CHAPTER VI

HOMOTOPY OPERATOR

6.1. SCOPE OF THE CHAPTER

In this section, we shall attempt to investigate certain fundamental
properties of exterior differential forms in depth. The most powerful tool
that we can employ for this purpose is the homotopy operator. However,
this operator can only be defined on manifolds possessing a particular struc-
ture. This structure is treated in Sec. 6.2. A manifold is called locally con-
tractible if every open set in its atlas can be smoothly shrunk to one of its
interior points. This situation is realised if the homeomorphic image of that
open set is a star-shaped region in the Euclidean space. In Sec. 6.3, the
homotopy operator mapping the exterior algebra into itself is defined, its
various properties are unravelled and the Poincaré lemma stating that every
closed form is locally exact is demonstrated as a very important application
of this operator. Sec. 6.4 is concerned with the proof that every exterior
form is locally expressible as the sum of an exact form and an antiexact
form occupying the kernel of the homotopy operator. Then the basic pro-
perties of antiexact forms are studied in detail. This leads to the conclusion
that the entire exterior algebra is actually generated by antiexact forms. In
Sec. 6.5, we inquire the effect of the change of the centre of contraction on
the homotopy operator. We define in Sec. 6.6 the Darboux classes of 1-
forms and introduce their canonical forms. Canonical forms of closed 2-
forms are elicited by making use of the Poincaré lemma. We obtain the so-
lution of an exterior differential equation in Sec. 6.7 and a system of exteri-
or differential equations in Sec. 6.8 by resorting to properties of antiexact
forms and the homotopy operator.

6.2. STAR-SHAPED REGIONS

Let M be a differentiable manifold. Let us take a point py € M into
account. If we can find a smooth, i.e., C* function h : M x I — M where
I =0, 1] denoted by h(p;t) = hi(p) € M on which we shall impose the
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328 VI Homotopy Operator

restriction h(p;0) = py and h(p; 1) = p for each point p € M, then we say
that the manifold M is contractible to the point p,. Contractibility can also
be defined locally. Let us consider a local chart (U, ). We know that
U C M is an open set and ¢ : U — R™ is a homeomorphism so that
V =pU) CR™ is also an open set. Let us assume that the set U is
contractible to a point py € U. If all charts of an atlas have this property,
then the manifold M is called a locally contractible manifold. Such a
manifold cannot be shrunk smoothly to a point, but each one of the open
sets covering this manifold is contractible to a point inside it. If the open set
V', which is the homeomorphic image of the open set U, has a suitable
structure in the manifold R™, then we can easily show that U is contract-
ible. To this end, let us assume that we can find a mapping b’ : V x I — V
and a point Xy € V' such that we are able to write h'(x;t) = hj(x) =
(1 —t)xo+tx € V for all points x € V. This expression signifies that a
straight line joining any point x in V' to the centre point x, stays entirely in
V. Such a region is called a star-shaped region (Fig. 6.2.1).

Fig. 6.2.1. Star-shaped region in the Euclidean space.

Evidently, every convex set in R™ is star-shaped and it is easily shown
that open balls in R™ are convex. Let us consider an open ball in R™ given
by B,(Xo) = ||[x — X¢|| < r where x,xp € R™ and r > 0. By using the
triangle inequality, we obtain for points x,y € B,(x¢) in R™ and a para-
meter ¢ satisfying 0 <t <1

11 = )x +ty = xoll = [|(1 = ) (x = x0) + £(y — %0)]|

(
(1 =) (x = xo)[| + ¢[I(y = x0) |
(1—1)

<
< r+ir=r
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This result shows that (1 — ¢)x + ty € B,(X¢). Therefore, any open ball in
R™ is a convex set.

The open set U is homeomorphic to an open set of R™ that is express-
ible as some union of open balls. Hence, U itself is the union of inverse
images of some open balls implying that a component open subset of U is
homeomorphic to a convex open ball with centre at a point x. We thus
conclude that every manifold is locally contractible and is locally homeo-
morphic to a star-shaped region. Conversely, when V' € R™ is a star-shaped
open set, if we define on an open set U = ¢~ (V) of the manifold M a
mapping h; = ¢! o hj o ¢ such that h;(p) € U for all points p € U and
t € [0, 1], then we immediately observe that the set U can be contracted to
the point py = ¢~ 1(xq) by the mapping h;.

The entire manifold R™ is star-shaped with respect to the origin O, in
fact to every point of R™. Hence, a manifold M is contractible if it is home-
omorphic to the manifold R™. That the converse statement is not generally
true can be demonstrated by constructing a counter example. Three dimen-
sional Whitehead manifold is obtained by embedding a solid torus 1) (a
solid torus is a filled-in torus 'JI‘Q) inside three dimensional sphere S3, then a
solid torus 75 inside 77 and continuing this way ad infinitum [discovered by
English mathematician John Henry Constantine Whitehead (1904-1960)].

Hence, we can formally represent the Whitehead manifold by ir%lTZ A rath-

er small part of the Whitehead manifold is depicted in Fig. 6.2.2. This mani-
fold is contractible but it is not homeomorphic to R3.

Fig. 6.2.2. Whitehead manifold.
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Let a form field w € A*(M) be represented in a local chart by

1 i i
w(x) = Hwil...ik(x)dx EA - Ada™
This form will of course be defined on an open set U of the manifold M.
We can define a new k-form @ depending on a parameter ¢ € [0, 1] in the
following manner

1 , 4
w(x;t) = T Wit [Xo + t(x — xo)]da" A -+ Adz™. (6.2.1)

If U is contractible, then w is specified everywhere in U. It is clear that
w(x;0) = w(xo) and w(x; 1) = w(x). Let us now define the new independ-

ent variables by v’ = z, + t(z' — z}), t € [0,1], i = 1,...,m. If we write
Wi,...i (W) = wj...5, [Xo + ¢(X — Xg)], it then follows from (6.2.1) that
1 . )
dw = i dw;,..;,(w) A dx"™ A --- A dz™ (6.2.2)

= ﬂailuikduz A dx™ A Adx™

10wy i i

_tE B dx' A dz" A - Ndx"

=tdw

We denote the radius vector in the region V' which is the homeomorphic
image of U with respect to the point x( by the relation

|
= (z' — z . 6.2.3
M) = (&' b (623)
d i i
= E [CE'O + t(x — xo)] %
We thus get H(x) = 0. It is clear that one finds
_ D
H(x;t) = H[xo + t(x — Xo)] = t(a' — 1‘6)% (6.2.4)

= tH(x)
fort € [0, 1].

6.3. HOMOTOPY OPERATOR

Let a form w € A*(M) be defined on an open set U C M that is con-
tractible to a point py € M. We will assume that the homeomorphic image
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V C R™ of the set U is a star-shaped region. We define the linear operator
H : A¥(U) — A*=Y(U) by the following expression in local coordinates

1
Hw :/ i (@(x;t))tF Lt (6.3.1)
0

1
(k—1)!

1
/ 5 (2" =) ) Wigiye iy [Xo + H(X—%X0)] dt dz" A - A da',
0

Since V' is star-shaped, the form w is prescribed at every point of the open
set U. Therefore, the operator H introduced by (6.3.1) is well defined on
the exterior algebra A(U). H is called the homotopy operator. This defini-
tion will automatically lead to the result H f = 0 for f € A°(M).

If we choose x at the origin O of the local coordinate system without
loss of generality, then the homotopy operator takes the form

1
Hu(x) = / ipw(tx)t " Ldt
0

1 ! , . .
= 0 1)|/ R w , (4X) dE T A - A da
—D!'Jy
Let us now consider vector fields V3, V5, ..., Vi1 € T(M). The above
expression implies that

1
Hw(x)(Vl,...,Vk_l):/w(tx)(x,Vl,...,W,_l)tk1dt
0

The main properties of the homotopy operator are embodied in the
following theorem.

Theorem 6.3.1. The homotopy operator H has the properties listed
below:

(i). dH + Hd = ip if k > 1.
Hdf(x) = f(x) = f(x0) if k =0.
(i4). H o H = H* = 0 and Hw(x,) = 0.
(i41). HIH = H and dHd = d.
(iv). HIHd = (Hd)* = Hd and dHdH = (dH)*> = dH,
(dH)(Hd) = dH?d = 0 and (Hd)(dH) = Hd*H = 0.
(v).igo H=0and H o iy = 0.
(4). We consider a form w € A*(M), k > 1. We shall try to evaluate

explicitly the action of the operator d o H 4+ H o d on this form. At the first
step, we obtain
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(dH + Hd)w

)+ H(dw)

1
W)t dt + / i, (dw)t"dt
0

I 1
N\\

tk dl + iy (dw) ] dt
tk_1£Hw dt

where we have employed the Cartan magic formula. On the other hand, Lie
derivative with respect to the vector H yields
1

k‘ (£Hw)ll Zk dl‘il /\ “ee /\ d.’L‘ik

£qo =

where the coefficients follow from (5.11.4) as

(@i, = (o — ) et +an U (axz, i

_ 7 awll Zk
- (:E - wll U100y Zk

; ; 8@21...% _ dw,...;
=t(x _fEO)W"‘kwir-ik =t—* o L4 kWi,
Hence, we get
1 kdwll i k— 1— i i
(@ + Hdlw = | [t T .ik}dtd:cl/\---/\dxk
1 d ’
= / pr —(t*@;,. ) dt dz A - A dx™
1 =1 ,
= (tFwi,..q, [xo + t(x — xo)])| Cdat A Adat
1

= % g (X)dxt A A dat

This means that for every form w € A(M) with non-zero degree, we find
(dH+ Hd)w=w or dH+ Hd=1, (6.3.2)

where i) denotes the identity mapping on the exterior algebra A(M). When
k = 0, on resorting to (6.2.2) for every function f € A°(M) we arrive at the
result
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dHf + Hdf = Hdf (6.3.3)
1 1
- / (@) dt = [ idF) dt

18f N Yol —ai  Of

o OF [
=/0 (@' —ai) gt = [ St =7y = 10 - Flxo)

1
(i7). Since Hw(xg) = / ir(x,) (W(x0))t"'dt and H(xo) =0, we
0
obtain Hw(xg) = 0. On the other hand, for a form w € A¥(M) we find

HQW:/ISk_QiH[/ltk 1Wdt}( \ds
//tk 't gy iy ) (@(2)) ()] dt ds
//t'“ 5t 2 i [i00 (1)) ()] e ds

:/0/Otk—ls’“—li;(m)(s)dtds:o

where we have employed (6.2.4) and the relation i, = 0.

(ii7). Since d®> = 0 and H? = 0, the relation (6.3.2) leads right away to
dHd =dand HdH = H.

(iv). If we make use of the property (iii) in expressions (Hd)? =
HdHd and (dH)? = dHdH, we find that (Hd)?* = Hd and (dH)* = dH.

(v). This property can also be demonstrated quite easily. If we consi-
der a form w € A¥(M), we obtain

iy (Hw) = iy [/0 iH(w)t’Hdt} :/O in (in(@))t"'dt = 0
Hiy(w) = /0 " iy (i (w)) dt = /0 "2 iy (i (w)) dt
1
:/0 " g (in(@) ) dt = 0

because of the relation iy o iy = 0. O
In case we can define the homotopy operator, the celebrated Poincaré
lemma can readily be proven.
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Theorem 6.3.2 (The Poincaré Lemma). An exterior form defined on
an open set U C M contractible to one of its interior points is closed if and
only ifit is exact on U.

If a form w is exact, that is, if one is able to write w = df2, this form is
closed because dw = 0. Conversely, let us now assume that w € A*(M) is a
closed form. When the homeomorphic image of U in R™ is a star-shaped
region, we will be free to employ the homotopy operator. Since dw = 0, we
then obtain

w=dHw+ Hdw = d(Hw) = dQ

where we have defined the form Q = Hw € A*~1(M). Thus, the closed
form w is likewise an exact form on U. Since every chart of an m-dimen-
sional differentiable manifold M is homeomorphic to an open set of R™,
the Poincaré Lemma is locally valid. Therefore, every closed form on M is
locally, in other words, in an open neighbourhood of every point p € M, is
an exact form. However, this statement is generally not true globally. This
means that we cannot be sure in general the existence of a form €2 defined
over the entire manifold M so that a closed form is expressed as w = df2.
For instance, if we have prescribed a closed form on the punctured differen-
tiable manifold R™ — {0}, we cannot validate the Poincaré Lemma on any
open set containing the point {0}. O

If we take the manifold R™,m > 0 into consideration, we know that
the whole manifold can be contracted, say, to the point 0. Hence, according
to the Poincaré lemma every closed form defined on the entire R™ is
globally exact. Similarly, we can say that every closed form on a contracti-
ble manifold M is globally exact.

Example 6.3.1. A form w € A%(R?) is given by

w= —2(x+y)zdx Ady + 2*dy A dz + y*dz A dz.

We observe at once that dw = 0. R? is star-shaped with respect to the centre
0. Thus, the radius vector can be taken as H = x0, + y0, + 20,. We can
then evaluate the form Hw easily as

1
Q=Hw= / t[—2t%(z + y)2(z dy — yda) + P2’ (y dz — z dy)
0
4ty (z dx — zdz)|dt

1
=1 [yz(3y + 2z) do — z2(3x + 2y) dy + zy(x — y) dz] € A (R?).

We can readily verify that the relation w = df2 holds.
Let us now consider a more general 2-form defined by
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w=RdzNdy+ PdyAdz+ Qdz Adx € A*(R?).

If w is a closed form, that is, if dw = 0, then we have to impose the follow-
ing restriction on the functions P(z,v, 2), Q(z,y, 2), R(x,y, 2):
orP 9@ (9_R ~0

o oy T oe T
In this situation, on resorting to the homotopy operator, we can determine
the form 2 = Hw as follows

1
Q= ( / [t2Q(tz, ty, tz) — tyR(tﬂc,ty,tz)]dt) dz
0
1
+ (/ [t:r:R(tJ:,ty, tz) — tzP(tz,ty, tz)]dt) dy
0

+ ( /01 [tyP(tz, ty, t2) — th(ta:,ty,tz)]dt> dz.

If we recall the restriction imposed of the functions P, (), R, we can verify
at once that we get the relation w = df2. This is of course valid on the entire
manifold R3. |

It is clear that the form € introduced in the foregoing theorem cannot
be determined uniquely. Evidently, for an arbitrary form o € A*~2(M), the
form ' = Q + do will also satisfy the relation w = dfY'.

We had denoted the graded algebra £(U) of exact forms on an open
subset U C M. For a form w € A*(U), we get dHw € £F(U) implying that
dH : A(U) — E(U). But, the restriction dH |z : E(U) — E*(U) satis-
fies the relation w = dH| er(uryw- Hence, we may regard the operator d as the

inverse of the operator H on £%(U).

Let M and N be, respectively, m- and n-dimensional differentiable
manifolds with n > m. ¢ : M — N is a smooth mapping. We consider an
open subset U C M. Let us assume that the mapping ¢ is a diffeomorphism
on U. Thus ¢! : ¢(U) — U is a smooth mapping. If U is contractible to a
point py € U, then the region ¢(U) C N can also be contracted to the point
®(po) € ¢(U) and since ¢~ is continuous on ¢(U) C N, we see that ¢(U)
is also an open subset. The mappings ¢ and ¢! give obviously rise to pull-
back mappings ¢* : A(¢(U)) — A(U) and (¢*)': A(U) — A(o(V)).
Let H be the homotopy operator defined on the region U. If w € A(¢(U)),
we have ¢*w € A(U) and we can write

dHp*w+ Hdo*w = ¢*w.
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According to Theorem 5.8.2, it is possible to write Hd¢*w = H¢*dw. Let
us now define an operator H* : A*(¢(U)) — A1 (¢(U)) through the

relation
¢*H* = Hp* or H* = (¢*) ' Ho". (6.3.4)
We thus obtain
d¢p"H'w+ Hp"dw = ¢"dH w + ¢"H" dw = ¢* (dH w + H'dw) = ¢*w.
By applying the operator (¢*) ! on this expression, we find that
dH"w+ H'dw=w or dH" + H"d =iy 41y

H* is then called the homotopy operator generated by the mapping ¢.
6.4. EXACT AND ANTIEXACT FORMS

Let U C M be a contractible open set on which the homotopy operator
can be defined where M is an m-dimensional smooth manifold. Thus, on
taking heed of the relation (6.3.2) it becomes possible to express a form
w € A(U) in the following manner

w=dHw+ Hdw = w, + w, (6.4.1)

where we introduce the following forms with degree preserving operations
we =dHw, w,=Hdw=w— w,. (6.4.2)

They will be called as the exact and antiexact parts of the form w, respect-
ively. (6.4.2) then leads to the result Hw, = H?dw = 0. Hence, antiexact
forms are located in the null space or the kernel of the linear operator H.
Let us denote the set of all antiexact forms of the module A*(U) by A*(U).
EY(U) is of course empty. On the other hand, we can write f(x) — f(xg) =

Hdf = f, for all f € A°(U). So there will be no harm in assuming that
A%(U) = A°(U). We can now easily demonstrate the following lemmas.

Lemma 6.4.1. The operator dH maps E*(U) onto E*(U) and A(U)
onto E(U). Furthermore, the operator d is the inverse of the operator H
when the domain of H is restricted to £ (U).

In view of (6.4.2), dHw is exact for every w € A*(U) thus dH maps
AR(U) into EF(U). If w € EF¥(U), then w = da where oo € AF~1(U) so we
get dHw = dHda = da = w. Hence dH restricted to £ (U) is the identity
operator. This also shows that d H is a surjective mapping.

Lemma 6.4.2. The necessary and sufficient conditions to completely
determine the set A*(U), k > 1 of antiexact forms are given as follows
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AU = {a e AF(U) ig(a) = 0,a(xy) =0,k > 0}.

For all w € A*(U), according to Theorem 6.3.1 (v) and (i) we find
that antiexact parts satisfy iy (w,) = 0 and w,(x¢) = 0. Conversely, let us
assume that a form o € A¥(U) satisfies the relations iy (o)) = 0, a(xo) = 0.
For an arbitrary form 3 € A*~1(U), let us write w = d3 + o. However, we
have Ha = [ t5 Vig(@)dt = [, 1" 2ig(@) dt = [ 1" 2ig(a)dt =0 so
that we get Hw= Hdf+ Ha = Hdf and w, =dHw = dHdB = dp.
Hence, we obtain o = w — w, = w, = Hdw. This equality does not lead to
a contradiction if only a(x¢) = 0. Thus we find o € A*(U). O

Lemma 6.4.3. The operator Hd maps A*(U) onto A*(U) and A™(U)

= 0 on the m~dimensional open set U. Furthermore, the operator H is the
inverse of the operator d when the domain of H is restricted to A*(U).

We obviously have Hd : A¥(U) — AF(U). Let us consider the form
w, = Hdw € A*(U) where w € A*(U). We then obtain Hdw, = (Hd)*w
= Hdw = w,. This also shows that Hd restricted to A*(U) is the identity
operator for k > 1. If k = 0, then the same situation is also realised up to a
constant: f(x) = Hdf(x) + f(xo). If we pay attention to the sequence
AF(U) L AL U) B AR(U), we observe at once that A™(U) = 0 on the
m-dimensional open set U of the manifold M™. a

Various properties of antiexact forms are collected in the theorem
below.

Theorem 6.4.1. Antiexact forms possess the following properties:

(i). A¥(U) C N(H) = Ker (H),k > 0.
(i). If a € A*(U) and g € A\(U), then a A B € A*T(U).
(iii). For k > 1, A*(U) is a module on A°(U).

(7). We have seen above that Ha = 0 because of iy(a) = 0. Hence,
we find that A*(U) C N (H).

(7i). For k = 0, this statement becomes true automatically. Therefore,
we take the case min{k,[} > 1 into account. Since, the antiexact form fac-
tors vanish at the point Xy, we naturally obtain (a A 3)(x¢) = 0. On the
other hand, we get

iy (aAB) = (ixa) AB+ (=1 a A (iyf) =040 =0.

We thus conclude that a A 3 € A*(U).

(iii). The set A¥(U) is a submodule of the module A*(U). If
a,fe€ AHU), we get in(a+ ) = in(a) +in(8) = 0,(a + F)(x) =
a(xg) + B(x0) = 0 and iy (fa) = fiy(a) =0 and f(xg)a(xp) = 0 for all
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f € A°(U). We thus have a + 8 € A¥(U) and fa € A*(U). O
When w € A (U), if we write dw = o € A**1(U) then we are led to
w = Ha. Likewise, when f € A°(U), if we write df = a € AY(U) we get

f(x) = Ha+ f(x). We can immediately observe that A(U) = & AR(U)
k=0

is a graded algebra that is a subalgebra of A(U). Furthermore, for any form
w € A(U) we obtain Hdw € A(U) so that we can symbolically write the
relation A(U) = Hd(A(U)). Because of the identity Hd = (Hd)?, we are
led to the conclusion that Hd is a projection operator. Hence, we can say
that the algebra A(U) is a Hd-projection of the algebra A(U).

With the information we have acquired so far, we can now manage to
better identify the characteristics of the operator H. For k > 0, it is possible
to express H : AFT1(U) — A*(U) implying that A*(U) = H(AM(U)).
Indeed, If w € A**1(U), then we find that Hw € A*(U) and iy (Hw) = 0,
Hw(xg) =0 because of Theorem (6.3.1) (v) and (i¢) and consequently
Hw € A*(U). Conversely, let us suppose that € A*(U). This means that
a = Hda. Next, we introduce the form = da € A*1(U) so we get
a= Hp.

Theorem 6.4.2. If o € A*(U), there exists a form & € A**1(U) such
that o is expressible as o = iyQ.

When o € A*(U), there is a form 3 € A*"1(U) such that one is able
to write « = H (3 and thus it has the following expression

1
0
= iﬂ(;/ltkﬂ [Xo + t(x—xo)]dt dr'A - A dxikH) — iya.
(E+1) ), e

Conversely, if o = iy, then we find iya = i%a =0 and «(x¢) = 0 since
H(XO) = 0. O

Next, as an application of Theorem 6.4.2, let us show once more that
the exterior product of two antiexact forms is again an antiexact form. If
«, ( are antiexact forms, then they are expressible as « = iy @ and 3 = iy0.
We thus get

aAp=iya A iHB = iH(a VAN iHﬁ).

Recalling that H o iy, = 0, we obtain

Hdiy (@ A igg3) = i (@ N i B) — dHigg (@ N iy B) = igg(@ A iy B)

Introducing the form v = ix (@ A i3, 8), we finally find
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a A B = Hdiy@ANinB) = Hdy € A(U).
Let us consider a form w € A*(U). This form may be expressed as
w=a+p, a=dHweEU), p=Hdwe A*U).

This implies that one is allowed to write A*(U) = ¥(U) + A*(U). But we
can readily show that £¥(U) N A*(U) = {0}. Let w € E¥(U) N A*(U) so
that this form has to satisfy both w = do and w = Hdw. This leads to the
result w = Hd?c = 0 which amounts to say that we have a direct sum at
hand: A*(U) = &¥(U) @ A*(U). We then conclude that the exterior algeb-
ra on U may be represented as the direct sum A(U) =E(U) & A(U) of
graded algebras of exact and antiexact forms.

Actually, we can show that the algebra of antiexact forms generates
almost the entire exterior algebra on U'.

Theorem 6.4.3. A form w € A*(U),k > 1 has a unique representa-
tion w = do + 3 where a € A*Y(U) and 8 € A*(U).

Since we have assumed that U is contractible, any form w can be ex-
pressed as w = dHw + Hdw. We then introduce the antiexact forms o =
Hwe A¥Y(U) and B = Hdw € A*(U) to represent w as w = da + f.
However, it remains now to demonstrate that this representation is unique.
To this end, let us suppose that there exists another representation in the
shape w = day + 3; where o € A*~1(U) and 3; € A*(U). We then find
d(a—a1) 4+ (6 — 1) =0 and the exterior derivative of this form gives
d(B3— 1) = 0. Because 3 — 3, € A¥(U) and Hd is the identity operator
on A¥(U), we obtain at once 0 = Hd(8 — (1) = 3 — (1, or 1 = 3. There-
fore, we get d(a — ag) = 0 and the Poincaré lemma leads to aw — ag = dy
where v € A*¥=2(U) whenever k > 1. Since a — a; € A*"1(U), we find
that H(a — o) = Hd~y = 0. Hence, the relation vy = dHy + Hdy = dH~y
gives rise to a — oy = d2H~ = 0, or a; = «. Thus, this representation is
unique.

But, if k = 1, then we have a — a; € A°(U) = A°(U) and the condi-
tion d(a — ) = 0 results in ag = « + constant. Namely, in this case the
form « can only be determined uniquely up to a constant.

This theorem can be symbolically expressed in the form

AU) =d(AHU) @ AU), k>1 O

Example 6.4.1. w € A'(R?) is given by w = 2x dx + 2dy — y* dz so
that we get dw = — (1 + 2y) dy A dz. If we choose the point xo = (0,0, 0)
as the centre, the radius vector becomes H = = 0, + y 9, + z 0.. Then, by
applying the homotopy operator, we obtain
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1
Hw= / iy (2tz do + tz dy — t*y* dz) dt
0
1
= / (2ta® + tyz — t*y’2) dt = 2* + yz — 1?2
0
1
Hdw = — / HL + 2ty )i (dy A d=)dt
0

1
= —/ t(1+ 2ty)(ydz — zdy)dt = (5 + 3y) (zdy — y d=)
0

Hence, the form w is expressible as
wzd(xQ—i-%yz—%sz)—i—(%—i—%y)(zdy—ydz) [ |

Let us now consider two antiexact forms oo € A*(U) and 8 € A (U).
Since we know that a A 3 € A*(U), we can write Hd(a A 3) = a A S
whence we deduce that H(da A B) + (—1)*H(a A dB) = a A 3. Hence,
we obtain

H(daAp)=aAB+ (=" H(a A dp). (6.4.3)

This relation can be interpreted as a sort of integration by parts.

6.5. CHANGE OF CENTRE

The open set U C M may be contractible with respect to several
points. Therefore, its homeomorphic image in R™ may appear to be star-
shaped with respect to various centres. Since the homotopy operator is
explicitly dependent on the location of the centre, we shall then try to estab-
lish the connection between homotopy operators associated with different
centres.

Theorem 6.5.1. According to a local chart, let V = o(U) be a star-
shaped region of the Euclidean space where U C M is an open set. If H;
and Hs are two homotopy operators associated with centres X, and X, res-
pectively, then they are related by

Hiw=Hw+~v+d\ if degw > 1,
Hw=Hw+v+c ifdegw=1

where we define v = — HoHydw € A2(U) and A\ = HyHyw € Ay(U). c is
a constant.
For a form w € A*(U), we can of course write
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w=dHw+ Hidw = dHyw + Hodw

from which we find that (Hy — H;)dw = d(H; — Hy)w. If we replace w by
dw in this expression, we get d(Hs — H;)dw = 0. In view of the Poincaré
lemma, there exists a form « € A*1(U) so that one is able to write
(Hy — Hy)dw = da. According to Theorem 6.4.3 the form « is given by
a=df +~ where v € Ay~1(U). The relation (Hy — Hy)dw = dv then
leads to (H3 — HyH;) dw = Hady and — HyHjdw = 7. On the other hand,
the equality d(Hy — Hs) w = dy or d[(H; — Hs) w — ] = 0 gives rise to
<H1 — Hg)w = ’y—i—da, (S AkiQ(U)
if k > 1. If we write 0 = dv + A where A € A5~%(U), we obtain
le = HQ(A) +v+ dA.

On applying the operator Hy on the above equality, we eventually find that
A = HyHiw. However, if k£ = 1, then it follows from the foregoing relation
that (H; — Hy)w — v = ¢ = constant and, consequently,

Hyw=Hw+~vy+ec O

Example 6.5.1. w € A}(R?) is given by w=2xdz + zdy — 3 d=.
Let us consider two centres x; = (1,0, 1) and xo = (0,0, 0). With the radius
vector Hs we have already found in Example 6.4.1 that

How = 2 + %yz — %yQZ.

With the radius vector H; = (x — 1) 0, +y 9, + (2 — 1) 0., we are led to
the relation

Hw = /Olim 214 t(z — 1))dx + (14 t(z — 1))dy — t*y* dz]dt

= /1 [2(z—1)(1+t(z—1)) +y(1 +t(z —1)) — t*y°(z —1) ] dt
0

=2z-1)+(x—-1>*+y+ %y(z —-1)— %yz(z —1)
= Hyw+ $y + 39° — 1.

We see thaty = 3y + sy? andc = — 1. [
6.6. CANONICAL FORMS OF 1-FORMS, CLOSED 2- FORMS

We consider a form w = w;(x)dz’ € A'(M) on an m-dimensional
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smooth manifold M. Starting with this form, let us construct the following
sequence of forms of increasing degrees:

L =we A (M), I =dwe A*(M), I3 =wAdwe A*(M),
I =dwondwe A(M),.... I, = (dw)" = dw A -~ ANdw, € A" (M),
N’
n
L1 =wA Iy, € A*"TH(M),...,n=0,1,2,....

Here, we adopt the convention that I, = 1. It is clearly observable from this
sequence that we can write the recurrence relations

IQn =dw A Ign_z = IQ A IQn_Q, (661)
Lpi1 =11 A Iy, n=20,1,....

By definition, we evidently have
dlr, =0, dIy =1y, dlppyr = dli NIy = I3 N Loy = Inpyo.

This sequence must be finite because all forms whose degrees is greater
than m are identically zero. We can thus write I,z = 0when k =1,2,....
However, this sequence may vanish beginning from a number K < m.
Since dw is a 2-form, its rank is » = 2k < m [see p. 39]. This means that we
can express dw as follows

do=f'NG + AP+ +fEAG, flgd e AN(M),i=1,... .k

and we get (dw)* # 0, (dw)**™ = 0,n = 1,2, ... [see p. 44].
Let us now suppose that we have succeeded in determining an integer
K (x,w) > 0 such that

Tgixe) 70, Igxwyn =0, n=1,2,.... (6.6.2)

This number may generally be dependent on the points of the manifold. We
assume that forms are defined on an open set U C M. We denote the
homeomorphic image of U through appropriate charts by V' C R™. The

positive integer K (w) = sup K (x,w) is called the Darboux class of the 1-
xeV

form w relative to the set U [French mathematician Jean Gaston Darboux
(1842-1917)]. The points at which K(x) < K(w) is said to be critical
points of the form w relative to the set U while the points at which K (x) =
K (w) are called regular points relative to U. We shall here assume that all
points in the region U are regular. The rank r(w) of the form w relative to
U is defined as the greatest even integer less than or equal to K (w) whereas
the number e(w) = K(w) — r(w) is called the index of w relative to U.
According to this definition e(w) is either O or 1.
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Let us first prove the following lemma.

Lemma 6.6.1. Let Q € A*(M) be a closed simple k-form. Then the
form () is expressible as exterior products of so called gradients, that is, as
Q=dg* Ndg® A --- NdgF whereg' € A°(M), i =1,... k.

Let us take the closed form Q = w' Aw? A--- AwF # 0 where the
forms w' € AY(M), i = 1,...,k are linearly independent. We now consider
the ideal Z(w',...,w"). We will show that this ideal is also closed. Since
d) = 0, we readily obtain

Q) (=)Wt A AT AW AWTEA AW

I
-M"?

i=1

Ao NG A ADTEAGTIA AW =0

|

Il
—

(3

where we have adopted the convention w” = 1. It follows from the above
expression that we arrive at the relation

k
0:wj/\dQ:ij/\dwi/\wl/\-~-/\wi*1/\w”1/\---/\wk
=1
=W AdS AT A AT AGTEA A WF
= (—1)MdAAA AT AG AN A

for every form w’ € A'(M). This implies that
dw'AQ=0,i=1,..., k

These relations show according to Theorem 5.10.2 that the ideal
T(w!,...,w") is closed. Hence, as we have demonstrated in Theorem 5.13.5
we can find independent functions f' € A°(M), i =1,...,k so that this
ideal is equivalent to the ideal Z(df*,...,df"). Furthermore we have to
write

W= A;’-dfj, A; € AO(M)
whence we deduce that
Q=w'A A =adf' A AdfF, o =det(A)) € A(M).

On the other hand, we must have dQ2 = da Adf' A--- Adf¥ = 0. Let us
now choose new local coordinates for the manifold M as f?, z* where i =
1,....,k and a =k + 1,...,m. Because the function o may presently be
written as
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ko k
a=a(fl,..., fFa ™),

the expression df) = 0 can be cast into the form

(80‘ dfi+ 80: dx“) ANAfUA - AdfF

ofi dzo
0
— P G AdfEA - A dfE = 0.
oz
These equations yield
da
dze
where a =k +1,...,m so that we find o = a(f!,..., f¥). Let us now

define functions

glzgl(flw-'?fk)? 92:f27 "'7gk:fk

such that we can express « without loss of generality as

1
o= g—ffl # 0.
Since we now have
99" 9g° 99
. 1 2 k
)% T |t
0 0 - 1
the functions ¢', ..., g* are independent and we get

dgt A--- Ndg" = det (g /Of)) dft A - A dfE.
Hence, we are led to the conclusion
Q=dg' A---ANdgF, g € A°(M), i=1,... O

We can now prove the following theorem.
Theorem 6.6.1 (The Darboux Theorem). [f the Darboux class of the
form w € AY(M) is K, then the canonical form of w is given by

w=udvy + €(W) dvgs1, U, Ve, v €A (M), a=1,...,k
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where k = [K /2] denotes the greatest integer that is less than or equal to
K /2. If K is even, then e(w) = 0 whereas e(w) = 1 if K is odd.

We shall prove this theorem in two steps.

(1). Darboux class is an even integer. Thus, we can write K = 2k so
that we have to take k = [K /2] = K /2. According to the definition of the
Darboux class, we obviously find

LIy, #0, Iyt =0, oy =0, ... .

Hence, the rank of the form dw € A?(M) is 2k implying that I, € A% (M)

is a simple form. Since dls;, = 0, in view of Lemma 6.6.1 the form o, is a

gradient product, i.e., by means of independent functions u!, vy, u?, ve, ...,

u”, v, the form I, can be depicted as follows
Ly = k'du' Advy Adu? Advg A=+ A duF A duy.
Accordingly the form dw has the following structure [see Sec. 1.6]
dw = du® A dv,, u®,ve € A°(M), a=1,...,k.
On the other hand, the satisfaction of the condition
L1 =wA Iy = Klw A dul Advy Adu? Advy A -+ A du® A do, =0

suggests due to Theorem 5.3.1 that the 1-forms w, du!, dvy, ..., du”, dvy, are
linearly dependent. Therefore, there exist functions f,, g € A°(M) that
enable us to write

w = fo du® + g° dv,.

Hence, the form w belongs to the ideal Z(du®,dv,). In this situation, we
naturally get

dw = du® ANdv, = dfy Adu® + dg® A du,,

Since 2k < m, we are free to choose new local coordinates as follows: u“,
Vo, =1,..., k;z% a =2k +1,...,m. In the equation just above, let us
evaluate differentials of functions f,,g“ with respect to new coordinates.
On comparing both sides, we find that

8fa_0 dg"
dx¢ 7 dxt

(6.6.3)

since there are no terms like dxz® A du® and dz® A dv, at the left hand side
of that expression. We thus conclude that these function must have the
forms f, = f.(u?,v5) and g* = g*(u”, vs). Remaining terms then conduce
to the relations
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8fa I3 fa ag I}
e d A du® +85dvd/\du +3gd“ A dv,

Ot

81}5 dvg N\ dv, = du® N dv,.

However, on utilising the antisymmetry of the exterior product we can
transform this expression into the form

dfa  Ofs dg*  dg’
<6uﬁ 8u“>d Nt (3?//1 v, )dw A dva
89 0 fa 8
(aua a%)d A dvg = 88 du® A dug

which result in the equations

o B 5
Ofa _0fs 09" 99" 09 0o _ss  (gga
oul  due’ By Ov, du  dug

The equations (6.6.4);_» ensure the existence of functions ¢; and 1)y that
make it possible for us to write

o1, O

Jo=Guar 9" = v b1,91 = ¢1,91 (U, va, ). (6.6.5)

But, because of (6.6.3) we get

Py Y
ouedze v, 0xt

whence we obtain
¢1(uav) = qf)(ll,V) (Vv CCa)? (666)
Yi(u,v) = P(u,v) + ¢(u, ).

If we insert the expressions (6.6.5) and (6.6.6) into the equations (6.6.4)s,
we find that

R U (6 — 6y) = 0?
ugdu®  dudug  dugduc Y dugoue

+ ¢
+ ¢

(¥ —¢) = 6L.

The integration of these equations yields readily

Y — ¢ =uvy + P(u) + U(v) (6.6.7)
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and it follows from (6.6.5) that

Jo = oue  our I T v, Ov,
On the other hand, we obtain from the expression (6.6.7) that
op , 09 0V
8—1@_u +8va +8va’
Hence, the form w is expressible as
I . R ) o
w= e du® + o, dv, = udv, + Suo du® + o, dv, + 0. dv,

=u'dv, +dd, ¢ =+ V

where the function % (u, v) can be selected arbitrarily. Therefore, if we take
¢ = constant, the canonical form of w is found to be

w = udv, = uldv, + *dvy + - + uFduy. (6.6.8)

It is clear that this representation is not unique. For instance, because of the
identity

udvg = d(uvy) — vadu®

we get w = — v,du® if we choose 5 = — u%v,.
(73). Darboux class is an odd integer. Thus we can write K = 2k + 1.
Hence, we can take k = [K /2] = (K — 1)/2 which requires that

DIy #0, Ipp1 #0, Iop2 =0, ....

Since Iy, # 0 and Io;42 = 0, the rank of the form dw € A%(M), that must
be an even number, is again 2k. This implies that I5; is still a simple form
and a gradient product. On the other hand, we can write loy11 = w A Io.
Since Iy, is a simple form and w is a 1-form, the form oy, € AZ+(M) is
also a simple form. Iz, is a closed form because dlopi1 = lopio = 0.
Consequently, Io;1 is likewise a gradient product. Since lop 1 = w A Iog
# 0, the form w € A'(M) cannot be expressed as a linear combination of
factor forms of the simple form Iy;. Therefore the form Io; is a divisor of
the form Io;41. Since Iox41 is a gradient product, this form is expressible as

Dy =dnNly, ne A0<M)-

Thus, just like in the part (), we can write
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Ly = kldu' Advy A -+ A dub A doy,
dw = du® A dv,, u®,v, € A°(M), a=1,... k.

Let us now introduce a form ' € A*(M) through a gradient transformation
given as
W'=w—d\

where A € A°(M). We obviously get dw' = dw so that we obtain I}, = I
while I, is found to be

Ly =W ALy =wA Ly — dANA Iy, = Iy — dXA A Iy,
We thus arrive at the relation
Loy =dn A Ly, — dXA A Ly, = d(n — X) A Ly
On choosing the arbitrary function A as A = n, we conclude that
I, #0 and I, , =0.

This amounts to say that the Darboux class of the form ' is K = 2k and its
canonical form turns out to be w' = u®*dv, as in (i). Hence, we obtain
w = u®dv, + dn. Since the functions u®, v, are independent, we can write
n = n(u,v,x") by a choice of local coordinates as above. Thus the form d\
is not expressible as a linear combination of the forms du®, dv, so it does
not belong to the ideal generated by these forms. Hence, the function 1 =
v+1 18 independent of the functions u®, v,. Ultimately, in terms of 2k + 1
independent functions the canonical form of w now becomes

w = udvg + dvpi1 = uldvy + - + uFdog + dope. (6.6.9)

This finishes the proof of the theorem showing that we are now able to write
w = udv, + €(w)dvpyy = u'dvy + -+ + uFduy, + e(w)dvgy . O
Example 6.6.1. We take the form w = 2z dx + zdy — y* dz € AY(R?)

into consideration. Let us construct the sequence
L =w, [, =—(14+2y)dyNdz,Is = —2x(1 4+ 2y)dx ANdy Ndz, I, = 0.
We thus find K = 3 and k = 1. Let us choose vy = 2% and assume that the

functions u! and v; depend only on y and z. Then the relations

0 0
2L g
oy 0z
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yield the partial differential equation y?(dv;/dy) + 2(Ov1/dz) = 0 whose
solution is v; = f(y ! + log z). For simplicity, let us choose the function as
vy =y ! +logz Then we find that u' = — y?2. Hence w can now be
expressed in the following canonical form

w= —y*zd(y ' +logz) + d(z*) [ |
Example 6.6.2. Let us consider the form
w=(z —y*)dz + (y* — 22)dy + t*dt € A'(R").
Since we obtain

L =w, Ih = —2ydy Ndx — 2zdz A dy,
Iy = —2z(x —y*)dx Adz A dy, I,=0

we find that K = 3 and k& = 1. Hence one can write w = u'dv, + dvy. We
then readily show that
2 4 3
1 2 o y 2 1
u Ty —2°, v =Y, Uy 2+4 953/+3
The number K can be equal at most to the dimension m of the mani-
fold. Therefore, a form in A'(M) is expressible at most k = [m/2] + ¢

number of terms. For instance, we can write

m=1:w=dv, v; € A°(R),
m=2:w=u'dv, u', v € A°(R?),
m=3:w=u'dv; +dvy, u',v,v5 € A"(R?).

We can now discuss the second Darboux theorem concerning closed 2-
forms which is in fact an almost trivial corollary of the Darboux theorem.

Theorem 6.6.2. Let U be an open set of m-dimensional manifold M
contractible to one of its points. The homeomorphic image of this set in R™
through an appropriate chart is a star-shaped region. The canonical form
of a closed form w € A*(U) is given by

w = du® A dv, (6.6.10)

where the functions u®,v, € A°(U),a=1,...,k are independent and
k=[K/2]

Poincaré lemma states that there exists a form 2 € A'(U) such that the
relation w = df? is satisfied. If the Darboux class of €2 is K, then we can
write ) = u“dv, + edvgyy where a=1,...,k, k= [K/2]. We thus find
w = du® A dv,. Since every differentiable manifold is locally contractible,
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then every form w € A?(M) becomes locally expressible in the canonical
form (6.6.10). O

We know that a form w € A'(M) is completely integrable if only it

can be written as w = £ dn where &, € A°(M). This is only possible if &
=0 and k£ = 1 or Darboux classes KX = 1 and K = 2. In those cases, we
get w = dv; and w = u'dv;, respectively. We thus conclude that 1-forms
whose Darboux classes are K > 3 are not completely integrable. This
result coincides with the concept of accessibility propounded by Greek-
German mathematician Constantin Carathéodory (1873-1950). Let us con-
sider a form w € A'(M). We say that a form w has the inaccessibility pro-
perty if and only if a sufficiently small neighbourhood of any point p € M
contains a point ¢ € M that cannot be reached by a path (a curve) through p
entirely on M satisfying the exterior equation w = 0. If a 1-form w does not
have the inaccessibility property, namely, if in a neighbourhood of any
point p there is no point that cannot be reached by such paths, then the form
w possesses the accessibility property.

Theorem 6.6.3 (The Carathéodory Theorem). 4 form w € A'(M)
that is not identically zero has the inaccessibility property if and only if its
Darboux class is less than three. If its Darboux class is greater than or
equal to three, then w has the accessibility property.

If K =1, then w = dv; and the exterior equation w = 0 holds only on
(m — 1)-dimensional submanifolds S, described by v;(x) = ¢ where c's are
arbitrary constants. Let us assume that a point p € M is located on S,. For
a sufficiently small number §, we immediately see that there is a point ¢ in
any neighbourhood of the point p that belongs to the submanifold S, 5.
Since these two hypersurfaces cannot intersect, no curve through the point p
lying on S, thereby satisfying the equation w = 0 can reach to the point q.
If K =2, then w=wu'dv; and the exterior equation w =0 holds on
(m — 1)-dimensional submanifolds S, described by v;(x) = ¢. Thus, we
naturally arrive at the same conclusion about inaccessibility.

Let us now consider the case K > 3. In this situation we have the rep-
resentations

w = u"dv, if K is even; w = u®dv, + dvg,1 if K is odd.

where o = 1,...,k, k = [K/2]. Since the form w is not identically zero, at
least one of the functions u* does not vanish in a neighbourhood of a point
p € M. On dividing the form w by this function and renaming the indices if
necessary, we can cast the exterior equation w = 0 into the form

wldog + -+ o o, +dv, =0 (6.6.11)
where r =k if K is even and r =k + 1 if K is odd. A solution of the
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equation (6.6.11) can evidently be taken as
Vo(X) =co, a=1,...,7—1; v.(x) = ¢, (6.6.12)

The equations (6.6.12) prescribe obviously a family of (m — r)-dimensional
submanifolds of M.

Let us now consider the points p = ¢ 1(x;) and ¢ = ¢ 1(x3) on the
manifold M and we introduce the constants

v(lI = v4(Xx1), vi = v4(x2), vi = v,(X1), 1)2 = v,(X2); uf = u*(xy).

Then let us assume that we can choose a path x = £(¢) on M from the point
p to the point ¢ such that the following relations are satisfied

Vo (€(1)) = va(t) = v} + (V5 — vi)t,
u® (&) = u(t) = uf + h"t
where £(0) = x; and (1) = x2. h®, o = 1,...,r — 1 are presently arbitrary

constants. Such a path can be chosen, for instance, by first introducing the
functions

() =af +t(zy —27), a=2r—1,...,m
and then employing the 2r — 2 number of equations
va (§°(8), (1)) = vg + (va — va)t, u®(€(1),€°(¢)) = uf + ht

to determine the remaining functions £“(t),a = 1,...,2r — 2 in a neigh-
bourhood of the point p. On the path from p to g, the equation (6.6.11) takes
the form

dv, o dve  du,

Zra 2T a 't
7 +u 7 dt+( + h)(v2 — k) = 0.

The integration of this simple differential equation for v, with the initial
condition v, (0) = v} gives

v (t) = vp + (vl — V3 (uf + h“ t)t.
We now need to select the constants 2 in such a way that the relation
2

v? = vl + (v] —v2)(uf + hf“)

will hold at ¢ = 1. If v}, # v2 for an index «, then we reach to our objec-
tive by taking h* = 0 for all @ # o and



352 VI Homotopy Operator

2.1 1_,2
B0 — 2”7" — U, — (va B va)u(ll
vk — V2
Ifvl =22 foralla = 1,...,r — 1, we first determine a path such that

v, (t) = vy + at, va(t) = vy + bat, u(t) =g,

Since the form w does not vanish, u{" # 0 at least for an index ay. Along
the path, the exterior equation w = 0 can only be satisfied if a + byuf = 0.
Let us choose by, = — a/u}’ and b, = 0 for all a # «. In this case, we
obtain v}, = v2 for all o # g, va,(1) = V3, + ba, # v, vr(1) = v} +a. If
we now choose (v(1),v4(1) = v} (@ # ap), va, (1), u*(1) = uy) as the
new initial point, we can find a path on which w = 0 from this point to the
point (v}, v2) because vy, (1) # v}, . Therefore, when K > 3 we can always

find a path from the point p € M to reach to a point in a neighbourhood of
p such that the exterior equation w = 0 is satisfied along this path. |

6.7. AN EXTERIOR DIFFERENTIAL EQUATION

Exterior equations involving exterior derivatives of exterior forms will
be called exterior differential equations. This section is devoted to finding
the solution of the exterior differential equation

AN=TAQ+3 (6.7.1)

defined on a contractible open set U of a manifold M by making use of the
homotopy operator. I' € A'(U) and ¥ € A¥*1(U) are given exterior forms.
We look for all forms 2 € A*(U) satistying the equation (6.7.1). For the
existence of a solution, it is clear that the forms I' and X cannot be assigned
arbitrarily. The closure condition d?Q2 = 0 requires clearly that the equality
dNQ-T NdQ2+dX =0 or

dX=TATAQ+TAY—-dANQ=TAX—-dl'AQ

must be satisfied since I' € A'(U). By introducing the form © = dI' where
we obviously have dO = 0, we can transform the system to be solved into

AN=TAQ+Y, dE=TAY-OAQ, ©=dl, dO =0.

Our aim is to determine all forms €2, 3, I' and O satisfying the above rela-
tions. According to the Poincaré lemma, we can locally write © = df where
6 € AL(U). Since the form @ is incorporated in the above equations through
only its exterior derivative, we can choose 6 € A'(U) without loss of
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generality according to Theorem 6.4.3. Let H be the homotopy operator on
the contractible open set U. Then we get H6 = 0 and find that

0 =dHO+ Hd) = HO = HdT'.
On the other hand, the form I' € A'(U) can be expressed as
I =dHT + Hdl =dHT +0 =dvy+0, yv= HI € A(U).

Let us now consider the transformations 2 = ew and X = e’o where
p € A°(U). The relations

dQY=¢e’dp ANw+ e’dw=e€"(dy+0) Nw+ e’o
d¥=e’dpNo+e’do=e’(dy+0)No—e’dd ANw

lead to
dw=(dy—dp+0) Nw+o,do=(dy—dp+0)No—df \w.

We now choose the arbitrary function p as p = v = HI' € A°(U). We then
reach to the equations

dv=0ANw+o, do =0ANo—dfAw.
With the definition 3 = § A w € A*1(U), we obtain
df=dONw—0Ndw=d0Nw—0NOANw+0)=dI ANw—0ANo.
Hence, our system is reduced to a much simpler system

dv=p+0o, do= —dg.
The identities w = dHw + Hdw, 0 = dHo + Hdo then yield
w=dHw+ H(f+0), o=dHo — Hdf =dHo — 3+ dHp.

If we define the forms ¢ = Hw € A*"Y(U),n = Ho € A*(U), we get

w=dp+n+HB, o=dn—p+dH}S.

On using the above relations, we can easily determine the form 3. If we
write

B=0Nw=0Add+0An+0AHS
and note that 0 A+ 6 A HB € A*+1(U), we then find
HB=H(OAdS) + H(OAq+0AHB) = H(O Ad).

We thus obtain
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B=0Ndp+0Nn+0ANHOANIP)
and consequently

w=do+n+ H@OAdp),
c=d(n+H@OANdP)) —OA (dp +n+ H(0 Adg)).

Hence, the solution of the exterior differential equation is found to be

Q=¢"[d¢+n+H(OANdp)], (6.7.2)
S=e[dn+HONdP)) — O A (dp+n+ H(OAdo))]
I'=dy+60, O©=dl'=db

where v € A°(U), 6 € AY(U), ¢ € A*"1(U) and n € A*(U) are arbitrary
forms. Now, introducing the arbitrary form x = n + H(0 A d¢) € A*(U),
we can express the above solution in a much simpler fashion as

Q=e(dp+x), T =ecldx—0A (dp+X). (6.7.3)

If we take > = 0 in (6.7.1), we arrive at the following exterior diffe-
rential equation

AN =TAQ (6.7.4)

together with compatibility conditions © A 2 = 0,0 = dI'. Since we now
have o = 0, we find of course n = Ho = 0 and it follows from (6.7.2), that
dH(O Adp) — O A (d¢ + H(0 Adg)) = 0. We first calculate the exterior

derivative of this expression, then consider its exterior product with the
form 6 € AN (U) to get

d[O A (dp+ H(ONdp))]=d*H(O Nde) =0,0 NdH(0 Adg) =0,
respectively. But, because we can write
d[OA (dp+ H(ONdp))| =dO A (dp+ H(OAdg)) — 0 AdH (O Ado)
we must conclude that
do A (do + H(9 Ado)) = 0. (6.7.5)
Therefore, the solution of (6.7.4) is represented by
Q=¢e"[dp+ H(0 Ado)], v=HT, § = Hdl (6.7.6)

subject to the condition (6.7.5). The forms Q € A*(U) satisfying the equa-
tion (6.7.4) are called recursive forms with coefficient forms I'.
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A recursive form (Q is called a gradient recursive form if the coeffi-
cient form I is exact. In this case, we have § = 0 and the solution reduces to

Q=c"dg, v=HT, dQ=dyAQ. (6.7.7)

6.8. A SYSTEM OF EXTERIOR DIFFERENTIAL EQUATIONS

We shall now try to deal with a significantly more difficult problem.
Let us consider a system of exterior differential equations

A0 = —TIANY + 37, 6,5=1,2,...,7 (6.8.1)

prescribed on a contractible open set U of a manifold M. Here Q' e AFU)
are forms to be determined, and I'; € A'(U) and X' € A" (U) are

assumed to be given forms. Minus sign in (6.8.1) is chosen for convenience.
It would be rather advantageous to employ a matrix notation in order to dis-
cuss this problem more efficiently. Let us denote a matrix form whose all
entries consist of forms ®! of the same degree by ® = [®?]. If another

matrix form with different degree is ¥ = [W!], we can define the exterior

product of these two matrix forms by applying the usual rule of matrix
multiplication, but replacing the ordinary multiplications by exterior pro-
ducts as follows

DAY =[O AT

Obviously, we have deg (® A W) = deg (®) + deg (¥). We can easily
verify that the transpose relation (@ A W)™ = (—1)%9(®)deg ()T A HT
will be satisfied. Therefore, we are now able to write the equations (6.8.1) in
the form

Q= —-TAQ+X. (6.8.2)

As matrix forms, we shall use the notations € A*(U), T' € AY(U) and
3 € A*Y(U). The compatibility equations are naturally found by taking
the exterior derivative of (6.8.2). We get 0 = —dI' ANQ2+ T A dQ2 + dX
that induces the relation

A= +TAT)AQ—-T AL (6.8.3)
Let us now define the following forms
©=dl'+T AT, ©,=dl',+T| AT} (6.8.4)

where © = [0’] € A*(U). Thus, the relation
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IZ=0AQ—-TAX (6.8.5)

must be satisfied. On the other hand, the exterior derivative of (6.8.4) yields

d® =dI' N\T-T'NdlI' = -TATAT+O AT +T AT AT-T'NO
=0ANT-T AB.

It is readily checked that the exterior derivative of the above expression
vanishes identically. Consequently, the exterior differential equations to be
treated take finally the shapes

A= -TAQ+E, dZ=0AQ-TAZ, (6.8.6)
idl= —TAT+©, d®=0AT-TA®.

Our task is to find the admissible forms of I" and X2, and to determine 2.
According to Theorem 6.4.3, we can take

F=dy+T,, v AU), T, € A'(U) (6.8.7)
We can of course represent (6.8.7) explicitly as

F;‘ = d'Y;’ + (Fa);'

where 7/ € A°(U) and (T',); € A'(U). If the centre of the star-shaped ho-

meomorphic image of the region U in R™ is x(, then we can take without
loss of generality (x() = O since ~y enters the equations through its differ-
ential. If we insert the expression (6.8.7) into the equation (6.8.6)3, we find

dT, = —dyAdy—T4Ady—dyAT,—T, AT, +©. (6.8.8)

Let us assume that B € A°(U) is an arbitrary regular r x r matrix, that is,
detB # 0. We define the forms I" and © by

r=B'I''B, © =B 'OB. (6.8.9)

On inverting these expressions, we get T', = BB~ and © = BOB . It is
clear that T' € A!'(U). The exterior derivative of (6.8.9); gives

dT=dB ' AT,B+B !(dl',)B — B~'T", A dB.

Differentiating B"'B = I, we find that dB~'B + B~ !dB = 0 from which
we deduce that dB~! = — B! (dB)B~!. On using (6.8.9);, we finally get

dT =B '(dT',)B -~ B 'dBAT —~TB ' AdB.
On the other hand, it follows from (6.8.8) that
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B !(dT,)B = — B !(dy Advy)B — B 'BTB ' A (dvy)B
— B 'dyABTB'B— B 'B[B'ABTB 'B+ 6.
Consequently, we obtain
dl'= — B '(dyAdy)B-T AB Y dy)B-B'(dy) BAT —TAT
+©-B 'dBAT -TAB 'dB= —~T AB !(dvyB+ dB)
— B '(dyB+dB) AT —B '(dyAdy)B—-TAT + 6.

We shall now try to remove the arbitrariness of the matrix B in such a way
that the relation

dyB+dB= —Bu or dy,B}+dBi= B}  (6.8.10)

is satisfied and the matrix form u € A'(U) belongs to the set A'(U). The
exterior derivative of (6.8.10) yields

—dyANdB+dBAp+Bdu=0 and du =B 'dyAdB— B 'dB A p.
Therefore, on employing (6.8.10) we conclude that
dp= —B H(dyANdy)B—B ldyBAu+B ldyBApu+puAp
= —B ' (dyAdy)B+ puA p.

If u € AY(U), then one has pu A pu € A?(U) so the relations g = Hdy and
H(p A p) = 0 hold. Thus, we can choose
u=Hdu
= — H(B™'(dvy A dv)B)

so that we obtain
dB = —dvyB+BH (B '(dy A dv)B).

Because B € A°(U), we know that we can write B — By = HdB where
By = B(xo). BH (B !(dy A dv)B) € A'(U) implies that this form is in
the null space of the operator H. This means that on applying the operator
H on dB, the matrix B will have to satisfy the equation

But since T, € A'(U), we get H(T',B) = 0. If we write B = AB, we see

at once that A is a regular matrix and A(xo) = I. We are thus led to the con-
clusion that the matrix A has to satisfy the integral equation
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A+ H(TA)=A+ H(dyA) =1, A(xo) =1 (6.8.11)

Let us now denote the forms " by Il = I'i dz!. Then (6.8.11) is explicitly
expressed in indicial notation as

aj(x) + /0 (zh — )T, [xo + t(x — xo)]af [xo + t(x — xp)]dt = ¢].

A = [a’] is called the attitude matrix. With the present choice of the matrix
B, we immediately see that one is able to write
A0 =TAp+puAT+du—pAp—TAT+0O.

Since T', u € A!(U), when we apply the homotopy operator H to the fore-

going equation we find ' = p + H © and introducing all these results into
(6.8.7) we arrive at the expression

I'=dy+BuB ' +BH(©)B!
=dy—dy—dBB ' + BH(©)B!
= (BHO — dB)B™' = (BH(B"'©B) — dB)B .

On inserting now B = ABy and B™! = B;'!A~! into the above relation, we
finally conclude that

I'=[AH(AT'©A) — dA]A™". (6.8.12)

Let us now take the equation (6.8.6), into account. We then introduce a
matrix form © = A"'©A so that one can write © = AGA~! whose
exterior derivative has to satisfy

dAANOA™' +AdOA' + AOANIA ' =ABGA ' AT —T NAGA™ L.
On recalling the equality dJA~'A = — A~1dA, this equation leads to

d® = —A ' TANO+ONA'TA-A'dANO -OANdIA'A
= —(AT'TA+A YA AO + O A (AT'TA + A 1dA).

On the other hand, it follows from (6.8.12) that
AT'TA +A'dA = H(©).

Therefore, we obtain

d® = —HO)ANO +O AH(O).
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In view of Theorem 6.4.3, we can use the representation © = d@ + O, in
which 8 = HO € A'(U) and ©, = Hd© € A?*(U) are, respectively, 1-
and 2-antiexact forms. We thus find H(©) = Hdf + HO, = 6. Therefore,
we obtain

d®,=dHd® =d® = —0NdO+dONO—-O0NO,+O,N0O
=dONO)-ONO,+O,N8.

When we apply the operator H to that expression, we get Hd®, = ©, =
6 N 6 and we obtain the following representation

©@=d0+0N0, ©=A(dO+ONOA! (6.8.13)
whereas (6.8.12) takes the shape
= (A0 —-dA)A™" and 6 = A ' (TA +dA). (6.8.14)

Let us now define the matrix forms w € A¥(U) and o € A*1(U) through
the relations

Q=Aw, X =Ao0.
So the equation (6.8.6); is transformed into
dQ=dANw+Adw= —TAANw+ Ac
from which we extract the expression
dw= —A ' (TA+dA)ANw+o= -0 Aw+o. (68.15)
Similarly, the equation (6.8.6)2 becomes
d¥ =dANo+Ado=A(d0+0NOA ' NAw-TANG
and one obtains
do= —0ANo+(df+60/N0)Nw. (6.8.16)
After having resorted to Theorem 6.4.3, we can write
w=dp+w, oc=dn+o, B=0Nw (6.8.17)

where we introduced the matrix forms ¢ = Hw = H(A™'Q) € A*1(U),
w, € A*(U) and p = Ho = H(A''Z) € A*(U), o, € AF(U). It then
follows from (6.8.17), (6.8.15) and (6.8.16) that

dw = dw, =0 — B =dn+ 0o, - B,
do=do,=d0Nw—-0N(c—0B)=d0 Nw— 0 Ndw = dS.
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On applying the operator H to these equations, we get

Wy = _HIB+777
o, = HdB =B — dHB

and, consequently, we arrive at the result
w=d¢p—-HpB+n, o=dn—-dHB+p. (6.8.18)
In the relation
B=0ANdp—-0NHB+60An
0 A HB and @ A i are antiexact forms. Therefore, we can write
HB=H@ANdp) and B=0Ndp—0NH(ONdp)+6An.

On the other hand, if we take notice of the relation dHB = dH (0 A d¢p) =
Ondp— Hd(OAdp) =6 Adp — H(dO A de), then (6.8.18) leads to

w=dp+n—HONAdP),
oc=dnp+0An+H(dOAdP) — O AH(O Adp).

Thus, the solution of the system of exterior differential equations (6.8.6) is
provided by

Q=A[d¢ +n— H(ONd)], (6.8.19)
S=Aldn+0An+ H(ONdp)—ONH(OANdP)],

' = (A0 — dA)A™,

0 = A (TA + dA),

©O=A(d0+0NO)A

where ¢ € A*1(U) and n € A*(U) are arbitrary matrix forms and the
matrix A is determined by solving the integral equation (6.8.11) once the
matrix form T is prescribed. The matrix form @ € A'(U) is then found
from (6.8.19);. On the contrary, if we choose a matrix form 6, then the
admissible matrix form I" is deduced from (6.8.19)3. The matrix A has to be
the solution of the integrodifferential equation

A+ H(AO —dA) =1

obtained from (6.8.11) by replacing I by (6.8.19)3. Let us now define a
matrix form ¢ € A¥(U) by ¢ = n — H(0 A d¢) whose exterior derivative
is expressible as d@p = dn — @ A d¢ + H(d@ A d¢). Then we easily verify
that the relations (6.8.19);_5 are reduced to simpler forms given below
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Q=A(dp+1), T=Aldp+0A(dp+1)]. (6.8.20)

But, in order that these equations are to be legitimate, we have to demons-
trate that the matrix A determined through (6.8.11) is regular, that is, A =
detA # 0. We rewrite (6.8.10) as dyA + dA = — AByuB;'. We can then
easily find that d A is expressible as

dA = (8A/3a;¢)da;’» = (Cofactor aéﬁ) daz-

—1 _
= Aa;da;y = Atr (dAA h.
Hence, we obtain dA = — Atr(dy + AByuBy'A™) = — Atr (dy + p)
and consequently
dlogA = —dtry —trpu, HdlogA = —tr Hdvy — tr Hp.

Since Hu =0 and Hdvy =, we get log A(x) —logl = — try(x). We
thus conclude that

A(X) — e—tr'y — e—trHl" ?é 0

proving that A is a regular matrix.
Next, we define two systems of exterior differential equations on an
opensetU C M:

A= —TAQ+ X, A = —T'AQY + %,
A =0ANQ-TAE, d¥=0'AQ -T'ANY,
dl'= —T AT + O, dl’ = —T' ATV + @/,

d®=OAT-TNO, dO'='AT'-T'NO'.

We say that these two systems are equivalent if we have @ =€ on U,
namely, if they lead to the same solution. In such a case we first observe
that the relation

=S4T -T)AQ

must be satisfied. Actually both systems involve same kind of solutions as
(6.8.19). But these solutions should be interrelated in order to obtain the
same €2 from those two systems. These relations turns out to be quite com-
plicated. That is the reason why they are not included here. Notwithstand-
ing, a specific situation bears a particular importance. In the second system,
let us take

I'= —dAA L
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Then (6.8.19)3 gives rise to T' — IV = AGA™! and &' = = — AGA A Q.
We know that @ € A'(U). We thus get AOA~* € A (U) so we find that

~ =HI)= —H(dAA™") = HAOA'—dAA™") = H(T) = ~.

This implies that A and A’ satisfy the same matrix integral equation (6.8.11)
so that we can take A’ = A. On the other hand, it follows from the relation
dA™! = — A"'dAA™! that

dI" = dANdA™ = —dAAT' AdAA™ = —TV AT,

We thus obtain @' = 0 and @ = H(A"'©’A) = 0. Furthermore, we find
¢ =HA'Q) =9,
n=HA'Z)=HA'T-0A"'AQ)=n—- H(O Aw)

=n—H@ANdp)—HOANw,) =n— H(ONdP).

We thus understand that any system of exterior differential equations is
equivalent to the system

dQY = —T'ANQ +¥,d¥ = —T'AX,dT' = - T'AT', @ =0.
As to the solution of the equivalent system, it is easily found that
Q=A(dp+7n), T =Ady, T'= —dAA!

from which we reach to a sort of generalisation of the Frobenius theorem: a
representation 2 = Ad¢ for a matrix k-form € becomes possible if and
only if = 0. This entails of course the condition ' = 0.
Example 6.8.1. The matrix forms € € A*(U) and T' € AY(U) are
given by
a

Q- [g;], r— Gdf, G= [2a g}, feAW), f(xg)=0

where a is a constant. We search for the solution of the system of exterior
differential equations d€2 = — I' A 2. In terms of the component forms,
this system is expressed as follows

dQl = CLdf VAN (Ql + Qz), dQQ = 2(Idf VAN 91.
We immediately observe that
dl =0, TAT =G%df Adf =0.

In this case (6.8.6) yields © = 0 and, consequently, @ = 0. It then follows
from (6.8.19) that I' = — dA A~!. The integral equation (6.8.11) now takes
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the form A — H(dA) = L. This in turn gives A(x) — A(x) + A(xg) = I, that
is, the integral equation is satisfied identically. Hence, the matrix A is deter-
mined from the solution of the differential equation dA = — T’'A = GA df.
We know that the solution is expressible as

A(x) = /M6 A(xg) = /M6 = 1.

Since fG is a 2 x 2 matrix, we can write e/™M¢ = ay(x)I + a1 (x)f(x)G
according to the celebrated Hamilton-Cayley theorem which states that
every square matrix satisfies its characteristic equation. The eigenvalues of
the matrix G are 2a and — a so that the coefficient functions ay(x) and
aq(x) are found from the equations

2 = ap + 2afaq, e =aqy— afo

as the following expressions

eQaf(x) + 2€7af(x) eQaf(x> — efaf(x)
W= =T
Therefore, the matrix A is given by
2€2af(x) + e_af(x) €2af(X) — e_af(x)
A= 3 3
2(e2af(x) — efaf(x)) eQaf(x) + 2€7af(x)
3 3

Since, in the present example we have 3 = 0, the solution will be in the
form € = Ad¢. We thus obtain the solution

1 1
0 = 5(262#(?&) + e*df(X)) dey + g(62af(1£) — e*ﬂf(X)) des

2 1
0, = 5(62%‘(3&) — e ™) depy + 5(lelf(X) +2¢~ ™) dep,

where ¢ (x) = [p1(X) ¢2(x)]" is an arbitrary vector function.
VI. EXERCISES

6.1. For forms w € A(R*) given below evaluate the forms Hw and their w, exact
and w, antiexact parts. H is the homotopy operator with the centre (x,y, z, )
=(0,0,0,0):
(a)w= (1+t})dr + zdy + 2°dz + xyz dt.
(b)) w=t*dx Ndy +y dx Ndz + 23dx Adt + 2* dy A dz + zy dz A dt.
(c)w=2’tdz Ndy ANdz + (2® + 2%) dx Ady Adt + ytdy A dt A dz.
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6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

VI Homotopy Operator

(d)w= (2 +y*+ 22+ t?)dx Ady Adz A dL.

Repeat the above operations by shifting the centre of the homotopy operator
to the point (1,0, 1,0).

For the form w = cos(3t)dx + sin (22) dy € A*(R*) evaluate the forms
Hw,w.,w,. The centre of the homotopy operator H is the point (0,0, 0,0).
Determine the same forms when the centre is changed to the point (1,1, 1,1).
Determine the Darboux classes, ranks and indices of the forms w € A!(R?)
given below:

(a) w

(b) w = yzda + >yt dt

(c)w=(1—tdr+ (2> +y* — 2°) dy + zyzt dt
(d)w=(t+22)de + (> —9y* + 1) dz+ (y* — 2) dt
(e)w=ytdr+ (2* +t* - 2)dy + (1 +y)dz + (2* — x) dt
Letw € A(M). Show that the following relations

(e = Hdw + e'dHw, (e')w = dHw + e'Hdw

can locally be validated.

The function u : M — R vanishes at the centre of the homotopy operator,
that is, it satisfies the condition u(x¢) = 0. Consider the following integral
equation for the function f : M — R:

f=1+H(fdu).

Show that the solution of this integral equation is given by f = e".
Investigate the same problem for the integral equation

f=k+H(fdu)

where k # 0 is a given constant. Discuss the case u(xp) # 0 .
Assume that Q € AL(R?),> € A%(R?) and

I'=(2z+2)dr+ 2y + 2)dy — (= +y)dz € A'(R?).

Find the solution of the exterior differential equation d2 = T' A Q + X. The
centre of the homotopy operator will be taken as the point 0 € R3.





