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CHAPTER VI

HOMOTOPY OPERATOR

6.1. SCOPE OF THE CHAPTER

In this section, we shall attempt to investigate certain fundamental
properties of exterior differential forms in depth. The most powerful tool
that we can employ for this purpose is the homotopy operator. However,
this operator can only be defined on manifolds possessing a particular struc-
ture. This structure is treated in Sec. 6.2. A manifold is called locally con-
tractible if every open set in its atlas can be smoothly shrunk to one of its
interior points. This situation is realised if the homeomorphic image of that
open set is a star-shaped region in the Euclidean space. In Sec. 6.3, the
homotopy operator mapping the exterior algebra into itself is defined, its
various properties are unravelled and the Poincaré lemma stating that every
closed form is locally exact is demonstrated as a very important application
of this operator. Sec. 6.4 is concerned with the proof that every exterior
form is locally expressible as the sum of an exact form and an antiexact
form occupying the kernel of the homotopy operator. Then the basic pro-
perties of antiexact forms are studied in detail. This leads to the conclusion
that the entire exterior algebra is actually generated by antiexact forms. In
Sec. 6.5, we inquire the effect of the change of the centre of contraction on
the homotopy operator. We define in Sec. 6.6 the Darboux classes of -"
forms and introduce their canonical forms. Canonical forms of closed -#
forms are elicited by making use of the Poincaré lemma. We obtain the so-
lution of an exterior differential equation in Sec. 6.7 and a system of exteri-
or differential equations in Sec. 6.8 by resorting to properties of antiexact
forms and the homotopy operator.

6.2. STAR-SHAPED REGIONS

Let  be a differentiable manifold. Let us take a point  intoQ : − Q!

account. If we can find a , i.e., function  wheresmooth  G 2 À Q ‚ M Ä Q_

M œ Ò!ß "Ó 2Ð:à >Ñ œ 2 Ð:Ñ − Q denoted by  on which we shall impose the>
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328 VI  Homotopy Operator

restriction  and  for each point , then we say2Ð:à !Ñ œ : 2Ð:à "Ñ œ : : − Q!

that the manifold  is  to the point . Contractibility can alsoQ :contractible !

be defined locally. Let us consider a local chart . We know thatÐY ß Ñ:
Y © Q À Y Ä is an open set and  is a homeomorphism so that: ‘7

Z œ ÐY Ñ © Y: ‘7 is also an open set. Let us assume that the set  is
contractible to a point . If all charts of an atlas have this property,: − Y!

then the manifold  is called a . Such aQ locally contractible manifold
manifold cannot be shrunk smoothly to a point, but each one of the open
sets covering this manifold is contractible to a point inside it. If the open set
Z Y, which is the homeomorphic image of the open set , has a suitable
structure in the manifold , then we can easily show that  is contract-‘7 Y
ible. To this end, let us assume that we can find a mapping 2 À Z ‚ M Ä Zw

and a point  such that we are able to write x x x!
w w

>− Z 2 Ð à >Ñ œ 2 Ð Ñ œ
Ð"  >Ñ  > − Z − Zx x x!  for all points . This expression signifies that a
straight line joining any point  in  to the   stays entirely inx xZ centre point !

Z . Such a region is called a   (Fig. 6.2.1).star-shaped region

Fig. 6.2.1. Star-shaped region in the Euclidean space.

Evidently, every convex set in  is star-shaped and it is easily shown‘7

that open balls in  are convex. Let us consider an open ball in  given‘ ‘7 7

by  where  and . By using theF Ð Ñ œ   < ß − <  !< ! ! !
7x x x x xl l ‘

triangle inequality, we obtain for points  in  and a para-x y xß − F Ð Ñ< !
7‘

meter  satisfying > ! Ÿ > Ÿ "

l l l ll l l lÐ"  >Ñ  >  œ Ð"  >ÑÐ  Ñ  >Ð  Ñ

Ÿ Ð"  >Ñ Ð  Ñ  > Ð  Ñ

 Ð"  >Ñ<  >< œ <

x y x x x y x
x x y x

! ! !

! !
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This result shows that . Therefore, any open ball inÐ"  >Ñ  > − F Ð Ñx y x< !

‘7 is a convex set.
 The open set  is homeomorphic to an open set of  that is express-Y ‘7

ible as some union of open balls. Hence,  itself is the union of inverseY
images of some open balls implying that a component open subset of  isY
homeomorphic to a  with centre at a point . We thusconvex open ball x
conclude that every manifold is locally contractible and is locally homeo-
morphic to a star-shaped region. Conversely, when  is a star-shapedZ − ‘7

open set, if we define on an open set  of the manifold  aY œ ÐZ Ñ Q:"

mapping  such that  for all points  and2 œ ‰ 2 ‰ 2 Ð:Ñ − Y : − Y> >
" w

>: :
> − Ò!ß "Ó Y, then we immediately observe that the set  can be contracted to
the point  by the mapping .: œ Ð Ñ 2! ! >

": x
The entire manifold  is star-shaped with respect to the origin , in‘7 !

fact to every point of  Hence, a manifold  is contractible if it is home-‘7Þ Q
omorphic to the manifold . That the converse statement is not generally‘7

true can be demonstrated by constructing a counter example. Three dimen-
sional Whitehead manifold is obtained by embedding a  (asolid torus X"

solid torus is a filled-in torus  inside  then a“ ’# $Ñ three dimensional sphere ,
solid torus  inside  and continuing this way [discovered byX X# " ad infinitum 
English mathematician John Henry Constantine Whitehead (1904-1960)].
Hence, we can formally represent the Whitehead manifold by . A rath- X

3œ"

_

3

er small part of the Whitehead manifold is depicted in Fig. 6.2.2. This mani-
fold is contractible but it is not homeomorphic to ‘$Þ

Fig. 6.2.2. Whitehead manifold.
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Let a form field  be represented in a local chart = A− ÐQÑ5 by

= =Ð Ñ œ Ð Ñ.B • â • .B
"

5x
x x3 â3

3 3
" 5

" 5

This form will of course be defined on an open set  of the manifold .Y Q
We can define a new -form  depending on a parameter  in the5 > − Ò!ß "Ó=
following manner

= =Ð à >Ñ œ  >Ð  Ñ .B • â • .B
"

5x
x x x x3 â3 ! !

3 3
" 5

" 5 ‘ . (6.2.1)

If  is contractible, then  is specified everywhere in . It is clear thatY Y=
= = = =Ð à !Ñ œ Ð Ñ Ð à "Ñ œ Ð Ñx x x x!  and . Let us now define the new independ-
ent variables by   . If we write? œ B  >ÐB  B Ñß > − Ò!ß "Óß 3 œ "ß á ß 73 3 3 3

! !

= =3 â3 3 â3 ! !" "5 5
Ð Ñ œ  >Ð  Ñu x x x ‘, it then follows from (6.2.1) that

. œ . Ð Ñ • .B • â • .B
"

5x

œ .? • .B • â • .B
" `

5x `?

œ > .B • .B • â • .B
" `

5x `?
œ > .

= =

=

=

=

3 â3
3 3

3 â3

3
3 3 3

3 â3

3
3 3 3

" 5
" 5

" 5 " 5

" 5 " 5

u (6.2.2)

We denote the radius vector in the region  which is the homeomorphicZ
image of  with respect to the point  by the relationY x!

[Ð Ñ œ ÐB  B Ñ
`

`B

œ B  >ÐB  B Ñ
. `

.> `B

x 3 3
! 3

! !
3 3 3

3
 ‘

(6.2.3)

We thus get . It is clear that one finds[Ð Ñ œ !x!

[ [

[

Ð à >Ñ œ  >Ð  Ñ œ >ÐB  B Ñ
`

`B
œ > Ð Ñ

x x x x

x

 ‘! !
3 3

! 3
(6.2.4)

for .> − Ò!ß "Ó

6.3. HOMOTOPY OPERATOR

Let a form  be defined on an open set  that is con-= A− ÐQÑ Y © Q5

tractible to a point . We will assume that the homeomorphic image: − Q!
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Z © Y‘7 of the set  is a star-shaped region. We define the linear operator
L À ÐY Ñ Ä ÐY ÑA A5 5"  by the following expression in local coordinates

                

   .

(6.3.1)L œ Ð à >Ñ > .>

œ > ÐB B Ñ  >Ð  Ñ .> .B • â• .B
"

Ð5"Ñx

= =

=

( ˆ ‰
(  ‘

!

"
5"

!

"
5" 3 3 3

!
3

3 3 â3 ! !

i x

x x x

[

" #"
" # 5

5

Since  is star-shaped, the form  is prescribed at every point of the openZ =
set . Therefore, the operator  introduced by (6.3.1) is well defined onY L
the exterior algebra .  is called  . This defini-AÐY Ñ L the homotopy operator
tion will automatically lead to the result  for .L0 œ ! 0 − ÐQÑA!

If we choose  at the origin  of the local coordinate system withoutx! !
loss of generality, then the homotopy operator takes the form

L Ð Ñ œ Ð> Ñ> .>

œ > B Ð> Ñ .> .B • â• .B
"

Ð5"Ñx

= =

=

x i x

x

(
(

!

"
5"

!

"
5" 3 3 3

3 3 â3

[

" #
" # 5

5

Let us now consider vector fields . The aboveZ ß Z ß á ß Z − X ÐQÑ" # 5"

expression implies that

L Ð ÑÐZ ß á ß Z Ñ œ Ð> ÑÐ ß Z ß á ß Z Ñ> .>= =x x x" 5" " 5"
!

"
5"(

 The main properties of the homotopy operator are embodied in the
following theorem.

Theorem 6.3.1. The homotopy operator  has the properties listedL
below:

Ð3ÑÞ 5   "

Ð Ñ œ !

  .L  L. œ 3

L.0Ð Ñ œ 0Ð Ñ  0Ð Ñ 5 œ !

Ð33ÑÞ L ‰ L œ L œ ! L

Ð333ÑÞ L.L œ L .L. œ .

Ð3@ÑÞ L.L. œ ÐL.Ñ œ L.

A if .
          if . 

  and .
  and .
  a

x x x
x

!

!
#

#

=

nd 
 and .

 and .

.L.L œ Ð.LÑ œ .Lß

Ð.LÑÐL.Ñ œ .L . œ ! ÐL.ÑÐ.LÑ œ L. L œ !

Ð@ÑÞ L ‰

#

# #

i i[ [‰ L œ ! œ ! 

Ð3ÑÞ − ÐQÑß 5   " We consider a form . We shall try to evaluate= A5

explicitly the action of the operator  on this form. At the first. ‰ L  L ‰ .
step, we obtain
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Ð.L  L.Ñ œ .ÐL Ñ  LÐ. Ñ

œ . Ð Ñ > .>  Ð. Ñ> .>

œ > . Ð Ñ  Ð. Ñ .>

œ > .>

= = =

= =

= =

=

( (ˆ ‰
(  ˆ ‰ ‘
(

! !

" "
5" 5

!

"
5"

!

"
5"

i i

i i

[ [

[ [

[£

where we have employed the Cartan magic formula. On the other hand, Lie
derivative with respect to the vector  yields[

£ £[ [= =œ Ð Ñ .B • â • .B
"

5x
3 â3

3 3
" 5

" 5

where the coefficients follow from (5.11.4) as

Ð Ñ œ ÐB  B Ñ 
` `ÐB  B Ñ

`B `B

œ ÐB  B Ñ 
`

`B

œ >ÐB  B Ñ
`

£[= =
=

=
= $

=

3 â3 3 â3 33 â3
3 3

!
3 3 â3

3 3
<œ"

5 3 3
!

3 3 3
! 3

3 â3

3
<œ"

5

3 â3 33 â3

3 3
!

3 â3

" " <" <"5 5

" # 5

<

" 5

" <" <" 5 <

" 5

"
"

`? .>
 5 œ >  5

.
3 3 â3 3 â3

3 â3
= =

=
" "5 5

" 5 .

Hence, we get

Ð.L  L.Ñ œ >  5> .> .B • â • .B
" .

5x .>

œ Ð> Ñ .> .B • â • .B
" .

5x .>

œ >  >Ð  Ñ .B • â • .B
"

5x

= =
=

=

=

( ’ “
(
ˆ  ‘‰¹

!

"
5 5" 3 33 â3

3 â3

!

"
5 3 3

3 â3

5 3
3 â3 ! !

>œ"

>œ!

" 5

" 5
" 5

" 5
" 5

" 5
"x x x 3

3 â3
3 3

5

" 5
" 5œ Ð Ñ .B • â • .B

"

5x
= x .

This means that for every form  with non-zero degree, we find= A− ÐQÑ

Ð.L  L.Ñ œ .L  L. œ= =    or    (6.3.2)3A

where  denotes the identity mapping on the exterior algebra . When3 ÐQÑA A
5 œ ! 0 − ÐQÑ, on resorting to (6.2.2) for every function  we arrive at theA!

result
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.L0  L.0 œ L.0

œ Ð.0Ñ .> œ Ð.0Ñ .>
"

>

œ Ð.B Ñ .> œ > .>
" `0 B  B `0

> `B > `?

œ ÐB  B Ñ .> œ .> œ 0 œ
`0 .0

`? .>

       ( (
( (
( ( ¸

! !

" "

! !

" "

3 3
3

3 3
!

! !

" "
3 3

! 3

"

! !

i i

i

x x

[ [

[

0Ð Ñ  0Ð Ñ.

(6.3.3)

Ð33ÑÞ L Ð Ñ œ Ð Ñ > .> Ð Ñ œ ! Since  and , we= = [x i x x! ! !
!

"

Ð Ñ
5"( ˆ ‰[ x!

obtain . On the other hand, for a form  we findL Ð Ñ œ ! − ÐQÑ= = Ax!
5

L œ = > Ð Ð>ÑÑ .> Ð=Ñ .=

œ > = Ð>Ñ Ð=Ñ .> .=

œ > = Ð>Ñ Ð=Ñ .> .=

œ > =

# 5# 5"

! !

" "

! !

" "
5" 5#

Ð=Ñ

! !

" "
5" 5#

=

! !

" "
5" 5" #

= =

=

=

( (’ “
( (  ˆ ‰ ‘
( (  ˆ ‰ ‘
( ( ˆ

i i

i i

i i

i

[ [

[ [

[ [

[ =Ð>Ñ Ð=Ñ .> .= œ !‰
where we have employed (6.2.4) and the relation .i#

[ œ !
Ð333ÑÞ . œ ! L œ ! Since  and , the relation (6.3.2) leads right away to# #

.L. œ . L.L œ L and .
Ð3@ÑÞ Ð333Ñ If we make use of the property  in expressions ÐL.Ñ œ#

L.L. ÐL.Ñ œ L. and , we find that  and .Ð.LÑ œ .L.L Ð.LÑ œ .L# ##

Ð@ÑÞ Þ This property can also be demonstrated quite easily  If we consi-
der a form , we obtain= A− ÐQÑ5

 i i i i i

i i i i i

i i

[ [ [ [ [

[ [ [ [ [

[ [

ÐL Ñ œ Ð Ñ > .> œ Ð Ñ > .> œ !

L Ð Ñ œ > Ð Ñ .> œ > Ð Ñ .>

œ > Ð Ñ .> œ !

= = =

= = =

=

’ “( ( ˆ ‰
( (ˆ ‰ ˆ ‰
( ˆ ‰

! !

" "
5" 5"

! !

" "
5# 5#

!

"
5"

because of the relation .i i[ [‰ œ ! 
In case we can define the homotopy operator, the celebrated Poincaré

lemma can readily be proven.
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Theorem 6.3.2 (The Poincaré Lemma). An exterior form defined on
an open set  contractible to one of its interior points is closed if andY © Q
only if it is exact on .Y

If a form  is exact, that is, if one is able to write , this form is= = Hœ .
closed because . Conversely, let us now assume that  is a. œ ! − ÐQÑ= = A5

closed form. When the homeomorphic image of  in  is a star-shapedY ‘7

region, we will be free to employ the homotopy operator. Since , we. œ !=
then obtain

= = = = Hœ .L  L. œ .ÐL Ñ œ .

where we have defined the form . Thus, the closedH = Aœ L − ÐQÑ5"

form  is likewise an exact form on . Since every chart of an -dimen-= Y 7
sional differentiable manifold  is homeomorphic to an open set of ,Q ‘7

the Poincaré Lemma is locally valid. Therefore, every closed form on  isQ
locally, in other words, in an open neighbourhood of every point , is: − Q
an exact form. However, this statement is generally not true globally. This
means that we cannot be sure in general the existence of a form  definedH
over the entire manifold  so that a closed form is expressed as .Q œ .= H
For instance, if we have prescribed a closed form on the punctured differen-
tiable manifold , we cannot validate the Poincaré Lemma on any‘7  Ö ×!
open set containing the point .Ö ×! 

If we take the manifold  into consideration, we know that‘7ß 7  !
the whole manifold can be contracted, say, to the point . Hence, according!
to the Poincaré lemma   every closed form defined on the entire is‘7

globally exact every closed form on a contracti-. Similarly, we can say that 
ble manifold is globally exact.  Q

Example 6.3.1. A form  is given by= A ‘− Ð Ñ# $

= œ  #ÐB  CÑD .B • .C  B .C • .D  C .D • .B# # .

We observe at once that .  is star-shaped with respect to the centre. œ != ‘$

!. Thus, the radius vector can be taken as . We can[ œ B`  C`  D`B C D

then evaluate the form  easily asL=

H =

A ‘

œ L œ >  #> ÐB  CÑDÐB .C  C .BÑ  > B ÐC .D  D .CÑ

 > C ÐD .B  B .DÑ .>

œ CDÐ$C  #BÑ .B  BDÐ$B  #CÑ .C  BCÐB  C Ñ .D − Ð Ñ
"

%

( 
‘

 ‘
!

"
# # #

# #

" $

 

.

We can readily verify that the relation  holds.= Hœ .
Let us now consider a more general -form defined by#
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= A ‘œ V .B • .C  T .C • .D  U .D • .B − Ð Ñ# $ .

If  is a closed form, that is, if , then we have to impose the follow-= =. œ !
ing restriction on the functions :T ÐBß Cß DÑß UÐBß Cß DÑß VÐBß Cß DÑ

`T `U `V

`B `C `D
  œ !.

In this situation, on resorting to the homotopy operator, we can determine
the form   as followsH =œ L

H œ >DUÐ>Bß >Cß >DÑ  >CVÐ>Bß >Cß >DÑ .> .B

 >BVÐ>Bß >Cß >DÑ  >DT Ð>Bß >Cß >DÑ .> .C

 >CT Ð>Bß >Cß >DÑ  >BUÐ>Bß >Cß >DÑ .> .D

Š ‹(  ‘
Š ‹(  ‘
Š ‹(  ‘

!

"

!

"

!

"

.

If we recall the restriction imposed of the functions , , , we can verifyT U V
at once that we get the relation . This is of course valid on the entire= Hœ .
manifold .‘$ è

It is clear that the form  introduced in the foregoing theorem cannotH
be determined uniquely. Evidently, for an arbitrary form , the5 A− ÐQÑ5#

form   will also satisfy the relation  .H H 5 = Hw wœ  . œ .
We had denoted the graded algebra  of exact forms on an openXÐY Ñ

subset . For a form , we get  implying thatY © Q − ÐY Ñ .L − ÐY Ñ= A = X5 5

.L À ÐY Ñ Ä ÐY Ñ .L À ÐY Ñ Ä ÐY ÑA X X X. But, the restriction  satis-kX5ÐY Ñ
5 5

fies the relation . Hence, we may regard the operator  as the= =œ .L .kX5ÐY Ñ

inverse of the operator  on .L ÐY ÑX5

Let  and  be, respectively, - and -dimensional differentiableQ R 7 8
manifolds with .  is a smooth mapping. We consider an8   7 À Q Ä R9
open subset . Let us assume that the mapping  is a diffeomorphismY © Q 9
on . Thus  is a smooth mapping. If  is contractible to aY À ÐY Ñ Ä Y Y9 9"

point , then the region  can also be contracted to the point: − Y ÐY Ñ R§! 9
9 9 9 9 9Ð: Ñ − ÐY Ñ ÐY Ñ © R ÐY Ñ!

" and since  is continuous on , we see that 
is also an open subset. The mappings  and  give obviously rise to pull-9 9"

back mappings  and .9 A 9 A 9 A A 9‡ ‡ "À ÐY Ñ Ä ÐY Ñ Ð Ñ À ÐY Ñ Ä ÐY Ñˆ ‰ ˆ ‰
Let  be the homotopy operator defined on the region . If ,L Y − ÐY Ñ= A 9ˆ ‰
we have  and we can write9 = A‡ − ÐY Ñ

.L  L. œ9 = 9 = 9 =‡ ‡ ‡ .
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According to Theorem 5.8.2, it is possible to write . LetL. œ L .9 = 9 =‡ ‡

us now define an operator  through theL À ÐY Ñ Ä ÐY Ñ‡ 5 5"A 9 A 9ˆ ‰ ˆ ‰
relation

9 9 9 9‡ ‡ ‡ ‡ ‡ " ‡L œ L L œ Ð Ñ L   or   . (6.3.4)

We thus obtain

. L  L . œ .L  L . œ Ð.L  L . Ñ œ9 = 9 = 9 = 9 = 9 = = 9 =‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ .

By applying the operator  on this expression, we find thatÐ Ñ9‡ "

.L  L . œ .L  L . œ 3‡ ‡ ‡ ‡
ÐY Ñ= = =  or  .A 9ˆ ‰

L‡ is then called the homotopy operator generated by the mapping .9

6.4. EXACT AND ANTIEXACT FORMS

Let  be a contractible open set on which the homotopy operatorY © Q
can be defined where  is an -dimensional smooth manifold. Thus, onQ 7
taking heed of the relation (6.3.2) it becomes possible to express a form
= A− ÐY Ñ in the following manner

= = = = =œ .L  L. œ / + (6.4.1)

where we introduce the following forms with degree preserving operations

= = = = = =/ + /œ .L ß œ L. œ  . (6.4.2)

They will be called as the and  of the form , respect-exact antiexact  parts =
ively. (6.4.2) then leads to the result . Hence, antiexactL œ L . œ != =+

#

forms are located in the null space or the kernel of the linear operator .L
Let us denote the set of all antiexact forms of the module  by .A T5 5ÐY Ñ ÐY Ñ
X!

!ÐY Ñ is of course empty. On the other hand, we can write 0Ð Ñ  0Ð Ñ œx x
L.0 œ 0+ for all . So there will be no harm in assuming that0 − ÐY ÑA!

T A! !ÐY Ñ œ ÐY Ñ. We can now easily demonstrate the following lemmas.
Lemma 6.4.1.   The operator  maps onto and .L ÐY ÑX X5 5ÐY Ñ ÐY Ñ A

onto Furthermore, the operator  is the inverse of the operator XÐY Ñ. . L
when the domain of  is restricted to L X5ÐY Ñ.

In view of (6.4.2),  is exact for every  thus  maps.L − ÐY Ñ .L= = A5

A5ÐY Ñ into . If , then  where  so weX = X = ! ! A5 5 5"ÐY Ñ − ÐY Ñ œ . − ÐY Ñ
get  Hence  restricted to  is the identity.L œ .L. œ . œ Þ .L ÐY Ñ= ! ! = X5

operator. This also shows that  is a surjective mapping..L
Lemma 6.4.2. The necessary and sufficient conditions to completely

determine the set  of antiexact forms are given as followsT5ÐY Ñß 5   "
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T ! A ! !5 5
!ÐY Ñ œ Ö − ÐY Ñ À Ð Ñ œ !ß Ð Ñ œ !ß 5  !×i x[ .

For all , according to Theorem 6.3.1  and  we find= A− ÐY Ñ Ð@Ñ Ð33Ñ5

that antiexact parts satisfy  and . Conversely, let usi x[Ð Ñ œ ! Ð Ñ œ != =+ + !

assume that a form  satisfies the relations .! A ! !− ÐY Ñ Ð Ñ œ !ß Ð Ñ œ !5
!i x[

For an arbitrary form , let us write . However, we" A = " !− ÐY Ñ œ . 5"

have  soL œ > Ð Ñ .> œ > Ð Ñ .> œ > Ð Ñ .> œ !! ! ! !' ' '
! ! !
" " "5" 5# 5#i i i[ [[

that we get  and .L œ L.  L œ L. œ .L œ .L. œ .= " ! " = = " "/

Hence, we obtain . This equality does not lead to! = = = =œ  œ œ L./ +

a contradiction if only . Thus we find .! ! TÐ Ñ œ ! − ÐY Ñx!
5 

Lemma 6.4.3.  The operator  maps  onto and L. ÐY ÑA T5 5ÐY Ñ ÐY Ñ T7

œ ! 7 L on the -dimensional open set Furthermore, the operator  is theY . 
inverse of the operator  when the domain of  is restricted to . L T5ÐY ÑÞ

We obviously have . Let us consider the formL. À ÐY Ñ Ä ÐY ÑA T5 5

= = T = A = =+ +
5 5 #œ L. − ÐY Ñ − ÐY Ñ L. œ ÐL.Ñ where . We then obtain 

œ L. œ L. ÐY Ñ= = T+
5. This also shows that  restricted to  is the identity

operator for  If , then the same situation is also realised up to a5   "Þ 5 œ !
constant: . If we pay attention to the sequence0Ð Ñ œ L.0Ð Ñ  0Ð Ñx x x!

A A A T5 5" 5 7ÐY Ñ Ä ÐY Ñ Ä ÐY Ñ ÐY Ñ œ !
. L , we observe at once that  on the

7 Y Q-dimensional open set  of the manifold .7 
 Various properties of antiexact forms are collected in the theorem

below.
Theorem 6.4.1. :Antiexact forms possess the following properties

Ð3ÑÞ 
If and then .
For is a module on 

T a

! T " T ! " T

T A

5

5 6 56

5 !

ÐY Ñ © ÐLÑ œ ÐLÑß 5   !Þ

Ð33ÑÞ − ÐY Ñ − ÐY Ñ • − ÐY Ñ

Ð333ÑÞ 5   " ÐY Ñ ÐY Ñ

Ker

   ,  

 ,  .

Ð3ÑÞ L œ ! Ð Ñ œ ! We have seen above that  because of . Hence,! !i[
we find that .T a5ÐY Ñ © ÐLÑ

Ð33ÑÞ 5 œ ! For , this statement becomes true automatically. Therefore,
we take the case  into account. Since, the antiexact form fac-minÖ5ß 6×   "
tors vanish at the point , we naturally obtain . On thex x! !Ð • ÑÐ Ñ œ !! "
other hand, we get

i i i[ [ [Ð • Ñ œ Ð Ñ •  Ð"Ñ • Ð Ñ œ !  ! œ !! " ! " ! "5 .

We thus conclude that .! " T• − ÐY Ñ56

Ð333ÑÞ ÐY Ñ ÐY Ñ The set  is a submodule of the module . IfT A5 5

! " T ! " ! " ! "ß − ÐY Ñ Ð  Ñ œ Ð Ñ  Ð Ñ œ ! Ð  ÑÐ Ñ œ5
!, we get ,i i i x[ [ [

! " ! ! !Ð Ñ  Ð Ñ œ ! Ð0 Ñ œ 0 Ð Ñ œ ! 0Ð Ñ Ð Ñ œ !x x i i x x! ! ! ! and  and  for all[ [
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0 − ÐY Ñ  − ÐY Ñ 0 − ÐY ÑA ! " T ! T! 5 5. We thus have  and . 
When , if we write  then we are led to= T = ! A− ÐY Ñ . œ − ÐY Ñ5 5"

= ! A ! Aœ L 0 − ÐY Ñ .0 œ − ÐY Ñ. Likewise, when , if we write  we get! "

0Ð Ñ œ L  0Ð Ñx x! T T!
5œ!

7
5. We can immediately observe that ÐY Ñ œ Š ÐY Ñ

is a graded algebra that is a subalgebra of . Furthermore, for any formAÐY Ñ
= A = T− ÐY Ñ L. − ÐY Ñ we obtain  so that we can symbolically write the
relation . Because of the identity , we areT AÐY Ñ œ L. ÐY Ñ L. œ ÐL.Ñˆ ‰ #

led to the conclusion that  is a  Hence, we can sayL. projection operator.
that .the algebra  is a -projection of the algebra T AÐY Ñ L. ÐY Ñ

With the information we have acquired so far, we can now manage to
better identify the characteristics of the operator . For , it is possibleL 5   !
to express  implying that .L À ÐY Ñ Ä ÐY Ñ ÐY Ñ œ L ÐY ÑA T T A5" 5 5 5"ˆ ‰
Indeed, If , then we find that  and = A = A =− ÐY Ñ L − ÐY Ñ ÐL Ñ œ !ß5" 5 i[
L Ð Ñ œ ! Ð@Ñ Ð33Ñ= x!  because of Theorem (6.3.1)  and  and consequently
L − ÐY Ñ − ÐY Ñ= T ! T5 5. Conversely, let us suppose that . This means that
! ! " ! Aœ L. œ . − ÐY Ñ. Next, we introduce the form  so we get5"

! "œ L .
   Theorem 6.4.2. If , there exists a form such! T ! A− ÐY Ñ − ÐY Ñs5 5"

that is expressible as .! ! ! œ si[
When , there is a form  such that one is able! T " A− ÐY Ñ − ÐY Ñ5 5"

to write  and thus it has the following expression! "œ L

! "

" !

œ > .> œ

œ >  >Ð  Ñ .> .B • â• .B œ
"

Ð5  "Ñx
s

(
Š ‹(  ‘
!

"
5

!

"
5 3 3

3 â3 ! !

i

i x x x i

[

[ [" 5"
" 5" .

Conversely, if , then we find  and  since! ! ! ! !œ œ œ ! Ð Ñ œ !s si i i x[ [ [
#

!

[Ð Ñ œ !x! . 
Next, as an application of Theorem 6.4.2, let us show once more that

the exterior product of two antiexact forms is again an antiexact form. If
! " ! ! " "ß œ œs s are antiexact forms, then they are expressible as  and .i i[ [

We thus get

! " ! " ! "• œ • œ Ð • Ñs ss si i i i[ [ [ [ .

Recalling that , we obtainL ‰ i[ œ !

L. Ð • Ñ œ Ð • Ñ  .L Ð • Ñ œ Ð • Ñs s s ss s s si i i i i i i i[ [ [ [ [ [ [ [! " ! " ! " ! "

Introducing the form , we finally find# ! "œ Ð • Ñs si i[ [
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! " ! " # T• œ L. Ð • Ñ œ L. − ÐY Ñs si i[ [ .

Let us consider a form . This form may be expressed as= A− ÐY Ñ5

= ! " ! = X " = Tœ  ß œ .L − ÐY Ñß œ L. − ÐY ÑÞ5 5

This implies that one is allowed to write . But weA X T5 5 5ÐY Ñ œ ÐY Ñ  ÐY Ñ
can readily show that . Let  soX T = X T5 5 5 5ÐY Ñ  ÐY Ñ œ Ö!× − ÐY Ñ  ÐY Ñ
that this form has to satisfy both  and . This leads to the= 5 = =œ . œ L.
result  which amounts to say that we have a direct sum at= 5œ L. œ !#

hand: . We then conclude that the exterior algeb-A X T5 5 5ÐY Ñ œ ÐY Ñ Š ÐY Ñ
ra on  may be represented as the direct sum  ofY ÐY Ñ œ ÐY Ñ Š ÐY ÑA X T
graded algebras of exact and antiexact forms.

Actually, we can show that the algebra of antiexact forms generates
almost the entire exterior algebra on .Y

   Theorem 6.4.3. A form has a unique representa-= A− ÐY Ñß 5   "5

tion where and= ! " ! T " Tœ .  − ÐY Ñ − ÐY Ñ    .5" 5

Since we have assumed that  is contractible, any form  can be ex-Y =
pressed as . We then introduce the antiexact forms = = = !œ .L  L. œ
L − ÐY Ñ œ L. − ÐY Ñ œ . = T " = T = = ! "5" 5 and  to represent  as .
However, it remains now to demonstrate that this representation is unique.
To this end, let us suppose that there exists another representation in the
shape  where  and . We then find= ! " ! T " Tœ .  − ÐY Ñ − ÐY Ñ" " " "

5" 5

.Ð  Ñ  Ð  Ñ œ !! ! " "" "  and the exterior derivative of this form gives

.Ð  Ñ œ !  − ÐY Ñ L." " " " T" "
5. Because  and  is the identity operator

on , we obtain at once , or . There-T " " " " " "5
" " "ÐY Ñ ! œ L.Ð  Ñ œ  œ

fore, we get  and the Poincaré lemma leads to .Ð  Ñ œ !  œ .! ! ! ! #" "

where  whenever . Since , we find# A ! ! T− ÐY Ñ 5  "  − ÐY Ñ5# 5"
"

that . Hence, the relation LÐ  Ñ œ L. œ ! œ .L  L. œ .L! ! # # # # #"

gives rise to , or . Thus, this representation is! ! # ! ! œ . L œ ! œ" "
#

unique.
But, if , then we have  and the condi-5 œ "  − ÐY Ñ œ ÐY Ñ! ! T A"

! !

tion  results in . Namely, in this case the.Ð  Ñ œ ! œ ! ! ! !" " constant
form  can only be determined uniquely up to a constant.!

This theorem can be symbolically expressed in the form

A T T5 5" 5ÐY Ñ œ . ÐY Ñ Š ÐY Ñß 5   "ˆ ‰ 

Example 6.4.1.  is given by  so= A ‘ =− Ð Ñ œ #B .B  D .C  C .D" $ #

that we get . If we choose the point . œ  Ð"  #CÑ .C • .D œ Ð!ß !ß !Ñ= x!

as the centre, the radius vector becomes . Then, by[ œ B `  C `  D `B C D

applying the homotopy operator, we obtain
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L œ Ð#>B .B  >D .C  > C .DÑ .>

œ Ð#>B  >CD  > C DÑ .> œ B  CD  C D

L. œ  >Ð"  #>CÑ Ð.C • .DÑ.>

œ  >Ð"  #>CÑÐC.D  D.CÑ.> œ  C ÐD .

=

=

(
(

(
( ˆ ‰

!

"
# #

!

"
# # # # " "

# $
#

!

"

!

"
" #
# $

i

i

[

[

C  C .DÑ

Hence, the form  is expressible as=

= œ . B  CD  C D   C ÐD .C  C .DÑˆ ‰ ˆ ‰# " " " #
# $ # $

# è

Let us now consider two antiexact forms  and .! T " T− ÐY Ñ − ÐY Ñ5 6

Since we know that , we can write ! " T ! " ! "• − ÐY Ñ L.Ð • Ñ œ •56

whence we deduce that ( (  Hence,L . • Ñ  Ð"Ñ L • . Ñ œ •! " ! " ! "5 .
we obtain

L . • Ñ œ •  Ð"Ñ L • . Ñ( ( . (6.4.3)! " ! " ! "5"

This relation can be interpreted as a sort of integration by parts.

6.5. CHANGE OF CENTRE

The open set  may be contractible with respect to severalY © Q
points. Therefore, its homeomorphic image in  may appear to be star-‘7

shaped with respect to various centres. Since the homotopy operator is
explicitly dependent on the location of the centre, we shall then try to estab-
lish the connection between homotopy operators associated with different
centres.

Theorem 6.5.1.  According to a local chart, let  be a star-Z œ ÐY Ñ:
shaped region of the Euclidean space where  is an open set. If Y © Q  L"

and  are two homotopy operators associated with centres and , res- L# " #x   x
pectively, then they are related by

L œ L   . ./1  "

L œ L   - ./1 œ "
" #

" #

= = # - =

= = # =

  if  ,
 if  

where we define  and .  is# = =œ  L L . L L -# " # "− ÐY Ñ œ − ÐY ÑT - T# #

a constant.
For a form , we can of course write= A− ÐY Ñ5
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= = = = =œ .L  L . œ .L  L ." " # #

from which we find that . If we replace  byÐL  L Ñ. œ .ÐL  L Ñ# " " #= = =
. .ÐL  L Ñ. œ != = in this expression, we get . In view of the Poincaré# "

lemma, there exists a form  so that one is able to write! A− ÐY Ñ5"

ÐL  L Ñ. œ .# " = ! !. According to Theorem 6.4.3 the form  is given by
! " # # T = #œ .  − ÐY Ñ ÐL  L Ñ . œ . where . The relation  then#

5"
# "

leads to  and . On the other hand,ÐL  L L Ñ . œ L .  L L . œ#
# # " # # "= # = #

the equality  or  gives rise to.ÐL  L Ñ œ . . ÐL  L Ñ  œ !" # " #= # = # ‘
ÐL  L Ñ œ  . ß − ÐY Ñ" #

5#= # 5 5 A

if . If we write  where , we obtain5  " œ .  − ÐY Ñ5 / - - T#
5#

L œ L   ." #= = # -.

On applying the operator  on the above equality, we eventually find thatL#

- œ 5 œ "L L# "=. However, if , then it follows from the foregoing relation
that  and, consequently,ÐL  L Ñ  œ - œ" # = # constant

L œ L   -" #= = # . 

Example 6.5.1.  is given by .= A ‘ =− Ð Ñ œ #B .B  D .C  C .D" $ #

Let us consider two centres and . With the radiusx   x" #œ Ð"ß !ß "Ñ œ Ð!ß !ß !Ñ
vector  we have already found in Example 6.4.1 that[#

L œ#= B  CD  C D# " "
# $

# .

With the radius vector , we are led to[" B C Dœ ÐB  "Ñ `  C `  ÐD  "Ñ `
the relation

L œ"
!

"

= ( i["
 ˆ ‰ ˆ ‰ ‘

(  ˆ ‰ ˆ ‰ ‘
# "  >ÐB  "Ñ .B  "  >ÐD  "Ñ .C  > C .D .>

œ #ÐB"Ñ "  >ÐB"Ñ  C "  >ÐD "Ñ  > C ÐD "Ñ .>

œ #ÐB"Ñ  ÐB  "Ñ  C  CÐD  "Ñ  C ÐD  "Ñ

# #

!

"
# #

# " "
# $

#

œ C  C  "L #=
" "
# $

# .

We see that  and . # œ " "
# $

#C  C - œ  " è

6.6. CANONICAL FORMS OF -FORMS, CLOSED - FORMS" #

We consider a form  on an -dimensional= = Aœ Ð Ñ .B − ÐQÑ 73
3 "x
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smooth manifold . Starting with this form, let us construct the followingQ
sequence of forms of increasing degrees:

M œ − ÐQÑß M œ . − ÐQÑß M œ • . − ÐQÑß

M œ . • . − ÐQÑß á ß M œ Ð. Ñ œ . • â • . − ÐQÑß

M œ • M − ÐQÑß á ß 8 œ !ß "ß #ß á

" # $
" # $

% #8
% 8 #8

#8" #8
#8"

= A = A = = A

= = A = = = A

= A

ðóóóóñóóóóò
8

.

Here, we adopt the convention that . It is clearly observable from thisM œ "!

sequence that we can write the recurrence relations

M œ . • M œ M • M ß

M œ M • M ß 8 œ !ß "ß á Þ
#8 #8# # #8#

#8" " #8

=

        
(6.6.1)

By definition, we evidently have

.M œ !ß .M œ M ß .M œ .M • M œ M • M œ M#8 " # #8" " #8 # #8 #8#.

This sequence must be finite because all forms whose degrees is greater
than  are identically zero. We can thus write  when .7 M ´ ! 5 œ "ß #ß á75

However, this sequence may vanish beginning from a number .O Ÿ 7
Since  is a -form, its rank is  [ . 39]. This means that we. # < œ #5 Ÿ 7= see :
can express  as follows.=

. œ 0 • 1  0 • 1  â  0 • 1 ß 0 ß 1 − ÐQÑß 3 œ "ß á ß 5= A" " # # 5 5 3 3 "

and we get  [ . 44].Ð. Ñ Á !ß Ð. Ñ œ !ß 8 œ "ß #ß á= =5 58 see :
Let us now suppose that we have succeeded in determining an integer

OÐ ß Ñ  !x =  such that

M Á !ß M œ !ß 8 œ "ß #ß áOÐ ß Ñ OÐ ß Ñ8x x= = . (6.6.2)

This number may generally be dependent on the points of the manifold. We
assume that forms are defined on an open set . We denote theY © Q
homeomorphic image of  through appropriate charts by . TheY Z © ‘7

positive integer  is called the  of the -OÐ Ñ œ OÐ ß Ñ "= =sup
x−Z

x Darboux class

form  relative to the set  [French mathematician Jean Gaston Darboux= Y
(1842 -1917)]. The points at which  is said to be OÐ Ñ  OÐ Ñx = critical
points of the form  relative to the set  while the points at which = Y OÐ Ñ œx
OÐ Ñ Y=  are called  relative to .  regular points We shall here assume that all
points in the region are regular  . The   of the form  relative toY <Ð Ñrank = =
Y OÐ Ñ is defined as the greatest  less than or equal to  whereaseven integer =
the number  is called the  of  relative to .% = = = =Ð Ñ œ OÐ Ñ  <Ð Ñ Yindex
According to this definition  is either  or .% =Ð Ñ ! "
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Let us first prove the following lemma.
Lemma 6.6.1. Let  be a closed simple -form. Then theH A− ÐQÑ 55

form  is expressible as exterior products of so called gradients, that is, asH
H œ .1 • .1 • â • .1" # 5  where .1 − ÐQÑß 3 œ "ß á ß 53 !A

Let us take the closed form  where theH = = =œ • • â • Á !" # 5

forms  are linearly independent. We now consider=3 − ÐQÑß 3 œ "ß á ß 5A"  
the ideal . We will show that this ideal is also closed. Since\ = =Ð ß á ß Ñ" 5

. œ !H , we readily obtain

. œ Ð"Ñ • â • • . • • â •

œ . • • â • • • â • œ !

H = = = = =

= = = = =

"
"
3œ"

5
3" " 3" 3 3" 5

3œ"

5
3 " 3" 3" 5

where we have adopted the convention . It follows from the above=! œ "
expression that we arrive at the relation

! œ • . œ • . • • â • • • â •

œ • . • • â • • • â •

œ Ð"Ñ . • • â • • • • â •

= H = = = = = =

= = = = = =

= = = = = =

4 4 3 " 3" 3" 5

3œ"

5

4 4 " 4" 4" 5

4" 4 " 4" 4 4" 5

"

for every form . This implies that= A4 "− ÐQÑ

. • œ !ß 3= H3 œ "ß á ß 5.

These relations show according to Theorem 5.10.2 that the ideal
\ = =Ð ß á ß Ñ" 5  is closed. Hence, as we have demonstrated in Theorem 5.13.5
we can find  functions  so that thisindependent 0 − ÐQÑß 3 œ "ß á ß 53 !A
ideal is equivalent to the ideal . Furthermore we have to\ Ð.0 ß á ß .0 Ñ" 5

write

= A3 3 4 3 !
4 4œ E .0 ß E − ÐQÑ

whence we deduce that

H = = ! ! Aœ • â • œ .0 • â • .0 ß œ ÐE Ñ − ÐQÑ" 5 " 5 3 !
4det .

On the other hand, we must have . Let us. œ . • .0 • â • .0 œ !H ! " 5

now choose new local coordinates for the manifold  as  where Q 0 ß B 3 œ3 +

"ß á ß 5 + œ 5  "ß á ß 7 and . Because the function  may presently be!
written as
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! !œ Ð0 ß á ß 0 ß B ß á ß B Ñ" 5 5" 7 ,

the expression  can be cast into the form. œ !H

Š ‹` `

`0 `B
.0  .B • .0 • â • .0

œ .B • .0 • â • .0 œ !
`

`B

! !

!

3 +
3 + " 5

+
+ " 5 .

These equations yield

`

`B
œ !ß

!
+

where  so that we find . Let us now+ œ 5  "ß á ß 7 œ Ð0 ß á ß 0 Ñ! ! " 5

define functions

1 œ 1 Ð0 ß á ß 0 Ñß 1 œ 0 ß á ß 1 œ 0" " " 5 # # 5 5

such that we can express  without loss of generality as!

! œ Á !
`1

`0

"

"
.

Since we now have

detŠ ‹
â ââ ââ ââ ââ ââ ââ ââ ââ ââ â

`1 `1

`0 `0
œ œ œ Á !ß

`1 `1 `1

`0 `0 `0
â

! " â !
ã ã ã ã
! ! â "

3 "

4 "

" " "

" # 5

!

the functions  are independent and we get1 ß á ß 1" 5

.1 • â • .1 œ Ð`1 Î`0 Ñ .0 • â • .0" 5 3 4 " 5det .

Hence, we are led to the conclusion

H Aœ .1 • â • .1 ß 1 − ÐQÑß 3" 5 3 ! œ "ß á ß 5. 

We can now prove the following theorem.
Theorem 6.6.1 (The Darboux Theorem).  If the Darboux class of the

form is , then the canonical form of  is given by= A− ÐQÑ"  O =

= % = A !œ ? .@  .@ ß ? ß @ ß @! !
! !Ð Ñ − ÐQÑß œ "ß á ß 55" 5"

!



6.6  Canonical Forms of -Forms, Closed -Forms" # 345

where  denotes the greatest integer that is less than or equal to5 œ [ ]OÎ#
OÎ# O œ ! œ " O. If  is even, then  whereas  if  is odd.% = % =Ð Ñ Ð Ñ

We shall prove this theorem in two steps.
Ð3ÑÞ O œ #5 . Thus, we can write  soDarboux class is an even integer

that we have to take [ ] . According to the definition of the5 œ OÎ# œ OÎ#
Darboux class, we obviously find

M Á !ß M œ !ß M œ !ß á#5 #5" #5#  . 

Hence, the rank of the form  is  implying that . − ÐQÑ #5 M − ÐQÑ= A A# #5
#5

is a simple form. Since , in view of Lemma 6.6.1 the form  is a.M œ ! M#5 #5

gradient product, i.e., by means of independent functions ? ß @ ß ? ß @ ß á ß" #
" #

? ß @ M5
5 #5 the form  can be depicted as follows

M œ 5x .? • .@ • .? • .@ • â • .? • .@#5 " # 5
" # 5 .

Accordingly the form  has the following structure [ Sec. 1.6].= see 

. œ .? • .@ ß − ÐQÑß œ "ß á ß 5= A !!
! ? ß @!

!
! .

On the other hand, the satisfaction of the condition

M œ • M œ 5x • .? • .@ • .? • .@ • â • .? • .@ œ !#5" #5 " # 5
" # 5= =

suggests due to Theorem 5.3.1 that the -forms  are" ß .? ß .@ ß á ß .? ß .@= " 5
" 5

linearly dependent. Therefore, there exist functions  that0 ß 1 − ÐQÑ!
! A!

enable us to write

= œ 0 .?  1 .@! !
! ! .

Hence, the form  belongs to the ideal . In this situation, we= \ Ð.? ß .@ Ñ!
!

naturally get

. œ .? • .@ œ .0 • .?  .1 • .@= ! ! !
! ! !,

Since , we are free to choose new local coordinates as follows: #5 Ÿ 7 ? ß!

@ ß œ "ß á ß 5à B ß + œ #5  "ß á ß 7! ! + . In the equation just above, let us
evaluate differentials of functions  with respect to new coordinates.0 ß 1!

!

On comparing both sides, we find that

`0 `1

`B `B
œ !ß œ !

!
!

+ +
   (6.6.3)

since there are no terms like  and  at the left hand side.B • .? .B • .@+ +!
!

of that expression. We thus conclude that these function must have the
forms  and . Remaining terms then conduce0 œ 0 Ð? ß @ Ñ 1 œ 1 Ð? ß @ Ñ! ! " "

" ! ! "

to the relations
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`0 `0 `1

`? `@ `?
.? • .?  .@ • .?  .? • .@

 .@ • .@ œ .? • .@
`1

`@

! !

" "
" ! ! "

"
" !

!

!

"
" ! !

!            .

However, on utilising the antisymmetry of the exterior product we can
transform this expression into the form

" `0 `0 " `1 `1

# `? `? # `@ `@
 .? • .?   .@ • .@

  .? • .@ œ .? • .@
`1 `0

`? `@

Š ‹ Š ‹
Š ‹

! "

" !
" !

! "

" !
" !

"

!

!

"

! " !
" "!$

which result in the equations

`0 `0 `1 `1 `1 `0

`? `? `@ `@ `? `@
œ ß œ ß  œ

! " !

" ! !

! " "

" ! "
!
"$ . (6.6.4)

The equations (6.6.4)  ensure the existence of functions  and  that" # " " 9 <
make it possible for us to write

0 œ ß 1 œ ß ß œ ß Ð? ß @ ß B Ñ
` `

`? `@
! !!

! !

!

9 <
9 < 9 <

" "
" " " "

+ . (6.6.5)

But, because of (6.6.3) we get

` `

`? `B `@ `B
œ œ !

# #
" "

+ +

9 <
!

!

whence we obtain

9 9 9

< < <
"

+

"
+

Ð ß Ñ œ Ð ß Ñ  Ð ß B Ñß

Ð ß Ñ œ Ð ß Ñ  Ð ß B ÑÞ

u v u v v
u v u v u

¯
¯

(6.6.6)

If we insert the expressions (6.6.5) and (6.6.6) into the equations (6.6.4) ,$

we find that

` ` ` `

`@ `? `? `@ `@ `? `@ `?
 œ Ð  Ñ œ Ð  Ñ œ

# # # #
" "

" "
< 9

< 9 < 9 $
" " " "

! ! ! ! !
" .

The integration of these equations yields readily

< 9 F G œ ? @  Ð Ñ  Ð Ñ!
! u v (6.6.7)
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and it follows from (6.6.5) that

0 œ œ ß 1 œ œ
` ` ` `

`? `? `@ `@
! ! !

!

! !

9 9 < <" "

On the other hand, we obtain from the expression (6.6.7) that

` ` `

`@ `@ `@
œ ?  

< 9 G

! ! !

! ,

Hence, the form  is expressible as=

=
9 < 9 9 G

9 9 9 G

œ .?  .@ œ ? .@  .?  .@  .@
` ` ` ` `

`? `@ `? `@ `@

œ ? .@  . ß œ 

! !
! ! !

! ! !
! ! ! !

!
!

µ µ

where the function  can be selected arbitrarily. Therefore, if we take9
µ

Ð ß Ñu v
9 =
µ

œ constant, the canonical form of  is found to be

= œ ? .@ œ ? .@  ? .@  â  ? .@!
!

" # 5
" # 5 . (6.6.8)

It is clear that this representation is not unique. For instance, because of the
identity

? .@ œ .Ð? @ Ñ  @ .?! ! !
! ! !

we get  if we choose .= 9œ  @ .? œ  ? @! !
! !µ

Ð33ÑÞ O œ #5  " . Thus we can write .Darboux class is an odd integer
Hence, we can take [ ]  which requires that5 œ OÎ# œ ÐO  "ÑÎ#

M Á !ß M Á !ß M œ !ß á#5 #5" #5# .

Since  and , the rank of the form , that mustM Á ! M œ ! . − ÐQÑ#5 #5#
#= A

be an even number, is again . This implies that  is still a simple form#5 M#5

and a gradient product. On the other hand, we can write .M œ • M#5" #5=
Since  is a simple form and  is a -form, the form  isM " M − ÐQÑ#5 #5"

#5"= A
also a simple form.  is a closed form because .M .M œ M œ !#5" #5" #5#

Consequently,  is likewise a gradient product. Since M M œ • M#5" #5" #5=
Á ! − ÐQÑ, the form  cannot be expressed as a linear combination of= A"

factor forms of the simple form . Therefore the form  is a divisor ofM M#5 #5

the form . Since  is a gradient product, this form is expressible asM M#5" #5"

M œ . • M ß − ÐQÑ#5" #5
!( ( A .

Thus, just like in the part , we can writeÐ3Ñ
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M œ 5x .? • .@ • â • .? • .@ ß

. œ .? • .@ ß − ÐQÑß œ "ß á ß 5Þ

#5 " 5
" 5

!= A !!
! ? ß @!

!

Let us now introduce a form  through a gradient transformation= Aw "− ÐQÑ
given as

= = -w œ  .

where . We obviously get  so that we obtain - A = =− ÐQÑ . œ . M œ M! w w
#5 #5

while  is found to beMw
#5"

M œ • M œ • M  . • M œ M  . • Mw w w
#5" #5 #5 #5 #5" #5= = - - .

We thus arrive at the relation

M œ . • M  . • M œ .Ð  Ñ • Mw
#5" #5 #5 #5( - ( - .

On choosing the arbitrary function  as , we conclude that- - (œ

M Á ! M œ !w w
#5 #5"   and   .

This amounts to say that the Darboux class of the form  is  and its=w O œ #5
canonical form turns out to be  as in . Hence, we obtain=w œ ? .@ Ð3Ñ!

!

= (œ ? .@  . ? ß @! !
! !. Since the functions  are independent, we can write

( ( -œ Ð ß ß B Ñ .u v +  by a choice of local coordinates as above. Thus the form 
is not expressible as a linear combination of the forms  so it does.? ß .@!

!

not belong to the ideal generated by these forms. Hence, the function ( œ
@ ? ß @ #5  "5" is independent of the functions . Ultimately, in terms of !

!

independent functions the canonical form of  now becomes=

= œ ? .@  .@ œ ? .@  â  ? .@  .@!
! 5" " 5 5"

" 5 . (6.6.9)

This finishes the proof of the theorem showing that we are now able to write

= % = % =œ ? .@  Ð Ñ.@ œ ? .@  â  ? .@  Ð Ñ.@!
! 5" " 5 5"

" 5 . 

Example 6.6.1. We take the form = A ‘œ #B .B  D .C  C .D − Ð Ñ# " $

into consideration. Let us construct the sequence

M œ ß M œ Ð"  #CÑ.C • .Dß M œ #BÐ"  #CÑ.B • .C • .Dß M œ !" # $ %= .

We thus find  and . Let us choose  and assume that theO œ $ 5 œ " @ œ B#
#

functions  and  depend only on  and . Then the relations? @ C D"
"

? œ Dß ? œ  C
`@ `@

`C `D
" " #" "
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yield the partial differential equation whoseC Ð`@ Î`CÑ  DÐ`@ Î`DÑ œ !#
" "

solution is . For simplicity, let us choose the function as@ œ 0ÐC  DÑ"
" log

@ œ C  D ? œ  C D"
" " #log . Then we find that . Hence  can now be=

expressed in the following canonical form

= œ  C D .ÐC  DÑ  .ÐB Ñ# " #log è

Example 6.6.2. Let us consider the form

= A ‘œ ÐB  C Ñ.B  ÐC  D Ñ.C  > .> − Ð Ñ# $ # # " % .

Since we obtain

M œ ß M œ  #C.C • .B  #D.D • .Cß

M œ  #DÐB  C Ñ .B • .D • .Cß M œ !

" #

$ %
#

=

we find that  and . Hence one can write . WeO œ $ 5 œ " œ ? .@  .@= "
" #

then readily show that

? œ #BC  D ß @ œ Cß @ œ   BC 
B C >

# % $
" # #

" #

# % $

. è

The number  can be equal at most to the dimension  of the mani-O 7
fold. Therefore, a form in  is expressible at most [ ]A %"ÐQÑ 5 œ 7Î# 
number of terms. For instance, we can write

7 œ " À œ .@ ß @ − Ð Ñß

7 œ # À œ ? .@ ß ? ß @ − Ð Ñß

7 œ $ À œ ? .@  .@ ß ? ß @ ß @ − Ð ÑÞ

= A ‘

= A ‘

= A ‘

" "
!

" " ! #
" "

" " ! $
" # " #

     

   

   

We can now discuss the second Darboux theorem concerning closed -#
forms which is in fact an almost trivial corollary of the Darboux theorem.

Theorem 6.6.2.  Let  be an open set of  -dimensional manifold Y 7 Q
contractible to one of its points. The homeomorphic image of this set in ‘7

through an appropriate chart is a star-shaped region. The canonical form
of a closed form  is given by= A− ÐY Ñ#

= œ .? • .@!
! (6.6.10)

where the functions  are independent and? ß @ − ÐY Ñß œ "ß á ß 5!
! A !!

5 œ [ ]OÎ# .
Poincaré lemma states that there exists a form  such that theH A− ÐY Ñ"

relation  is satisfied. If the Darboux class of  is , then we can= H Hœ . O
write  where [ ]. We thus findH !œ ? .@  .@!

! % 5" œ "ß á ß 5ß 5 œ OÎ#
= œ .? • .@!

!. Since every differentiable manifold is locally contractible,
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then every form   becomes locally expressible in the = A− ÐQÑ# canonical
form (6.6.10). 

We know that a form  is completely integrable if only it= A− ÐQÑ"

can be written as  where . This is only possible if = 0 ( 0 ( Aœ . ß − ÐQÑ 5!

œ ! 5 œ " O œ " O œ # and  or Darboux classes  and . In those cases, we
get  and , respectively. We thus conclude that -= =œ .@ œ ? .@ "" "

" forms
whose Darboux classes are are not completely integrable  . ThisO   $
result coincides with the concept of accessibility propounded by Greek-
German mathematician Constantin Carathéodory (1873-1950). Let us con-
sider a form . We say that a form  has the  pro-= A =− ÐQÑ" inaccessibility
perty if and only if a sufficiently small neighbourhood of any point : − Q
contains a point  that cannot be reached by a path (a curve) through ; − Q :
entirely on  satisfying the exterior equation . If a -form  does notQ œ ! "= =
have the inaccessibility property, namely, if in a neighbourhood of any
point  there is no point that cannot be reached by such paths, then the form:
= possesses the  property.accessibility

Theorem 6.6.3 (The Carathéodory Theorem).   A form = A− ÐQÑ"

that is not identically zero has the inaccessibility property if and only if its
Darboux class is less than three. If its Darboux class is greater than or
equal to three, then  has the accessibility property.=

If , then  and the exterior equation  holds only onO œ " œ .@ œ != ="

Ð7  "Ñ @ Ð Ñ œ - --dimensional submanifolds  described by  where 's aref- " x
arbitrary constants. Let us assume that a point  is located on . For: − Q f-"

a sufficiently small number , we immediately see that there is a point  in$ ;
any neighbourhood of the point  that belongs to the submanifold .: W- " $

Since these two hypersurfaces cannot intersect, no curve through the point :
lying on  thereby satisfying the equation  can reach to the point .W œ ! ;-"

=
If , then  and the exterior equation  holds onO œ # œ ? .@ œ != ="

"

Ð7  "Ñ W @ Ð Ñ œ --dimensional submanifolds  described by . Thus, we- " x
naturally arrive at the same conclusion about inaccessibility.

Let us now consider the case . In this situation we have the rep-O   $
resentations

= =œ ? .@ œ ? .@  .@ O! !
! !     if  is even if  is odd.O à 5"

where [ ]. Since the form  is not identically zero, at! =œ "ß á ß 5ß 5 œ OÎ#
least one of the functions  does not vanish in a neighbourhood of a point?!

: − Q . On dividing the form  by this function and renaming the indices if=
necessary, we can cast the exterior equation  into the form= œ !

? .@  â  ? .@  .@ œ !" <"
" <" < (6.6.11)

where  if  is even and  if  is odd. A solution of the< œ 5 O < œ 5  " O
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equation (6.6.11) can evidently be taken as

@ Ð Ñ œ - ß @ Ð Ñ œ -! !x x .! œ "ß á ß <  "à < < (6.6.12)

The equations (6.6.12) prescribe obviously a family of -dimensionalÐ7  <Ñ
submanifolds of .Q

Let us now consider the points  and  on the: œ Ð Ñ ; œ Ð Ñ: :" "
" #x x

manifold  and we introduce the constantsQ

@ œ @ @ œ @ @ œ @ @ œ @" # " #
< << <! !! !Ð Ñß Ð Ñß Ð Ñß Ð Ñà ? œ ? Ð Ñx x x x x" # " # ""

! ! .

Then let us assume that we can choose a path  on  from the pointx œ Ð>Ñ Q0
: ; to the point  such that the following relations are satisfied

@ @ @  Ð@  @ Ñ>ß

?  2 >

! ! ! ! !
! ! !

ˆ ‰ˆ ‰0

0

Ð>Ñ œ Ð>Ñ œ

Ð>Ñ œ ? Ð>Ñ œ ?

" "#

"
!

where  and .  are presently arbitrary0 0Ð!Ñ œ Ð"Ñ œ œ "ß á ß <  "x x" # 2 ß! !
constants. Such a path can be chosen, for instance, by first introducing the
functions

0 šš š š šÐ>Ñ œ B  >ÐB  B Ñß œ #<  "ß á ß 7" # "

and then employing the  number of equations#<  #

@ @  Ð@  @ Ñ>ß ?  2 >! ! ! !
! !ˆ ‰ ˆ ‰0 0 0 0+ +

"Ð>Ñß Ð>Ñ œ Ð>Ñß Ð>Ñ œ ?š š !" # "   

to determine the remaining functions  in a neigh-0+Ð>Ñß + œ "ß á ß #<  #
bourhood of the point . On the path from  to , the equation (6.6.11) takes: : ;
the form

.@ .@ .@

.> .> .>
 œ  Ð?

< <
"?  2 >ÑÐ@  @ Ñ œ !! !

! !
! ! # " .

The integration of this simple differential equation for  with the initial@<

condition  gives@ Ð!Ñ œ @<
"
<

@ Ð>Ñ œ @  Ð@  @ Ñ  2 >Ñ><
" " #
< ! !

!Ð?"
! "

#
.

We now need to select the constants  in such a way that the relation2!

@ œ @  Ð@  @ Ñ  2 Ñ# " " #
< < ! !

!Ð?"
! "

#

will hold at . If  for an index , then we reach to our objec-> œ " @ Á @" #
! !! !

!!

tive by taking  for all  and2 œ ! Á! ! !!
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2 œ #
@  @  Ð@  @ Ñ?

@  @
! ! !

!

! !

!

! !

# " " #
< < "

" #
.

If  for all , we first determine a path such that@ œ @ œ "ß á ß <  "" #
! ! !

@ Ð>Ñ œ @  +>ß @ Ð>Ñ œ @  , >ß ? Ð>Ñ œ ?<
" "
< "! !!

! !.

Since the form  does not vanish,  at least for an index . Along= !? Á !" !
!!

the path, the exterior equation  can only be satisfied if .= œ ! +  , ? œ !!
!
"

Let us choose  and  for all . In this case, we, œ  +Î? , œ ! Á! !
!

!
!

" !! !
obtain  for all . If@ œ @ Á ß @ Ð"Ñ œ @  , Á @ ß @ Ð"Ñ œ @  +" # " " "

! < <! ! ! !! !! !
! !! !

we now choose  as theˆ ‰@ Ð"Ñß @ Ð"Ñ œ @ Ð Á Ñß @ Ð"Ñß ? Ð"Ñ œ ?< ! "
"

! !!
!! !

!

new initial point, we can find a path on which  from this point to the= œ !
point  because . Therefore, when  we can alwaysÐ@ ß @ Ñ @ Ð"Ñ Á @ O   $# # "

< ! !!! !

find a path from the point  to reach to a point in a neighbourhood of: − Q
: œ ! such that the exterior equation  is satisfied along this path.= 

6.7. AN EXTERIOR DIFFERENTIAL EQUATION

Exterior equations involving exterior derivatives of exterior forms will
be called . This section is devoted to findingexterior differential equations
the solution of the exterior differential equation

. œ • H > H D (6.7.1)

defined on a   of a manifold  by making use of thecontractible open set Y Q
homotopy operator.  and  are given exterior forms.> A D A− ÐY Ñ − ÐY Ñ" 5"

We look for all forms  satisfying the equation (6.7.1). For theH A− ÐY Ñ5

existence of a solution, it is clear that the forms  and  cannot be assigned> D
arbitrarily. The closure condition  requires clearly that the equality. œ !#H
. •  • .  . œ !> H > H D   or

. œ • •  •  . • œ •  . •D > > H > D > H > D > H

must be satisfied since . By introducing the form  where> A @ >− ÐY Ñ œ ."

we obviously have , we can transform the system to be solved into. œ !@

. œ •  ß . œ •  • ß œ . ß . œ !H > H D D > D @ H @ > @   .

Our aim is to determine all forms , ,  and  satisfying the above rela-H D > @
tions. According to the Poincaré lemma, we can locally write  where@ )œ .
) A )− ÐY Ñ" . Since the form  is incorporated in the above equations through
only its exterior derivative, we can choose  without loss of) T− ÐY Ñ"
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generality according to Theorem 6.4.3. Let  be the homotopy operator onL
the contractible open set . Then we get  and find thatY L œ !)

) ) ) @ >œ .L  L. œ L œ L. .

On the other hand, the form  can be expressed as> A− ÐY Ñ"

> > > > ) # ) # > Tœ .L  L. œ .L  œ .  ß œ L − ÐY Ñ! .

Let us now consider the transformations  and  whereH = D 5œ / œ /3 3

3 A− ÐY Ñ! . The relations

. œ / . •  / . œ / Ð.  Ñ •  /

. œ / . •  / . œ / Ð.  Ñ •  / . •

H 3 = = # ) = 5

D 3 5 5 # ) 5 ) =

3 3 3 3

3 3 3 3

lead to

. œ Ð.  .  Ñ •  ß . œ Ð.  .  Ñ •  . •= # 3 ) = 5 5 # 3 ) 5 ) =.

We now choose the arbitrary function  as . We then3 3 # > Tœ œ L − ÐY Ñ!

reach to the equations

. œ •  ß . œ •  . •= ) = 5 5 ) 5 ) =.

With the definition , we obtain" ) = Aœ • − ÐY Ñ5"

. œ . •  • . œ . •  • Ð •  Ñ œ . •  •" ) = ) = ) = ) ) = 5 ) = ) 5.

Hence, our system is reduced to a much simpler system

. œ  ß . œ  .= " 5 5 ".

The identities ,  then yield= = = 5 5 5œ .L  L. œ .L  L.

= = " 5 5 5 " 5 " "œ .L  LÐ  Ñß œ .L  L. œ .L   .L .

If we define the forms , , we get9 = T ( 5 Tœ L − ÐY Ñ œ L − ÐY Ñ5" 5

= 9 ( " 5 ( " "œ .   L ß œ .   .L .

On using the above relations, we can easily determine the form . If we"
write

" ) = ) 9 ) ( ) "œ • œ • .  •  • L

and note that , we then find) ( ) " T•  • L − ÐY Ñ5"

L œ LÐ • . Ñ  LÐ •  • L Ñ œ LÐ • . Ñ" ) 9 ) ( ) " ) 9 .

We thus obtain
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" ) 9 ) ( ) ) 9œ • .  •  • LÐ • . Ñ

and consequently

= 9 ( ) 9

5 ( ) 9 ) 9 ( ) 9

œ .   LÐ • . Ñß

œ .  LÐ • . Ñ  • .   LÐ • . Ñˆ ‰ ˆ ‰.

Hence, the solution of the exterior differential equation is found to be

H 9 ( ) 9

D ( ) 9 ) 9 ( ) 9

> # ) @ > )

œ / .   LÐ • . Ñ ß

œ / .  LÐ • . Ñ  • .   LÐ • . Ñ

œ .  ß œ . œ .

#

#

 ‘ ˆ ‰ ˆ ‰‘ (6.7.2)

where , ,  and  are arbitrary# T ) T 9 T ( T− ÐY Ñ − ÐY Ñ − ÐY Ñ − ÐY Ñ! " 5" 5

forms. Now, introducing the arbitrary form ,; ( ) 9 Tœ  LÐ • . Ñ − ÐY Ñ5

we can express the above solution in a much simpler fashion as

H 9 ; D ; ) 9 ;œ / Ð.  Ñß œ / .  • .  Ñ# # ˆ . (6.7.3)

If we take  in (6.7.1), we arrive at the following exterior diffe-D œ !
rential equation

. œ •H > H (6.7.4)

together with compatibility conditions . Since we now@ H @ >• œ !ß œ .
have , we find of course  and it follows from (6.7.2)  that5 ( 5œ ! œ L œ ! #

.LÐ • . Ñ  • .  LÐ • . Ñ œ !) 9 ) 9 ) 9ˆ ‰ . We first calculate the exterior
derivative of this expression, then consider its exterior product with the
form  to get) T− ÐY Ñ"

. • .  LÐ • . Ñ œ . LÐ • . Ñ œ ! • .LÐ • . Ñ œ ! ˆ ‰‘) 9 ) 9 ) 9 ) ) 9# , ,

respectively. But, because we can write

. • .  LÐ • . Ñ œ . • .  LÐ • . Ñ  • .LÐ • . Ñ ˆ ‰‘ ˆ ‰) 9 ) 9 ) 9 ) 9 ) ) 9

we must conclude that

. • .  LÐ • . Ñ œ !) 9 ) 9ˆ ‰ . (6.7.5)

Therefore, the solution of (6.7.4) is represented by

H 9 ) 9 # > ) >œ / .  LÐ • . Ñ ß œ L ß œ L.# ‘ (6.7.6)

subject to the condition (6.7.5). The forms  satisfying the equa-H A− ÐY Ñ5

tion (6.7.4) are called  with coefficient forms .recursive forms >



6.8  A System of Exterior Differential Equations 355

A recursive form  is called a  if the coeffi-H gradient recursive form
cient form  is exact. In this case, we have  and the solution reduces to> ) œ !

 . (6.7.7)H 9 # > H # Hœ / . ß œ L ß . œ . •#

6.8. A SYSTEM OF EXTERIOR DIFFERENTIAL EQUATIONS

We shall now try to deal with a significantly more difficult problem.
Let us consider a system of exterior differential equations

. œ  •  ß 3ß 4 œ "ß #ß á ß <H > H D3 3 4 3
4 (6.8.1)

prescribed on a contractible open set  of a manifold . Here Y Q − ÐY ÑH A3 5

are forms to be determined, and  and  are> A D A4
3 " 3 5"− ÐY Ñ − ÐY Ñ

assumed to be given forms. Minus sign in (6.8.1) is chosen for convenience.
It would be rather advantageous to employ a matrix notation in order to dis-
cuss this problem more efficiently. Let us denote a  whose allmatrix form
entries consist of forms  of the same degree by . If anotherF F; ;

: :F œ Ò Ó

matrix form with different degree is , we can define the exteriorG œ Ò ÓG;
:

product of these two matrix forms by applying the usual rule of matrix
multiplication, but replacing the ordinary multiplications by exterior pro-
ducts as follows

F G• œ Ò • ÓF G5
:

;
5 .

Obviously, we have . We can easily./1 Ð • Ñ œ ./1 Ð Ñ  ./1 Ð ÑF G F G
verify that the transpose relation Ð • Ñ œ Ð"Ñ •F G G FT T T./1 Ð Ñ ./1 Ð ÑF G

will be satisfied. Therefore, we are now able to write the equations (6.8.1) in
the form

. œ  • H > H D. (6.8.2)

As matrix forms, we shall use the notations ,  andH A > A− ÐY Ñ − ÐY Ñ5 "

D A− ÐY Ñ5" . The compatibility equations are naturally found by taking
the exterior derivative of (6.8.2). We get ! œ  . •  • .  .> H > H D
that induces the relation

. œ Ð.  • Ñ • •D > > > H > D . (6.8.3)

Let us now define the following forms

@ > > >œ .  • ß œ .  •@ > > >4 4 5 4
3 3 3 5 (6.8.4)

where . Thus, the relation@ Aœ Ò Ó − ÐY Ñ@4
3 #
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. œ • •D @ H > D (6.8.5)

must be satisfied. On the other hand, the exterior derivative of (6.8.4) yields

. œ . •  • . œ  • • •  • •  •

œ •  •

@ > > > > > > > @ > > > > > @

@ > > @



.

It is readily checked that the exterior derivative of the above expression
vanishes identically. Consequently, the exterior differential equations to be
treated take finally the shapes

. œ  •  ß . œ • • ß

. œ  •  ß . œ •  • Þ

H > H D D @ H > D

> > > @ @ @ > > @

 (6.8.6)

Our task is to find the admissible forms of  and , and to determine .> D H
According to Theorem 6.4.3, we can take

> # > # T > Tœ .  − ÐY Ñ − ÐY Ñ+ +
!, , (6.8.7)1

We can of course represent (6.8.7) explicitly as

> # >4 4 4
3 3 3

+œ .  Ð Ñ  

where  and . If the centre of the star-shaped ho-# T > T4 4
3 ! 3

+− ÐY Ñ Ð Ñ − ÐY Ñ1

meomorphic image of the region  in  is , then we can take withoutY ‘7
!x

loss of generality  since  enters the equations through its differ-# #Ð Ñ œx! !
ential. If we insert the expression (6.8.7) into the equation (6.8.6) , we find$

. œ  . • .  • .  . •  • > # # > # # > > > @+ + + + + . (6.8.8)

Let us assume that  is an arbitrary regular  matrix, that is,B − ÐY Ñ < ‚ <T!

det B Á !. We define the forms  and  by>̄ @
µ

> > @ @¯        . (6.8.9)œ ß œB B B B" "
+

µ

On inverting these expressions, we get  and . It is¯> > @ @+
" "œ œB B B B

µ

clear that . The exterior derivative of (6.8.9)  gives>̄ T− ÐY Ñ1
"

. œ . •  Ð. Ñ  • .> > > >¯ .B B B B B B" " "
+ + +

Differentiating , we find that  from whichB B I B B B B 0" " "œ .  . œ
we deduce that . On using (6.8.9) , we finally get. œ  Ð.B B B B" " "

"Ñ

. œ Ð. Ñ  . •  • .> > > >¯ ¯ ¯ .B B B B B B" " "
+

On the other hand, it follows from (6.8.8) that
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B B B B B B B B
B B B B B B B B B B

" " " "
+

" " " " "

Ð. Ñ œ  Ð. • . Ñ  • Ð. Ñ

 . •  • 

> # # > #

# > > > @

¯

¯ ¯ ¯ .
µ

Consequently, we obtain

. œ  Ð. • . Ñ  • Ð. Ñ  Ð. Ñ •  •

  . •  • . œ  • Ð.  . Ñ

 Ð.  . Ñ •  Ð. • . Ñ  • 

> # # > # # > > >

@ > > > #

# > # # > > @

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯

¯ ¯ ¯ .

B B B B B B
B B B B B B B

B B B B B

" " "

" " "

" " µ

We shall now try to remove the arbitrariness of the matrix  in such a wayB
that the relation

.  . œ  . F  .F œ F# .B B B     or    (6.8.10)# .5 4 4 5 4
3 5 3 3 5

is satisfied and the matrix form  belongs to the set . The. A T− ÐY Ñ ÐY Ñ" 1

exterior derivative of (6.8.10) yields

 . • .  . •  . œ . œ . • .  . •# . . . # .B B B  B B B B! and ." "

Therefore, on employing (6.8.10) we conclude that

 B B B B B B
B B

. œ  Ð. • . Ñ  . •  . •  •

œ  Ð. • . Ñ  •

. # # # . # . . .

# # . .

" " "

" .

If , then one has  so the relations  and. T . . T . .− ÐY Ñ • − ÐY Ñ œ L.1 #

LÐ • Ñ œ. . ! hold. Thus, we can choose

. .

# #

œ L.

œ  L Ð. • . Ñˆ ‰B B"

so that we obtain

. œ  .  L Ð. • . ÑB B B B B# # #ˆ ‰" .

Because , we know that we can write  whereB B B B− ÐY Ñ  œ L.T!
!

B B x B B B! !
" "œ Ð Ñ L Ð. • . Ñ − ÐY Ñ.  implies that this form is inˆ ‰# # T

the null space of the operator . This means that on applying the operatorL
L . on , the matrix  will have to satisfy the equationB B

B B B B B Bœ  LÐ. Ñ œ  LÐ Ñ  LÐ Ñ! ! +# > > .

But since , we get . If we write , we see> T >+ + !− ÐY Ñ LÐ Ñ œ œ1 B B AB!
at once that  is a regular matrix and . We are thus led to the con-A A x IÐ Ñ œ!

clusion that the matrix  has to satisfy the integral equationA
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A A A A I,  A x I LÐ Ñ œ  LÐ. Ñ œ Ð Ñ œ> # ! . (6.8.11)

Let us now denote the forms  by . Then (6.8.11) is explicitly> > >5 56
3 3 6œ .B

expressed in indicial notation as

+ Ð Ñ  ÐB  B Ñ Ò  >Ð  ÑÓ+ Ò  >Ð  ÑÓ.> œ3 6 6 3 5 3
4 ! 56 4 4

!

"

! ! ! !x x x x x x x( > $ .

A œ Ò+ Ó3
4  is called the . With the present choice of the matrixattitude matrix

B, we immediately see that one is able to write

. œ •  •  .  •  • > > . . > . . . > > @¯ ¯ ¯ ¯ ¯ .
µ

Since , when we apply the homotopy operator  to the fore->̄ . Tß − ÐY Ñ L1

going equation we find  and introducing all these results into>̄ . @œ  L
µ

(6.8.7) we arrive at the expression

> # . @

# # @

@ @

œ .   LÐ Ñ

œ .  .  .  LÐ Ñ

œ L  . œ LÐ  .

B B B B
BB B B

B B B B B B B B

" "

" "

" " "

µ

µ

µ
Ð Ñ Ñˆ ‰ .

On inserting now  and  into the above relation, weB AB B B Aœ œ!
" " "

!

finally conclude that

> @œ LÐ  . ‘A A A A A" "Ñ . (6.8.12)

Let us now take the equation (6.8.6)  into account. We then introduce a%

matrix form  so that one can write  whose¯ ¯@ @ @ @œ œA A A A" "

exterior derivative has to satisfy

. •  .  • . œ •  •A A A A A A A A A A@ @ @ @ > > @¯ ¯ ¯ ¯ ¯ ." " " " "

On recalling the equality , this equation leads to. œ  .A A A A" "

. œ  •  •  . •  • .

œ  Ð  . Ñ •  • Ð  . Ñ

@ > @ @ > @ @

> @ @ >

¯ ¯ ¯ ¯ ¯

¯ ¯ .

A A A A A A A A
A A A A A A A A

" " " "

" " " "

On the other hand, it follows from (6.8.12) that

A A A A" "> @ . œ LÐ Ñ¯ .

Therefore, we obtain

. œ  LÐ Ñ •  • LÐ Ñ@ @ @ @ @¯ ¯ ¯ ¯ ¯ .
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In view of Theorem 6.4.3, we can use the representation  in¯ ¯@ ) @œ .  +

which  and  are, respectively, -¯ ¯ ¯) @ T @ @ Tœ L − ÐY Ñ œ L. − ÐY Ñ "1
+

#

and -antiexact forms. We thus find . Therefore,¯ ¯# LÐ Ñ œ L.  L œ@ ) @ )+

we obtain

. œ .L. œ . œ  • .  . •  •  •

œ .Ð • Ñ  •  •

@ @ @ ) ) ) ) ) @ @ )

) ) ) @ @ )

¯ ¯ ¯ ¯ ¯
¯ ¯

+ + +

+ + .

When we apply the operator  to that expression, we get ¯ ¯L L. œ œ@ @+ +

) )•  and we obtain the following representation

@ ) ) ) @ ) ) )¯ (6.8.13)œ .  • ß œ Ð.  • ÑA A"

whereas (6.8.12) takes the shape

> ) ) >œ Ð  . Ñ œ Ð  . ÑA A A A A A" "  and   . (6.8.14)

Let us now define the matrix forms  and  through= A 5 A− ÐY Ñ − ÐY Ñ5 5"

the relations

H = D 5œ ß œA A .

So the equation (6.8.6)  is transformed into"

. œ . •  . œ  • H = = > = 5A A A A

from which we extract the expression

. œ  Ð  . Ñ •  œ  • = > = 5 ) = 5A A A" . (6.8.15)

Similarly, the equation (6.8.6)  becomes#

. œ . •  . œ Ð.  • Ñ •  •D 5 5 ) ) ) = > 5A A A A A A"

and one obtains

. œ  •  Ð.  • Ñ •5 ) 5 ) ) ) =. (6.8.16)

After having resorted to Theorem 6.4.3, we can write

= 9 = 5 ( 5 " ) =œ .  ß œ .  ß œ •+ + (6.8.17)

where we introduced the matrix forms ,9 = H Tœ L œ LÐ Ñ − ÐY ÑA" 5"

= T ( 5 D T 5 T+ +
5 " 5 5"− ÐY Ñ œ L œ LÐ Ñ − ÐY Ñ − ÐY Ñ and , . It thenA

follows from (6.8.17), (6.8.15) and (6.8.16) that

. œ . œ  œ .   ß

. œ . œ . •  • Ð  Ñ œ . •  • . œ . Þ

= = 5 " ( 5 "

5 5 ) = ) 5 " ) = ) = "
+ +

+
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On applying the operator  to these equations, we getL

= " (

5 " " "
+

+

œ  L  ß

œ L. œ  .L

and, consequently, we arrive at the result

= 9 " ( 5 ( " "œ .  L  ß œ .  .L  . (6.8.18)

In the relation

" ) 9 ) " ) (œ • .  • L  •

) " ) (• L • and  are antiexact forms. Therefore, we can write

L œ LÐ • . Ñ œ • .  • LÐ • . Ñ  •" ) 9 " ) 9 ) ) 9 ) (   and   .

On the other hand, if we take notice of the relation .L œ .LÐ • . Ñ œ" ) 9
) 9 ) 9 ) 9 ) 9• .  L.Ð • . Ñ œ • .  LÐ. • . Ñ, then (6.8.18) leads to

= 9 ( ) 9

5 ( ) ( ) 9 ) ) 9

œ .   LÐ • . Ñ

œ .  •  LÐ. • . Ñ  • LÐ • . Ñ

,
.

Thus, the solution of the system of exterior differential equations (6.8.6) is
provided by

H 9 ( ) 9

D ( ) ( ) 9 ) ) 9

> )

) >

@ ) ) )

œ .   LÐ • . Ñ ß

œ .  •  LÐ. • . Ñ  • LÐ • . Ñ ß

œ Ð  . Ñ ß

œ Ð  . Ñß

œ Ð.  • Ñ

A
A
A A A

A A A
A A

 ‘ ‘
"

"

"

(6.8.19)

where  and  are arbitrary matrix forms and the9 T ( T− ÐY Ñ − ÐY Ñ5" 5

matrix  is determined by solving the integral equation (6.8.11) once theA
matrix form  is prescribed. The matrix form  is then found> ) T− ÐY Ñ"

from (6.8.19) . On the contrary, if we choose a matrix form , then the% )
admissible matrix form  is deduced from (6.8.19) . The matrix  has to be> $ A
the solution of the integrodifferential equation

A A A I LÐ  . Ñ œ)

obtained from (6.8.11) by replacing  by (6.8.19) . Let us now define a> $

matrix form  by  whose exterior derivative< T < ( ) 9− ÐY Ñ œ  LÐ • . Ñ5

is expressible as . Then we easily verify. œ .  • .  LÐ. • . Ñ< ( ) 9 ) 9
that the relations (6.8.19)   are reduced to simpler forms given below"#
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H 9 < D < ) 9 <œ Ð.  Ñß œ .  • Ð.  ÑA A ‘. (6.8.20)

But, in order that these equations are to be legitimate, we have to demons-
trate that the matrix  determined through (6.8.11) is regular, that is, A E œ
det A A A AB BÁ ! .  . œ . We rewrite (6.8.10) as . We can then# .!

"
!

easily find that  is expressible as.E

.E œ Ð`EÎ`+ Ñ.+ œ Ð + Ñ .+

œ E + .+ œ E Ð. Ñ

4 4 4 4
3 3 3 3

3 4

4 3 "

Cofactor
" tr .AA

Hence, we obtain tr tr.E œ  E Ð.  Ñ œ  E Ð.  Ñ# . # .AB B A!
" "
!

and consequently

. E œ  . ß L. E œ  L. Llog logtr tr tr tr .# . # . 

Since  and , we get tr . WeL œ L. œ EÐ Ñ  " œ  Ð Ñ. # # #! log logx x
thus conclude that

EÐ Ñ œ / œ / Á !x   Ltr tr# >

proving that  is a regular matrix.A
Next, we define two systems of exterior differential equations on an

open set :Y © Q

. œ  •  ß . œ  •  ß

. œ • • ß . œ • • ß

. œ  •  ß . œ  •  ß

. œ •  • ß . œ •  • Þ

H > H D H > H D

D @ H > D D @ H > D

> > > @ > > > @

@ @ > > @ @ @ > > @

w w w w

w w w w w

w w w w

w w w w w

 

We say that these two systems are  if we have  on ,equivalent H Hœ Yw

namely, if they lead to the same solution. In such a case we first observe
that the relation

D D > > Hw wœ  Ð  Ñ •

must be satisfied. Actually both systems involve same kind of solutions as
(6.8.19). But these solutions should be interrelated in order to obtain the
same from those two systems. These relations turns out to be quite com-H 
plicated. That is the reason why they are not included here. Notwithstand-
ing, a specific situation bears a particular importance. In the second system,
let us take

>w "œ  .A A .
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Then (6.8.19)  gives rise to  and .$
w " w "> > ) D D ) H œ œ  •A A A A

We know that . We thus get  so we find that) T ) T− ÐY Ñ − ÐY Ñ1 1A A"

# > ) > #w w " " "œ LÐ Ñ œ  LÐ. Ñ œ LÐ  . Ñ œ LÐ Ñ œA A A A A A .

This implies that  and  satisfy the same matrix integral equation (6.8.11)A Aw

so that we can take . On the other hand, it follows from the relationA Aw œ
. œ  .A A AA" " " that

. œ . • . œ  . • . œ  •> > >w " " " w wA A AA AA .

We thus obtain  and . Furthermore, we find@ ) @w w " wœ œ LÐ Ñ œ! !A A

9 H 9

( D D ) H ( ) =

( ) 9 ) = ( ) 9

w "

w " " "

+

œ LÐ Ñ œ ß

œ LÐ Ñ œ LÐ  • Ñ œ  LÐ • Ñ

œ  LÐ • . Ñ  LÐ • Ñ œ  LÐ • . ÑÞ

A
A A Aw

We thus understand that any system of exterior differential equations is
equivalent to the system

. œ  •  ß . œ • ß . œ  • ß œH > H D D > D > > > @w w w w w w w w w w w !.

As to the solution of the equivalent system, it is easily found that

H 9 ( D ( >œ Ð.  Ñß œ . ß œ  .A A A Aw w w w "

from which we reach to a sort of generalisation of the Frobenius theorem: a
representation for a matrix -form  becomes possible if andH 9 Hœ . 5A  
only if . This entails of course the condition .( Dw wœ œ! !

Example 6.8.1. The matrix forms  and  areH A > A− ÐY Ñ − ÐY Ñ5 "

given by

H >œ ß œ  .0ß œ ß 0 − ÐY Ñß 0Ð Ñ œ !
+ +

#+ !” • ” •H
H

A"

#

!
!G G x

where  is a constant. We search for the solution of the system of exterior+
differential equations . In terms of the component forms,. œ  •H > H
this system is expressed as follows

 .. œ + .0 • Ð  Ñß . œ #+ .0 •H H H H H" " # # "

We immediately observe that

. œ ß • œ .0 • .0 œ> > >! !G# .

In this case (6.8.6) yields  and, consequently, . It then follows@ )œ œ! !
from (6.8.19) that . The integral equation (6.8.11) now takes> œ  .A A"
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the form . This in turn gives , thatA A I A x A x A x I LÐ. Ñ œ Ð Ñ  Ð Ñ  Ð Ñ œ!

is, the integral equation is satisfied identically. Hence, the matrix  is deter-A
mined from the solution of the differential equation .. œ  œ .0A A GA>
We know that the solution is expressible as

A x A x IÐ Ñ œ / ß Ð Ñ œ / œ0Ð Ñ 0Ð Ñ
!

x G x G! .

Since  is a  matrix, we can write 0 # ‚ # / œ Ð Ñ  Ð Ñ0Ð ÑG x I x x G0Ð Ñ
! "

x G ! !
according to the celebrated Hamilton-Cayley theorem which states that
every square matrix satisfies its characteristic equation. The eigenvalues of
the matrix  are  and  so that the coefficient functions andG x  #+  + Ð Ñ!!

!"Ð Ñx  are found from the equations

/ œ  #+0 ß / œ  +0#+0 +0
! " ! "! ! ! !

as the following expressions

! !! "

#+0Ð Ñ +0Ð Ñ #+0Ð Ñ +0Ð Ñ

Ð Ñ œ ß Ð Ñ œ
/  #/ /  /

$ $+0Ð Ñ
x x

x

x x x x
.

Therefore, the matrix is given byA 

A œ

#/  / /  /

$ $
#Ð/  / Ñ /  #/

$ $

Ô ×Ö ÙÖ Ù
Õ Ø

#+0Ð Ñ +0Ð Ñ #+0Ð Ñ +0Ð Ñ

#+0Ð Ñ +0Ð Ñ #+0Ð Ñ +0Ð Ñ

x x x x

x x x x .

Since, in the present example we have , the solution will be in theD œ !
form . We thus obtain the solutionH 9œ .A

H 9 9

H 9 9

" " #
#+0Ð Ñ +0Ð Ñ #+0Ð Ñ +0Ð Ñ

# " #
#+0Ð Ñ +0Ð Ñ #+0Ð Ñ +0Ð Ñ

œ Ð#/  / Ñ .  Ð/  / Ñ .
" "

$ $

œ Ð/  / Ñ .  Ð/  #/ Ñ .
# "

$ $

x x x x

x x x x

where   is an arbitrary vector function.9Ð Ñ œ Ò Ð Ñ Ð ÑÓx x x9 9" #
T

VI.  EXERCISES

6.1. For forms  given below evaluate the forms  and their  exact= A ‘ = =− Ð Ñ L%
/

 and  antiexact parts.  is the homotopy operator with the centre =+ L ÐBß Cß Dß >Ñ
 :œ Ð!ß !ß !ß !Ñ
   Ð+Ñ œ Ð"  > Ñ .B  D .C  B .D  BCD .>Þ= # $

   Ð,Ñ œ > .B • .C  C .B • .D  D .B • .>  B .C • .D  BC .D • .>Þ= # $ #

   Ð-Ñ œ B > .B • .C • .D  ÐB  D Ñ .B • .C • .>  C> .C • .> • .DÞ= # # #
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   Ð.Ñ œ ÐB  C  D  > Ñ .B • .C • .D • .>Þ= # # # #

6.2. Repeat the above operations by shifting the centre of the homotopy operator
 to the point .Ð"ß !ß "ß !Ñ
6.3. For the form  evaluate the forms= A ‘œ Ð$>Ñ .B  Ð#DÑ .C − Ð Ñcos sin " %

 . The centre of the homotopy operator  is the point .L ß ß L Ð!ß !ß !ß !Ñ= = =/ +

 Determine the same forms when the centre is changed to the point .Ð"ß "ß "ß "Ñ
6.4. Determine the Darboux classes, ranks and indices of the forms = A ‘− Ð Ñ" %

 given below:

Ð+Ñ œ C .B  B .C

Ð,Ñ œ CD .B  B C> .>

Ð-Ñ œ Ð"  > Ñ .B  ÐB  C  D Ñ .C  BCD> .>

Ð.Ñ œ Ð>  D Ñ .B  ÐB  C  "Ñ .D  ÐC  DÑ .>

Ð/Ñ œ C> .B  ÐB  >  DÑ .C  Ð"  C

 

 

 

 

 

=

=

=

=

=

# #

#

# # # $

$ # # #

# # Ñ .D  ÐD  BÑ .>#

6.5. Let . Show that the following relations= A− ÐQÑ

Ð/ Ñ œ L.  / .L ß Ð/ Ñ œ .L  / L.>.L > >L. >= = = = = =

 can locally be validated. 
6.6. The function  vanishes at the centre of the homotopy operator,? À Q Ä ‘
 that is, it satisfies the condition . Consider the following integral?Ð Ñ œ !x!

 equation for the function :0 À Q Ä ‘

0 œ "  LÐ0 .?Ñ.

 Show that the solution of this integral equation is given by .0 œ /?

6.7. Investigate the same problem for the integral equation

0 œ 5  LÐ0 .?Ñ

 where  is a given constant. Discuss the case  .5 Á ! ?Ð Ñ Á !x!

6.8. Assume that ,  andH A ‘ D A ‘− Ð Ñ − Ð Ñ" $ # $

> A ‘œ Ð#B  DÑ .B  Ð#C  DÑ .C  ÐB  CÑ .D − Ð Ñ" $ .

 Find the solution of the exterior differential equation . The. œ • H > H D
 centre of the homotopy operator will be taken as the point .! − ‘$




