CHAPTER VIII

INTEGRATION OF EXTERIOR FORMS

8.1. SCOPE OF THE CHAPTER

In this chapter, the integral of an exterior differential form over a
submanifold of a given manifold, whose dimension is equal to the degree of
the exterior form, is treated as a linear operator assigning a real number to
that form. As is well known, the form reduces to a simple form on such a
submanifold and the integral is roughly defined as a multiple Riemann in-
tegral of the single scalar function characterising that form. However, in
order that this definition acquires a formal content, we have to exert quite a
great effort and to equip the manifold with adequate structures such as simp-
lices and chains. We also deal in this chapter with the cohomology and ho-
mology groups that are inspired by these structure and prove to be very
helpful in revealing some hidden properties of closed forms. Sec. 8.2 intro-
duces the concept of orientability of a manifold by means of a volume form
on a manifold. In Sec. 8.3, the integration of forms is discussed on a very
simple manifold, the Euclidean space. We treat the simplices in the
Euclidean space that can be used as building blocks to generalise this app-
roach to any smooth manifold in Sec. 8.4. We then discuss chains and their
boundaries, and cycles. We further define differentiable singular simplices
and chains that are images of a standard simplex at the origin of the
Euclidean space on a differentiable manifold by means of smooth functions.
In Sec. 8.5, we propose two different courses to follow in order to evaluate
the integrals of forms on smooth manifolds. If we can manage to cover the
manifold with a differentiable singular chain, the form can be pulled piece-
wise back to the standard simplex on which the integrations can be per-
formed relatively easily, then these integral is summed up to obtain the
integral on the manifold. In another approach, we can utilise the partition of
unity on the manifold if it exists of course. The Stokes theorem that is one
of the corner stones of the theory of integration of exterior forms is proven
in Sec. 8.6 on the chains and also on manifolds with boundaries. This
theorem matches the integral of the exterior derivative of a form on a
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406 VIII Integration of Exterior Forms

manifold with the integral of this form on the boundary of this manifold.
Sec. 8.7 is concerned with the determination of conservation laws corre-
sponding to exact forms in an ideal that are annihilated by a solution sub-
manifolds. Sec. 8.8 deals with the cohomology groups that are the quotient
spaces of closed forms with respect to exact forms and homology groups
that are quotient spaces of linear spaces of cycles with respect to linear
spaces of cycles which are boundaries of chains. It is then tried to reveal
important relationships between these two groups. These relationships con-
nect the structure of closed forms on a manifold to the topological structure
of that manifold. In Sec. 8.9, we define the inner product of forms on a
Riemannian manifold by using the Hodge dual so that the exterior algebra is
transformed into an inner product space. On making use of the structure so
established, the properties of the Laplace-de Rham operator and the har-
monic forms occupying the null space of this operator are investigated, and
then the Hodge-de Rham decomposition theorem is explored. Finally, Sec.
8.10 is devoted to the Poincaré duality unravelling quite an interesting rela-
tion between cohomology groups in some kind of manifolds.

8.2. ORIENTABLE MANIFOLDS

We have already defined an orientable manifold on p.275. Let us
hence recall that an m-dimensional manifold M is called an orientable ma-
nifold if we can find a form . € A™ (M) such that p(p) # 0 at every point
p € M. Such a form p will be called a volume form. Since the module
A"(M) is 1-dimensional, every non-zero m-form €2, consequently every
new volume form is expressible as a multiple of the chosen volume form g,
namely, as Q = f(p)u where f € A°(M) and f(p) # 0 at every point of
the manifold .

Let us assume that two volume forms p; and po are related by an
expression p1(p) = f(p)ua(p) where f € A°(M) and f(p) >0 for all
p € M. This constitutes an equivalence relation on the set of volume forms
because it is readily verified that it is reflexive, symmetric and transitive.
Thus the set of volume forms is partitioned into equivalence classes [x]. An
orientation of the manifold M is defined as an equivalence class [u]. We
call the pair (M, [u]) as an oriented manifold.

An oriented connected differentiable manifold M can possess only two
orientations.

Let €2 and i be volume forms. Hence, we can write 2 = fu for a non-
zero function f. However, because M is connected a function f # 0 will be
either f(p) > 0 or f(p) < 0 at every point p € M. Thus 2 can only be a
member of either the orientation [x] or [— ].



8.2 Orientable Manifolds 407

The positive orientation of a connected manifold M is given by the
equivalence class [p] while its negative orientation by the equivalence
class [—p). O

Let e1(p), e2(p), ..., em(p) be a basis of the tangent space 1),(M ) and
u be a volume form. If (e, es, ..., e,) > 0, it is so at every point p of a
connected manifold and for all equivalent volume forms. Such kind of basis
vectors constitutes a right frame. Similarly, if p(ep, ez, ..., e,) < 0, then
the basis vectors forms a left frame. Since the form p vanishes at no points
of the manifold, it is evident that the function p(ei,es,...,ey) cannot
change its sign in an oriented manifold. Hence, when moving on an orient-
ed manifold the chosen basis vectors cannot change their orientation, in
other words, their right or left characters. We can change the basis ey, es,
..., e to abasis e}, ey, ... , e, through a linear transformation e, = aé-ei,
i,j=1,...,m where a5 € A°(M) and the matrix A(p) = [a/(p)] must
hold the condition det A # 0. On the other hand, because of the relation

u(el, ey, ... el ) = (detA) p(er, ea, ..., emn)

the change of basis does not affect the right or the left character of bases if
detA > 0. If only det A < 0, then a change of basis alters the orientation by
shifting a right frame to the left one and vice versa.

We can immediately deduct from above the following result: if the left-
right character of a frame of basis vectors of the tangent bundle of a
manifold changes when this frame is translated along a closed curve of the
manifold as to bring it back to the initial point again, then this manifold is
non-orientable.

A non-connected manifold is still called orientable if its connected
components are orientable. However, in each component its orientation can
be chosen arbitrarily.

Theorem 8.2.1. An m-dimensional connected paracompact differen-
tiable manifold M is orientable if and only if there exists an atlas A =
{(Uay 00) : « €T} on M such that the differentiable transition mapping
Vap = P o Pat : 0a(Us NUs) — 03U, NUp), induced by the overlap-
ping charts (U,, @) and (Ug,pp) having local coordinates x and 'y,
respectively, on the set U,NUz #0, has a local representation
y' =@ (xl,2? ... 2™),i=1,2,...m where x¢€ @,(U,NUz) and
y € p3(U, N Up) possessing a positive Jacobian J = det(dy' /0z’).

Let M be an oriented manifold. Hence, there is a volume form p on
M. By taking simple changes in local coordinates that might involve reflec-
tions if need be into consideration we may suppose in a chart (U,, ¢, ) that
M( o 0 0

9o 92 Gm—m) > (. Such a coordinate system is said to be positive
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local coordinates. If the same kind of changes are performed, if necessary,
in the chart (Ug, pg) to choose positive coordinates there, then the familiar
relation

requires that .J = det(dy'/dz’) > 0.

We now conversely assume that the manifold M has an atlas with the
above mentioned properties. Let us assume that {(V,, f,) :a € A} be a
partition of unity subordinate to that atlas where {V,} is a locally finite
open cover of M. The paracompactness of the manifold M assures solely
that such a partition of unity can always be found. In fact, if such a partition
of unity on M is contrived, then the theorem turns out to be still valid even
if M is not paracompact. Since every open set V,, belongs to an open set
U,, of a chart, the atlas {(V,, ¢,) : a € A} formed by defining the mapping
Vg = cp%\vu will satisfy the condition of positive Jacobian. Let us denote
the positive local coordinates in the chart (V,,¢,) by xl, 22 ... 2™ and
introduce a form w € A™ (M) in the following manner

w:Zfada:(ll/\dxg/\mAde

where each term can be extended to the entire manifold M if we recall that
each f, vanishes outside its support. Any point p € M is now located in a
chart (V, ) with local coordinates x!,x? ..., 2™ and for all charts such
that V, NV # () we will get det (0z% /0x7) > 0. We can thus write

Z fa(p)dzl Ao A da™

=" fulp)det (9z’ /0Ty dz A - A da™.

On the other hand, we know that all functions in the partition must satisfy
fa(p) > 0 and at each point p € M at least one function among them should
be positive. Since the factor det (9z’ /dz7) is positive by assumption, we
conclude that w(p) # 0 at each point p € M. Hence, w is a volume form
and the manifold M is orientable. O

Example 8.2.1. A non-zero n-form, namely, a standard volume form
on the manifold R” can be defined as yn = dz' A dz? A --- A dz". Different
arrangements of the forms dz’ yield either + p or — p. Therefore, R” is an
oriented manifold. n
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Example 8.2.2. Let us consider the sphere S> C R?. This submanifold
of R? is prescribed by the equation x2 + y* + 2% = R?. We now define a
form p € A%(IR?) as follows

_zdx Ndy+xdyNdz+ydz Ndx
- (xQ_'_yQ +22)1/2 :

It is clear that the form y vanishes nowhere on S?. Thus y is a volume, or in
the true sense of the term, an area form. The structure of this form is best
illustrated in spherical coordinates. The change of coordinates

x = Rsinfcos¢, y = Rsinfsin¢p, z = Rcosf
reduces the volume form p to
1= R*sinfdf A de.

If delete the poles and choose 6 € (0, 7), that is, if we consider two charts
as it should be, we observe © # 0 in both charts. We also easily notice that
the orientation of basis vectors in T(S?) does not change along a closed
curve on S?. Hence, S? is an orientable manifold. [}

Example 8.2.3. As an example to non-orientable manifolds, we take
the Mobius band introduced in Example 2.8.1 into consideration. We know
that the Mobius band is a 2-dimensional submanifold of R? prescribed by
the parametric equations

z = (R +vcos(u/2))cosu,y = (R + veos(u/2))sinu, z = vsin(u/2)

where u € [0,27) and v € [ — w, w|. A basis of the tangent bundle of this
manifold can be chosen as the following linearly independent vectors

8_8&02 5y2 322

Vlw.r) = 50 = Guar T ouay T ouos
1
=5 [4R cos% +v(2 4 3cos u)} Sin;aax
1 U 3u\7] 0 1 u 0
+ 1[4Rcosu—|—v(cos§ + 3 cos 5 )]a—y + §UCOS§%
Vi (u, 0) o 8.7)2 dy & 0z 0

v ovor vy  owo:

U 0 w . 0 .U
= COS— COSU— + COS— SInu— + SIn—

2 “ o 2 MMy 20: ~ W

that are tangent to the curves v = constant and u = constant, respectively.
Since the scalar product can be defined on R?, we can readily verify that the
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relation V,, - V,, = 0 is satisfied. Thus the basis vectors so chosen are ortho-
gonal. In the particular case v = 0, the vector field V,, takes the form

‘/;L(U7O) = R( — sinu% + COSU%)'

We thus obtain

0
V;;(O?O) = %;
1o}

~ o

0
VU,(O7 0) - R@a
9

Vu(2m,0) = R—, V,(2m,0) =

Ay
27 in the arguments of the vectors V,, and V, must be interpreted as the
limiting value as © — 27. The above relation clearly show that when we
translate the basis vectors at the origin (0,0) along the circle v = 0, they
change their orientation as we approach again to the origin. Therefore, the
Moébius band is not oriented. ]

Example 8.2.4. Let us consider the projective space RP". We define
open sets U, and Uy of two charts of the manifold by the rules z* # 0,
2’ #0, a,8 € {1,...,n+ 1} as on p. 87. The local coordinates in those
charts are, respectively, given by

i i
. .
7 1 __ ) —
fa——xa, fﬂ—xﬂ, 1=1,2,...,n

We of course take £ = §g =1and £ =2/ z”. The coordinate transfor-
mation in the open set U, N Uy is depicted by the relations &, = &,/£3,
& =1/ €. Thus, the entries of the Jacobian matrix become

og, & . o 1
q:_avl#aaﬁa]#avﬂ; g:_ ang
8% &5 &5 (5[1)2
Hence, the determinant is found to be
o¢l 1
det| =2 ) = — ————.
<a£é> (gg)nJrl

If n is odd, and consequently, n + 1 is an even number, then the sign of the
determinant remains the same regardless of the sign of {7 and it can be ren-

dered positive by a suitable change of coordinates. But if n is even, hence
n + 1 is an odd number the determinant changes its sign depending on the
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sign of £3. In conclusion, according to Theorem 8.2.1 we understand that
the projective space RP" is orientable if n is odd and non-orientable if n is
even. |

Let us now consider a k-dimensional submanifold S of an m-dimen-
sional oriented manifold M. According to our assumption there is a volume
form p € A™(M) on M and an equivalence class [u]. A basis for the
tangent bundle 7°(S) is given by k locally linearly independent vector fields
Vi,Va,...,Vi. We can then construct a basis Vi,...,V,, for the tangent
bundle T'(M) by supplying m — k locally linearly independent vector fields
Vit1, Vit2, - .-, Vi that do not belong to 7°(S). That is the reason why we
may call these supplementary vectors as the normal vectors to the tangent
bundle 7'(S). Since p is a volume form, we get (Vi ..., Vi, Vs, -+, Vin)
# 0. Next, we define a form 1/ € A*(S) as

p =iy, ooy, (k).

It is clear that this form can only be different from zero on the vectors in
T(S). Hence, the restriction i/ € A¥(S) becomes meaningful. On the other
hand, we have

,u/(‘/la"'avk> :M(‘/i7-~-7‘/;s'7vk+l7"-yvm> #O

so that p/ plays the part of a volume form on the submanifold S induced by
the volume form p. We then say that the submanifold S is externally
oriented by the manifold M. However, this generally may not mean that the
manifold S is oriented internally in the usual way.
Example 8.2.5. Let us consider the sphere S"~! as a submanifold of
n .
the oriented manifold R" determined by the equation _(z)? = R2. A basis
i=1
of the tangent bundle T(S"~!) can be chosen as the set of the following
vector fields
o 2 9

axl ? ) 7n

Vi x" Oz’

on noting that we can write 9z"/0x' = — z'/z",i=1,...,n —1onS" L.
Let us define a vector V' € T'(R"™) by the relation

1 =, 0
V—R;xaxk.

Because of the scalar product V - V; = (2! — 2') /R = 0, we realise that the
non-zero vector V is orthogonal to all vectors V;. Therefore, it does not
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belong to T'(S"~1). Consequently, the manifold R" induces a volume form
p =iy () = iy (dz' A - Adx™)

1 n ,
= EZ(_l)k*ka‘dxl/\“'/\d‘rkfl/\dxlprl“'/\dwn
k=1

on the submanifold S"~! by externally orienting it. The structure of this
form can be understood better if we employ hyperspherical coordinates. The
hyperspherical coordinates are defined by the relations

z! = Rcos b1
z? = Rsin $1€0S o

23 = R sin ¢1sin ¢ocos ps
k-1

= RHsingbicosngk, 1<k<n-1
i=1

.%‘71'71 = Rsin ¢1 ...sin (bn_g CcoS ¢n—1
;L,Tl = R Sln ¢1 R Sln ¢n—2 Sln ¢n_1

where the conditions 0 < ¢q,...,¢, o <7 and 0 < ¢,_1 < 27 are to be
satisfied. It is then immediately observed that the induced volume form on
S"~! can be written as follows

i = R sin" 2 sin™ 2y - -sin dp_o ddy Adepa A -+ A dpy_1.

We can further realise that the submanifold S*~! is also internally oriented

by the form y' if we restrict the coordinates ¢y, ..., ¢,_» into the open in-
terval (0, 7).
The volume form of the circle S! (n = 2) is
1

/

wo= E(acld:r2 —2%dz') = Rd¢

whereas the volume form (area form) of the sphere S? (n = 3) becomes

1 ‘ ‘ ‘
YW= ﬁ(xl dz® A dx® + 2 de® A dat + 23 dat A do?)
= R%sing1d¢y A dos.

After having obtained the induced volume form, the area of the hyper-
surface S can be found easily by integrating this form. By using the
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definition of the hyperspherical coordinates, we obtain

T T p27
/ /‘Ll = Rn/ B / / Sinn_1¢15inn_2¢2' --sin anfl d¢1 : 'dgzsnfldqsn
Sn 0 0 JO

= 27R" / / sin" L sin" ¢y - -sin ¢,y dpy- - -dp_1 # 0.
0 0

), the relation
F ( E+1 )

In terms of the Gamma function I'(z
T . 1/2
sin ¢d¢—+, 1<k<n-1
/o r(1+3)

leads to the result

s [ u

e TOTG) T TO+5) T3
F(%) 2 TO+5HTa+5) T+5Y)
T(”?)'

In fact, since I'(1) = 1,I'(3/2) = /7/2,T(2) = 1,1'(5/2) =3/7/4,--
we find that S(S!) =27R, S(S?) = 47TR2 5(83) =2mR3, S(S*) =
8T R1/3. ]

Example 8.2.6. We have seen in Example 8.2.3 that the Mobius band
is non-orientable. We shall now demonstrate that the Mobius band can be
externally oriented by the manifold R? and an induced volume form may be
defined on it. We can now introduce a vector field W € T(R?) that is not
situated in the tangent bundle of the Mobius band on resorting to the vec-
torial product in R? as follows

3u U uw 0

- ooy ) a2

W=V, xV,= 2[ Rcosu + v|cos 5 cos2 s1n2ax
1 ) ) 0
+ 3 [ZR cosusmg + v(cosu + sin u)} a

— cosg (R + vcos%) %

The length of this vector is

1
WP =W -W = [Z(3+2cosu) v? +2vaosg +R2],
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Then by employing the unit vector N = W /||IW||, we obtain the 2-dimen-
sional volume form induced by the volume form in R? as

W =in(dz ANdy A dz)

1
= \/4(3 + 2cosu) v? + 2vaos% + R?du A dv
This form will enable us to calculate the area of the Mdbius band. [ ]

8.3. INTEGRATION OF FORMS IN THE EUCLIDEAN SPACE

We want to begin the study of the theory of integration of exterior
forms with some rather simple examples that do not differ much from the
classical integration. We first consider a differentiable curve C in R” and a
form w € A'(R™). We know that the curve C'is described by a smooth map-
ping 7 : [a,b] — R™. The curve C is a 1-dimensional manifold which is a
submanifold of R" if certain conditions are met and it is prescribed by the
equations 2’ = x'(¢),0 <t < 1. On the curve C, the form w = w;(x) dz’

€ A'(R") is given by the expression

dz!

dt.
dt

w(t) = w;(x(t))

The integral of the 1-form w on the curve C' is a linear operator in the form
of fc : AL(R") — R that assigns a real number to this 1-form defined as

follows
1 dxz
w= w; (x(t dt.
Jo= [atenG

The integral in the right hand side is the well known Riemann integral.
Sometimes it is not possible to describe the curve by just one parameter. In
such a case, the interval [a, b] is partitioned into subintervals such as a =
to <t <--- <tp-1 <ty =>b making it possible to use a different para-
metrisation in each interval. If we denote the part of the curve correspond-
ing to the interval [¢;,¢;11] by C}, the integral may be expressed in the form

m—1 m—1 et d:L'Z
/Cw jzo/cjw Jzo/t] w(x())dt

By generalising this approach, we can define the integral of a form
w € A"(R") given by w(x) = wig...n(x) dzt Adz?* A --- A dx™ as the linear
operator A"(R") — R
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/w:/ Wi (X) dztdz? - -dz"

assigning a real number to the n-form w. The right hand side of the above
expression is the multiple Riemann integral of the function wys...,(x) with n
variables. Naturally, in order that the form w can be integrated, this integral
must exist. When the support of the form w is compact, that is, when the
smooth function wys...,(x) vanishes outside a closed and bounded subset of
R", then it is bounded on this set and the integral will definitely exist. It is
obvious that the integral changes sign if we change the orientation of the

manifold.
Let us now consider a k-dimensional submanifold Sj of R" prescribed
by the parametric equations z' = 2’ (u!,...,u*),i = 1,...,n. We further
k
assume that the parameters u*,oc = 1, ..., k vary in the region [[ [a®, b®] of
a=1

R* where [a®,b%] C R is a closed interval and the symbol ] represent the
Cartesian product of intervals. This set will be called a closed k-rectangle.
We know that the value of a k-form

1

W(X) = y wir--ik(x) dxil A A dlﬂ?k c Ak(R")

on the submanifold Sj. is given by the expression

1 oz ™ N
w(u) = Hu)il_”ik(x(u)) 6u0/18u(yk du® A - A du™
1
= E way--ak(“) du™ A - Adu™t = (,le,__k(u) dut A A duk

where a® < u® < b* with an appropriate ordering of parameters. Conse-
quently, the integral of the k-form w on the submanifold Sj will be defined
as the following multiple Riemann integral

bl b b
/ w :/ / / Brg...p(u) dutdu® - - du®.
Si al Ja? ak

Generally, the submanifold .S;; may not be described by a single parametri-
sation. In such a case, the domain of integration may be the union of some
k-rectangles and the integral is expressed as the sum of integrals over those
sets. Naturally, these integrals must be convergent. However, in order to
define the integral of a form on a differentiable manifold we shall need to
equip the manifold with a much more different formal structure from those
introduced sketchily in this section.
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Example 8.3.1. The integral of the area form associated with the
Mobius band given in Example 8.2.5 can be written as

1 por 2
A:aRQ/ / \/1+2aycos%+%(3+2cosu)y2dud1/
-1Jo

where we defined the variable v = v/w and the coefficient o« = w/R. w is
the half width of the band. It is not possible to find the exact value of this
integral. So we have to resort to numerical integration. For instance, we find
A =3.1499R? for a =1/4, A =1.2572R? for a = 1/10. It is readily
verified that A — 4raR? when oo — 0. |

8.4. SIMPLICES AND CHAINS

The one of the main building blocks in integrating forms over differen-
tiable manifolds are made up by simplices and chains generated by them in
the Euclidean space. Let us consider k + 1 points Py, Pi,... P; in the
Euclidean space R*. We suppose that two ordered points (P, Q) in R¥ de-
signate the vector () — P connecting the first point P to the second point Q).
Next, we assume that k vectors P, — P, ..., P, — P, are linearly independ-
ent. Hence, for any point P € R¥, the vector P — P, can be represented by

k
P-R =) (P-PR), R
i=1
If we choose 0 < ¢ <1 and Zfl <1foralli=1,...,k, then we observe
i=1
that the vector P — P, stays within the k-dimensional closed and convex
polyhedral region formed by vectors P, — Fy,1 < i < k as edges. Thus for
a point P in this region, we can formally write

P=[1->¢|Pp+Y ¢r=> ¢P (8.4.1)
i=1 i=1 =0
where we define ¢¥ =1 — Zfz > 0. Therefore, the conditions Zgl =1
i=1 i=0

and & >0 for all 0 < i < k will be satisfied. We shall now symbolise the
closed and convex set produced by the ordered points Py, Py, ... P as

sy = [Py, P1, ..., P] C RF. (8.4.2)
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si will be called a k-simplex. Since it is a closed and bounded subset of R,
si, becomes clearly a compact subset. If P € s;,, then this point may now be
represented by the formal expression (8.4.1). The non-negative real numbers
(€0, €1, ..., &%) are called the barycentric coordinates of a point P inside
the simplex s;. The orientation of s;, is specified by the definite order of the
successive generating points. We choose the order in (8.4.2) as the positive
orientation of the simplex. A different ordering of these points specifies
actually the same set. However, the orientation of the simplex may then
change. We immediately recognise that if the new ordering is obtained from
(8.4.2) by an even permutation of the order of the points in (8.4.2), then the
sense in which the points follow each other, thus the orientation of the
simplex, remains unchanged whereas if it is an odd permutation the orienta-
tion of the simplex is reversed. Let us denote a permutation of the numbers
0, ...,k by m. Hence, we can obviously write

[Pro)s Pr(1)s -+ » Pry] = sgn(m) [P, Pr, ..., Fr]

where sgn (7) = 1 if 7 is an even permutation while sgn (7) = — 1 if it is
an odd permutation. If we make use of the coordinates in R* and write P =
{z*}, P, ={«},a =1,...k;i=0,1,...,k, then (8.4.1) can be expressed
more concretely as

k k
=362 a=1,...k £&€>0, Y& =1.
i=0 i=0

The face opposite to the point F; in a simplex s; is defined as the
(k — 1)-simplex obtained by deleting this point from the k-simplex s;. But
in order to render its orientation compatible with the principal simplex, we
first put this point into the first position in the ordering so that we obtain

[P, Py,...,P1, P1, ..., Bl = (=1)'[Py, ..., Py, P, Py, ..., 4]
from which we deduce that the faces of a k-simplex are found to be
3;671 = (_1)Z[PO7 P17 sy F)i—h Pi+17 aee 7Pk] (843)

where ¢ = 0,1,..., k. We now define the oriented boundary of a simplex
s as a formal sum of its faces:

k

Dsi =Y _sh 1. (8.4.4)

1=0

Let a family of k-simplices {s{ : « € A} where A is an index set be
given. The formal linear combination
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cr =Y Aasf (8.4.5)

acA

where )\, € R is called a k-chain in the space R*. Thus appending simp-
lices in a repetitive way if necessary and playing with their orientations, it
becomes possible to produce rather complicated geometrical structures. Ac-
cording to this definition, the boundary of a k-simplex becomes a (k—1)-
chain. In view of the definition (8.4.5), we may say that all k-chains on R*
constitutes a linear vector space denoted by Cj,(RF).

Let us now take without loss of generality 0 < j < ¢ < k and consider
the faces 32,71 and SLI of a simplex s:

sio1=(=1'[P, Pr,....Pj,....P1, Pi1, ..., P,
sty = (=1Y[Py, Pty..., Pjo1, Pjp1y..y Py, P
It then follows from above that the jth face of si_, and the ith face of si_l
are expressible as
sy 5= (1) (=1Y[Py, Pr, .., Pjo1, Pjs1, s Pioty Pty oo, P,
sl = (=1)(=1)" PRy, Pi,..., Pj1, Pis1,..., Py, Piy1, .., Pil.

These two sets are identical except for their orientations so that we get

ij ji
Sk—9 = T Sp_2-

Consequently, we conclude that

d(Dsy) = ZZsk = (8.4.6)

=0 5=0

This means that the boundary of the boundary of a simplex is zero.

Some low dimensional simplices can easily be visualised. sg = [Fp] is
just a point whereas s; = [Py, P;] corresponds to a vector, so = [Py, P, P5]
to an oriented triangle and s3 = [Py, P, P», Ps] to an oriented tetrahedron.
These simplices are displayed in Fig. 8.4.1.

The boundaries of simplices s;, s2, s3 shown in Fig. 8.4.1 are then
given by

881 = [Pl] — [Po]
0sy = [P1, P] — [Py, P] + [P, Pi]
0s3 = [P, P, P3| — [Py, P2, P3] + [Py, Py, B3] — [P, P, Po).
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whereas dsg = 0.

Fig. 8.4.1. Some simplices: (a) s1-simplex, (b) so-simplex, (¢) s3-simplex.

The standard k-simplex in R” is the k-simplex formed by the points

Qo =(0,0,...,0,0), @ =(1,0,...,0,0),Q2 = (0,1,0,...,0),...,
Qr = (0,0,...,0,1). Hence, the standard k-simplex is the set

k
sp = {(z, 2% ..., 2" eRV: 0< 2’ < l,izl,...,k;Z:ﬁ <1}
=1

It is straightforward to see that any k-simplex can be generated from the
standard k-simplex via an affine transformation.

When we are treating in Sec. 8.3 the integration of exterior forms in
the Euclidean space we encountered certain subset of R called k-rectan-
gles. We observe at once that these subsets can be reduced to the Cartesian
product [0, 1]* called the k-cube by a very simple scaling transformation of
coordinates. We can further show that a k-cube, or a box, is diffeomorphic
to the standard k-simplex. We define a mapping @ : [0, 1]¥ — s, on the set

[Oal]k:{<ylay27”'7yk) GRkOSyl < 17121771{7}

by the following relations

8§ 08 8
[

Y,
y(1-
y'(1—

o = Y=y A =y (1 =y,

We can easily verify that the inverse mapping ® ! : 5, — [0, 1]* is given by
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2 3 k
1 1.2 T 3 T k z

L e R Al e = R A =
1-> a
i=1

Thus the k-cube and the standard k-simplex can be diffeomorphically trans-
formed to each other by means of the function ®. Consequently, in develop-
ing a theory of integration on smooth manifolds, it does not cause a loss of
generality to take only standard simplices into consideration. Usually, it
proves to be more advantageous to utilise cubes in the numerical evaluation
of integrals and simplices in revealing homological properties of the mani-
fold which we will be dealing with later on.

Let us now consider a differentiable manifold M. A differentiable
singular k-simplex oj, on M is specified by a smooth function f : V — M
mapping the standard k-simplex s, in R¥ into the manifold M. In order to
secure the differentiability of this function, its domain V' is taken as an open
neighbourhood of s;. Since s, is compact, o, = f(s;) will necessarily be a
compact subset of M. Thus a singular k-simplex on M is designated by the
triple o = (s, V, f). The image points Q; = f(Q;) € M,i=0,...,k
correspond to the vertices of the singular k-simplex. A family of various
singular k-simplices on the manifold M is naturally specified by the set
{o} = (s, Vo, fo : 81 C V), a € A} where A is an index set (Fig. 8.4.2).

Fig. 8.4.2. Two singular simplices on a manifold M.

With A\, € R and a € A, the formal linear combination
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=Y Xaof (8.4.7)

acA

is called a differentiable singular k-chain on M . 1t is clear that a singular
chain is the union of some singular simplices. If A is a positive integer, this
will imply that we pass over that simplex A times. If A\ is negative the
orientation will be reversed. A single simplex o, can be regarded as a chain
in the form 1 - 0y. In accordance with this definition, we may say that the
sum and multiplication with real numbers of chains is again a chain. Hence,
we may think that all k-chains on a manifold M constitute a linear vector

space Cy,(M).
Let us consider a singular k-simplex oy, Let the faces of the standard
k-simplex s; be s;_,,% =0, ..., k. The restriction of the function f to the

set si_, is expressible as f |5, + Vi — M where the subset V; C RF1of V
is an open neighbourhood of s; ;. We characterise the following sets

ot =f(st )orol  =(st |, Vi,f),i=0,....k (8.48)

as the faces of the singular k-simplex 0. The boundary of oy, is the image
of the boundary of s; under the function f. We thus get doy, = f(Osy)
showing the validity of the commutation relation Jf(s;) = f(9sy). On the
other hand, the boundary of ¢;, may also be defined as

k
dop =Y o} 1. (8.4.9)
=0

Hence, it is a singular (k—1)-chain. Therefore, the function f must formally
satisfy the relation

k k
F(Xsin) = D Flsio). (8.4.10)
1=0

i=0

The boundary operator 0 : C,(M ) — Cj_1(M) introduced in (8.4.9) can be
extended to an arbitrary chain by the following definition

dey, = 8<Z>\a o—g) = "\, 00 (8.4.11)

ac€A a€A

This definition indicates clearly that O is a linear operator. This operator can
be applied for £ > 1 without any problem. Since the boundary of a 0-sim-
plex cannot be defined, we adopt the convention 0 = 0 on Cy(M). We can
state the theorem below concerning the boundary operator.
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Theorem 8.4.1. The boundary operator 0 is linear and we have 0 o 0
= 82 = 0on Ck<M)

The linearity of the operator O originates directly from the definition.
On the other hand, the image of a zero simplex under f is obviously zero.
Thus, we find that

820'k = 8f(85k) = f(625k) = f(O) =0.

Because of the linearity of the operator 0, we immediately reach to the con-
clusion that

8(8Ck) = 820k =0

for any chain. (]

If the boundary of a chain ¢y, is zero, i.e., if we can write dc;, = 0, this
chain is called a cycle. Hence, the boundary of every chain is a cycle.

Let M and N be smooth manifolds and ¢ : M — N be a smooth func-
tion. We consider a singular k-simplex o, = (sy, V', f) on the manifold M.
The image of o on the manifold N under the mapping ¢ is the set ¢ (o)

= ¢(f(sr)) = (¢ o f)(si). But the set ¢(oy) is a singular k-simplex on N
because [’ = ¢ o f:V — N is a smooth function. In this case, we are led
to the result

d(d(or)) = f(Fsr) = (¢ o f)(0s1) = ¢(f(9s1)) = (Do)
implying that the operators 0 and ¢ commute. So we get the relation
do¢p=¢od. (8.4.12)
Because of the linearity of O this result will equally be valid for a chain cy;:
d(p(cr)) = 6(decx).

Let S be an k-dimensional submanifold of an m-dimensional smooth
manifold M. The usual coordinates in the standard k-simplex s in R* will
be denoted by u*, = 1,...,k. Let us assume that a singular k-chain
cr = {of = (s, Vu, fa) 1 @ € A} can be found as satisfying the following
conditions:

(a). Each singular k-simplex of parametrizes a region S, = of =
fa(si) of S by x= (¢ o f,)(u) where ¢ is the homeomorphism in a
local chart.

(b). We have S = U S,,.

acA
(c). Each f, is injective and the rank of the differential df, is k.
Furthermore, for every a # b we have f,(8;) N f,(8;) = 0. Hence,
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the singular k-simplices can touch each other solely along their
boundaries.
Then we say that the chain ci, parametrizes the submanifold S by
ul, ...k
All singular chains under the operator 0 : Cj1(M) — Ci(M) consti-
tute a chain complex specified by the following decreasing sequence

C— G (M) 2 (M) D (M) — - (84.13)

because of the fact that 9 o & = 9? = 0. This implies that R.(9) C N;(9).
N (0) = Ker (0) C Ci(M) is called the space of k-cycles, and R,(0) =
Im (0) C Cy(M) is called the space of k-boundaries.

Let us now consider the dual space C} (M) of the vector space
Ci(M). If fr € Ci(M), then it is a linear functional fi : C(M) — R.
Such an f; will be instumental in creating a singular k-cochain on M. In
order to justify this terminology, we shall introduce the coboundary opera-
tor 0 acting on the dual space C} (M) by the relation

frr1(ers1) = Ofi)(chr1) = fru(Ockt1) (8.4.14)

for all ¢;.41 € C),1(M). Obviously 0 : C;/(M) — Cj, (M) is a homomor-
phism and one writes f;+1 = 0 f. Moreover, it is straightforward to see that
for any fi. € C}\ (M) we obtain

(009) fr(cira) = 0% fr(crra) = 0fi(Ockiz) = fu(0’Cran) =0

implying that 9 0 0 = 0% = (. Hence, we find that R;(0) C N;41(?). This
means that all singular cochains under the coboundary operator 0 constitute
a cochain complex given by

? ?
= Ci (M) — Cy(M) — Ciqy(M) — -+ (8.4.15)

Ni:(0) = Ker (0) C C}(M) is called the space of k-cocycles, and R (0) =
Im (9) C Cj (M) is called the space of k-coboundaries.

8.5. INTEGRATION OF FORMS ON MANIFOLDS

We assume that M is an m-dimensional differentiable manifold. Let us
consider a form w € A*(M). It is known that this form is expressed in local
coordinates as

1

w(x) = o Wiy (X) T A - A da®
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We shall now try to define the integral of this form on a £ < m dimensional
submanifold S of M. To this end, we first assume that there exists a singu-
lar k-chain ¢, that parametrizes S just as we have depicted at the end of
Sec. 8.4. If we recall that a chain is a linear combination of singular
simplices, we realise at once that it would be entirely sufficient to define the
integral on a single singular k-simplex o = (s, V, f). The smooth func-
tion f: V — M enables us to establish a smooth relationship between the
natural coordinates x € R™ and the parameters u € s, C R* in the form
x = x(u). Let f*: A(M) — A(V) be the pull-back operator induced by the
mapping f. This operator pulls the k-form w defined on the simplex o, back
to the form w* = f*w on the standard simplex s, as follows
1 oz Ox™
w* (u) = H Wiy iy, (X(u) D e S
1

= g@al...ak(u) du A - A du® =Ty (u) dul A A duP,

du®t A -+ A du

The integral on oy, is now defined by the relation

/w:/f*w:/wl..‘k(u)dul-'-dukGR (8.5.1)
Ok 5 S

reducing this integral to a multiple Riemann integral on the standard k-sim-
plex s; in the Euclidean space. Since we have assumed that the k-chain cy

=) A\, 0} parametrizes the submanifold S, the integral of the k-form w on
acA

S is eventually given by the sum

/w = / w= ZA/ w= 2/\/ fiw. (8.5.2)
s Ck acA Yo} acA U5

k

In order this definition to be consistent, we have to show that this integral is
independent of the choice of parametrisation of S. Without loss of generali-
ty, we may suppose that S is subject to two different parametrisations by
two chains ¢, = {(sy, Vi, fu) : @ € A} and ¢, = {(sk, Ua, ga) : @ € ™A} with
all real coefficients are A, = A\, = 1. Because we can write

5= aLeJAfa<%> B aLngga(Ua)
we evidently obtain

= (U fa(Va)) N (U96(U0)) = U_ Fa(Va) N ga(Ua)-

a€A,aed
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Since the mappings f, and g, are injective, they are bijective mappings over
their ranges. Consequently, their inverses exist so that one is able to write

filtoga: (g o f)(Va) NUs — Va (f5 " © ga)(Ua)

We thus reach to the desired result as follows

/W‘ZQ fw:E:t&mﬁwmmnw

acA,aed
-> (f 0 g0)" fiw
acA,ae (gatofa)(Va)NU,
= Gio () fw= [ gw= [ w
ae%e%l/(v Lofu)(Va )ﬂUa uezg( U, ch

We thus realise that the integral of a k-form on a k-dimensional submani-
fold can be evaluated as the sum of some multiple integrals over a simple
standard k-simplex once we manage to parametrize this submanifold by a
suitable chain. If the chain is finite, then this procedure does not cause un-
due difficulties. But if the chain is infinite, we may then have to face up
with a serious problem of convergence. In such a case, if the support of the
form w, i.e., the set supp (w) = {p € M : w(p) # 0} is compact so that it
can be covered with finitely many open sets, then surely no problems occur.

Let M, N be smooth manifolds and ¢ : M — N be a smooth map-
ping. If ¢, is a k-chain on M, we know that ¢, = ¢(c;) is a k-chain on N.
Hence, if w € A¥(IV) we immediately observe that

széwwzéww (8:53)

Example 8.5.1. We want to calculate the integral of the form w =
zyzidx Ady A dz € A*(R?) on the standard 3-simplex s3. On using the
familiar method of calculation of multiple integrals, we obtain

1 1-z l-z—y
/wz/xyszxdydz:/ dx/ dy/ ryz’dz
53 53 0 0 0
1 11—z 1
= / dac/ —xy(l —z —y)*dy
0 0o 3

1
(1 —z)’de = ——
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Example 8.5.2. We shall calculate the integral of the 2-form
w= (22 + 22)dx A dy + (2% + y*)dy ANdz + (y* + 2°)dz A dz € A*(R?)

on the 2-chain ¢; = 202 made up of the faces of the tetrahedron formed by
i=0

the points Qy = (0,0,0), Q@1 = (a,0,0), Q2 = (0,5,0), Q3 = (0,0,¢) in R.
The simplices of the chain are given by

[Qh Q27 QS] % [QO’ Q?a Q3]7
= [Qo, Q1,Qs], 05 = — [Qo, Q1, Q1]

We define the standard 2-simplex by
s = {(u,v) ER*: 0<u,v <1, u+v< 1},

Then the functions fi(u,v) = (z,y, 2),i = 0,1, 2,3 identifying singular 2-
simplices o become

fi(u,v) = (0, bu, cv),
fa(u,v) = (au, 0, cv),
f3(u,v) = (au, bv,0)
fo(u,v) = (au, bv, c(1 —u —v))

Indeed, we can readily verify that these functions provide the following
mappings

J1: 852 — [Qo, Q2,Q3],
fa i 859 — [Qo, Q1, Qs3]
f3:80 — [Q07Q17Q2]7
fo:s — [Q1,Q2,Q3]-

When we pull the form w from those faces back to s,, we obtain the forms

fiw = bcu’du A do,

fiw= —ac*v*du A dv,

fiw = a*buldu A dv,

fow= [a2b(a + ¢ )u? + b2c(a + b)v* + ac*(c +b)(1 —u — U)Q]du A dv.

3
/w:—bgc/ / 2dudv——b—c,
021 u=0Jv 12

We thus find
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1-u
/ [ab(a + c)u® 4+ bPc(a + b)v*+ c*a(c + b)(1 — u — v)*]dudv

-5 [a?’b + a’be + b3c + ac(b® + be + 02)]

whence we arrive at the result

abc
== . n
/Czw 12(a+b+c)

The approach we have followed above to evaluate the integral of a k-
form on a k-dimensional manifold consists of decomposing a complicated
region to much simpler regions by means of k-chains and summing all inte-
grals calculated relatively easily on those regions. We shall now discuss a
second approach that may prove to be more effective in certain cases. In that
approach, we decompose the form into some forms that vanish outside of
some simple regions covering the manifold and we add the integrals of these
forms together to obtain the final result.

We consider a k-dimensional smooth submanifold S of an m-dimen-
sional smooth manifold M. Let Ay = {(Uy, ¢)) : A € A} be an atlas of
M. We know that this atlas induces an atlas Ag = {(Uy, ) : A € A} on S
[see p. 105] where Uy = U NS, oy =@phoi: Uy —RFand T:5 — M
is the inclusion mapping Z(p) = p for all p € S. Let us now assume that
there exists a partition of unity {V,, f, : a € A} on the submanifold S
subordinate to the atlas Ag [see p. 62]. Each set V, belongs to an open set
U, of a chart of this atlas. We now consider a form w € A*(M) and try to
evaluate its integral over S. Since the partition of unity implies that

> fa(p) = 1forall p € S, we can write
acA

wlg =w(p) =D wi(p), walp) = fulp)w(p) € A*(U),

acA
supp (wa) C supp (fa) C Vo C U,.
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We thus obtain

/S“’: ZA/W . faw—anA/fa (8.5.4)

If the sum at the right hand side is convergent, the integral of the form w on
S is expressed as the sum integrals of forms that vanish outside of certain
regions. When S is a paracompact manifold, we had mentioned before
[see p. 95] that a partition of unity can be found subordinate to every atlas.
We know that there exist merely finitely many functions f, in a neighbour-
hood of each point p € S. However, if Ag does not contain a finite number
of open sets, infinitely many terms may nevertheless be involved in the sum
and we naturally have to face up with a problem of convergence. When the
support of the form w on the submanifold S is compact, it can always be
covered by a finitely many open sets, so the expression (8.5.4) becomes a
finite sum in this case. Therefore, the problem of convergence disappears
naturally. If the submanifold S itself is compact, this situation will always
occur.

In order that the integral of a form given by (8.5.4) has a meaning, it
should not be dependent on the chosen atlas and the partition of unity. To
show this, let us consider two atlases and their two charts {U), ¢y : A € A}
and {W,, 1, : v € I'} on S and two partitions of unity {V;, f, : a € A} and
{Zy, gy : b € B} on S subordinate to those atlases, respectively. Since S =

AUAUA = U WW, we can obviously write S = U (UA N W,). Thus, the
S

family {UA NW,:AxeA,vyeTl}is 11kew1se an open cover of S. We then
realise that {V, N Z, fugy : a € A, b € B} is the partition of unity subordi-
nate to the open cover {Uy N W, }. Accordingly, the integral of the form w
can be written in two different ways as follows

/Swzz:/faw:ZZ/fagbw

acA acA beB
> [ow=33 [mse
beB beB acA

since we can write w(p) = > fu(p)w(p) = >_ g (p)w(p).

acA beB
As a matter of fact, if the above sums converge absolutely, then we are
allowed to interchange freely the order of summations in the above
expressions. Furthermore, if the support of the form w is compact, then this
will happen naturally. Hence, if we consider two partitions of unity we
obtain
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/SWZGGZA/JZW:;/%M

Hence, the integral is independent of the chosen charts and partitions of
unity subordinate to them.

8.6. THE STOKES THEOREM

We had defined a manifold with boundary in pp. 90-93. We had seen
there that the boundary 0.S of such a k-dimensional differentiable manifold
S is a (k—1)-dimensional differentiable manifold and the local coordinates
(', 2%,..., 2%, 2*) € R* can be so chosen that the boundary in R*~! is
represented by (z!, 22, ..., 27!, ¥ = 0). The Stokes theorem that is rather
simple looking at a first glance but having a great potential in provoking
very important developments [it is commemorated by the name of English
mathematician Sir George Gabriel Stokes (1819-1903) who utilised a simi-
lar theorem in the context of classical vector analysis!] states that the fol-

lowing relation
/dw:/ w (8.6.1)
S S

is valid for every form w € A*71(S). This theorem is very important be-
cause it helps derive the classical theorems of Green-Gauss and Kelvin-
Stokes as well as the fundamental theorem of calculus. It also links topology
and analysis because the boundary operator 0 on the right hand side is
purely geometric whereas the integral and the exterior derivative on the left
hand side are purely analytic. We shall first prove this theorem for a mani-
fold with boundary prescribed by a singular chain c¢; whose boundary is
given by Oc,.

Theorem 8.6.1 (The Stokes Theorem on Chains). Let M be a dif-
ferentiable manifold. We assume that there exists a k-chain c, € Cy,(M)
and consider an exterior differential form w € A*=Y(M). We then have the
equality

11t was actually Sir William Thomson (Lord Kelvin) (1824-1907) who discovered
this relation within the context of classical vector analysis and communicated it to
Stokes in July 1850. However, Stokes is identified with this theorem because he
asked its proof on 1854 Smith's Prize examination in Cambridge University. It is
not known whether the students were able to answer that question. That is the
reason why some authors call this theorem as the Kelvin-Stokes theorem.
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/dw:/ w
Ck acy

provided that the integrals converge.
For a chain given by ¢, = > A\, 0}, its boundary is expressed as Jcy,
a

=3\ Ooj. Hence, it would suffice to show that the above relation is
a

valid for a single singular k-simplex oy. Since o1 = (si, V/, f) or, in short,
or = f(sr), we can write

/0 o= / Fdo= / ()

on resorting to the pull-back operation where we make use of the property
ffod=do f* in accordance with Theorem 5.8.2. The form 6 = f*w
€ A*~1(R¥) will be defined on an open neighbourhood V' of the standard
k-simplex s; in R*. Let us now denote the local coordinates in R* by
u', ..., u*. Hence, the form @ becomes expressible in terms of its essential

components as

(—1)1;191‘(11) dut A AduT A dutE A A dudF

M- 10

I
—_

v

7

where we have obviously introduced the forms ; € A*1(R¥),i = 1,2,
..., k as follows

9; = (=110, (a) du' A+ AduH A duTE A A du

The factor (—1)"! is inserted for convenience. Thus the exterior derivative
df may be expressed in the following manner

k
199 i i
dH:;(—l) lwdu]/\dul/\--'/\du LA du™ Ao A dut

0, "L 96

= —dut A ANduF = —Ldut A Adu A - A duF
ou’ ; our

where the summation convention is suspended as usual on underscored in-

dices. Therefore, we can write
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/de Xk: 89%11 du’--- duf (8.6.2)
Sk r=1 Skauf

These integrals can now easily be evaluated by consulting to the standard
simplex represented in Fig. 8.6.1.

A

P

R
1
u

Fig. 8.6.1. Standard simplex s;; positioned with respect to the preferred variable u".

In fact, on recalling the relation

[R),Pl, ,Pr_l,Pr+1, ,Pk] = (—1)7”571;71

[see (8.4.3)], we obtain
89? dut--- du"'du"du - duF (8.6.3)
5, OU”

N (_1)r/ [QT(Q) - 97’(P)]dul"'dur_lduTH”-duk
Sy
where we define on relevant faces

HT(P) = er(ula "'aurila():urjq: "'7uk)a
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k
0.(Q) =0, (ul,---,ur_l, 1-— Z ui,u7+1,-'~,uk>.

i=1,ir

Since v = 0 on the face s;_;, we get du” = 0 there and it follows
from the definition of the form @ that only one term in the expression for 6
survives on §;_:

0l = (—1)"10,(u, o) du* A= Adu" P AduH A A duP

.
Sp-1

We can thus write

(—1)7—1/ 9,-(P)dulmdquuT“.--duk:/ 0. (8.6.4)
e 5

T T
k-1 k-1

On the other hand, on projecting the integral of the form o, on the face s)_,
=[Py,...,P,_1, P, P41,..., P] in the direction of the preferred u"-axis,
we find that

[
1)

0
k-1
= / (—=1)"10,(Q) du'---du"Ldu" - du”
[Pr, . Pro1,Po,Prytse - 2]

= / 0,(Q) dut---du"tdu - .- duF
[Po,Pr,...;Prc1,Pry1,. ., Pi]

= (—1)7“/ 0,(Q) du---du"tdu- .- duF. (8.6.5)
S
In order to facilitate the computation of the integral in the fourth line above,
let us introduce the change of variables (u',u?,...,u" 1w, ... u¥) —
(v!,...,v*"1) through the relations
k -
vl=w? 0 =, i =1 — Z u',
i=1,iAr
o= ur+1 ,kal — uk
P Y

We readily observe that the inverse relations are then given by

k-1

w=1— Z'UZ,UQ — ’Ul, Wl = vr727ur+1 — 1)7, ,’U,k — ,kal
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The relation
du' A~ ANdu" P Adu"TEA - Adu® = (1) dot Adu? A A dot T

implies that the Jacobian of the transformation is J = (—1)""!. We thus get
|J] =1and

dut--du "t du® = dotde? - doF L

Since 0 < w' <1, Y u' <1 in the standard k-simplex sy, the new variables
i=1
v, ..., v*~! will evidently satisfy the conditions > v’ < 1 and 0 < v’ <1,
i=1
i=1,...,k — 1. Therefore, they depict the standard (k — 1)-simplex s;_1

in R*~1. Hence, we can write

/ 0,(Q) dut---du"tdu"!- .- duF

T
Sk-1

k
:/ 9r(1—Zvi,vl,...,vkil)dvl-udvk*l.
Sk—1 i

On inserting the expressions (8.6.4) and (8.6.5) into the relations (8.6.3) and
(8.6.2), we reach to the conclusion

k k k
/dﬁzZ/ 9+Z/ 19,:2/ 9:/ 0.
Sk =175 P r=0" 5},_1 dsp

Sk-1

= / 0,.(vh, ..., 0" Y dot - dof
5k—1
k=1

If we take the relations (8.4.12) and (8.5.3) into consideration, the above
equality leads to the following expression

/dw:/ w
y; doy

whence we deduce the Stokes theorem on k-chains in the following form

/dew - /&k“’ (8.6.6)

where w € A*L(M). O
If the chain ¢; is the boundary of a chain b1, i.e., if Jby,q then
dcp = 0%bp1 = 0 and consequently, we obtain
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/ dw = / dw = / w=20.
c b1y ?byy1

Similarly, if a chain ¢ is a cycle, we then have dc;, = 0 and we clearly find

this time
/ dw = 0.
Ch

On the other hand, if w is a closed form, namely, if dw = 0, then on the
boundary of every chain, we find

/ w=0.
6ck

But, we have to warn that satisfaction of this condition on the boundary of
every k-chain does not generally mean that the (k—1)-form w is closed.

If the difference of two k-chains is the boundary of a (k+1)-chain,
that is, if ¢, — ¢}, = Obgy1, we then get dcy — Oc, = O(cy — cf) = O?byyy
= 0. Hence, the difference of such kind of chains is a cycle and the relation

(8.6.6) yields
/dw:/dw.
Ci cy,

On the other hand, if w € A*(M), we then find

/ /w—/ w—/ w—/ dw
Cr— Pk abk+1 bA+1

Thus, if w is a closed form, i.e., if dw = 0, we also observe the following
equality for this sort of chains
/ o= / o
Cr: c

If w € AF=1(M) is an exact form, we have to write w = df and (8.6.6)
leads to the identity

0:/d29:/ d9:/ 6 =0.
Ck 6Ck 328k

Example 8.6.1. We now want to evaluate the integral in Example 8.5.2
by means of the relation
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3
E /w:/ w:/dw.
i=0 Y 0} 0sg 53

The integral of the form
dw=2(x+y+z)de Ndy Ndz

on s3 can be calculated as

o p-(bfa)etb pell—(z/a)~(y/b)]
/dw:2/ / / (x +y+ 2)dedydz
53 =0 y=0 z=0

b
:%§m+b+d.
We thus arrive at the same result. [ |
Let us now consider a k-dimensional differentiable manifold S with a
boundary 9S. We know that we are able to choose the local coordinates

(x,2?,...,2%) in a chart in such a way that 2% = 0 defines the boundary
0S. Thus local coordinates of any point at the boundary are then given by
(', 2%,..., 2% 1), Let the vectors ey, e, ..., e, be a local basis for the

tangent bundle 7'(0.S). Two vectors that do not belong to 7'(9S) are 9/0x"
and — /0z". The former vector is called as the interior normal of the
boundary 0S while the latter as the exterior normal. We assume that S is
positively oriented by the volume form py, = dz' A --- A dx* so that we
have yu,(9/0z!,...,08/0x%) > 0. We shall now adopt the convention that
the (k—1)-dimensional boundary manifold 0S will be positively oriented
with respect to its exterior normal if p( — 0/0x", €1, ea,...,e5-1) > 0. We
now propose the following form of the Stokes theorem for smooth mani-
folds with boundary.

Theorem 8.6.2 (Stokes' Theorem on Manifolds with Boundary).
Let S be a k-dimensional smooth manifold with boundary and w € A*~1(9)
be an exterior form with a compact support. If T : 05 — S is the inclusion
mapping identifying boundary points as points of the manifold, then the
form T*w € AF=1(9.S) will satisfy the relation

/Z*w:/dw or in short /w:/dw. (8.6.7)
a8 S 08 S

The manifold S is supposed to be positively oriented.

Let us first assume that the support D, of the form w lies within a chart
(U, ) whose local coordinates are (z!, 22, ..., z*). Thus the form w can be
represented as
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X)det A AdxTEAdTEA A dat

M»

2:1

if x € p(D,) CRF and w =0 if x ¢ p(D,). We shall further assume that
z* = 0 on the boundary 9S. In this case, the exterior derivative of the form
w can be written as

kL
:Z;a(;d

as we have attested previously. Next, we have to distinguish two different
situations.
(7). Let 9S NU = () so that we obviously obtain

/sz.
as

On the other hand, the set ¢(D,,) C ¢(U) = V in R¥ is closed and bounded
because it is a compact set being the image of a compact set under a ho-

meomorphism. Consequently, we can assume that p(D,,) C K} where the
k
k-dimensional box Kj, is actually a k-rectangle defined by K, = [] [a", "],

YA Adz™ A Ada® e AR(S)

r=1
0 < a" <b" < oo. At all of the end points of the box the following condi-
tions will evidently be satisfied since the support of w is supposed to be
compact:

we(zl, a2 =w (et b, 2M) =0, 1<r<E.
We thus find that
/ dw = / dw = / Ldz"dxt--dx" Yda L  dat
S »(Dy) Ky “Jar a$
k T’l‘_bT
Z/ Lol ...,mk)’;;w,dml-~-dxr_1dx’“+1---d:vk =0
K1 v

which proves that the relation (8.6.7) will hold in this case.
(ii). Let 9S N U # (). In this case, with z¥ = 0 on S we obtain

T'w=(=1)"twp(zt, 2, ... 2" 1 0) dat Ada® A AdabL
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But, we have to take now 0 = a* < b¥ < oo in the box Kj, containing the
image ¢ (D,,) of the support of the w. Hence, this time we get

k b"
/dw = / dw = Z/ {/ 8—% dz"dz" - -dx"Vdx™ - -dxF
S ©(Dw) r=1v Kp1 Ja’ ot

k

:Z/ wr(zt, . a2
I{k—l

r=1

' =b"

x'=a"

dz'-dz"'dat - da®

= —/ wr(zh, 22, ..., 2" 0) datda® - - dah
Ky

On the other hand, since pui( — 0/0x*,0/0z",...,0/0x% 1) = (—1)F, we
cannot say that the basis (9/0x!,...,0/02"1) is positively oriented in
T(0S). Accordingly, we find

/ Tiw= (—I)le/ wr(xt, 2%, .. 2" 0) datda® - -dat !
08 K1

= —/ wi(zt, 2%, . 2" 0) datda? - dat !
Kj-1

/I*w:/dw.
S S

We now wish to relax the condition that the support of the form w is
compact as it appears in the statement of the theorem. However, we shall
instead suppose that there is an atlas on S subordinate to which there exists
a partition of unity {V,, fo} where V, CU and (U, ) is a chart of the
atlas. We now impose the restriction that o (supp f,) C R* is bounded for
each member of the family. Since w(supp f,) is also closed, the image of
supp f, is a compact set in R¥. Hence, due to the homeomorphism supp f,
becomes a compact subset in S. Let us now define the forms w, =
faw € AF=1(S) associated with the form w € A*~1(.S). The support of w,, is
the same as that of f,, i.e., it is a compact subset. Thus, Stokes' theorem can

that results in

be applied to such forms. Because of the relation > f, =1 we get > df,=

0. Therefore, we can write
w = Zfaw = Zwa, dw = Z(dfaw + fodw) = Zdwa

and, consequently, obtain
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/de:;/sdwa:;/asfwa:/as;Iwa
:/851;(4)&:/051(,0

provided that the above sum is convergent and we are allowed to inter-
change summation and integration operations. When S is a paracompact
manifold and the support of the form w is compact, the number of the func-
tions f, involved is finite so these operations can always be performed. [

If w is a closed form, i.e., if dw = 0, then we get / w = 0 on a mani-
a5
fold S with boundary 0.S. However, this condition does not imply in gene-

ral that the form w is exact, namely, there exists a form ¢ such that w = do

and [ do =0.
as
Example 8.6.2. We consider the form
—ydxr+xdy 1
defined on the manifold M = R? — (0,0). Let D C M be a region bounded
by a closed curve C' containing the point (0,0). We can immediately see
that dw = 0. Furthermore, we can easily verify that one is able to write

w = df, 0 = arctan g.
Xz

| o= [do=2x20

It is clear that this result is not in essence in contradiction with Stokes'
theorem because it is originated from the fact that the real boundary of the
region is described by C' U {(0,0)}. [ |

We shall now attempt to obtain Stokes' theorem by following a com-
pletely different path. This approach will also prove to be rather advantage-
ous from the standpoint of giving rise to new interpretations. We consider a
k-dimensional submanifold S of an m-dimensional differentiable manifold
M where k£ < m. Let us assume that this submanifold is specified by a
smooth mapping ¢ : S — M. So in local coordinates, the submanifold .S is
defined by a parametrisation =’ = ¢'(u®),i =1,...,m;a=1,...,k. Let
U C S be a region with boundary. Its (k—1)-dimensional boundary 0U

Hence, we find that
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may be determined by a mapping ¢ : 0U — S or through functions u® =
Y*(v*), a =2,..., k. Since the dimension of the boundary U is k — 1, the
rank of the matrix [Ou®/0v"] must be k — 1. This amounts to say that we
can take det[0u’/0v?] # 0 by changing the ordering of coordinates if ne-
cessary. We can thus write v* = £%(u’) and the manifold U may be de-
scribed by the equation u! = ¢!(u?, ..., u"). Next, we select the new local
coordinates (w', w") for the manifold S by the expressions w® = u®, w' =
ut — &4(u?, ..., u"). Hence, the boundary QU of the region U is determined
by the condition w! = 0. In this case, the parameters w®,a =2,...,k
constitute the local coordinates of OU. All the vectors 9/0w” belong to
T(dU). Only the vector 9/dw! is not in the tangent bundle of U and lies
in T(S). We now introduce a vector field V = §/dw". This vector field
creates a flow, that is, a one-parameter mapping e/ : S — S on the sub-
manifold S dragging the region U onto a region U () C S (Fig. 8.6.2).

Fig. 8.6.2. The region U C S dragged along the flow eV

A form @ € A¥(M) on S can be written as
6 =0(w!, v, ..., ") dw Adw® A Adu”.

Let us now consider the set difference 6U (t) = U (t) — U so that the integ-
ration of the form 6 over which can be expressed as

Joa?= = 12
SU(t) U(t) U
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For a small parameter ¢, we can choose local coordinates in the vicinity of
oU as (t,w?,...,w"). We can then expand the function © into a Maclaurin
series about ¢ = 0 and write

00

= 4
ar| T

t=0

@(t7w2a cee ’wk) = @|t:0 +

We can obviously write the following expression for small values of the pa-
rameter ¢

U(t)

t
:/ (/ @(wl,wQ,...,wk)dw1>dw2---dwk.
oUu MO

Inserting the relation

t
/ O(w',w?, ..., w") dw' =t0|,_, + o(t)
0
into the foregoing integral, we find

/ 0=t O0,u? ..., w" duw? -duw" + o(t)
SU (%) oU

- t/anV(H) +o(t).

On the other hand, we can write
=il 0- [ = [
But the above expression can also be calculated in a rather different way:
=t (0= o =g [ erro- [
o T U(t) - U
/ hm)i
U t—0 t
~ [ &0,
U

We are thus led to quite an interesting result given below

a
dt Ju

a
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[evo=[ i

However, we know that we can write £/0 = iy (df) + diy () in view of
(5.11.5). df € A*1(M) vanishes identically on the k-dimensional manifold
S so that we get £1/0 = diy () on S and arrive at the result

/U diy (6) = /d (o) (8.6.8)

Let us now write w = iy (#) € A*~1(M). Since # and to some extent V' are
arbitrary, we can take w as an arbitrary (k — 1)-form. Therefore, we derive
again the Stokes theorem in its familiar form:

/dw:/ w.
U U

Let us now take an m-dimensional complete Riemannian manifold M
into account. If we denote the local coordinates by (x!,...,z™), the ele-
mentary arc length on the manifold is given by

ds® = g;;(x) dz'dz’

where we know that g;; is a positive definite, covariant symmetric tensor.
The volume form is prescribed by

um:\/ﬁdacl/v--/\dxm

where g = det[g;;] > 0. Let S be a k-dimensional submanifold of M. This
submanifold is parametrically determined by relations z° = x'(u®), a = 1,
..., k. In this circumstance, the elementary arc length on the submanifold S
can be introduced as

0u' 05

90t 9P du®du’ = anp(n) du®du® >0 (8.6.9)

ds® = gij(x(u))

where the second order, covariant symmetric tensor

ox' Oz’

Gofy = Gij5 o5 5 (8.6.10)

denotes the metric tensor A on S induced by the metric tensor G on M. It
follows at once from (8.6.9) that A is also positive definite. The volume
form on S can now be defined as
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e = Jadut A A duP (8.6.11)

where a = det [a,s3] > 0 due to the positive definiteness of A.
Let us now write a form w € A" *(M) as
1, .
w = — w“m“"/,l,ik..‘,jl

k!
where top down generated basis form i, ...;, are given [see (5.9.17)] by

1 . ,
Hieein = 00 )1 €y igipar i QTN Ada'™
Let us now evaluate these forms on an (m — k)-dimensional submanifold S
of M. On supposing that the submanifold S is specified by the parameters

(ul, ..., u™"), we get
1 8:177:k+1 a$im o
- = . L2, LA ... Ok
= (] €y s im e EY— du“* A - Ndu
1 oo O Gyl
— €. .. . 1 Xm—f L, . m—=k
= T €iy-mvigipyy i€ e Dy du” A--- ANdu
where Greek indices take the values 1,2, ..., m — k. On employing the re-

lation (8.6.11) for a volume form gy in the form p,,—r, we can write fi,,—
=/adu' A--- A du™* . If we introduce the Levi-Civita tensor

Qa1 Oy
el m—k

i

Q1 Qi —
61 m—k —

we end up with the result

1 axikJrl axim
Wiy iy = €. iri . eal"'am*k—...iu E
W (m— k)l e duer Guoni ' h

We now define a completely antisymmetric covariant tensor on .S through
the following components

1 ozl Jx'm

()1 Cirisisin e (8:6.12)

iy =

We then see that we can write

Miy--iy = My ey om—k- (8613)
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It follows from (8.6.12) that
oxh Ox'*

N Okt Qylm

This is true because the expression

ozh ox™ Qx'+t ox'm

€

iy .il"ikJrl. “lm 8uamfk+l o au(){m 8u0tl o 8uam,k
is completely antisymmetric with respect to indices iy, ..., %, and this en-
tails that it becomes also completely antisymmetric with respect to indices
a1, ...,Qn,_ . However, this latter indices take on only m — k different
values. Therefore, it is not possible to avoid getting repeated indices in the
setiy, ..., i, taking m different values.
The exterior derivative of the form w is [see (5.9.19)]
dw — 1 iy
W= m w i iy iy
1

,»1...1‘,‘4712'.4 o '
(k‘ _ 1)' w i Ty Mm—k+1-

Similarly, we can find

_ i1 i
W= —Ww Ny iy om—k-

k!
In view of (8.6.11), we can introduce the volume element on S as
dVi = adu' - du®

Let us now consider a form w € A™ *(M) defined on a region Uy, ;41 on
an (m — k + 1)-dimensional submanifold S whose boundary is given by
the manifold OU,,_;. Application of the Stokes theorem by using para-
meters peculiar to those submanifolds yields

/U W AV g = (8.6.14)
m—k+1

1 A
E CU“ ani1~--’ikd‘/7n7k.
6Umfk‘

An important special case that may be deduced from the above relation
corresponds to £ = 1. In this case, one has

w=uwp and dw=w'ip
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so we obtain

/ Wi dVy, = / w'n; AV, (8.6.15)
Um Cr}Um—l
where the components n;,%7 = 1, ..., m are defined by

1 are oy, axil aximfl

n; = m €iiy-e i1 € ! 1%' . Duam . (8616)
It is clearly seen that the relations
oz’
niw: ,Olzl, .,m—l

will be satisfied. The quantities

ox'

%, 06217...77’)1—1

are contravariant components of m — 1 vectors in T'(0U,,_1). The vector
whose covariant components are n; in T'(M) is orthogonal to all those
vectors. Hence, it is called the exterior normal n to the boundary oU,,,_; (if
U, is positively oriented). We shall now show that n is a unit vector. We
first evaluate the expression

1

B i a1 Q1 BBt
nin = | 5 Ciir i1y s €
[(m—1)!]

oz Ox'm1 Qxlr Oxm
>< P P

aual auam—l auﬁl auﬂm—l

1 )

_ . . L ki k-1
- 2 g]lkl o 'gjmflkmfl 6”1"'2771—1 € "

[((m—1)!]

% 601"'0&”716[31'

ﬂ axil 8.’L’im71 8$J1 8m.jm—l
Pm—1 “ e cee
uot Qutn ub Jubn

1 -k
. . 17 Fm—1 Q- Q-1 ﬂl"‘ﬁm—l
- 2 g]lkl g]mflkmfl 5i1- U1 € €

[(m—1)1]
« 8xil a:[;imfl 837]1 ax]-mfl
8ual auamfl 6uﬂl 8uﬁmfl

where we have utilised the relations (5.5.7) and (5.5.5). The last line above
is completely antisymmetric with respect to indices ay, - -, a;,—1. Thus it
also becomes completely antisymmetric with respect to indices i1, - - -, 4p,—1.
Hence, according to (1.4.8) we conclude that
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} 1 ozt Ox*
i ar Q-1 i Bt
nn =7 ¢ € ik jm— km— a8 9 o
i (m—1)! Girks™ " Gjm-rkmr g 37 o
al‘jm—l 8xk7m—l
o auﬁm—l auam—l
1
— Qp- Q-1 /61""3771—]
= ——(/— € € a e .
(m_ 1)! ﬂlal ﬂm—lam—l
On the other hand, the relation
a = det [a/ag] — 1 eal'"amfleﬂl"'ﬂmflaﬂ o aﬂ a
/ (m_ 1)‘ 101 m—10m—1

yields n;n’ = 1. In a similar fashion, it is a simple exercise to demonstrate
the validity of the relation

it = kL

LT

The relation (8.6.15) is called the Green-Gauss-Ostrogradski or di-
vergence formula generalised to an m-dimensional manifold [after English,
German and Russian mathematicians, respectively, George Green (1793-
1841), Johann Carl Friedrich Gauss (1777-1855) and Mikhail Vasilevich
Ostrogradski (1801-1862)].

Example 8.6.3. We consider a bounded region U C R? and the 2-form
w=XdyANdz+Ydz ANdx+ Zdx A dy. In view of (8.6.13), we can write

fe = dy Ndz = ngpa, py =dz ANdx =nypo, p, =dr ANdy =n.ps

on OU. The components of the unit exterior normal vector OU to the closed
surface QU are given by

where we denote z! = x, 2> = y, 3 = 2. On the region U, we get

dw = <3X 8Y—i—2—f)d1:/\dy/\dz.

8x+8—y

Hence, the Stokes theorem takes the form

0X oY 07
/U(% + oyt a0 /m](X"f ¥yt Zn.)da.

Let us introduce vectors F = (X,Y,Z) and n = (n,,n,,n.). Then the
Stokes theorem leads to the quite familiar formula
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/diVde:/V-de:/F-nda. [ ]
U U U

Example 8.6.4. Let U be a 2-dimensional submanifold, in other words
a surface, in R® and OU = C be the closed curve that supports this surface.
We consider a 1-form w = Xdx + Ydy + Zdz. We denote by s the arc
length of the curve C. Then the form w is expressible on C' as
dx dy dz
o=

on C where t is the unit tangent vector of C'. On the other hand, one has

dw = (g—j—%—};) dy Ndz + (%—f—g—i) dz Ndx + <?9_};_88—Z(> dx A dy.

Hence, the exterior derivative of the form w can be written as follows
dw=mn-curlF ps.

Therefore, the Stokes theorem associated with exterior forms leads to the
familiar expression

/n-curlea:/n-(VxF)da:/F-tds
U U c

known as the Kelvin-Stokes formula in the classical vector analysis. [ |

Through the Stokes theorem, we can generalise a relation known as the
integration by parts in the classical analysis. We take two forms w € A*(M)
and o € A'(M) into consideration. Let U be a region on a submanifold of
M with dimension k + [ + 1 < m. It follows from the exterior derivative of
the form w A o that

/dw/\a:/ w/\a—(—l)k/w/\da. (8.6.17)
U ou U

8.7. CONSERVATION LAWS

Let Z(w"),a =1,..., A be an ideal of the exterior algebra A(M). We
know that if the mapping ¢ : S — M satisfy the condition ¢*w = 0 for all
w € T, then it is a solution of this ideal. Here the solution hypersurface S is
a submanifold with dimension, say, £ < m. We shall now try to determine
non-zero exact k-forms in the ideal Z(w") annihilated by the solution
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submanifold. To this end, we consider a form w € A¥(M) in the ideal and
look for a form € A*~1(M) such that w = dSQ. Since w € T, we can write

0=¢"w=¢"dd =dop" Q.

Let U, C S be a smooth k-dimensional region and 9U;, be its boundary. It
follows from the Stokes theorem that

wﬁz/dwﬂza
Uy, U

Consequently, the form €2 must satisfy the relation

P =0 (8.7.1)
AU},

on every U C S with boundary. (8.7.1) is called a conservation law in the
integral form. Let us now suppose that the mapping ¢ is parametrically pre-
scribed by the relations ' = ¢/(u!,...,u¥),i =1,...,m. We take the
volume form on S as y = du' A --- A du* and define basis (k — 1)-forms
fo =ig,p,a=1,...,k in A¥71(S). Since the form Q will eventually be
pulled back on the submanifold S we can choose

Q= Q%x)pa(u) and ¢*Q = Q% (x(u)) o (u)

without loss of generality. Accordingly, in order that a form w € 7 is to be
exact, we have to find suitable forms vy, € A(M) so that Q) satisfies

w="7, Aw" =dQ =dQ%(x) A pia(u). (8.7.2)
On the other hand, the relation

o0 9z’ du 00 02
az oup “ T i guat

dp*Q = dQ* (x(w)) A pro =

implies that the functions 2 ought to satisfy the divergence equation
o0 oz 9¢*Q*(u)
ozt Que  OJu®

= 0. (8.7.3)
Example 8.7.1. The coordinate cover in the manifold M = R? is given
by x = (z,v,t). We consider the ideal Z generated by the following forms:

W' = dv + n’z dt,
W =dz —vdt.
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On a 1-dimensional solution submanifold prescribed by the mapping z =
x(t),v = v(t), these forms will have to satisfy

Pt = (% + n2x> dt =0, ¢*w* = (Lfl—f — U)dt =0.

Hence, the solution submanifold is determined through the differential equa-
tion below associated with 1-dimensional oscillating systems

2

d°x 9
W‘FH.TZO.

Since the solution submanifold is 1-dimensional, we have to look naturally
for exact 1-forms. Let 2 € A°(M). Due to (8.7.3), we find that

A0 _ 09dr  90dv 99 _
dt  Odx dt Ovdt Ot

Thus, we must have ¢*) = constant.
On the other hand, the condition (8.7.2) takes the form

Y1 (dv + n?x dt) + yo(de — vdt) = dQ = Q, dz + Q, dv + Q; dt

where 1,72 € A°(M). The subscripts indicate the variables with respect to
which partial derivatives will be evaluated. We thereby obtain

Y= Qv =Q, nPry — vy =
or
—n%zQy + v, + Q = 0.

It is obvious that this equation corresponds to the relation d¢*2/dt = 0 on
the solution submanifold. In order to solve the foregoing partial differential
equation, we can employ the method of characteristics. To this end, we have
to solve the following system of ordinary differential equations

dv__d_m

- = —dt.
n’x v

It is a simple exercise to see that 0 = Q(&, ) where
1 dx

2 2.2
= —t— [ —.
§= 0P +n%?), 1 -

Thus, independent conservation laws become & = constant, 11 = constant.
In this case, every function €2(£,7) remains constant on the solution
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submanifold. If we take U; = [t1, t2], then we find on OU; the known result

1 " d
4&+Mﬁ):ﬂ,@—h—/-ﬁza m
2 t o U

Example 8.7.2. Let x = (6, u, v, z, t) be a coordinate cover on the ma-
nifold M = R’. We consider the ideal Z generated by the following forms

Ww=duNdt —vdz ANdt, w* =db—udz—vdt.

On a 2-dimensional solution submanifold prescribed by the mapping 6 =
O(x,t),u = u(x,t) and v = v(x,t), we have to satisfy the conditions below

p*w' = (u, —v)dx Adt =0,

¢*w? = (0, —u)dx + (6, —v)dt =0
whence we deduce that

V= Uy, U =0, v=20; or 0y =0,,.

The last equation describes a one-dimensional heat conduction,. More gen-
erally it models a diffusion process. Let us take the volume form in a 2-
dimensional solution submanifold as u = dx A dt. We then get p; = dt,
e = — dz. Hence, we have to look for a form in the following shape

Q=&dt — Vdr € A'(M)

where we have defined Q' = ® € A°(M), Q? = U € A°(M). The condi-
tion (8.7.2) then yields

Nt + A W =dQ =dd Adt —dVU Adx
where y; € AY(M), v, € AY(M). If we express 7 as
Y2 =adl +bdu+cdv+ edx + fdt
where a,b, ¢, e, f € A°(M), then the above relation is transformed into

(m—bv—®,)du A dt—(yv—fu+ev+ @, + ¥,)dx Adt + bdu A db
+cdvoANdi—(e+ au—Ty)dO ANdx—(f+ av+ Dy) db A dt
—(bu—V,)du ANdz—(cu—¥,)dv ANdx—(cv+ ®,)dvAdt =0

whence we extract the relations

n—bv=%,, —vmv+fu—ev=®,+9;, b=0, c=0,
etau=VYy, frav= — Py, bu =Y, cu =Y, cv= — D,.



450 VIII Integration of Exterior Forms

by equating the coefficients of the linearly independent 2-forms to zero.
Hence, we end up with the relations

mn=@,e=¥%9—-au,f= - —av, ¥, =0, ¥, =0, P, =0
D, + U +v(P, + Uy) + uPy =0

implying first that we must have ¥ = ¥ (0, x,t), ® = ®(6, u, z,t). Since P
and U are independent of v, it is required that the coefficient of v in the last
equation above must vanish yielding &, = — ¥y. On noting that ¥ does
not depend on w, this expression is easily integrated to give

b= — \Ifgu+ ¢((9,l‘,t)

where ¢ is an arbitrary function. Thus, the expression ¢, + ¥; + u®y =0
yields the equation

¢r + Uy +u(dg — Vg,) — u’Wgp = 0.

However, this equation is satisfied if only

Wog =0, ¢p =W, Ui+ s =0.
The first two equations give

U =qa(x,t)0+ B(z,t),d =V, + ¢(x,t) and ¢ = a0 + B, + .

As to the last equation, it yields

(Ctar + )0 + Baw + 9o + 1 = 0.
Therefore, the functions ¢ and ¥ are finally given by

= —auta,f0+8,+p, V=ab+p3

provided that the functions «, 3 and ¢ are to satisfy the equations

Qzz +at =0, Bux+ B+ =0.

Thus the conservation law takes the form

0 0
%(_aeax‘i‘ax&_"ﬂx"i‘so)_’_a(ae_’_ﬂ)_O

and we arrive at the integral relation
/(<I>dt— Udxr) =0
c

on every closed curve C' in the (z, t)-plane. [ |
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Example 8.7.3. The coordinate cover of the manifold M = R* is
given by x = (z,t,u,c). Let us consider the ideal Z generated by the fol-
lowing 2-forms

W= —duAdz +uduAdt+ acde A dt,
w? = —dc/\dm—l—udc/\dt%—lcdu/\dt.
e

On a 2-dimensional solution submanifold prescribed by the mapping u =
u(z,t), ¢ = c(x,t), the following relations must hold

*wh = (uy + uu, + ace,) dx A dt =0,

1
¢*w® = (¢t + uc, + — cuy) dz Adt = 0.
[0

Subscripts denote partial derivatives with respect to relevant variables. They
of course give rise to partial differential equations

up + uu, + ace, =0,

1
¢ +ucy, + —cu, =0
«

to determine the functions u(z,t) and c(x, t) prescribing the solution mani-
fold. These equations are modelling the one-dimensional isentropic gas flow
for the choice

2

a:T_l

and the shallow water theory in hydrodynamics describing the propagation
gravity waves on the free surface of an incompressible fluid of infinite
extent in z-direction on a horizontal flat bottom for the choice v = 2. In
isentropic gas flow, v denotes the ratio of specific heats of the gas under
constant pressure and constant volume. w is the velocity of the gas while ¢
denotes the local sound speed. In the shallow water theory, w is the velocity
of the fluid and ¢ = \/97h where h is the elevation of the water surface
during the propagation of the gravity wave from the horizontal bottom. g
denotes the well known gravitational acceleration.

We shall now attempt to find conservation laws by taking into account
a form Q = ®(x)dt — ¥(x)dz € A'(M). In order that df2 is to be in the
ideal Z(w', w?), we have to write

YWt + Yo = dQ = d® Adt — d¥ A dx

where 71,72 € A°(M). Therefore, the relation
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—ydu Adx — yyde A dx + (u71+ Ew) du A dt + (acy, + uvyg)de A dt
=(®,+ Vy)dx A dt + D,du A dt + @iédc Adt —V,duNdx — VU.dec Adx
leads to the partial differential equations
Q, +¥ =0, M=%, m=¥
u¥, + 2\110 =o,, ac¥,+u¥,.=2>o,.
to determine the functions ® and W. On the other hand, the symmetry rela-

tion ¢, = ®., leads from the last two equations above to the second order
linear partial differential equation for the function ¥

1
20, — Ve + 220, = 0.
C

On the other hand, we can find from the above relations

ou®, — c®, u®, — ac®,
Uy=———5, Ye=—5—35—
" a(u? —c?) u? — ¢?
from which we obtain
9 (a—1)(u® +c?) 20(a — 1)
Puu — Pee ce— 55 Pu=0.
“ * c(u? — c?) c(u? — c?)

Of course the solution functions ®(z,t,u,c) and ¥(z,t,u,c) are interre-
lated through the relations above. We anticipate that our field equations may
possess infinitely many conservation laws since they are originated from so-
lutions of partial differential equations. Indeed, certain particular solutions
of those equations justify this expectation!. It can be shown that a polyno-
mial type of conservation laws that are independent of x, ¢ can be found as

\I/n —_ chT(l%*") (£)7 CI)n — cn+1 [ECT(L%*") <£> o C;]%;”)( u >:|

ac Cc acC acC

where n =1,2,... and n # «a/2. CY denotes a Gegenbauer polynomial
[after German mathematician Leopold Bernhard Gegenbauer (1849-1903)].
These sequence of orthogonal polynomials is found from a generating func-
tion through the expansion

IFor a detailed analysis one may consult to Suhubi, E. S., Conservation laws for
one-dimensional isentropic gas flows, International Journal of Engineering
Science, 22, 119-126, 1984.
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/\) n
(1— 2zt + 2> ZC o)t

They can also be obtained by the following recurrence relation
cM@) =1, cM(z) =2xz

CW(z) = 1 ~f2e(n+ A = 1)CN () — (0 + 23 = 20, (0)].

We confine ourselves here in giving only a few samples of this infinite set:

-2 —2/1
\Ifl = @ u,<I>1 = @ (*UQ +02),
2 o
—4 -2 —4 -2
Wy = _ @ <02—a UQ):‘I)zz - U(C2_a u2),
2 o? «a 3o
\113:(04—4)(04_6)16(04_2“2_%02),
6 a’ «a
(o —4)(a—6) /1 , a+2 W2 a—2 4
®3= - 4 ( T on ¢ 2a3u)’
— —2)( —4
\P4:(a u(a )u4—6 u?c? —1—30)
a?
@4:(04_ u<c4 O‘+1 4) 202+(0‘_2)(a_4)u4>,
1503

|

Example 8.7.4. As a final example, we shall try to establish conserva-

tion laws associated with the field equations of a hyperelastic body in mo-
tion occupying an open region 2 C R? initially2. To facilitate our investiga-
tion we employ Cartesian coordinates. The position of a material particle
before deformation will be determined by material coordinates Xy, K =
1,2, 3 whereas the place of the same particle in R? at time ¢ will be denoted
by the spatial coordinates xi,k = 1,2,3. The motion of this continuous
medium is determined by the diffeomorphism z;, = x4 (X, t) with parameter
t. A homogeneous hyperelastic material is characterised by the stress poten-
tial ¥(C) in which C = F'F is the deformation tensor where F = [z}, ] is
the deformation gradient tensor, or matrix, whose components are denoted

2Suhubi, E. S., Conservation laws in nonlinear elastodynamics, International
Journal of Engineering Science, 27, 441-453, 19809.
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0 . .
by Frx = aTml; =z, i. The equations of motion of the body are
0Tkt ovy,
= pp—b 8.7.4
X + pofr = po T (8.7.4)

where T is the Piola-Kirchhoff stress tensor of the first kind [after Italian
mathematician and physicist Gabrio Piola (1794-1850) and German mathe-
matician and physicist Gustav Robert Kirchhoff (1824-1887)] and v =
—— are the components of the velocity vector of a particle. p is the con-

ot

stant density of the undeformed medium and fj, = fi.(X,t¢) represents the
components of the given body force density. Constitutive equations charac-
terising the elastic behaviour of the medium are of the form

0%

TkiFixk = T Frk.

Twy = (8.7.5)

The relations (8.7.5)- arise from the symmetry of the Cauchy stress tensor.
Therefore, equations of motion may be reduced to the following system of
first order partial differential equations

oF, ov

o 2B OV e

REIL G5 -y + pofr ;

0X;, 00Xk

OF.k B v, _0

ot 0Xyx
where the coefficients
oT Ry

CkKlL(F> Kk = ClLkK(F) (8.7.6)

- OF  O0FkOFy

are called the elasticities of the medium. Let us now consider the 19-dimen-
sional manifold K with a coordinate cover (Xx,t, g, vk, Frr ). We first
introduce the 3- and 2-forms below

1
p=dXi NdXo NdX3 = geKLMf dXg NdXp ANdXyy,

. 1
pi = logh = SEKLM dXp NdXy.

We then define the following 4-forms:



8.7 Conservation Laws 455

wr = podvg A+ CrrindFip A pe A dt+ pofi o A dt,
wrg = dFpg A 4 dvg A ug A dt,
Tk = ey AdFir A par A dt,

or =dxp N p+ v p A dt,
orxg = dxp A pg Ndt — Fyg p A dt.

We can readily verify that

dwk = 0, dka = 0, dﬂ'k]( = 0,
do, = pgldt Awg, dopg = —dt ANwii

These relations mean that the ideal Z generated by these 4-forms is closed.
Let the submanifold with the coordinate cover (X, t) be M. We can easily
check that the mapping ¢ : M — K annihilating these forms, and conse-
quently the ideal Z, provides the solution of the differential field equations.
In fact, we find that

ov

" wr = po 8—tkdt A+ CrginFio v d X A pie A dt + po fi o A di
Oy,
= <— £o 8—tk + CrxinFirx + Poﬂ)u Adt =0,
6FM< (9’1)k
‘wrr = (- 5, “VuAdt=0
o = (== +8XK)“ )

* = e y /\ dt == 0,
O TrK = eKLM 3 XMM

o o = (—aaa?tkijk)u/\dt:O,

al'k
00Xk

qS*okK:( —FkK>u/\dt:O.

We shall now look for the exact 4-forms in the ideal Z. If w € Z, then we
can write
W = Qrwi, + GrrWrK + VkkThK + Yok + Yrr ok
where ¢, drxc, Vi, Ui, Urx € A°(K). Let us now introduce a 3-form
Q=u— P pg Adt € A3(K)

where ®, & € A°(K). Next, we try to determine the functions ¢y, drx,
Vkie, Wk, Wi as to satisfy the relation

w=dQ=d® A pu—dPx A pux Adt.
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Under the solution mapping, we have
0=0¢"'w=¢"dQ =dop*Q2
so that we obtain the conservation equations

06 ®) | 9(6"¥r)

ot Xk 0.

The relation w = df2 now yields

od 0Pk
(P0¢k - 8Tjk>dvk A p+ (CkK1L¢k — exLMViM + 8T>dFZL A pg A dt

00 00k
— F
(Pofk¢k + Ypvr — Vi Frx + - 5 8XK) Adt
0o 0o
— —— )dF, —_—
+(¢kK 8FkK)d kK A +(¢kK + o )dv;C Apg Adt
0o 0Py
from which we extract the following expressions
0P
PoPr = Fo
ik = o B 0Py
R OF.x ov,
0o 0Py
Yy = P Upg = — o
0d g
Crrir®r — exrmvin + OF, 0,
0P 8<I>K
— F =0.
pofr®r + Vrvr — Y Frx + &+ 5 8XK

It follows from the fifth expression above by employing the first one, recall-
ing the relation exryrexy = 26y and evaluating its symmetric part with
respect to indices K and L that

y N 16 ( 1 C 0P 8<I>K)
M KLM 20 kKlLa 8EL

2
0P 8(13 Kk 0Pp

C + C +
,0( WKL kLlK)a o T oF, T o,

=0.

Hence, the equations to be satisfied by the functions ® and ®x depending
on 19 variables are reduced to
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0P 8(I>K
=0 8.7.7
OF | ov (®.7.7)
0®r 09 0
L} Brpe— =0
OF, + OFix + DKLkl e )

0P 0dg 0P 0Py 0P
— — —F] —f. = 0.
ot + 0Xxk + oxy Uk oxy. kK T vy fk

where the functions By x(F) are defined by
1

Brrw = Brixw = Brrk = ;(CkKlL + Crrnix)- (8.7.8)
0

enjoy several symmetries in subscripts depicted above that can be verified
just by inspection. The system (8.7.7) contains 28 equations to determine
only four functions ® and ®x for an arbitrary stress potential Y. In order to
find the solution of this system, let us start by differentiating (8.7.7)> and
employing (8.7.7); to obtain

0*® 0*® 0*®

_B
OFL0F, x| OFR0F,. KM g, 50

The left hand side of this expression is symmetric in indices  and m impos-
ing the following restriction on the right hand side:
e B 9’
8vk8vm - KLkm 81%8111 '

Brrw

For fixed K and L, this implies that the symmetric matrix 9?® /0v;0v;
commutes with arbitrary symmetric matrices Bx ;. According to the well
known Schur lemma of the group theory [Russian born German mathema-
tician Issai Schur (1875-1941)] this matrix can only be a multiple of the unit
matrix. Therefore, we ought to write that

0*®
8”Ukavl

When k # [, we areevidently led to 9?°®/0v;.0v; = 0.Hence we readily
observe that

= p()d)(Xa t,X,V, F)(Skl

G d¢

R — — =0
dur0vdn, oo,

so that the function ¢ becomes independent of the variables v = {v;}. We
thus obtain
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1
D = §p0¢(X,t,x,F)vkvk + e (X, 8, x, F)o, + p(X, ¢, x, F)

Let us now insert this expression into (8.7.7); to obtain

0P _ 1 0 O Op
(%k N 2p08FkK e aFkK " 8Fk}(
and
Pox _ 0o 0N
8vk8vl N pankK : 8FkK

The symmetry on the left hand side with respect to indices k& and [ now
requires that

(8¢v_8¢v) 8>\l_8>\k_0
P OFx  OFg " OFx  OFk
Since ¢ and A do not depend on v, we immediately obtain

0

¢ —0,

0Fk

oN B Oy

IFxk  OFi’

Hence, we see that ¢ = ¢(X, ¢, x) We thus conclude that

_lon
20F "

0
o v + Vi (X7 i, X, F)

Oy — _
K 0Fk

Uy

In order to determine the arbitrary functions appearing in & and @y, we
have to introduce these expressions into (8.7.7) and (8.7.7)s. After tedious,
but not overly complicated manipulations, which we abstain from repeating
them here, we arrive at the following result when f;, = 0

1
¢ = CL(E + §P0Uk’vk> + brpovr + CrekimPoTIVm + dLpoTk, 1 VK

Sy = — aTlkpvr — b Tkr — crermTiTrm

1
+dp, [(E — i,oovkvk) Oxr — Trrorr

where a, by, ¢, and dj are arbitrary constants. A reader interested with
details may be referred to the work mentioned above. Therefore, independ-
ent conservation laws will be, respectively
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0 1 0
pn (E + §povkvk) = E(Tgrkvk), balance of energy (8.7.9)
0 0Ty
00 % =3 X{; f ) balance of linear momentum
p()a (pimTivm) = 9X (eximiTkm), balance of angular momentum

pogt(l‘k,wk) + 8?(}( KE - %P()Ukvk)éKL - Tkak,L] =0

The first three expressions corresponds in the framework of the classical
mechanics to conservation laws to which every correctly formulated con-
servative system must obey. However, the last conservation law is of
different character and it is peculiar only to the field equations of elasticity.
If we integrate the conservation laws in the differential form on the region (2
and employ the divergence theorem we obtain

0
/<I>dV+/ PN dA=0
ot o9

where the vector N is the unit exterior normal to the boundary OS2 of the
region ). Hence, conservation laws in integral form are given by

0

Ot/ (2 + p0|V| ) /aQTKk-kaK dA = 0, (8.7.10)
a /po’uk dV — / TKkNK dA = 0,
ot 90

0

/ekZmPoIL’z’Um av — / erimTiITrm Ng dA = 0,
ot 90

0 1 2
at/pokavde—i-/Q[(E— §p0|V| )NL —TKk{L'k’LNK]dA—O

The last integral is the non-linear dynamical counterpart of the J-integral
that is frequently utilised in fracture mechanics [ ]

8.8. THE COHOMOLOGY OF DE RHAM

In Chapter VI, we had shown through the homotopy operator that all
closed forms on a differentiable manifold M are locally exact. This property
may not valid, however, globally, in other words, over the entire manifold.
That the character of the connection between closed and exact forms de-
pends only on the topology of the manifold, particularly on the holes within,
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but not on its differentiable structure has been demonstrated by de Rham
through the investigation of cohomology groups on the module of exterior
forms and homology groups on the topology of the manifold.

We had already seen that all closed and exact forms defined on a dif-
ferentiable manifold M™ constitute subalgebras C(M ) and E(M) of the ex-
terior algebra A(M), respectively, on R whereas C*(M) and £¥(M) are
vector subspaces of the module A*(M) on R [see Theorem 5.8.3]. We
obviously have E¥(M) C C*(M), namely, EF(M) is a subspace of C¥(M).
We shall now define a relation ~ on the vector space C*(M) as follows:
two closed forms are related if their difference is an exact form. Hence, for
two forms wy,ws € C*(M) the relation w; ~ wy implies that w; — wy = df
where § € A¥=1(M). ~ is an equivalence relation. Indeed, w ~ w since
0=w—w=4d0 so the relation is reflexive. If wi~ wo, then one has
wy —wy = d(—0) and wy ~ wy so the relation is symmetric. If wy ~ wy and
wy~ ws, then we get w; —ws = dby, ws — w3 = df, and, consequently,
wy —ws =db, +dby; = d(0, + 6;) and wy~ w3 so the relation is tran-
sitive. Therefore, the vector space C*(M) is partitioned into disjoint equi-
valence classes. An equivalence class associated with a form w € C*(M)
will be the set

W ={w+o:0cEM)}={w+di:0c A" (M)} (88.1)

This set is called a cohomology class. All forms belong to the cohomology
class of the form w are called as cohomologous forms to w. We have seen
on p. 5 that the quotient set of these equivalence classes may be equipped
with a structure of a linear vector space on R. We shall denote the quotient
space of C*(M ) with respect to its subspace £* (M) by the vector space

H*(M) = (M) /¥ (M), (8.8.2)
If we consider the cochain complex (5.8.6) given by

d d d
—_ .

A LG ARy LAk ) 4 ) 0

we see that this quotient space is also expressible in the equivalent form
H* (M) = Nii(d) /Ry (d).

The zero element of this vector space is given by [0] = £¥(M). Since the
linear vector space H*(M) is known to be an Abelian group, it will thus be
named as the kth de Rham cohomology group of the manifold M. The di-
mension by (M) of the linear vector space H*(M) which is the number of
the linearly independent equivalence classes is called by Poincar¢ as the kth
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Betti number [after Italian mathematician Enrico Betti (1823-1892)] of the
manifold M. Evidently by, is a positive integer that might be infinite. As we
shall observe later that Betti numbers are dependent on the topology of the

manifold M, particularly on its connectedness and number of holes within
M. The sum

m

X(M) = (= 1)fb(M) (8.8.3)

k=0

formed by Betti numbers is called the Euler-Poincaré characteristic of the
manifold M [Swiss mathematician Leonhard Euler (1707-1783)]. In order
that all closed k-forms on a manifold are to be exact k-forms, we must
clearly have C*(M) = E¥(M). This is of course tantamount to say that
H*(M) = 0. Hence, b, (M) = 0 in such a case.

Since £Y(M) = {0}, we naturally get H°(M) = C°(M). On the other
hand, if a function f € A°(M) is closed, that is, if d f = 0, we find that f is
constant. When M is a connected manifold, the function f takes of course a
unique constant value on M. Hence, we get H’(M) = R and consequently
bo(M) = 1. But, if the manifold M is a disconnected union of r connected
components, the function will be allowed to take a different constant value
on each component. So we find H*(M) = R" and by(M) = r. If k > m,
then all k-forms on M vanish leading to the result H*(M) = 0. Since all
closed forms on R™ with m > 0 are exact [see p. 334], we deduce that
CE(R™) = EF(R™). Accordingly, we obtain H*(R™) =0 for 1 < k < m.
Thus Betti numbers become by(R™) = 1, b;(R™) =0, 1 < k < m. When
M is a contractible manifold, we similarly have H*(M) =0,1 <k <m
and Betti numbers are found to be by(M) = 1, b, (M) =0, 1 < k < m.

The direct sum H (M) = @ H (M) is a linear vector space on R. Let
k=0

us take the cohomology classes [w] € H¥(M), [¢] € H!(M) into considera-
tion where the representatives of classes are w € C*(M) and o € C'(M). An
operation of multiplication L on H (M) will now be defined by

[w] U [o] = [w A a]. (8.8.4)

Endowed with this operation, H (M) is named as the de Rham algebra.

Let us now consider smooth manifolds M and N and a smooth map-
ping ¢ : M — N. We know that the mapping ¢ generates the pull-back
operator ¢* : A(N) — A(M). Since the operator ¢*, that is linear on R, and
d are commutative, ¢* transforms closed forms into closed forms and also
exact forms into exact forms. In fact, owing to Theorem 5.8.2 for a form
w € C*(N) we immediately obtain ¢*w € C¥(M) because of the relation
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0 = ¢*(dw) = d(¢*w). In the same manner, for a form w € E¥(IN) we have
w = do and we obtain ¢*w = ¢*(do) = d(¢*0), or ¢*w € EF(M). For a
closed form w € C*(IV) the vector [w] € H¥(N) is the set of forms w + df
for all forms @ € A*~1(IV). In this case, we get

¢*(w+db) = p*w+d(¢"0) € [¢"w]

so that we obtain ¢*[w] = [¢p*w] € H*(M) for every [w] € H*(N). This
means that a linear transformation ¢* : H(N) — H (M) between de Rham
algebras arises from the mapping ¢. ¢* is actually a homomorphism. Indeed
if [w], [c] € H(N), we can easily obtain

¢"(Wu[o]) = ¢ [wno] = [p"(wAo)] = [p*wA $0]
= [p*wlu[g"al.

If ¢ is a diffeomorphism, then ¢* : H(N) — H (M) becomes naturally an
isomorphism.

Example 8.8.1. We consider a submanifold in R"*! given by the unit
sphere S™. We suppose that that the poles are the points defined by 2! =
=+ 1. If we employ the hyperspherical coordinates introduced on p. 412 sa-
tisfying the conditions 0 < ¢1,...,¢,—1 <7 and 0 < ¢, < 27, we know
that the volume form on S” can be chosen as

f = sin™ L pysin" 2 - -sin g1 déy A dpa A -+ A dp € A"(S™)

Since dp =0, p is a closed form. But it is not an exact form. Indeed,
because one has JS" = 0, an exact form w = do € A"(S") must satisfy the

condition
/ w = / do = / oc=0
n n aSn

in accordance with the Stokes theorem. However, we had already seen that
[see p. 413]

1

271'%
1= =7y 7 0-
/ r(=)

2

We shall now try to demonstrate the following proposition: A closed form

we A"(S") = C"™(S") is an exact form if and only zf/ w = 0. If the form
Sn
w is exact, this condition is satisfied straightforwardly as is seen above. We

shall use the method of mathematical induction to show that it is also the
necessary condition. To this end, we shall first prove this proposition for
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n = 1. The embedding ¢ : R — S' C R? prescribed by ¢(f) = ¢ deter-
mines the 1-dimensional manifold S'. If w € A'(S!), then we have ¢*w =
f(0) db. In order that this form is to be uniquely defined, the function must

9
be 2m-periodic. We then introduce a function F'(6) = / f(r)dr. If / w
0 st

= 0, then we get

0+2m
0:/81w:/9 F(r)dr = F(6 + 27) — F(8), V0 € R.

This means that F'(f) ought to be a 2m-periodic function. Thus, a unique
function G € A°(S') may be defined through the relation ¢*G = F. Hence,
we can write ¢*w = f(0)df = dF = d(¢*G) = ¢*dG from which it fol-
lows that w = dG, i.e., w € E(S'). In order to apply the mathematical
induction, we shall now suppose that the proposition in question is true in
the manifold S"~! and then try to prove that it will also be true in the
manifold S”. We know that the manifold S" can be prescribed by an atlas
with two charts. The following open sets of these charts

U ={xeS":z"" <1} and U= {xeS": 2" > —1}

yield Uy U Us = S™ and by a stereographic projection [see p. 81] these sets
become homeomorphic to R". We define the north and south hemispheres
of S™ as the closed sets

N={xeS": 2" >0} CU; and S = {xecS":2"" <0} C U,

respectively. We see at once NV U S = S" and we observe that NN S =
{x € S": 2" =0} = S""!. The latter set can of course be taken as the
common boundary of N and S and it should be oriented in reverse direc-
tions whether it is considered as the boundary N or 05. Since the sets Uy
and U, are homeomorphic to R", they are contractible sets. Let w € C"(S")
be a closed form satisfying the condition fS,,,w = 0. According to the
Poincaré lemma, restrictions of the form w to regions U; and U, are exact
forms, namely, there exist forms o1 € A" }(U;) and o9 € A" 1(Us) such
that the relations u)|U1 = doy and w]UZ = doy are held. Therefore, if we
choose that 05 is positively oriented, then the Stokes theorem leads to

Oz/w:/w+/w:/d01+/d02:/01+/ 09
n S N S N oS ON
:/ 0'1—/ 0'2:/ (0'1—0'2).

Sn—l Sn—l Sn—l
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Hence, the integral of the form (o — 03)|gn € A" 1(S" 1) on S"°!
vanishes. According to our assumption the form (o, — 02)|g.-1 is exact. Let
us now define a smooth mapping 1 : U — S"! on the open set U =
U, NU; by assigning to each point x € U the point of intersection of the
meridian through the point x with the equator S"~!. In this case, the form
(01— 02)|y = ¢*(01 — 02)|gu1 on U will also be exact. Thus, there exists a
form o € A"2(U) such that (o7 — 02)|; = da. Let us choose a form
B € A"%(S") so that one gets dB|; =da on U and introduce a form
o € A"71(S") as follows

oo, on Uy,
| o2 +dB, onUs.

On U =U;NU,y, we find 01 = 09 + dfF and 01 — 09 = d = da whence
we conclude that w = do and w € £"(S™). We have thus shown that if we
assume that the proposition is true for n — 1, then it becomes also true for n.
Since we have already seen that the proposition is true for n = 1, we are led
to the conclusion that it is true for every n.

We shall now demonstrate that if w € A"(S") is a closed form, we can
always find a number ¢ € R such that w — cp is rendered as an exact form.
On employing hyperspherical coordinates, we can generally express this
form as follows

W:f(ﬁzsla---aﬁzsnfl,(lsn)dﬁbl/\"'/\d(ﬁnfl/\d(ﬁn

where the function f is w-periodic in variables ¢4, ..., ¢,_1 and 27-periodic
in the variable ¢,,. We thus get

o= /;---/;/;ﬂf(sbl,...,%1,¢n)d¢1---d¢n1d¢n.

Let us choose a real number ¢ as follows

With this choice the closed form o = w — cpu € A"(S™) will clearly satisfy

the condition
/ a=0.
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Hence « is an exact form, i.e., « € £™(S"). If ¢ = 0, then the closed form
w € A"(S™) will obviously be an exact form. According to this result, all
closed n-forms on S” are to be cohomologous to a real constant multiple of
the volume form p. Hence, we can write H"(S") = R. On the other hand,
because S" is a connected manifold we know that H°(S") = R. Therefore,
the corresponding Betti numbers are by (S") = b,(S") = 1.

We shall now try to determine the cohomology groups H*(S") for
1 <k <n—1 of the n-sphere. To this end, we shall resort once more to
mathematical induction. Let us first take a closed form w € C'(S") into
account. Since dw = 0 on U and U, the Poincaré lemma implies that there
are functions f € A°(U;) and g € A°(U,) such that one writes w|;, = df
and w|y;, = dg. On the open set U = U; N Uz, we thus get d(f — g)|,; =
(df —dg)ly = (w—w)|y = 0so that we find f — g = ¢ = constant. Let us
now define a function ¢ € A°(S") as follows

| f onUy,
v= g+c onUs.

Then we obtain w = de, i.e., w € £1(S"). This means that every closed 1-
form on S" is exact. In consequence, we find H'(S") = 0. Let us now
assume that every closed (k—1)-form on S" is exact. We consider a closed
form w € C*(S"). Since dw = 0 again on open sets U; and Us, the Poincaré
lemma indicates that there are the forms oy € A*~1(U}) and oy € A¥=1(U)
so that one has w]Ul = do; and w]Uz = dos. Thereby, we obtain

d(1 — o)y = (doy — o)y = (- w)|y = 0

on U= U NU,. We thus conclude that oy — oy € C*1(U) and our
assumption assures us that there exists a form o € A*¥~2(U) such that we
have (07 — 03)|; = da. Let us now choose a form 3 € A¥=2(S") as to
satisfy the relation d3|;; = da on U and define a form o € A*~1(S") in the
following manner

. o1 on Ul,
- o9 +dB onUs.

We thus conclude that w = do, that is, w € £¥(S"). Hence, the mathemati-
cal induction prove the proposition that every closed k-form on S" satisfying
the condition 1 < k <n — 1 is exact so that one obtains H k(S") =0 for
1<k <n-—1. Betti numbers thus become b;(S") =0,1 <k <n-—1.
The relation (8.8.3) then yields the Euler-Poincaré characteristic of the n-
sphere as X(S™) = by + (—1)"b, = 1+ (—1)". Hence X(S") = 0 if n is an
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odd number and X(S™) = 2 if n is an even number. [ |
The salient property of the sphere S™ is that it is a connected, oriented
and compact manifold.
We had seen that all singular k-chains on a manifold M constitute a
linear vector space C(M) [see p. 421]. We know that the set {C (M)}
constitutes a chain complex under the boundary operator 0. Let us then con-

sider the subset of Cj (M) formed by k-cycles 8‘k(M) ={c, € C,(M) :
Jc, = 0}. Because the sum of two k-cycles and a real multiple of k-cycle

is also a k-cycle, 8‘k(M ) is a subspace of the linear vector space Cj (M,
hence it is a linear vector space by itself. Let us denote the set of k-cycles
that are boundaries of (k + 1)-chains by

Byp(M) = {cy = Obyy1 : bpyy € Cr (M)}

Evidently, the set By(M) is also a linear vector space and it is clear that
o
By (M) C Ci(M) since dci, = 0 if ¢, € B (M ). We now define a relation
o]

~ on Cj(M) as follows: ¢, ¢ € ¢ (M) are related if their difference is
a boundary of a (k + 1)-chain, namely ¢, ~ ¢/ if only ¢}, — ¢}/ = Obp41 €
By.(M). Two cycles whose difference is a boundary will be called homo-
logous cycles. 1t can readily be verified that this relation defining the ho-
mology on the manifold M is an equivalence relation. Equivalence classes,
in other words homology classes, are defined by

[o]
[Ck] ={cr + 01 :cr, € Cp(M),bpi1 € Crir (M)}
Let us denote the quotient space generated by those classes by
o
Hi(M) = C(M)/By(M). (8.8.5)

Hj,(M) is a linear vector space on real numbers R. As such it is an Abelian
group and is named as the kth differentiable singular homology group of
the manifold M. If we consider the chain complex (8.4.13), this quotient
space can also be expressed equivalently as

Hy (M) = Ni(9)/Ri(9).

We can roughly say that homology groups illustrate the existence and the
distribution of holes in topological spaces. The zero element of the vector
space Hj, (M) is naturally given as [0] = By (M).

Sometimes, it does not prove to be very convenient to work with a
chain complex with decreasing indices. Especially, quite a difficult problem
arises if we wish to establish a relationship between the de Rham cohomo-
logy groups and the homology groups. To circumvent this obstacle we may
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employ the cochain complex (8.4.15) with the coboundary operator 0. Then,
the kth singular cohomology group M is defined as the following quotient
space of the vector space N (0) with respect to its subspace Ry (0)

Hi(M) = Ni(0)/Rp(0).

Hence, the vector space Hy (M) is the quotient space of k-cocycles with
respect to k-boundaries. The equivalence class [f;] € Hy (M) related to an
element f;, € C}/(M) is the set of all linear functionals on C}. (M) given by
[fi] = fe +0gi—1 forall g1 € C}_; (M) and 0 f), = 0. [f] is known to be
a singular cohomology class. We shall now try to demonstrate the follow-
ing proposition:

The kth singular cohomology group is isomorphic to the dual space
Hi (M) of the kth singular homology group Hy(M), namely, there is a
natural isomorphism € Hy, (M) — H} (M) such that € ([fx]) € H;(M).

Let us consider an arbitrary equivalence class [f;] € Hj (M) where the
linear functional f, € C}; (M) satisfying 0 f; = 0 is a representative of this

class. Consequently, f; is also a linear functional on the subspace 8’ p(M)
of k-cycles. On the other hand, the relation 0 = 0 f;(ckt1) = fr(Ocks1)
implies that fj vanishes on all k-boundaries in the form ¢, = 9by,; in
C (M) forming the subspace Bj(M). Hence, f; becomes a linear func-
tional defined on the homology group Hj (M) because if [¢;] € Hy (M)
where ¢; € C(M) is arbitrary, we get fi.(ck + Obr+1) = fi(ck). Thus the
value of the functional f; on an equivalence class [c;] is independent of the
representative of this class. However, in order to say that the linear func-
tional f; € Hj (M) is well defined, we have to show that its value is also
independent of the representative of the equivalence class [ f;]. This is, how-
ever, easily deduced from

fr +0gk—1)(cr + Obrs1) = fr(cr) + 0gr—1(ck) + 0gr—1(Obg11)
= fr(ck)

since 0gx_1(cr) = gr—1(0c) = 0 because dc, =0 and 0gy_1(Obrt1) =

gr—1(0%bg41) = 0 because §* = 0. We have thus found that to each element
of H;, (M) we can assign a unique element of H; (M ). Obviously, this map-
ping is linear and in order to prove that it is an isomorphism, we must show
that it is both injective and surjective. Since equivalence classes are disjoint,
injectivity of the mapping is evident. To show surjectivity let us consider a
functional fj, € Hj(M). Since 0f; € C;, (M), we get 0 =10fi(cry1) =

fr(Ocgs1) for all ¢1q € (Cj’kH(M). We thus find 0f; = 0. We can then de-
fine the set of functionals [f] = f; + 0g—1 with gi_1 € C};_(M). Clearly,

[f] € Hir(M). On the other hand, for ¢, € 8’k(M) we get
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(fe +0gk—1)(ck) = frlcr) + gr-1(0cr) = fr(cr).

Therefore, we have shown that a functional fj; in H; (M) is the image of an
equivalence class [f] in Hj,(M), namely, the mapping is surjective. Thus,
the mapping €, H, (M) — Hj (M) is an isomorphism. O

Let us now define a mapping By, : A*(M) x Cj.(M) — R as the integ-
ral of a k-form over a k-chain as follows

B (w, ci) = / w e R. (8.8.6)
ck
Naturally, in order that this definition is justifiable, the integral (8.8.6) must
exist. This mapping is obviously linear with respect to both the k-form w
and the k-chain cj. In other words, By (w, ¢i,) is a bilinear, real valued func-
tional. Whenever we consider a fixed form wy € A*(M), then the real
valued function

F() = Bulens ) = [ e (88.7)
Ck

turns out to be intrinsically a linear functional on the vector space Cy(M).
Thus, (8.8.6) is actually generating a mapping F, : A*(M) — C).(M)* over
real numbers from the vector space A*(M) into the dual space Cy(M)*
designated by Fj(w) = *). The definition (8.8.7) signify at once that the

mapping F, is linear, in other words, it is a homomorphism.
Next, we introduce in similar fashion a real valued and bilinear func-

tional l%k : H*(M) x Hy (M) — R through the relation

Bo(w], [o]) = /’w cR (8.8.8)

where the closed form w € C*(M) and cycle ¢ € (OZ’k(M ) are arbitrarily
selected representatives of the equivalence classes [w] € H¥(M) and
[ck] € Hi(M). On the other hand, in order that the definition (8.8.8) bears a
meaning the value of the functional must be independent of the chosen
representatives of the equivalence classes. This can be proven quite easily,
however, if we recall that

[w] ={w+db:we CF(M),0 € AF1(M)},
[Ck] = {Ck + Obgy1 i ¢ € &k(M),bk—i-l S Ck+1(M)}

and then utilise the Stokes theorem to obtain
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/ (w+d9):/w+/d0+/ w—i—/ dé
Cp+Obyyt Ck Cr: by11 bj11
:/w+/0+ dw—i—/ 9:/w
Ck ey, b1 %bj41 Ck

for all forms @ € A¥~1(M) and all boundaries by, € Cpy1(M) where we
employed the relations dw = 0, dc;, = 0, 0%by41 = 0. It now clear that the

functional (8.8.8) determines a homomorphism F p o HE(M) — Hyp(M)*
defined by

Frlle))(ex]) = Br((w), [ex]) Z/cw €R

from the cohomology group H*(M) into the vector space Hj(M)* that is
the dual of the homology group Hj;(M). We have seen above that the
[¢]
vector spaces Hy,(M)* and H (M) are isomorphic. Therefore, F), may as
well be regarded as a homomorphism between H* (M) and H;.(M). We can
now show the simple lemma given below:
Lemma 8.8.1. M and N are smooth manifolds and ¢ : M — N is a
smooth mapping. Then the following diagram commutes:
HY ) 2 R ()
[¢] O
LA LA
Ho(N) L5 H, ().
We know that if w € A¥(N), then ¢*w = wo ¢ € A¥(M). Similarly, if
f € Ci(N), we then obtain f(cj) = f(¢(ck)) = (f o @)(cr) = ¢* f(cn)
where ¢, € C,.(M). Thus, f o ¢ = ¢*f € C};(M). The relation (8.5.3) then
requires that

Fr(@[)) () = Fr(w])(@ler])

for all [w] € H*(N) and [cx] € Hy(M). O
De Rham's theorem proven in 1931 states that if M is a Hausdorff,
locally compact, second countable and oriented smooth manifold, then this

[
homomorphism F, called de Rham homomorphism, is actually an isomor-
phism. In order to prove this theorem, we need first to investigate certain
properties of Mayer-Vietoris sequences [after Austrian mathematicians
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Walther Mayer (1887-1948) and supercentenarian Leopold Vietoris (1891-
2002)].

Theorem 8.8.1 (Mayer-Vietoris). Let M be an m-dimensional
smooth manifold supporting a partition of unity and U,V C M open
subsets such that U UV = M. We consider the cochain complex

d

A s Sak () AR () L

. i Am(M) =0

and the cohomology groups H*(M) = Ni(d)/Ri(d). Then for all
0 <k <m, there exists a homomorphism T : H*(U NV) — H*'(M)
such that the following Mayer-Vietoris sequence is exact:

Lron L rrwyerrv) L Bronv) L g on S
The homomorphisms ¢ and 1 are defined by ¢ =1; ®1L; and ) =
I =1y where I,:UNV =U,L,:UNV =V, I3: U - M and
I,:V — M are inclusion mappings and I; : AF(U) — A¥({UNV),
Iy AR(V) = ARU N V), Tp : AK(M) — A*(U), Z; - A¥ (M) — A¥(V)
are corresponding pull-back operators..

Although we have proven only for Hausdorff, locally compact and
second countable manifolds, we had mentioned that if the manifold M is
paracompact, then for each open cover {U) : A € A} of M there exists a
partition of unity subordinate to this cover. We shall see that only the exist-
ence of the partition of unity will be crucial for our proof of this theorem.

In view of Theorem 1.2.3, we merely need to show that the short
sequence

0 — AF(M) 25 AN U) @ AF(V) 5 AR U N V) — 0

is exact. For a form w € A*(M), we have
p(w) = (T (), W) = Wy, wly)-
Ifa € AR(U), B € A*(V), then we get
(o, B) = I () = Ly (B) = alyay = Bluav

We first demonstrate that the sequence is exact at A*(M). To this end,
we only need to show that ¢ is injective. Let us take p(w) = (w|;,wly,)
= (0,0) that leads to w|; =0 and w|, =0. Since U UV = M, this
implies that w = 0 which proves the injectivity.

In order to prove the exactness at A*(U) @ A¥(V) let us apply the ope-
rator 1) o ¢ on a form w € A¥(M) to obtain
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(Y op)(w) = Y(wly,wly) = wlyay — wlyay = 0.

Hence, 1o ¢ = 0 on the module A¥(M) so that we get R(p) C N ().
Next, let us consider («, 3) € N(¢)) which means that o, = Blyay-
Thus, there exists a form w € A*(M) such that w|;; = a and wl;, = 3. We
then clearly write (o, 3) = p(w) implying that N (¢) C R(p). Hence, we
get R(p) = N (1) which proves the exactness.

To prove the exactness at A¥(U N V) we just have to show that 1) is
surjective. Since (U, V') is an open cover of M, there exists a partition of
unity (f1, f2) subordinate to (U,V') such that supp (f1) C U, supp (f2) C V.
Let 0 € A*(U NV). We define the forms A € A*(U) and p € A*(V) as
follows

5= ficon UNV | =ficon UNV
10 on U —supp(fi) » B 0 onV —supp(fi)

We then obtain ¢(A, p1) = Alyry — plyny = fio — (= foo) = (fi + fa)o
= o that amounts to say that R(v)) = A¥(U N V). We thus conclude that
Mayer-Vietoris sequence is exact. O

In exactly the same fashion we can show that Mayer-Vietoris sequence

*

I (M) & H(U) © He (V) S Ho(U V) B () S -

based on the cochain complex [see (8.4.15)]

[ 0
- G (M) — G (M) — Gy (M) — -
is exact. 0 is the coboundary operator defined in (8.4.14). To prove the exis-

tence, we only have to show that the short sequence

0 M) L orU) e Civ) L crUnV) =0

is exact. The inclusion operators 7y, 75,73 and Z, are the same as those
given above in Theorem 8.8.1. Pull-back operators

7 ChU) = CpunV), I; : Cp(V) = CL(UNV),

I3 : O (M) — Cp(U), I3 Cp(V) = Cp(UnV)

simply produce restrictions of functionals. For instance, Z;(f) = f|;, for
a functional f € C}\(U). For a functional f € C}(M), we get

o(f) = (Z3(N), Zi () = (fly: flv)
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and for g € C;(U), h € C;(V)
¥(g,h) =Z{(9) — I3 (k) = glyry — Plyav-

A smooth manifold M is called a de Rham manifold if the homo-
morphism on M is an isomorphism.

Lemma 8.8.2. An open convex subset U C R" is a de Rham manifold.

Since a convex open set in R” is star-shaped, the Poincaré lemma is
applicable. Hence we find that H*(U) = 0 for k > 0 and H°(U) = R. This
automatically implies that H;(U) = 0 for £ > 0 and Hy(U) = R since the
dual space of R is also R. Therefore we only have to demonstrate that

[e]
Fo:H'(U) — Ho(U) is an isomorphism. But elements of H°(U) are
o
constant functions and a o singular simplex is just a single point. Thus, F
assigns the same real number to a real number. O

Lemma 8.8.3. Let {U) : A\ € A} be a class of open, pairwise disjoint,
de Rham subsets of a smooth manifold M. Then U = AL_JAUA is also a de
S

Rham manifold.
In order to prove this lemma, we must show that the following diagram
commutes isomorphically:

v A U BN
AeA

In view of Lemma 8.8.1 the diagram commutes. To show that the homomor-
phism Jj, is an isomorphism, we only need to prove that .4 and B are iso-

o
morphisms because Fj \ : H*(Uy) — Hy(Uy), A € A are isomorphisms by
definition on pairwise disjoint de Rham subsets U). In order to determine
the homomorphism A : H*(U) — /\UAH ¥(U,), we first define Zjw on the
[S

t U HF b
> ALéJA (Th) by

0 on U H¥NU,)

Tiw on H(U))
Tiw=
HEA, uFA

where T, = Uy — U are the inclusion mappings and, thus for w € A*(U)
we get Ziw € A¥(Uy,) that is none other than the restriction of w on U,. We
then take for [w] € H*(U)
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Alw] = @ [Tiw] € U HY(Uy)
A€A A€A
which clearly indicates that A is an isomorphism. A is injective because
equivalence classes are disjoint. Next, let us choose wy € A¥(U)). Since the

sets U, are pairwise disjoint, then w = @ wy € A*(U) with Tjw = wy. We
AEA

thus obtain Ajw] = @ [Z;w] so that A is surjective. In exactly similar way,
A€A

we can show that B is likewise an isomorphism. Since the diagram com-
mutes, we deduce that Jy, : H*(U) — H;,(U) is also an isomorphism. This
means that U = UAUA is a de Rham manifold.

Ae

Lemma 8.8.4. Let U and V' be open subsets of a smooth manifold M.
We assume that U,V and U NV are de Rham manifolds. Then U UV is
also a de Rham manifold.

Let us consider the following Mayer-Vietoris sequences associated
with de Rham cohomology and singular cohomology that are exact in view
of Theorem 8.8.1:

5
=
D)
=
j\z
T
=
=
=

Ik
FHH' vuv) = HHYwuy)

Our assumption dictates that the two homomorphisms before the
homomorphism J; : H¥(U UV) — H¥(U UV) and the other two after
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that are isomorphisms denoted by the symbol =~ . Then Theorem 1.2.2 (the
five lemma) states that J; must be an isomorphism. Hence U UV is a de
Rham manifold. (I
Finally, we have to prove the following lemma:
Lemma 8.8.5. Let M be a smooth m-dimensional second countable
manifold. Assume that P(U) denotes a property associated with an open
subset U of M satisfying the four conditions given below:

(7). P(0) is true.
(13). P(U) is true for any U diffeomorphic to a convex open subset of R™.
(1i0). If P(U), P(V) and P(U NV') are true, then P(U U V') is also true.
i).

(v

If {U; : i € N} is a sequence of pairwise disjoint open subsets and
P(U;) is true for each i € N, then P( U Ui) is also true.
i=1

In that case P(M) will also be true. This property satisfies also the above
conditions for all convex open subsets of R™.

Since M is second countable, then it is expressed as a countable union
of open sets. Every open set is covered by open sets of some charts. Hence,
every open set U C M is diffeomorphic to an open set of R™”. Therefore, to
prove the lemma it suffices to show that the property is true for an open set
in R™. Since R is second countable [see p. 70] an open set is expressible
as a countable union of open balls B. We know that open balls in R™ are
convex sets [see p. 328]. Thus, P(B) is true on open balls. Moreover, it is
straightforward to see that intersection of two open balls is also convex.
Hence, (7i7) implies that countable unions of open balls are convex. Thus,
open sets in R are convex and in view of (i) P(U) is true. Let us now
suppose that P(U) and P(V') are true. Since U NV is an open set, it is
diffeomorphic to a convex open set in R™ so P(U N V') is true. By (iii), we
conclude that P(U U V) is also true. Therefore the property must be true
for a countable union of open sets. Consequently P (M) is true. O

We can now easily prove the de Rham theorem.

Theorem 8.8.2. Let M be a locally compact, second countable and

oriented smooth manifold. The homomorphism ]C-ik s HE(M) — Hp(M) is
an isomorphism.

In order to prove this theorem, we have to show that such a manifold is
a de Rham manifold. Let us define a property P associated with an open
subset of M as being a de Rham manifold. The condition (7) in Lemma
8.8.5 is met due to the fact that H*(f)) = 0 because there are no k-forms on
the empty set and H,(0)) = O since there are no homomorphisms from ( to
R. Lemmas 8.8.2 and 8.8.4 indicate that P satisfies the conditions (¢i) and
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(7i7) while Lemma 8.8.3 implies that the condition (iv) is also satisfied.
Thus M becomes a de Rham manifold. O

Since Hj. (M) and Hy(M)* are isomorphic, then the homomorphism
H*(M) — Hy(M)* is also an isomorphism for such manifolds. Of course,
the foregoing results will naturally be valid for compact, second countable
manifolds.

An interested reader is suggested to consult to Hodge (1952) and de
Rham (1955) for a more detailed proof of the de Rham theorem. For a
sheaf-theoretic treatment that is probably the most direct and elegant way to
show this theorem we refer to Singer and Thorpe (1967) or Warner (1971).
However, to investigate the theory sheaves transcends the intended level of
this work.

[}
When F}, is an isomorphism and H"*(M) is finite-dimensional, then
the dual space Hy(M)* and, consequently, the vector space Hj. (M) are of
finite and the same dimension. Hence, if b (M) < oo, we find

be(M) = b(H*(M)) = b(H(M)*) = b(H(M)).

[¢]
Isomorphism implies that F, is a bijective, namely, injective and surjective

mapping. Injectiveness requires that if F k([w]) =0 € Hi(M)*, then we get
[w] = [0]. The period of a closed form w, consequently, of the equivalence
class produced by this form over a cycle ¢; is defined by

m(er) = /Ckw.

Therefore, vanishing of the functional .7(-2 1 ([w]) means that all periods of the

equivalence class |w] are zero. The equality [w] = [0] implies that the form

w 1s exact. On the other hand, the Stokes theorem indicates that if a form w

is exact, then all of its periods vanish on every cycle c;. Hence, it follows

from de Rham's theorem that a closed k-form w is exact if and only if all of
[¢]

its periods are zero. That the mapping F, is surjective amounts to say that
every linear functional on the vector space Hy (M) is generated through a
closed k-form. Since such a linear functional is prescribed by its value on
every cycle, de Rham's theorem leads to the following conclusion: when we

o
assign a number w(c;) € R to every cycle ¢ € Crp(M), there exists a
closed k-form wy admitting these numbers as its periods, namely, verifying
the relation (cy,) = quo for every k-cycle cy, if only these numbers satisfy

the conditions W(Zaic,(f)) = Zam(c,&i)),ai € Rand if ¢, € Bi(M), then
i i

one must have m(cy) = 0.
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8.9. HARMONIC FORMS. THEORY OF HODGE-DE RHAM

Let (M,G) be an m-dimensional complete Riemannian manifold. A

1 . .
form w € A¥(M) is given by w = o Wiy, dx™ A --- A dz'. We know that

1. ,
the Hodge dual of this form is the form xw = o Wy € ATR(M)

[see (5.9.20)]. Contravariant components in this expression are related to the
covariant components by w'' = giit...gikiky; . If we take two forms
w,o € A¥(M) into consideration, we have already known that the identity
(5.9.27) enables us to write

1 o
w/\*a:a/\*w:Hwil...ikU“'””“u (8.9.1)
1 .
= E wzlmlkdil..‘iku S Am(M)

where 4 is the volume form given by (5.9.13) or (5.9.14). Thus, for every
form w € A¥(M) we can write

i ei

WA *w = — wi..iw .

k!
Because the Riemannian manifold is complete, we may assume that the
metric tensor is positive definite so that we must have

Wi L:ghjl”'gikjkwl Rt I >0 (8.9.2)

if w # 0. Hence, an inner product on A* (M), that is a vector space on real
numbers R, may be defined as follows

(w, o) = (o,w) = / WAST = & Wi 0 e R (8.9.3)

M kL)

due to the property (8.9.1). It is easily verified that (8.9.3) obeys all rules
imposed on an inner product [see p. 68]. When M is a compact manifold,
the integral (8.9.3) will always exist. We immediately recognise that the
mapping ( -, - ) : A¥(M) x A¥(M) — R so defined is a symmetric biline-
ar functional on real numbers. Because of (8.9.2) we get (w,w);, > 0 which
becomes zero if and only if w = 0. The non-negative number

[wll, = V(w,w)r >0 (8.9.4)

may now be called the norm of a form w € A*(M). Since A*(M) equipped
with (8.9.3) becomes an inner product space, the well known Schwarz
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inequality must be satisfied:
(@, )i < lwllpllolly- (8.9.5)

This inner product on A*(M) can easily be extended to an inner product on
the graded algebra A(M) = B A¥(M). We take the forms w € A*(M) and
k=0

o € A'(M) into account so that we get w A xo € A™T*=!(M). This form
vanishes identically if k > [. Its degree is less than m if k& < [, hence its
integral over M cannot be defined. If we adopt the convention that such an
integral also vanishes, we can then define the inner product of two arbitrary
k-form w and [-form o in A(M) in the following manner

(w,O’)k lf k‘:l,
(w,0) = =01 k>I,
=01 k<l

This definition amounts to admit that the vector spaces A*(M) and A'(M)
are orthogonal with respect to this inner product whenever k£ # [. Hence-
forth, by adopting this definition we shall not designate the inner product as
dependent on the index k. In view of the definition (8.9.3), we obtain the
following relation for forms w, o € A*(M)

(+w, *0) :/ kW A Hoko = (—1)k(nlk)/ *w A\ o
M

M

= (—1)2k(mk>/ oN*w= / o N *w
M M
= / wAx0 = (w,0).
M

This means that the Hodge star operator * : A¥(M) — A™*(M), which is
obviously a linear operator, preserves the inner product. It is well known
that a linear operator between two inner product spaces that preserves the
inner product is called a unitary or conformal operator. Consequently, the
Hodge star operator * is a unitary or conformal operator on the exterior
algebra with respect to the inner product so defined.

Let us now consider the forms w € A¥~1(M) and o € A¥(M) and
evaluate the exterior derivative of the form w A o € A™ (M) to obtain:

d(w A *0) = dw A xo + (=1 lw Ad(xe) € A™(M).

On making use of the relation *§ = (—1)*d* between the operators of co-
differential 6 and the exterior derivative d [see p. 283] we arrive at the



478 VIII Integration of Exterior Forms

expression

d(wA*0) =dw A *0 —w A x60.

Then the Stokes theorem yields

/(dw/\*o—w/\*éa):/d(w/\*a):/ WA *o
M M oM

so that we get
/dw/\*az/w/\*éa—i—/ WA *0.
M M oM

On recalling the definition of the inner product, we thus conclude that

(dw,0) = (w, b0) +/ WA *0.
oM

If M is a manifold without boundary (OM = ()), we necessarily have to
write / w A xo = ( to obtain
oM

(dw,0) = (w, 60). (8.9.6)

According to the foregoing relation, we are led to the following conclusion:
let A(M) be the graded exterior algebra on a compact manifold without
boundary. The operators on the exterior algebra d : A¥(M) — A1 (M)
and & : N*(M) — A*"Y(M) are adjoint operators on A(M). This result
will also be valid for all forms with compact support on a manifold with
boundary. Because such forms will necessarily vanish on the boundary of
the manifold.

The Laplace-de Rham operator 6d + dé = A : A¥(M) — A¥(M) was
defined by (5.9.31). When w, o € A¥(M), (8.9.6) together with the sym-
metry of the inner product leads to the result

(Aw, 0) = (b6dw, o) + (déw, o) = (dw, do) + (bw, 60)
= (w,6do) + (w, db0) = (w, (6d + db)o)
= (w, Ao).
Hence, with respect to this inner product the operator A on A(M) becomes

a self-adjoint operator if M is a manifold without boundary. It follows
from the above relation that we obtain

(Aw,w) = (dw, dw) + (6w, bw) = ||dw|®> + ||6w]* >0  (8.9.7)
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for all w € A(M). Since (Aw,w) > 0 for all w € A(M) we may describe A
as a positive definite or elliptic operator.

A form w € A(M) is called a harmonic form if Aw = 0.

Theorem 8.9.1. Let M be a compact and oriented Riemannian mani-
fold without boundary. We consider a form w € A*(M). The form w is
harmonic if and only if dw = 0 and 6w = 0.

If dw = 0 and 6w = 0, then the definition leads to Aw = 0. Conversely
let us assume that Aw = 0. Then it follows from (8.9.7) that 0 = (0,w) =
l|dwl||* + ||6w||*. Hence, we get ||dw|| = ||6w| = 0 from which we deduce
that dw = 0 and éw = 0. |

Consequently, all harmonic forms are also closed on manifolds to
which the above theorem might be applied. We had previously mentioned
that all harmonic forms w € A*(M) holding the condition Aw = 0 constitu-
te the following subspace

HY (M) = {we A"(M) : Aw =0} = N(4Q)

on real numbers.

We had seen that Af = 6df = V2f when f € A°(M). The operator
V? was defined by (5.9.33). Therefore, the solution of the Laplace equation
V2f =0 on a compact manifold without boundary must satisfy the condi-
tion df = 0. Hence, the harmonic function f can only be a constant num-
ber. This result is a sort of generalisation of the well known Liouville the-
orem [French mathematician Joseph Liouville (1809-1882)].

Probably the most important theorem concerning harmonic forms has
been demonstrated by Hodge. Because the proof of this theorem is quite
difficult and requires a rather good knowledge of functional analysis and
properties of elliptic operators, we shall not be able to present its proof here
in its full generality.

Theorem 8.9.2. (The Hodge Decomposition Theorem). Let M be a
compact and oriented Riemannian manifold without boundary. For each
form w € A*(M), there exist forms o€ A*"Y(M), B € A (M) and
v € H¥(M) so that one can express w as

w=da+6B+7 (8.9.8)
and this representation is unique. We can thus write symbolically
AR(M) = dA*Y (M) @ sAMTH (M) @ HF (M).

All these subspaces are mutually orthogonal.
We can easily show the orthogonality of subspaces. Since §? = 0, we
find that
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(da, 68) = (a, 6*8) = 0.

On the other hand, if Ay = 0, then we have dy = 0, 6y = 0 so that we are
led to the results

(da77) = (O‘767) =0, (6ﬁ77) = (ﬁa d’}/) =0.

The difficult part of the theorem is to show the existence of the forms
a, 3, satisfying the relation (8.9.8). As to this part, the interested readers
may be referred to Warner (1971, Ch. 6). In order to prove the uniqueness,
let us suppose that there are two representations of this form:

w=da;+ 661 +71 =daz + 652 + 2.

Hence, if we denote a = a1 — as, 8 =01 — B2,7 =71 — 72, We realise
that the condition below should be satisfied:

da+66+~v=0.

On evaluating the exterior derivative of that expression, we get d63 =0
from which we deduce that 0 = (d63, 3) = (63,68) = ||63|* and 65 = 0.
So the foregoing equality is reduced to da + v = 0. The co-differential of
this last expression yields 6da = 0. Thus, we can obtain at once 0 =
(6dev, @) = (da, da) = ||da||* and da = 0 implying that = 0. Hence, we
find that dOtl = dag, (5ﬂ1 = 6ﬂ2,"}/1 = 2. D
Theorem 8.9.3. Let M be a compact and oriented Riemannian mani-
fold without boundary. The solution of the equation Aw = o where the form
o € A¥(M) is prescribed does exist if and only if the form o is orthogonal
to the vector space H* (M), in other words, if (o, \) = 0 for all X € H*(M).
Let us first assume that Aw = o and A € H*(M). We then obtain

(0, \) = (Aw, \) = (w, AN) = (w,0) = 0.

Conversely, we suppose that the form o satisfies the condition (o, \) =0
for all A\ € H*(M). On utilising the Hodge decomposition, we may write
o = da + 63 + 7 so that the above condition yields

0= (0,7) = (da,7) + (68,7) + (7,7)
= (o, 07) + (B, dv) + (7, 7)
= (7,7 = P

and we find that v = 0. Hence, the form ¢ can only take the shape o =
da + 6. Let us now write w = w; + ws and try to determine the solutions
of the equations Aw; = da and Aws = 0 separately. If we employ the
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representation o = day + 801 + 71, we get da = déf;. If we in turn write
B1 = das + 68 + ¥» and note that d*> = 0, we obtain

do = d6py = d6 das = (d6 + 6d)day = A(das).

Therefore, the equation Aw; = da admits a solution in the form w; = das.
Similarly, we take 3 = das + 633 + 3 to obtain 63 = ddag by noting that
62 = 0. By using the representation a3 = doy + 634 + Y4, we find that

88 = 8das = 6d6Bs = (6d + d6)6Bs = A(6By).

Therefore, we conclude that the equation Awy, = 65 admits a solution in the
form wy = §0,. Ultimately, we find that the equation Aw = o possesses a
solution in the form w = day + 6 5. O

We have above touched upon the fact that harmonic forms are closed.
Hence, there exists a linear operator Z : H*(M) — C*(M) embedding
H*(M) into C*(M). Let 7 : C¥(M) — H*(M) be the linear canonical map-
ping. We are thus led to the conclusion that there exists a linear transfor-
mation ) = woZ : H*(M) — H*(M) between the vector space of har-
monic k. forms and the relevant cohomology group.

Theorem 8.9.4. Let M be a compact and oriented Riemannian mani-
fold without boundary. The vector spaces H*(M) and H*(M) are iso-
morphic.

In order to prove this theorem, we have to show that the linear operator
1 introduced above is bijective. Let us first assume that w € H*(M) and
[w] = ¥(w) = [0] € H*(M). This means that w is an exact form and one
writes w = do. But, we get (w,do) = (6w, o) = 0 since dw = 0. We thus
arrive at the relation (w,w) = ||w||* = 0 implying that w = 0. This amounts
to say that ¢ is injective. We now consider an arbitrary cohomology class
[w] € H*(M). w is a representative of this equivalence class. Due to the
Hodge decomposition theorem, we can write w = da + 63 + ~. Since
dw =0, we find that d63 = 0. It then follows just as above that 63 =0
which implies that a closed form w is represented as w = da + y. This of
course gives [w] =[y] so that one is able to write [w] =1(vy) where
v € HF(M). Consequently, we see that 1) is surjective. As a result, 1 is
identified as an isomorphism. Hence, the vector spaces H*(M) and H* (M)
are isomorphic. Accordingly, we can say that every cohomology class has a
harmonic representative in manifolds complying with the assumptions of
the theorem. |

According to a property that we shall again not be able prove here, the
null space of the operator A, or more generally of a linear elliptic operator,
is finite-dimensional if M is a compact Riemannian manifold [interested
readers may be referred to Warner (1971)]. Therefore, on such a manifold
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the vector space H¥(M) is finite-dimensional. Since isomorphic spaces
must have the same dimension we can now state that dimensions of
cohomology groups, that is, Betti numbers on a compact and oriented
Riemannian manifold without boundary are all finite.

We have seen while proving the above theorem that any closed form
w € C¥(M) on a compact and oriented Riemannian manifold without
boundary is expressible as w = da + vy where a € A*¥"1(M), v € H¥(M).
If ¢, is a k-cycle, then we can write

W(ck):/w:/doz—i—/’y
cr: cr: Cre
:/ oz—i-/'y:/'y.

acy, Cr Cr:

This is tantamount to say that there exists a unique harmonic k-form -~y
possessing the same periods as a closed k-form w on such kind of
manifolds.

8.10. POINCARE DUALITY

Let M be an m-dimensional compact, oriented, smooth Riemannian
manifold without boundary. We shall now introduce a bilinear functional
P: H*(M) x H" (M) — R through the following relation

P, [o]) = / e (8.10.1)
M

where [w] € H¥(M) and [¢] € H™*(M), and the forms w € C*(M) and
o € C™%(M) are arbitrary representatives of these cohomology classes. In
order that the functional (8.10.1) known as the Poincaré form proves to be
meaningful, it must be independent of the selection of the representatives of
equivalence classes. This property can be shown quite easily. We consider
the forms o € AF"Y(M), g€ A" *~1(M). If we note that dw = 0 and
do = 0, the Stokes theorem results in the expression

/(w—i—doz)/\(a—i—dﬂ):/ (wWAo+daNo+wNdB+ daAdp)
M M

_ 1)k
—/Mw/\a—i-/Md(oz/\U)—i—( 1)/Md(w/\ﬁ)+/Md(oz/\dﬁ)
_/Mw/\aJF/BMa/\oJr( 1)/8Mw/\ﬁ+/aMa/\dﬁ Mw/\a.
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Boundary integrals vanish because we have assumed that 9M = (). Hence,
we can write P([w], [¢]) = P(w, o) for arbitrary representatives. We shall
now demonstrate that this bilinear form is non-degenerate. To this end, it
would suffice to determine an equivalence class [o] # [0] such that
P(|w], [o]) # 0 whenever [w] # [0]. Let [w] € H*(M) be a non-zero coho-
mology class. We choose the form w € H*(M) as the harmonic represen-
tative of that cohomology class. We thus write Aw = 0. The form w cannot
be identically zero since |w] # [0]. Let us next consider the Hodge dual
*w € A™F(M) of the form w. We had obtained the relation *A = Ax on
p. 284. We thus find Axw = *Aw = 0 implying that xw € H™ *(M). This
form can be chosen as the harmonic representative of the cohomology class
[*w] € H™ *(M). Next, we take [0] = [*w]. Hence, we conclude that

Plw, +w) = /Mw A = (w,w) = [lw]]? £ 0

On the other hand, this relation signifies that P(w, *w) = 0 if and only if w

= 0. Hence, the bilinear form P is non-degenerate. Let us fix a class [w] in
(8.10.1). Then a linear functional L([w]) on the vector space H™ *(M) can
be introduced by the relation

L([w]) ([o]) = P([«], [o])-
Thus the bilinear form P([w], [¢]) induces a linear transformation
L:HY M) — [H™ ()] (8.10.2)

We can realise right away that the non-degeneracy of the bilinear form P
secures that the linear operator L is injective. On the other hand, we know
that the dimensions of H*(M) and H™ *(M), consequently, that of the
dual [H m=k(M )] " is finite. In this case, L becomes an isomorphism so that
the spaces H"(M) and [H™ *(M )]* are isomorphic. Because a finite-di-
mensional vector space and its dual are isomorphic, we thus infer that the
spaces H¥(M) and H™ *(M) are isomorphic. This property is called the
Poincaré duality. Therefore, we can regard these two spaces as the same as
far as their algebraic properties are concerned. Hence, the Betti numbers of
compact, oriented Riemannian manifolds without boundary must satisfy the
relation

bp(M) = b(H*(M)) = b(H™*(M)) = by (M).  (8.10.3)

If the dimension of the manifold is an odd number, then its Euler-Poincaré
characteristic becomes
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m

X(M) = (=1)fb(M) = 0.

k=0

In fact, we find in this case (—1)"%b,, (M) = (—1)k*1b, (M) and the
corresponding terms cancel each other in the above sum.

According to the Poincaré duality, the vector spaces H™ (M), H°(M)
are isomorphic in a compact, oriented Riemannian manifold without bound-
ary. We know that H°(M) = R when M is connected. Thus, in this sort of
manifolds the cohomology group H™ (M) is isomorphic to R. Furthermore,
it is possible to show that H™ (M) = 0 if the manifold M is simply con-
nected, that is, if every closed curve on M can be contracted smoothly to a
point inside the curve. Indeed, due to the Poincaré duality, the vector spaces
H™ (M) and H!(M) are isomorphic. In local coordinates, let us write a
form w € AY(M) as w = w;dx’ where i = 1, ..., m. If w is closed, then the
condition

dw = wmdl‘j Adz' =0 or Wi j] = 0

must be satisfied. If M is simply connected, then it is well known that the
general solution of the following system of partial differential equations

&ui _ &uj -
oxi Ozt
is provided as follows
w; = of
" Ox

where f € A°(M). Thereby, we get w = f,; dz' = df. Thus, on such kind
of manifolds every closed 1-form is exact. Therefore, we find H*(M) = 0,
and consequently, H™ (M) = 0.

VIII. EXERCISES

8.1. Show that a k-dimensional submanifold of a manifold M is orientable if one
can find a k-form that vanishes nowhere on this submanifold.

8.2. Show that the Cartesian product of orientable manifolds is also an orientable
manifold.

8.3. Show that the Cartesian product of non-orientable manifolds is also a non-
orientable manifold.

8.4. Show that the Klein bottle is non-orientable.

8.5. Show that the Lie groups GL(n,R) and GL(n, C) are orientable.
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Show that if a form w € A¥(M) satisfies the condition / w =0 on every

Ok
singular k-simplex, then one has w = 0.

Show that if forms wy,ws € A¥(M) satisfy the condition / wy = / wy on
o o

every singular k-simplex oy, then one has w; = ws.
Show that a form w € A*(M) turns out to be closed if it satisfies the condi-
tion / w = 0 on every singular (k + 1)-simplex.

9oyt

Show that the volume form on the hyperbolic plane H? (see Exercise 7.9) is
given by

" _ dr A df = sinh s ds A do.

= e

Find the volume of the subregion of H? satisfying the condition 1 < z < 2.
U is an m-dimensional compact submanifold with boundary of an m-dimen-
sional Riemannian manifold. Show that for a vector field V' € T (M) one is

able to write
/ divVpy = / iy p.
U U

We consider the simplex sy = (Py, P, P») in R? where Py = (0,0), P, =
(1,0), P, = (0,2). Evaluate the integral of the 1-form

w = (2> + Ty) dz + (ysiny® — z) dy

on the cycle Jsa.

Show that the form w = (2 + y cos xy) dx + x cos zy dy € A'(R?) is exact.
Find the integral of this form on the cycle defined in Exercise. 8.11.

Show that a form w € A?(S?) is exact if only the following condition is met

/w:O.
SZ

We consider the form w = z'dz? A dz® € A%(R?) where (2!, 22, 2°) € R3.

Show that
dr 4
/SZW|S2 3 R

where R is the radius of the sphere S?. Since the form wl|g, € A%(S?) is
clearly closed, this result indicates the fact that that every closed 2-form on
S? is not necessarily exact.

Show that every closed 1-form on S? is exact..
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8.16. Show that the restriction w|g,., € A"1(S"™!) to the sphere S"~! of the form
W= €i...i, idxt A Ada-t € A"H(R™) is a closed form that is not
exact and it does vanish nowhere on S"~1.

8.17. Let us consider the manifold M = R” — {0} and the form

1 1 2 9,2 N ] Tt
pe de* +x*dx*+ -+ d:vn/2 e AI(M),
((x1)2 + (222 -+ (xn)2)

Determine the form *w and show that it is closed. Evaluate the integral

/ *W.

SH*I
Is the form *w exact?

8.18. Let us consider a form w € A 1(M) on an m-dimensional compact and
orientable manifold M without boundary (OM = (). Show that there exists a
point p € M such that dw(p) = 0.

8.19. Let G be a compact and oriented Lie group. We define the mapping ¢(g)
= g! for every g € G. Show that we can write the following relation for
every continuous function f on G

=L

8.20. Let us consider the functions f, g € A°(R") and a finite region D C R". By
employing the Stokes theorem, derive the Green formula given below

/ (f*(dg) — gx(df)) = —/(ng —gAf ).
oD D

8.21. Let us consider the manifold M = R® with a coordinate cover (x,t, 6, u,v)
and the forms

w'=duAdt+ dvAdr € A*(R%), o =df —udr—vdt € A'(R?)

Let Z be the ideal generated by these forms. Assume that the 2-dimensional
solution submanifold of the ideal Z is prescribed by the mapping 6 = 6(x, t),
u = u(x,t) and v = v(z,t). Show that the wave equation 6., — 6y =0 is
satisfied on the solution submanifold. Determine the conservation laws of this
equation.

8.22. Show that a form w € A'(M) is exact if it satisfies the condition / w = 0 for
c
every closed curve C C M.

8.23. Show that a connected manifold M is simply connected if and only if one
gets HY(M) = 0.

8.24. Determine the de Rham cohomology of the annular region depicted by the
condition 1 < /2% + z3 < 2 in R%





