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CHAPTER VIII

INTEGRATION OF EXTERIOR FORMS

8.1. SCOPE OF THE CHAPTER

In this chapter, the integral of an exterior differential form over a
submanifold of a given manifold, whose dimension is equal to the degree of
the exterior form, is treated as a linear operator assigning a real number to
that form. As is well known, the form reduces to a simple form on such a
submanifold and the integral is roughly defined as a multiple Riemann in-
tegral of the single scalar function characterising that form. However, in
order that this definition acquires a formal content, we have to exert quite a
great effort and to equip the manifold with adequate structures such as simp-
lices and chains. We also deal in this chapter with the cohomology and ho-
mology groups that are inspired by these structure and prove to be very
helpful in revealing some hidden properties of closed forms. Sec. 8.2 intro-
duces the concept of orientability of a manifold by means of a volume form
on a manifold. In Sec. 8.3, the integration of forms is discussed on a very
simple manifold, the Euclidean space. We treat the simplices in the
Euclidean space that can be used as building blocks to generalise this app-
roach to any smooth manifold in Sec. 8.4. We then discuss chains and their
boundaries, and cycles. We further define differentiable singular simplices
and chains that are images of a standard simplex at the origin of the
Euclidean space on a differentiable manifold by means of smooth functions.
In Sec. 8.5, we propose two different courses to follow in order to evaluate
the integrals of forms on smooth manifolds. If we can manage to cover the
manifold with a differentiable singular chain, the form can be pulled piece-
wise back to the standard simplex on which the integrations can be per-
formed relatively easily, then these integral is summed up to obtain the
integral on the manifold. In another approach, we can utilise the partition of
unity on the manifold if it exists of course. The Stokes theorem that is one
of the corner stones of the theory of integration of exterior forms is proven
in Sec. 8.6 on the chains and also on manifolds with boundaries. This
theorem matches the integral of the exterior derivative of a form on a
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406 VIII Integration of Exterior Forms

manifold with the integral of this form on the boundary of this manifold.
Sec. 8.7 is concerned with the determination of conservation laws corre-
sponding to exact forms in an ideal that are annihilated by a solution sub-
manifolds. Sec. 8.8 deals with the cohomology groups that are the quotient
spaces of closed forms with respect to exact forms and homology groups
that are quotient spaces of linear spaces of cycles with respect to linear
spaces of cycles which are boundaries of chains. It is then tried to reveal
important relationships between these two groups. These relationships con-
nect the structure of closed forms on a manifold to the topological structure
of that manifold. In Sec. 8.9, we define the inner product of forms on a
Riemannian manifold by using the Hodge dual so that the exterior algebra is
transformed into an inner product space. On making use of the structure so
established, the properties of the Laplace-de Rham operator and the har-
monic forms occupying the null space of this operator are investigated, and
then the Hodge-de Rham decomposition theorem is explored. Finally, Sec.
8.10 is devoted to the Poincaré duality unravelling quite an interesting rela-
tion between cohomology groups in some kind of manifolds.

8.2. ORIENTABLE MANIFOLDS

We have already defined an orientable manifold on  275. Let us:Þ
hence recall that an -dimensional manifold  is called an 7 Q orientable ma-
nifold if we can find a form  such that  at every point. A .− ÐQÑ Ð:Ñ Á !7

: − Q . Such a form  will be called a . Since the module. volume form
A H7ÐQÑ " 7 is -dimensional, every non-zero -form , consequently every
new volume form is expressible as a multiple of the chosen volume form ,.
namely, as  where  and  at every point ofH . Aœ 0Ð:Ñ 0 − ÐQÑ 0Ð:Ñ Á !!

the manifold .
Let us assume that two volume forms  and  are related by an. ." #

expression  where  and  for all. . A" #
!Ð:Ñ œ 0Ð:Ñ Ð:Ñ 0 − ÐQÑ 0Ð:Ñ  !

: − Q . This constitutes an equivalence relation on the set of volume forms
because it is readily verified that it is reflexive, symmetric and transitive.
Thus the set of volume forms is partitioned into equivalence classes [ ]. An.
orientation of the manifold  is defined as an equivalence class [ ]. WeQ .
call the pair [ ]  as an .ÐQß Ñ. oriented manifold

An oriented connected differentiable manifold  can possess only twoQ
orientations.

Let  and  be volume forms. Hence, we can write  for a non-H . H .œ 0
zero function . However, because  is connected a function  will be0 Q 0 Á !
either  or  at every point . Thus  can only be a0Ð:Ñ  ! 0Ð:Ñ  ! : − Q H
member of either the orientation [ ] or [ ].. .
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The  of a connected manifold  is given by thepositive orientation Q
equivalence class while its by the equivalence[ ] . negative orientation
class .[ ]. 

Let  be a basis of the tangent space  and/ Ð:Ñß / Ð:Ñß á ß / Ð:Ñ X ÐQÑ" # 7 :

. . be a volume form. If , it is so at every point  of aÐ/ ß / ß á ß / Ñ  ! :" # 7

connected manifold and for all equivalent volume forms. Such kind of basis
vectors constitutes a . Similarly, if , thenright frame .Ð/ ß / ß á ß / Ñ  !" # 7

the basis vectors forms a . Since the form  vanishes at no pointsleft frame .
of the manifold, it is evident that  the function  cannot.Ð/ ß / ß á ß / Ñ" # 7

change its sign in an oriented manifold. Hence, when moving on an orient-
ed manifold the chosen basis vectors cannot change their , inorientation
other words, their right or left characters. We can change the basis / ß / ß" #

á ß / / ß / ß á ß / / œ + / ß7 3
w w w w 3
" # 7 4 4 to a basis   through a linear transformation 

3ß 4 œ "ß á ß 7 + − ÐQÑ Ð:Ñ œ + Ð:Ñ where  and the matrix  must3 ! 3
4 4A A  ‘

hold the condition . On the other hand, because of the relationdet A Á !

. .Ð/ ß / ß á ß / Ñ œ Ð Ñ Ð/ ß / ß á ß / Ñw w w
" # 7 " # 7det A

the change of basis does not affect the right or the left character of bases if
det detA A !  !. If only , then a change of basis alters the orientation by
shifting a right frame to the left one and vice versa.

We can immediately deduct from above the following result: if the left-
right character of a frame of basis vectors of the tangent bundle of a 
manifold changes when this frame is translated along a closed curve of the
manifold as to bring it back to the initial point again, then this manifold is
non-orientable.

A non-connected manifold is still called orientable if its connected
components are orientable. However, in each component its orientation can
be chosen arbitrarily.

Theorem 8.2.1. -An dimensional connected paracompact differen-7
tiable manifold is orientable if and only if there exists an atlas Q œ T
ÖÐY ß Ñ À − ×! !: ! >   on such that the differentiable transition mappingQ
: : : : :!" " ! ! " " ! "!œ ‰ À ÐY  Y Ñ Ä ÐY  Y Ñ" , induced by the overlap-
ping charts and having local coordinates and ,ÐY ß Ñ ÐY ß Ñ! ! " ": :    x y
respectively, on the set  has a local representation  , Y  Y Á g! "

C œ ÐB ß B ß á ß B Ñß 3 œ "ß #ß á 7 − ÐY  Y Ñ3 3 " # 7F :  where  andx ! ! "

y − ÐY  Y Ñ N œ Ð`C Î`B Ñ:" ! "  possessing a positive Jacobian .det 3 4

Let  be an oriented manifold. Hence, there is a volume form  onQ .
Q . By taking simple changes in local coordinates that might involve reflec-
tions if need be into consideration we may suppose in a chart  thatÐY ß Ñ! !:

.Š ‹` ` `

`B `B `B
ß ß á  !Þ

" # 7
 Such a coordinate system is said to be positive
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local coordinates. If the same kind of changes are performed, if necessary,
in the chart  to choose positive coordinates there, then the familiarÐY ß Ñ" ":
relation

!  ß ß á œ ß ß á
` ` ` `C ` ` `

`C `C `C `B `B `B `B
. .Š ‹ Š ‹ Š ‹

" # 7 4 " # 7

3

det

requires that .N œ Ð`C Î`B Ñ  !det 3 4

We now conversely assume that the manifold  has an atlas with theQ
above mentioned properties. Let us assume that  be aÖÐZ ß 0 Ñ À + − E×+ +

partition of unity subordinate to that atlas where  is a locally finiteÖZ ×+

open cover of .  Q QThe paracompactness of the manifold assures solely
that such a partition of unity can always be found. In fact, if such a partition
of unity on  is contrived, then the theorem turns out to be still valid evenQ
if  is not paracompactQ . Since every open set  belongs to an open setZ+

Y ÖÐZ ß Ñ À + − E×!+  of a chart, the atlas  formed by defining the mapping+ +:
: :+ Zœ k!+ +

 will satisfy the condition of positive Jacobian. Let us denote
the positive local coordinates in the chart  by  andÐZ ß Ñ B ß B ß á ß B+ + + + +

" # 7:
introduce a form  in the following manner= A− ÐQÑ7

= œ 0 .B • .B • â • .B"
+

+ + + +
" # 7

where each term can be extended to the entire manifold  if we recall thatQ
each  vanishes outside its support. Any point  is now located in a0 : − Q+

chart  with local coordinates  and for all charts suchÐZ ß Ñ B ß B ß á ß B: " # 7

that  we will get . We can thus writeZ  Z Á g Ð`B Î`B Ñ  !+ +
3 4det

=Ð:Ñ œ 0 Ð:Ñ .B • â • .B

œ 0 Ð:Ñ Ð`B Î`B Ñ .B • â • .B

"
"

+

+ + +
" 7

+

+ +
3 4 " 7det .

On the other hand, we know that all functions in the partition must satisfy
0 Ð:Ñ   ! : − Q+  and at each point  at least one function among them should
be positive. Since the factor  is positive by assumption, wedet Ð`B Î`B Ñ+

3 4

conclude that  at each point . Hence,  is a volume form= =Ð:Ñ Á ! : − Q
and the manifold  is orientable. Q 

Example 8.2.1. A non-zero -form, namely, a standard volume form8
on the manifold  can be defined as . Different‘ .8 " # 8œ .B • .B • â • .B
arrangements of the forms  yield either  or . Therefore,  is an.B  3 8. . ‘
oriented manifold. è
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Example 8.2.2. Let us consider the sphere . This submanifold’ ‘# $§
of  is prescribed by the equation . We now define a‘$ # # # #B  C  D œ V
form  as follows. A ‘− Ð Ñ# $

. œ
D .B • .C  B .C • .D  C .D • .B

ÐB  C  D Ñ# # # "Î#
.

It is clear that the form  vanishes nowhere on . Thus  is a volume, or in. ’ .#

the true sense of the term, an area form. The structure of this form is best
illustrated in spherical coordinates. The change of coordinates

B œ V ß C œ V ß D œ Vsin cos sin sin cos) 9 ) 9 )

reduces the volume form  to.

. ) ) 9œ V . • . Þ#sin

If delete the poles and choose , that is, if we consider two charts) 1− Ð!ß Ñ
as it should be, we observe  in both charts. We also easily notice that. Á !
the orientation of basis vectors in  does not change along a closedX Ð Ñ’#

curve on . Hence,  is an orientable manifold.’ ’# # è

Example 8.2.3. As an example to non-orientable manifolds, we take
the Möbius band introduced in Example 2.8.1 into consideration. We know
that the Möbius band is a -dimensional submanifold of  prescribed by# ‘$

the parametric equations

B œ V  @ Ð?Î#Ñ ?ß C œ V  @ Ð?Î#Ñ ?ß D œ @ Ð?Î#Ñˆ ‰ ˆ ‰cos cos cos sin sin

where  and . A basis of the tangent bundle of this? − Ò!ß # Ñ @ − Ò  Aß AÓ1
manifold can be chosen as the following linearly independent vectors

Z Ð?ß @Ñ œ œ  
` `B ` `C ` `D `

`? `? `B `? `C `? `D

œ  %V  @Ð#  $ ?Ñ
" ? ? `

# # # `B

 %V ?  @  $  @
" ? $? ` " ? `

% # # `C # # `D

Z Ð?ß @Ñ œ œ
` `B `

`@ `@ `

?

@

’ “
’ Š ‹“

cos cos sin

cos cos cos cos

B `@ `C `@ `D
 

`C ` `D `

œ ?  ?  œ Z Ð?Ñ
? ` ? ` ? `

# `B # `C # `D
cos cos cos sin sin @

that are tangent to the curves  and , respectively.@ œ ? œconstant constant
Since the scalar product can be defined on , we can readily verify that the‘$
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relation  is satisfied. Thus the basis vectors so chosen are ortho-Z Z œ !? @†
gonal. In the particular case , the vector field  takes the form@ œ ! Z?

Z Ð?ß !Ñ œ V  ?  ?
` `

`B `C
? Š ‹sin cos .

We thus obtain

Z Ð!ß !Ñ œ V ß Z Ð!ß !Ñ œ à
` `

`C `B

Z Ð# ß !Ñ œ V ß Z Ð# ß !Ñ œ 
` `

`C `B

? @

? @1 1 .

# Z Z1 in the arguments of the vectors  and  must be interpreted as the? @

limiting value as . The above relation clearly show that when we? Ä #1
translate the basis vectors at the origin  along the circle , theyÐ!ß !Ñ @ œ !
change their orientation as we approach again to the origin. Therefore, the
Möbius band is not oriented. è

Example 8.2.4. Let us consider the projective space . We define‘8

open sets  and  of two charts of the manifold by the rules ,Y Y B Á !! "
!

B Á ! ß − Ö"ß á ß 8  "× :" ,  as on . 87. The local coordinates in those! "
charts are, respectively, given by

0 0! "! "
3 3

3 3

œ ß œ ß 3 œ "ß #ß á ß 8
B B

B B

We of course take  and . The coordinate transfor-0 0 0!
! ! ! "

"
"

"œ œ " œ B ÎB

mation in the open set  is depicted by the relations ,Y  Y œ Î! " ! " "
!0 0 03 3

0 0!
" !

"œ "Î . Thus, the entries of the Jacobian matrix become

` ` "

`
œ ß 3 Á ß ß 4 Á ß à œ 

` Ð Ñ

0 0

0

$

0 0 0
! " ! "! !

" " " "
! ! !

"3

4
4
3

#
.

Hence, the determinant is found to be

detŠ ‹` "

`
œ 

Ð Ñ

0

0 0
!

" "
!

3

4 8"
.

If  is odd, and consequently,  is an even number, then the sign of the8 8  "
determinant remains the same regardless of the sign of  and it can be ren-0"

!

dered positive by a suitable change of coordinates. But if  is even, hence8
8  " is an odd number the determinant changes its sign depending on the
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sign of . In conclusion, according to Theorem 8.2.1 we understand that0"
!

the projective space  is orientable if  is odd and non-orientable if  is‘8 8 8

even. è

Let us now consider a -dimensional submanifold  of an -dimen-5 W 7
sional oriented manifold . According to our assumption there is a volumeQ
form  on  and an equivalence class [ ]. A basis for the. A .− ÐQÑ Q7

tangent bundle  is given by  locally linearly independent vector fieldsX ÐWÑ 5
Z ß Z ß á ß Z Z ß á ß Z" # 5 " 7. We can then construct a basis  for  the tangent
bundle  by supplying  locally linearly independent vector fieldsX ÐQÑ 7  5
Z ß Z ß á ß Z X ÐWÑ5" 5# 7 that do not belong to . That is the reason why we
may call these supplementary vectors as the  to the tangentnormal vectors
bundle . Since  is a volume form, we get X ÐWÑ ÐZ ß á ß Z ß Z ß á ß Z Ñ. . " 5 5" 7

Á ! − ÐWÑ. Next, we define a form  as. Aw 5

. .w
Z Zœ ‰ â ‰ Ð Ñi i7 5"

.

It is clear that this form can only be different from zero on the vectors in
X ÐWÑ − ÐWÑ. Hence, the restriction  becomes meaningful. On the other. Aw 5

hand, we have

. .w
" 5 " 5 5" 7ÐZ ß á ß Z Ñ œ ÐZ ß á ß Z ß Z ß á ß Z Ñ Á !

so that  plays the part of a volume form on the submanifold  induced by.w W
the volume form . We then say that the submanifold  is . W externally
oriented by the manifold . However, this generally may not mean that theQ
manifold  is  in the usual way.W oriented internally

Example 8.2.5. Let us consider the sphere  as a submanifold of’8"

the oriented manifold  determined by the equation . A basis‘8 3 # #

3œ"

8!ÐB Ñ œ V

of the tangent bundle  can be chosen as the set of the followingX Ð Ñ’8"

vector fields

Z œ  ß 3 œ "ß á ß 8  "
` B `

`B B `B
3 3 8 8

3

on noting that we can write  on .`B Î`B œ  B ÎB ß 3 œ "ß á ß 8  "8 3 3 8 8"’
Let us define a vector  by the relationZ − X Ð Ñ‘8

Z œ B
" `

V `B
"
5œ"

8
5

5
.

Because of the scalar product , we realise that theZ Z œ ÐB  B ÑÎV œ !† 3
3 3

non-zero vector  is orthogonal to all vectors . Therefore, it does notZ Z3
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belong to . Consequently, the manifold  induces a volume formX Ð Ñ’ ‘8" 8

. .w " 8
Z 8 Z

5œ"

8
5" 5 " 5" 5" 8

œ Ð Ñ œ Ð.B • â • .B Ñ

œ Ð"Ñ B .B • â • .B • .B â • .B
"

V

i i

"
on the submanifold  by externally orienting it. The structure of this’8"

form can be understood better if we employ hyperspherical coordinates. The
hyperspherical coordinates are defined by the relations

B œ V

B œ V

B œ V

B œ V ß " Ÿ 5 Ÿ 8  "

B œ V â

B œ V â

"
"

#
" #

$
" # $

5
3 5

8"
" 8# 8"

8
" 8# 8"

cos

sin cos

sin sin cos

sin cos

sin sin cos
sin sin sin

9

9 9

9 9 9

9 9

9 9 9

9 9 9

ã

ã

$
3œ"

5"

where the conditions  and  are to be! Ÿ ß á ß Ÿ ! Ÿ Ÿ #9 9 1 9 1" 8# 8"

satisfied. It is then immediately observed that the induced volume form on
’8" can be written as follows

. 9 9 9 9 9 9w 8" 8# 8$
" # 8# " # 8"œ V â . • . • â • .sin sin sin .

We can further realise that the submanifold  is also internally oriented’8"

by the form   if we restrict the coordinates  into the open in-. 9 9w
" 8#ß á ß

terval .Ð!ß Ñ1
The volume form of the circle   is’" Ð8 œ #Ñ

. 9w " # # "œ ÐB .B  B .B Ñ œ V.
"

V
 

whereas the volume form (area form) of the sphere   becomes’2 Ð8 œ $Ñ

.

9 9 9

w " # $ # $ " $ " #
#

#
" " #

œ ÐB .B • .B  B .B • .B  B .B • .B Ñ
"

V
œ V . • .sin .

After having obtained the induced volume form,  of the hyper-the area
surface  can be found easily by integrating this form. By using the’8
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definition of the hyperspherical coordinates, we obtain

( ( ( (
( (

’

1 1 1

1 1
8

. 9 9 9 9 9 9

1 9 9 9 9 9

w 8 8" 8#

! ! !

#

" # 8" " 8" 8

8 8" 8#

! !
" # 8" " 8"

œ V â â . â. .

œ # V â â . â. Á !

sin sin sin

sin sin sin .

In terms of the Gamma function , the relation>ÐDÑ

( ˆ ‰ˆ ‰!

5
"Î# 5"

#
5
#

1

sin 9 9
1 >

>
. œ ß " Ÿ 5 Ÿ 8  "

" 

leads to the result

WÐ Ñœ

œ # V â â
Ð"Ñ

Ð Ñ " 

Ð Ñ " 

Ð#Ñ "  " 

œ
# V

’ .

1
>

> >

> > > >

> > >

1

>

8 w

8
$ 8"
# #

$ 5" 5 8
# # # #

5 5"
# #

8

8"
#

(
ˆ ‰ ˆ ‰ ˆ ‰

ˆ ‰ ˆ ‰ ˆ ‰
ˆ ‰

’8

8"
#

8"
#

.

In fact, since 5 3 4> > 1 > > 1Ð"Ñ œ "ß Ð$Î#Ñ œ Î#ß Ð#Ñ œ "ß Ð Î#Ñ œ Î ß âÈ È
we find that , , , WÐ Ñ œ # V WÐ Ñ œ % V WÐ Ñ œ # V WÐ Ñ œ’ 1 ’ 1 ’ 1 ’" # # $ # $ %

) V Î$1# % . è

Example 8.2.6. We have seen in Example 8.2.3 that the Möbius band
is non-orientable. We shall now demonstrate that the Möbius band can be
externally oriented by the manifold  and an induced volume form may be‘$

defined on it. We can now introduce a vector field  that is not[ − X Ð Ñ‘$

situated in the tangent bundle of the Möbius band on resorting to the vec-
torial product in  as follows‘$

[ œ Z Z œ #V ?  @ 
" $? ? ? `

# # # # `B

 #V ?  @Ð ?  ?
" ? `

# # `C

? @

#

‚ ’ Š ‹“
’ ‹“
cos cos cos sin

cos sin cos sin                            

                                          . V  @
? ? `

# # `D
cos cosŠ ‹

The length of this vector is

l l ’ “[ œ [ [ œ Ð$  # ?Ñ @  #V @  V
" ?

% #
# # #† cos cos .
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Then by employing the unit vector , we obtain the -dimen-R œ [ Î [ #l l
sional volume form induced by the volume form in  as‘$

.w
R

# #

œ Ð.B • .C • .DÑ

œ Ð$  # ?Ñ @  #V @  V .? • .@
" ?

% #

i

Ê cos cos

This form will enable us to calculate the area of the Möbius band. è

8.3. INTEGRATION OF FORMS IN THE EUCLIDEAN SPACE

We want to begin the study of the theory of integration of exterior
forms with some rather simple examples that do not differ much from the
classical integration. We first consider a differentiable curve  in  and aG ‘8

form . We know that the curve  is described by a smooth map-= A ‘− Ð Ñ G" 8

ping . The curve  is a -dimensional manifold which is a# ‘À Ò+ß ,Ó Ä G "8

submanifold of  if certain conditions are met and it is prescribed by the‘8

equations . On the curve , the form B œ B Ð>Ñß ! Ÿ > Ÿ " G œ Ð Ñ .B3 3 3
3= = x

− Ð ÑA ‘" 8  is given by the expression

= =Ð>Ñ œ Ð>Ñ .>
.B

.>
3

3ˆ ‰x .

The integral of the -form  on the curve  is a linear operator in the form" G=
of  that assigns a real number to this -form defined as'

G
À Ð Ñ Ä "A ‘ ‘" 8

follows

( ( ˆ ‰
G !

"

3

3

= =œ Ð>Ñ .>
.B

.>
x .

The integral in the right hand side is the well known Riemann integral.
Sometimes it is not possible to describe the curve by just one parameter. In
such a case, the interval  is partitioned into subintervals such as Ò+ß ,Ó + œ
>  >  â  >  > œ ,! " 7" 7  making it possible to use a different para-
metrisation in each interval. If we denote the part of the curve correspond-
ing to the interval  by , the integral may be expressed in the formÒ> ß > Ó G4 4" 4

( ( (" " ˆ ‰
G G >4œ! 4œ!

7" 7" >

3

3

= = =œ œ Ð>Ñ .>
.B

.>
4 4

4"

x .

By generalising this approach, we can define the integral of a form
= A ‘ = =− Ð Ñ Ð Ñ œ Ð Ñ .B • .B • â • .B8 8 " #

"#â given by  as the linearx x8
8

operator A ‘ ‘8 8Ð Ñ Ä
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( (
‘ ‘8 8

= =œ Ð Ñ .B .B â.B"#â8
" #x 8

assigning a real number to the -form . The right hand side of the above8 =
expression is the multiple Riemann integral of the function  with ="#â8Ð Ñ 8x
variables. Naturally, in order that the form  can be integrated, this integral=
must exist. When the support of the form  is compact, that is, when the=
smooth function  vanishes outside a closed and bounded subset of="#â8Ð Ñx
‘8, then it is bounded on this set and the integral will definitely exist. It is
obvious that the integral changes sign if we change the orientation of the
manifold.

Let us now consider a -dimensional submanifold  of  prescribed5 W5
8‘

by the parametric equations . We furtherB œ B Ð? ß á ß ? Ñß 3 œ "ß á ß 83 3 " 5

assume that the parameters ,  vary in the region  of? œ "ß á ß 5 Ò+ ß , Ó! ! !

!

! #5
œ"

‘ ‘5 where  is a closed interval and the symbol  represent theÒ+ ß , Ó §! ! #
Cartesian product of intervals. This set will be called a  .closed -rectangle5
We know that the value of a -form5

= = A ‘Ð Ñ œ Ð Ñ .B • â • .B − Ð Ñ
"

5x
x x3 â3

3 3 5 8
" 5

" 5

on the submanifold  is given by the expressionW5

= =

= =

Ð Ñ œ Ð Ñ â .? • â • .?
" `B `B

5x `? `?

œ Ð Ñ .? • â • .? œ Ð Ñ .? • â • .?
"

5x

u x u

u u

3 â3

3 3

â "â5
" 5

" 5

"

"

5

5

" 5

" 5
" 5

ˆ ‰
! !

! !

! !
! !~ ~

where  with an appropriate ordering of parameters. Conse-+ Ÿ ? Ÿ ,! ! !

quently, the integral of the -form  on the submanifold  will be defined5 W= 5

as the following multiple Riemann integral

( ( ( (
W + + +

, , ,

"#â5
" # 5

5
" # 5

" # 5

= =œ â Ð Ñ .? .? â .?~ .u

Generally, the submanifold  may not be described by a single parametri-W5

sation. In such a case, the domain of integration may be the union of some
5-rectangles and the integral is expressed as the sum of integrals over those
sets. Naturally, these integrals must be convergent. However, in order to
define the integral of a form on a differentiable manifold we shall need to
equip the manifold with a much more different formal structure from those
introduced sketchily in this section.
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Example 8.3.1. The integral of the area form associated with the
Möbius band given in Example 8.2.5 can be written as

E œ V "  #  Ð$  # ?Ñ .?.
?

# %
! !/ / /

!#

" !

" # #
#( ( Ê1 cos cos

where we defined the variable  and the coefficient .  is/ !œ @ÎA œ AÎV A
the half width of the band. It is not possible to find the exact value of this
integral. So we have to resort to numerical integration. For instance, we find
E œ $Þ"%**V œ "Î% E œ "Þ#&(#V œ "Î"!# # for ,  for . It is readily! !
verified that  when .E Ä % V Ä !1! !# è

8.4. SIMPLICES AND CHAINS

The one of the main building blocks in integrating forms over differen-
tiable manifolds are made up by simplices and chains generated by them in
the Euclidean space. Let us consider  points  in the5  " T ß T ß á T! " 5

Euclidean space . We suppose that two ordered points  in  de-‘ ‘5 5ÐT ß UÑ
signate the vector  connecting the first point  to the second point .U  T T U
Next, we assume that  vectors  are linearly independ-5 T  T ß á ß T  T" ! 5 !

ent. Hence, for any point , the vector  can be represented byT − T  T‘5
!

T  T œ ÐT  T Ñß −! 3 !

3œ"

5
3 3"0 0 ‘.

If we choose  and  for all , then we observe! Ÿ Ÿ " Ÿ " 3 œ "ß á ß 50 03

3œ"

5
3"

that the vector  stays within the -  T  T 5! dimensional closed and convex
polyhedral region  formed by vectors  as edges. Thus forT  T ß " Ÿ 3 Ÿ 53 !

a point  in this region, we can formally writeT

T œ "  T  T œ T ‘" " "
3œ

5 5 5
3 3 3

! 3 3

3œ" 3œ!1

0 0 0 (8.4.1)

where we define . Therefore, the conditions 0 0 0!

3œ" 3œ!

5 5
3 3œ "    ! œ "" "

and   for all  will be satisfied. We shall now symbolise the03   ! ! Ÿ 3 Ÿ 5
closed and convex set ordered points produced by the  , ,  asT T á T! " 5

= œ T ß T ß á ß T §5 ! " 5
5Ò Ó ‘ . (8.4.2)
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=5
5 will be called a . Since it is a closed and bounded subset of ,5-simplex ‘

= T − =5 5 becomes clearly a compact subset. If , then this point may now be
represented by the formal expression (8.4.1). The non-negative real numbers
Ð0 0 0! " 5ß ß á ß Ñ T are called the  of a point  insidebarycentric coordinates
the simplex . The orientation of  is specified by the definite order of the= =5 5

successive generating points. We choose the order in (8.4.2) as the positive
orientation of the simplex. A different ordering of these points specifies
actually the same set. However, the orientation of the simplex may then
change. We immediately recognise that if the new ordering is obtained from
(8.4.2) by an even permutation of the order of the points in (8.4.2), then the
sense in which the points follow each other, thus the orientation of the
simplex, remains unchanged whereas if it is an odd permutation the orienta-
tion of the simplex is reversed. Let us denote a permutation of the numbers
!ß á ß 5 by . Hence, we can obviously write1

Ò Ó Ò ÓT ß T ß á ß T œ Ð Ñ T ß T ß á ß T1 1 1Ð!Ñ Ð"Ñ Ð5Ñ ! " 5sgn 1

where sgn  if  is an even permutation while sgn  if it isÐ Ñ œ " Ð Ñ œ  "1 1 1
an odd permutation. If we make use of the coordinates in  and write ‘5 T œ
ÖB ×ß T œ ÖB ×ß œ "ß á 5à 3 œ !ß "ß á ß 5! !

3 3 ! , then (8.4.1) can be expressed
more concretely as

B œ B ß œ "ß á 5à   !ß œ "! !! !
3œ! 3œ!

5 5
3 3 3

30 ! 0 0   .

The  opposite to the point  in a simplex  is defined as theface T =3 5

Ð5  "Ñ 5 = Þ-simplex obtained by deleting this point from the -simplex  But5

in order to render its orientation compatible with the principal simplex, we
first put this point into the first position in the ordering so that we obtain

Ò Ó Ò ÓT ß T ß á ß T ß T ß á ß T œ Ð"Ñ T ß á ß T ß T ß T ß á ß T3 ! 3" 3" 5 ! 3" 3 3" 5
3

from which we deduce that the faces of a -simplex are found to be5

= œ Ð"Ñ T ß T ß á ß T ß T ß á ß T3 3
5" ! " 3" 3" 5Ò Ó        (8.4.3)

where . We now define the  of a simplex3 œ !ß "ß á ß 5 oriented boundary
=5  as a formal sum of its faces:

`= œ =5

3œ!

5
3
5"" . (8.4.4)

Let a family of -simplices  where  is an index set be5 Ö= À + − E× E+
5

given. The  linear combinationformal
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- œ =5 +

+−E

+
5"- (8.4.5)

where  is called a  in the space . Thus appending simp-- ‘ ‘+
5− 5-chain

lices in a repetitive way if necessary and playing with their orientations, it
becomes possible to produce rather complicated geometrical structures. Ac-
cording to this definition, the boundary of a -simplex becomes a -5 Ð5"Ñ
chain all -chains on. In view of the definition (8.4.5), we may say that  5 ‘5

constitutes a linear vector space denoted by G Ð Ñ5
5‘ .

Let us now take without loss of generality  and consider! Ÿ 4  3 Ÿ 5

the faces  and  of a simplex := = =3
5"

4
5" 5

= œ Ð"Ñ T ß T ß á ß T ß á ß T ß T ß á ß T ß

= œ Ð"Ñ T ß T ß á ß T ß T ß á ß T ß á ß T Þ

3 3
5" ! " 4 3" 3" 5

4
5"

4
! " 4" 4" 3 5

Ò Ó

Ò Ó

It then follows from above that the th face of  and the th face of 4 = 3 =3
5"

4
5"

are expressible as

= œ Ð"Ñ Ð"Ñ T ß T ß á ß T ß T ß á ß T ß T ß á ß T ß

= œ Ð"Ñ Ð"Ñ T ß T ß á ß T ß T ß á ß T ß T ß á ß T

34
5#

3 4
! " 4" 4" 3" 3" 5

43
5#

4 3"
! " 4" 4" 3" 3" 5

Ò Ó

Ò Ó.

These two sets are identical except for their orientations so that we get

= œ  =34 43
5# 5#.

Consequently, we conclude that

`Ð`= Ñ œ ` = œ = œ !5 5
#

3œ! 4œ!

5 5
34
5#

"" . (8.4.6)

This means that .the boundary of the boundary of a simplex is zero
Some low dimensional simplices can easily be visualised. is= œ T! !Ò Ó 

just a point whereas corresponds to a vector, = œ T ß T = œ T ß T ß T" ! " # ! " #Ò Ó Ò Ó 
to an oriented triangle and  to an oriented tetrahedron.= œ T ß T ß T ß T$ ! " # $Ò Ó
These simplices are displayed in Fig. 8.4.1.

The boundaries of simplices , ,  shown in Fig. 8.4.1 are then= = =" # $

given by

`= œ T  T

`= œ T ß T  T ß T  T ß T

`= œ T ß T ß T  T ß T ß T  T ß T ß T  T ß T ß T

" " !

# " # ! # ! "

$ " # $ ! # $ ! " $ ! " #

Ò Ó Ò Ó

Ò Ó Ò Ó Ò Ó

Ò Ó Ò Ó Ò Ó Ò Ó.
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whereas `= œ !Þ!

‰

‰

‰

‰
‰

‰

‰

‰

‰

T

T
T

T
T

T

T

T

+Ñ Ð, Ñ Ð - Ñ

!

"

!

"

#

!

"

#

$

Fig. 8.4.1. Some simplices: -simplex, -simplex, -simplex.Ð+Ñ = Ð,Ñ = Ð-Ñ =" # $

The  in  is the -simplex formed by the pointsstandard -simplex5 ‘5 5
U œ Ð!ß !ß á ß !ß !Ñ U œ Ð"ß !ß á ß !ß !Ñ U œ Ð!ß "ß !ß á ß !Ñß á ß! " #, ,
U œ Ð!ß !ß á ß !ß "Ñ5 . Hence, the is the setstandard -simplex 5

¬ ‘5
" # 5 5 3 3

3œ"

5

œ ÖÐB ß B ß á ß B Ñ − À ! Ÿ B Ÿ "ß 3 œ "ß á ß 5à B Ÿ "×" .

It is straightforward to see that any -simplex can be generated from the5
standard -simplex via an .5 affine transformation

When we are treating in Sec. 8.3 the integration of exterior forms in
the Euclidean space we encountered certain subset of  called -rectan-‘5 5
gles. We observe at once that these subsets can be reduced to the Cartesian
product  called the  by a very simple scaling transformation ofÒ!ß "Ó5 5-cube
coordinates. We can further show that a -cube, or a , is diffeomorphic5 box
to the standard -simplex. We define a mapping  on the set5 À Ò!ß "Ó ÄF ¬5

5

Ò!ß "Ó œ ÖÐC ß C ß á ß C Ñ − À ! Ÿ C Ÿ "ß 3 œ "ß á ß 5×5 " # 5 5 3‘

by the following relations

B œ C ß

B œ C Ð"  C Ñß

B œ C Ð"  C ÑÐ"  C Ñß

ã

B œ C Ð"  C ÑÐ"  C ÑâÐ"  C Ñ

" "

# # "

$ $ " #

5 5 " # 5" .

We can easily verify that the inverse mapping  is given byF ¬" 5
5À Ä Ò!ß "Ó
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C œ B ß C œ ß C œ ß á ß C œ
B B B

"  B "  B  B
"  B

" " # $ 5
# $ 5

" " #

3œ"

5"
3! .

Thus the -cube and the standard -simplex can be diffeomorphically trans-5 5
formed to each other by means of the function . Consequently, in develop-F
ing a theory of integration on smooth manifolds, it does not cause a loss of
generality to take only standard simplices into consideration. Usually, it
proves to be more advantageous to utilise cubes in the numerical evaluation
of integrals and simplices in revealing homological properties of the mani-
fold which we will be dealing with later on.

Let us now consider a differentiable manifold . A Q differentiable
singular -simplex5   on  is specified by a  function 55 Q 0 À Z Ä Qsmooth
mapping the standard -simplex  in  into the manifold . In order to5 Q¬ ‘5

5

secure the differentiability of this function, its domain  is taken as an openZ
neighbourhood of . Since  is compact,  will necessarily be a¬ ¬ 5 ¬5 5 5 5œ 0Ð Ñ
compact subset of . Thus a singular -simplex on  is designated by theQ 5 Q
triple . The image points 5 ¬ Ä5 5 3 3œ Ð ß Z ß 0Ñ œ 0ÐU Ñ − Qß 3 œ !ß á ß 5
correspond to the vertices of the singular -simplex. A family of various5
singular -simplices on the manifold  is naturally specified by the set5 Q
Ö œ Ð ß Z ß 0 À Z Ñß + − E× E§5 ¬ ¬+

5 5 + + 5 +  where  is an index set (Fig. 8.4.2).

¬

5
5

5

5
5

0

0

"

#

"
#

Z

Z

"

#

Q

Fig. 8.4.2. Two singular simplices on a manifold .Q

With  and , the  linear combination- ‘+ − + − E formal
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- œ5 +

+−E

+
5"- 5 (8.4.7)

is called a  . It is clear that a singulardifferentiable singular -chain on 5 Q
chain is the union of some singular simplices. If  is a positive integer, this-
will imply that we pass over that simplex  times. If  is negative the- -
orientation will be reversed. A single simplex  can be regarded as a chain55

in the form . " † 55 In accordance with this definition, we may say that the
sum and multiplication with real numbers of chains is again a chain. Hence,
we may think that all -chains on a manifold  constitute a linear vector5 Q
space .G ÐQÑ5

Let us consider a singular -simplex . Let the faces of the standard5 55

5 ß 3 œ !ß á ß 5 0-simplex  be . The restriction of the function  to the¬ ¬5
3
5"

set   is expressible as  where the subset  of ¬ ‘3 5"
5" 3 30 À Z Ä Q Z § Zk¬3

5"

is an open neighbourhood of . We characterise the following sets¬3
5"

5 ¬ 5 ¬3 3 3 3
5" 5" 5" 5" 3œ 0Ð Ñ œ Ð ß Z ß 0Ñß 3 œ !ß á ß 5  or  (8.4.8)

as the  of the singular -simplex . The  of  is the imagefaces boundary5 5 55 5

of the boundary of  under the function . We thus get ¬ 5 ¬5 5 50 ` œ 0Ð` Ñ
showing the validity of the commutation relation . On the`0Ð Ñ œ 0Ð` Ñ¬ ¬5 5

other hand, the boundary of  may also be defined as55

` œ5 55

3œ!

5
3
5"" . (8.4.9)

Hence, it is a singular -chain. Therefore, the function  must formallyÐ5"Ñ 0
satisfy the relation

0 œ 0Ð ÑŠ ‹" "
3œ! 3œ!

5 5
3 3
5" 5"¬ ¬ . (8.4.10)

The boundary operator  introduced in (8.4.9) can be` À G ÐQÑ Ä G ÐQÑ5 5"

extended to an arbitrary chain by the following definition

`- œ ` œ `5 + +

+−E +−E

+ +
5 5Š ‹" "- 5 - 5 . (8.4.11)

This definition indicates clearly that  is a linear operator. This operator can`
be applied for  without any problem. Since the boundary of a -sim-5   " !
plex cannot be defined, we adopt the convention  on . We can` œ ! G ÐQÑ!

state the theorem below concerning the boundary operator.
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Theorem 8.4.1. The boundary operator  is linear and we have ` ` ‰ `
œ ` œ ! G ÐQÑ  .#

5on 
The linearity of the operator  originates directly from the definition.`

On the other hand, the image of a zero simplex under  is obviously zero.0
Thus, we find that

` œ `0Ð` Ñ œ 0Ð` Ñ œ 0Ð!Ñ œ !# #
5 5 55 ¬ ¬ .

Because of the linearity of the operator , we immediately reach to the con-`
clusion that

`Ð`- Ñ œ ` - œ !5 5
#  

for any chain. 
If the boundary of a chain  is zero, i.e., if we can write , this- `- œ !5 5

chain is called a . Hence, the boundary of every chain is a cycle.cycle
Let  and  be smooth manifolds and  be a smooth func-Q R À Q Ä R9

tion. We consider a singular -simplex  on the manifold .5 œ Ð ß Z ß 0Ñ Q5 ¬5 5

The image of  on the manifold  under the mapping  is the set 5 9 9 55 5R Ð Ñ
œ 0Ð Ñ œ Ð ‰ 0ÑÐ Ñ Ð Ñ 5 R9 ¬ 9 ¬ 9 5ˆ ‰5 5 5. But the set  is a singular -simplex on 

because  is a smooth function. In this case, we are led0 œ ‰ 0 À Z Ä Rw 9
to the result

` Ð Ñ œ 0 Ð` Ñ œ Ð ‰ 0ÑÐ` Ñ œ 0Ð` Ñ œ Ð` Ñˆ ‰ ˆ ‰9 5 ¬ 9 ¬ 9 ¬ 9 55 5 5 5 5
w

implying that the operators  and  commute. So we get the relation` 9

` ‰ œ ‰ `9 9 . (8.4.12)

Because of the linearity of  this result will equally be valid for a chain ` - :5

` Ð- Ñ œ Ð`- Ñˆ ‰9 95 5 .

Let  be an -dimensional submanifold of an -dimensional smoothW 5 7
manifold . The usual coordinates in the standard -simplex  in  willQ 5 ¬ ‘5

5

be denoted by . ? ß œ "ß á ß 5! ! Let us assume that a singular -chain5
- œ Ö œ Ð ß Z ß 0 Ñ À + − E×5 5 + +

+
55 ¬  can be found as satisfying the following 

conditions:
Ð+ÑÞ œ Each singular -simplex  parametrizes a region 5 W œ5+

5 + 5+
5

  of0 Ð œÐ ‰ 0 ÑÐ Ñ+ +¬5Ñ W  by  where  is the homeomorphism in ax u: :
 local chart.

Ð,ÑÞ œ W We have .W 
+−E

+

Ð-ÑÞ 0 .0 5 Each  injective and the rank of the differential  is .+ is +

 Furthermore, for every  we have Hence,+ Á , 0 Ð 0 Ð+ ,¬ ¬
‰ ‰

5 5Ñ  Ñ œ g. 
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 the singular -simplices can touch each other solely along their5
 boundaries.

     Then we say that the chain  parametrizes the submanifold  by- W5

 .? ß á ß ?" 5

All singular chains under the operator  consti- ` À G ÐQÑ Ä G ÐQÑ5" 5

tute a  specified by the following  sequencechain complex decreasing

â G ÐQÑ G ÐQÑ G ÐQÑ âÄ Ä Ä Ä5" 5 5"

` `
(8.4.13)

because of the fact that . This implies that ` ‰ ` œ ` œ ! Ð`Ñ © Ð`ÑÞ#
5 5e a

a e5 5 5Ð`Ñ œ Ð`Ñ © G ÐQÑ Ð`Ñ œKer  is called the space of , and 5-cycles
Im  is called the space of .Ð`Ñ © G ÐQÑ5 5-boundaries

Let us now consider the dual space  of the vector spaceG ÐQÑ‡
5

G ÐQÑ 0 − G ÐQÑ 0 À G ÐQÑ Ä5 5 5 5
‡
5. If , then it is a  .linear functional ‘

Such an  will be instumental in creating a . In05 singular -cochain on M5
order to justify this terminology, we shall introduce the coboundary opera-
tor  acting on the dual space  by the relationG ÐQÑ‡

5

0 Ð- Ñ œ Ð 0 ÑÐ- Ñ œ 0 Ð`- Ñ5" 5" 5 5" 5 5" (8.4.14)

for all  Obviously  is a homomor-- − G ÐQÑÞ À G ÐQÑ Ä G ÐQÑ5" 5" 5 5"
‡ ‡

phism and one writes . Moreover, it is straightforward to see that0 œ 05" 5
for any  we obtain0 − G ÐQÑ5

‡
5

  Ð ‰ Ñ0 Ð- Ñ œ 0 Ð- Ñ œ 0 Ð`- Ñ œ 0 Ð` - Ñ œ !   5 5# 5 5# 5 5# 5 5#
# #

implying that . Hence, we find that . This    ‰ œ œ ! Ð Ñ © Ð Ñ#
5 5"e a

means that all singular cochains under the coboundary operator  constitute
a  given bycochain complex

â G ÐQÑ G ÐQÑ G ÐQÑ âÞÄ Ä Ä Ä‡ ‡ ‡
5" 5 5"

 
(8.4.15)

a e5 55
‡Ð Ñ œ Ð Ñ © G ÐQÑ Ð Ñ œ  Ker  is called the space of , and 5-cocycles

Im  is called the space of .Ð Ñ © G ÐQÑ 5
‡ 5-coboundaries

8.5. INTEGRATION OF FORMS ON MANIFOLDS

We assume that  is an -dimensional differentiable manifold. Let usQ 7
consider a form . It is known that this form is expressed in local= A− ÐQÑ5

coordinates as

= =Ð Ñ œ Ð Ñ .B • â • .B
"

5x
x x3 â3

3 3
" 5

" 5 .
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We shall now try to define the integral of this form on a  dimensional5 Ÿ 7
submanifold  of . To this end, we first assume that there exists a singu-W Q
lar -chain  that parametrizes  just as we have depicted at the end of5 - W5

Sec. 8.4. If we recall that a chain is a linear combination of singular
simplices, we realise at once that it would be entirely sufficient to define the
integral on a single singular -simplex . The smooth func-5 œ Ð ß Z ß 0Ñ5 ¬5 5

tion  enables us to establish a smooth relationship between the0 À Z Ä Q
natural coordinates  and the parameters  in the formx u− − §‘ ¬ ‘7 5

5
 

x x uœ Ð Ñ 0 À ÐQÑ Ä ÐZ Ñ. Let  be the pull-back operator induced by the‡ A A
mapping . This operator pulls the -form  defined on the simplex  back0 5 = 55

to the form  on the standard simplex  as follows= = ¬‡ ‡
5œ 0

= =

= =

‡
3 â3

3 3

â "â5
" 5

Ð Ñ œ Ð Ñ â .? • â • .?
" `B `B

5x `? `?

œ Ð Ñ .? • â • .? œ Ð Ñ .? • â • .?
"

5x

u x u

u u

" 5

"

"

5

5

" 5

" 5
" 5

ˆ ‰
! !

! !

! !
! !~ ~ .

The integral on  is now defined by the relation55

( ( (
5 ¬ ¬5 5 5

= = = ‘œ 0 œ Ð Ñ .? â.? −‡ " 5
"â5

~ (8.5.1)u

reducing this integral to a multiple Riemann integral on the standard -sim-5
plex  in the Euclidean space. Since we have assumed that the -chain ¬5 55 -

œ W 5!
+−E

+
+
5- 5 = parametrizes the submanifold , the integral of the -form  on

W is eventually given by the sum

( ( ( (" "
W +−E +−E

+ + +
‡= = - = - =œ œ œ 0

-5
+ +
5 55 ¬

. (8.5.2)

In order this definition to be consistent, we have to show that this integral is
independent of the choice of parametrisation of . Without loss of generali-W
ty, we may suppose that  is subject to two different parametrisations byW
two chains } and } with- œ ÖÐ ß Z ß 0 Ñ À + − E - œ ÖÐ ß Y ß 1 Ñ À −5 5 + + 5

w
5¬ ¬ š ´š š

all real coefficients are . Because we can write- -+ œ œ "š

W œ 0 ÐZ Ñ œ 1 ÐY Ñ 
+−E

+ +
−š ´

š š

we evidently obtain

W œ 0 ÐZ Ñ 1 ÐY Ñ œ 0 ÐZ Ñ 1 ÐY Ñˆ ‰ ‰    
+−E +−Eß −

+ + + +
−š̂ ´

š š š š
š ´

.
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Since the mappings  and  are injective, they are bijective mappings over0 1+ š

their ranges. Consequently, their inverses exist so that one is able to write

0 ‰ 1 À Ð1 ‰ 0 ÑÐZ Ñ  Y Ä Z  Ð0 ‰ 1 ÑÐY Ñ" " "
+ ++ + +š š š šš

We thus reach to the desired result as follows

( ( (" "
" (
" (

- Z Z Ð0 ‰1 ÑÐY Ñ

Ð1 ‰0 ÑÐZ ÑY

Ð1 ‰0 ÑÐZ ÑY

5 + +
"
+

"
+ +

"
+ +

= = =

=

=

œ 0 œ 0

œ Ð0 ‰ 1 Ñ 0

œ 1 ‰ Ð0 Ñ 0 œ

+−E +−Eß −
+ +
‡ ‡

+−Eß −

" ‡ ‡
+ +

+−Eß −

‡ " ‡ ‡
+ +

š ´

š ´

š

š ´
š

š š

š š

š š

"( (
š ´

š
−

‡

Y -š

1 œ= =
w
5

.

We thus realise that the integral of a -form on a -dimensional submani-5 5
fold can be evaluated as the sum of some multiple integrals over a simple
standard -simplex once we manage to parametrize this submanifold by a5
suitable chain. If the chain is finite, then this procedure does not cause un-
due difficulties. But if the chain is infinite, we may then have to face up
with a serious problem of convergence. In such a case, if the support of the
form , i.e., the set  is compact so that it= = =supp Ð Ñ œ Ö: − Q À Ð:Ñ Á !×
can be covered with finitely many open sets, then surely no problems occur.

Let  be smooth manifolds and  be a smooth map-Qß R À Q Ä R9
ping. If  is a -chain on , we know that  is a -chain on .- 5 Q - œ Ð- Ñ 5 R5 5

w
5 9

Hence, if  we immediately observe that= A− ÐRÑ5

( ( (
-

‡

w
5

= = 9 =œ œ
9Ð- Ñ -5 5

. (8.5.3)

Example 8.5.1. We want to calculate the integral of the form = œ
BCD .B • .C • .D − Ð Ñ $# $ $

$A ‘ ¬ on the standard -simplex . On using the
familiar method of calculation of multiple integrals, we obtain

( ( ( ( (
( (

(

¬ ¬$ $

= œ BCD .B.C.D œ .B .C BCD .D

œ .B BCÐ"  B  CÑ .C
"

$

œ BÐ"  BÑ .B œ
" "

'! #&#!

# #

! ! !

" "B "BC

! !

" "B
$

!

"
&

è
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Example 8.5.2. We shall calculate the integral of the -form#

= A ‘œ ÐB  D Ñ.B • .C  ÐB  C Ñ.C • .D  ÐC  D Ñ.D • .B− Ð Ñ# # # # # # # $

on the -chain  made up of the of the tetrahedron formed by# - œ#
3œ!

$
3
#

!5 faces 

the points , , ,  in .U œ Ð!ß !ß !Ñ U œ Ð+ß !ß !Ñ U œ Ð!ß ,ß !Ñ U œ Ð!ß !ß -Ñ! " # $ ‘
The simplices of the chain are given by

5 5

5 5

! "
# #" # $ ! # $
# $
# #! " $ ! " #

œ U ß U ß U ß œ  U ß U ß U ß

œ U ß U ß U ß œ  U ß U ß U

Ò Ó Ò Ó

Ò Ó Ò Ó.

We define the standard -simplex by#

¬ ‘#
#œ ÖÐ?ß @Ñ − À ! Ÿ ?ß @ Ÿ "ß ?  @ Ÿ "×.

Then the functions  identifying singular -0 Ð?ß @Ñ œ ÐBß Cß DÑß 3 œ !ß "ß #ß $ #3

simplices  become53
#

0 Ð?ß @Ñ œ Ð!ß ,?ß -@Ñ

0 Ð?ß @Ñ œ Ð+?ß !ß -@Ñ

0 Ð?ß @Ñ œ Ð+?ß ,@ß !Ñ

0 Ð?ß @Ñ œ Ð+?ß ,@ß -Ð"  ?  @ÑÑ

1

0

,
,
 

.

#

$

Indeed, we can readily verify that these functions provide the following
mappings

0 À Ä U ß U ß U ß

0 À Ä U ß U ß U ß

0 À Ä U ß U ß U ß

0 À Ä U ß U ß U

" # ! # $

# # ! " $

$ # ! " #

! # " # $

¬

¬

¬

¬

Ò Ó

Ò Ó

Ò Ó

Ò Ó.

When we pull the form  from those faces back to , we obtain the forms= ¬#

0 œ , - ? .? • .@ß

0 œ  +- @ .? • .@

0 œ + , ? .? • .@ß

0 œ + ,Ð+  - Ñ?  , -Ð+  ,Ñ@  +- Ð-  ,ÑÐ"  ?  @Ñ .? • .@

‡ $ #
"
‡ $ #
#
‡ $ #
$
‡ # # # # # #
!

=

=

=

=

  

,

. ‘
We thus find

( ( (
5"

#

= œ  , - ? .?.@ œ  ß
, -

"#
$ #

?œ! @œ!

" "? $
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( ( (
( ( (
(
( ( 

5

5

5

#
#

$
#

!
#

=

=

=

œ  +- @ .?.@ œ  ß
+-

"#

œ  + , ? .?.@ œ  ß
+ ,

"#

œ

+ ,Ð+  -Ñ?  , -Ð+  ,Ñ@  - +Ð-  ,ÑÐ"  ?  @Ñ

$ #

?œ! @œ!

" "? $

$ #

?œ! @œ!

" "? $

?œ! @œ!

" "?
# # # # # #

$ # $ # #

‘
 ‘

.?.@

œ + ,  + ,-  , -  +-Ð,  ,-  - Ñ
"

"#

whence we arrive at the result

(
-#

= œ Ð+  ,  -Ñ
+,-

"#
Þ è

The approach we have followed above to evaluate the integral of a -5
form on a -dimensional manifold consists of decomposing a complicated5
region to much simpler regions by means of -chains and summing all inte-5
grals calculated relatively easily on those regions. We shall now discuss a
second approach that may prove to be more effective in certain cases. In that
approach, we decompose the form into some forms that vanish outside of
some simple regions covering the manifold and we add the integrals of these
forms together to obtain the final result.

We consider a -dimensional smooth submanifold  of an -dimen-5 W 7
sional smooth manifold . Let  be an atlas ofQ œ ÖÐY ß Ñ À − ×T : AQ

w w
- - -

Q œ ÖÐY ß Ñ À − × W. We know that this atlas induces an atlas  on T : AW - - -
[ . 105] where  and see : Y œ Y  Wß œ ‰ 3 À Y Ä À W Ä Q- - -- -

w w 5: : ‘ \
is the inclusion mapping  for all . Let us now assume that\ Ð:Ñ œ : : − W
there exists a partition of unity  on the submanifold Ö ß 0 À + − ×Z E W+ +

subordinate to the atlas  [ . 62]. Each set  belongs to an open setTW +see : Z
Y − ÐQÑ-+  of a chart of this atlas. We now consider a form  and try to= A5

evaluate its integral over . Since the partition of unity implies thatW!
+ E

+
−

0 Ð:Ñ œ " : − W for all , we can write

k "= = = = = A

=

W
+ E

+ + +
5

+ +

œ Ð:Ñ œ Ð:Ñß Ð:Ñ œ 0 Ð:Ñ Ð:Ñ − ÐY Ñß

Y
−

+

   

.

-

-

+

+supp suppÐ Ñ © Ð0 Ñ Z ©§



428 VIII Integration of Exterior Forms

We thus obtain

( ( (" "
W + E + E

+ += = =œ 0 œ 0 . (8.5.4)
− −Ð0 Ñsupp +

If the sum at the right hand side is convergent, the integral of the form  on=
W is expressed as the sum  integrals of forms that vanish outside of certain
regions. When  is a paracompact manifold, we had mentioned beforeW
[ . 95] that a partition of unity can be found subordinate to every atlas.see :
We know that there exist merely finitely many functions  in a neighbour-0+

hood of each point . However, if  does not contain a finite number: − W TW

of open sets, infinitely many terms may nevertheless be involved in the sum
and we naturally have to face up with a problem of convergence. When the
support of the form  on the submanifold  is compact, it can always be= W
covered by a finitely many open sets, so the expression (8.5.4) becomes a
finite sum in this case. Therefore, the problem of convergence disappears
naturally. If the submanifold  itself is compact, this situation will alwaysW
occur.

In order that the integral of a form given by (8.5.4) has a meaning, it
should not be dependent on the chosen atlas and the partition of unity. To
show this, let us consider two atlases and their two charts ÖY ß À − ×- -: - A
and  on  and two partitions of unity  andÖ[ ß À − × W Z E# #< # > Ö ß 0 À + − ×+ +

Ö^ ß 1 À , − × W, , F W œ  on  subordinate to those atlases, respectively. Since
  
- A - A # >

- # - #
# >− − ß −−

Y œ [ W œ ÐY  [ Ñ, we can obviously write . Thus, the

family  is likewise an open cover of . We thenÖY  [ À − ß − × W- # - A # >
realise that  is the partition of unity subordi-Ö  ^ ß 0 1 À + − , −Z Eß F×+ , + ,

nate to the open cover . Accordingly, the integral of the form ÖY  [ ×- # =
can be written in two different ways as follows

( ( (" ""
" ""( (

W E E

+ +

F

F F E

+

= = =

= =

œ 0 œ 0

œ œ 0

+− +− ,−

,

,− ,−

, ,

+−

1

1 1 .

since we can write .= = =Ð:Ñ œ 0 Ð:Ñ Ð:Ñ œ Ð:Ñ Ð:Ñ! !
+− ,−

,
E

+
F

1

  As a matter of fact, if the above sums converge absolutely, then we are
allowed to interchange freely the order of summations in the above
expressions. Furthermore, if the support of the form  is compact, then this=
will happen naturally. Hence, if we consider two partitions of unity we
obtain
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( ( (" "
W E

+

F

= = =œ 0 œ
+− ,−

,1 .

Hence, the integral is independent of the chosen charts and partitions of
unity subordinate to them.

8.6. THE STOKES THEOREM

We had defined a manifold with boundary in  90-93. We had seen::Þ
there that the boundary  of such a -dimensional differentiable manifold`W 5
W Ð5"Ñ is a -dimensional differentiable manifold and the local coordinates
ÐB ß B ß á ß B ß B Ñ −" # 5" 5 5 5"‘ ‘ can be so chosen that the boundary in  is
represented by . The Stokes theorem that is ratherÐB ß B ß á ß B ß B œ !Ñ" # 5" 5

simple looking at a first glance but having a great potential in provoking
very important developments [it is commemorated by the name of English
mathematician  Sir George Gabriel Stokes (1819-1903) who utilised a simi-
lar theorem in the context of classical vector analysis ] states that the fol-1

lowing relation

( (
W `W

. œ= = (8.6.1)

is valid for every form . This theorem is very important be-= A− ÐWÑ5"

cause it helps derive the classical theorems of Green-Gauss and Kelvin-
Stokes as well as the fundamental theorem of calculus. It also links topology
and analysis because the boundary operator  on the right hand side is`
purely geometric whereas the integral and the exterior derivative on the left
hand side are purely analytic. We shall first prove this theorem for a mani-
fold with boundary prescribed by a singular chain  whose boundary is-5

given by .`-5

Theorem 8.6.1 (The Stokes Theorem on Chains). Let  be a dif-Q
ferentiable manifold. We assume that there exists a -chain 5 - − G ÐQÑ5 5

and consider an exterior differential form . We then have the= − ÐQÑA5"

equality

1It was actually Sir William Thomson (Lord Kelvin) (1824-1907) who discovered
this relation within the context of classical vector analysis and communicated it to
Stokes in July 1850. However, Stokes is identified with this theorem because he
asked its proof on 1854 Smith's Prize examination in Cambridge University. It is
not known whether the students were able to answer that question. That is the
reason why some authors call this theorem as the Kelvin-Stokes theorem.
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( (
- -5 5

. œ= =
`

provided that the integrals converge.
For a chain given by , its boundary is expressed as - œ `-5 + 5

+
5
+!- 5

œ `!
+

+ 5
+- 5 . Hence, it would suffice to show that the above relation is

valid for a single singular -simplex . Since  or, in short,5 œ Ð ß Z ß 0Ñ5 5 ¬5 5 5

5 ¬5 5œ 0Ð Ñ, we can write

( ( (
5 ¬ ¬5 5 5

. œ 0 . œ .Ð0 Ñ= = =‡ ‡

on resorting to the pull-back operation where we make use of the property
0 ‰ . œ . ‰ 0 œ 0‡ ‡ ‡ in accordance with Theorem 5.8.2. The form ) =
− Ð Ñ ZA ‘5" 5  will be defined on an open neighbourhood  of the standard

5-simplex  in . Let us now denote the local coordinates in  by¬ ‘ ‘5
5 5

? ß á ß ?" 5 . Hence, the form  becomes expressible ) in terms of its essential
components as

) )

*

œ Ð"Ñ Ð Ñ .? • â • .? • .? • â • .?

œ

"
"
3œ"

5
3" " 3" 3" 5

3

3œ"

5

3

u

where we have obviously introduced the forms * A ‘3
5" 5− Ð Ñß 3 œ "ß #ß

á ß 5 as follows

* )3 3
3" " 3" 3" 5œ Ð"Ñ Ð Ñ .? • â • .? • .? • â • .?u .

The factor  is inserted for convenience. Thus the exterior derivativeÐ"Ñ3"

.) may be expressed in the following manner

. œ Ð"Ñ .? • .? • â • .? • .? • â • .?
`

`?

œ .? • â • .? œ .? • â • .? • â • .?
` `

`? `?

)
)

) )

"
"

3œ"

5
3" 4 " 3" 3" 53

4

3 <

3 <
" 5 " < 5

<œ"

5

where the summation convention is suspended as usual on underscored in-
dices. Therefore, we can write



8.6  The Stokes Theorem 431

( ("
¬ ¬5 5

. œ .? â .? â .?
`

`?
)

)

<œ"

5
<

<
" < 5 . (8.6.2)

These integrals can now easily be evaluated by consulting to the standard
simplex represented in Fig. 8.6.1.

?

?

?

"

#

<

T

T

TT

U

T<

!

"

#

Fig. 8.6.1. Standard simplex  positioned with respect to the preferred variable .¬5
<?

In fact, on recalling the relation

Ò ÓT ß T ß á ß T ß T ß á ß T œ Ð"Ñ! " <" <" 5
< <

5"¬

[ (8.4.3)], we obtainsee 

(
(  ‘

¬

¬

5

<
5"

`

`?
.? â .? .? .? â .?

œ Ð"Ñ ÐUÑ  ÐT Ñ .? â.? .? â .?

)

) )

<

<
" <" < <" 5

< " <" <" 5
< <

 (8.6.3)

where we define on relevant faces

) )< <
" <" <" 5ÐT Ñ œ Ð? ß âß ? ß !ß ? ß âß ? Ñ,
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) )< <
" <" 3 <" 5

3œ"ß3Á<

5

ÐUÑ œ ? ß âß ? ß "  ? ß ? ß âß ?Š ‹" .

Since  ? œ ! .? œ !< <
5" on the face , we get  there and it follows¬<

from the definition of the form  that only one term in the expression for ) )
survives on :¬<

5"

k k) )¬<
5"

œ Ð"Ñ Ð Ñ .? • â • .? • .? • â • .?<" " <" <" 5
< ? œ!u < .

We can thus write

Ð"Ñ ÐT Ñ .? â.? .? â .? œ<" " <" <" 5
<( (

¬ ¬< <
5" 5"

) ). (8.6.4)

On the other hand, on projecting the integral of the form  on the face * ¬<
!
5"

œ T ß á ß T ß T ß T ß á ß T ?Ò Ó" <" < <" 5
< in the direction of the preferred -axis,

we find that

(
(
(

¬!
5"

*

)

)

<

T ßáßT ßT ßT ßáßT

<" " <" <" 5
<

T ßT ßáßT ßT ßáßT
<

" <" <" 5

          œ Ð"Ñ ÐUÑ .? â.? .? â .?

œ ÐUÑ .? â.? .? â .?

œ Ð"Ñ

Ò Ó

Ò Ó

" <" ! <" 5

! " <" <" 5

< " <" <" 5
<(

¬<
5"

) ÐUÑ .? â.? .? â .? .                       (8.6.5)

In order to facilitate the computation of the integral in the fourth line above,
let us introduce the change of variables  Ð? ß ? ß á ß ? ß ? ß á ß ? Ñ Ä" # <" <" 5

Ð@ ß á ß @ Ñ" 5"  through the relations

@ œ ? ß á ß @ œ ? ß @ œ "  ? ß

@ œ ? ß á ß @ œ ?

" # <# <" <" 3

3œ"ß3Á<

5

< <" 5" 5

  

.

"

We readily observe that the inverse relations are then given by

? œ "  @ ß ? œ @ ß á ? œ @ ß ? œ @ ß á ß ? œ @" 3 # " <" <# <" < 5 5"

3œ"

5"" .
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The relation

.? • â • .? • .? • â • .? œ Ð"Ñ .@ • .@ • â • .@" <" <" 5 <" " # 5"

implies that the Jacobian of the transformation is . We thus getN œ Ð"Ñ<"

lN l œ " and

.? â.? .? â .? œ .@ .@ â.@" <" <" 5 " # 5".

Since ,  in the standard -simplex , the new variables! Ÿ ? Ÿ " ? Ÿ " 53 3

3œ"

5

5! ¬

@ ß á ß @ @ Ÿ ! Ÿ @ Ÿ "ß" 5" 3 3

3œ"

5"

 will evidently satisfy the conditions 1 and !
3 œ "ß á ß 5  " Ð5  "Ñ. Therefore, they depict the standard -simplex ¬5"

in  . Hence, we can write‘5"

 

                                   

(
(
( "

¬

¬

¬

<
5"

5"

5"

)

)

)

<
" <" <" 5

<
" 5" " 5"

<

3œ"

5"
3 " 5" "

ÐUÑ .? â.? .? â .?

œ Ð@ ß á ß @ Ñ .@ â .@

œ Ð"  @ ß @ ß á ß @ Ñ .@ â .@5".

On inserting the expressions (8.6.4) and (8.6.5) into the relations (8.6.3) and
(8.6.2), we reach to the conclusion

( ( ( ( (" " "
¬ ¬ ¬ ¬ ¬5 5

< <
5" 5" 5"

!
. œ  œ œ) ) * ) )

<œ" <œ" <œ!

5 5 5

<
`

.

If we take the relations (8.4.12) and (8.5.3) into consideration, the above
equality leads to the following expression

 ( (
5 55 5

. œ= =
`

whence we deduce the Stokes theorem on -chains in the following form5

( (
- -5 5

. œ= =
`

(8.6.6)

where .= − ÐQÑA5" 
If the chain  is the boundary of a chain , i.e., if  then- , `,5 5" 5"

`- œ ` , œ !5 5"
#  and consequently, we obtain



434 VIII Integration of Exterior Forms

( ( (
-5

. œ . œ œ != = =
` `, ,5" 5"

#

.

Similarly, if a chain  is a cycle, we then have  and we clearly find- `5 - œ !5

this time

(
-5

. œ != .

On the other hand, if  is a , namely, if , then on the= =closed form . œ !
boundary of every chain, we find

(
`-5

= œ !.

But, we have to warn that satisfaction of this condition on the boundary of
every -chain does not generally mean that the -form  is closed5 Ð5"Ñ = .

If the difference of two -chains is the boundary of a -chain,5 Ð5"Ñ
that is, if , we then get -  - œ `, `-  `- œ `Ð-  - Ñ œ ` ,5 5" 5 5 5"

w w w #
5 5 5

œ !. Hence, the difference of such kind of chains is a cycle and the relation
(8.6.6) yields

( (
- -5

w
5

. œ .= =.

On the other hand, if , we then find= A− ÐQÑ5

( ( ( ( (
- -5

w
5

= = = = = œ œ œ .
- - , ,5 5" 5"

w
5 `

Thus, if  is a closed form, i.e., if , we also observe the following= =. œ !
equality for this sort of chains

( (
- -5

w
5

= =œ .

If  is an , we have to write  and (8.6.6)= A = )− ÐQÑ œ .5" exact form
leads to the identity

! œ . œ . œ œ !( ( (
- - -5 5 5

#

` `

) ) )
#

.

Example 8.6.1. We now want to evaluate the integral in Example 8.5.2
by means of the relation
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"( ( (
3œ!

$

`5 ¬ ¬3
#

= = =œ œ .
$ $

.

The integral of the form

. œ #ÐB  C  DÑ .B • .C • .D=

on  can be calculated as¬$

( ( ( (
¬$

. œ # ÐB  C  DÑ .B.C.D

œ Ð+  ,  -Ñ
+,-

"#

=
Bœ! Cœ! Dœ!

+ Ð,Î+ÑB, -Ò"ÐBÎ+ÑÐCÎ,ÑÓ

.

We thus arrive at the same result. è

Let us now consider a -dimensional differentiable manifold  with a5 W
boundary . We know that we are able to choose the local coordinates`W
ÐB ß B ß á ß B Ñ B œ !" # 5 5 in a chart in such a way that  defines the boundary
`W . Thus local coordinates of any point at the boundary are then given by
ÐB ß B ß á ß B Ñ / ß / ß á ß /" # 5"

" # 5". Let the vectors  be a local basis for the
tangent bundle . Two vectors that do not belong to  are X Ð`WÑ X Ð`WÑ `Î`B5

and . The former vector is called as the of the `Î`B5 interior normal 
boundary  while the latter as the . We assume that  is`W Wexterior normal
positively oriented by the volume form  so that we.5

" 5œ .B • â • .B
have . We shall now adopt the convention that.5

" 5Ð`Î`B ß á ß `Î`B Ñ  !
the -dimensional boundary manifold  will be Ð5"Ñ `W positively oriented
with respect to its exterior normal if . We.5 " # 5"

5Ð  `Î`B ß / ß / ß á ß / Ñ  !
now propose the following form of the Stokes theorem for smooth mani-
folds with boundary.

Theorem 8.6.2 (Stokes' Theorem on Manifolds with Boundary). 
Let  be a k-dimensional smooth manifold with boundary and W = A− ÐWÑ5"

be an exterior form with a compact support. If  is the inclusion\ À Ä W`W
mapping identifying boundary points as points of the manifold, then the
form  will satisfy the relation\ A‡ 5"= − Ð`WÑ

( ( ( (
`W W `W W

‡\ = = = =œ . œ .    or in short   . (8.6.7)

The manifold  is supposed to be positively oriented.`W
Let us first assume that the support  of the form  lies within a chartH= =

ÐY ß Ñ ÐB ß B ß á ß B Ñ: = whose local coordinates are . Thus the form  can be" # 5

represented as
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= =œ Ð"Ñ Ð Ñ .B • â • .B • .B • â • .B"
3œ"

5
3" " 3" 3" 5

3 x

if  and  if  We shall further assume thatx x− ÐH Ñ œ ! Â ÐH ÑÞ§: ‘ = := =
5

B œ ! `W5  on the boundary . In this case, the exterior derivative of the form
= can be written as

. œ .B • â • .B • â • .B − ÐWÑ
`

`B
= A

="
<œ"

5
<

<
" < 5 5

as we have attested previously. Next, we have to distinguish two different
situations.

Ð3ÑÞ `W  Y œ g Let  so that we obviously obtain

(
`W

= œ !.

On the other hand, the set  in  is closed and bounded: : ‘ÐH Ñ ÐY Ñ œ Z§=
5

because it is a compact set being the image of a compact set under a ho-
meomorphism. Consequently, we can assume that  where the:ÐH Ñ O§= 5

5 O 5 O œ Ò+ ß , Óß-dimensional   is actually a -rectangle defined by box 5 5
<œ"

5
< <#

!  +  ,  _< < . At all of the end points of the box the following condi-
tions will evidently be satisfied since the support of  is supposed to be=
compact:

= =< <
" < 5 " < 5ÐB ß á ß + ß á ß B Ñ œ ÐB ß á ß , ß á ß B Ñ œ !ß " Ÿ < Ÿ 5 .

We thus find that

( ( ( (’
W +

,

. œ . œ= =
:ÐH Ñ O<œ"

5
<

<
< " <" <" 5

=

"
5"

<

<

`

`B
.B .B â.B .B â.B

=

œ ÐB ß á ß B ß á ß B Ñ .B â.B .B â.B œ !"
<œ"

5

O
<

" < 5 " <" <" 5B œ ,

B œ +( ¸
5"

< <

< <=

which proves that the relation (8.6.7) will hold in this case.
Ð33ÑÞ `W  Y Á g B œ ! Let . In this case, with  on  we obtain5 `W

\ =‡ œ Ð"Ñ ÐB ß B ß á ß B ß !Ñ .B • .B • â • .B5" " # 5" " # 5"
5= .
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But, we have to take now  in the box  containing the! œ +  ,  _ O5 5
5

image  of the support of the . Hence, this time we get: =ÐH Ñ=

( ( ( (’
( ¸
(

W +

,

. œ . œ= =
:ÐH Ñ O<œ"

5
<

<
< " <" <" 5

<œ"

5

O
<

" < 5 " <" <" 5B œ,

B œ+

O
5

" #

=

"
"

5"

5"

< <

< <

5"

<

<

`

`B
.B .B â.B .B â.B

œ ÐB ß á ß B ß á ß B Ñ .B â.B .B â.B

œ  ÐB ß B

=

=

= ß á ß B ß !Ñ .B .B â.B5" " # 5".

On the other hand, since , we.5
5 " 5" 5Ð  `Î`B ß `Î`B ß á ß `Î`B Ñ œ Ð"Ñ

cannot say that the basis  is positively oriented inÐ`Î`B ß á ß `Î`B Ñ" 5"

X Ð`WÑ. Accordingly, we find

( (
(

`W O

#5" " # 5" " # 5"
5

O
5

" # 5" " # 5"

\ =‡ œ Ð"Ñ ÐB ß B ß á ß B ß !Ñ .B .B â.B

œ  ÐB ß B ß á ß B ß !Ñ .B .B â.B

5"

5"

=

=

that results in

( (
`W W

‡\ = =œ . .

We now wish to relax the condition that the support of the form  is=
compact as it appears in the statement of the theorem. However, we shall
instead suppose that there is an atlas on  subordinate to which there existsW
a partition of unity  where  and  is a chart of theÖZ ß 0 × Z © Y ÐY ß Ñ! ! ! :

atlas. We now impose the restriction that  is bounded for: ‘Ð 0 Ñ ©supp !
5

each member of the family. Since  is also closed, the image of:Ð 0 Ñsupp !

supp supp0 0! ! is a compact set in . Hence, due to the homeomorphism ‘5

becomes a compact subset in . Let us now define the forms W œ=!
0 − ÐWÑ − ÐWÑ! != A = A =5" 5" associated with the form . The support of  is
the same as that of , i.e., it is a compact subset. Thus, Stokes' theorem can0!
be applied to such forms. Because of the relation  we get ! !

! !
! !0 œ" .0 œ

!. Therefore, we can write

= = = = = = =œ 0 œ ß . œ Ð.0  0 . Ñ œ ." " " "
! ! ! !

! ! ! ! !

and, consequently, obtain
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( " " "
"

W W `W `W

`W `W

‡

. œ= \ \

\ \ =

! ! !

! ! !

!

!

( ( (
( (

. œ œ

œ œ

= = =

=

‡ ‡

‡

provided that the above sum is convergent and we are allowed to inter-
change summation and integration operations. When  is a paracompactW
manifold and the support of the form  is compact, the number of the func-=
tions  involved is finite so these operations can always be performed.0! 

If  is a closed form, i.e., if , then we get  on a mani-= =. œ ! (
`W

= œ !

fold  with boundary . However, this condition does not imply in gene-W `W
ral that the form  is exact, namely, there exists a form  such that = 5 = 5œ .

and .(
`W

.5 œ !

Example 8.6.2. We consider the form

= Aœ − ÐQÑ
 C .B  B .C

B  C# #
"

defined on the manifold . Let  be a region boundedQ œ  Ð!ß !Ñ H Q§‘#

by a closed curve  containing the point . We can immediately seeG Ð!ß !Ñ
that . Furthermore, we can easily verify that one is able to write. œ !=

= ) )œ . ß œ
C

B
arctan .

Hence, we find that

( (
G G

= ) 1œ . œ # Á !.

It is clear that this result is not in essence in contradiction with Stokes'
theorem because it is originated from the fact that the real boundary of the
region is described by .G  ÖÐ!ß !Ñ× è

We shall now attempt to obtain Stokes' theorem by following a com-
pletely different path. This approach will also prove to be rather advantage-
ous from the standpoint of giving rise to new interpretations. We consider a
5 W 7-dimensional submanifold  of an -dimensional differentiable manifold
Q 5 Ÿ 7 where . Let us assume that this submanifold is specified by a
smooth mapping . So in local coordinates, the submanifold  is9 À W Ä Q W

defined by a parametrisation . LetB œ Ð? Ñß 3 œ "ß á ß 7à œ "ß á ß 53 39 !!

Y © W Ð5"Ñ `Y be a region with boundary. Its -dimensional boundary 
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may be determined by a mapping  or through functions < À `Y Ä W ? œ!

<!Ð@ Ñß + œ #ß á ß 5 `Y 5  "+  . Since the dimension of the boundary  is , the
rank of the matrix  must be . This amounts to say that weÒ`? Î`@ Ó 5  "! +

can take  by changing the ordering of coordinates if ne-det Ò`? Î`@ Ó Á !, +

cessary. We can thus write  and the manifold  may be de-@ œ Ð? Ñ `Y+ + ,0
scribed by the equation . Next, we select the new local? œ Ð? ß á ß ? Ñ" " # 50
coordinates  for the manifold  by the expressions , ÐA ß A Ñ W A œ ? A œ" + + + "

?  Ð? ß á ß ? Ñ `Y Y" " # 50 . Hence, the boundary  of the region  is determined
by the condition . In this case, the parameters A œ ! A ß + œ #ß á ß 5" +

constitute the local coordinates of . All the vectors  belong to`Y `Î`A+

X Ð`Y Ñ `Î`A `Y. Only the vector  is not in the tangent bundle of  and lies"

in . We now introduce a vector field . This vector fieldX ÐWÑ Z œ `Î`A"

creates a flow, that is, a one-parameter mapping  on the sub-/ À W Ä W>Z

manifold  dragging the region  onto a region  (Fig. 8.6.2).W Y Y Ð>Ñ W§

Y

YÐ>Ñ

Q

W

`Y
`YÐ>Ñ

Fig. 8.6.2. The region  dragged along the flow .Y W /§ >Z

 A form  on  can be written as) A− ÐQÑ W5

) @œ ÐA ß A ß á ß A Ñ .A • .A • â • .A" # 5 " # 5 .

Let us now consider the set difference  so that the integ-$Y Ð>Ñ œ Y Ð>Ñ  Y
ration of the form  over which can be expressed as)

( ( (
$Y Ð>Ñ Y Ð>Ñ Y

) ) )œ 
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For a small parameter , we can choose local coordinates in the vicinity of>
`Y Ð>ß A ß á ß A Ñ as . We can then expand the function  into a Maclaurin# 5 @
series about  and write> œ !

@ @
@

Ð>ß A ß á ß A Ñ œ  >  â
`

`>
# 5

>œ!
>œ!

k º .

We can obviously write the following expression for small values of the pa-
rameter >

( (
( (Š ‹

$ $Y Ð>Ñ Y Ð>Ñ

" # 5 " # 5

`Y !

>
" # 5 " # 5

) @

@

œ ÐA ß A ß á ß A Ñ .A .A â.A

œ ÐA ß A ß á ß A Ñ .A .A â.A .

Inserting the relation

( k
!

>
" # 5 "

>œ!@ @ÐA ß A ß á ß A Ñ .A œ >  9Ð>Ñ

into the foregoing integral, we find

( (
(

$Y Ð>Ñ `Y

# 5 # 5

`Y
Z

) @

)

œ > Ð!ß A ß á ß A Ñ .A â.A  9Ð>Ñ

œ > Ð Ñ  9Ð>Ñi .

On the other hand, we can write

»( ( ( (’ “. "

.> >
œ  œ Ð Ñ

Y Ð>Ñ Y Ð>Ñ Y `Y
>œ!

>Ä!
Z) ) ) )lim i .

But the above expression can also be calculated in a rather different way:

»( ( ( ( (’ “ ’ “
(
(

. " "

.> > >
œ  œ Ð/ Ñ 

œ
Ð/ Ñ 

>

œ

Y Ð>Ñ Y Ð>Ñ Y Y Y
>œ!

>Ä! >Ä!

>Z ‡

Y >Ä!

>Z ‡

Y
Z

) ) ) ) )

) )

)

lim lim

lim

£ .

We are thus led to quite an interesting result given below
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( (
Y `Y

Z Z£ .) )œ Ð Ñi

However, we know that we can write £  in view ofZ Z Z) ) )œ Ð. Ñ  . Ð Ñi i
(5.11.5).  vanishes identically on the -dimensional manifold. − ÐQÑ 5) A5"

W œ . Ð Ñ W so that we get £  on  and arrive at the resultZ Z) )i

( (
Y `Y

Z Z. Ð Ñ œ Ð Ñi i) ) . (8.6.8)

Let us now write . Since  and to some extent  are= ) A )œ Ð Ñ − ÐQÑ ZiZ
5"

arbitrary, we can take  as an arbitrary -form. Therefore, we derive= Ð5  "Ñ
again the Stokes theorem in its familiar form:

( (
Y `Y

. œ= =.

Let us now take an -dimensional  Riemannian manifold 7 Qcomplete
into account. If we denote the local coordinates by , the ele-ÐB ß á ß B Ñ" 7

mentary arc length on the manifold is given by

.= œ 1 Ð Ñ .B .B# 3 4
34 x

where we know that  is a positive definite, covariant symmetric tensor.134

The volume form is prescribed by

.7
" 7œ 1 .B • â • .BÈ

where . Let  be a -dimensional submanifold of . This1 œ Ò1 Ó  ! W 5 Qdet 34

submanifold is parametrically determined by relations B œ B Ð? Ñß œ "ß3 3 ! !
á ß 5 W. In this circumstance, the elementary arc length on the submanifold 
can be introduced as

.= œ 1 Ð Ñ .? .? œ + Ð Ñ .? .?  !
`B `B

`? `?
#

34

3 4ˆ ‰x u u
! "

! " ! "
!" (8.6.9)

where the second order, covariant symmetric tensor

+ œ 1
`B `B

`? `?
!" ! "34

3 4

(8.6.10)

denotes the metric tensor  on  induced by the metric tensor  on . ItT ZW Q
follows at once from (8.6.9) that  is also positive definite. The volumeT
form on S can now be defined as
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.5
" 5œ + .? • â • .?È (8.6.11)

where  due to the positive definiteness of .+ œ Ò+ Ó  !det !" T
Let us now write a form  as= A− ÐQÑ75

= = .œ
"

5x
3 â3

3 â3
" 5

5 "

where top down generated basis form are given [  (5.9.17)] by.3 â 35 " see

. %3 â3 3 â3 3 â3
3 3

5 5 5"" " 7
5" 7œ

"

Ð7  5Ñx
.B • â • .B

Let us now evaluate these forms on an -dimensional submanifold Ð7  5Ñ W
of . On supposing that the submanifold  is specified by the parametersQ W
Ð? ß á ß ? Ñ" 75 , we get

.

%

%

3 â3

3 â3 3 â3

3 3

3 â3 3 â3
â " 75

3 3

5 "

" 75 5"

5"

"

7

75

" 75

" 75 5"
" 75

5"

"

7

75

   œ
"

Ð75Ñx

"

Ð75Ñx

`B `B

`? `?
â .? • â • .?

œ / â .? • â • .?
`B `B

`? `?

! !
! !

! !
! !

where Greek indices take the values  On employing the re-"ß #ß á ß 7  5Þ
lation (8.6.11) for a volume form  in the form , we can write . . .5 75 75

œ + .? • â • .?È " 75  . If we introduce the Levi-Civita tensor

%! !
! !

" 75

" 75
â

â

œ
/

+È ,

we end up with the result

. % % .3 â3 3 â3 3 â3 75
â

3 3

5 5 5"" " 7
" 75

5"

"

7

75
œ

"

Ð75Ñx
! !

! !

`B `B

`? `?
â .

We now define a completely antisymmetric covariant tensor on  throughW
the following components

            . (8.6.12)8 â
`B `B

`? `?
3 â3 3 â3 3 â3

â
3 3

" " 75 5 5"
" 75

5"

"

7

75
œ

"

Ð75Ñx
% %! !

! !

We then see that we can write

. .3 â3 3 â3 755 5" "œ 8 . (8.6.13)
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It follows from (8.6.12) that

8 â œ !
`B `B

`? `?
3 â3

3 3

" 5

"

75"

5

7! !
.

This is true because the expression

%3 â3 3 â3

3 3 3 3

" 75 5"

" 7

75" 75

5 5"

7 "

`B `B `B `B

`? `? `? `?
â â

! ! ! !

is completely antisymmetric with respect to indices  and this en-3 ß á ß 3" 7

tails that it becomes also completely antisymmetric with respect to indices
! !" 75ß á ß 7  5 . However, this latter indices take on only  different
values. Therefore, it is not possible to avoid getting repeated indices in the
set  taking  different values.3 ß á ß 3 7" 7

The exterior derivative of the form  is [ (5.9.19)]= see 

. œ
"

Ð5  "Ñx

œ 8
"

Ð5  "Ñx

= = .

= .

3 â3 3
à3 3 â3

3 â3 3
à3 3 â3 75"

" 5"
5" "

" 5"
" 5"

.

Similarly, we can find

= = .œ 8
"

5x
3 â3

3 â3 75
" 5

" 5
.

In view of (8.6.11), we can introduce the volume element on  asW

.Z œ + .? â .?5
" 5È

Let us now consider a form  defined on a region  on= A− ÐQÑ Y75
75"

an -dimensional submanifold  whose boundary is given byÐ7  5  "Ñ W
the manifold . Application of the Stokes theorem by using para-`Y75

meters peculiar to those submanifolds yields

(
(

Y

3 â3 3
à3 3 â3 75"

`Y

3 â3
3 â3 75

75"

" 5"
" 5"

75

" 5
" 5

=

=

8 .Z œ

"

5
8 .Z                                        

(8.6.14)

.

An important special case that may be deduced from the above relation
corresponds to . In this case, one has5 œ "

= = . = = .œ . œ3 3
3 à3 and 
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so we obtain

( (
Y `Y

3 3
à3 7 3 7"

7 7"

= =.Z œ 8 .Z (8.6.15)

where the components  are defined by8 ß 3 œ "ß á ß 73

8 â
`B `B

`? `?
3 33 â3

â
3 3

œ
"

Ð7 "Ñx
% %

" 7"
" 7"

" 7"

" 7"

! !
! !

. (8.6.16)

It is clearly seen that the relations

8 œ !ß œ "ß á ß 7  "
`B

`?
3

3

!
!

will be satisfied. The quantities

`B

`?
œ "ß á ß 7  "

3

!
, !

are contravariant components of  vectors in . The vector7  " X Ð`Y Ñ7"

whose covariant components are  in  is orthogonal to all those8 X ÐQÑ3

vectors. Hence, it is called the   to the boundary  (ifexterior normal n `Y7"

Y7 is positively oriented). We shall now show that  is a unit vector. Wen
first evaluate the expression

8 8 œ

‚ â â
`B `B `B `B

`? `? `? `?

œ

3 33 â3
3 3 â â

4 â4

3 3 4 4

33 â3

"

Ð7 "Ñx

"

Ð7 "Ñx
1 â1

 ‘

 ‘

#

# 4 5 4 5

% % % %

% %

" 7" " 7"

" 7" " 7"

" 7" " 7"

" 7" " 7"

" 7"

! ! " "

! ! " "

" " 7" 7"

35 â5

â â
3 3 4 4

5 â5
3 â3

â â

3

" 7"

" 7" " 7"

" 7" " 7"

" 7" " 7"

" 7"

" 7"

" 7" " 7"

‚ â â
`B `B `B `B

`? `? `? `?

œ

‚
`B

% %

$ % %

! ! " "
! ! " "

! ! " ""

Ð7 "Ñx
1 â1 ‘# 4 5 4 5" " 7" 7"

" 7" " 7"

" 7" " 7"`? `? `? `?
â â

`B `B `B
! ! " "

3 4 4

where we have utilised the relations (5.5.7) and (5.5.5). The last line above
is completely antisymmetric with respect to indices . Thus it! !" 7"ß âß
also becomes completely antisymmetric with respect to indices .3 ß âß 3" 7"

Hence, according to (1.4.8) we conclude that
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8 8 œ
`B `B

`? `?

â
`B `B

`? `?

œ + â+

3
3 â â

4 5

4 5

â â

"

Ð7 "Ñx
1 â1

"

Ð7 "Ñx

% %

% %

! ! " "
" !

" !

! ! " "
" ! " !

" 7" " 7"

" "

" "

7" 7"

7" 7"

" 7" " 7"
" " 7" 7"

4 5 4 5" " 7" 7"

.

On the other hand, the relation

+ œ Ò+ Ó œ / + â+det !" " ! " !
! ! " ""

Ð7 "Ñx
/ " 7" " 7"

" " 7" 7"

â â

yields . In a similar fashion, it is a simple exercise to demonstrate8 8 œ "3
3

the validity of the relation

8 83 â3
3 â3

" 5
" 5 œ 5x.

The relation (8.6.15) is called the  or Green-Gauss-Ostrogradski di-
vergence formula generalised to an -dimensional manifold [after English,7
German and Russian mathematicians, respectively, George Green (1793-
1841), Johann Carl Friedrich Gauss (1777-1855) and Mikhail Vasilevich
Ostrogradski (1801-1862)].

Example 8.6.3. We consider a bounded region  and the -formY #§ ‘$

= œ \.C • .D  ] .D • .B  ^.B • .C. In view of (8.6.13), we can write

. . . . . .B B # C C # D D #œ .C • .D œ 8 ß œ .D • .B œ 8 ß œ .B • .C œ 8

on . The components of the unit exterior normal vector  to the closed`Y `Y
surface  are given by`Y

8 œ / / ß
`B `B

`? `?
3 345

4 5
!"

! "

where we denote . On the region , we getB œ Bß B œ Cß B œ D Y" # $

. œ   .B • .C • .D
`\ `] `^

`B `C `D
= Š ‹ .

Hence, the Stokes theorem takes the form

( (Š ‹
Y `Y

B C D
`\ `] `^

`B `C `D
  .@ œ Ð\8  ] 8  ^8 Ñ.+.

Let us introduce vectors  and . Then theF nœ Ð\ß ] ß ^Ñ œ Ð8 ß 8 ß 8 ÑB C D

Stokes theorem leads to the quite familiar formula
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( ( (
Y Y `Y

div F F F n.@ œ .@ œ .+Þf † † è

Example 8.6.4. Let  be a -dimensional submanifold, in other wordsY #
a surface, in  and  be the closed curve that supports this surface.‘$ `Y œ G
We consider a -form . We denote by  the arc" œ \.B  ] .C  ^.D ==
length of the curve . Then the form  is expressible on  asG G=

= œ \  ]  ^ .= œ .=
.B .C .D

.= .= .=
Š ‹ F t†

on  where  is the unit tangent vector of . On the other hand, one hasG Gt

. œ  .C • .D   .D • .B   .B • .C
`^ `] `\ `^ `] `\

`C `D `D `B `B `C
= Š ‹ Š ‹ Š ‹ .

Hence, the exterior derivative of the form  can be written as follows=

. œ= .n F † curl .#

Therefore, the Stokes theorem associated with exterior forms leads to the
familiar expression

( ( (
Y Y G

n F n F F t† † f‚ Ñ †curl s.+ œ Ð .+ œ .

known as the  in the classical vector analysis.Kelvin-Stokes formula è

Through the Stokes theorem, we can generalise a relation known as the
integration by parts in the classical analysis. We take two forms = A− ÐQÑ5

and  into consideration. Let  be a region on a submanifold of5 A− ÐQÑ Y6

Q 5  6  " Ÿ 7 with dimension . It follows from the exterior derivative of
the form  that= 5•

( ( (
Y `Y Y

5. • œ •  Ð"Ñ • .= 5 = 5 = 5. (8.6.17)

8.7. CONSERVATION LAWS

Let  be an ideal of the exterior algebra . We\ = AÐ Ñß + œ "ß á ß E ÐQÑ+

know that if the mapping  satisfy the condition  for all9 9 =À W Ä Q œ !‡

= \− W, then it is a solution of this ideal. Here the solution hypersurface  is
a submanifold with dimension, say, . We shall now try to determine5 Ÿ 7
non-zero exact -forms5  in the ideal  annihilated by the solution\ =Ð Ñ+
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submanifold. To this end, we consider a form  in the ideal and= A− ÐQÑ5

look for a form  such that . Since , we can writeH A = H = \− ÐQÑ œ . −5"

! œ œ . œ .9 = 9 H 9 H‡ ‡ ‡ .

Let  be a smooth -dimensional region and  be its boundary. ItY © W 5 `Y5 5

follows from the Stokes theorem that

( (
`Y Y

‡ ‡

5 5

9 H 9 Hœ . œ !.

Consequently, the form  must satisfy the relationH

(
`Y

‡

5

9 H œ ! (8.7.1)

on every  with boundary. (8.7.1) is called a  in theY © W5 conservation law
integral form. Let us now suppose that the mapping  is parametrically pre-9
scribed by the relations . We take theB œ Ð? ß á ß ? Ñß 3 œ "ß á ß 73 3 " 59
volume form on  as  and define basis -formsW œ .? • â • .? Ð5  "Ñ. " 5

. . ! A H! œ ß œ "ß á ß 5 ÐWÑi`
5"

!
 in . Since the form  will eventually be

pulled back on the submanifold  we can chooseW

H H . 9 H H .œ Ð Ñ Ð Ñ œ Ð Ñ Ð Ñ! !
! !x u x u u  and  ‡ ˆ ‰

without loss of generality. Accordingly, in order that a form  is to be= \−
exact, we have to find suitable forms  so that  satisfies# A H+ − ÐQÑ

= # = H H .œ • œ . œ . Ð Ñ • Ð Ñ+
+ !

!x u . (8.7.2)

On the other hand, the relation

. œ . Ð Ñ • œ .? • œ œ !
` `B ` `B

`B `? `B `?
9 H H . . .

H H‡
3 3

3 3
! "

! !

! !

" !
ˆ ‰x u

implies that the functions  ought to satisfy the divergence equationH!

` `B ` Ð Ñ

`B `? `?
œ œ !

H 9 H! !

! !3

3 ‡ u
. (8.7.3)

Example 8.7.1. The coordinate cover in the manifold  is givenQ œ ‘$

by . We consider the ideal  generated by the following forms:x œ ÐBß @ß >Ñ \

=

=

" #

#

œ .@  8 B .>ß

œ .B  @ .>.
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On a -dimensional solution submanifold prescribed by the mapping " B œ
BÐ>Ñß @ œ @Ð>Ñ, these forms will have to satisfy

9 = 9 =‡ " # ‡ #œ  8 B .> œ !ß œ  @ .> œ !
.@ .B

.> .>
Š ‹ Š ‹ .

Hence, the solution submanifold is determined through the differential equa-
tion below associated with -dimensional oscillating systems"

. B

.>
 8 B œ !

#

#
# .

Since the solution submanifold is -dimensional, we have to look naturally"
for exact -forms. Let . Due to (8.7.3), we find that" − ÐQÑH A!

. ` .B ` .@ `

.> `B .> `@ .> `>
œ   œ !

9 H H H H‡

.

Thus, we must have .9 H‡ œ constant
On the other hand, the condition (8.7.2) takes the form

# # H H H H" # B @ >
#Ð.@  8 B .>Ñ  Ð.B  @ .>Ñ œ . œ .B  .@  .>

where . The subscripts indicate the variables with respect to# # A" #
!ß − ÐQÑ

which partial derivatives will be evaluated. We thereby obtain

# H # H # # H" @ # B " # >
#œ ß œ ß 8 B  @ œ

or

 8 B  @  œ !Þ#
@ B >H H H

It is obvious that this equation corresponds to the relation  on. Î.> œ !9 H‡

the solution submanifold. In order to solve the foregoing partial differential
equation, we can employ the method of characteristics. To this end, we have
to solve the following system of ordinary differential equations

.@ .B

8 B @
œ  œ  .>

#
.

It is a simple exercise to see that  whereH H 0 (œ Ð ß Ñ

0 (œ Ð@  8 B Ñß œ > 
" .B

# @
# # #   .(

Thus, independent conservation laws become , .0 (œ œconstant constant
In this case, every function  remains constant on the solutionH 0 (Ð ß Ñ
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submanifold. If we take , then we find on  the known resultY œ Ò> ß > Ó `Y" " # "

º (" .B

# @
Ð@  8 B Ñ œ !ß >  >  œ !# # #

>

>
# "

B

B#

" "

#

. è

Example 8.7.2. x Let  be a coordinate cover on the ma-œ Ð ß ?ß @ß Bß >Ñ)
nifold . We consider the ideal  generated by the following formsQ œ ‘ \&

= = )" #œ .? • .>  @ .B • .>ß œ .  ? .B  @ .>.

On a -dimensional solution submanifold prescribed by the mapping # œ)
)ÐBß >Ñß ? œ ?ÐBß >Ñ @ œ @ÐBß >Ñ and , we have to satisfy the conditions below

9 =

9 = ) )

‡ "
B

‡ #
B >

œ Ð?  @Ñ .B • .> œ !ß

œ Ð  ?Ñ .B  Ð  @Ñ .> œ !

whence we deduce that

@ œ ? ß ? œ ß @ œ œB B > > BB) ) ) )  or  .

The last equation describes a one-dimensional heat conduction,. More gen-
erally it models a diffusion process. Let us take the volume form in a -#
dimensional solution submanifold as . We then get ,. .œ .B • .> œ .>"

.# œ  .B. Hence, we have to look for a form in the following shape

H F G Aœ .>  .B − ÐQÑ"

where we have defined . The condi-H F A H G A" ! # !œ − ÐQÑß œ − ÐQÑ
tion (8.7.2) then yields

# = # = H F G" #
" # • œ . œ . • .>  . • .B

where . If we express  as# A # A #" # #
! "− ÐQÑß − ÐQÑ

# )# œ + .  , .?  - .@  / .B  0.>

where , then the above relation is transformed into+ß ,ß -ß /ß 0 − ÐQÑA!

Ð ,@ Ñ .? • .>Ð @0?  /@   Ñ .B • .>  , .? • .

 - .@ • . Ð/  +? Ñ . • .BÐ0  +@  Ñ . • .>

Ð,? Ñ .? • .BÐ-? Ñ .@ • .BÐ-@  Ñ .@ • .> œ !

# F # F G )

) G ) F )

G G F

" ? " B >

? @ @

) )

whence we extract the relations

# F # F G

G F G G F
" ? " B >

? @ @

 ,@ œ ß  @  0?  /@ œ  ß , œ !ß - œ !ß

/  +? œ ß 0  +@ œ  ß ,? œ ß -? œ ß -@ œ  Þ) )
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by equating the coefficients of the linearly independent -forms to zero.#
Hence, we end up with the relations

# F G F G G F

F G F G F
" ? ? @ @

B > ?

œ ß / œ  +?ß 0 œ   +@ß œ !ß œ !ß œ !

  @Ð  Ñ  ? œ !
) )

) )

implying first that we must have , . Since G G ) F F ) Fœ Ð ß Bß >Ñ œ Ð ß ?ß Bß >Ñ
and  are independent of , it is required that the coefficient of  in the lastG @ @
equation above must vanish yielding . On noting that  doesF G G? œ  )

not depend on , this expression is easily integrated to give?

F G 9 )œ  ?  Ð ß Bß >Ñ)

where  is an arbitrary function. Thus, the expression 9 F G FB >  ? œ !)

yields the equation

9 G 9 G GB > B
#  ?Ð  Ñ  ? œ !) ) )) .

However, this equation is satisfied if only

G 9 G G 9)) ) )œ !ß œ ß  œ !B > B .

The first two equations give

G ! ) " 9 G : 9 ! ) " :œ ÐBß >Ñ  ÐBß >Ñß œ  ÐBß >Ñ œ  B B B and .

As to the last equation, it yields

Ð  Ñ    œ !! ! ) " : "BB > BB B > .

Therefore, the functions  and  are finally given byF G

F ! ! ) " : G !) "œ  ?    ß œ B B

provided that the functions ,  and  are to satisfy the equations! " :

! ! " " :BB > BB > B œ !ß   œ !.

Thus the conservation law takes the form

` `

`B `>
Ð     Ñ  Ð  Ñ œ !!) ! ) " : !) "B B B

and we arrive at the integral relation

(
G

Ð .>  .BÑ œ !F G

on every closed curve  in the -plane.G ÐBß >Ñ è
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Example 8.7.3. The coordinate cover of the manifold  isQ œ ‘%

given by . Let us consider the ideal  generated by the fol-x œ ÐBß >ß ?ß -Ñ \
lowing -forms#

= !

=
!

"

#

œ  .? • .B  ? .? • .>  - .- • .>ß

œ  .- • .B  ? .- • .>  - .? • .>Þ
"

On a -dimensional solution submanifold prescribed by the mapping # ? œ
?ÐBß >Ñ - œ -ÐBß >Ñ, , the following relations must hold

9 = !

9 =
!

‡ "
> B B

‡ #
> B B

œ Ð?  ??  -- Ñ .B • .> œ !ß

œ Ð-  ?-  -? Ñ .B • .> œ !
"

.

Subscripts denote partial derivatives with respect to relevant variables. They
of course give rise to partial differential equations

?  ??  -- œ !ß

-  ?-  -? œ !
"

> B B

> B B

!

!

to determine the functions  and  prescribing the solution mani-?ÐBß >Ñ -ÐBß >Ñ
fold. These equations are modelling the  one-dimensional isentropic gas flow
for the choice

!
#

œ
#

 "

and the in hydrodynamics describing the propagationshallow water theory 
gravity waves on the free surface of an incompressible fluid of infinite
extent in -direction on a horizontal flat bottom for the choice . InB œ #!
isentropic gas flow,  denotes the ratio of specific heats of the gas under#
constant pressure and constant volume.  is the velocity of the gas while ? -
denotes the local sound speed. In the shallow water theory,  is the velocity?
of the fluid and  where  is the elevation of the water surface- œ 12 2È
during the propagation of the gravity wave from the horizontal bottom. 1
denotes the well known gravitational acceleration.

We shall now attempt to find conservation laws by taking into account
a form . In order that  is to be in theH F G A Hœ Ð Ñ.>  Ð Ñ.B − ÐQÑ .x x "

ideal , we have to write\ = =Ð ß Ñ" #

# = # = H F G" #
" # œ . œ . • .>  . • .B

where . Therefore, the relation# # A" #
!ß − ÐQÑ
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 .? • .B  .- • .B  ?  .? • .>  Ð -  ? Ñ.- • .>
-

œÐ  Ñ.B • .>  .? • .>  .- • .>  .? • .B  .- • .B

# # # # ! # #
!

F G F F G G

" # " # " #

B > ? - ? -

Š ‹
leads to the partial differential equations

F G # G # G

G G F ! G G F
!

B > " ? # -

? - ? ? - -

 œ !ß œ ß œ

?  œ ß -  ? œ
-

 .

to determine the functions  and . On the other hand, the symmetry rela-F G
tion  leads from the last two equations above to the second orderF F?- -?œ
linear partial differential equation for the function G

! G G G
!#

?? -- -  œ !
 "

-
.

On the other hand, we can find from the above relations

G G
! F F F ! F

!
? -

? - - ?

# # # #
œ ß œ

?  - ?  -

Ð?  - Ñ ?  -

from which we obtain

! F F F F
! ! !#

?? -- - ?

# #

# # # #
   œ !Þ

Ð  "ÑÐ?  - Ñ # Ð  "Ñ

-Ð?  - Ñ -Ð?  - Ñ

Of course the solution functions  and  are interre-F GÐBß >ß ?ß -Ñ ÐBß >ß ?ß -Ñ
lated through the relations above. We anticipate that our field equations may
possess infinitely many conservation laws since they are originated from so-
lutions of partial differential equations. Indeed, certain particular solutions
of those equations justify this expectation . It can be shown that a polyno-1

mial type of conservation laws that are independent of  can be found asBß >

G F
! ! !

8 8
8 8"

8 8
Ð 8Ñ Ð 8Ñ Ð 8Ñ

8"œ - G ß œ - G  G
? ? ? ?

- - - -

! ! !
# # #Š ‹ ’ Š ‹ Š ‹“

where  and  denotes a Gegenbauer polynomial8 œ "ß #ß á 8 Á Î#Þ G! 8
Ð Ñ-

[after German mathematician Leopold Bernhard Gegenbauer (1849-1903)].
These sequence of orthogonal polynomials is found from a generating func-
tion through the expansion

1For a detailed analysis one may consult to Þuhubi, E. S., Conservation laws for
one-dimensional isentropic gas flows, International Journal of Engineering
Science, 22, 119-126, 1984.
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"

Ð"  #B>  > Ñ
œ G ÐBÑ>

#
8œ!

_

8
Ð Ñ 8

-
-" .

They can also be obtained by the following recurrence relation

G ÐBÑ œ "ß G ÐBÑ œ # B

G ÐBÑ œ #BÐ8   "ÑG ÐBÑ  Ð8  #  #ÑG ÐBÑ Þ
"

8

! "
Ð Ñ Ð Ñ

8
Ð Ñ

8" 8#
Ð Ñ Ð Ñ

- -

- - -

-

- - ‘
We confine ourselves here in giving only a few samples of this infinite set:

G F
! !

! !

G F
! ! ! !

! ! !

G
! ! !

! !

F
! ! !

!

" "
# #

# #
# # # #

#

$ $
# #

$
% #

#

œ ?ß œ ?  - ß
 #  # "

#

œ  -  ? ß œ  ? -  ? ß
 %  #  %  #

# $

œ ? ?  - ß
Ð  %ÑÐ  'Ñ  # $

'

œ  -  ? -
Ð  %ÑÐ  'Ñ "  #

% #

Š ‹
Š ‹ Š ‹

Š ‹
Š # %

$

% % #
% # # %

%
% # # %

# $

 ? ß
 #

#

œ ? ?  ' ? -  $- ß
Ð  'ÑÐ  )Ñ Ð  #ÑÐ  %Ñ  %

#%

œ ? -  ? -  ? ß
Ð  'ÑÐ  )Ñ Ð  "ÑÐ  %Ñ Ð  #ÑÐ  %Ñ

# $ "&

!

!

G
! ! ! ! !

! !

F
! ! ! ! ! !

! ! !

‹
Š ‹
Š ‹

       ã
è

Example 8.7.4. As a final example, we shall try to establish conserva-
tion laws associated with the field equations of a hyperelastic body in mo-
tion occupying an open region  initially . To facilitate our investiga-H ‘© $ 2

tion we employ Cartesian coordinates. The position of a material particle
before deformation will be determined by material coordinates \ ß O œO

"ß #ß $ > whereas the place of the same particle in  at time  will be denoted‘$

by the  . The motion of this continuousspatial coordinates B ß 5 œ "ß #ß $5

medium is determined by the diffeomorphism  with parameterB œ B Ð ß >Ñ5 5 X
>. A homogeneous hyperelastic material is characterised by the stress poten-
tial  in which  is the deformation tensor where  isDÐ Ñ œ œ ÒB ÓC C F F FT

5ßO

the deformation gradient tensor, or matrix, whose components are denoted

2Þuhubi, E. S., Conservation laws in nonlinear elastodynamics, International
Journal of Engineering Science, 27, 441-453, 1989.
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by . The equations of motion of the body areJ œ œ B
`B

`\
5O 5ßO

5

O

`X `@

`\ `>
 0 œ

O5 5

O
! 5 !3 3 (8.7.4)

where  is the Piola-Kirchhoff stress tensor of the first kind [after ItalianXO5

mathematician and physicist Gabrio Piola (1794-1850) and German mathe-
matician and physicist Gustav Robert Kirchhoff (1824-1887)] and @ œ5

`B

`>
5

! are the components of the velocity vector of a particle.  is the con-3

stant density of the undeformed medium and  represents the0 œ 0 Ð ß >Ñ5 5 X
components of the given body force density. Constitutive equations charac-
terising the elastic behaviour of the medium are of the form

X œ ß
`

`J
X J œ X J

O5
5O

O5 6O O6 5O

D

.

(8.7.5)

The relations (8.7.5)  arise from the symmetry of the Cauchy stress tensor.#

Therefore, equations of motion may be reduced to the following system of
first order partial differential equations

G   0 œ !ß
`J `@

`\ `>
`J `J

`\ `\
 œ !ß

`J `@

`> `\
 œ !

5O6P ! ! 5
6P 5

O

5O 5P

P O

5O 5

O

3 3

where the coefficients

G Ð Ñ œ œ œ G Ð Ñ
`X `

`J `J `J
5O6P 6P5O

O5

6P 5O 6P

#

F F
D

(8.7.6)

are called the of the medium. Let us now consider the -dimen-elasticities "*
sional manifold  with a coordinate cover . We firstO Ð\ ß >ß B ß @ ß J ÑO 5 5 5O

introduce the - and -forms below$ #

.

. .

œ .\ • .\ • .\ œ / .\ • .\ • .\ ß
"

$x

œ œ / .\ • .\
"

#

" # $ OPQ O P Q

O OPQ P Q`i O
.

We then define the following -forms:%
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= 3 . . 3 .

= . .

1 .

5 . .

5 . .

5 ! 5 5O6P 6P O ! 5

5O 5O 5 O

5O OPQ 5P Q

5 5 5

5O 5 O 5O

œ .@ •  G .J • • .>  0 • .>ß

œ .J •  .@ • • .>ß

œ / .J • • .>ß

œ .B •  @ • .>ß

œ .B • • .>  J • .>Þ

 

We can readily verify that

. œ !ß . œ !ß . œ !ß

. œ .> • ß . œ  .> •

= = 1

5 3 = 5 =

5 5O 5O

5 5 5O 5O
"
!   

These relations mean that the ideal  generated by these -forms is closed.\ %
Let the submanifold with the coordinate cover  be . We can easilyÐ\ ß >Ñ QO

check that the mapping  annihilating these forms, and conse-9 À Q Ä O
quently the ideal , provides the solution of the differential field equations.\
In fact, we find that

9 = 3 . . 3 .

3 3 .

9 = .

9 1 .

‡
5 ! 5O6P 6PßQ Q O ! 5

5

! 5O6P 6PßO ! 5
5

‡
5O

5O 5

O

‡
5O OPQ

5P

Q

œ .> •  G J .\ • • .>  0 • .>
`@

`>

œ   G J  0 • .> œ !ß
`@

`>

œ   • .> œ !ß
`J `@

`> `\

œ / • .
`J

`\

Š ‹
Š ‹

> œ !ß

œ   @ • .> œ !ß
`B

`>

œ  J • .> œ !Þ
`B

`\

9 5 .

9 5 .

‡
5 5

5

‡
5O 5O

5

O

Š ‹
Š ‹

We shall now look for the -forms in the ideal . If , then weexact % −\ = \
can write

= 9 = 9 = / 1 < 5 < 5œ    5 5 5O 5O 5O 5O 5 5 5O 5O

where . Let us now introduce a -form9 9 / < < A5 5O 5O 5 5O
!ß ß ß ß ÐOÑ $−

H F. F . Aœ  • .> − ÐOÑO O
$

where . Next, we try to determine the functions F F A 9 9ß ÐOÑ ß ß−O 5 5O
!

/ < <5O 5 5Oß ß  as to satisfy the relation

= H F . F .œ . œ . •  . • • .>O O .
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Under the solution mapping, we have

! œ œ . œ .9 = 9 H 9 H‡ ‡ ‡

so that we obtain the conservation equations

`Ð Ñ `Ð Ñ

`> `\
 œ !

9 F 9 F‡ ‡
O

O
.

The relation  now yields= Hœ .

Š ‹ Š ‹
Š ‹

Š ‹ Š ‹

3 9 . 9 / .
F F

3 9 < < .
F F

9 . 9 .
F F

! 5 5 5O6P 5 OPQ 6Q 6P O
5 6P

O

! 5 5 5 5 5O 5O
O

O

5O 5O 5O 5 O
5O 5

O

 .@ •  G  /  .J • • .>
` `

`@ `J

 0  @  J   • .>
` `

`> `\

  .J •   .@ •
` `

`J `@
• .>

  .B •   .B • • .> œ !
` `

`B `B
Š ‹ Š ‹< . < .

F F
5 5 5O 5 O

5 5

O

from which we extract the following expressions

3 9
F

9
F F

< <
F F

9 /
F

3 9 < <
F F

! 5
5

5O
5O 5

O

5 5O
5 5

O

5O6P 5 OPQ 6Q
O

6P

! 5 5 5 5 5O 5O
O

O

œ ß
`

`@

œ œ  ß
` `

`J `@

œ ß œ 
` `

`B `B

G  /  œ !ß
`

`J

0  @  J   œ !Þ
` `

`> `\

  

It follows from the fifth expression above by employing the first one, recall-
ing the relation  and evaluating its symmetric part with/ / œ #OPQ OPR QR$
respect to indices  and  thatO P

/
3

F F

3

F F F

6Q OPQ 5O6P
! 5 6P

O

! 5 6P 6O
5O6P 5P6O

O P

œ / G 
" " ` `

# `@ `J
" ` ` `

ÐG  G Ñ   œ !
`@ `J `J

Š ‹
.

Hence, the equations to be satisfied by the functions  and  dependingF FO

on  variables are reduced to"*
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` `

`J `@
 œ !ß

` ` `

`J `J `@
  F œ !ß

` ` ` ` `

`> `\ `B `B `@
  @  J  0 œ !Þ

F F

F F F

F F F F F

5O 5

O

O P

6P 6O 5
OP56

O O

O 5 5 5
5 5O 5

(8.7.7)

where the functions  are defined byF Ð ÑOP56 F

F œ F œ F œ ÐG  G Ñ
"

OP56 PO56 OP65 5O6P 5P6O
!3

. (8.7.8)

enjoy several symmetries in subscripts depicted above that can be verified
just by inspection. The system (8.7.7) contains  equations to determine#)
only four functions  and  for an arbitrary stress potential . In order toF F DO

find the solution of this system, let us start by differentiating (8.7.7)  and#

employing (8.7.7)  to obtain"

` ` `

`J `J `J `J `@ `@
 œ F

# # #

6P 7O 6O 7P 5 7
OP56

F F F

The left hand side of this expression is symmetric in indices  and  impos-6 7
ing the following restriction on the right hand side:

F œ F Þ
` `

`@ `@ `@ `@
OP56 OP57

# #

5 7 5 6

F F

For fixed  and , this implies that the symmetric matrix O P ` Î`@ `@#
5 6F

commutes with arbitrary symmetric matrices . According to the wellFOP56

known  of the group theory [Russian born German mathema-Schur lemma
tician Issai Schur (1875-1941)] this matrix can only be a multiple of the unit
matrix. Therefore, we ought to write that

`

`@ `@
œ Ð ß >ß ß ß Ñ

#

5 6
! 56

F
3 9 $X x v F

When , we are evidently led to .Hence we readily5 Á 6 ` Î`@ `@ œ !#
5 6F

observe that

` `

`@ `@ `@ `@
œ œ !

3F 9
3

5 6 6 5
!

so that the function  becomes independent of the variables . We9 v œ Ö@ ×5

thus obtain
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F 3 9 - .œ Ð ß >ß ß Ñ@ @  Ð ß >ß ß Ñ@  Ð ß >ß ß Ñ
"

#
! 5 5 5 5X x F X x F X x F

Let us now insert this expression into (8.7.7)  to obtain"

` " ` ` `

`@ # `J `J `J
œ  @ @  @ 

F 9 - .
3

O 7

5 5O 5O 5O
! 7 7 7

and

` ` `

`@ `@ `J `J
œ  @ 

#
O 6

5 6 5O 5O
! 6

F 9 -
3 .

The symmetry on the left hand side with respect to indices  and  now5 6
requires that

3
9 9 - -

! 6 5
5O 6O 5O 6O

6 5Š ‹` ` ` `

`J `J `J `J
@  @   œ !.

Since  and  do not depend on , we immediately obtain9 - v

`

`J
œ !ß

` `

`J `J
œ Þ

9

- -
5O

6 5

5O 6O

Hence, we see that  We thus conclude that9 9œ Ð ß >ß ÑX x

F G
- .

O 5 6 5 O
6

5O 5O
œ  @ @  @  Ð ß >ß ß Ñ

" ` `

# `J `J
X x F

In order to determine the arbitrary functions appearing in  and , weF FO

have to introduce these expressions into (8.7.7)  and (8.7.7) . After tedious,# $

but not overly complicated manipulations, which we abstain from repeating
them here, we arrive at the following result when 0 œ !5

     

                                            

F D 3 3 3 3

F

œ +  @ @  , @  - / B @  . B @
"

#
œ  +X @  , X  - / B X

 .

Š ‹
’Š

! 5 5 5 ! 5 5 567 ! 6 7 P ! 5ßP 5

O O5 5 5 O5 5 567 6 O7

P D 3 $ @ @  X B
"

#
! 5 5 OP O5 5ßP‹ “

where  ,  and  are arbitrary constants. A reader interested with+ß , - .5 5 P

details may be referred to the work mentioned above. Therefore, independ-
ent conservation laws will be, respectively
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` " `

`> # `\
 @ @ œ ÐX @ Ñß

`@ `X

`> `\
œ ß

`

`>
Ð/

Š ‹D 3

3

3

! 5 5 O5 5
O

!
5 O5

O

! 567

          

                     

balance of energy

balance of linear momentum

B @ Ñ œ Ð/ B X Ñß
`

`\
` ` "

`> `\ #
ÐB @ Ñ   @ @  X B œ !

6 7 567 6 O7
O

! 5ßP 5 ! 5 5 OP O5 5ßP
O

 

(8.7.9)

balance of angular momentum

3 D 3 $’Š ‹ “
The first three expressions corresponds in the framework of the classical
mechanics to conservation laws to which every correctly formulated con-
servative system must obey. However, the last conservation law is of
different character and it is peculiar only to the field equations of elasticity.
If we integrate the conservation laws in the differential form on the region H
and employ the divergence theorem we obtain

`

`>
.Z  R .E œ !( (

H H

F F
`

O O

where the vector  is the unit exterior normal to the boundary  of theN `H
region . Hence, conservation laws in integral form are given byH

` "

`> #
 l l .Z  X @ R .E œ !ß

`

`>
@ .Z  X R .E œ !ß

`

`>
/ B @ .Z 

( (Š ‹
( (

( (

H H

H H

H

D 3

3

3

! O5 5 O
#

`

! 5 O5 O
`

567 ! 6 7

v                            

                      

`
567 6 O7 O

! 5ßP 5 ! P O5 5ßP O
`

#

H

H H

/ B X R .E œ !ß

` "

`> #
B @ .Z   l l R  X B R .E œ !

 

(8.7.10)

( ( ’Š ‹ “3 D 3 v

The last integral is the non-linear dynamical counterpart of the -integralN
that is frequently utilised in fracture mechanics è

8.8. THE COHOMOLOGY OF DE RHAM

In Chapter VI, we had shown through the homotopy operator that all
closed forms on a differentiable manifold  are  exact. This propertyQ locally
may not valid, however, , in other words, over the entire manifold.globally
That the character of the connection between closed and exact forms de-
pends only on the topology of the manifold, particularly on the  within,holes
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but not on its differentiable structure has been demonstrated by de Rham
through the investigation of cohomology groups on the module of exterior
forms and homology groups on the topology of the manifold.

We had already seen that all closed and exact forms defined on a dif-
ferentiable manifold  constitute subalgebras  and  of the ex-Q ÐQÑ ÐQÑ7 V X
terior algebra , respectively, on  whereas  and  areA ‘ V XÐQÑ ÐQÑ ÐQÑ5 5

vector subspaces of the module  on  [  Theorem  5.8.3]. WeA ‘5ÐQÑ see
obviously have , namely,  is a subspace of .X V X V5 5 5 5ÐQÑ © ÐQÑ ÐQÑ ÐQÑ
We shall now define a relation on the vector space  as followsµ ÐQÑV5 :
two closed forms are related if their difference is an exact form. Hence, for
two forms  the relation  implies that = = V = = = = )" # " # " #

5ß − ÐQÑ µ  œ .
where .  is an equivalence relation. Indeed,  since) A = =− ÐQÑ µ µ5"

! œ  œ .! µ= = = = . If , then one hasso the relation is reflexive " #

= = ) = = = =# " # " " # œ .Ð Ñ µ µ and  . If  andso the relation is symmetric
= = = = ) = = )# $ " # " # $ #µ  œ .  œ ., then we get ,  and, consequently,
= = ) ) ) ) = =" $ " # " # " $ œ .  . œ .Ð  Ñ µ  and  so the relation is tran-
sitive. Therefore, the vector space  is partitioned into disjoint equi-V5ÐQÑ
valence classes. An equivalence class associated with a form = V− ÐQÑ5

will be the set

Ò Ó œ Ö  À − ÐQÑ× œ Ö  . À − ÐQÑ×= = 5 5 X = ) ) A5 5" . (8.8.1)

This set is called a . All forms belong to the cohomologycohomology class
class of the form  are called as  to . We have seen= =cohomologous forms
on  5 that the quotient set of these equivalence classes may be equipped:Þ
with a structure of a linear vector space on . We shall denote the ‘ quotient
space  vector space of  with respect to its subspace  by the V X5 5ÐQÑ ÐQÑ

L ÐQÑ œ ÐQÑÎ ÐQÑ5 5 5V X . (8.8.2)

If we consider the cochain complex (5.8.6) given by

A A A A! 5 5" 7ÐQÑ Ä â Ä ÐQÑ Ä ÐQÑ Ä â Ä ÐQÑ Ä !
. . . ..

we see that this quotient space is also expressible in the equivalent form

L ÐQÑ œ Ð.ÑÎ Ð.ÑÞ5
5 5a e

The zero element of this vector space is given by . Since theÒ Ó œ ÐQÑ! X5

linear vector space  is known to be an Abelian group, it will thus beL ÐQÑ5

named as the  of the manifold . The di-5th de Rham cohomology group Q
mension  of the linear vector space  which is the number of, ÐQÑ L ÐQÑ5

5

the linearly independent equivalence classes is called by Poincaré as the 5th
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Betti number [after Italian mathematician Enrico Betti (1823-1892)] of the
manifold . Evidently  is a positive integer that might be infinite. As weQ ,5

shall observe later that Betti numbers are dependent on the topology of the
manifold , particularly on its connectedness and number of holes withinQ
Q . The sum

;ÐQÑ œ Ð  "Ñ , ÐQÑ"
5œ!

7
5

5 (8.8.3)

formed by Betti numbers is called the  of theEuler-Poincaré characteristic
manifold  [Swiss mathematician Leonhard Euler (1707-1783)]. In orderQ
that all closed -forms on a manifold are to be exact -forms, we must5 5
clearly have . This is of course tantamount to say thatV X5 5ÐQÑ œ ÐQÑ
L ÐQÑ œ , ÐQÑ œ !5

5!. Hence,  in such a case.
Since , we naturally get . On the otherX V! ! !ÐQÑ œ Ö!× L ÐQÑ œ ÐQÑ

hand, if a function  is closed, that is, if , we find that  is0 − ÐQÑ .0 œ ! 0A!

constant. When  is a connected manifold, the function  takes of course aQ 0
unique constant value on . Hence, we get  and consequentlyQ L ÐQÑ œ! ‘
, ÐQÑ œ " Q <! . But, if the manifold  is a disconnected union of  connected
components, the function will be allowed to take a different constant value
on each component. So we find  and . If ,L ÐQÑ œ , ÐQÑ œ < 5  7! <

!‘
then all -forms on  vanish leading to the result . Since all5 Q L ÐQÑ œ5 !
closed forms on  with  are exact [ 334], we deduce that‘7 7  ! see  :Þ
V ‘ X ‘ ‘5 7 5 7 5 7Ð Ñ œ Ð Ñ L Ð Ñ œ " Ÿ 5 Ÿ 7. Accordingly, we obtain  for .!
Thus Betti numbers become , . When, Ð Ñ œ " , Ð Ñ œ !ß " Ÿ 5 Ÿ 7! 5

7 7‘ ‘
Q L ÐQÑ œ ß " Ÿ 5 Ÿ 7 is a contractible manifold, we similarly have 5 !
and Betti numbers are found to be , ., ÐQÑ œ " , ÐQÑ œ !ß " Ÿ 5 Ÿ 7! 5

The direct sum  is a linear vector space on . LetLÐQÑ œ Š L ÐQÑ
5œ!

7
5 ‘

us take the cohomology classes ,  into considera-Ò Ó − L ÐQÑ Ò Ó − L ÐQÑ= 55 6

tion where the representatives of classes are  and . An= V 5 V− ÐQÑ − ÐQÑ5 6

operation of multiplication  on  will now be defined by“ LÐQÑ

Ò Ó “ Ò Ó œ Ò • Ó= 5 = 5 . (8.8.4)

Endowed with this operation,  is named as the .LÐQÑ de Rham algebra
Let us now consider smooth manifolds  and  and a smooth map-Q R

ping . We know that the mapping  generates the pull-back9 9À Q Ä R
operator . Since the operator , that is linear on , and9 A A 9 ‘‡ ‡À ÐRÑ Ä ÐQÑ
. are commutative,  transforms closed forms into closed forms and also9‡

exact forms into exact forms. In fact, owing to Theorem 5.8.2 for a form
= V 9 = V− ÐRÑ − ÐQÑ5 ‡ 5 we immediately obtain  because of the relation
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! œ Ð. Ñ œ .Ð Ñ − ÐRÑ9 = 9 = = X‡ ‡ 5. In the same manner, for a form  we have
= 5 9 = 9 5 9 5 9 = Xœ . œ Ð. Ñ œ .Ð Ñ − ÐQÑ and we obtain , or . For a‡ ‡ ‡ ‡ 5

closed form  the vector  is the set of forms = V = = )− ÐRÑ Ò Ó − L ÐRÑ  .5 5

for all forms . In this case, we get) A− ÐRÑ5"

9 = ) 9 = 9 ) 9 =‡ ‡ ‡ ‡Ð  . Ñ œ  .Ð Ñ − Ò Ó

so that we obtain  for every . This9 = 9 = =‡ ‡ 5 5Ò Ó œ Ò Ó − L ÐQÑ Ò Ó − L ÐRÑ
means that a   between de Rhamlinear transformation 9‡ À LÐRÑ Ä LÐQÑ
algebras arises from the mapping .  . Indeed9 9‡ is actually a homomorphism
if , we can easily obtainÒ Óß Ò Ó − LÐRÑ= 5

9 = 5 9 = 5 9 = 5 9 = 9 5

9 = 9 5

‡ ‡ ‡ ‡ ‡

‡ ‡

ÐÒ Ó Ò ÓÑ œ Ò • Ó œ Ò Ð • ÑÓ œ Ò • Ó

œ Ò Ó Ò Ó

“

“ .

If  is a diffeomorphism, then  becomes naturally an 9 9‡ À LÐRÑ Ä LÐQÑ
isomorphism.

Example 8.8.1. We consider a submanifold in  given by the unit‘8"

sphere . We suppose that that the poles are the points defined by ’8 8"B œ
„ " :. If we employ the hyperspherical coordinates introduced on . 412 sa-
tisfying the conditions  and , we know! Ÿ ß á ß Ÿ ! Ÿ Ÿ #9 9 1 9 1" 8" 8

that the volume form on  can be chosen as’8

. 9 9 9 9 9 9 A ’œ â . • . • â • . − Ð Ñsin sin sin8" 8# 8 8
" # 8" " # 8

Since ,  is a closed form. But it is not an exact form. Indeed,. œ !. .
because one has , an exact form  must satisfy the` œ ! œ . − Ð Ñ’ = 5 A ’8 8 8

condition

( ( (
’ ’ ’8 8 8

= 5 5œ . œ œ !
`

in accordance with the Stokes theorem. However, we had already seen that
[  .  413]see :

( ˆ ‰’8

.
1

>
œ Á !

#
8"

#

8"
#

.

We shall now try to demonstrate the following proposition: A closed form

= ’ ’− Ð Ñ œ Ð ÑA V =8 88 8  is an exact form if and only if (
’8

œ !. If the form

= is exact, this condition is satisfied straightforwardly as is seen above. We
shall use the method of mathematical induction to show that it is also the
necessary condition. To this end, we shall first prove this proposition for
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8 œ " À Ä Ð Ñ œ /§. The embedding  prescribed by  deter-9 ‘ ’ ‘ 9 )" # 3)

mines the -dimensional manifold . If , then we have " ’ 9" ‡= A ’ =− Ð Ñ œ" "

0Ð Ñ .) ). In order that this form is to be uniquely defined, the function must

be -periodic. We then introduce a function . If # J Ð Ñ œ1 ) 7 7 =( (
!

)

’

0Ð Ñ .
"

œ !, then we get

! œ œ œ J Ð  # Ñ  J Ð Ñß a −( (
’ )

) 1

"

= 7 7 ) 1 ) ) ‘
#

0Ð Ñ .   .

This means that  ought to be a -periodic function. Thus, a J Ð Ñ #) 1 unique
function  may be defined through the relation . Hence,K − Ð ÑA ’ 9! " ‡K œ J
we can write  from which it fol-9 ) ) 9 9‡ ‡ ‡= œ 0Ð Ñ . œ .J œ .Ð KÑ œ .K
lows that , i.e., . In order to apply the mathematical= = ’œ − Ð Ñ.K X" "

induction, we shall now suppose that the proposition in question is true in
the manifold ’8" and then try to prove that it will also be true in the
manifold . We know that the manifold  can be prescribed by an atlas’ ’8 8

with two charts. The following open sets of these charts

Y œ Ö − À B  "× Y œ Ö − À B   "×" #
8 8" 8 8"x x’ ’   and   

yield  and by  stereographic projection [   81] these setsY  Y œ + :Þ" #
8’ see

become homeomorphic to . We define the  and  ‘8 north  south hemispheres
of  as the closed sets’8

R œ Ö − À B   !× Y W œ Ö − À B Ÿ !× Y§ §x x’ ’8 8" 8 8"
# "  and  ,

respectively. We see at once  and we observe that R  W œ R  W œ’8

Ö − À B œ !× œx ’ ’8 8" 8". The latter set can of course be taken as the
common boundary of  and  and it should be oriented in reverse direc-R W
tions whether it is considered as the boundary  or . Since the sets `R `W Y"

and  are homeomorphic to , they are contractible sets. Let Y#
8 8‘ V= ’− Ð Ñ8

be a closed form satisfying the condition . According to the'
’8= œ !

Poincaré lemma, restrictions of the form  to regions  and  are exact= Y Y" #

forms, namely, there exist forms  and  such5 A 5 A" " # #
8" 8"− ÐY Ñ − ÐY Ñ

that the relations  and  are held. Therefore, if wek k= =Y Y" #" #
œ . œ .5 5

choose that  is positively oriented, then the Stokes theorem leads to`W

! œ œ  œ .  . œ 

œ  œ Ð  Ñ

( ( ( ( ( ( (
( ( (
’

’ ’ ’

8

8" 8" 8"

= = = 5 5 5 5

5 5 5 5

W R W R `W `R
" # " #

" # " # .
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Hence, the integral of the form on kÐ  Ñ5 5" # ’8" − Ð ÑA ’ ’8" 8" 8" 
vanishes. According to our assumption the form  is . LetkÐ  Ñ5 5" # ’8"  exact
us now define a smooth mapping  on the open set < À Y Ä Y œ’8"

Y  Y − Y" # by assigning to each point  the point of intersection of thex
meridian through the point  with the equator . In this case, the formx ’8"

k kÐ  Ñ œ Ð  Ñ Y5 5 < 5 5" # " #Y
‡

’8"  on  will also be exact. Thus, there exists a
form  such that . Let us choose a form! A 5 5 !− ÐY Ñ Ð  Ñ œ .8#

" # Yk
" A " !− Ð Ñ . œ . Y8#

Y’8  so that one gets  on  and introduce a formk
5 A− Ð Ñ8" ’8  as follows

5
5
5 "

œ
ß Y ß
 . ß Yœ " "

# #

on
on .

On , we find  and  whenceY œ Y  Y œ  .  œ . œ ." # " # " #5 5 " 5 5 " !
we conclude that  and . We have thus shown that if we= 5 Xœ . = ’− Ð Ñ8 8

assume that the proposition is true for , then it becomes also true for .8  " 8
Since we have already seen that the proposition is true for , we are led8 œ "
to the conclusion that it is true for every .8

We shall now demonstrate that if  is a closed form, we can= A ’− Ð Ñ8 8

always find a number  such that  is rendered as an exact form.- −  -‘ = .
On employing hyperspherical coordinates, we can generally express this
form as follows

= 9 9 9 9 9 9œ 0Ð ß á ß ß Ñ . • â • . • ." 8" 8 " 8" 8

where the function  is -periodic in variables  and -periodic0 ß á ß #1 9 9 1" 8"

in the variable . We thus get98

( ( ( (
’

1 1 1

8

= 9 9 9 9 9 9œ â 0Ð ß á ß ß Ñ . â. .
! ! !

#

" 8" 8 " 8" 8.

Let us choose a real number  as follows-

- œ œ
#

(
(

ˆ ‰(’

’

’

8

8

8

=

.

>

1
=

8"
#
8"

#

.

With this choice the closed form  will clearly satisfy! = . A ’œ  - − Ð Ñ8 8

the condition

(
’8

! œ !.



8.8  The Cohomolgy of de Rham 465

Hence  is an exact form, i.e., . If , then the closed form! ! X ’− Ð Ñ - œ !8 8

= A ’− Ð Ñ8 8  will obviously be an exact form. According to this result, all
closed -forms on  are to be cohomologous to a real constant multiple of8 ’8

the volume form . Hence, we can write . On the other hand,. ’ ‘L Ð Ñ œ8 8

because  is a connected manifold we know that . Therefore,’ ’ ‘8 ! 8L Ð Ñ œ
the corresponding Betti numbers are ., Ð Ñ œ , Ð Ñ œ "! 8

8 8’ ’
We shall now try to determine the cohomology groups  forL Ð Ñ5 8’

" Ÿ 5 Ÿ 8  " 8 of the -sphere. To this end, we shall resort once more to
mathematical induction. Let us first take a closed form  into= − V ’" 8Ð Ñ
account. Since  on  and , the Poincaré lemma implies that there. œ ! Y Y= " #

are functions  and  such that one writes 0 − ÐY Ñ 1 − ÐY Ñ œ .0A A! !
" # Yk= "

and . On the open set , we thus get k k= Y Y" ##
œ .1 Y œ Y  Y .Ð0  1Ñ œk kÐ.0  .1Ñ œ Ð  Ñ œ ! 0  1 œ - œY Y= =  so that we find . Let usconstant

now define a function  as follows: A ’− Ð Ñ! 8

: œ
0 Y ß
1  - Y Þœ on

on 
"

#

Then we obtain , i.e., . This means that every closed -= : X ’œ . Ð Ñ "= − " 8

form on  is exact. In consequence, we find . ’ ’8 " 8L Ð Ñ œ ! Let us now
assume that every closed -form on  is exact.Ð5"Ñ ’8  We consider a closed
form  Since  again on open sets  and , the Poincaré= − V ’ =5 8

" #Ð ÑÞ . œ ! Y Y
lemma indicates that there are the forms  and 5 A 5 A" " # #

5" 5"− ÐY Ñ − ÐY Ñ
so that one has  and . Thereby, we obtaink k= =Y Y" #" #

œ . œ .5 5

.Ð  Ñ œ Ð.  . Ñ œ Ð  Ñ œ !k k k5 5 5 5 = =" # " #Y Y Y

on .  We thus conclude that  and ourY œ Y  Y  ÐY Ñ" # " #
5"5 5 V−

assumption assures us that there exists a form  such that we! A− ÐY Ñ5#

have . Let us now choose a form  as tokÐ  Ñ œ . − Ð Ñ5 5 ! " A" # Y
5# ’8

satisfy the relation  on  and define a form  in thek. œ . Y − Ð Ñ" ! 5 A ’Y
5" 8

following manner

5
5
5 "

œ
Y ß

 . Y Þœ " "

# #

on 
on  

We thus conclude that , that is, . Hence, the mathemati-= 5 X ’œ . Ð Ñ= − 5 8

cal induction prove the proposition that every closed -form on  satisfying5 ’8

the condition  is exact " Ÿ 5 Ÿ 8  " so that one obtains  forL Ð Ñ œ !5 8’
" Ÿ 5 Ÿ 8  " , Ð Ñ œ !ß " Ÿ 5 Ÿ 8  ". Betti numbers thus become .5

8’
The relation (8.8.3) then yields the Euler-Poincaré characteristic of the -8
sphere as . Hence  if  is an; ;’ ’Ð Ñ œ ,  Ð"Ñ , œ "  Ð"Ñ Ð Ñ œ ! 88 8 8 8

80
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odd number and  if  is an even number.; ’Ð Ñ œ # 88 è

The salient property of the sphere is that it is a connected, oriented’8 
and compact manifold.

We had seen that all singular -chains on a manifold  constitute a5 Q
linear vector space  [   421]. We know that the set G ÐQÑ :Þ ÖG ÐQÑ×5 5see
constitutes a chain complex under the boundary operator . Let us then con-`

sider the subset of  formed by -cycles G ÐQÑ 5 G ÐQÑ œ Ö- − G ÐQÑ À5 5 5 5
‰

`- œ !× 5 55  . Because the sum of two -cycles and a real multiple of -cycle

is also a -cycle,  is a subspace of the linear vector space ,5 G ÐQÑ G ÐQ
‰

5 5

hence it is a linear vector space by itself. Let us denote the set of -cycles5
that are boundaries of -chains byÐ5  "Ñ

F ÐQÑ œ Ö- œ `, À , − G ÐQÑ×5 5 5" 5" 5" .

Evidently,  the set  is also a linear vector space and it is clear thatF ÐQÑ5

F ÐQÑ © G ÐQÑ `- œ ! - − F ÐQÑ5 5 5 5 5
‰

 since  if . We now define a relation

µ G ÐQÑ - ß - − G ÐQÑ on  as follows:  are related if their difference is
‰ ‰

5 5
w ww
5 5

a boundary of a -chain, namely  if only Ð5  "Ñ - µ - -  - œ `, −w ww w ww
5 5 5 5 5"

F ÐQÑ5 . Two cycles whose difference is a boundary will be called homo-
logous cycles ho-.  It can readily be verified that this relation defining the 
mology on the manifold  is an equivalence relation. Equivalence classes,Q
in other words , are defined byhomology classes

Ò- Ó œ Ö-  `, À - − G ÐQÑß , − G ÐQÑ×5 5 5" 5 5 5" 5"
‰

Let us denote the quotient space generated by those classes by

L ÐQÑ œ G ÐQÑÎF ÐQÑ5 5 5

‰
. (8.8.5)

L ÐQÑ5  is a linear vector space on real numbers . As such it is an Abelian‘
group and is named as the   of5th differentiable singular homology group
the manifold . If we consider the chain complex (8.4.13), this quotientQ
space can also be expressed equivalently as

L ÐQÑ œ Ð`ÑÎ Ð`Ñ5 5 5a e .

We can roughly say that homology groups illustrate the existence and the
distribution of holes in topological spaces. The zero element of the vector
space  is naturally given as .L ÐQÑ Ò Ó œ F ÐQÑ5 5!

Sometimes, it does not prove to be very convenient to work with a
chain complex with decreasing indices. Especially, quite a difficult problem
arises if we wish to establish a relationship between the de Rham cohomo-
logy groups and the homology groups. To circumvent this obstacle we may
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employ the cochain complex (8.4.15) with the coboundary operator . Then,
the   is defined as the following quotient5th singular cohomology group Q
space of the vector space  with respect to its subspace a e5 5Ð Ñ Ð Ñ 

[ a e5 5 5ÐQÑ œ Ð ÑÎ Ð Ñ  .

Hence, the vector space  is the quotient space of -cocycles with[5ÐQÑ 5
respect to -boundaries5 . The equivalence class  related to anÒ0 Ó − ÐQÑ5 5[
element  is the set of all linear functionals on  given by0 − G ÐQÑ G ÐQÑ5

‡
5 5

Ò0 Ó œ 0  1 1 − G ÐQÑ 0 œ ! Ò0 Ó5 5 5" 5" 5 5
‡
5"  for all  and .  is known to be

a . We shall now try to demonstrate the follow-singular cohomology class
ing proposition:

The th singular cohomology group is isomorphic to the dual space5
L ÐQÑ 5 L ÐQÑ‡

5 5 of the th singular homology group , namely, there is a
natural isomorphism :  such that ¶ [ ¶5 5 5

‡ ‡
5 5ÐQÑ Ä L ÐQÑ Ð Ñ − L ÐQÑÒ0 Ó5 .

Let us consider an arbitrary equivalence class  where theÒ0 Ó − ÐQÑ5 5[
linear functional  satisfying  is a representative of this0 − G ÐQÑ 0 œ !5 5

‡
5 

class. Consequently,  is also a linear functional on the subspace 0 G ÐQÑ5 5
‰

of -cycles. On the other hand, the relation 5 ! œ 0 Ð- Ñ œ 0 Ð`- Ñ 5 5" 5 5"

implies that  vanishes on all -boundaries in the form  in0 5 - œ `,5 5 5"

G ÐQÑ F ÐQÑ 05 5 5 forming the subspace . Hence,  becomes a linear func-
tional defined on the homology group  because if L ÐQÑ Ò- Ó − L ÐQÑ5 5 5

where  is arbitrary, we get . Thus the- − G ÐQÑ 0 Ð-  `, Ñ œ 0 Ð- Ñ5 5 5 5 5" 5 5

value of the functional  on an equivalence class  is independent of the0 Ò- Ó5 5

representative of this class. However, in order to say that the linear func-
tional  is well defined, we have to show that its value is also0 − L ÐQÑ5

‡
5

independent of the representative of the equivalence class . This is, how-Ò0 Ó5

ever, easily deduced from

0  1 ÑÐ-  `, Ñ œ 0 Ð- Ñ  1 Ð- Ñ  1 Ð`, Ñ

œ 0 Ð- Ñ
5 5" 5 5" 5 5 5" 5 5" 5"

5 5

  

since  because  and  1 Ð- Ñ œ 1 Ð`- Ñ œ ! `- œ ! 1 Ð`, Ñ œ5" 5 5" 5 5 5" 5"

1 Ð` , Ñ œ ! ` œ !Þ5" 5"
# # because  We have thus found that to each element

of  we can assign a unique element of . Obviously, this map-[5
‡
5ÐQÑ L ÐQÑ

ping is linear and in order to prove that it is an isomorphism, we must show
that it is both injective and surjective. Since equivalence classes are disjoint,
injectivity of the mapping is evident. To show surjectivity let us consider a
functional . Since , we get  0 − L ÐQÑ 0 − G ÐQÑ ! œ 0 Ð- Ñ œ5 5 5 5"

‡ ‡
5 5" 

0 Ð`- Ñ - − G ÐQÑ 0 œ !Þ5 5" 5" 5" 5 for all . We thus find  We can then de-
‰


fine the set of functionals  with . Clearly,Ò0 Ó œ 0  1 1 − G ÐQÑ5 5" 5"

‡
5"

Ò0 Ó − ÐQÑ - − G ÐQÑ[5 5 5. On the other hand, for  we get
‰
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Ð0  1 ÑÐ- Ñ œ 0 Ð- Ñ  1 Ð`- Ñ œ 0 Ð- ÑÞ5 5" 5 5 5 5" 5 5 5

Therefore, we have shown that a functional  in  is the image of an0 L ÐQÑ5
‡
5

equivalence class  in , namely, the mapping is surjective. Thus,Ò0 Ó ÐQÑ[5

the mapping :  is an isomorphism¶ [5 5
‡
5ÐQÑ Ä L ÐQÑ . 

Let us now define a mapping  as the integ-U A ‘5 5
5À ÐQÑ ‚ G ÐQÑ Ä

ral of a -form over a -chain as follows5 5

U = = ‘5 5Ð ß - Ñ œ −(
-5

. (8.8.6)

Naturally, in order that this definition is justifiable, the integral (8.8.6) must
exist. This mapping is obviously linear with respect to both the -form 5 =
and the -chain . In other words,  is a bilinear, real valued func-5 - Ð ß - Ñ5 5 5U =
tional. Whenever we consider a  form , then the realfixed = A!

5− ÐQÑ
valued function

Y U = =Ð5Ñ
5 5 ! 5 !=!

Ð- Ñ œ Ð ß - Ñ œ (
-5

(8.8.7)

turns out to be intrinsically a linear functional on the vector space .G ÐQÑ5

Thus, (8.8.6) is actually generating a mapping  overY A5 5
5 ‡À ÐQÑ Ä G ÐQÑ

real numbers from the   into the dual space vector space A5 ‡
5ÐQÑ G ÐQÑ

designated by . The definition (8.8.7) signify at once that theY = Y5
Ð5Ñ

Ð Ñ œ =

mapping  is linear, in other words, it is a homomorphism.Y5

Next, we introduce in similar fashion a real valued and bilinear func-

tional  through the relationU ‘
‰

5 5
5À L ÐQÑ ‚ L ÐQÑ Ä

U = = ‘
‰

5 5ÐÒ Óß Ò- ÓÑ œ −(
-5

(8.8.8)

where the closed form  and cycle  are arbitrarily= − G ÐQÑ - − G ÐQÑ5
5 5

‰

selected representatives of the equivalence classes  andÒ Ó − L ÐQÑ= 5

Ò- Ó − L ÐQÑ5 5 . On the other hand, in order that the definition (8.8.8) bears a
meaning the value of the functional must be independent of the chosen
representatives of the equivalence classes. This can be proven quite easily,
however, if we recall that

Ò Ó œ Ö  . À − G ÐQÑß − ÐQÑ×ß

Ò- Ó œ Ö-  `, À - − G ÐQÑß , − G ÐQÑ×

= = ) = ) A5 5"

5 5 5" 5 5 5" 5"

‰

and then utilise the Stokes theorem to obtain
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( ( ( ( (
( ( ( ( (

- , - - , ,

- - , , -

5 5" 5 5 5" 5"

5 5 5" 5" 5

` ` `

` `

Ð  . Ñ œ  .   .

œ   .  œ

= ) = ) = )

= ) = ) =
#

for all forms  and all boundaries  where we) A− ÐQÑ , − G ÐQÑ5"
5" 5"

employed the relations . It now clear that the. œ !ß `- œ !ß ` , œ != 5 5"
#

functional (8.8.8) determines a homomorphism 
 
Y
‰

5 5
5 ‡À L ÐQÑ Ä L ÐQÑ

defined by

Y = U = = ‘
 ‰ ‰

5 5 5 5ÐÒ ÓÑÐÒ- ÓÑ œ ÐÒ Óß Ò- ÓÑ œ −(
-5

from the cohomology group  into the vector space  that isL ÐQÑ L ÐQÑ5 ‡
5

the dual of the homology group . We have seen above that theL ÐQÑ5

vector spaces  and  are isomorphic. Therefore,  may as
 

L ÐQÑ ÐQÑ5 5 5
‡ [ Y

‰

well be regarded as a homomorphism between  and . We canL ÐQÑ ÐQÑ5
5[

now show the simple lemma given below:
Lemma 8.8.1. Q R À Q Ä R and  are smooth manifolds and  is a9

smooth mapping. Then the following diagram commutes:

L ÐRÑ L ÐQÑ

ÐRÑ ÐQÑÞ

5 5
‡

5 5

5 5

‡

Ò
9

Y Y

[ Ò[
9

Æ Æ  ‰ ‰

We know that if , then . Similarly, if= A 9 = = 9 A− ÐRÑ œ ‰ − ÐQÑ5 ‡ 5

0 − G ÐRÑ 0Ð- Ñ œ 0 Ð- Ñ œ Ð0 ‰ ÑÐ- Ñ œ 0Ð- Ñ‡ ‡ ‡
5 5 5 5 5, we then obtain ˆ ‰9 9 9

where . Thus,  The relation (8.5.3) then- − G ÐQÑ 0 ‰ œ 0 − G ÐQÑÞ5 5
‡ ‡

59 9
requires that

Y 9 = Y = 9
  ‰ ‰

5 5 5 5
‡Ð Ò ÓÑÐÒ- ÓÑ œ ÐÒ ÓÑÐ Ò- ÓÑ

for all  and .Ò Ó − L ÐRÑ Ò- Ó − L ÐQÑ= 5
5 5 

De Rham's theorem proven in 1931 states that if  is a Hausdorff,Q
locally compact, second countable and oriented smooth manifold, then this
homomorphism , called , is actually an isomor-Y

 ‰
5 de Rham homomorphism

phism. In order to prove this theorem, we need first to investigate certain
properties of Mayer-Vietoris sequences [after Austrian mathematicians
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Walther Mayer (1887-1948) and supercentenarian Leopold Vietoris (1891-
2002)].

Theorem 8.8.1 (Mayer-Vietoris). Let  be an -dimensionalQ 7
smooth manifold supporting a partition of unity and  openY ß Z Q§
subsets such that We consider the cochain complexY  Z œ QÞ 

A A A A! 5 5" 7ÐQÑ Ä â Ä ÐQÑ Ä ÐQÑ Ä â Ä ÐQÑ Ä !
. . . ..

and the cohomology groups Then for all  L ÐQÑ œ Ð.ÑÎ Ð.ÑÞ5
5 5a e

! Ÿ 5 Ÿ 7 À, there exists a homomorphism > L ÐY  Z Ñ Ä L ÐQÑ5 5"

such that the following  is exactMayer-Vietoris sequence :

â Ä L ÐQÑ Ä L ÐY Ñ Š L ÐZ Ñ Ä L ÐY  Z Ñ Ä L ÐQÑ Ä â
> >: :<5 5 5 5 5"

The homomorphisms  and  are defined by and : < : <  œ Š œ\ \$ %
‡ ‡

\ \ \ \ \" #
‡ ‡

" # $ À Y  Z Ä Y ß À Y  Z Ä Z ß À Y Ä Q where  and
\ \ A A% "

‡ 5 5À Z Ä Q À ÐY Ñ Ä ÐY  Z Ñ are inclusion mappings and ,
\ A A \ A A \ A A# $ %

‡ 5 5 ‡ 5 5 ‡ 5 5À ÐZ Ñ Ä ÐY  Z Ñ À ÐQÑ Ä ÐY Ñ À ÐQÑ Ä ÐZ Ñ, , 
are corresponding pull-back operators..

Although we have proven only for Hausdorff, locally compact and
second countable manifolds, we had mentioned that if the manifold  isQ
paracompact, then for each open cover  of  there exists aÖY À − × Q- - A
partition of unity subordinate to this cover. We shall see that only the exist-
ence of the partition of unity will be crucial for our proof of this theorem.

In view of Theorem 1.2.3, we merely need to show that the short
sequence

! Ä ÐQÑ ÐY Ñ Š ÐZ Ñ ÐY  Z Ñ Ä !A Ò A A ÒA5 5 5 5: <

is exact. For a form , we have= A− ÐQÑ5

: = = = = =Ð Ñ œ Ð Ñß Ð Ñ œ Ð ß Ñˆ ‰ k k\ \$ %
‡ ‡

Y Z .

If , , then we get! A " A− ÐY Ñ − ÐZ Ñ5 5

< ! " ! " ! "Ð ß Ñ œ \ \" #
‡ ‡Ð Ñ  Ð Ñ œ k kY Z Y Z

We first demonstrate that the sequence is exact at . To this end,A5ÐQÑ
we only need to show that  is injective. Let us take : : = = =Ð Ñ œ Ð ß Ñk kY Z

œ Ð!ß !Ñ œ ! œ !Þ that leads to  and  Since , this= =k kY Z Y  Z œ Q
implies that    which proves the injectivity.= œ !

In order to prove the exactness at  let us apply the ope-A A5 5ÐY Ñ Š ÐZ Ñ
rator  on a form  to obtain< : = A‰ − ÐQÑ5
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Ð ‰ ÑÐ Ñ œ Ð ß Ñ œ  œ !< : = < = = = =k k k kY Z Y Z Y Z .

Hence,  on the module  so that we get .< : A e : a <‰ œ ! ÐQÑ Ð Ñ © Ð Ñ5

Next, let us consider  which means that Ð ß Ñ − Ð Ñ œ Þ! " a < ! "k kY Z Y Z

Thus, there exists a form  such that  and . We= A = ! = "− ÐQÑ œ œ5
Y Zk k

then clearly write  implying that . Hence, weÐ ß Ñ œ Ð Ñ Ð Ñ © Ð Ñ! " : = a < e :
get  which proves the exactness.e : a <Ð Ñ œ Ð Ñ

To prove the exactness at  we just have to show that  isA <5ÐY  Z Ñ
surjective. Since  is an open cover of , there exists a partition ofÐY ß Z Ñ Q
unity  subordinate to  such that Ð0 ß 0 Ñ ÐY ßZ Ñ Ð0 Ñ Y ß Ð0 Ñ ZÞ§ §" # " #supp supp
Let . We define the forms  and  as5 A - A . A− ÐY  Z Ñ − ÐY Ñ − ÐZ Ñ5 5 5

follows

- .
5 5

œ ß œ Þ
0 Y  Z  0 Y  Z
! Y  Ð0 Ñ ! Z  Ð0 Ñœ œ" #

" "

on   on   
on on supp supp

We then obtain < - . - . 5 5 5Ð ß Ñ œ  œ 0  Ð  0 Ñ œ Ð0  0 Ñk kY Z Y Z " # " #

œ Ð Ñ œ ÐY  Z ÑÞ5 e < A that amounts to say that  We thus conclude that5

Mayer-Vietoris sequence is exact. 
In exactly the same fashion we can show that Mayer-Vietoris sequence

â Ä ÐQÑ Ä ÐY Ñ Š ÐZ Ñ Ä ÐY  Z Ñ Ä ÐQÑ Ä â
> >: :<w w ‡

[ [ [ [ [5 5 5 5 5"

based on the cochain complex [ (8.4.15)]see 

â G ÐQÑ G ÐQÑ G ÐQÑ âÄ Ä Ä Ä‡ ‡ ‡
5" 5 5"

 

is exact.  is the coboundary operator defined in (8.4.14). To prove the exis-
tence, we only have to show that the short sequence

! Ä G ÐQÑ G ÐY Ñ Š G ÐZ Ñ G ÐY  Z Ñ Ä !‡ ‡ ‡ ‡
5 5 5 5Ò Ò

: <

is exact. The inclusion operators  and  are the same as those\ \ \ \" # $ %ß ß  

given above in Theorem 8.8.1. Pull-back operators

\ \

\ \
" 5 5 # 5 5
‡ ‡ ‡ ‡ ‡ ‡

$ 5 5 # 5 5
‡ ‡ ‡ ‡ ‡ ‡

À G ÐY Ñ Ä G ÐY  Z Ñ À G ÐZ Ñ Ä G ÐY  Z Ñß

À G ÐQÑ Ä G ÐY Ñß À G ÐZ Ñ Ä G ÐY  Z Ñ

,
     

simply produce restrictions of functionals. For instance,  for\"
‡

Y ZÐ0Ñ œ 0 k
a functional . For a functional , we get0 − G ÐY Ñ 0 − G ÐQÑ‡ ‡

5 5

: \ \Ð0Ñ œ Ð0Ñß Ð0Ñ œ Ð0 ß 0 Ñˆ ‰ k k$ %
‡ ‡

Y Z
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and for , 1 − G ÐY Ñ 2 − G ÐZ Ñ‡ ‡
5 5

< \ \Ð1ß 2Ñ œ 1 2 1  2" #
‡ ‡Ð Ñ  Ð Ñ œ k kY Z Y Z .

A smooth manifold  is called a  if the homo-Q de Rham manifold
morphism on  is an isomorphism.Q

Lemma 8.8.2. An open convex subset  is a de Rham manifold.Y © ‘8

Since a convex open set in  is star-shaped, the Poincaré lemma is‘8

applicable. Hence we find that  for  and  ThisL ÐY Ñ œ ! 5  ! L ÐY Ñ œ5 ! ‘.
automatically implies that  for  and  since the[ [ ‘5 !ÐY Ñ œ ! 5  ! ÐY Ñ œ
dual space of  is also . Therefore we only have to demonstrate that‘ ‘

Y [
 

 is an isomorphism. But elements of  are
‰

! !
! !À L ÐY Ñ Ä ÐY Ñ L ÐY Ñ

constant functions and a  singular simplex is just a single point. Thus, 
 

5 Y! !

‰

assigns the same real number to a real number. 
Lemma 8.8.3. Let  be a class of open, pairwise disjoint,ÖY À − ×- - A

de Rham subsets of a smooth manifold . Then  is also a deQ Y œ Y
- A

-
−

Rham manifold.
In order to prove this lemma, we must show that the following diagram

commutes isomorphically:

L ÐY Ñ L Ð Ñ

ÐY Ñ Ð ÑÞ

5 5

5 5ß

5 5

Ò
T

¼ Y

[ Ò [
U



Š



- A
-

- A

- A
-

−

−

−

Y

Y

Æ Æ   
 ‰

-

In view of Lemma 8.8.1 the diagram commutes. To show that the homomor-
phism  is an isomorphism, we only need to prove that  and  are iso-¼ T U5

morphisms because are isomorphisms by
 
Y [
‰

5ß 5
5

- À L Ð Ñ Ä Ð ÑßY Y −- - - A 
definition on pairwise disjoint de Rham subsets . In order to determineY-

the homomorphism , we first define  on theT \ =À L ÐY Ñ Ä L Ð Ñ5 5 ‡
- A

-
−

Y -

set  by
- A

-
−

L Ð Ñ5 Y

\ =
\ =

‡

‡ 5

5-

-
œ

L Ð Ñ

! L Ð Ñ  on  
       on    

Y

Y
-

. A . -
.

− Á,

where  are the inclusion mappings and, thus for \ = A- -œ Y Ä Y − ÐY Ñ5

we get  that is none other than the restriction of  on . We\ = A =‡ 5
- - -− ÐY Ñ Y

then take for Ò Ó − L ÐY Ñ= 5
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T = \ =Ò Ó œ Ò Ó − L Ð ÑŠ 
- A - A

-
− −

‡ 5
- Y

which clearly indicates that  is an isomorphism.  is injective becauseT T
equivalence classes are disjoint. Next, let us choose . Since the= A- − Ð Ñ5 Y-

sets  are pairwise disjoint, then  with . WeY-
- A

= = A \ = =œ − ÐY Ñ œŠ
−

- --
5 ‡

thus obtain  so that  is surjective. In exactly similar way,T = \ = TÒ Ó œ Ò ÓŠ
- A−

‡
-

we can show that  is likewise an isomorphism. Since the diagram com-U
mutes, we deduce that  is also an isomorphism. This¼ [5 5

5À L ÐY Ñ Ä ÐY Ñ
means that  is a de Rham manifold.Y œ Y

- A
-

−

Lemma 8.8.4. Let  and  be open subsets of a smooth manifold Y Z QÞ
We assume that  and  are de Rham manifolds. Then  isY ß Z Y  Z Y  Z
also a de Rham manifold.

Let us consider the following Mayer-Vietoris sequences associated
with de Rham cohomology and singular cohomology that are exact in view
of Theorem  8.8.1:

ã ã
Æ Æ

Æ Æ

Æ Æ

Æ Æ

Æ Æ

Æ Æ

L ÐY Ñ L ÐZ Ñ ÐY Ñ ÐZ Ñ

L Ð Ñ Ð Ñ

L Ð Ñ Ð Ñ

L ÐY Ñ L ÐZ Ñ ÐY Ñ ÐZ Ñ

L Ð Ñ Ð Ñ

L

5" 5" 5" 5"

5" 5"

5 5

5 5 5 5

5 5

5"

Š Š

Š Š

Ò[ [

Ò [

Ò [

Ò [ [

Ò [

¶

¶

¶

¶

Y  Z Y  Z

Y  Z Y  Z

Y  Z Y  Z

¼5

 

Ð Ñ Ð ÑY  Z Y  ZÒ [
¼5" 5"

Æ Æ
ã ã

 Our assumption dictates that the two homomorphisms before the
homomorphism  and the other two after¼ [5

5 5À L Ð Ñ Ä Ð ÑY  Z Y  Z
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that are isomorphisms denoted by the symbol . Then Theorem 1.2.2 (the¶
five lemma) states that  must be an isomorphism. Hence  is a de¼5 Y  Z
Rham manifold. 

Finally, we have to prove the following lemma:
Lemma 8.8.5. Let  be a smooth -dimensional second countableQ 7

manifold  Assume that  denotes a property associated with an openÞ T ÐY Ñ
subset  of  satisfying the four conditions given belowY Q :

Ð3ÑÞ T ÐgÑ

Ð33ÑÞ T ÐY Ñ

Ð333ÑÞ T ÐY Ñß T ÐZ Ñ T Ð Ñ

 
 
   

 is true.
 is true for any U diffeomorphic to a convex open subset of .

If and  are tr
‘7

Y  Z ue, then is also true.
If   is a sequence of pairwise disjoint open subsets and

 is     true for each i

T Ð Ñ

Ð@3ÑÞ

T ÐY Ñ

Y  Z

ÖY À 3 − ×

 
  3 

3 − T, then  is also true.ˆ 
8

3œ"
3Y ‰

In that case  will also be true. This property satisfies also the aboveT ÐQÑ
conditions for all convex open subsets of  .‘7

Since  is second countable, then it is expressed as a countable unionQ
of open sets. Every open set is covered by open sets of some charts. Hence,
every open set  is diffeomorphic to an open set of . Therefore, toY © Q ‘7

prove the lemma it suffices to show that the property is true for an open set
in .  Since  is second countable [   70] an open set is expressible‘ ‘7 7 see :Þ
as a countable union of open balls B. We know that open balls in  are‘7

convex sets [  . 328]. Thus, B  is true on open balls. Moreover, it issee : T Ð Ñ
straightforward to see that intersection of two open balls is also convex.
Hence,  implies that countable unions of open balls are convex. Thus,Ð333Ñ
open sets in  are convex and in view of   is true. Let us now‘7 Ð33Ñ T ÐY Ñ
suppose that  and  are true. Since  is an open set, it isT ÐY Ñ T ÐZ Ñ Y  Z
diffeomorphic to a convex open set in  so  is true. By , we‘7 T Ð Ñ Ð333ÑY  Z
conclude that  is also true. Therefore the property must be trueT Ð ÑY  Z
for a countable union of open sets. Consequently  is true.T ÐQÑ 

We can now easily prove the de Rham theorem.
Theorem 8.8.2. Let  be a locally compact, second countable andQ

oriented smooth manifold. The homomorphism  isY [
 ‰

5 5
5À L ÐQÑ Ä ÐQÑ

an isomorphism.
In order to prove this theorem, we have to show that such a manifold is

a de Rham manifold. Let us define a property  associated with an openT
subset of  as being a de Rham manifold. The condition  in LemmaQ Ð3Ñ
8.8.5 is met due to the fact that  because there are no -forms onL ÐgÑ œ ! 55

the empty set and  since there are no homomorphisms from  to[5ÐgÑ œ ! g
‘. Lemmas 8.8.2 and 8.8.4 indicate that  satisfies the conditions  andT Ð33Ñ
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Ð333Ñ Ð3@Ñ while Lemma 8.8.3 implies that the condition  is also satisfied.
Thus  becomes a de Rham manifold.Q 

Since  and  are isomorphic, then the homomorphism[5 5
‡ÐQÑ L ÐQÑ

L ÐQÑ Ä L ÐQÑ5 ‡
5  is also an isomorphism for such manifolds. Of course,

the foregoing results will naturally be valid for compact second countableß
manifolds.

An interested reader is suggested to consult to Hodge (1952) and de
Rham (1955) for a more detailed proof of the de Rham theorem. For a
sheaf-theoretic treatment that is probably the most direct and elegant way to
show this theorem we refer to Singer and Thorpe (1967) or Warner (1971).
However, to investigate the theory sheaves transcends the intended level of
this work.

When  is an isomorphism and  , then
 
Y
‰

5
5L ÐQÑ is finite-dimensional

the dual space  and, consequently, the vector space  are ofL ÐQÑ L ÐQÑ5 5
‡

finite and the same dimension. Hence, if , we find, ÐQÑ  _5

, ÐQÑ œ , L ÐQÑ œ , L ÐQÑ œ , L ÐQÑ5 5 5
5 ‡ˆ ‰ ˆ ‰ ˆ ‰.

Isomorphism implies that  is a bijective, namely, injective and surjective
 
Y
‰

5

mapping. Injectiveness requires that if , then we get
 
Y =
‰

5 5
‡ÐÒ ÓÑ œ − L ÐQÑ!

Ò Ó œ Ò Ó= =! . The  of a closed form , consequently, of the equivalenceperiod
class produced by this form over a cycle  is defined by-5

1 =( .- Ñ œ5 (
-5

Therefore, vanishing of the functional  means that all periods of theY =
 ‰

5ÐÒ ÓÑ
equivalence class  are zero. The equality  implies that the formÒ Ó= Ò Ó œ Ò Ó= !
= = is exact. On the other hand, the Stokes theorem indicates that if a form 
is exact, then all of its periods vanish on every cycle . Hence, it follows-5

from de Rham's theorem that a closed -form  is exact if and only if all of5 =

its periods are zero That the mapping is surjective amounts to say that.  
 
Y
‰

5

every linear functional on the vector space  is generated through aL ÐQÑ5

closed -form5 . Since such a linear functional is prescribed by its value on
every cycle, de Rham's theorem leads to the following conclusion: when we
assign a number (  to every cycle , there exists a1 ‘- Ñ − - − G ÐQÑ5 5 5

‰

closed -form  admitting these numbers as its periods, namely, verifying5 =!

the relation (  for every -cycle , if only these numbers satisfy1 =- Ñ œ 5 -5 ! 5-
'

5

the conditions  and if  , then1 1 ‘Š ‹! ! ˆ ‰
3 3

3 3 3 5 5
Ð3Ñ Ð3Ñ
5 5+ - œ + - ß + − - − F ÐQÑ

one must have ( .1 - Ñ œ !5
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8.9. HARMONIC FORMS. THEORY OF HODGE-DE RHAM

Let  be an -dimensional complete Riemannian manifold. AÐQß Ñ 7Z

form  is given by . We know that= A = =− ÐQÑ œ .B • â • .B
"

5x
5

3 â3
3 3

" 5
" 5

the  of this form is the form Hodge dual ‡ œ − ÐQÑ
"

5x
= = . A3 â3 75

3 â3
" 5

5 "

[  (5.9.20)]. Contravariant components in this expression are related to thesee
covariant components by . If we take two forms= =3 â3 3 4 3 4

4 â4
" " "5 5 5

" 5
œ 1 â1

= 5 Aß − ÐQÑ5  into consideration, we have already known that the identity
(5.9.27) enables us to write

= 5 5 = = 5 .

= 5 . A

• ‡ œ • ‡ œ
"

5x

œ − ÐQÑ
"

5x

3 â3
3 â3

3 â3 7
3 â3

" 5
" 5

" 5
" 5

(8.9.1)

where  is the volume form given by (5.9.13) or (5.9.14). Thus, for every.
form  we can write= A− ÐQÑ5

= = = = .• ‡ œ
"

5x
3 â3

3 â3
" 5

" 5 .

Because the Riemannian manifold is complete, we may assume that the
metric tensor is positive definite so that we must have

= = = =3 â3 3 4 3 4
3 â3 3 â3 4 â4

" " "5 5 5
" " "5 5 5œ 1 â1  ! (8.9.2)

if . Hence, an on , that is a vector space on real= AÁ ! ÐQÑinner product 5

numbers , may be defined as follows‘

Ð ß Ñ œ Ð ß Ñ œ • ‡ œ −
"

5x
= 5 5 = = 5 = 5 . ‘5 5 3 â3

Q Q

3 â3( ( " 5
" 5 (8.9.3)

due to the property (8.9.1). It is easily verified that (8.9.3) obeys all rules
imposed on an inner product [ 68]. see . When  is a compact manifold,: Q
the integral  will always exist(8.9.3) . We immediately recognise that the
mapping  so defined is a Ð † ß † Ñ À ÐQÑ ‚ ÐQÑ Ä5

5 5A A ‘ symmetric biline-
ar functional on real numbers. Because of (8.9.2) we get  whichÐ ß Ñ   != = 5

becomes zero if and only if . The non-negative number= œ !

l l È= = =5 5œ Ð ß Ñ   ! (8.9.4)

may now be called the of a form . Since  equippednorm  = A A− ÐQÑ ÐQÑ5 5

with (8.9.3) becomes an , the well known inner product space Schwarz
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inequality must be satisfied:

Ð ß Ñ Ÿ= 5 = 55 5 5l l l l . (8.9.5)

This inner product on  can easily be extended to an inner product onA5ÐQÑ

the graded algebra . We take the forms  andA A = AÐQÑ œ ÐQÑ − ÐQÑŠ
5œ!

7
5 5

5 A = 5 A− ÐQÑ • ‡ − ÐQÑ6 756 into account so that we get . This form
vanishes identically if . Its degree is less than  if , hence its5  6 7 5  6
integral over  cannot be defined. If we adopt the convention that such anQ
integral also vanishes, we can then define the inner product of two arbitrary
5 6 ÐQÑ-form  and -form  in  in the following manner= 5 A

Ð ß Ñ œ
Ð ß Ñ 5 œ 6ß

œ ! 5  6ß
œ ! 5  6Þ

= 5
= 5Ú

ÛÜ
5   

     
     

if   
if   
if   

This definition amounts to admit that the vector spaces  and A A5 6ÐQÑ ÐQÑ
are  with respect to this inner product whenever . Hence-orthogonal 5 Á 6
forth, by adopting this definition we shall not designate the inner product as
dependent on the index . In view of the definition (8.9.3), we obtain the5
following relation for forms = 5 Aß − ÐQÑ5

Ð‡ ß ‡ Ñ œ ‡ • ‡‡ œ Ð"Ñ ‡ •

œ Ð"Ñ • ‡ œ • ‡

œ • ‡ œ Ð ß Ñ

= 5 = 5 = 5

5 = 5 =

= 5 = 5

( (
( (

(

Q Q

5Ð75Ñ

#5Ð75Ñ

Q Q

Q

.

This means that the Hodge star operator , which is‡ À ÐQÑ Ä ÐQÑA A5 75

obviously a linear operator, preserves the inner product. It is well known
that a linear operator between two inner product spaces that preserves the
inner product is called a  or . Consequently, unitary conformal operator the
Hodge star operator  is a unitary or conformal operator on the exterior‡
algebra with respect to the inner product so defined.

Let us now consider the forms  and  and= A 5 A− ÐQÑ − ÐQÑ5" 5

evaluate the exterior derivative of the form  to obtain:= 5 A• ‡ − ÐQÑ7"

.Ð • ‡ Ñ œ . • ‡  Ð"Ñ • .Ð‡ Ñ − ÐQÑ= 5 = 5 = 5 A5" 7 .

On making use of the relation  between the operators of co-‡ œ Ð"Ñ .‡$ 5

differential  and the exterior derivative  [ 283] we arrive at the$ . see  :Þ
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expression

.Ð • ‡ Ñ œ . • ‡  • ‡= 5 = 5 = $5.

Then the Stokes theorem yields

( ( (
Q Q `Q

Ð. • ‡  • ‡ Ñ œ .Ð • ‡ Ñ œ • ‡= 5 = $5 = 5 = 5

so that we get

( ( (
Q Q `Q

. • ‡ œ • ‡  • ‡= 5 = $5 = 5.

On recalling the definition of the inner product, we thus conclude that

Ð. ß Ñ œ Ð ß Ñ  • ‡= 5 = $5 = 5(
`Q

.

If  is a manifold without boundary , we necessarily have toQ Ð`Q œ gÑ

write  to obtain(
`Q

= 5• ‡ œ !

Ð. ß Ñ œ Ð ß Ñ= 5 = $5 . (8.9.6)

According to the foregoing relation, we are led to the following conclusion:
let  be the graded exterior algebra on a compact manifold withoutAÐQÑ
boundary. The operators on the exterior algebra . À ÐQÑ Ä ÐQÑA A5 5"

and  are  on . $ A A AÀ ÐQÑ Ä ÐQÑ ÐQÑ5 5" adjoint operators This result
will also be valid for all forms with compact support on a manifold with
boundary. Because such forms will necessarily vanish on the boundary of
the manifold.

The Laplace-de Rham operator  was$ $ J A A.  . œ À ÐQÑ Ä ÐQÑ5 5

defined by (5.9.31). When , (8.9.6) together with the sym-= 5 Aß − ÐQÑ5

metry of the inner product leads to the result

Ð ß Ñ œ Ð . ß Ñ  Ð. ß Ñ œ Ð. ß . Ñ  Ð ß Ñ

œ Ð ß . Ñ  Ð ß . Ñ œ ß Ð .  . Ñ

œ Ð ß Ñ

J= 5 $ = 5 $= 5 = 5 $= $5

= $ 5 = $5 = $ $ 5

= J5

ˆ ‰
.

Hence, with respect to this inner product the operator  on  becomesJ AÐQÑ
a  if  is a manifold without boundary. It followsself-adjoint operator Q
from the above relation that we obtain

Ð ß Ñ œ Ð. ß . Ñ  Ð ß Ñ œ .    !J= = = = $= $= = $=l l l l# # (8.9.7)
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for all . Since  for all  we may describe = A J= = = A J− ÐQÑ Ð ß Ñ   ! − ÐQÑ
as a  or  .positive definite elliptic operator

A form  is called a  if .= A J=− ÐQÑ œ !harmonic form
Theorem 8.9.1.  Let be a compact and oriented Riemannian mani-Q

fold without boundary. We consider a form . The form  is= A− ÐQÑ5 =
harmonic if and only if  and . œ ! œ != $= .

If and , then the definition leads to . Conversely. œ ! œ ! œ != $= J=  
let us assume that . Then it follows from (8.9.7) that J= =œ ! ! œ Ð!ß Ñ œl l l l l l l l.  . œ œ != $= = $=# #. Hence, we get  from which we deduce
that and .. œ ! œ != $=  

Consequently, all harmonic forms are also closed on manifolds to
which the above theorem might be applied. We had previously mentioned
that all harmonic forms  holding the condition  constitu-= A J=− ÐQÑ œ !5

te the following subspace

H5 5ÐQÑ œ Ö − ÐQÑ À œ !× œ Ð Ñ= A J= a J

on real numbers.
We had seen that  when . The operatorJ $ A0 œ .0 œ f 0 0 − ÐQÑ# !

f# was defined by (5.9.33). Therefore, the solution of the Laplace equation
f 0 œ !#  on a compact manifold without boundary must satisfy the condi-
tion . Hence,   .0 œ ! 0the harmonic function  can only be a constant num-
ber. This result is a sort of generalisation of the well known Liouville the-
orem [French mathematician Joseph Liouville (1809-1882)].

Probably the most important theorem concerning harmonic forms has
been demonstrated by Hodge. Because the proof of this theorem is quite
difficult and requires a rather good knowledge of functional analysis and
properties of elliptic operators, we shall not be able to present its proof here
in its full generality.

Theorem 8.9.2. (The Hodge Decomposition Theorem).  Let be aQ
compact and oriented Riemannian manifold without boundary. For each
form there exist forms and= A A " A− ÐQÑ − ÐQÑ − ÐQÑ5 5" 5", ,  !
# =− ÐQÑH  5  so that one can express as

= ! $" #œ .   (8.9.8)

and this representation is unique. We can thus write symbolically

A A $A5 5" 5" 5ÐQÑ œ . ÐQÑ Š ÐQÑ Š ÐQÑH .

All these subspaces are mutually orthogonal.
We can easily show the orthogonality of subspaces. Since , we$# œ !

find that
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Ð. ß Ñ œ Ð ß Ñ œ !! $" ! $ "# .

On the other hand, if , then we have  so that we areJ# # $#œ ! . œ !ß œ !
led to the results

Ð. ß Ñ œ Ð ß Ñ œ !ß Ð ß Ñ œ Ð ß . Ñ œ !! # ! $# $" # " #   .

The difficult part of the theorem is to show the existence of the forms
! " #ß ß  satisfying the relation (8.9.8). As to this part, the interested readers
may be referred to Warner (1971, Ch. 6). In order to prove the uniqueness,
let us suppose that there are two representations of this form:

= ! $" # ! $" #œ .   œ .  " " " # # #.

Hence, if we denote , we realise! ! ! " " " # # #œ  ß œ  ß œ " # " # " #

that the condition below should be satisfied:

.   œ !! $" # .

On evaluating the exterior derivative of that expression, we get . œ !$"

from which we deduce that  and .! œ Ð. ß Ñ œ Ð ß Ñ œ œ !$" " $" $" $" $"l l#

So the foregoing equality is reduced to . The co-differential of.  œ !! #
this last expression yields . Thus, we can obtain at once $ !. œ ! ! œ

Ð . ß Ñ œ Ð. ß . Ñ œ . . œ ! œ !$ ! ! ! ! ! ! #l l# and  implying that . Hence, we
find that .. œ . ß œ ß œ! ! $" $" # #" # " # " # 

Theorem 8.9.3. Let be a compact and oriented Riemannian mani-Q  
fold without boundary. The solution of the equation where the formJ= 5œ  
5 A 5− ÐQÑ5  is prescribed does exist if and only if the form  is orthogonal
to the vector space , in other words, if  for all H H .5 5ÐQÑ Ð ß Ñ œ ! − ÐQÑ5 - -

Let us first assume that  and H . We then obtainJ= 5œ − ÐQÑ- 5

Ð ß Ñ œ Ð ß Ñ œ Ð ß Ñ œ Ð ß Ñ œ !5 - - -J= = J = ! .

Conversely, we suppose that the form satisfies the condition 5 - Ð ß Ñ œ !5
for all H . On utilising the Hodge decomposition, we may write- − ÐQÑ5

5 ! $" #œ .    so that the above condition yields

! œ Ð ß Ñ œ Ð. ß Ñ  Ð ß Ñ  Ð ß Ñ

œ Ð ß Ñ  Ð ß . Ñ  Ð ß Ñ

œ Ð ß Ñ œ

5 # ! # $" # # #

! $# " # # #

# # #l l#

and we find that . Hence, the form  can only take the shape # 5 5œ ! œ
.  œ ! $" = = =. Let us now write  and try to determine the solutions" #

of the equations  and  separately. If we employ theJ= ! J= $"" #œ . œ
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representation , we get . If we in turn write! ! $" # ! $"œ .   . œ ." " " "

" ! $" #" # # #
#œ .   . œ ! and note that , we obtain

. œ . œ . . œ Ð.  .Ñ. œ Ð. Ñ! $" $ ! $ $ ! J !" # # # .

Therefore, the equation  admits a solution in the form .J= ! = !" " #œ . œ .
Similarly, we take  to obtain  by noting that" ! $" # $" $ !œ .   œ .$ $ $ $

$ ! ! $" ##
$ % % %œ ! œ .  . By using the representation , we find that

$" $ ! $ $" $ $ $" J $"œ . œ . œ Ð .  . Ñ œ Ð Ñ$ % % % .

Therefore, we conclude that the equation  admits a solution in theJ= $"# œ
form . Ultimately, we find that the equation  possesses a= $" J= 5# %œ œ
solution in the form .= ! $"œ . # % 

 We have above touched upon the fact that harmonic forms are closed.
Hence, there exists a linear operator H  embedding\ VÀ ÐQÑ Ä ÐQÑ5 5

H  into . Let  be the linear canonical map-5 5 5 5ÐQÑ ÐQÑ À ÐQÑ Ä L ÐQÑV 1 V
ping. We are thus led to the conclusion that there exists a linear transfor-
mation H  between the vector space of har-< 1 \œ ‰ À ÐQÑ Ä L ÐQÑ5 5

monic . forms and the relevant cohomology group.5
Theorem 8.9.4. Let be a compact and oriented Riemannian mani-Q  

fold without boundary. The vector spaces  and  are iso-H5 5ÐQÑ L ÐQÑ
morphic.

In order to prove this theorem, we have to show that the linear operator
< introduced above is bijective. Let us first assume that H  and= − ÐQÑ5

Ò Ó œ Ð Ñ œ Ò Ó − L ÐQÑ= < ==  . This means that  is an exact form and one! 5

writes . But, we get  since . We thus= 5 = 5 $= 5 $=œ . Ð ß . Ñ œ Ð ß Ñ œ ! œ !

arrive at the relation  implying that . This amountsÐ ß Ñ œ œ ! œ != = = =l l#

to say that  is injective. We now consider an arbitrary cohomology class<
Ò Ó − L ÐQÑ= =5 .  is a representative of this equivalence class. Due to the
Hodge decomposition theorem, we can write . Since= ! $" #œ .  
. œ ! . œ ! œ != $" $", we find that . It then follows just as above that 
which implies that . This ofa closed form  is represented as = = ! #œ . 
course gives  so that one is able to write  whereÒ Ó œ Ò Ó Ò Ó œ Ð Ñ= # = < #
# < <− ÐQÑH . Consequently, we see that  is surjective. As a result,  is5

identified as an isomorphism. Hence, the vector spaces H  and 5 5ÐQÑ L ÐQÑ
are isomorphic. Accordingly, we can say that every cohomology class has a
harmonic representative in manifolds complying with the assumptions of
the theorem. 

According to a property that we shall again not be able prove here, the
null space of the operator , or more generally of a linear elliptic operator,J
is finite-dimensional if  is a compact Riemannian manifold [interestedQ
readers may be referred to Warner (1971)]. Therefore, on such a manifold



482 VIII Integration of Exterior Forms

the vector space H  is finite-dimensional. Since isomorphic spaces5ÐQÑ
must have the same dimension we can now state that dimensions of
cohomology groups, that is, Betti numbers on a compact and oriented
Riemannian manifold without boundary are all finite.

We have seen while proving the above theorem that any closed form
= V− ÐQÑ5  on a compact and oriented Riemannian manifold without
boundary is expressible as   where H .= ! # ! A #œ .  − ÐQÑß − ÐQÑ5" 5

If  is a -cycle, then we can write- 55

1 = ! #

! # #

(

.

- Ñ œ œ . 

œ  œ

5

`

( ( (
( ( (

- - -

- - -

5 5 5

5 5 5

This is tantamount to say that there exists a unique harmonic -form 5 #
possessing the same periods as a closed -form  on such kind of5 =
manifolds.

8.10. POINCARE DUALITY

Let  be an -dimensional compact, oriented, smooth RiemannianQ 7
manifold without boundary. We shall now introduce a bilinear functional
T À L ÐQÑ ‚ L ÐQÑ Ä5 75 ‘ through the following relation

T ÐÒ Óß Ò ÓÑ œ • ß= 5 = 5(
Q

(8.10.1)

where  and , and the forms  andÒ Ó − L ÐQÑ Ò Ó − L ÐQÑ − ÐQÑ= 5 = V5 75 5

5 V− ÐQÑ75  are arbitrary representatives of these cohomology classes. In
order that the functional (8.10.1) known as the  proves to bePoincaré form
meaningful, it must be independent of the selection of the representatives of
equivalence classes. This property can be shown quite easily We considerÞ
the forms , . If we note that  and! A " A =− ÐQÑ − ÐQÑ . œ !5" 75"

. œ !5 , the Stokes theorem results in the expression

( (
( ( ( (
( ( ( ( (

Q Q

Q Q Q Q

5

Q `Q `Q `Q Q

5

Ð  . Ñ • Ð  . Ñ œ Ð •  . •  • .  . • . Ñ

œ •  .Ð • Ñ  Ð"Ñ .Ð • Ñ  .Ð • . Ñ

œ •  •  Ð"Ñ •  • . œ •

= ! 5 " = 5 ! 5 = " ! "

= 5 ! 5 = " ! "

= 5 ! 5 = " ! " = 5.
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Boundary integrals vanish because we have assumed that . Hence,`Q œ g
we can write  for arbitrary representatives. We shallT ÐÒ Óß Ò ÓÑ œ T Ð ß Ñ= 5 = 5
now demonstrate that this bilinear form is non-degenerate. To this end, it
would suffice to determine an equivalence class  such thatÒ Ó Á Ò Ó5 !
T ÐÒ Óß Ò ÓÑ Á ! Ò Ó Á Ò Ó Ò Ó − L ÐQÑ= 5 = = whenever . Let  be a non-zero coho-! 5

mology class. We choose the form H  as the harmonic represen- = − ÐQÑ5

tative of that cohomology class. We thus write . The form  cannotJ= =œ !
be identically zero since . Let us next consider the Hodge dualÒ Ó Á Ò Ó= !
‡ − ÐQÑ ‡ œ ‡= A = J J75  of the form . We had obtained the relation  on
:Þ ‡ œ ‡ œ ! ‡ − ÐQÑ 284. We thus find  implying that H . ThisJ = J= = 75

form can be chosen as the harmonic representative of the cohomology class
Ò‡ Ó − L ÐQÑ Ò Ó œ Ò‡ Ó= 5 =75 . Next, we take . Hence, we conclude that

T Ð ß ‡ Ñ œ • ‡ œ Ð ß Ñ œ Á != = = = = = =( l l
Q

#

On the other hand, this relation signifies that  if and only if T Ð ß ‡ Ñ œ != = =
œ ! T Ò Ó. Hence, the bilinear form  is non-degenerate. Let us fix a class  in=

(8.10.1). Then a linear functional  on the vector space  canPÐÒ ÓÑ L ÐQÑ= 75

be introduced by the relation

PÐÒ ÓÑ Ò Ó œ T ÐÒ Óß Ò ÓÑ= 5 = 5( ) .

Thus the bilinear form  induces a linear transformationT ÐÒ Óß Ò ÓÑ= 5

P À L ÐQÑ Ä L ÐQÑ5 75 ‡ ‘ . (8.10.2)

We can realise right away that the non-degeneracy of the bilinear form T
secures that the linear operator  is injective. On the other hand, we knowP
that the dimensions of  and , consequently, that of theL ÐQÑ L ÐQÑ5 75

dual  is finite. In this case,  becomes an isomorphism so that ‘L ÐQÑ P75 ‡

the spaces  and  are isomorphic. Because a finite-di-L ÐQÑ L ÐQÑ5 75 ‡ ‘
mensional vector space and its dual are isomorphic, we thus infer that the
spaces  and  are isomorphic. This property is called theL ÐQÑ L ÐQÑ5 75

Poincaré duality. Therefore, we can regard these two spaces as the same as
far as their algebraic properties are concerned. Hence, the Betti numbers of
compact, oriented Riemannian manifolds without boundary must satisfy the
relation

, ÐQÑ œ , L ÐQÑ œ , L ÐQÑ œ , ÐQÑ5 75
5 75ˆ ‰ ˆ ‰ . (8.10.3)

If the dimension of the manifold is an odd number, then its Euler-Poincaré
characteristic becomes



484 VIII Integration of Exterior Forms

;ÐQÑ œ Ð"Ñ , ÐQÑ œ !"
5œ!

7
5

5 .

In fact, we find in this case  and theÐ"Ñ , ÐQÑ œ Ð"Ñ , ÐQÑ75 5"
75 5

corresponding terms cancel each other in the above sum.
According to the Poincaré duality, the vector spaces , L ÐQÑ L ÐQÑ7 !

are isomorphic in a compact, oriented Riemannian manifold without bound-
ary. We know that  when  is . Thus, in this sort ofL ÐQÑ œ Q! ‘ connected
manifolds the cohomology group  is isomorphic to . Furthermore,L ÐQÑ7 ‘
it is possible to show that  if the manifold  is L ÐQÑ œ ! Q7" simply con-
nected, that is, if every closed curve on  can be contracted smoothly to aQ
point inside the curve. Indeed, due to the Poincaré duality, the vector spaces
L ÐQÑ L ÐQÑ7" " and  are isomorphic. In local coordinates, let us write a
form  as  where . If  is closed, then the= A = = =− ÐQÑ œ .B 3 œ "ß á ß 7" 3

3

condition

. œ .B • .B œ ! œ != = =3ß4 3ß4
4 3  or  [ ]

must be satisfied. If  is simply connected, then it is well known that theQ
general solution of the following system of partial differential equations

` `

`B `B
 œ !

= =3 4

4 3

is provided as follows

=3 3
œ

`0

`B

where . Thereby, we get . Thus, on such kind0 − ÐQÑ œ 0 .B œ .0A =! 3
ß3

of manifolds every closed -form is exact. Therefore, we find ," L ÐQÑ œ !"

and consequently, .L ÐQÑ œ !7"

VIII.  EXERCISES

8.1. Show that a -dimensional submanifold of a manifold  is orientable if one5 Q
 can find a -form that vanishes nowhere on this submanifold.5
8.2. Show that the Cartesian product of orientable manifolds is also an orientable
 manifold.
8.3. Show that the Cartesian product of non-orientable manifolds is also a non-
 orientable manifold.
8.4. Show that the Klein bottle is non-orientable.
8.5. Show that the Lie groups  and  are orientable.KPÐ8ß Ñ KPÐ8ß Ñ‘ ‚
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8.6. Show that if a form  satisfies the condition  on = A =− ÐQÑ œ !5 (
55

every

 singular -simplex, then one has .5 œ !=

8.7. Show that if forms  satisfy the condition  on= = A = =" # " #
5ß − ÐQÑ œ( (

5 55 5

  singular -simplex , then one has .every 5 œ5 = =5 " #

8.8. Show that a form  turns out to be closed if it satisfies the condi-= A− ÐQÑ5

 tion  on  singular -simplex.(
`55"

= œ ! Ð5  "Ñevery

8.9. 7.9 Show that the volume form on the hyperbolic plane  ( Exercise ) isL# see  
 given by

. ) )œ .< • . œ = .= • .
<

"  <È #
sinh .

 Find the volume of the subregion of  satisfying the condition .L " Ÿ B Ÿ ##
!

8.10.  is an -dimensional compact submanifold with boundary of an -dimen-Y 7 7
 sional Riemannian manifold. Show that for a vector field  one isZ − X ÐQÑ
 able to write

( (
Y `Y

Zdiv .Z œ. .i

8.11. We consider the simplex  in  where , = œ ÐT ß T ß T Ñ T œ Ð!ß !Ñ T œ# ! " # ! "
#‘

 ,  . Evaluate the integral of the -formÐ"ß !Ñ T œ Ð!ß #Ñ "#

= œ ÐB  (CÑ .B  ÐC C  BÑ .C# #sin

 on  the cycle .`=#

8.12. Show that the form  is exact.= A ‘œ Ð#B  C BCÑ .B  B BC .C − Ð Ñcos cos " #

 Find the integral of this form on the cycle defined in Exercise. .8.11
8.13. Show that a form  is exact if only the following condition is met= A ’− Ð Ñ# #

(
’#

= œ !.

8.14. We consider the form  where .= A ‘ ‘œ B .B • .B − Ð Ñ ÐB ß B ß B Ñ −" # $ # $ " # $ $

 Show that

( k
’

’
#

#=
1

œ V
%

$
$

 where  is the radius of the sphere . Since the form  isV − Ð Ñ’ = A ’# # #k’#

 clearly closed, this result indicates the fact that that every closed -form on#
  is not necessarily exact.’#

8.15. Show that every closed -form on  is exact.." ’#
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8.16.  Show that the restriction  to the sphere  of the formk= A ’ ’’8" − Ð Ñ8" 8" 8"

  is a closed form that is not= % A ‘œ B .B • â • .B − Ð Ñ33 â 3
3 3 3 8" 8

" 8"
" 8"

 exact and it does vanish nowhere on .’8"

8.17. Let us consider the manifold  and the formQ œ  Ö ×‘8 !

= Aœ − ÐQÑ
B .B  B .B  â  B .B

ÐB Ñ  ÐB Ñ  â  ÐB Ñ

" " # # 8 8

" # # # 8 # 8Î#
"ˆ ‰ .

  Determine the form  and show that it is closed.  Evaluate the integral‡=

(
’8"

‡=.

 Is the form  exact?‡=
8.18. Let us consider a form  on an -dimensional compact and= A− ÐQÑ 77"

 orientable manifold  without boundary . Show that there exists aQ Ð`Q œ gÑ
 point  such that .: − Q . Ð:Ñ œ !=
8.19. Let  be a compact and oriented Lie group. We define the mapping K Ð1Ñ+
  for every . Show that we can write the following relation forœ 1 1 − K"

 every continuous function  on 0 K

( (
K K

0 œ 0 ‰ +.

8.20. Let us consider the functions  and a finite region . By0 ß 1 − Ð Ñ H §A ‘ ‘! 8 8

 employing the Stokes theorem, derive the Green formula given below

( (ˆ ‰
`H H

0 ‡Ð.1Ñ  1‡Ð.0 Ñ œ  Ð0 1  1 0 ÑJ J ..

8.21. Let us consider the manifold  with a coordinate cover Q œ ÐBß >ß ß ?ß @Ñ‘ )&

 and the forms

= A ‘ = ) A ‘" # & # " &œ .? • .>  .@ • .B − Ð Ñß œ .  ? .B  @ .> − Ð Ñ

 Let  be the ideal generated by these forms. Assume that the -dimensional\ #
 solution submanifold of the ideal  is prescribed by the mapping ,\ ) )œ ÐBß >Ñ
  and . Show that the   is? œ ?ÐBß >Ñ @ œ @ÐBß >Ñ  œ !wave equation ) )BB >>

 satisfied on the solution submanifold. Determine the conservation laws of this
 equation.

8.22. Show that a form  is exact if it satisfies the condition  for= A =− ÐQÑ œ !" (
V

  closed curve .every V § Q
8.23. Show that a connected manifold  is simply connected if and only if oneQ
 gets .L ÐQÑ œ !"

8.24. Determine the de Rham cohomology of the annular region depicted by the
 condition  in ."  B  B  #È # #

" #
#‘




