CHAPTER VII

LINEAR CONNECTIONS

7.1. SCOPE OF THE CHAPTER

Derivatives of components of vector and tensor fields on differentiable
manifolds with respect to local coordinates are not generally components of
a tensor. However, it becomes possible to define a sort of derivative of a
tensor field which proves to be also a tensor through a geometrical structure
imposed on a manifold called a linear or affine connection. In this way, we
can properly accomplish the task of extending the classical differential geo-
metry to higher dimensions. From another standpoint, the affine connection
can be interpreted as a suitable structure interconnecting neighbouring tan-
gent spaces of a smooth manifold and thus enabling us to differentiate ten-
sor fields. Although the inception of the concept of the linear connection
goes back to the developments in 19. century in the geometry and tensor
calculus, its formal structure is merely established in early 1920s by Elie
Cartan and Herman Weyl. The term connection was first used by Cartan. In
Sec. 7.2, we define a third order linear connection that is not a tensor but
whose coefficients transform obeying certain rules under change of coor-
dinates. Except for this restriction this geometrical object on a manifold can
be chosen arbitrarily. We then discuss the covariant derivative of a tensor
preserving the tensorial properties by means of a linear connection and its
characteristics. We further scrutinise the torsion and curvature tensors of a
manifold introduced through the linear connection. Sec. 7.3 is concerned
with the Cartan connection engendered by choosing an arbitrary basis and
its dual in the tangent and cotangent bundles, respectively, instead of the
natural basis and its dual. The torsion and curvature tensors are then defined
via that connection. Cartan connection enables us to study the differential
geometry of a manifold by employing a moving frame (repére mobile). We
define the Levi-Civita connection on a Riemannian manifold in Sec. 7.4 as a
connection that causes the covariant derivative of the metric tensor and the
torsion tensor to vanish. It is shown that such a connection is determined
uniquely. Finally, Sec. 7.5 is devoted to study the special structures of the
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366 VII Linear Connections

operators d, §, A introduced in Secs. 5.8 and 5.9 acquired by means of
covariant derivatives within the context of the Levi-Civita connection.

7.2. CONNECTIONS ON MANIFOLDS

We know that vector and tensor fields on smooth manifolds are spe-
cified by their components that are differentiable functions depending on
local coordinates in charts of an atlas. But derivatives of those components
do not usually constitute components of a new tensor. Notwithstanding, we
can manage to create new tensor fields by some kind of differentiation of
vector and tensor fields on tangent and cotangent bundles by endowing the
manifold with a new structure. Let us start by considering a rather simple
example. A vector field V' € T' (M) on the manifold M is designated by

0

V = (x) RIS

in natural coordinates. We know that a coordinate transformation in the lo-
cal chart like y’ = y'(2’) gives rise to a transformation between contra-
variant components of the vector at the point x as follows

i ayi
vi(y) = 2w,

If we calculate the gradient of the components v"* by using the chain rule of
differentiation, we obtain

ov't B Oy’ Ox! O* 0%yl ox!

- . — X 1 T~ -~ 7 =~ 1~ 7 ~ . .2.1
oyl OxF Oyl Ox! * Oxkox! 8yﬂv (7.2.1)

This transformation rule under a general change of coordinates shows
clearly that the quantities Ov*/dx! cannot be covariant and contravariant
components of a second order tensor due to the existence of the second part
in (7.2.1). If only the coordinate transformation satisfy the relations

aQyi
oxkoxr! 0,

that is, if it is an affine transformation given by y' =a’x7 4 b’ with constant
coefficients, only then the gradient behaves like a tensor. We shall now try
to modify m? quantities 9v* /0x! in such a way that it will acquire the pro-
perties of the components of a (})-tensor. To this end, we introduce a new
operation of differentiation that will be called the covariant derivative. This



7.2 Connections on Manifolds 367

derivative of the component v’ with respect to the variable 2/ is identified
by means of presently arbitrarily chosen m? functions I'%.(x) as follows

V' =v'y =+ i (7.2.2)

where the functions F;k(x) will be called the coefficients of linear or affine
connection. Next, we shall attempt to determine these coefficients in such a
way that v',; = V;v' become components of a second order (i)-tensor. We

thus wish that the following relation must be satisfied in a coordinate trans-
formation y' = y'(x7):

On utilising (7.2.1), we easily obtain the transformation rule

Ouf a0k | O Drl g OV g O O Oy )
oxk Oyl dx!  Oxkox! Dy * ot Oxk 0yi \ dx! fn

where I‘;Zk (y) denote coefficients of the linear connection in the new coor-
dinate system. After having cancelled similar terms in both sides and modi-
fied the dummy indices appropriately, we are led to the conclusion
o (1 Oy Oy 0r' Oy ‘9_96[> _
Ik §n mozk oyi " dxndxt Ay

In order that this expression holds for every component function v" we have
to choose the coefficients I'j; and I'}; in such a way that they must obey the

transformation rule

_ Gyi @81’” m(x) B 82yi ixlaxn
T 9xm dyi oyt I Oxndx! Oyl dyk”

Ll (y)
On the other hand, differentiating the expression

o or
ozl oys — Y

resulting from the chain rule, with respect to the variable ™ we find that

82yi 8_.%‘l_ _ayi 82{L'l _ _ayi 82xl a—yk
Oxndx! Oyl Oxl Oyidxn  Oxl Oyioyk oxn’

Hence, we can write
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a2yi Ox!l Hx™ _ 6yi 82! 6yl o™ 82! ayi

© 9xn0z! Oyl ByF Ol Dyidyl Oz dyk  dyidyk Ol

and, consequently, we obtain

. B oy' 0z’ Ox m
I (y) = W@WPZ”(X) +

0%zt Oy

W@. (7.2.3)

Every choice of coefficients F?k verifying the transformation rule (7.2.3)

gives rise to a covariant derivative and conduces to a linear connection.
Thus, it appears that it is possible to have many, probably infinitely many,
choices for linear connections. The coefficients F?k are usually named as the
Christoffel symbols of the second kind, because they were employed for the
first time by German mathematician Elwin Bruno Christoffel (1829-1900)
in tensor analysis within the context of the Riemannian geometry. The rule
(7.2.3) indicates clearly that the Christoffel symbols cannot be the compo-
nents of a third order tensor. Nevertheless, the symmetry of mixed partial
derivatives leads us to the result

i <8yi 87:1:18%’ B oy M@x”)
gk ki ox™ Oyl dyF  dx™ Oyk Oy
_ ayZ axl oz" m m

- axma—wayk( In — nl)'

m
in

This clearly shows that T}, = 5(I'), — T'};) which are the antisymmetric
parts of Christoffel symbols with respect to their subscripts, behave like the
components of a third order (;)—tensor antisymmetric with respect to covar-
iant indices.

When f € A°(M), then we already know that f; are components of a
covariant vector since df € A'(M). Hence, we can take f; = f.; = V. f.
Let us now represent the vectors V;V,j=1,...,m denoting covariant

derivatives of a vector field V' with respect to variables x/ by the vector
field

o _ i 0
ViV = (Vi) g =55
We can then introduce a second order (| )- tensor by

. , -0 , -0
VV =did @ V,V = (Vi) da! @ 5o = v jdal @ 7. (1.2.4)
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The second order tensor V'V is characterised as the gradient of the vector
field V. We also call it the covariant derivative of the vector field V. The
operator V = dx’/ ® V; is in the form V : T(M) = T(M)} — T(M)} and
it assigns a second order tensor field to a vector field. It follows from the
definition (7.2.4) that if V4, V5 € T'(M), we get

V(Vi+V)) = VVi + VTh.
On the other hand, if f € A°(M), then we find that

7 j 8 7 7 i a
V(fV)=V;(fv')dx’ ®@ = (f'+fVp')da! ®@

=df@V+fVV.

Therefore, the operator VY is linear only on real numbers. Let us now
especially choose V' = 09/0z" whose components are v = §i. Then (7.2.2)
gives Vju' = T8, = T and it follows from (7.2.4) that
0 -0 0 - .0

ij = Fljk%, VW =T do’ ® Eye (7.2.5)
These relations geometrically expresses the fact that the coefficients of a
linear connection measure the change between basis vectors of a tangent
space and those of an adjacent tangent space on a manifold. It seems that the
operator V interconnects neighbouring tangent spaces by means of the
coefficients of connection providing thus a tool for transporting vectors in
one tangent space into another tangent space. In this way, it becomes
possible to differentiate vectors and endow these derivatives with tensorial
properties independent of coordinate transformations, and to find a counter-
part of the concept of parallel transport on differentiable manifolds that is
almost trivial in the Euclidean space. That are the reasons why the operator
V is sometimes called a linear or affine connection on a manifold.

We postulate that the covariant derivative specified by the operator V ;
will still obey the classical Leibniz rule. With the help of this postulate we
can easily evaluate covariant derivative of a covariant vector, or in other
words of a 1-form. Let us consider w € A}Y(M) and V € T(M) so that we
write w = w;dr’ and V =v'9;. We thus obtain w(V) = w;v' € A°(M).
Therefore, the relation

N [ S N i
(wiv') j = wi 0" + wiv); = (wiv');; = wiv' + wiv;
o (i iookN i ki
= w;;jV" + w; (v T+ I‘jkv ) = w;i,v +wiv' j + wkfjiv

yields [wi;j — (wivj — I‘é?iwk)]vi = (0. Because the vector V' is arbitrary, we
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finally obtain
kwp. (7.2.6)

Vjwi = wij = wij — 1y,

We can easily verify that w;,; are components of a second order covariant
(g)—tensor. If we recall the transformation

, Ok

and employ the relation (7.2.3) and the chain rule, we get

oW, & s 0%k 0z" dwy, 0x!
oy’ FER T Byidyi Oyt Ozl Oy
oyt oz ox _, OxP 0%zl Oy* OxP
oz oyl Ayt - Moyk T Ayidyt dxtl dyk P
D%k 9%t n OxF dx! dwy,
oyioyl T yioyi T Oyt dyi O
oz Ox" Ok 0z / Owy,
oyl oy "M T By ayi \oal KT
Hence, we obtain
oz Ox*
ror
VI gy oy Yk
as it should be. Let us now define 1-forms V,w, j =1,...,m by

V]w = iji d$7 = Wi;j dlj
Then the covariant derivative of a 1-form w can be written as
Vw=dz' ® Viw=Vw dt' ®ds' = wi;da’ @ da’.  (7.2.7)

If we choose a form w = dz*, we have w; = 6F and (7.2.6) yields V jw; =
—Tl;6f = —T'% so that we find

Vida* = =Tl da', Vda* = — T da/ @ da’. (7.2.8)

Hence, the same coefficients of a connection measure also the changes in
basis forms in the cotangent bundle between adjacent dual spaces.

We can now proceed to calculate the covariant derivative of a tensor
field 7 € T(M)F by taking into account the equalities (7.2.5); and (7.2.8);
associated with basis vectors and the Leibniz rule. Let the tensor field be
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given by

0 , ,
T =i ® - ® RKdr’ @ @ dz’.

Jiedi Oxh Oxir

The covariant derivative of this tensor is found to be a tensor specified by
the expression

ViT = tylZﬁJale B ik ®dr’" @ - @ dz
k
ii, O 0 ,
+Zt;_..],a 5@ @Vo @@ o ® - ® da
0 0
+Zt11~-7za i ol
_vtll Zk 8 R ® ®d ]1® ®d ]l
J%51- Jza i1 a i x T

It is easily verified that the covariant derivatives of the components of that
tensor with respect to the variable x/ are expressed by the relation

iy

v tLI g :ti‘y'-i‘k R ) JI § /‘1-\ 71 l, 1M1 Tk

Vg J1 000 a$J i
7,1 Zk
Zfﬂ, fCET—

Thus the covariant derivative V7 € T(M)},, of a tensor field 7 € T(M)F
is defined as

V7T =da! @ V,T (7.2.9)

pye ® - ®ai®dx”® @ dazt

This time, the operator V is in the form V : T(M)} — T(M)f,,. Let T
and S be two tensor fields. It is straightforward to check that

V(T®S)AVT®S+T @ VS.

i yi
_tl de &

Indeed, the two tensor products in the right hand side are actually different
tensors because the forms dx’ appearing in covariant derivatives do not
occupy the same place in them. So, it is not possible to add those tensors.
Hence, covariant derivative of tensor products cannot satisfy the Leibniz
rule. But, we can readily verify that the Leibniz rule holds for covariant
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derivative of tensor components. Let us now consider 7 € T(M)} and
S € T(M)}. 1t follows from the definition of the covariant derivative V;

that we find the relation below for the components of the tensor product
T®S:

ky--k

i st 7

(till"'i[\:s]‘7l"‘kp) e 8t?l ]18 kp _l_tn g Iy,
g Sty ly )3 (%UJ - A

7, URRRRSTNIRY 1/ R R T SRRV
+ Z FJ” Jidn 81y,
i1 eig ke K1 k7 nkep1ky
+ Z t]l Ji FJn Iy
ky---k
1 P
Z LN R 7 TR
- Zt P
Ji- ]l ]lr ll lr—1nlyyq-- l

k

_ 4l k1
=t el

g vt t“ Lksl
Hence, we are now allowed to write the following relation

VilT®S)=V,T®S+7T®V,S. (7.2.10)

We can now define on the tangent bundle of a manifold the covariant

derivative of a vector field V in the direction of a vector field U by means
of the affine connection V as follows

VoV =iy (da!)V,V = w/V;V = (v Uj)aii

eT(M).

(7.2.11)

= [U(Ui) +F§kujv ]aaz

where we have obviously defined the operator Vi = u'V;. We immediately
observe that one obtains Vs,V = V;V and

Vo,0r = I'%.0;. (7.2.12)

Thus the connection coefficient F;k clearly denotes the ith component of the

covariant derivative of the kth natural basis vector in 7°()/) in the direction
of the jth natural basis vector. Therefore, the affine connection can also be
interpreted as an operator V : T(M) x T(M) — T(M). For f € A°(M),
we simply get
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Vuf=u'f;=U(f). (7.2.13)

On resorting to the definition (7.2.11), we can easily demonstrate that the
following relations are satisfied:

Vo,V =Vu,V+ ViV, Vu(Vi+Va) = VWi + Viyba.
Moreover, for all functions f € A°(M) we obtain for all U,V € T(M)
VfUV = fVUV, VU(fV) = fVUV + U(f)V. (7.2.14)

Thus, the operator Vi proves to be linear with respect to the vector U on
the module A°(M). On the other hand, V;; becomes linear with respect to
the vector V if only U (f) = 0, consequently, only on R.

Let us consider a curve C' = ~y(¢) on the manifold M described by the
mapping v : Z — M. If U(¢) is the tangent vector to this curve, we know
that we can write

0 : dz'  dy'

= = HE) = —
U=uom wt)="="7

where 7' = ¢’ o . We say that a vector field V is parallel along the curve
C if VgV = 0. In view of (7.2.11), the components of such a vector field
V must satisfy

o' dz’ cdxd o do da?

R L = 4T () == =0, (7.2.15
owi ar Tl gV = g TER00) gt =0 ( )

(7.2.15) comprises a system of m first order linear ordinary differential
equations to determine m dependent variables v'. With a prescribed initial
condition V' (t9) = Vi, the solution V' (¢) of (7.2.15) is called the parallel
translation of Vj, along the curve C'. If Fé—k = 0 on the manifold, then equa-
tions (7.2.15) yields v’ = constant on C. A curve C is called a geodesic of
the manifold if its tangent vectors are parallel along C'. Therefore, the
condition Vy U = 0 must be satisfied on a geodesic.. Hence, the family of
geodesics on a manifold are integral curves of the following system of
second order, generally non-linear ordinary differential equations

d*z’! ; daz dx*

4T (x)—— —— = 0. 7.2.16
a2 () dt dt ( )

Obviously, they are heavily dependent on connection coefficients. We can
transform these equations to a system of first order differential equations by
introducing auxiliary variables as follows
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dx' . dul ; ;
g = g =~ Tuut

from which we conclude that there is a unique geodesic on a smooth mani-
fold M through a point p € M and tangent to a vector U at that point. If
F;k = 0 on a manifold, the solution of (7.2.16) reduces merely to the family
of straight lines ©' = a't + b'.

If a vector field V satisfies the condition ViV = 0 for every vector
field U, we say that it is a parallel vector field on the manifold. In this case,
(7.2.11) leads to (v’ ; + T%v*)u/ = 0 for all w/ € A°(M) or

v+t =0 i k=1,...,m (7.2.17)

(7.2.17) is a system of m? first order, linear partial differential equations in-
volving only m variables v*. Thus, it is usually no avail to expect to find a
parallel vector field on a manifold unless its linear connection has a particu-
lar structure. It is quite easy to establish the integrability conditions of these
differential equations. It follows from (7.2.17) that

V= — F}k,zvk - F;‘kv,kl = - (F}n,l + F_ijrfn)vn'
Therefore, the compatibility relation v’ ; = v ;; can only be satisfied if

] , —_— —_—
_;'n,l - ;n,j + FZ]kFln - ;krjn =0.

We shall show a little later that a connection whose coefficients are satisfy-
ing the above relations is curvature-free.

For a tensor 7 € T (M), we define in a similar way
VuT =iy (de?)V;T = w'V,T € T(M)]. (7.2.18)

The tensor VT is called the covariant derivative of a tensor field T in the
direction of the vector field U. Due to (7.2.10), we observe at once that the
following rules are obeyed

Vu(Ti +T2)=VuT + VuTs,
Vo(h @ h)=VuTi T, +T ® VyT,.

It is also clear that the operator Vi commutes with any operation of con-
traction on a tensor T .

Torsion and Curvature Tensors. We know that for any function
f € A°(M) partial derivatives are order-independent so that the symmetry
relation f;; = f; is met. Since f,; are components of a covariant vector, we
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may ask whether this property is also preserved for covariant derivatives,
that is, we may question the validity of the equality V;f; = V, f ;. The rela-
tion (7.2.6) results then in

Vifi—=Vifj=fii—Thfe— fi+T5fr= @5 =T%fr =T f
We have seen on p. 368 that
ko k_ ok pk
Tij= -1 =13 -1y (7.2.19)

is a third order (%)—tensor which is antisymmetric with respect to covariant
indices. It is called the torsion tensor of the manifold. If the connection is
symmetric, that is, if F = 1“;2, then the torsion tensor vanishes. For a non-
Zero TL’j, we necessarily get V;f; # V,;f ;. Let us now try to repeat the ope-
ration above associated with a scalar function for a vector V' this time. On

utilising (7.2.2) we obtain
ViVjo' = (Ui,j + Fé’ﬂ’l),k + I}, (0" + Fgﬂ’ ) — Zj(”i,n + Iy,
= ' i+ (Tl + D D)0’ = Ty Voo + Tl + Tyl
Hence, we are easily led to the conclusion
ViVj' = V;Vpo' = R 0! = T,V (7.2.20)
where we have defined
R;kl = Ffj,k - F%j,l + T I~ in [ (7.2.21)

Since the left hand side of (7.2.20) involves the components of a third order
tensor, (7.2.21) are components of a fourth order tensor according to the
quotient rule. This tensor is called the curvature tensor of the manifold.
Hence, the second covariant derivatives of a vector commute if only the tor-
sion and curvature tensors of a manifold vanish. It is evident that the curva-
ture tensor is antisymmetric with respect to its last two covariant indices:

= — R (7.2.22)

We consider two vector fields U, V' € T'(M). We then obtain

S i gk O
— ) ? k R v L k
VoV —VyU = [(U g w + I u'v )] oz [(u J v+ Typv'u )] oxt
i k

= (I, — Tiju'v 8—+(” ! — o)

ozt
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o 0
= [T;kujvk + [U, V]z] F
Thus the torsion operator

0
T(U,V)=VyV - VyU - [U,V] = kujvka— (7.2.23)
x
assigns obviously a vector field to two vector fields through (7.2.23). As
such it is of the form 7: T (M) x T(M) — T(M). Let us now consider
three vector fields U, V', W € T'(M). We just obtain

VuVyW = w + ulw'y + (ij, + F,nf‘jk)u v

gl

, o 9
+ F}k(ulv] + u-’vl)w;k,} EE

If we recall the relation (7.2.20) and pay attention to symmetric terms with
respect to vectors U and V, we then arrive at the result

0
oz’

VoVyW = Vy VW = ([U, VW), + Rj;u'v/w")

Thus the curvature operator
p(U,V)=VyVy —=VyVy =V =[Vu, Vvl = Vv (7.2.24)

is instrumental in assigning a vector field to three vector fields U,V , W by
the relation

R
_ i l k
p(U, V)W = (R u v )w py

It is of the form p : T(M) x T(M) — T(M)1. It follows from (7.2.23) and
(7.2.24) that

(U, V)= —7(V,U), p(U, V)= —pV,U).

= pi(U,V) w’faii. (7.2.25)

Making use of (2.10.19) and (7.2.14), we readily observe that we can write
T(fU,gV) = fgr(U,V), p(fU,gV)hW = fghp(U,V)W

forall f,g,h € A°(M).

Some results obtained in this section by employing Christoffel symbols
can be reversed in order to define the connection in the sense of Koszul
[French mathematician Jean-Louis Koszul (1921)]. Koszul has abstractly
defined the affine connection V as a mapping that assigns a vector Vi V' to
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every pair of vectors (U, V). This mapping is desired to satisfy the rules
mentioned on p. 373. With this definition Christoffel symbols are prescribed
by the relation (7.2.12) and the covariant derivative is introduced in a simi-
lar way. The expressions (7.2.23) and (7.2.24) are employed to define the
torsion and curvature tensors, respectively.

7.3. CARTAN CONNECTION

In the previous section, we have employed natural basis vectors in
T (M) and T* (M) determined by local charts. We now prefer a more gene-
ral approach in introducing the linear connection. Let us construct a basis
for the tangent bundle T'(M) by collecting arbitrarily chosen m linearly
independent vectors ey, es, ..., e, € T,(M) associated with every point
p € M. Since T'(M) is closed under the Lie product, there exist some func-
tions cfj € A°(M) satisfying the relations

eiel] =clen, i,5,k=1,...,m. (7.3.1)
J 1]

We know that the conditions (2.11.3) and (2.11.4) must be imposed on these
functions. They may now be written as

k __ k
Cij = — Cjis

k k k k k k
cficpy + Chyciy - chiciy +ep(ch) +eilc;,) +ej(cy;) = 0.

Cartan has called the basis vectors {e;} attached to every point of the mani-
fold as the moving frame. Let us now denote the reciprocal basis vectors,
namely, 1-forms in 7%(M) by 6',...,6™. They of course satisfy the rela-
tions 6'(e;) = ic,(6") = 6!. Resorting to the path followed in Sec. 5.14, we
immediately discern that the reciprocal basis vector must obey the rules

T, .
dot = — 3 SN (7.3.2)

We shall now introduce an affine connection on a manifold M through a
mapping V : T(M) = T(M)} — T (M)} satisfying the following rules:

VU +V)=VU+VV, (7.3.3)
V(fV)=df @V + fVV, Vf=df vf e A (M),

The last rule specifies the action of the mapping V on a scalar function f.
We call V the Cartan connection and the tensor VV the covariant
derivative of a vector V with respect to that connection. If we express 1-
form df as Vf =df = a;#', then the familiar properties imply that
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ic,(df) = e;j(f) = a so that V f is expressible as
Vf=df =e(f)0 € A'(M).

Next, let us employ the description V f = (V; f)¢ that is tantamount to say
that the covariant derivative of a function f € A°(M) in the direction of the
vector e; with respect to Cartan connection is given by

Vif = eilf). (7.3.4)
Covariant derivatives of basis vector can be expressed in the form

Ve, =,0" @¢;, +], € A'(M) (7.3.5)

where the functions *yii play now the part of connection coefficients. Then,
the covariant derivative of a vector V' is evaluated from (7.3.3),, (7.3.4) and
(7.3.5) as the following expression

VV =V(v'e) =dv' @ e; +v'Ve; = [e;(v)) + 'y;kvk]ﬁj ® e;.
If we denote the components of this tensor by V;v', we can write
VV =Vt @e, Vi'=e(')+50" (7.3.6)

Let us further define the vectors V,;V = (V,v')e; that allows us to write
VV = 6) ® V,V. Then, we obviously draw the conclusion

Ve = ’y?iek. (7.3.7)

Let us now choose a new basis in 7T'(M) via a regular matrix B(x) as
follows: €] = be;. If we suppose that reciprocal basis vectors transform in
the form 6" = a§ 67, then we find that

6 = 0(€)) = ajbl 6" (er) = ajblef = ajdl

implying that A = B~1. Components of a vector with respect to the new
basis will become v"* = aﬁ-v-’. In this case, we can write

dv' = d(bjv"7) = v7db} + b dv” = bl dv”? + v e (b))0".
Hence, we obtain
VV =dv' ®e + 70" 0/ @
= al [bf dv + v’jek(bé)e’k] ® e + Vékbfbj a0 @ el

me
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= [dv7 + v’kajeg(b,i)ﬂ'l] ® €} + 'yj-kbfbfﬁa?v’l@'m ® el
=dv" ® e} + "0 @ €]

from which we deduce after properly changing the dummy indices that the
connection coefficients in the new basis must satisfy the relation

7}]6 - albmbk’%rm + aéeg(bi) = aébTbeYirm + a}b;”em(bé)

Because of the last terms, we understand that the coefficients 'y;k cannot be
components of a third order tensor.

Let us now consider a vector V = v'e; and a 1-form w = w;#". Since
we have assumed that the operator V; satisfies the Leibniz rule, the expres-
sion w(V) = w;jv' € A°(M) yields

Vi(wiv') = ej(wiv’) = ej(w;)v’ + w7ej( ) =v'Vjw; +w; V'
= Ulewi + w; [€j< ) + ")/_jk’l) ]
whence we deduce that o' [V jw; — (ej(w;) — fy;jwk)} = 0 and since V is an
arbitrary vector, we are led to the conclusion

Viwi = ej(w;) — VZL%- (7.3.8)

We can thus write V,w = (V,w;) 0’ and Vw =6’ @ Vjw = V,w; 0/ @ 0.
Hence, the operator V is now a mapping V : T*(M) = T(M)? — T(M)).
On the other hand, we can readily reach to the following relations

Vit = —ho, Vo = -0 20 (7.3.9)

Covariant derivative with respect to Cartan connection that we have
dealt with so far can easily be extended to any tensor 7 € T(M)F. As an
example, let us take the tensor

T=t""e® ®ee® @60
into consideration. We then find V7 = ¢/ ® V,;7 € (M)}, and
VT =Vith e, @ Qe ®0"® - @07

s
i

zl _ z 77 ISRRRY Y Y IR z
Vt e] Jiee Jl +Z t Z%m Jiee Jv 1njr+l"'jl

where the components V t U are given by
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We observe at once that the relation (7.2.10) is also valid in Cartan connec-
tion as well.

Covariant derivative of a vector field V = v'e; € T(M) in the direc-
tion of a vector field U = u’e; € T'(M) can be defined as in Sec. 7.2 by the
vector

VoV =ig(0)V,V =u/V;V = [U®W) + v e (7.3.10)

Similarly, the covariant derivative of a tensor field 7 € T (M )f‘ in the direc-
tion of a vector field U is designated by

VuT =w/V;T € (M)},
It is also evident that one is able to write
Vee; = Viej = e, Ve =Vl = —~0°.  (7.3.11)

In order to define the torsion tensor 7~ and the curvature tensor R in
Cartan connection, we can make use of the relations (7.2.23) and (7.2.24).

Consider a form field w € A'(M) and vector fields U,V ,W € T(M) and
write

T (w,U,V) =w(r(U,V)) = Thwu'v",
R(w,U,V,W) =w(p(U, V)W) = R}, wuviw".
It follows from (7.2.23) that

Vujejvkek — Vvkekujej — [ujej, vkek] = (Vejek — Ve — [ej, ek])ujvk
= (’Y;k - 'YZJ‘ - C;k>ujvkei~

Therefore, the third order torsion tensor is found as

T=The R0 ®0%, Th = —T =" — v, — ch (7.3.12)
In the like fashion, the relation
p(U, VYW = ulv*uw' p(ej, er)er
leads us to

plej,er)er = ([v€j7 Ve ] = V[G,;v@k])el - ([vef’ Vel = ci em)el
= VeJVriel - Vekvejel - C‘;T];:Vemel

_ i ) m i
= ve]-'}’klei - vek’yjlei — CikYmiCi
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=Y Ve,6i + (V) € — Vi Verei — ex(Vy) € — clirvime
= [e;(va) = er(V5) + Vo Vi — ViVt — Ciivimi] €8 = Rije€i

from which we can manage to extract the components of the fourth order
curvature tensor R = Rj.e; ® ' © 67 © 6* as follows

Rijy = ei(M) — er(V) + Vi Vit = Vem Vil — Civo- (7.3.13)

It is easily seen from the definition that this tensor possesses the antisym-
metry property I, = — R}, .
When we choose a connection determined by the coefficients 'y;k, this

makes it possible to generate a new connection without a torsion. Let us
define the new connection coefficients by

A , 1 .
Vie = Vit — B} >
we then find that
Tik =Yk — Ve — S = Vjp — Vej — € — T = 0.

We shall now try to discuss the action of the commutator [V, V] on
diverse tensor fields. Let us first consider the scalar function f € A°(M).
We obtain from (7.3.4) and (7.3.8) that

ViVif = Vie;(f)
= €L (ej(f)) - ’Y]Z;em(f)

Because of the commutation relation eie; — eje, = c,i’j em, We get

(ViVi = V;Vi)f = = (05— 5 — i) en(f) (7.3.14)

Next, we consider a vector field V' € T'(M). Since we have
Vi = ¢j(v") + 70"

we find that

m

ViV = ex(e;(v") + [ex(Vim) + VinViim = Vijnm]v
+ 7;'mek (vm) + fY]ngej<'Um) - ')/]Z;€m ('l)z),

Hence, we arrive at
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(vkvj - Vjvk) vt = [ek (%m) - ej(’Yliﬂm) + PYIZm’Y?m - 73n72m - C};f)’zzm] A
- Tl?; (em(vl) + W?rmU")

Consequently, we obtain

[Vi, Vo' = (ViV; = V,;Vi)v' = R 0" = TV o', (7.3.15)
Similarly, for a form w € A'(M), we have V,w; = e;j(w;) — Vjiwm and we
thus find

VieViwi = ex(ej(wi)) + [ — ex (Vi) + v + Yeivim]wm

= Vjier(wm) = vEiei(@Wm) = Yijem(wi)-
This relation gives rise to

(VaV; = ViV wi = [e;(0i0) — ex (V) + WiV — Vi — Crvim | wm
+ T3 (em(wi) — Yiwn)

from which we obtain at once

[Vk, Vj]wi = (VkV] — Vjvk) w; = Rf’}kwm + T;]? mWi (7.3.16)

m L
= - Rikjwm - T/T Vinw;.

J

With these information at hand, we can easily evaluate the action of the
operator [V, V;] on any tensor. But, let us first verify that the operator
[V, V] obeys the Leibniz rule on tensor products. If 7 and S are two
tensor fields, we can obviously write

Vi(T®S) =V TRS+T VS
ViVi(T ®@8) =V, ViTRS+V, TV .S+ VT ®V;S+T @V, V;S

whence we draw at once the conclusion
Vi,ViI(T ®S)=[Vi, Vi]](T) @S+ T @ [Vi, Vj](S). (7.3.17)

Let us consider a tensor 7 of order k + [. Then we can produce a scalar
function f = t;:;kvﬁ) : m{;)uﬁf)- : -wgf) by considering its action on [ vec-

tors Vi1, ... Vi) and k 1-forms wV, ..., w¥). On utilising (7.3.14), we have
1) )

i
e girig o @) (k)
Kty em (Vg vy wi )

j j 1 k
Vi, V) = = T em(f) = = Tf e (885 0l vyl )
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On the other hand, because of the Leibniz rule (7.3.17), on applying the
commutator [V}, V;] on the function f defined above, we get

[Ve, V) = Vi V(s - vl )

ITERE 1 j 1 k
= [Vk,Vj](tjm v fl) vfé)wgl)--'wgk)

Jidi (3 73

!
+ gl [Zvﬁ) [V, Vil vg;)- . v?é)wm- M
=1

k
i1 r k
+Zv€1)“ 1) 71 [vk’ J]w() w7(k) :
r=1

Let us now employ (7.3.15) and (7.3.16) to transform the terms within
brackets in the third and fourth lines of the above expression into the fol-
lowing form

1 r m m i 1) k
ZUJ R] Tkjvmvfr)).. U(z) 51 k)

mkj i

+ Zvﬂ l)w ( B Rzmkj gn) Tkj vmwl(r))‘ : w(k)

Uk

Next, we write

vmvfr) em (v ())""Ymnv(r
vmw(V') (7>) (r)

ir 7mzr n

em(w

and change the dummy indices properly to obtain

[V’“ V,](f) = {[V’f’ 211 Isz + Z Jrkj 311 7J’i e g1

k
Ly Z1 7r 1M1 Uk l
ZRka Jie TkJ [ZVmJ Ji ]r 11 i

r=1
11 1Nyt Tk J1 g (1) (k)
- 27m71 G i| }U 1) U (.d sW,

) N1 1 k
l 1 g (1) (k)
o Tk] Jiee ]zem( {1) U{é)wil o wik )

Consequently, on collecting terms suitably, we end up with the relations
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k

21 lk Z _ 123
{[v/“ J](tﬂ Jl Z ekt 17 e ji ZR

r=1

TVt e

1M1 O,

mk] Jl Ji

1) L
Tk °

Since this expression must be satisfied for arbitrary vectors and 1-forms, we

finally reach to the desired relation

k

(ViV; =V, Vi) () = ZRZ' g iy iy

Jidi mkj “J1- g1

r=1
_ 11 Zk
E : Jrkj J1 Jro1M g1

Next, we define m? connection 1-forms by
. -
m torsion 2-forms by

i L i

and m? curvature 2-forms by

i 1 i pk l

(7.3.18)

= TV (755).

(7.3.19)

(7.3.20)

(7.3.21)

Theorem 7.13.1. Torsion and curvature forms satisfy the Cartan

structural equations

i ) j i i i i k

in the moving frame.
Indeed, it follows from (7.3.2) and (7.3.12) that

do' = — o i 0’ A O*

1. 1 . o
=5 0 A O — 5(7% — )0 A O

=% — 7y, 0° A Y
= —T/A0/+ 50

On the other hand, the relation (7.13.14) leads to
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dr = dvj; A0+l dO™
A 1 .
= [ex(vy) = 5Wmscii]0° A0
L AT =000 68 A 6
We thus conclude that

AU+ T AT = [ex(V);) + Vi Vi) — 57Vimichi]0° A 6

2
1 7 7 ) m 7 m m 1 k l
=5 ler(V;) = et(Vhj ) + Ve V] — Vi Vo5 — ChiYom) 0° A O
1 . ,
= §R}k19k NG =0 O

The expressions (7.3.22) provide us with a quite an effective tool to
discover relatively easily some interesting relations between the curvature
and torsion tensors. From (7.3.22);, we can write

dY' = dT A7 — T A df
= (dI+ T, ATS) A G/ =T A S
= O NG —THAY.

Employing the definitions (7.3.20) and (7.3.21), we get
i j i 1o i my i

By appropriately renaming the dummy indices, we obtain from (7.3.20) and
(7.3.2) that

d¥' = 5 (dTj A 67 A 0" + T;.d07 A 6" — T7.67 A df”)

—_

=5 [6J(lel) - 5 c;rlé Tlnl + 5 CIZrZLTij] 67 A gk A gl.

[\)

Hence, we get
i i ) m 1 m 1 mmi 9]’ ek el _
o — €i(Th) — Vi Thl + 5 CitLmi = 5 Gl jm N0 NG =0.
Since the covariant derivative of the torsion tensor is
ViTu = ej(Ti) + Vi L — VLo — Vi Tims

the foregoing equality can be transformed into
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[Riy — VT + (Vi — 5T, — V5T, — 5 et Th, |67 A 6% A6 = 0.

If we add and subtract the terms % ;ZT,ém into the brackets above and note

that 1 5 (¢ 1T+ T )GJ A 6% = 0, then we get
(R — VT + (Vi — 560 Th — (V= 5 )T}, ]07 A F A6 =0,
On utilising the antisymmetry with respect to indices k and [, we obtain
[Riyy — VT + (29(5 — )T}, 607 A 68 A6 = 0.
Let us now insert (7.3.12) into the above expression to cast it into the form
(Riy — VT + TRT; )67 A 6F A6 = 0.
Then we finally reach to the following identity
Rijuy = ViiTin — T - (7.3.23)
The explicit form of the expression (7.3.23) becomes

Rj'm + Riz; + Rfjk =
V; Tkl + vkj—‘l] + vl T‘lm T TZ T Tkm
Next, we evaluate the exterior derivative of (7.3.22) to obtain
dO) = dIj ATS =T, AdIY = O AT — T, AT} AT
—F};/\®§+F}§/\an/\ry’ _G)}C/\Fg?—F};/\@?.
As is easily seen, we can write
®;€ A Ff - FZ N 65 (RZ lm7kJ lemf)/kn) Ok A 0l A 0m7
1 . 1 1 .
d(—)é = 5 [ek( ]lm) - CklR]nm 2 mk ;ln] ek A 01 NET.
We thus obtain
Ri 7R'n AN D 1 R7 1 ) ek:/\el/\gm_o
[ek( jlm) + Ykn jlm Fij nlm ~ Ckl jnm 2 mk jln] -
On account of the expression

7 _ i i n 7
kajlm - ek(lem> + Yikn jlm ")/k] nlm fYklR]nm fYkm ]ln
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the above equality can be transformed into

[Vklem - (7]?1 clsll)]%Z (Pygm Ckrn)RL ]Hk A 91 ANO™ =0

Jmn

If we take notice the antisymmetry of the exterior products of 1-forms in
this expression and properly rename the dummy indices, we get

[ka]lm (2’7{7]{.1] — Ckl)R7 ]Hk VAN 91 VAN 0771, =0

Jmn
and

(ViR — TR ) 6° A0 A 0™ =0

jmn
after having inserted (7.3.12). We then finally obtain the following identity

where the operation of alternation will be suspended on the index j
occupying the space inside two vertical bars. The expressions (7.3.23) and
(7.3.24) are called the 1st and 2nd Bianchi identities, respectively, because
they were first discovered by Italian mathematician Luigi Bianchi (1856-
1928) albeit in a different framework. The explicit form of the relations
(7.3.24) becomes

ViR + ViR + ViRl = TR + Ty Ry + T R

Jmmn

When the torsion tensor vanishes, then we would necessarily get Rfjk” =0
and Vi R}, = 0.

Let us now introduce the matrix forms 2 = [0'] € A'(M) where all 1-
forms 6" are linearly independent, T' = [I')] € A'(M), X = [¥'] € A*(M)
and © = [0©] € A*(M). Hence, the Cartan structural equations (7.3.22)
can now be expressed as follows in the matrix form

A= -TAQ+E, ©=dC+TAT.

The exterior derivatives of these forms satisfy the relations
dX=0NQ—-TANYE d©O=0AT-TAO.

These equations coincide with the system of exterior differential equations
given by (6.8.6). Thus the local solutions of these differential equations on
an open set U C M contractible to one of its interior points are provided by
the expressions (6.8.19). By employing these expressions for various pur-
poses we can determine the basis forms and connection coefficients generat-
ing certain torsion and curvature tensors with desired properties.
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7.4. LEVI-CIVITA CONNECTION

As we have cited in Sec. 5.9, a Riemannian manifold is equipped with
a symmetric, second order covariant metric tensor

G=y0,;x)0 60, gij=gj.

We assume that the basis in the cotangent bundle 7% (M) can be so chosen
that the matrix G = [g;;] is regular at every point of the manifold, that is, the
inverse matrix denoted by G™! = [(g7!)¥] = [¢"] exists. The elementary
arc length on this manifold will be measured by the relation

d82 = Gij HLHJ

similar to that given on p. 274.

Theorem 7.4.1. There is a unique torsion-free affine connection on a
Riemannian manifold with respect to which the covariant derivative of the
metric tensor vanishes.

The conditions VG = 0 and 7 = 0 necessitate, respectively

! I
Vigij = ex(9ij) — Widii — Vijdin = 0,
k= Yk — Vj — ¢ = 0.
Let us now write fyj-k = ijk] + ’yf ) where the symmetric and antisymmetric

parts with respect to the subscripts of the connection coefficients are de-
noted, respectively, by

Yiik) = Q(W + ) Ve = 5(7jk = Vij)-

Then the condition V}.g;; = 0 yields

[a—

i L,
ikl = 9 C;‘k and 7€ki)gl.7' + Vékj)gil = er(gij) — *(C/lciglj + Cllcjgil)~

[\

On introducing the definitions
Vijk = Git V> Cijh = GaCh = — Cix (7.4.1)

we can cast the above expressions into the forms

1 1
Viljk] = 5 Cighs Vijki) + Yiwj) = ex(9ij) — 5(0]-;”- +cij). (7.4.2)

Since the relations (7.4.2), must be valid for all values of indices, we can
employ cyclic permutations to write



7.4 Levi-Civita Connection 389

Yitkiy + Vigks) = ex(9i) — %
Yeig) + Vi) = €i(gie) — 3 (Crij + Cin),
Yigh) + Ve = €5(gki) = 3

If we add the first and the third lines and subtract from the resulting expres-
sion the second line, consider the symmetries in indices and recall that we
must write y;jr = Yigjk] + Vi(jk)» We obtain

1

1
ik = 5 lej(gri) + ex(gij) — eilgim)] + E(Cijk + cjir, + crij). (7.4.3)

As to the connection coefficients, they are found from (7.4.1) as
Vi = 9" Vijn- (7.4.4)

It is clear that when the metric tensor is specified the unique connection
satisfying the conditions 7~ = 0 and VG = 0 is given by (7.4.4). O

Although this connection is known as the Levi-Civita connection,
some authors prefer to use term the Riemannian connection. (7.4.4) is then
explicitly written as follows

, 1 . 1 . . ,_
Vir = 59” Lej(gm) + exlgi) — erlgm)] + 5 (e + im" i + grmg"ef})-

In natural coordinates we should take e; = 9; = 9/ 6xi._Let us denote the
connection coefficients corresponding to this case by I = 7j,. Since, in

this case we have ¢l = 0, we find that T, = T'}; and the symmetric con-
nection is determined by the coefficients

I = g"Tij, (7.4.5)

1 /0gu  Og; Ogjk
L = 2<6xj d* axl)‘

the quantities I'; ;. are called the Christoffel symbols of the first kind while
we know that F;k are the Christoffel symbols of the second kind. We thus

conclude that the natural coordinates and the metric tensor on a Riemannian
manifold create in a concrete way the linear connection whose existence
was anticipated in Sec. 7.2.

If we choose vectors {e;} in the tangent spaces describing the moving
frame as an orthonormal basis and forms {0’} as their reciprocal basis in the
dual spaces, we know that the metric tensor reduces to g;; = F ¢;;. Then
(7.4.3) gives in view of (7.4.1)s
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1
Yijk = §(Czjk + Cjik + Crij) = — Viji-

Because of the fact that we have selectgd the Levi-Civita connection in
such‘ a way that V;g;; = 0, the relation g”glj = ¢} leads immediately to
V9" = 0. Since the torsion tensor is zero, the curvature tensor, which will
be called henceforth in this section as the Riemann curvature tensor or the
Riemann-Christoffel tensor, will satisfy the relations

V[kR‘?]“,m] — O or VkR}lm + VZR;mk ‘I‘ va;kl - O
in accordance with (7.3.23) and (7.3.24). We can now define the covariant
curvature tensor by

Rijii = gim Ry,

Some properties of this tensor can be revealed most easily in natural coor-
dinates. In these coordinates, it follows from the relation (7.2.21) that

Rijkr = gim (9" Tntj) & — 9im (9" " Torj) 1 + TiknL7j — Tirn T
= gim9"" Toij + Litjk — Gimg™" Uk — Likja + Liknlly — Tan g5

On the other hand, if we insert the relation

mn m _Tn

g9 r= 1y — Fng

mnr

obtained from the condition V;¢g™" = 0 into the above expression, we find

Rijri = — Lignl'ly — UiiToty + Lt Uy + Uik + Taje — Liga
+ sznr;lj - Filn Zj
=Tujr — Lk + Tl — Tl

and on making use of (7.4.5) we finally arrive at the relation

1
Rijp = i(gil,jk — Gitji + ikt — Gitir) + Liilngg — Thilng. (7.4.7)

Because of the symmetry properties g;; = g;; and I';j, = I'j;, we readily
observe the existence of the block symmetries

Rijit = Ryij = — Ririj- (7.4.8)

Since R;j is a tensor, this symmetry properties will be valid in every
coordinate systems.
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The Ricci tensor R;; [after Italian mathematician Gregorio Ricci-
Curbastro who is rightly considered one of the principal founders of the ab-
solute differential calculus connected with covariant differentiation, or ten-
sor analysis as we call it today] is defined as a contraction of the curvature
tensor RY,:

Rij = Rfkj =TI, - F@

i R N r;?m m, (7.4.9)

7 km= ji

If we note that in view of (7.4.8) we can write Rj;;; = R, and conse-
quently Rf. = R;*, we find Rl = R;;*, = R%, and finally we arrive at
the relation

Rij = Rji.

Hence the Ricci tensor is symmetric. Moreover, we can easily deduce from
(7.4.5) that a contraction on the Christoffel symbols of the second kind is

found to be
p 1,091
i = - gt
7 29 oz’

Let g = det[gy;]. We then obtain
dg 09 Ogu 1 09n

oz dgy Oz 99 oz

Therefore, we get

. 1/2
pi- 19 1 Ovigl_ dloglg (7.4.10)

i %axi N \/m oxt oxt

Because of the symmetry of the Ricci tensor, (7.4.6); is satisfied identically.
As to (7.4.6)9, the contraction on indices ¢ and [ yields

We now raise the index j by recalling that the covariant derivative of the
tensor g% vanishes to obtain

ViR}, — VuR] + ViR, = 0.
By taking notice of R, = R/}, and contracting indices j and k, we get
ViR), = VaRI+ ViR, =0 or 2V;R, —V,,R=0

where R = R! is a scalar quantity. Accordingly, the relation
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Vi(R, — 36iR) =0 (7.4.11)

must be satisfied. (7.4.11) is called the contracted Bianchi identity. The
second order tensor

G = Rj— 36!R (7.4.12)

1s sometimes named as the Einstein tensor because of its association with
the theory of general relativity. If we recall (7.4.10), we see that this tensor
satisfies the following relation

p . : ) 1 0 . )
Vi@ =G, +T},G TGl = —— m%(\/ 91 G}) — T};G} = 0.
Since a Riemannian manifold equipped with the Levi-Civita connec-
tion is torsion-free, then (7.3.22); takes the shape df' = —1'; A 67. On the

other hand, we know that we can write
e (9i5) 0 = Yinj0" + vjri0"

since Vjg;; = 0. If we define the forms I';; = gilI‘é— € AY(M), the above
relation may be cast into the form

ee(gij) 0F =Ty +Tji.

If the metric tensor is constant, we find that e;(g;;) =0 and I';; = — T,
namely, the matrix 1-form I" = [I';;] is antisymmetric. This property will
always exist in an orthonormal frame since one then has g;; = ¢;;. Moreover
the inverse matrix g is also the identity matrix. Hence, we can write I';; =
= —Ty = - T

Example 7.4.1. We define a spherically symmetric indefinite metric in
the 4-dimensional space-time manifold by the relation

ds® = e?dt® — e*'dr® — r*d6* — r’sin®0 d¢”

where (r, 0, ¢) are spherical space coordinates and ¢ is the time coordinate.
This metric was proposed by German astronomer and mathematician Karl
Schwarzschild (1873-1916) in order to obtain the first exact analytical solu-
tion of Einstein's field equations of the general relativity in the vacuum. The
exponents functions in this expression are taken as A = A(r,t) and pu =
wu(r,t). The field equations of the general relativity connect the Einstein's
tensor to the energy-momentum tensor reflecting physical properties of the
medium involved through the relation
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Gi= —kT}, i,j=0,1,2,3

where £ is a constant. Due to (7.4.11), the energy-momentum tensor must
satisfy V; T} = 0, that is, it must be divergence-free. Since 77 = 0 in the va-

cuum, we ought to find G = 0. The relation G} = — R = 0 then implies
that the following equations must also hold:
R;; = 0.

Let us now define four linearly independent 1-forms by the expressions
given below

0" = eMdt, 0" = etdr, 0* =rdf, 6° = rsinfde.
With this choice of basis, we can write
G=0i R0 =020 020 -6 -6

where 0 < ¢, j < 3. Hence, all components g;; of the metric tensor become
constant being equal to 0, 1 or —1. Thus, the connection forms I';; have to
be antisymmetric. If we denote the partial derivatives with respect to the
variables r and ¢ by subscripts r and ¢, we then obtain

—K
d6° = — A e 0O N O, dO' = e 00 A0, dO? = ‘“’7 N

et cot ¢
Ao’ = —0' NO* + —— 0° N 6P
r r
In this case, the coefficients ¢/, = — ¢} are found to be
—u
0 _ - 1 _ -2 2 _ €
o =Ael, c= —me, = - .
et 4 cot 0
Cls = — Coy = — .
13 s ;

All other coefficients are zero. When we carefully scrutinise the Cartan
structural equations df’ = — I‘; A 67, we realise that connection forms must

be designated as follows

—p
0 =N\ e "0+ e = —T) IP=S_¢2= T}
T
e M cot 6
1'\3 — 93 — Fl 1'\3 —
1 r 3 2 r

I =-T%=0.

0*= -T2 T2 = -T9=0,
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The curvature forms ©) = dI': + I'; AT will then possess the property
©) = — ©]. These relations between the forms © and T" result readily in
the curvature forms below

O} =dry = [6_2/\(,“% — A + N?) - 6_2”()‘7“7“ — Ay + A?)] 0" N6,

“2u) — (A )
Q=T AT = - & Qrgopg2 & Flgr,g
T T
—2p ) —(A+p) )
Q) =TI AT = - S Zrgopngs— S Flgl rps
T T
—(A+p) 24,
Ol =dll+ T aT3 =S Hrgo g2 © Hrgr g2
T T
—(A+p) —2u
Ol=drl+ T ATz =S Flgopgs 1 & Lrgipgs
T T
2 2 2 1=

6y = —6],6; = - 65,6] = -6,
2= —0l,0}= 0l 6} = -6

By making use of these forms, the components of the curvature tensor are
found as

Riy = — Rypy = — Riyy = Ry
= 672/\<Mtt — A + ,U/?) - CiZH()\rr — WA + >‘12")

0 _ 2 _ 0 _ p2 _ p0d __ 3 0
R202 - R002 - R220 - RO?O - R303 - R003 - R330
—2u
g € Ar
030 r
0 _ 2 _ 0 _ p2 _ p0O __ 3 0
R212 - R012 - R221 - R021 - R313 - R013 - R331
— 3 _ 1 _ 2 _ 2 _ 2 _ 1
- R031 - R202 - R102 - R220 - R120 - R303
—(A\+
_ R3 _ R3 _ Rl _ € ( #)Nt
— 41103 — 130 — #4330 — r
1 _ 2 _ p2 _ 1 _ pl _ 3 _ p3
R?l? - Rll? - R121 - R221 - R313 - R113 - R131
-2
_ Rl _ € MIU/T
— 4331 — r
1—e 2
2 _ 3 _ p3 _ 2 _
R323 - R223 - R232 - R332 - r2

The components of the Ricci tensor are easily obtained as

Roy = R}y + R, = 0, Roz = Ry;3 + Riys =0,
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Ris = Riy3 + Ry =0, Ris = R}y, + Rl =0,
Rys = Ry + Ryy3 =0,
Roo = Rjyo + Ry + Rizo = € M pw — ke + 117)

*2}1)\
e (N — Ay A2) — 28 =

Riy = Ry, + Riy + Rizy = ¢ (i — s + p17)

-2,
— e (N — Ay A2) 28 r“’ ,

G_QM(NT _ )\7) 1— 6—2/1,

Ryy = Ry, + Ryyy + R3gy = . + 2
—2p Y 1 — e 20
e e
Rs3 = Riys + Rij3 + Riyy = (M; 2 T
ef()""u)

Mt

Ro1 = Ryyy + Ry, + Rijgy = — ,

In this situation, the Einstein equations R;; = 0 yield p; = 0 and p = pu(7)
for the component Ry; = 0. When we employ this property in the other
equations, we conclude that

2\

)\TT_NTAT+>\72«_ r :Oa
24,

)\rr_,ulr>\r+>\z+ ,LL :07
e —A) [ 1—e

i G0 B ek

r r2

Let us subtract the first equation in the above list from the second one to
find p, + A, = 0, and consequently \(r,t) = — u(r) + f(t). As to the last
equation, it yields

de 2" e 2 — 1

2e 'y, = =
€ H dr T

By integrating this equation, we obtain

K
e =1——.
r

Hence, we can deduce the expression

e = ezf(ﬂ(l - %) - F(t)(l - %) F(t) > 0.
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We can immediately observe that the first and the second equations will be
satisfied as well with these expressions for A and p. Let us introduce a new
variable 7 by the relation d7/dt = \/F(t). We then see that we can take
F(t) =1 without loss of generality. Therefore, the metric satisfying the
Einstein equations takes the form

K K\-1
ds? = (1 - —>dt2 ~ (1 - —) dr? — r2(d6? + sin0 do?).
r r
For physical reasons, we choose K > 0. The characteristic components of
the curvature tensor become

K
0 2 0 1
R101=R323=§7R202=R212=— R =0.

273’

This metric that was obtained by Schwarzschild in 1915 constitutes the first
and simplest exact solution of the Einstein equations. It determines the
curvature of space-time, in other words the gravitational field, created by
spherical symmetric static body. Let us choose

F(t) = ¢ = speed of light,
K = rg = 2G'm/c* = Schwarzschild radius

where m is the mass of the body, GG is the universal gravitation constant.
With these physical parameters, the Schwarzschild metric takes the form

2Gm 2Gm -1
2 2(1 2 _ 2 20302 .9 2
ds*=c (1 2, >dt (1 2, > dr® — r*(df” + sin“0 do~).

This metric involving singularities at » = 0 is the first ever solution that
predicts the existence of black holes. [ |

Since the torsion tensor vanishes in Levi-Civita connection, (7.3.18)
takes the form

k l

_ i Z 1; 1M1l mo gy ) _

[V, J]th g § :R mhjt; § :R GekgCji g
=1

r=1

In addition, because of the symmetries (7.4.8), the effect of the curvature
tensor on a vector a can be written as

Rmikj am = Rmikj a" = — Rimkj a" = — Rimkj Q.
Hence, the effect of the commutator [V, V] is expressible by the relation

[Vi, V0% = (Ve V= VW) 0 = (7.4.13)

Jie J/
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k
o L Sl 1My U m i1--
ZR mhjt Jidi + ZR kj tjl Myt )
r=

r=1

In natural coordinates, the covariant derivative of a tensor 7 in the di-
rection of a vector V' is given by

v"Vit“ Zj]; =

ip- Al Z1 Zr 1MErg1 i,
t]l ]/lv +ZU Fm J1-- ZU FZ] J1e e Jr—ANgra1 gt

Since the connection is symmetric, we can obviously write
i e iy i
v Fin - Fm'v =Vpn — U,n'

We are thus led to the relation

iNT gl ie
v vlt]&' b/

i1 _ Lr 1Mipg1Tg 27 § Loy

t?l “Jis ZU Z t + t 1M Jr410e ]lv:]r
7/7 1Ny Tg lr 7

+ Zt Z 5, ]r gt Vi

where the first line is none other than the Lie derivative of the tensor 7 with
respect to the vector field V' [see (5.11.16)]. We thereby obtain the relation

7,1 Z]\ 27 1IL17+1 lk 7,7 n
(VyT — £VT E 75 E:t g st

If we apply this relation to the metric tensor G, we then find
(£vG)ij = giyvli + gunvly = vigj + vz

because VG = 0. This means that a vector field V' that leaves the metric
tensor invariant under the flow created by this vector field, namely, satisfy-
ing the relation £,,G = 0 has to verify the partial differential equations

Visj + Vji = vij + v — 20} e = 0. (7.4.14)

(7.4.14) are known as the Killing equations and a vector field satisfying
these equations is called a Killing vector field. If V is a Killing vector field,
we then obtain by cyclic permutation of indices
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I
Visjk — Viskj = Vigjk + Ukij = R0,
!
Vjiki + Vi = Rt
!
Vksij + Vjiki = Ryijiv.

If we subtract the third equation from the sum of the first two equations in
the above list, we get

2051 = (Rikj + Rjik — Riaji)v'.

However, the symmetries of the curvature tensor yield Riy; + Rjir — Riiji
= 2R;ji; [see (7.4.6); with the lowered index ¢]. Thus a Killing vector field
must satisfy the relation

1
Vit = Rijrv
from which we easily deduct the expressions

i p.o.d il pi g
v, = Rijv), vy = — Rl

7.5. DIFFERENTIAL OPERATORS

Let us assume that the exterior differential form w € A¥(M) is defined
on a Riemannian manifold M. We have introduced the exterior derivative
operator d in Sec. 5.8 while the operators of co-differential 6 and Laplace-
de Rham A in Sec. 5.9. In this section, we shall try to present a more de-
tailed discussion of the structure of these operators when such a manifold is
endowed with the Levi-Civita connection. We first consider the exterior de-
rivative operator d : A¥(M) — A¥+*1(M). We know that the exterior deriv-
ative of a form w € A*(M) is

1 . A ,
dw = H Wiy i) dx* Ndx" A --- ANdx'.

If we now insert the expression
k .
Wiy = Vil + ZF‘Z@%V-z'rfljz'w--ik
r=1
into the above relation, pay attention to the complete antisymmetry of the

exterior product dz’ A dz"' A --- A dz' and the symmetry ng,» = I‘gﬂv of the
connection coefficients, we reach to the conclusion that can be written as
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k 1 . . .
A = o Gy g dat A da A A da, (7.5.1)
(k"— 1)‘ [ 1 &l

The co-differential operator 6 : A¥(M) — A¥~1(M) was defined by
the expression (5.9.30):

(=D* i g
bw = Ty Wit i i dx™ A -+ Ndzx*1.

(k—1)!
The components of this form is determined by

i I,
3 \/g

as given in (5.9.19) and through wil...ikqi;i = Giji -gikfljkf]wjl'"-“*”;i.

We shall now demonstrate that these relations are actually associated with
the covariant derivative generated by the Levi-Civita connection. The
relation

w' k;i:vw}l k

k
:w“”'lkﬂ» +§ Fzrj‘_wll“'27-71J17-+1“"lk-
r=1

leads to
k—1
Q1 lp—1t 01 clp—1t } : Tp Gyl 1 1 Tk—10 T e ig—1]
viw1 k=1t — ) kl’i_i_ Fivjwl r=1Jlr4+1"" k-1 +Fijwl k—1J
r=1

— 21 tg—-17 1 210 le-1) — 11 tp—12Y
= W ¥ +FUW == \/E(\/Ew )71

where we have employed the complete antisymmetry of the components
w' " the symmetry of the connection coefficients Ffj and the relation
(7.4.10). Hence, by raising and lowering indices by means of the metric
tensor, the co-differential operator becomes expressible as follows
(=" o
ow = (k‘ — 1)' \Y Wiy ig_1i
1

= — m viwiir--ik,l dzt A - A dpiE!

dz' A -+ A dzi (7.5.2)

where we have evidently defined V' = ¢V ;.
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The Laplace-de Rham operator
A=6d+dé: N(M) — A*(M)

can now be evaluated by using (7.5.1) and (7.5.2). We can thus write

k i i is i
déw = — ] Vi, (V'Wiijiy- i) dz Adz™ A -+ A da'™,
and
k 1 . . P .
Sdw = — ]:_' VZ(V[,;wiliQ.‘.ik]) dz" Ndx? N - A dx'*

where the antisymmetries in the coefficients are explicitly described. If we
express the form Aw as

_ L

Aw = o

(Aw)i,..qpdz™ A -+ Adx™ € A¥(M)

then its components are determined by the following expression
(Aw)iﬂzwik = — (k‘ + 1) ViV[iwilizi..ik_] —k V[il Viw‘m..‘?;k].

If we utilise the relation (5.5.2), we obtain at once

k
(k? + 1)VZV[iwi1i2...ik] =V'V; Wiig- - i, — ZVZVZ-,, Wiy iy g iy i

r=1

and

k
i _ i i
Vi, Viwiijiy i) = Vi, V Wigy.iy — E Vi,V Wity i yivigssi
r=2

k
— V. Vi . . )
- iy 217 Up—10p 41Ut
r=1

Hence, we draw the conclusion

k
(Aw)iy iy = = V'Vitwiyiy e = D (Vi VI = V'V Wiy i

r=1
On the other hand, let us note that one is able to write

Vi, VI Wireoiy ity = (= 1) [V, Vi wi,

. 'ir—li1‘+l' ek
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Employing then the relation (7.4.13), we find that

) _ i m
[Vi,, Vi] Witeby_yiparip Ry Wity qipay i
k
m )
+ s dpd AL s 1My 1 b1 01t Tk
s=1,s#r
k
m s—1 m )
= — R, Wi i (1) 'R W
miy 11--~zr,1z,.+1--~zk+ Us  Gpl TMAL s 105417 bp—10p g1t U
s=1,s#r
k
_ m § s—1 m 1
- Rz, wmll"'lw'—llr+l"'1k+ ( 1) R’ls . w’”nll“'Z.sflz.SJrl'"17—12r+1"'1k
s=1,s#r

Therefore, we see that the Laplace-de Rham operator is completely deter-
mined by the components

VII. EXERCISES

7.1. A manifold M is equipped with two connections defined by the Christoffel
symbols T and I"j. Show that the quantities Y, =T, —TI"; are com-
ponents of a (;)-tensor.

7.2. Let V be a connection on a manifold M. Show that the operator V* defined
by the relation V;;V = ViV +7(U,V) is also a connection on M whose
torsion tensor is determined by — 7. V* is called the conjugate connection.

7.3. V is a connection on a manifold M. Show that the connection defined by the
relation V* = %(V + V*) is symmetric. Find the connection coefficients.

7.4. Show that the connections V, V* and V* have the same geodesics on the
manifold M.

7.5. A connection on the manifold R? whose coordinate cover is (z!,2?) is
prescribed by Christoffel symbols T'}, = I'}; = 1 and all other coefficients
I, = 0. Determine the geodesics.

7.6. A connection V and a tensor S;A that is antisymmetric with respect to its

covariant indices are given on a manifold M. Show that there is a unique
connection on M with the same geodesics as those of V and its torsion
tensor being equal to S}k.
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7.7.

7.8.

7.9.
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If the parameter of a geodesic curve determined by the equation (7.2.16) is ¢,
then show that a change of the parameter in the form 7 = at + 5 where «
and (3 are constants still satisfies that equation. Thus, a parameter of a
geodesic curve may be named as an affine parameter.

The indefinite Lorentz metric on the manifold R"*! [Dutch physicist Hendrik
Antoon Lorentz (1853-1928)] is introduced by the relation

G = —dxy@dxy+ Y _dr; @ du;.
=1

Hence, the Lorentz inner product and the length of a vector is determined,
respectively, by

GU,V)= —uuy+ ZUﬂm
i=1
GU,U)= —ul +Zu?
=1

In this case, (R"™, G’) becomes obviously a pseudo-Riemannian manifold.
Let us now define an n-dimensional submanifold of the manifold R"*! as
follows

n

H'={xeR"™: 22— Zw? =1,29 >0} C R",

i—1
H" is called a hyperbolic space. Show that the metric G’ generates a definite
metric G on H" whose components are given by

ZiZj

G =gijdr; ®@dzj, gij =06 — —5
Lo

and (H", G) becomes a complete Riemannian manifold.
Hyperbolic plane H? is defined as the submanifold

H>={xecR: g} —2? —22=1,20>0} CR?
where R? is equipped with the Lorentz metric. By using a coordinate trans-
formation
r1 =71cosf, ry = rsinf
show that the metric tensor of this Riemannian manifold is given by the
relation

_dr®dr

T2 +7r2d0 ® do
.

g

Find further the form of this metric tensor under the coordinate transforma-
tion r = sinh s.
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7.14.

7.15.

7.16.
7.17.
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Compute the metric tensor of the 3-dimensional hyperbolic space H®. Use
first the spherical coordinates (r, 8, ¢) given by

x = rsinfcos ¢,
y = rsinfsin ¢,
z=rcosf

then the transformation r» = sinh s.

Show that the number of the independent components of the curvature tensor
R;j; satisfying the symmetry relations (7.4.8) in an n-dimensional manifold
is given by

EnQ(n2 -1).

The Weyl tensor is defined by the relation
WY = RYy; — 2(5[2[kR]]1] + 56[Z[k 5]]1]R.

Show that all contractions of this tensor yield zero tensors.
The metric tensor in a 2-dimensional Riemannian manifold is given in the
following form

G =dr®dr+[f(r,0)]*df @ db.
Let us choose the basis forms in 7% (M) as
0! =dr, 6% = f(r,0)do.

Find the reciprocal basis vectors ej, es in T'(M) and the coefficients cfj

Determine the Christoffel symbols and the curvature tensor.
Show that the operator of covariant differentiation satisfies the Jacobi identity

[Vi, [V, V] + [V, [V, V] + [V, [Vi, V)] = 0.

Let M be a Riemannian manifold and R be its curvature tensor. Show that
the relation R(Vi, V5, V3, Vi) = G(R(Va, V3, V4), V1) is satisfied for all
vector fields V; € T(M),i = 1,2, 3,4. Verify further the following identities:

(@) R(VA, Vo, Vi, Vi) = — R(Va, Vi, V3, Vi),

(b) R(V1, Vo, V3, Vi) = — R(V3, V2, Vi, Va),

(c) R(VA, Va, Vi, V2) = R(Va, Vi, Vi, Vi),

(d) R(V1, Vo, V3, Vi) + R(V1, V3, Vi, Va) + R(VA, Vi, Va, V3) = 0.
Calculate the function Af in cylindrical coordinates where f € A°(R?).
Calculate the form Aw in cylindrical and spherical coordinates where
w € AY(R?).

Let (M,G) and (N, I") be two Riemannian manifolds. If a diffeomorphism
¢ : M — N fulfil the condition ¢*I" = G, then it is called an isometry. If
such an isometry is established, then we say that the manifolds M and NV are
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isometric. Show that a diffeomorphism ¢ : M — M is an isometry if and
only if the condition

¢"(Af) = A(¢"f)
holds for all functions f € A°(M).





