ ß

J œ Ð Ñ  ,   +=Ð Ñ  " œ !ß

J œ ,=  +  +=Ð Ñ Ð Ñ œ - Þ ‘
This amounts to say that to generate the characteristic solution correspond-
ing to our present choice, the initial data  and  must satisfy the ordinary< <" #

! !

non-linear differential equations

Ð Ñ   +=Ð Ñ œ ,  "ß ,=  +  +=Ð Ñ Ð Ñ œ -< < < < < <" w # # w " " w # w #
! ! ! ! ! !

 ‘ .

The solution of this non-linear system is obviously not easy to find. But, we
can try out to obtain a particular solution. Let us choose
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< ! " < # $" #
! !Ð=Ñ œ =  = =ß Ð=Ñ œ  =log log .

Introducing these functions into the differential equations, we see that the
coefficients must satisfy the following relations

! " # $ " $ " $   +  Ð  Ñ = œ ,  "ß Ð,  + Ñ œ -log #.

If we take , then the second equation implies that  ought to be$ " "œ 
chosen as a root of the quadratic equation

+  ,  - œ !" "# # .

We therefore reach to the conclusion

< ! " < " ! "" #
! !Ð=Ñ œ =  = =ß Ð=Ñ œ ,  "  Ð"  +Ñ   =log log 

where  is also an arbitrary constant. To determine the characteristic solu-!
tion associated with the isovector field taken into consideration, we have to
solve the ordinary linear differential equations

.B .B

. .
œ +B ß œ B ß

.? .?

. .
œ ,B  +? ß œ  ,B  ?

" #
" #

" #
" " # #

7 7

7 7

under the initial conditions , , , B Ð!Ñ œ = B Ð!Ñ œ " ? Ð!Ñ œ Ð=Ñ ? Ð!Ñ œ" # " " #
!<

<#
!Ð=Ñ. We thus obtain

B œ =/ ß B œ / ß ? œ =Ð  =  , Ñ/ ß

? œ ,  "  Ð"  +Ñ   =  , /

" + # + " +

# +

7 7 7

7

! " 7

" ! " 7

log

log ‘
describing the solution parametrically. è

9.7. HORIZONTAL IDEALS AND THEIR SOLUTIONS

The most general transformation preserving the structure of a contact
ideal  has been determined in¯\ \ 5 5 5 5 57 3 3 3 3 3 â3 3 3 â3œ Ð ß ß ß á ß . Ñ! ! ! ! !

" " # " # 7" " # 7"

Sec. 9.3. Especially for , we know that this transformation is found asR  "
a prolongation of a point transformation in the graph space. This limitation
creates, however, a major obstacle in obtaining solutions of a system of par-
tial differential equations by using transformation methods This obstacle
can be overcome to some extent by enlarging the contact ideal in an appro-
priate way. To this end, we would like first to determine linearly independ-
ent vector fields  as to satisfy the relationsZ − X Ð Ñß 3 œ "ß á ß 83 7V
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i
i i i

Z
4 4

3

Z Z Z 7 7
5

3

3 3 3

Ð.B Ñ œ ß

‰ ‰ â ‰ Ð Ñ œ !ß " Ÿ 5 Ÿ 8ß a −  Ð Ñ

$

= = \ A V
" # 5

.

(9.7.1)

We call such a set of vector fields as a . A canonical sys-canonical system
tem generates an -dimensional submodule of the tangent bundle , so8 X Ð ÑV7

they constitute a basis for the -dimensional module of 8 Cartan annihilators
of the contact ideal . It is easily seen that the conditions (9.7.1)  are\7 #

fulfilled if and only if the following relations are satisfied:

i
i i

Z 3 â3

Z Z 3 â3

3

3

Ð Ñ œ !ß ! Ÿ < Ÿ 7  "à

‰ Ð. Ñ œ !

5

5

!

!
" <

4 " 7"
.

(9.7.2)

Indeed, if the conditions (9.7.1)  hold, then the conditions (9.7.2) are auto-#

matically satisfied since the generators  and  of the ideal 5 5 \! !
3 â3 3 3 â3 7" < " # 7"

.

are, respectively - and - forms. Conversely, let us assume that the condi-" #
tions (9.7.2) are met. Let  be a -form in the ideal. Therefore, we= \− 57

have to write

= - 5 A 5œ •  • ."
<œ!

7"
3 â3 3 â3

3 â3 3 â3
" < " 7"

" < " 7"! !
! !

where  and . But, we have- A V A A V3 â3 5" 3 â3 5#
7 7

" < " 7"
! !− Ð Ñ − Ð Ñ

i i i iZ Z Z Z
3 â3 3 â3

3 3 3 3" "5 5"

" < " 7"‰ â ‰ Ð Ñ œ !ß ‰ â ‰ Ð Ñ œ !- A! !

because of the degrees of those forms. Then we immediately observe that
we get

i i i i

i i

Z Z Z Z

<œ!

7"
3 â3

3 â3

Z Z
3 â3

3 â3

3 3 3 3

3 3

" "5 5

" <

" <

" 5"

" 7"

" 7"

‰ â ‰ Ð Ñ œ ‰ â ‰ Ð Ñ •

 ‰ â ‰ Ð Ñ • . œ !

= - 5

A 5

" !
!

!
!

provided the relations (9.7.2) are satisfied. Let us represent a vector field
Z − X Ð Ñ3 7V  by

Z œ \  Z
` `

`B `@
3

4
3 4

<œ!

7

33 â3
3 â3

"
" <

" <

!
!

where .    \ ß Z − Ð Ñ Z4
3 33 â3 33 â3

!
7" < " <

! !A V It is clear that the smooth functions are
to be taken as completely symmetric in subscripts  without loss of 3 ß á ß 3" <

generality. The condition (9.7.1)  yields simply"



586 IX  Partial Differential Equations

\ œ4 4
3 3$

whereas we find from (9.7.2)  that"

iZ 3 â3 3 â3 4 33 â3 3 â3 3
4

3Ð.@  @ .B Ñ œ Z  @ œ !! ! ! !
" < " < " < " <

and  for . On the other hand, we can writeZ œ @ ! Ÿ < Ÿ 7  "33 â3 3 â3 3" < " <

! !

. œ  .@ • .B5! !
3 â3 3 â3 5

5
" 7" " 7"

 so that we arrive at the following interior
products

i
i i

Z 3 â3 33 â3 5 3 â3 3
5

Z Z 3 â3 33 â3 4 43 â3 3

3

3

Ð. Ñ œ  Z .B  .@ ß

‰ Ð. Ñ œ  Z  Z œ !

5

5

! ! !

! ! !
" 7" " 7" " 7"

4 " 7" " 7" " 7"
.

This implies the symmetry property  amounting to sayZ œ Z33 â3 4 43 â3 3" 7" " 7"

! !

that   the coefficients must be completely symmetric with respect to allZ33 â3" 7

!

their subscripts. Therefore the general form of a canonical system involving
8 linearly independent vector fields and satisfying the conditions (9.7.1) is
given by

Z œ  @  Z
` ` `

`B `@ `@
3 3

<œ!

7"

3 â3 3 33 â3
3 â3 3 â3

"
" < " 7

" < " 7

! !
! ! . (9.7.3)

Thus a contact manifold of order  admits infinitely many canonical sys-7

tems associated with  number of arbitrary smoothR œˆ ‰87
7" Ð8"Ñx Ð7"Ñx

RÐ87Ñx
 

functions . We next consider another vector  of the ca-Z − Ð Ñ Z33 â3
!

7 4" 7

! A V

nonical system by

Z œ  @  Z
` ` `

`B `@ `@
4 4

=œ!

7"

4 â4 4 44 â4
4 â4 4 â4

"
" = " 7

" = " 7

" "
" "

Successive application of the operators  and  results in the following ex-Z Z3 4

pression after some manipulations

Z Z œ  Z  Z
` ` `

`B `B `@ `B `@ `B

 @  @
` `

`@ `B `@ `B

 @

3 4

# # #

3 4 4 333 â3 43 â3
3 â3 3 â3

<œ!

7"

3 â3 3 3 â3 4

# #

3 â3 3 â3
4 3

<œ! =œ!

7" 7"

3

" 7 " 7

" 7 " 7

" < " <

" < " <

"

! !
! !

! !
! !

"’ “
" " â3 3 4 â4 4

#

3 â3 4 â4
< " =

" < " =

! "

! "
@

`

`@ `@
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 Z @  Z @
`

`@ `@

 @  Z
` `

`@ `@

" ‘
"

<œ!

7"

33 â3 43 â34 â4 4 4 â4 3

#

3 â3 4 â4

<œ"

7"

3 â3 34 33 â3 4
3 â3 3 â3

" 7 " 7" < " <

" 7 " <

" <" " 7"

" <" " 7"

! !" "

! "

! !
! !          
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where we have renamed the dummy indices whenever necessary. Hence, the
Lie product of these two vector fields is easily found to be

Ò ÓZ ß Z œ Z Z  Z Z
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(9.7.4)

The differential of a function  can now be expressed as0 − Ð ÑA V!
7
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(9.7.5)

In order to obtain this relation we have first replaced -forms  with -" .@ "3 â3" <

forms  for  and then we have further53 â3 3 â3 3
3

" < " <
 @ .B ! Ÿ < Ÿ 7  "!

introduced -forms appearing in the above expression. However," D!
3 â3" 7

their definition will be given a little bit later in (9.7.7).
The  of the exterior algebra  is identified as thevertical ideal A VÐ Ñ7

closed ideal prescribed as follows

i \7
" # 8œ Ð.B ß .B ß á ß .B Ñ. (9.7.6)

On the -dimensional submanifold  where 's areH ÖB œ - à 3 œ "ß á ß 8× -3 3 3

constants, this ideal is obviously annihilated. In other words, the ideal i7

vanishes when restricted to the fibres of the ideal over . This, ofV W7 8 

course, justifies our use of the term ' '. Let us now take into accountvertical
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the forms

D A V3 â3 3 â3 33 â3
3 "

7" 7 " 7 " 7

! ! !œ .@  Z .B − Ð Ñ. (9.7.7)

We shall call them as  . A  of the exteriorhorizontal forms horizontal ideal"-
algebra  will now be defined asA VÐ Ñ7

[ \ 5 D7 3 â3 3 â3œ Ð ß ! Ÿ < Ÿ 7"à Ñ! !
" < " 7

 . (9.7.8)

We know that  for . For , due to the. − ! Ÿ < Ÿ 7# < œ 7  "5 [!
3 â3 7" <

relation  we find immediately that. œ  .@ • .B5! !
3 â3 3 â3 3

3
" 7" " 7"
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(9.7.9)

Moreover on using (9.7.5),  the relation

. œ  .Z • .BD3 â3 43 â3
4

" 7 " 7

! !

leads to

 

                      

. œ  Z ÐZ Ñ .B • .B  • .B
`Z

`@

 • .B
`Z

`@

D 5

D

! !
!

!

!

!
!

3 â3 43 â33 3 â3
3 4 4

<œ!

7"
43 â3

3 â3

43 â3

3 â3
3 â3

4

" 7 " 7

" 7

" <

" <

" 7

" 7

" 7

"

from which we deduce that

.  Z ÐZ Ñ  Z ÐZ Ñ .B • .B − Þ
"

#
D [! ! !

3 â3 43 â3 33 â33 4 7
3 4

" 7 " 7 " 7
 ‘ (9.7.10)

Therefore, we get  . −D [!
3 â3 7" 7

if and only if the conditions

Z ÐZ Ñ œ Z ÐZ Ñ3 443 â3 33 â3
! !

" 7 " 7
(9.7.11)

are satisfied. In this case, the horizontal ideal  turns out to be a closed[7

ideal. In view of (9.7.4), we see at once that the relation (9.7.11) becomes
possible if and only if

Ò ÓZ ß Z œ !ß " Ÿ 3ß 4 Ÿ 83 4 (9.7.12)

that is, .if the canonical system consists of commuting vector fields
We denote the characteristic subspace of the ideal  which will be[7

called henceforth as the  by . Thus, if  ishorizontal module f V[7 Y − X Ð Ñ7

a characteristic vector of , then the relation  must be[ [ [7 Y 7 7i Ð Ñ §
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satisfied. Since all generators of the horizontal ideal are -forms, it becomes"
possible to comply with this condition if and only if we have

i iY Y3 â3 3 â3Ð Ñ œ !ß ! Ÿ < Ÿ 7"à Ð Ñ œ !5 D! !
" < " 7

  . (9.7.13)

Let us take a vector field

Y œ \  Y
` `
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3
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7
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"
" <
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!
!

into consideration. Then (9.7.13) requires that

Y œ @ \ ß ! Ÿ < Ÿ 7"à Y œ Z \3 â3 3 â3 3 3 â3 33 â3
3 3

" < " < " 7 " 7

! ! ! ! .

Hence, any vector  can be written asY − f[7

Y œ \  @  Z œ \ Z
` ` `

`B `@ `@
3 3

3
<œ!

7"

3 â3 3 33 â3
3 â3 3 â3

3Š ‹"
" < " 7

" < " 7

! !
! ! .

Thus, canonical system constitutes a basis of the horizontal module as well.
Consequently,  to each choice of completely symmetric smooth functions
Z − Ð Ñ Ð Ñ33 â3

!
7 7" <

! A V A V there corresponds a horizontal ideal of . The
horizontal module of this ideal coincides with both the modules of charac-
teristic vectors of   and Cartan annihilators of the contact ideal [ \7 7. It is
clear that the vectors  satisfy naturally the characteristic conditionsZ3

(9.7.13). In this situation the canonical system produces the distribution
f[7 . In case the conditions (9.7.11) are also met, this distribution proves to
be involutive. We can now show the following theorem.

Theorem 9.7.1. The horizontal module  is the module of isovectorsf[7

of the horizontal ideal  if and only if the ideal is closed.[ [7 7 
In order that a vector field  is to be an isovector field of theZ − f[7

horizontal ideal , the conditions £  where [ 5 [7 Z 73 â3
!
" <

− ! Ÿ < Ÿ 7"

and £  should be satisfied. If we note (9.7.13), we getZ 73 â3D [
" 7

! −

£   £ .Z Z Z Z3 â3 3 â3 3 â3 3 â35 5 D D! ! ! !
" < " < " 7 " 7

œ Ð. Ñß œ Ð. Ñi i

The relations (9.7.9) and (9.7.10) lead to £  for  Z 73 â35 [!
" <

− ! Ÿ < Ÿ 7"

together with

£ .Z 3 4 Z 73 â3 43 â3 33 â3
3 4D [

" 7 " 7 " 7

! ! ! Z ÐZ Ñ  Z ÐZ Ñ Ð.B • .B Ñ −
"

#
 ‘i

If we write , then we find .Z œ \ Z Ð.B • .B Ñ œ \ .B  \ .B3 3 4 3 4 4 3
3 Zi

Therefore, the last terms belong obviously to the vertical ideal. Thus, we
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find £   the conditionsZ 73 â3D [
" 7

! − if and only if

Z ÐZ Ñ œ Z ÐZ Ñ3 443 â3 33 â3
! !

" 7 " 7

are again satisfied. (9.7.11) constitute the necessary and sufficient condi-
tions for a horizontal ideal  to be closed. We had seen that they were[7

equivalent to the conditions .Ò ÓZ ß Z œ !3 4 
According to Theorem 5.13.4, the closed horizontal ideals are com-

pletely integrable. Let  denote the set of all closed horizontal ideals. We»7

can readily demonstrate that this set is not empty. For instance, we may con-
sider the smooth functions  and define the functions0 − ÐQÑ! A!

Z œ
` 0 Ð Ñ

`B `B â`B
!

!

33 â3

7"

3 3 3" 7 " 7

x
.

These function plainly verify both the condition of complete symmetry and
the relations (9.7.11). When we consider a member of , the vectors »7 3Z ß
" Ÿ 3 Ÿ 8 8 generate -dimensional integral manifolds in  annihilating theV7

closed ideal . Since the dimension of  is , we know that these[7 V7 8  H
manifolds are obtainable from the independent solutions , 1 − Ð Ñ + œ+ !

7A V
"ß á ß H of the linear partial differential equations

Z Ð1Ñ œ !ß 3 œ "ß á ß 83

by setting  where  are real constants. The general solution of the1 œ - -+ + +

above equations may be written as . Hence, the1 œ KÐ1 ß á ß 1 Ñ œ KÐ1 Ñ" H +

closed ideal  provides an -dimensional  on the manifold [7 8 foliation V7

[ Sec  2.11]. Each choice of constants characterises a .see . leaf
Next, we shall try to calculate all isovector fields of a horizontal ideal

[ 5 [7 Y 73 â3− −»7. If  is an isovector, then the relations Y £  for!
" <

! Ÿ < Ÿ 7  " − and £  must be satisfied. If we make use ofY 73 â3D [!
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the Cartan formula £ , we getY Y Y= = =œ . Ð Ñ  Ð.ˆ ‰ ‰i i
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without loss of generality where ,  are\ Y ! Ÿ < Ÿ 73
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− Ð ÑA V!
7  for 
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smooth functions. Since members of the canonical system are characteristic
vectors of , we eventually obtain[7
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Thus, in order to get £  we have to setY 73 â35 [!
" <

− ß ! Ÿ < Ÿ 7  "

Y œ Z ÐY Ñß ! Ÿ < Ÿ 7  "! !
3 â3 3 3 â33" < " <

.

The solution of this recurrence relation is clearly given by

Y œ Z Z âZ ÐY Ñß ! Ÿ < Ÿ 7! !
3 3 â3 3 3 3" # < " # < (9.7.14)

in terms of  functions  where we have adopted the conven-R Y ! − Ð ÑA V!
7

tion that . Y œ Y! !
3!

On the other hand, the relation
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requires that we have to satisfy the following equations
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in order to get . Thereby we obtain the expressions£Y 73 â3D [!
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Because [7 is closed, the relations (9.7.11) are to be satisfied. Hence, the
smooth functions  ought to verify the restrictionsY !
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For , (9.7.15) is trivially fulfilled. Therefore we arrive at the follow-Y œ !!

ing theorem.
Theorem 9.7.2.    In terms of functions and  functions8 \ − Ð Ñ3 !

7A V R
Y − Ð Ñ! A V!

7   (9.7.15), satisfying all isovector fields of a closed horizontal
ideal are expressible in the form  [7
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Canonical system constitutes also the module of isovectors of closed if[7 
only one chooses .Y œ !! 

When the ideal  is closed, the canonical system is a Lie algebra and[7

8-dimensional submanifold  it produces annihilates this ideal. The map-Æ
ping  prescribing the manifold  is a solution mapping of the9 Æ V ÆÀ Ä 7

ideal, that is, one has . Since the Lie products of vectors 9 [‡
7 3œ ! Z

vanish, they generate a coordinate mesh on . We can determine the map-Æ
ping  by means of congruences that are integral curves of vector fields .9 Z3

Let us denote  number of coordinates of the manifold  by§ œ 8  H V7

ÖB ß @ À ! Ÿ < Ÿ 7× œ ÖD À " Ÿ Ÿ3
3 â3
! š
" <

š §×

as in Sec. 9.6. Let us take into consideration characteristic vector fields, or
Cartan annihilators   of the horizontal ideal .Z œ @ Ð Ñ`Î`D − X Ð Ñ3 7 73

š šz V [
We know that Lie products of these vector fields vanish. Their trajectories
are found as usual by integrating the ordinary differential equations

.

.>
œ @ Ð Ñß Ð!Ñ œ D

'
'

š
š š š

3 3 '

where  is a real parameter. In order to determine the mapping , we start>3 9
with the vector field . We can formally express the solution of the ordi-Z"

nary differential equations

.

.>
œ @ Ð Ñß Ð!Ñ œ D

'
'"

" " "

š
š š š'"

as . In the second step, the solution of the equations'"
"š šÐ> à Ñ ÐD Ñz œ /> Z"

"
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.

.>
œ @ Ð Ñß Ð!Ñ œ Ð> à Ñ

'
' '#

# # # "
"

š
š š š'# z

can be written as  . Since the vectors'#
#

" "
š šÐ> à Ñ Ð Ñ œ ÐD Ñ' 'œ / / /> Z > Z > Z# # "

# # "

Z Z" # and  commute, we then find that

'#
# "

"
š šˆ ‰> à Ð> à Ñ ÐD Ñ' z œ /> Z > Z" #

" # .

If we continue in this fashion, the mapping ' œ Ð à Ñ9 t z  is specified by the
relation

'š šœ ÐD Ñ/> Z3
3 . (9.7.17)

This expression determines -dimensional solution manifold of a closed8
ideal  [ V7 7 through any point  of  or, in other words, a leaf of the foliationz
annihilating the ideal  passing through a point . The integration para-[7 Dš

meters  form the  of the solution manifold.> ß > ß á ß >" # 8 natural coordinates
The action of the mapping  on the coordinates  of the manifold 9 B Q3

can easily be evaluated. Since , the differential equations@ œ4 4
3 3$

.B

.>
œ ß B Ð!Ñ œ B

3

4 4 !
3 3 3$

yield immediately the simple solution

B œ B  >3 3 3
! . (9.7.18)

Thus, coordinates of the open set  of  over which differential equa-W ‘8
8

tions are defined and local coordinates of the solution manifold are connect-
ed by a simple translation. In this case, we have  and as a result9‡ 3 3.B œ .>
of this we obtain

9 . 9‡ ‡ " # 8 " # 8œ Ð.B • .B • â • .B Ñ œ .> • .> • â • .> .

On writing  and noting that  and ,9 9 9 5 9 D‡ ‡ ‡
3 â3 3 â3? œ Ð Ñ œ ! œ !! ! ! !t
" < " 7

we draw the conclusion

9 9
9 9‡ ‡
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3 3 3 3 3
@ œ ß ! Ÿ < Ÿ 7  " Z œ

` Ð Ñ ` Ð Ñ

`> â`> `> `> â`>
! !

! !

" < " 7" < " 7

t t
; .

Hence, selected functions  provide information about th or-Z Ð7  "Ñ!
33 â3" 7

der partial derivatives of functions  on the solution manifold.?!

If we take notice of the relation (9.7.9), we immediately realise that 9
is a solution mapping of the contact ideal. Instead of the closed fundamental
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ideal ¼7 [ 521], let us now introduce a  bysee  new balance ideal:Þ

µ \ 5 D =7 3 â3 3 â3œ Ð ß !Ÿ<Ÿ 7 "à à Ñ! ! !
" < " 7

where -forms  are given in (9.4.3). 8 −= [ µ! If 7 7»7, Inthen  is closed. 
fact, since  then (9.7.5) for the function .B • œ !3 . D! implies that

.= D . [ µ! !œ . • − §7 7.

On the other hand, we can similarly write

= D . D . D D .

D D
5 D . A V

! ! ! ! !

! !

" "
" "

œ . •  œ Z Ð Ñ 
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7" 3 3

3 â3 3 â3
3 â3 3 â3 3 7
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 ‘
’ “"

" < " 7

" < " 7
.

Introducing the smooth functions

Y D D A V! ! !œ Z Ð Ñ  − Ð Ñß3 7
3 ! (9.7.19)

we readily observe that

= Y . [! ! − 7. (9.7.20)

Therefore, we obtain

9 = 9 Y 9 . 9 Y‡ ‡ ‡ ‡ " # 8! ! !œ œ .> • .> • â • .>

for the solution mapping of the horizontal ideal. Consequently, we conclude
that  if and only if . Hence, only in this case the solution9 = 9 Y‡ ‡! !œ ! œ !
mapping  of  corresponds to a solution of the new balance ideal as9 [7

well. Since  are -forms, we get  if only ifY A V 9 Y Y! ! !Ð Ñ − Ð Ñ ! œ !z ! ‡
7  

œ ! ©. Let us define the submanifold  byc V7 7

c V Y !7 7œ Ö − À Ð Ñ œ !ß œ "ß á ß R×z z! . (9.7.21)

Hence, we see that the relations  can only be realised on the re-9 Y‡ ! œ !
gion  that is determined by non-empty intersections of submani-e V7 7©
fold  with the leaves of the foliation generated by the mapping . More-c 97

over, because the set  over which differential equations are definedW ‘8
8©

is open, the set  must also be open. Therefore, it is clear that we can9 e‡
7

obtain such a solution under rather restricting conditions. However, the de-
pendence of the ideal  on functions  that offer some freedom of[7 33 â3Z !

" 7

choice despite they have to obey certain rules might offer various alterna-
tives. That makes it possible to find some useful solutions by clever choices.

We now attempt to determine isovector fields of the balance ideal .µ7
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Let  be an isovector field of the closed horizontal ideal  given byY [7

(9.7.16). It then follows from (9.7.20) that

£ £ .Y Y 7= Y . [! ! Ð Ñ −

Furthermore, we can write

£ £ £Y Y Y 3
3Ð Ñ œ Ð Ñ  Ð Ñ œ Y Ð Ñ  .\ •Y . Y . Y . Y . Y .! ! ! ! !

whence we deduce

£Y 3 7
3Ð Ñ œ Y Ð Ñ  Z Ð\ Ñ  ß −Y . Y Y . Z Z [! ! ! ! ! ‘

on utilising (9.7.5). Since , in order to obtain £  we may= [ = µ! !Â −7 Y 7

write  in view of  for functionsA = A Y . [ = Y . [" "
! " ! " ! !œ œmod mod7 7

A A V"
! − Ð Ñ!

7  so that the conditions

 ‘Y Ð Ñ  Z Ð\ Ñ œY Y . A Y .! ! ! "
"3

3

lead to the result

£Y 7 7= A = [ µ! ! "
"œ − Þmod

In other words, we have to find some functions  so that the- A V"
! − Ð Ñ!

7

relations

Y Ð Ñ œ \ Z Ð Ñ  Z âZ ÐY Ñ œ
`

`@
Y Y - Y

Y! ! " ! "
!

" "
3

3 3 3

<œ!

7

3 â3

"
" <

" <

(9.7.22)

must be satisfies. Here, we have defined . Equations- A $" " "
! ! !œ  Z Ð\ Ñ3

3

(9.7.22) help us to determine the admissible functions  and  comply-\ Y3 !

ing with the conditions (9.7.15) for isovectors of the closed ideal  to be[7

isovectors of the balance ideal  as well. Knowing isovectors of the ba-µ7

lance ideal makes it possible for us according to Theorem 5.13.7 to elicit
new families of solutions if we have a solution at hand. If we take ,Y œ !!

then we have  and if we write  without loss of gene-Y œ \ Z œ \3 3
3 3- -" "

! !

rality, we must be able to find functions  such that- A V"
!

3
!

7− Ð Ñ

Z Ð Ñ œ3 3Y - Y! ! "
"

in order that canonical system coincides with set of isovectors of the balance
ideal. These relations pave the way to produce some solutions of the balance
ideal by suitably choosing somewhat arbitrary functions  characteris-Z !

33 â3" 7

ing the horizontal ideal [7.
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Ð3ÑÞ Let us suppose that the completely symmetric functions Z !
33 â3" 7

may be so chosen that the conditions (9.7.11) and the relations

Y D D

D D D
D

! ! !

! ! !
! ! !

! !

œ Z Ð Ñ 

œ  @  Z  œ !
` ` `

`B `@ `@

3
3

3 3 3

3
<œ!

7"

3 â3 3 33 â3
3 â3 3 â3

"
" < " 7

" < " 7

are satisfied. In this case every leaf of [7 proves to be a solution manifold
of the balance ideal, and, consequently, of the system of partial differential
equations.

Ð33ÑÞ Z Let us suppose that the completely symmetric functions  in!
33 â3" 7

subscripts may be so chosen that the conditions (9.7.11) and the relations

Z Ð Ñ œ Z3 3Y D D! ! !Z Ð Ñ  Z Ð Ñ œ !4 3
4

are satisfied by taking . In this case, we know that we can write-"
!

3 œ !

Y! !œ J Ð1 Ñß+ Z Ð 1 Ñ œ !ß 1 − Ð Ñß + œ "ß á ß HÞ3 7
+ + !A V   

Leaves of the ideal  where  are real[7 are obtained by setting 1 œ - -+ + +

constants. Out of these leaves, those corresponding to solution manifolds
can be found by determining the constants satisfying the algebraic equations
J Ð- ß - ß á ß - Ñ œ ! " Ÿ Ÿ R! " # H  where .!

Ð333ÑÞ Z Let us suppose that the completely symmetric functions !
33 â3" 7

may be so chosen that the conditions (9.7.11) and the relations

Z Ð Ñ œ3 3Y - Y! ! "
"

are satisfied for functions . In this- A V"
!

3
!

7− Ð Ñ that are not all equal to zero
case each leaf of the foliation of [ c7 7 intersecting the set  given by
(9.7.21) becomes the graph of a solution mapping of the balance ideal.

Ð3@ÑÞ Finally, let us assume that the distribution  is not involutive,f[7

but the restriction  belongs to the tangent bundle  and is invo-kf c[ c7 7
X Ð Ñ7

lutive. In this case, although the horizontal ideal  is not completely in-[7

tegrable over the manifold , its restriction on the submanifold  is com-V c7 7

pletely integrable. In order to implement this, we have to choose the com-
pletely symmetric functions  in such a way that we might be able toZ !

33 â3" 7

find functions  such that the relationsA - A V! !
" "343 â3 3

!
7" 7

ß − Ð Ñ

Ò ÓZ ß Z œ ß Z Ð Ñ œ
`

`@
3 4 3343 â3 3

3 â3

A Y Y - Y! " ! ! "
" "!" 7

" 7

or on noting (9.7.4)
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Z Z  Z Z œ ß Z Ð Ñ œ3 4 343 â3 33 â3 343 â3 3
ˆ ‰ ˆ ‰

" 7 " 7 " 7

! ! ! " ! ! "
" "A Y Y - Y ,

are to be satisfied. The functions  are antisymmetric in indices A!"343 â3" 7
3ß 4

and completely symmetric in indices . In this situation, some solu-3 ß á ß 3" 7

tions of the balance ideal can be found by determining the integral curves of
the canonical system passing through .c7

Example 9.7.1. As an example to the case , let us consi-R œ "ß 8 œ #
der the  [German physicist Walter Gordon (1893-1939)]Gordon equation

` ?

`B`>
œ Ð?Ñ

#
wF

where  is a smooth function of its argument. The reason why this functionF
is introduced into the equation as a derivative is to facilitate the calculations.
Let us take

B œ Bß B œ >ß ? œ @ ß ? œ @ ß

œ .B • .>ß œ .>ß œ  .B

" #
B " > #

" #

   
  .. . .

Then the ideal  is generated by the following -forms[" "

5

D

D

œ .?  @ .B  @ .>ß

œ .@  Z .B  Z .>ß

œ .@  Z .B  Z .>

" #

" " "" #"

# # "# ## .

Symmetry condition is met by taking . We denote the canonicalZ œ Z#" "#

system by

Z œ  @  Z  Z ß
` ` ` `

`B `? `@ `@

Z œ  @  Z  Z
` ` ` `

`> `? `@ `@

" " "" "#
" #

# # "# ##
" #

.

The balance form will now be written as

= F D . D.œ  .@ • .B  Ð?Ñ .B • .> œ . • " #
w #

so that we have . Consequently, (9.7.19)D D D F" # w
"œ !ß œ @ ß œ  Ð?Ñ

takes the form

Y D D Fœ Z Ð Ñ  œ Z  Ð?Ñ# "#
# w .

Hence, if we choose , then we get . Thus, each leaf of Z œ Ð?Ñ œ !"# "
wF Y [

will constitute a solution manifold. Furthermore, the conditions (9.7.11) are
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reduced to

Z ÐZ Ñ œ Z ÐZ Ñß Z ÐZ Ñ œ Z ÐZ Ñ" "# # "" " ## # "#

so that we get the partial differential equations below to determine the func-
tions  and Z Z"" ##

`Z `Z `Z `Z

`> `? `@ `@
 @  Ð?Ñ  Z œ @ Ð?Ñ

`Z `Z `Z `Z

`B `? `@ `@
 @  Z  Ð?Ñ œ @ Ð?Ñ

"" "" "" ""
# ## "

w ww

" #

## ## ## ##
" "" #

" #

w ww

F F

F F

,

.

Evidently, we will not be able to find the general solution of these non-line-
ar equations for an arbitrary function . However, we may try a particularF
solution in the form

Z œ Ð?Ñß Z œ Ð?Ñ
@ @

@ @
"" ##

" #

# "

w wF F .

It is a very simple exercise to show that this choice satisfies the above equa-
tions identically. Therefore, the canonical system corresponding to this case
are given by

Z œ  @  Ð?Ñ  ß
` ` @ ` `

`B `? @ `@ `@

Z œ  @  Ð?Ñ 
` ` ` @ `

`> `? `@ @ `@

" "
w "

# " #

# #
w

" " #

#

F

F

Š ‹
Š ‹

In order to determine the foliation of the closed ideal  we have to solve["

the following linear partial differential equations

Z Ð0Ñ œ  @  Ð?Ñ  Ð?Ñ œ !ß
`0 `0 @ `0 `0

`B `? @ `@ `@

Z Ð0Ñ œ  @  Ð?Ñ  Ð?Ñ œ !
`0 `0 `0 @ `0

`> `? `@ @ `@

" "
w w"

# " #

# #
w w

" " #

#

F F

F F ,

To this end, we apply the method of characteristics. From the first equation,
we get the ordinary differential equations

.B .> .?

.= .= .=
œ "ß œ !ß œ @ ß

.@ @ .@

.= @ .=
œ Ð?Ñ ß œ Ð?Ñ

"

" " #w w

#
F F .

The trivial characteristic variable is . From the fourth and fifth> œ -!
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equations we obtain the characteristic variable

0 œ œ -
@

@
"

#
"

while the third and fourth equations yield

.@ - Ð?Ñ

.? @
œ

" "
w

"

F

whose integral provides another characteristic variable

( Fœ @  - Ð?Ñ œ -
"

#
#
" " #.

Finally, the first and third equations lead to

.?

.B
œ @ œ # - Ð?Ñ  -" " #É  ‘F

whose solution gives the last characteristic variable

'
F

œ B  œ -
.?

# - Ð?Ñ  -
( È È " #

$.

Consequently, the general solution of the first partial differential equation
becomes . On introducing this function into the second0 œ J Ð ß ß ß >Ñ0 ( '
partial differential equation, we find

`J " `J

`> - `
 œ !

" '

whose solution is obviously  where . There-0 œ J Ð ß ß Ñ œ >  - œ -0 ( < < '" $

fore, the leaves of the horizontal ideal  are characterised by the functions["

below

1 œ >  - B  œ - ß
.?

# - Ð?Ñ  -

1 œ œ - ß 1 œ @  - Ð?Ñ œ - Þ
@ "

@ #

"
" $

" #

# $ #"

#
" " #"

’ “( È È F

F

Hence, a solution is given implicitly by

- .?

# - Ð?Ñ  -
œ >  - B  -

"

" #
" $È È(

F
(9.7.23)

depending on three arbitrary constants. As a simple example, let us take
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` ?

`B`>
œ ?

#

.

We thus have . If we define new constants byFÐ?Ñ œ
?

#

#

+ œ - ß + œ ß + œ ß
#- -

- -
" " # $

# $

" "

È È
then the expression (9.7.23) assumes the form

( È  ‘È.? >

?  +
œ ?  ?  + œ  + B  +

+#
#

#
# " $

"
log

whence we arrive at the solution

?ÐBß >Ñ œ  +
"

#
’ “/ /

>
+"

" $
>

+"
" $+ B+ + B+

#
Š ‹ .

Finally, let us consider the sine-Gordon equation

` ?

`B`>
 ? œ !

#

sin .

In this case, we have . If we introduce the new constants byFÐ?Ñ œ ?cos
+ œ - ß + œ - Î- ß + œ - Î -" " # # " $ $ "È È , then it follows from (9.7.23) that

( È È Š ‹‹Ê.? # ? # >

?  +
œ J ß œ  + B  +

+  " # +  " +cos # # # "
" $

where  is the  [French mathema-J  Legendre elliptic integral of the first kind
tician Adrien-Marie Legendre (1752-1833)] defined by

J Ð ß 5Ñ œ Þ
.

"  5
9

)

)
( È! # #

9

sin

The solution of the equation  for  in terms of  is expressibleJ Ð ß 5Ñ œ9 < 9 <
as sn  where sn denotes the  and the func-sin9 <œ Jacobi elliptic function
tion sn  is found as the solution of the non-linear ordinary differential( 0œ
equation

.

.
œ Ð"  ÑÐ"  5 Ñ

(

0
( (È # # # .

Hence, a particular solution of the sine-Gordon equation may be written as
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?ÐBß >Ñ œ #  + B  +
+  "

# +

>
arcsin sn ’ Š ‹“È #

"
" $

depending on three parameters. è

Example 9.7.2. We consider  partial differential equations8

`?

`B
œ Ð ß ?Ñ

3 39 x

involving a single dependent variable where  are given functions.93Ð ß ?Ñx
We look for the solution . But, because of the symmetry relations? œ ?Ð Ñx
? œ ?ß34 ß43 3, the functions  must satisfy the compatibility conditions9

` ` ` `

`B `? `B `?
 œ 

9 9 9 9
9 9

3 3 4 4

4 34 3 (9.7.24)

for the existence of a solution. The horizontal ideal  is now be generated["

solely by -forms"

5 Dœ .?  @ .B ß œ .@  Z .B3 3 3 43
3 4.

The functions  are presently arbitrary except for satisfying theZ − Ð Ñ43 "
!A V

symmetry condition . Despite there exists just one dependent vari-Z œ Z34 43

able, namely, , there are  balance equations . Therefore, weR œ " 8 ÐE œ 8Ñ
choose balance -forms as8

= D . 9 . .3 3 3 3
" 8œ œ @  Ð ß ?Ñ ß œ .B • â • .Bˆ ‰x .

The canonical system will now have the form

Z œ  @  Z
` ` `

`B `? `@
3 3 343

4
.

From (9.7.19), we obtain

Y 93 3 3œ @  Ð ß ?Ñx . (9.7.25)

Hence, the submanifold  of  is specified by the relations , orc V Y" " 3 œ !

@ œ Ð ß ?Ñß " Ÿ 3 Ÿ 83 39 x .

Next, let us choose the functions  asZ34

Z œ 
` `

`B `?
34 4

3 3

4

9 9
9 . (9.7.26)
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Because of the compatibility conditions (9.7.24), the symmetry relations are
automatically satisfied. However, if we consider the case , the equalityÐ3@Ñ
(9.7.11) must be satisfied at least on the submanifold . For this purpose,c"

let us evaluate the expressions  and  and employ theZ Ð Ñ Z ÐZ Ñ  Z ÐZ Ñ3 4 3 54 4 53Y
relations (9.7.24) to obtain

Z Ð Ñ œ 
`

`?
3 4 3

4
Y Y

9

and

Z ÐZ Ñ  Z ÐZ Ñ œ Z   Z 
` ` ` `

`B `? `B `?

œ  
` ` ` `

`B `? `? `? `?

  
` ` ` `

`B `? `? `? `?

3 54 4 53 3 4 4 3
5 5 5 5

4 3

# #
5 5 5 4

4 # 4 3

# #
5 5 5 3

3 # 3 4

Š ‹ Š ‹
Š ‹

Š ‹

9 9 9 9
9 9

9 9 9 9
9 Y

9 9 9 9
9 Y .

Since  on , the relations  and  areY c Y3 " 3 4 3 54 4 53œ ! Z Ð Ñ œ ! Z ÐZ Ñ  Z ÐZ Ñ œ !
also satisfied on the same submanifold. Therefore, the solutions to our sys-
tem of differential equations are obtained via the integral curves of the vec-
tor fields

Z œ  @  
` ` ` ` `

`B `? `B `? `@
3 3 43 4

3 3

4
Š ‹9 9

9  

passing through the submanifold . As a special case, let us take c" 8 œ #ß
B œ Bß B œ >" #

" # and choose the functions  and  as follows9 9

9 9" #? ?
œ ß œ

>  ? B  >

B  / B  /
.

We can easily verify that these functions satisfy the compatibility conditions
(9.7.24) [  Edelen and Wang (1992), . 144]. Hence, the relations (9.7.26)see :
yield at once

Z œ
Ð?  >Ñ / Ð>  ?  #Ñ  #B

ÐB  / Ñ

Z œ
ÐB  / Ñ  ÐB  >Ñ /

ÐB  / Ñ

Z œ Z œ
ÐB  / Ñ  ÐB  / ÑÐB  >Ñ  / Ð?  >ÑÐB  >Ñ

ÐB  / Ñ

""

?

? $

##

? # # ?

? $

"# #"

? # ? ?

? $

 ‘

In this case, the solution mapping must be found by solving the differential
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equations  and  by using the method of characteristics.Z Ð0Ñ œ ! Z Ð0Ñ œ !" #

However, we might reach to a particular solution by a simple observation.
Let us define a mapping  by the relations  9 VÀ K Ä B œ Bß > œ >ß ? œ ?ß"

@ œ ß @ œ œ !ß 3 œ "ß #" " # # 3
‡9 9 9 D. We then immediately see that  whereas

the expression  gives9 5‡ œ !

9 5‡
? ?

?
?

?
? #

œ .?  .B  .>
>  ? B  >

B  / B  /

œ ÐB  / Ñ .?  Ð?  >Ñ .BÐB  >Ñ .>
"

B  /

œ . /  B?  >  B> œ !
" "

B  / #

 ‘
Š ‹ .

Therefore, some implicit solutions of the partial differential equations

`? >  ? `? B  >

`B B  / `> B  /
œ ß œ

? ?

are provided by

/  B?  >  B> œ -
"

#
? #

where  is an arbitrary constant.-
An exemplary plot of this function is depicted in Fig. 9.7.1. è

Fig. 9.7.1. A plot of  10./  B?  >  B> œ? "
#

#
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9.8. EQUIVALENCE TRANSFORMATIONS

Several system of partial differential equations, particularly modelling
natural laws, contain some arbitrary functions or parameters reflecting phys-
ical constitution of materials involved. Almost all field equations of classi-
cal continuum physics fall into this category. Thus, such systems are actual-
ly family of equations whose fundamental structures remain unchanged but
show some differences in their physical constitutions from one material to
another through some constitutive functions or parameters. For instance, the
field equations of hyperelastic solids are of the same type and only the
particular form of the stress potential distinguishes one material from the
other. The  are defined as groups of continuous transfor-equivalence groups
mations that leave a given family of equations invariant. In contrast to a
symmetry transformation that transforms one set of equations into them-
selves, an equivalence transformation maps an arbitrary member of the
family onto another member of the same family which may possess some-
what different physical properties. Meanwhile, it transforms a solution of
the one member onto a solution of another member of that family.

In other words, if we manage to determine an equivalence transforma-
tion, we can employ a solution corresponding to a certain material to obtain
a solution associated with another material of the same sort whose physical
properties obey the rules dictated by the appropriate equivalence transfor-
mation. Although the concept of equivalence transformations is well-known
in the theory of ordinary and partial differential equations, we owe their first
systematic treatment within the realm of classical Lie groups to Russian
mathematician and engineer Lev Vasil'evich Ovsiannikov (1919) [see 
Ovsiannikov (1982)]. In this section, we will try to treat equivalence trans-
formations of balance equations by employing exterior differential forms.

We know that an th order system of balance equations with Ð7  "Ñ 8
independent variables  and  dependent variables  are given by (9.4.1)B R ?3 !

`

`B
 œ !ß 3 œ "ß #ß á ß 8à œ "ß #ß á ß R

D
D !

!
!

3

3
          .

As we have mentioned on . 522, a difference between numbers of the:
equations and the dependent variables does not create undue difficulties in
our general approach. In order to be able to determine equivalence transfor-
mations, we have first to enlarge the manifold  to a much bigger mani-V7

fold  by adding new auxiliary independent variables to the coordinate^7

cover of   to take into account ,  and their derivatives with respectV D D7
3! !

to their argument in order to identify their functional forms. To this end, we
introduce the new auxiliary variables
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= œ ß = œ ß
` `

`B `@

> œ ß > œ ß ! Ÿ < Ÿ 7
` `

`B `@

!
! !

!
" "

!
! !

!
" "

3
4

3 3

4
33 â3

3 â3

3 3
3 â3

3 â3

D D

D D

  

  

  (9.8.1)

    .

" <

" <

" <

" <

It is clear that the variables  and  are completely symmetric in= >! !
" "

33 â3 3 â3" < " <

the indices . Hence, the coordinate cover of the manifold  that is3 ß âß 3" < 7^
enlarged significantly compared to that of the manifold  are given byV7

˜ ™B ß ß ß = ß > ß Ö@ ß = ß > À ! Ÿ < Ÿ 7×3 3 3
4 3 3 â3

33 â3 3 â3D D! ! ! ! ! ! !
" "" <

" < " < .

We can easily verify that the dimension of the manifold  is at most^7

8  Ð"  8Ñ R  Ò"  Ð8  "ÑRÓR Þ
Ð8  7Ñx

8x7x
#

Let A ^Ð Ñ "7 7 be the exterior algebra on the manifold . Contact -^
forms in the manifold  are now defined by^7

5 A ^

H D A ^

H D A

3 â3 3 â3 3 â3 3
3 "

7

3 3 3 4 "
4

<œ!

7
33 â3

3 â3 7

3
3

<œ!

7
3 â3

3 â3

" < " < " <

" <

" <

" <

" <

! ! !

! ! ! !
"

"

! ! ! !
"

"

œ .@  @ .B − Ð Ñß ! Ÿ < Ÿ 7  "ß

œ .  = .B  = .@ − Ð Ñß

œ .  > .B  > .@ −

"
" "

7Ð ÑÞ^

(9.8.2)

Balance -forms are again given by8

= D . D . A ^! ! !œ . •  − Ð Ñ3 8
3 7 .

Let  denote the balance ideal of  generated by forms , , ,· A ^ = H H7 7
3Ð Ñ ! ! !

. . Ö À ! Ÿ < Ÿ 7  "× .H H 5 5! ! ! !3
3 â3 3 â3, ,   and . Exterior derivatives
" < " 7"

of -forms are"

. œ  .@ • .B ß ! Ÿ < Ÿ 7  "ß

. œ  .= • .B  .= • .@ ß

. œ  .> • .B  .> • .@ Þ

5

H

H

! !

! !
"
! "

! ! !
"

"

3 â3 3 â3 3
3

3 3 4
4

<œ!

7
33 â3

3 â3

3
3

<œ!

7
3 â3

3 â3

" < " <

" <

" <

" <

" <

    

"
"

The ideal  is closed. Indeed, we can easily verify that·7
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. œ . • œ •  > •

 > . • −

= D . H . 5 .

5 . ·

! ! ! !
"

"

!
"

"

"
<œ!

7"
3 â3

3 â3

3 â3 3
3 â3 3 7

" <

" <

" 7" 7

" 7" 7
.

If a mapping  annihilates the ideal , that is, if the pull-9 ^ ·À Q p 7 7

back operator  satisfies the relations9 A ^ A‡
7À Ð Ñ Ä ÐQÑ

9 5 9 H 9 H 9 =‡ ‡ 3 ‡ ‡
3 â3
! ! ! !
" <

œ ! ! Ÿ < Ÿ 7  "ß œ ! œ ! œ !, , , ,

then we easily observe that  is a solution mapping of the given system of9
partial differential equations. In order to determine the equivalence transfor-
mations, we have to find isovector fields that leave the closed balance ideal
· ^7 7 invariant. A vector field  can now be represented by theZ − X Ð Ñ
expression

Z œ \  W  X  W  X
` ` ` ` `

`B ` ` `>`=

 Z  W  X
` ` `

`@ `= `>

3 3 3
3 3 4 33

4 3

<œ!

7

3 â3
3 â3

33 â3 3 â3
33 â3 3 â3

! ! ! !
! ! ! !

!
! " "

! !

" "
! !

D D

"Š ‹
" <

" <

" < " <

" < " <
.

(9.8.3)

All coefficients in the vector field (9.8.3) are smooth functions of the coor-
dinates of the manifold . Let us first take into consideration the ideal^7

\ 5 H HÐÖ À ! Ÿ < Ÿ 7  "×ß ß Ñ "! ! !
3 â3

3
" <

. Since this ideal is produced by -
forms only, Theorem 5.12.4 secures us that the isovectors of this ideal and
its closure

¶7 œ \ 5 5 H H H HÐÖ À ! Ÿ < Ÿ 7  "×ß . ß ß ß . ß . Ñ! ! ! ! !
3 â3 3 â3

3 3
" < " 7"

are the same. Therefore, to determine the isovector fields of the closed con-
tact ideal , we have to show the existence of smooth functions ¶7 ,

- . /!
" " "

! ! ! ! ! !
" " " " " "

! !4 â4
3 â3 33 â3 3 â3 4 3

33 â3 3 â33 3" <

" 5 " "5 5

" < " <ß O P Q Q R R, , , , , , , 

belonging to  such that the following relations are satisfiedA ^!
7Ð Ñ

£ (9.8.4)

£

Z 3 â3 33 â3 3 â3
<œ!

7"
4 â4
3 â3 4 â4

3

Z
3 3 4 3

<œ!

7"
33 â3

3 â3 4

5 - 5 H H

H . 5 H H

! ! " ! "!
"

"
" "

! ! " ! "!
"

"
" "

" " "5 5 5

" <

" 5 " <

" <

" <

œ  O  P ß

œ  Q  Q ß

"
"



9.8  Equivalence Transformations 607

£Z

<œ!

7"
3 â3

3 â3 3
3H / 5 H H! ! " ! "!

"
"

" "œ  R  R" " <

" <

where . To this end, we start with the equations (9.8.4) . For! Ÿ 5 Ÿ 7  " "

! Ÿ 5 Ÿ 7  ", the relations

J œ œ Z  @ \ ß

. œ  Z .B  \ .@

3 â3 3 â3 3 â3 3 â3 3Z
3

Z 3 â3 3 â3 3 3 â3 3
3 3

" " " "5 5 5 5

" " "5 5 5

! ! ! !

! ! !

i
i

5

5

(9.8.5)

lead to

£Z 3 â33 â3 3 â3 3 3 â3 3
3 3

3 â3 3 â3 3 3 â3 3
3 3

5! ! !

! ! !
" " "5 5 5" 5

" " "5 5 5

œ .J  Z .B  \ .@

œ .Z  Z .B  @ .\

If we introduce the above expressions into (9.8.4)  after having calculated"

the differentials  and , and arrange the resulting expression,.J .Z3 â3 3 â3" "5 5

we then find that

’ "
“ ’ “

 Z   @  O =
`J

`B

 P > .B   O .
`J

`

! !
!

! "
"

"
"

! ! "
" "

"
!

"

3 â3 3 43 â3
3 â3

3
<œ!

7"
4 â4 4
3 â3 4 â4 3 3

3 â3 33 â33
3 33 â3

3

" "5 5

" 5 " <

" 5 " <

" "5 5

" 5

-

D
D      

           

 

  P .
`J

`

 .=  .>
`J

`= `>

`J


`Z

`@

’ “

"’

3 â3
3 â3

3 â3
3

4 3
4 3

3 3 â3

<œ!

7"
3 â3

4 â4

" 5

" 5

" 5 " 5

" 5

" <

!

"
! "
"

!

" "
" "

!

!

"

 

 

 

D
D

                 

                      @ 
`\

`@

 O =  P > .@

!
"

!
"

! !
# #" "

# # "

3 â3 3

3

4 â4

4 â4
3 â3

33 â3 3 â3
34 â4 4 â4

4 â4

" 5

" <

" <

" 5

" "5 5

" < " <

" <

 -

                    

                            

“
          

     

     

 .=
`J

`=

 .>   @
`J `Z

`> `@ `@

`\

"
" ’

<œ!

7
3 â3

34 â4
34 â4

<œ!

7
3 â3 3 â3

4 â4
4 â4

4 â4 4 â4

3 â3 3

3

" 5

" <

" <

" "5 5

" <

" <

" 7 " 7

" 5

!

"
#

#
"

! !

" " "
#

#
" !

 

   

         O =  P > .@ œ !! !
# #" "

# # "
33 â3 3 â3

34 â4 4 â4
4 â4" "5 5

" 7 " 7

" 7
“

from which we get the following relations for  and5 œ !ß "ß á ß 7  "
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< œ !ß "ß á ß 7  "
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The equations (9.8.6)  indicate that the functions , $ 3 â3-6 J ! Ÿ 5 Ÿ 7  "
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The above equations are exactly the same as the equations (9.3.5)  and$

(9.3.6). Hence, their solutions are again given by the recurrence relations
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(9.8.7)

[ (9.3.16) and (9.3.17)]. Let us now take the relations (9.8.4)  into ac-see #

count. By employing the relations
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As is clearly seen from the above relations, there are no restrictions on func-
tions , hence they can be selected totally arbit-W ß < œ !ß "ß á ß 7  ""
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rarily. Finally, let us take the equations (9.8.4)  into account. The Lie deri-$
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lead eventually to the results
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where the functions  may be chosen totally ar-X ß < œ !ß "ß á ß 7  ""
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bitrarily. Thus, isovector fields of the contact ideal are characterised in the
following manner
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depending on indeterminate coefficients  and W X ß < œ !ß "ß" "
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á ß 7  ". On the other hand, we can easily demonstrate that the Lie
derivatives of the generators of the contact ideal with respect to the vector
fields  and  satisfy the relationsZ Z" #
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so that they are automatically isovectors of the contact ideal without impos-
ing any restriction on the coefficient functions. Hence, these trivial isovec-
tor fields can be discarded without loss of generality because they will not
be operative in determining the equivalence groups. The rather simple dif-
ferential equations for the functions  and  appearing in the first andJ K! !3

second lines in the foregoing sets of relations concerned with the coeffici-
ents in equations (9.8.4) can readily be integrated to yield
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When we insert the above expressions into the equations (9.8.8)  and"

(9.8.9) , we see at once that we can write"
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Therefore, the isovector fields of the contact ideal are entirely specified by
8  #R  8R \ ß Y B ß ? W ß X functions  depending only on  and  only3 3 3! ! ! !

on   They are presently chosen arbitrarily.B ß ß ß @ ß ! Ÿ < Ÿ 74 4
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 In order to determine the isovector fields of the balance ideal, we
next have to consider the following relations
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and then introduce these transformations into proper places in the invariance
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relations connected with Lie derivatives of forms  with respect to an iso-=!

vector field  and arrange the resulting expressions suitably to arrive at theZ
equations below
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However, the left hand side above is antisymmetric with respect to its last
two superscripts. Hence, the symmetric part of the right hand side with res-
pect to indices  and  must vanish. Therefore, the determining equations3 37

for the isovector components  and the functions  are found\ ß W ß X3 3! ! !
"/
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eventually to be
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(9.8.11)

These equations do not impose any restriction on the isovector components
Y !. Nonetheless, if some variables do not appear in the coordinate cover of
the manifold  due to a particular structure of the balance equations, that^7

might entail some new restrictions on the isovector components because the
corresponding isovector components must then be set to zero. Equivalence
transformations are now obtained by solving the following autonomous or-
dinary differential equations
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For , that is, for the first order balance equations we have to take7 œ !
D D! !3Ð ß Ñ Ð ß Ñx u x u and , and we have to modify our analysis substantially. In
this case, the coordinates of  are merely ^ D D7
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In order that this vector turns out to be an isovector of the contact ideal, one
has to satisfy the relations

i iZ Z
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from which we easily deduce that
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Here, we have defined
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If we scrutinise carefully the above equations, we immediately reach to the
conclusion
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appearing in the above equations are given as follows
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in order to satisfy the above equations. Thus, we reach to the following de-
termining equations
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(9.8.12)

The foregoing results will loose their validity in the case , thatR œ "
is, if there is only a single dependent variable. Evidently, we do not need to
employ the Greek indices anymore since they all take only the value . In"
that case, we have to consider obviously just one balance equation which is
represented by
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 .

The coordinate cover of the contact ideal  then becomes^7
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Consequently, an isovector field of  that is a member of the tangent^7

bundle  must be represented byX Ð Ñ^7
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On making use of exactly the same sort of operations as we had done in the
case of , we obtain in this situation the following expressions forR  "
! Ÿ 5 Ÿ 7  "
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where the functions  are defined by the relationsJ ß J ß K − Ð Ñ3 â3 7
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Furthermore, we immediately observe that  cannot depend on theJ3 â3" 5

variables ,  and  while  is independent of= > Ö= ß > À ! Ÿ < Ÿ 7× J3 33 â3 3 â3 3
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By taking  in the relation (9.8.13) , we get5 œ 7  " $
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Therefrom, we arrive at the previously derived solutions (9.3.22), (9.3.23)
and (9.3.25) for the components  and . In a similar fashion, we\ ß Y Z3
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deduce the following expressions
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Trivial isovector fields that can be discarded without loss of generality are
given by
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! Ÿ < Ÿ 7  ". The remaining isovector components are listed below
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They are entirely determined in terms of  functions8  #
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with . In order that this vector field becomes also an isovector! Ÿ < Ÿ 7
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If we follow a path similar to what we have followed in the case of ,R  "
we easily obtain the expression
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The functions and forms entering into the single equation (9.8.16) are essen-
tially associated with unknown functions \ ß W ß X3 3  and are given by
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œ
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To satisfy the equation (9.8.16), it would suffice now to select

E œ  = ß E œ  =  .B • Gß

F œ  ß F œ ß
`W

`
E œ  =  .B • G ß ! Ÿ < Ÿ 7  "

# / . # / .

- /. .
D

# / .

3 3 3 43 3
3 4

3 3 3 3

3

3 â3 3 â3 33 â3 3 3 â3
3

     

         
 

" < " < " < < " <"

In this case, (9.8.16) reduces to
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’ Š ‹“"> / D .

> / .

  =  = @

 Ð  = Ñ .@ •

 .@ • .B • G œ !

3 33 â3
3

<œ!

7"

3 â3 3

33 â3 33 â3
3 â3 3

3 â3
3 3 â3

" <
" <

" 7 " 7
" 7

" 7
7 " 7"

                          

 .

If we introduce the forms

G œ G − Ð Ñß

G œ  G − Ð Ñ

3 â3 3 â3 34 8#
34

3 â3 34 3 â3 43 !

" 7" " 7"

" 7" " 7"

. A

A

^

^

7

7

we find

.@ • .B • G

œ  .@ • .B • G

œ G .@ • .B •

œ G .@ • Ð  Ñ

œ  #G

3 â3 34
3 3 â3 34

3 â3 43
3 3 â3 34

3 â3 34 3
3 â3 34

3 â3 34
3 â3 3 44 3

3 3

3 â3

" 7
7 " 7"

" 7
7 " 7"

" 7" 7
" 7

" 7"
" 7

7 7

" 7

.

.

.

$ . $ .

  

" 7
" 7

33
3 â3 3.@ • . .

We thus obtain

’ Š ‹“"> / D .

> / .

  =  = @

 Ð  =  #G Ñ.@ • œ !

3 33 â3
3

<œ!

7"

3 â3 3

33 â3 33 â3 3 â3 33
3 â3 3

" <
" <

" 7 " 7 " 7" 7
" 7

implying that the coefficients of independent forms  and  must. ..@ •3 â3 3" 7

vanish. Obviously the antisymmetric parts of the terms > /33 â3 33 â3" 7 " 7 =
with respect to indices  and  will determine the coefficients 3 3 #G7

3 â3 33" 7" 7

that are antisymmetric in those two indices. Thus the symmetric parts of
these terms with respect to the same indices should vanish. Hence, the deter-
mining equations for isovector components take eventually the forms below

> / D

> > /

  =  = @ œ !ß

  Ð=  = Ñ œ !Þ

Š ‹"3 33 â3
3

<œ!

7"

3 â3 3

33 â3 3 3 â3 33 â3 3 3 â3

" <
" <

" 7 7 " " 7 7 "

(9.8.17)

We cannot extract the determining equations corresponding to the case
7 œ " directly from (9.8.17). The relation

£Z 3
3= /= 5 5 H Hœ  • E  . • F  • G  • G
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can now be written as

 ‘
Š ‹

Š ‹

> / D . 5 > . / .

H > . /$ . H . H 5 .
D

5 .

 Ð  =  = @  •  E  =

 •  G   •  G  • •
`W `\

` `?

 =  = • .@ • 
`\ `\ `\

`@ `? `@

3 3 3 3
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3 4
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5
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5

3
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34 34 3 3456
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> / . > .

• .@ •

 Ð  = .@ •  .@ • .B • F  .@ • .@ • œ !)

where we defined

> D D
D

D
$

>
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8

:

œ  œ =  =  =  =
" `\ `\ `\ `\

% `@ `@ `@ `@

œ =
" `\

% `@

>

$ $

Š ‹    
    

.

To combine the form  with other terms, we take it in the formF − Ð ÑA ^8#
"

F œ F  F .@ •45 4567
45 7 456. . . Antisymmetry properties impose the res-

trictions . We thereby findF œ  F ß F œ F − Ð Ñ45 54 4567 456 7 !
"

[ ] A ^

 .@ • .B • F œ #F .@ •  $F .@ • .@ •3 4 3 6 5 43
3 34 3465. . .

On the other hand, by selecting

E œ   =  = .@ • ß
`\ `\

`@ `?

G œ ß
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G œ   •  .@ • ß
`\ `\

`? `@
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D
.

> /$ . 5 . .
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4 4

5
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3

3 4 43 5 43
4 4
3 3

4 4
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we arrive at the relation
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 ‘> / D . > / .

> .

 Ð  =  = @  Ð  =  #F .@ •

 Ð  $F Ñ.@ • .@ • œ !

3 3 34 34 34
3 3 4 3

3456 3456
6 5 43

) )

which requires that  and . Hence, the#F œ  = $F œ34 34 34 3456 3 45 6> / >[ ] [ ] [ ]

determining equations are reduced to

> / D 5 > > /

> > $ $ $ $

œ Ð  =  @ ß  œ =  = Ñß

 œ Ð  Ñ= œ !
`\

`@

3 3 34 43 34 43
3 3

3456 3546 34 56 35 46 7;
78 :; 78 :;

8

:

) ( (9.8.18)

 .

The third set of equations in (9.8.18) govern the dependence of functions
\ ÐB ß ?ß @ Ñ @3 4

4 4 on variables . In fact,  these equations imply that the coeffi-
cients of the variables  vanish if only the relations=7;

Ð  Ñ œ !
`\

`@
$ $ $ $78 :; 78 :;

34 56 35 46
8

:

are satisfied. Contractions on indices  and  above yieldÐ3ß 7Ñ Ð6ß ;Ñ

Ð8  "Ñ Ð  Ñ œ !
`\

`@
# 4 5 5 4

8 : 8 :

8

:
$ $ $ $

whence we obtain the equations

`\ `\

`@ `@
 œ !

4 5

5 4
 

for . The solution of this set of partial differential equations can be8  "
written simply as

\ œ + ÐB ß ?Ñ@  , ÐB ß ?Ñß + œ  +3 34 5 3 5 34 43
4 .

We then see that  must also satisfy the conditions+34

Ð  Ñ+ œ !$ $ $ $78 :; 78 :;
34 56 35 46 8:

that can be expanded into

+  +  +  +  +  + œ !35 4 6 46 3 5 36 4 5 34 5 6 56 3 4 36 5 4
7 ; 7 ; 7 ; 7 ; 7 ; 7 ;$ $ $ $ $ $ $ $ $ $ $ $ .

By contractions on the indices  and , we getÐ5ß 7Ñ Ð6ß ;Ñ

Ð8  "Ñ+ œ !Þ# 34

Therefore, we have to take  for . Consequently, we finally+ œ ! 8  "34



628 IX  Partial Differential Equations

reach to the conclusion .\ œ , ÐB ß ?Ñ3 3 5

For , the case  does not need a special care. Since all7 œ ! R œ "
Greek indices are equal to , the determining equations are directly deduced"
from (9.8.12) as

> / D > / Ð  = Ñ œ !ß K  >  = œ !3 3 3 3
3        .

We can easily reproduce the determining equations for the symmetry
groups discussed in Sec. 9.4 from the determining equations for the equi-
valence groups. To this end, it suffices to note that in symmetry transforma-
tions  and ( , and their derivatives with respect to their argu-D D! !3 R  "Ñ
ments can no longer be chosen as independent variables as we have done in
equivalence transformations. Therefore, the only surviving isovector com-
ponents should be  and , . Moreover, we have to keep in\ Z ! Ÿ < Ÿ 73

3 â3
!
" <

mind that the basis vectors  and ,  appearing in`Î`B `Î`@ ! Ÿ < Ÿ 73
3 â3
!
" <

(9.8.3) are calculated by holding  and  as constants. On taking intoD D! !3

notice of the functional forms of  and , we immediately conclude thatD D! !3

we have to write by using the chain rule

º
»

` ` ` ` ` `

`B `B `B ` `B `
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` ` ` ` ` `

`@ `@ `@ ` `@ `
œ   ß ! Ÿ < Ÿ 7

3 3 3 4 3
ß

4

3 â3 3 â3 3 â3 3 â3ß

4
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D D
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D D

" "

" "

! !
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3

" < " < " < " <3

D D

D D

D D

D D
.

Thus an isovector field is now expressible as

Z œ \  Z  W  Z Ð Ñ
` ` `

`B `@ `

 X  Z Ð Ñ
`

`

3 3 3
3 3

<œ!

7

3 â3
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"  ‘
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! ! !
! !
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!

" <

" <

D
D

D
D

.

However, the coefficients of the vectors  and  must vanish.`Î` `Î`D D" "4

Hence, it is obvious that we are compelled to take  and W œ Z Ð Ñ X œ! ! !3 3D
Z Ð ÑD! . As is well-known, we define

Z Ð0Ñ œ \  Z
`0 `0

`B `@3
3

<œ!

7

3 â3
3 â3"

!
!

" <

" <

for a function . If we also recall the definitions (9.8.1) and insert0 − Ð ÑA V!
7

all we have found so far into the determining equations (9.8.11), we readily
observe that we can recover the determining equations (9.4.11). The case R
œ " W œ Z Ð Ñ X œ can be treated in exactly similar fashion. We find , 3 3D
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Z Ð ÑD  and it is straightforward to verify that the equations (9.8.17) give rise
to the equations (9.4.17).

We shall now try to determine the general solutions of the determining
equations (9.8.11) or (9.8.17).

The case :  R  "  The explicit form of the equations (9.8.11) can be
written as
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"
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Š
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(9.8.19)

Here, we have introduced the following functions
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If we carefully examine the equations (9.8.19) , we realise that the coeffi-"

cients  cannot depend on the variables  and  whereas the/"
!

" "
! != >33 â3 3 â3" 7 " 7

equations (9.8.19)  imply that they are independent of the variables # 4 3
3= ß >! !

and . We thus obtainÖ= ß > ß ! Ÿ < Ÿ 7  "×" "
! !33 â3 3 â3" < " <
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Therefore, on recalling arguments of  and , we realise at once that\ ß W X3 3! !

(9.8.19)  makes way for the following relations"
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(9.8.20)
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`W `\ `W `\

`B `B `? `?
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Let us now define the functions
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If we contract the indices  and  in (9.8.20)  and take into consideration the3 4 #

equations (9.8.20) , we reach to the relation"
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where  are arbitrary functions of their arguments. Eventually, (9.8.20)0"
!

#
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Differentiating the above expression with respect to , we getD#5
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The extreme right hand side in the foregoing relation arises from the sym-
metry of second order derivatives with respect to the variables  requiringD"4

that this expression must be invariant under interchanges  and .Ð ß Ñ Ð4ß 5Ñ" #
A contraction on indices  and  yields3 4

8 œ
`0

`

`0

`

"
!

#
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!

"D D5 5
.

Hence, we can write

`0 `0

`
œ 8

`
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# #D
$ $

D5 4 5
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4

and on contracting the indices  and , we arrive at the result3 5
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Ð8  "Ñ œ !Þ
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#
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#D

Since  in partial differential equations, we conclude that the functions8  "

0"
! " must be independent of , that is, their explicit dependence should beD 4

given as follows

0 œ 0 ÐB ß ? ß @ ß @ ß á ß @ Ñ" "
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Then, we easily obtain
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(9.8.21)

" " 7

where  are arbitrary functions. With these relations at hand, we find from;!3

(9.8.20)  that$
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(9.8.22)

On the other hand, we can write

A D
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where we assume that . Then (9.8.19)  gives7 Á " #
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On differentiating the first set of equations with respect to , we getD$5
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where we have performed contraction on the indices  and . Thus, the func-3 5
tions  possess the following form0"

!

0 œ 0 ÐB ß ? ß @ ß @ ß á ß @ Ñ" "
! ! # # # #3

3 3 3 3 â3" # " 7""
.

If we recall that the variables  are completely symmetric in their@!3 â3" 7

subscripts, the partial differential equations satisfied by the functions ;!3
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may be cast into the form

` `

`@ `@
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3 4

43 â3 33 â3" 7" " 7"

. (9.8.23)

The number of variables in this system is  whereas the number ofRˆ ‰87"
7

equations is  Hence, the number of equations is larger byR Þ# 8Ð8"Ñ
# 7"

87#ˆ ‰
a factor  than the number of variables. In order to find the solu-R 78Ð8"Ñ

#Ð87"Ñ

tion of (9.8.23), let us start by taking  to get3 œ 4
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"

3

33 â3" 7"

for all . Let us recall that the summation convention" Ÿ 3ß 3 ß âß 3 Ÿ 8" 7"

will be suspended on underlined indices. The above equations mean that the
functions  cannot depend on . To simplify the notation, let us in-;! "3
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" R
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where the symbol  \  denotes the set difference. For notational simplicity, we
omit the dependence of  on the variables . We0 B ß ? ß @ ß @ ß á ß @! ! ! ! !3 3

3 3 3 3 â3" # " 7" -1

now differentiate  the equations (9.8.23) with respect to  with @ 4 Á 3#
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Because of the relations , we find` Î`@ œ !;! #4
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Obviously, the functions  are subject to the restrictions0"
!343 â3" 7"
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0 œ  0" "
! !343 â3 433 â3" 7" " 7" .

On the other hand, because of the symmetry of mixed derivatives, we have
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where the functions  must satisfy the following symmetry0"#
!3453 â3 4 â4" 7" " 7"

conditions
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! ! !3453 â3 4 â4 4353 â3 4 â4 3543 â3 4 â4" 7" " 7" " 7" " 7" " 7" " 7" .

Continuing this way, we can readily reach to the recurrence relations
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4 â4 3 â4 3 â4 3 â4Ð ÏÖ ß ß á ß ×ÑW v v v4 4 4

whence by taking  we draw the conclusion< œ 8  #

`

`@ â `@
œ 0 ÐgÑ

8" 3

3 3 â3 3 3 â3

â
33 â3 3 â3 â3 â3;!

! ! ! !
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" 8"

" 8"
Ð"Ñ Ð"Ñ Ð8"Ñ Ð8"Ñ
" 7" " 7"

" 8"

" 8"
Ð"Ñ Ð"Ñ Ð8"Ñ Ð8"Ñ
" 7" " 7"

since . This is tanta-W v v v4 â4 3 â4 3 â4 3 â4" 7" " 7" " " 7" 8" " 7"ÏÖ ß ß á ß × œ g4 4 4

mount to say that the functions  are independent0! !
!

" 8"

" 8"
Ð"Ñ Ð"Ñ Ð8"Ñ Ð8"Ñ
" 7" " 7"

â
33 â3 3 â3 â3 â3

of the variables  Thus it becomes rather straightforward to integrate@ Þ!
3 3 â3" # 7

those hierarchical system of partial differential equations for  in the;!3

backward direction starting from the last equations above. We then readily
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obtain the polynomial expressions
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Ð"Ñ Ð"Ñ
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(9.8.24)

 â 0 @ â @ ! !
! ! !

" 8"

" 8" " 7" " 7" " 8"
Ð"Ñ Ð"Ñ Ð8"Ñ Ð8"Ñ

" 8"" 7" " 7"
Ð"Ñ Ð"Ñ Ð8"Ñ Ð8"Ñâ

33 â3 4 â4 â4 â4

3 4 â4 3 4 â4

The functions  where  and  are0 " Ÿ 5 Ÿ 8  " 0! !
! !

" 5

" 5 " 7" " 7"
Ð"Ñ Ð"Ñ Ð5Ñ Ð5Ñ

â
33 â3 4 â4 â4 â4 3

arbitrary and depend only on the variables  . WeB ß ? ß @ ß @ ß á ß @3
3 3 3 3 â3

! ! ! !
" # " 7""

can easily verify that the functions  where 0 < œ "ß! !
!

" <

" < " 7" " 7"
Ð"Ñ Ð"Ñ Ð5Ñ Ð5Ñ

â
33 â3 4 â4 â4 â4

á ß 8  " enjoy several symmetry requirements. There are antisymmetry
with respect to first two roman superscripts and complete symmetry within
the groups of indices, .Ð3 ß 4 ß âß 4 Ñß á ß Ð3 ß 4 ß âß 4 Ñ" 8"" 7" " 7"

Ð"Ñ Ð"Ñ Ð8"Ñ Ð8"Ñ

Furthermore, we immediately observe that block symmetries with respect to
the groups of indices ,  ,  mustÐ ß 3 ß 4 ß âß 4 Ñ á Ð ß 3 ß 4 ß âß 4 Ñ! !6 6 5 5" 7" " 7"

Ð6Ñ Ð6Ñ Ð5Ñ Ð5Ñ

be obeyed.
 We thus see that all components of the isovector fields characteris-
ing equivalence transformations of balance equations are determined by

means of arbitrary functions  and \ ß Y ß 0 ß 0 03 3
â
33 â34 â4 â4 â4! ! !

" ! !
!

" 5

" " 7" " 7"
Ð"Ñ Ð"Ñ Ð5Ñ Ð5Ñ

where  depending on certain coordinates of  through the" Ÿ 5 Ÿ 8  " ^7

relations (9.8.7), (9.8.21), (9.8.22) and (9.8.24). When  and/or  are in-D D! !3

dependent of some coordinates, the components of isovector fields corres-
ponding to them must of course vanish. That kind of restrictions removes
naturally to some extent the arbitrariness in the determining functions \ ß3

Y ß 0 ß! ! !
" ; 3.
When , namely, when we take into account second order7 œ "

balance equations, we have to modify slightly the previous analysis. In this
case, we have again

A > /" " "
! !

#
! #

!

"
34 34 34

3

4

œ  = œ
`W

`@

But, this time, (9.8.21) yields
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A D D
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3 4
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`@ `@
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Hence, the solution of the equations  is found has a distinctA A" "
! !34 43 œ !

structure from above as

0 ÐB ß ? ß @ Ñ œ  @  1 ÐB ß ? Ñ
`\

`?" " "
! # ! ! ## #

#
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4 3

3

$

where  are arbitrary functions. The solution of the equations1"
!

` `
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; ;! !
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3 4

4 3

can be extracted from the foregoing general solution as follows
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! !3 33 â3 3
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Thus, the relevant isovector components are found as
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                  (9.8.25)

Œ 
 If , that is, when we consider first order balance equations, then7 œ !
we have to search for the solution of the equations (9.8.12). The equations
(9.8.12)  lead to$

`\ `\ `\

`? ` `
œ !ß œ !ß œ !

4 4 4

5" $ $D D
.

We thus get . The form of the equations (9.8.12)  reflects the\ œ \ Ð Ñ3 3
"x

fact that the functions  must be independent of the variables . Hence,/" "
! != 3

the relations (9.8.12)  reduce to the equations#
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`W `W `W `\ `\

`? ` ` `B `B
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! ! !
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# # #
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D D
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the satisfaction of which requires that
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" " ## #
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3 3 3 5 3
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4 44 5 4D D

/ $ $ $Š ‹ .

We therefore find  and, consequently, .W œ W ÐB ß Ñ œ ÐB ß Ñ! ! " ! ! #
" "

3 3 4 4 4 4D / / D

Similar to the approach employed previously, we immediately obtain after
some calculations
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! # !
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4 4
5 5 3

4D
D $ $

from which we deduce that  for  by considering second`0 Î` œ ! 8  ""
! #D 4

order derivatives of  functions  with respect to the variables . This ofW! #3 5D
course means that . We then obtain  by simply integrating0 œ 0 Ð Ñ W" "

! ! !x 3

the above equations. If we introduce these expressions into (9.8.12) , we get"

the isovector components . The results so obtained are listed below:X !
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(9.8.26)

where  and  are arbitrary functions.\ ß Y ß 0 1 Ð Ñ3 3! ! !
" x

The case : R œ " In the case of only one dependent variable, we have
to look for the solution of the equations (9.8.17). The explicit form of these
equations are given below
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Š ‹“Š ‹" " <

" <

(9.8.27)
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When we carefully scrutinise the equations (9.8.27), we realise that  is in-/

dependent of the variables , ,  and  so that one writes= > = >4
3 3

33 â3 3 â3" 7 " 7
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It then follows from (9.8.27)  that"
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(9.8.28)
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Hence, the functions  are independent of . With the definitionW3 D

Æ
D

4
3
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`W
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we deduce from (9.8.27)  that#
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3 3 43
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where  is an arbitrary function. Thus (9.8.28)0ÐB ß ?ß @ ß á ß @ ß Ñ3 3
3 3 â3 #" " 7 D

takes the form
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whence we get
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D D DD
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and consequently

Ð8  "Ñ œ !
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This equation signifies that the function  is independent of  if .0 8  "D3

Then, the integration of the simple partial differential equations (9.8.29)
leads to the result
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where  are arbitrary functions. Hence, the functions;3 4
3 3 â3ÐB ß ?ß @ ß á ß @ Ñ" " 7

A33 â3" 7  can be written in the form
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Therefrom, we easily arrive at the partial differential equations
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Hence, we have  and the integration of the set0 œ 0ÐB ß ?ß @ ß á ß @ Ñ3
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of equations for  yield;3
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" 7".  are completely symmetric with respect to indices !
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Consequently, isovector components characterising equivalence transforma-
tions of a single balance equation are determined through arbitrary functions
J ß 0ß! " D343 â3 3 3" 7"  and . Naturally, particular structures of the functions 
and  may limit arbitrariness on these functions.D

In case , we have to modify slightly the analysis above. The de-7 œ "
termining equations for isovector components are now given by (9.8.18). If
we closely examine these equations, we realise at once that the function /
must be independent of the variables  and . This, in turn, implies that we> >3

get , namely, . If we eliminate the func-`W Î` œ ! W œ W ÐB ß ?ß @ ß Ñ3 3 3 4 4
4D D

tion  between the first two equations in (9.8.18), we then obtain/
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The explicit form of the above relations become
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If we recall that
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where , we immediately observe that the following equa-J œ J ÐB ß ?ß @ Ñ3
3

tions must be satisfied when :D Á !
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(9.8.32)

From the last two equations in (9.8.32), we get

`\ `\ ` J
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 œ  # œ !

3 4 #
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whence we obtain

J Ð ß ?ß Ñ œ Ð ß ?Ñ@  Ð ß ?Ñx v x x9 #3
3

where  and are arbitrary functions. We thus find . In9 # 93 3 3\ œ  Ð ß ?Ñx
these circumstances, the remaining terms give, after some rather simple ma-
nipulations
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On contracting the indices  and  in the second set of equationsÐ5ß 6Ñ Ð4ß 8Ñ
above, we obtain
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result in  for . We thus have . But, in` Î` œ ! 8  " œ ÐB ß ?ß @ Ñ< D < <5 4
4

this case the integration of the equations



9.8  Equivalence Transformations 641

`W

`
œ  H \

3

4 4
3 3

4
D

<$

yields simply

W œ   @  ÐB ß ?ß @ Ñ
` `

`B `?
3 3 4 3 4

3 3

4 4 4<D D ;
9 9Š ‹

where  are arbitrary functions. The equations (9.8.32)  are now expressed;3
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Contraction on indices  in the first set of equations above givesÐ4ß 5Ñ
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whereas the solution of the second set is known to be
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The isovector component  is determined by the relationX
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Hence, the relevant isovector components are given as follows
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When , we are compelled to take . This imposes additionalD œ ! X œ !
conditions on the foregoing solution leading to the relations

=
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where  is a constant. A detailed discussion of this case is left to the reader-
as an exercise.

The case  presents no difficulty in determining the isovector7 œ !
components which can be found as

\ œ \ Ð Ñß
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(9.8.34)

Any reader who wish to get more detailed information about calcula-
tions concerning this section may be referred to the works below .1

Example 9.8.1.  Let us consider a secondNon-linear wave equation.
order non-linear partial differential equation

[ ] .0ÐBß >ß ?ß ? ß ? Ñ  ?  1ÐBß >ß ?ß ? ß ? Ñ œ !B > B >> B >

Since  and , let us write8 œ #ß R œ " 7 œ "

1 Þuhubi, E. S., Equivalence Groups for Second Order Balance Equations,
International Journal of Engineering Science, , 1901-1925, 1999.37
Þuhubi, E. S., Explicit Determination of Isovector Fields of Equivalence Groups for
Second Order Balance Equations, ,International Journal of Engineering Science
38, 715-736, 2000.
Özer, S. and E. S. Þuhubi, E. S, Equivalence Transformations for First Order
Balance Equations, , , 1305-1324,International Journal of Engineering Science 42
2004.
Þuhubi, E. S., Equivalence Groups for Balance Equations of Arbitrary Order - Part
I, , , 1729-1751, 2004.International Journal of Engineering Science 42
Þuhubi, E. S., Explicit Determination of Isovector Fields of Equivalence Groups for
Balance Equations of Arbitrary Order - Part II, International Journal of
Engineering Science, , 1-15, 2005.43



9.8  Equivalence Transformations 643

B œ Bß B œ >ß @ œ ? œ :ß @ œ ? œ @" #
" B # >

so that we have

D D D" #œ 0ÐBß >ß ?ß :ß @Ñß œ  @ß œ 1ÐBß >ß ?ß :ß @Ñ.

Hence, we have to take into account the submanifold of the manifold^"

specified by

= œ ! = œ ! = œ ! = œ ! = œ  "# # # #" ##
" #,    ,    ,    ,    .

In the relations (9.8.33), let us denote

9 ! 9 " ! ! -

" G " F

" # "# #"

" #

œ ÐBß >ß ?Ñß œ ÐBß >ß ?Ñß œ  œ ÐBß >ß ?Ñ

œ ÐBß >ß ?Ñß œ ÐBß >ß ?Ñ.

As is clearly observed,  is no longer an independent component of theW#

isovector field, but it is equal to . After having resorted to (9.8.33) Z# $

and (9.8.33) , we find that%

Z œ  :  Ð  Ñ@  :@  @ ß

W œ  Ð  :  @Ñ@  Ð  :Ñ0  Ð  @Ñ@  : 

# > > ? > ? ?
#

#
? ? B ? > ?

# ! # " ! "

= ! " " " " " - F.

Thus the relation  leads toW œ  Z#
#

" ! - " # = F # " "? > > ? > B ?
#@  Ð  Ñ:  Ð#   Ñ@    Ð  :Ñ0 œ !.

Whenever  is an arbitrary function, it follows from this equality that the0
following equations must be satisfied

" " " ! -

" # = F #
B ? ? >

> ? >

 : œ !ß œ !ß  œ !ß

#   œ !ß  œ !

whence we obtain  and consequently" "B ?œ !ß œ !

" " - ! = " # F #œ Ð>Ñß œ ß œ #  ß œ > ? >> .

The components  and  of the isovector field must also vanish. But,W̄ W4
# #4

because of the relation  these twoJ œ  = \  = Y  = Z  W œ !# # 4 # #4 #
4 4

conditions are satisfied identically. Therefore, the relevant components of
the isovector field are determined as follows

\ œ  ÐBß >ß ?Ñß \ œ  Ð>Ñß

Y œ ÐBß >ß ?Ñß

" #! "

#
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Z œ  Ð  Ñ:  : ß

Z œ  W œ  :  Ð  Ñ@  :@ß

W œ Ð#   Ñ0  @  # @  ß

X œ   :Ð  Ñ 0  Ð#   :Ñ1

 @ Ð  Ñ  :Ð

" B B ? ?
#

# > > > ? ?
#

" #
> B ? ? >

BB B? B? ?? > ? ?

#
?? B?

# ! # !

# ! " # !

" ! # ! ! G

! # ! # " # !

# !

[ ]

! G " ! # # G>> ? >> B> >? >> B Ñ  @Ð  #  # Ñ  

where  and  are functions which may be! " # GÐBß >ß ?Ñß Ð>Ñß ÐBß >ß ?Ñ ÐBß >ß ?Ñ
chosen arbitrarily.

As a simple example, let us take

! " # Gœ !ß œ !ß œ +? ß œ !#

so that we obtain

\ œ \ œ !ß Y œ +? ß Z œ #+?:ß Z œ #+?@ß

W œ #+?0ß X œ  #+:0  #+?1  #+@ Þ

" # #
" #

" #

In order to determine the equivalence group associated with this isovector,
we have to solve the following ordinary differential equations

.B .> .? .: .@

. . . . .
œ !ß œ !ß œ +? ß œ #+? :ß œ #+? @

.0 .1

. .
œ #+?0ß œ  #+:0  #+?1  #+@

% % % % %

% %

#

#

under the initial conditions BÐ!Ñ œ Bß >Ð!Ñ œ >ß ?Ð!Ñ œ ?ß :Ð!Ñ œ :ß @Ð!Ñ œ
@ß 0Ð!Ñ œ 0ß 1Ð!Ñ œ 1Þ We can then easily reach to the particular equiva-
lence transformation in which independent variables remain unchanged

B œ Bß > œ >ß ?Ð Ñ œ ß
?

"  +?

:Ð Ñ œ ß @Ð Ñ œ
: @

Ð"  +?Ñ Ð"  +?Ñ

0Ð Ñ œ ß 1Ð Ñ œ
0 1  +Ð#:0  ?1  #@ Ñ

Ð"  +?Ñ Ð"  +?Ñ

%
%

% %
% %

% %
% %

%

# #

# $

#

.

As a simple application to equivalence transformations, let us apply this
group of diffeomorphisms to the linear wave equation

?  ? œ !BB >>

where  and  We know that the general solution of this equa-0 œ ? 1 œ !ÞB

tion is given by
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?ÐBß >Ñ œ ÐB  >Ñ  ÐB  >ÑÞ9 <

9 < and  are arbitrary functions of their arguments. If we employ the inverse
transformation, we can write 

? œ
?

"  5 ?

where , then the foregoing linear partial differential equation is cast5 œ +%
into a family of quasilinear second order equations

?  ?  #5 œ !Þ
?  ?

"  5 ?
BB >>

# #
B >

by this particular equivalence transformation. We can then readily verify by
inspection that a solution of that non-linear, second order partial differential
equation is indeed given by

?ÐBß >Ñ œ
ÐB  >Ñ  ÐB  >Ñ

"  5Ò ÐB  >Ñ  ÐB  >ÑÓ

9 <

9 <

where  and  are arbitrary functions.9 <ÐB  >Ñ ÐB  >Ñ
As a slightly more general case, let us assume that

! " # Gœ !ß œ !ß œ +?  ,?ß œ !# .

We thus obtain

\ œ \ œ !ß Y œ +?  ,?ß Z œ Ð#+?  ,Ñ:ß Z œ Ð#+?  ,Ñ@ß

W œ Ð#+?  ,Ñ0ß X œ  #+:0  Ð#+?  ,Ñ1  #+@ Þ

" # #
" #

" #

To find the corresponding equivalence transformation we have to integrate
the differential equations below

.B .> .? .: .@

. . . . .
œ !ß œ !ß œ +?  ,?ß œ Ð#+?  ,Ñ:ß œ Ð#+?  ,Ñ@

.0 .1

. .
œ Ð#+?  ,Ñ0ß œ  #+:0  Ð#+?  ,Ñ1  #+@

% % % % %

% %

#

#

under the initial conditions BÐ!Ñ œ Bß >Ð!Ñ œ >ß ?Ð!Ñ œ ?ß :Ð!Ñ œ :ß @Ð!Ñ œ
@ß 0Ð!Ñ œ 0ß 1Ð!Ñ œ 1Þ We then easily find that

B œ Bß > œ >ß ?Ð Ñ œ ß
,/ ?

,  +Ð/  "Ñ?
%

,

,

%

%
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:Ð Ñ œ ß
, / :

Ò,  +Ð/  "Ñ?Ó

@Ð Ñ œ
, / @

Ò,  +Ð/  "Ñ?Ó

0Ð Ñ œ ß
, / 0

Ò,  +Ð/  "Ñ?Ó

1Ð Ñ œ Þ
, / Ò,1  +Ð/  "ÑÐ#:0  ?1  #@ ÑÓ

Ò,  +Ð/  "Ñ?Ó

%

%

%

%

# ,

, #

# ,

, #

# ,

, #

# , , #

, $

%

%

%

%

%

%

% %

%

If we write

? œ
,?

,/  +Ð/  "Ñ ?, ,% %

then the one-dimensional homogeneous wave equation is transformed into

?  ?  œ !Þ
#+Ð/  "ÑÐ?  ? Ñ

Ò,/  +Ð/  "Ñ ?Ó
BB >>

, # #
B >

, ,

%

% %

Therefore a solution for this family of quasilinear second order differential
equations is expressible in the form

?ÐBß >à Ñ œ
,Ò ÐB  >Ñ  ÐB  >ÑÓ

,/  +Ð/  "ÑÒ ÐB  >Ñ  ÐB  >ÑÓ
%

9 <

9 <, ,% %

depending on the parameter  and constants  and .% + , è

Example 9.8.2. Homogeneous hyperelasticity. We have discussed the
symmetry transformations of the equations of motion of a homogeneous
hyperelastic material in Example 9.4.4. The equations of motion depend
heavily on the stress potential  characterising the physical consti-D Dœ Ð ÑF
tution of the material, thus differing for different types of materials. Hence,
they constitute a family of balance equations. We shall now try to determine
the equivalence transformations associated with that family. Since, we will
be employing the notations introduced earlier, we abstain from repeating
them here. The equations of motion corresponding to the case 7 œ "ß 8 œ 
%ß R œ $ can be now written

` `

`\ `\
 œ !

D D5O 5%

O %

with  and  take the values . Then, the coordinates of the\ œ > 5ß O "ß #ß $%

manifold  is easily identified as^"
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D D D
D

D D
$

5O 5% 5 5O 5O 5% 5
5O

5

5O6P 5%6% 56 5O6%
5O 5

6P 5O 6P 6

#

5%6P 5OP 5O%

Ð ß Ñ œ ß œ  @ ß œ !ß @ œ J ß @ œ @ ß
`

`J

= œ œ ß = œ  œ  ß = œ !ß
` ` `@

`J `J `J `@

= œ !ß = œ !ß = œ !ß =

X F  

    

 

 

5%O 5%%œ !ß = œ !.

In this circumstance, the coordinate cover of the manifold  should be^"

taken as Ö\ ß >ß B ß J ß @ ß ß = × =O 5 5O 5 5O 5O6P 5O6PD . Obviously, the variables 
enjoy the block symmetry  We denote the isovector field by= œ = Þ5O6P 6P5O

Z œ    Y  Z  Z
` ` ` ` `

`\ `> `B `J `@

 W  W
` `

` `=

9 <

D

O 5 5O 5
O 5 5O 5

5O 5O6P
5O 5O6P

.

We may assume without loss of generality that . NegativeW œ W5O6P 6P5O

signs above are inserted for convenience, We know that the isovector com-
ponents  are functions only of the variables , . Further-9 <O 5 O 5ß ß Y \ >ß B
more, we have to impose the restrictions

  ¯

                                                         (9.8.¯ ¯ ¯
W œ  Z œ  Z ß X œ !ß W œ !ß W œ !ß W œ !

W œ !ß W œ !ß W œ !
5% 5% 5 5 5O6% 5%6P 5OP

5O% 5%O 5%% 35)

on the isovector components. In order not to confuse the functions J !3

defined in (9.8.8) with the components of the deformation gradients ,J5O

we will replace the functions  by . We also have to take .J K J œ !O5 5%
5O

We thus get

K œ  = Z  W5O 5O6P 6P 5O (9.8.36)

and the conditions

W œ !ß W œ !ß W œ !¯ ¯5%O 5%% 5%6P

are satisfied identically. We can then directly deduce from (9.8.25) that

Z œ Y  J  @  Y J  J J  @ J ß

Z œ Y  J  @  Y @  J @  @ @ ß
Þ Þ Þ

W œ 1   J 

5O 5ßO PßO 5P ßO 5 5ß6 6O Pß6 5P 6O ß6 5 6O

5 5 5O 5 5ß6 6 Oß6 5O 6 ß6 5 6O

5O 56 6O OßP Oß6 6P 5P

9 < 9 <

9 < 9 <

D 9 9 D 9

 a b ˆ ‰Þ
 @ @

 J  @ 0 J J @

0 J J  0

O Oß6 6 5

Pß6 6P ß6 6 5O 5OPQ%678 6P 7Q 8

5OPQ67 6P 7Q 5OP

9

9 < D                        
                                     

a b
%67 6P 7

5OP6 6P 5O%6 6 5O

J @

 0 J  0 @  0 ß                                                                
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W œ  1 @   J   @ Ñ@
Þ

 J  @ @  0 J J J
5% 56 6 ßO ß6 6O 5O ß6 6 5

Pß6 6P ß6 6 5 5%PQR678 6P 7Q 8R

a ba b< < D < <

9 <                         
                                        

(9.8.37)

 0 J J  0 J  0 ß

X œ  W  W  W J  W @ Þ
Þ

5%PQ67 6P 7Q 5%P6 6P 5%

5 5OßO 5O 5Oß6 6O 5%ß6 6

1 0 >56 and all multi-indexed functions  depend only on the variables ,  andX
x. The functions  must be so chosen as to obey the symmetry requirements0
on capital and small indices (Greek and roman superscripts and subscripts in
general expressions) for  and . An overdot represent the deriva-8 œ % R œ $
tive with respect to the time variable .>

Let us first deal with the relation (9.8.35) . It follows from (9.8.37) that"

we have to satisfy the equations

< < < $ 9 $ 9 $

9 $

ßO ß6 56 56 5ß6 Qß8 57 Qß7 58

5%O6 56 5% 5 5%PQR678 5%PQ67O

œ !ß œ !ß 1 œ #  Y ß  œ !ß
Þ

0 œ  ß 0 œ  Y ß 0 œ !ß 0 œ !Þ
Þ Þ

The contraction on indices  in the fourth equation above yields Ð5ß 7Ñ 9Qß8

œ !. We thus obtain

9 9 < <O Oœ Ð ß >Ñß œ Ð>ÑX .

On the other hand, we get from  610 that:Þ

W œ K  K J œ !ß W œ K  K @ œ !ß
Þ

W œ œ !
`K

`@

¯ ¯

.

5OP 5OßP 5Oß 6 6P 5O% O 5Oß 6 6

5O6%
5O

6

Hence, the functions  must be independent of . We then furtherK @5O 6

deduce from above the relations

K œ !ß K œ !ß K œ !
Þ

5Oß 6 5Oß P O .

On the other hand, we get

Z œ Y  J  Y J5O 5ßO PßO 5P 5ß6 6O9 .

This implies that the functions  do not depend on . When we take theZ @5O 6

relation (9.8.36) into consideration, we reach to the conclusion

Z œ !ß Z œ !ß Z œ !ß
Þ

`W

`@
œ !ß W œ !ß W œ !ß W œ !

Þ
5Oß 6 5Oß P 5O

5O

6
5Oß 6 5Oß P 5O .

(9.8.38)

The isovector components  can now be written asW5O
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W œ Ð#  Y Ñ   @
Þ Þ

 0 J J @  0 J J

 0 J @  0 J  0 @  0

5O 56 5ß6 6O OßP 5P 5O

5OPQ%678 6P 7Q 8 5OPQ67 6P 7Q

5OP%67 6P 7 5OP6 6P 5O%6 6 5O

< $ D 9 D 9

and (9.8.38)  leads to%

9 $
Þ

 0  0 J J  0 J œ !O 5: 5O%: 5OPQ%67: 6P 7Q 5OP%6: 6P

from which we find that

0 œ !ß 0 œ !ß 0 œ 
Þ

5OPQ%678 5OP%67 5O%6 56O9 $ .

However, because of the relation  we get , hence0 œ  0 œ !
Þ

5O%6 5%O6 O9
we obtain

9 9O Oœ Ð ÑX .

Derivatives of  with respect to  and give, respectively,Z >ß B \5O 7 Q

Y œ !ß Y œ !ß Y œ !ß Y œ !ß Y œ !ß œ !
Þ Þ

5ßO 5ß6 5ßO7 5ß67 5ßOQ OßPQ9 .

Similar expressions for  leads to the equation  implying furtherW Ð>Ñ œ !
ÞÞ

5O <
that all non-zero functions  must be constants. Thus, if we recall the anti-0
symmetry properties, we are able to write

< œ + >  + ß 0 œ / / - ß

0 œ / - ß 0 œ -
" # 5OPQ67 OPQ 678 58

5OP6 OPQ Q56 5O 5O

where  and  are constants. ,  are, of course, three-- ß - - / /58 Q56 5O OPQ 567

dimensional permutation symbols. The solutions of the differential equa-
tions satisfied by the functions  and  are readily obtained as9O 5Y

9O OP P O 5 56 6 5O O 5œ F \  F ß Y œ + B  E \  E Ð>Ñ

where  are constants. Finally, we find from (9.8.37)  thatF ß F ß + ß EOP O 56 5O &

X œ Z  Z @ œ !
Þ

5 5 5ß6 6 .

This equations yield  or  andY œ ! E œ !
ÞÞ ÞÞ

5 5

E Ð>Ñ œ >  E5 5 5! .

Hence, the relevant isovector components take the form

9 < !

$ !
O OP P O " # 5 56 6 5O O 5 5

5O PO 5P 56 6O 5O 5 " 56 56 6 5

œ F \  F ß œ + >  + ß Y œ + B  E \  >  E ß

Z œ F J  + J  E ß Z œ Ð+  + Ñ@  ß
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W œ Ð#+  + Ñ  F  / / - J J

 / - J  - Þ
5O " 56 56 6O OP 5P OPQ 678 58 6P 7Q

OPQ Q56 6P 5O

$ D D   
 

The equivalence transformation is then found by integrating the ordinary
differential equations

.\ .>

. .
œ  ÐF \  F Ñß œ  Ð+ >  + Ñß

.B

.
œ + B  E \  >  E ß

.J .@

. .
œ F J  + J  E ß œ Ð+  + Ñ@ 

.

.
œ Ð#+

O
OP P O " #

5
56 6 5O O 5 5

5O 5
PO 5P 56 6O 5O " 56 56 6 5

5O
" 5

% %

%
!

% %
$ !

D

%
$

      

    

6 56 6O OP 5P OPQ 678 58 6P 7Q

OPQ Q56 6P 5O

 + Ñ  F  / / - J J

 / - J  - Þ

D D   

 

under the initial conditions \ Ð!Ñ œ \ ß >Ð!Ñ œ >ß B Ð!Ñ œ B ß J Ð!Ñ œO O 5 5 5O

J ß @ Ð!Ñ œ @ Ð!Ñ œ5O 5 5 5O 5O 5O and .  is the group parameter. That  D D % D
are actually dependent on the deformation tensor  mayC F F œ T instead of F 
impose additional restrictions on some constants appearing in the above ex-
pressions  the transformed expressions help us to. Since D D5O 5Oœ ` Î`J
determine the stress potential DÞ è

Example 9.8.3. As a last example, we consider the third order non-
linear partial differential equation

 ‘?  ÐBß >ß ?Ñ  ? œ ?  ?   ? œ !BB > BBB ? B B >B
9 9 9 . (9.8.39)

We may regard this equation as a kind of generalised Korteweg-de Vries
equation. If we take , we obtain the known form of the Korteweg-9 œ ? Î##

de Vries equation. In this case, it is clear that we have ,  and7 œ # R œ "
8 œ #. The manifold  is now generated by taking^#

B œ Bß B œ >ß @ œ ? ß @ œ ? ß @ œ ? ß @ œ @ œ ? ß

@ œ ? ß œ @  ß œ ?ß œ !ß

= œ ß = œ ß = œ ß = œ "ß = œ "Þ

" #
" B # > "" BB "# #" B>

## >> ""
" #

" #
" " " # """

B > ?

  D 9 D D

9 9 9

Therefore, the coordinate cover of the enlarged manifold  is specified by^#

the following list

ÖBß >ß @ ß @ ß @ ß @ ß @ ß ß = ß = ß = ×" # "" "# ## " #
" " "9 .

Hence, an isovector field should be represented by
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Z œ \  \  Y  Z  Z  Z  Z
` ` ` ` ` ` `

`B `> `? `@ `@ `@ `@

 Z   W  W  W
` ` ` ` `

`@ ` `=`= `=

" #
" # "" "#

" # "" "#

##
##

" "
" #

" #
" "

"""
"""

F
9

However, if we note the forms of  and , we see that we can writeD D" #

` ` ` ` ` `

`? `? ` `? `? `
Ä  œ  ß

` ` ` ` ` `

`@ `@ ` `@ `@ `
Ä  œ  ß

` ` ` `

` ` ` `
Ä œ

D D

D

D D

D

9 D 9 D

D

# #

#

"" "" "" ""
" "

"

" "

"

so that the isovector field is expressed in the standard form in terms of
quantities entering into the balance equation as follows

Z œ \   Y  Z  Z  Z  Z
` ` ` ` ` ` `

`B `> `? `@ `@ `@ `@

 Z  W  W  W  W  W
` ` ` ` ` `

`@ ` ` `=`= `=

g

D D

" # "" "#
" # "" "#

##
##

" # """
" # """

" "

" #
" #
" " .

It is straightforward to notice that

W œ Z  ß

W œ Y

"
""

#

F

.

We know that some of the isovector components are determined by a
presently arbitrary function  through relations givenJ œ J ÐBß >ß ?ß @ ß @ Ñ" #

below [ (9.3.26)]:see 

\ œ \ œ  ß \ œ œ  ß Y œ J @  @
`J `J `J `J

`@ `@ `@ `@

Z œ  @ ß Z œ  @ ß
`J `J `J `J

`B `? `> `?

Z œ
` J

" #

" # " #
" #

" " # #

""

#

g

                                        (9.8.40)

`B `B`? `? `B`@ `?`@ `?
 #@  @  @ #  #@ 

` J ` J ` J ` J `J

 #@  @  @  #@ @  @ ß
` J ` J ` J ` J ` J

`B`@ `?`@ `@ `@`@ `@

Z œ

# #" "" "

# # # #
#
"

" "

"# " "" "#

# # # # #

# # " #

# #
"" "## #

" #

"#

Š ‹
Š ‹
` J ` J ` J ` J ` J ` J

`B`> `>`? `B`? `? `>`@ `?`@
 @  @  @ @  @  @

# # # # # #

" # " # "" ##
" "

Š ‹
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 @  @   @   @ 
` J ` J ` J ` J `J ` J

`>`@ `?`@ `B`@ `?`@ `? `B`@

@  @ @  Ð@ @  @ Ñ  @ @ ß
` J ` J ` J ` J

`?`@ `@ `@`@ `@

Z

"# # " ##

# # # # #

# # " " #

" "" "# "" ## "# ##

# # # #

# " #
# #
" #

#
"#

Š ‹ Š
‹

## # "# # ##

# # # # #

# #
#
#

" "
# # # # #

# # " #
# "# ##

# #
"# ### #

"

œ  #@  @  #@  @  @
` J ` J ` J ` J ` J `J

`> `>`? `? `>`@ `?`@ `?

 #  #@  @  #@ @  @
` J ` J ` J ` J ` J

`>`@ `?`@ `@ `@`@ `@

Š ‹ Š
‹

#

Þ

On the other hand, the relations (9.8.8) indicates that we may introduce the
functions

J œ  = \  =  = Y  Z  W

œ  = \  =  = Y  ß

J œ  Y  W œ !

" " " " "
" # ""

" #
" " "

# #

g

g F

.

Moreover, the relations

W œ œ œ !ß W œ œ œ !
`J ` `J `

`@ `@ `@ `@
""# "##

" "

"# "# ## ##

F F
  

imply that the function  must be independent of the variables  and .F @ @"# ##

The isovector components that are obtained from the zero function  willJ #

naturally become zero. The isovector components  and  follow fromW W" #

the general definitions as

W œ   @  @  @ Ð@  Ñ
` J ` J ` J ` J

`B`@ `?`@ `@ `@`@

 0Ð@  Ñ   @  @  @ ?
` J ` J ` J ` J

`>`@ `?`@ `@ `@`@

"
# # # #

" " " #
" "" "# ""#

"

"" # "# ##

# # # #

" " " #
#
"

Š ‹
Š ‹

9

9

                                                      (9.8.41)

    

 @  @  ß

W œ 0?   @  @  @ Ð@  Ñ
` J ` J ` J ` J

`B`@ `?`@ `@ `@ `@

! ! "

9

"#" "## "
"# ##

#
# # # #

# # " #
" "" "# ""#

#

Š ‹
                               

                                                 

  @  @  @ ?
` J ` J ` J ` J

`>`@ `?`@ `@ `@ `@
Š ‹# # # #

# # " #
# "# ##" #

#

                            @  @ ! ! ""#" "## #
"" "#

where  and  are arbitrary functions0ß œ  ß œ  ß! ! ! ! " ""#" #"" "## #"# " #

of the variables  and . But we can readily observe that to satisfyBß >ß ?ß @ @" #

the constraint
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W œ Y œ J @  @
`J `J

`@ `@
#

" #
" #

(9.8.42)

we are required to take

` J ` J ` J ` J

`@ `@ `B`@ `?`@
œ !ß œ !ß  @ œ !ß œ œ !

`@

# # # #

" # # #
#
#

"
"#" "##! ! .

These equations lead obviously to

J œ ÐBß >ß ?ß @ Ñ  Ð>Ñ@! "" #.

Then (9.8.42) reduces to the equation

" " !
!#

"
"

œ Ð  0Ñ?   @
Þ `

`@
.

An overdot denotes again the derivative with respect to the variable . On>
the other hand, since the expression

F 9
! ! !

! ! ! ! !
"

! ! !
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` ` `

`B`@ `?`@ `@
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` ` ` ` `

`>`@ `?`@ `B `B`?`@
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`? `B`@ `?
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Š

# # #

" "
" "" ""#

"
# # # # #
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# "# "#

"

"
#

#
"

# # #

#
"

"
`@ `?

 @  @
` `

`@"
""

#

#
"

#
""

! !‹
does not depend on , we get    the integration of which @ ` Î`@ œ !"#

# #
"!

yields simply

! - .œ ÐBß >ß ?Ñ@  ÐBß >ß ?Ñ" .

We thus conclude that

    . (9.8.43)" " . .#
" #œ Ð>Ñ  0ÐBß >ß ?ß @ ß @ Ñ ?  ÐBß >ß ?Ñß Y œ ÐBß >ß ?Ñ

Þ ‘
Finally, the condition  leads us to the equationX œ !

`W `W `W `W `W `W

`B `> `? `? `@ `@
  @  @  @  @ œ !

" # " # " "

" # "" "#
" #

whose explicit form can be written as

 Ð ?  Ñ@ @  Ð ?  Ñ@  Ð  ?Ñ@  ?  - - - - . - - .?? ? " # >? > " ? ?B # B> >
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 Ð@  Ñ 0   @  Ð0   @ Ñ@   @
`0

`@

`0 ` ` ` `

`@ `@ `@ `? `B
@  @   ? @  @  œ !

"" B BB ?B " ? ?B ?? " " ? ""
"

# " #
"# "" ? "# "

" " " "

9 - - - - -

" " " "
-

’ Š ‹
“ Š ‹ 

whence we evidently deduce the following equations

0   @  Ð0   @ Ñ@ œ !ß

`0 `0 ` `

`@ `@ `@ `@
 œ !ß œ !ß œ !ß  ? œ !ß

 Ð ?Ñ @ @   Ð ?Ñ @  Ð  ?Ñ@   ?  œ !

B BB ?B " ? ?B ?? " "

" # " #
? ?

" "

? ? " # > ? " ? ?B # B> >? B
" "

- - - -

- -
" "

- " - . - " - . ‘ .

(9.8.44)

We first obtain from (9.8.44)  that#$

0 œ @  ÐBß >ß ?Ñ- :? " .

Then (9.8.44)  gives rise to"

: - : - : - : -B BB ? ?B " B BB ? ?B  Ð  Ñ@ œ ! œ ß œ   or   .

These equations determine, in turn, the function  in the form:

: - <œ  Ð>ÑB .

Once again, (9.8.44)  yields easily%&

" -"
? #œ ?@  ,ÐBß >ß ?Ñ.

Thus, the equation (9.8.44)  is reduced to the form'

 ‘,  Ð ?Ñ @  @  ,  ?  œ !? > ? " ? # B B> >- . - .

whence we find that

,  Ð ?Ñ œ !ß œ !ß ,  ?  œ !? > ? ? B B> >- . - .

and, respectively,

, œ ?  ÐBß >Ñß œ ÐBß >Ñß  œ !- / . . / .> B > .

Therefore, we obtain  and  where  is an ar-. /œ 7 œ  7 7 œ 7ÐBß >ÑB >

bitrary function. We can thus write

" - - - - <"
? # > > ? " Bœ ?@  ?  7 ß 0 œ @   Ð>Ñ

On the other hand, (9.8.43) leads us to the relation
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" " - -#
B ? " Bœ Ð   @ Ñ?  7

Þ

where the arbitrary function  is absorbed into the function  which is< "Ð>Ñ Ð>Ñ
Þ

arbitrary as well. Consequently, the relevant isovector components that will
be used in determining equivalence transformations are obtained as follows

\ œ  ÐBß >ß ?Ñß \ œ  Ð>Ñß Y œ 7 ÐBß >Ñß

Z œ @  @  7 ß

Z œ @  # @  @  Ð#  $ @ Ñ@  7
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B

" ? B " BB
#
"

"" ?? ?B BB " B ? " "" BBB
$ #
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" "
"" > >

- "

- -

- - - - -

< 9 < D

,

where the functions , ,  and  are arbitrary. The- " <ÐBß >ß ?Ñ Ð>Ñ 7ÐBß >Ñ Ð>Ñ
equivalence transformations are then obtained as the solution of the follow-
ing ordinary differential equations

.B .> .?
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? ? ? B B B " B ? " "" B B B

$ #
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under the initial conditions BÐ!Ñ œ Bß >Ð!Ñ œ >ß ?Ð!Ñ œ ?ß @ Ð!Ñ œ @ ß @ Ð!Ñ" " ""

œ @ Ð!Ñ œ Þ""
" " and  D D è

IX.  EXERCISES

9.1. Discuss the solutions of the equation below:

"
3œ"

8

ß3
# #Ð? Ñ  ? œ !.

9.2. Discuss the solutions of the equation below:

??  ?  " œ !B C  

9.3. Discuss the solutions of the set of equations below:

Ð?  @Ñ?  Ð?  @Ñ?  ? œ !ß Ð?  @Ñ@  Ð?  @Ñ@  #@ œ !B C B C
# #    

9.4. Find the symmetry groups of   and explore itsLaplace equation ?  ? œ !BB CC

 similarity solutions.
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9.5. Find the symmetry groups of the wave equation  and explore ?  ? œ !BB CC

 its similarity solutions.
9.6. Find the symmetry groups of the equation  and admissible?  ? œ 0 Ð?ÑBB CC

 forms of the function . Explore its similarity solutions.0
9.7. Find the symmetry groups of the equation  and admissible?  ? œ 0 Ð?ÑBB CC

 forms of the function . Explore its similarity solutions.0
9.8. Find the symmetry groups of non-dimensionalised Fokker-Planck equation
  ? œ ?  B?  ?> BB B [after Dutch physicist Adriaan Daniël Fokker (1887-
 1972) and German physicist Max Karl Ernst Ludwig Planck (1858-1947)]
 encountered in statistical mechanics and explore its similarity solutions.
9.9. Find the symmetry groups of non-dimensionalised Burgers equation
 ?  ??  ? œ !C B BB  [after Dutch physicist Johannes Martinus Burgers
 (1895-1981)] encountered in fluid mechanics and modelling of traffic flow
 and explore its similarity solutions.
9.10. Find the symmetry groups of the -dimensional heat conduction equation8
  where ? œ ? − Þ> ß33

8x ‘
9.11. Discuss the symmetry groups of the biharmonic equation  inJ#

ß3344? œ ? œ !
 the manifold .‘8

9.12. Find the symmetry groups of  Helmholtz equation ?  ?  ?  ? œ !BB CC DD -
 encountered in the propagation of waves in .  is a constant.‘ -$

9.13. Let us consider the first order, homogeneous partial differential equation

Z Ð?Ñ œ @ Ð Ñ? œ Z œ @ Ð Ñ` − X Ð Ñ3 3 8
ß3 3x x0,    ‘

 in . Show that a vector field  generates a symmetry‘ ‘8 3 8
3Y œ ? Ð Ñ ` − X Ð Ñx

 group of this differential equation if and only if it satisfies the condition
 .  is a scalar-valued function.Ò ÓZ ß Y œ Ð Ñ Z Ð Ñ- -x x
9.14. Find the symmetry groups of Euler equations

Ð`@ Î`>Ñ  @ @ œ  : ß @ œ !ß 3 œ "ß #ß $3 4 3ß4 ß3 3ß3

 governing the motion of incompressible fluids where  are components of@3

 the velocity vector and  is the pressure.:
9.15. Determine the symmetry groups of non-dimensional Navier-Stokes equations

Ð`@ Î`>Ñ  @ @ œ  :  Ð"ÎV Ñ@ ß @ œ !ß 3 œ "ß #ß $3 4 3ß4 ß3 / 3ß44 3ß3

 [after Stokes and French engineer and mathematician Claude Louis Henri
 Navier (1785-1836)] governing the motion of incompressible viscous fluids.
 The constant  is called  [after English engineer andV/ Reynolds number
 mathematician Osborne Reynolds (1842-1912)].
9.16. Determine equivalence transformations of the non-linear, -dimensional heat"
 conduction equation

`? ` `?

`> `B `B
œ Ð?Ñ  2ÐBß >ß ?ÑŠ ‹,




