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CHAPTER XI

SOME PHYSICAL APPLICATIONS

11.1 SCOPE OF THE CHAPTER. 
 

This chapter deals with the exploration of some physical applications
of exterior differential forms. In the first four successive sections we discuss
the analytical mechanics for which exterior forms prove to be a very power-
ful tool to reveal its various fundamental properties. We first investigate in
Sec. 11.2 the behaviour of a dynamical system with  degrees of freedom,7
whose constraints are holonomic and are not changing with time. We further
assume that forces acting on the system are derivable from a time-independ-
ent potential. Such a system is depicted by the Lagrangian function. Then,
the Lagrange equations are given, and by defining the generalised momenta,
the Hamiltonian function and the Hamilton equations are introduced. It is
shown that the generalised coordinates and momenta are local coordinates
of a -dimensional symplectic manifold . A symplectic -form then#7 W #
provides an isomorphism between the module of -forms on the manifold " W
and its tangent bundle. This enables us to define Hamiltonian vector fields
and to express equations of motions as an exterior equation on . We thenW
introduce the Poisson bracket of -forms on  in Sec. 11.3 and we examine" W
properties of these brackets. We further show that -forms constitute a Lie"
algebra with respect to a product identified as a Poisson bracket. Making
use of the relations involving such Poisson brackets, we obtain Poisson
brackets of -forms, namely, differentiable functions and we show that these!
functions also constitute a Lie algebra with respect to Poisson brackets.
Then the connection between Poisson brackets and equations of motion is
established. We deal with canonical transformations in Sec. 11.4 that are
characterised as mappings under which the symplectic form remains inva-
riant. It turns out that these transformations leave also the Hamilton equa-
tions of motions invariant. Afterwards, we discuss non-conservative me-
chanics in Sec. 11.5. Dynamical system now occupies a -dimension-#7  "
al non-symplectic manifold. The Hamilton equations are then reduced again
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to an exterior form equation by means of a -form involving a time-depend-"
ent Hamiltonian function and a -form that is its exterior derivative. It is#
shown that the canonical transformations leave this -form invariant. It is#
then proven that the Hamilton equations remain invariant under canonical
transformations. The structural properties of canonical transformations are
investigated. We finalise the study of analytical mechanics by exploring the
Hamilton-Jacobi theory that help reduce the Hamilton equations to their
simplest possible form. Our next topic is the electromagnetic theory studied
in Sec. 11.6. The Maxwell equations are expressed as vanishing divergences
of two second order antisymmetric tensors on a -dimensional manifold and%
it is found that these equations are equivalent to an exterior system involv-
ing two -forms. The general solution of these equations is constructed by#
employing the homotopy operator. When constitutive relations are taken
into account, it is shown that this solution leads to the classical solution that
are expressed in terms of scalar and vectorial potentials satisfying wave
equations. In the final Sec. 11.7, the classical thermodynamics is briefly
treated in a rather elementary level. A thermodynamic system whose state is
determined by external and internal variables, and the empirical temperature
is considered. An isothermal work function is defined assuming that exter-
nal agents are conservative. By employing the first law of thermodynamics
which states that the work done by external effects plus the heat energy
input is equal to the rate of change of the internal energy and the physical
fact that thermodynamic functions are additive, admissible versions of work
and heat energy forms are obtained. Furthermore, the thermodynamic
(absolute) temperature is introduced by an appropriate transformation, the
existence of the entropy is proven under the conditions of complete inte-
grability of the heat form. Then, the relations between the internal energy,
free energy and heat forms are illustrated.

11.2. CONSERVATIVE MECHANICS

Let us consider a dynamical system consisting of several particles and
rigid bodies moving in the space . In this space, the position of a particle‘$

is determined by at most  numbers corresponding to its coordinates imply-$
ing that a particle has . On the other hand thethree degrees of freedom
position of a rigid body is prescribed by at most  numbers (for instance, ' $
coordinates of one of its points, frequently of its centroid, and  Euler$
angles prescribing its orientation in the space). Therefore, a rigid body has
six degrees of freedom. We can thus represent the position of a dynamical
system as a point in some space  where  and the time‘R " Ÿ R Ÿ _
evolution of such a system can be depicted by a curve in this space.
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However, the system may possess  that restrict its motion so thatconstraints
it has a lower degrees of freedom. For instance, if we restrict the motion of a
particle to a plane, then it has only two degrees of freedom. For another
example, let us consider a rigid body. Although it has infinitely many
particles, due to the fact that the distance between any two particles does not
change during the motion, its degrees of freedom become just six and its
motion is completely determined by specifying only six functions depend-
ing on time. Constraints that can be expressed by functional relations are
called the  while they are known as the holonomic constraints anholonomic
constraints if they are prescribed by non-integrable differential forms.
Moreover, if their structure is rigid, i.e., it does not change with time they
are called the whereas if it varies with time theyscleronomic constraints 
are named as the . We first consider a system withrheonomic constraints
scleronomic holonomic constraints. Let us assume that the system has now
7 degrees of freedom with constraints. The position of the system, thereby
of every member of the system are completely determined by  variables7
q œ Ö; ß ; ß á ß ; ×" # 7  called the  through the rela-generalised coordinates
tions . If we denote the time by , the functionsB œ B Ð Ñß 3 œ "ß #ß á ß 7 >3 3 q
qÐ>Ñ œ Ö; Ð>Ñß 3 œ "ß #ß á ß 7×3  now describe fully the evolution of the
dynamical system. This coordinate transformation produces a differentiable
7 Q-dimensional submanifold  of the simple manifold . We call this‘R

manifold, which might acquire quite a complicated structure due to this
transformation, as the . Hence, the motion of theconfiguration manifold
system is represented by a curve on this manifold. If we can find this curve
on , then we can carry it over the physical space by using appropriateQ
coordinate transformations. This task is, of course, conceptually quite
simple, but it may prove to be rather difficult to realise it operationally.

It is evident that the generalised coordinates need not to be determined
uniquely. A new set of generalised coordinates  forQ œ ÖU ß U ß á ß U ×" # 7

the configuration manifold may be defined by the help of functions

U œ Ð; ß ; ß á ß ; Ñß 3 œ "ß #ß á ß 73 3 " # 7d

However, in order that the degrees of freedom of the system are preserved,
the new coordinates should be functionally independent. Therefore, we have
to be sure that the condition

det detÄ œ Á !
`

`;
’ “d 3

4

must be satisfied. That we are somewhat free in choosing the generalised
coordinates suggests the possibility of searching for a particular choice of
them to simplify the investigation of the system to a great extent.
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Example 11.2.1. Let us consider three particles moving in a plane with
masses . The masses  and  are connected by a rod of7 ß 7 ß 7 7 7" # $ " #

length  whereas  and  are connected by a rod of length . Both rods6 7 7 6" # $ #

are assumed to be rigid and massless. Connections are provided by freely
rotating joints. This system is, of course, taking place in the manifold ‘'

with the coordinate cover . But, if we denote theÐB ß C ß B ß C ß B ß C Ñ" " # # $ $

angles between rods and the horizontal line by  and , we can write) )" #

B œ B  6 ß C œ C  6 ß

B œ B  6  6 ß C œ C  6  6
# " " " # " " "

$ " " " # # $ " " " # #

cos sin
cos cos sin sin

) )

) ) ) ) .

Since the motion of the system is now determined by generalised coordi-
nates , it has four degrees of freedom. So the system willÐB ß C ß ß Ñ" " " #) )
evolve with time on a -dimensional configuration manifold  with% Q §% '‘
a coordinate cover . This manifold may be defined by theÐB ß C ß ß Ñ" " " #) )
following algebraic equations

ÐB  B Ñ  ÐC  C Ñ œ 6 ß ÐB  B Ñ  ÐC  C Ñ œ 6 è# " # " $ # $ #
# # # # # #

" #.

When the constraints are both scleronomic and holonomic, the kinetic
energy  of the system can be expressed as follows

X œ 1 Ð; ß ; ß á ß ; Ñ ; ; œ 1 Ð Ñ ; ;   !
" "

# #
† † † †

34 34
" # 7 3 4 3 4q . (11.2.1)

An overdot denotes as usual the time derivative. [ ] must be aG q qÐ Ñ œ 1 Ð Ñ34

symmetric and positive definite  matrix. The functions  are7 ‚ 7 ; Ð>Ñ† 3

called the . We know that the generalised velocities atgeneralised velocities
a point  take place in the tangent space of the manifold  at thatq − Q Q
point. The  is the tangent bundle  of the configu-velocity phase space X ÐQÑ
ration manifold . It is a -dimensional differentiable manifold whoseQ #7
coordinate cover is . If the system is , then there exists aÐ; ß ; Ñ†3 3 conservative
scalar-valued potential function

Z œ Z Ð; ß ; ß á ß ; Ñ œ Z Ð Ñ" # 7 q

and the gradient  of this function with respect to the generalisedÖ`Z Î`; ×3

coordinates determines, somewhat indirectly, the actual forces acting on the
physical system. The differentiable function  defined by theP À X ÐQÑ Ä ‘
relation

PÐ ß Ñ œ X  Zq q† (11.2.2)

is called the  of the system and the dynamical evolu-Lagrangian function
tion of the system is governed by the following Lagrange equations
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. `P `P

.> `; `;†  œ !ß 3 œ "ß #ß á ß 7Š ‹3 3
. (11.2.3)

These are a set of second order ordinary differential equations satisfied by
functions . One must easily recognise that these equations are none; Ð>Ñ3

other than Euler-Lagrange equations for functions  extremising the; Ð>Ñ3

action functional

EÐ Ñ œ PÐ ß Ñ .>q q q(
>

>

"

#

†

[ (10.3.5)].see 
Lagrange had obtained the equations (11.2.3) and similar equations

corresponding to more general systems in 1760. However, the importance of
these equations and, particularly of the approach leading to these equations
has been fully understood only after he has published in 1788 Mécanique
Analytique, which is a groundbreaking and probably one of the most influ-
ential books in the history of science. In this work, Lagrange has succeeded
to convert the rational mechanics to a branch of mathematical analysis. In
contrast to the geometrical approach prevalent at that time, his priding him-
self on not including even a single figure in his book  is a striking statement1

reflecting his new philosophy to which he had subscribed in treating the ra-
tional mechanics.

For scleronomic systems the kinetic energy given by (11.2.1) enables
us to equip the configuration manifold  with a metric so that  becomesQ Q
a complete Riemannian manifold. We define the metric tensor by using the
coefficient functions  in the expression for the kinetic energy just like1 Ð Ñ34 q
in (5.9.1) as follows

Z œ 1 Ð Ñ .; Œ .; − ÐQÑ34
3 4 !

#q Ç .

Therefore, we can introduce an inner product on  by the relationX ÐQÑ

ÐY ß Z Ñ œ ÐY ß Z Ñ œ 1 ? @ ß Y ß Z − X ÐQÑZ 34
3 4 .

The arc element on the manifold  in the direction of the generalisedQ
velocity vector is then given by

.= œ 1 .; .; œ 1 ; ; .> œ #X .>† †# 3 4 3 4 # #
34 34

or . Therefore, in such kind of systems when we insert the.= œ #X .>È
1"On ne trouvera point de Figures dans cet Ouvrage."
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Lagrangian function

P œ 1 Ð Ñ ; ;  Z Ð Ñ
"

#
† †

34
3 4q q

into the equations (11.2.3), we arrive at the following equations of motion
on the manifold Q

 ‘1 Ð Ñ ;  ; ;  œ !† † †" `1 `Z

# `; `;
34

4 4 5† 45

3 3
q .

On evaluating the time derivatives above and arranging the resulting terms,
we obtain

1 ;   ; ;  œ !
ÞÞ `1 " `1 `Z

`; # `; `;
† †

34
4 4 534 45

5 3 3
Š ‹ .

Nevertheless, if we notice that only the symmetric part with respect to
indices  and  of the expression within parentheses in the above equations4 5
would survive, then it is straightforward to see that these set of equations
can be cast into the form

1 ;    ; ;  œ !
ÞÞ " `1 `1 `1 `Z

# `; `; `; `;
† †

34
4 4 534 35 45

5 4 3 3
Š ‹ .

If we utilise the relation  and recall the definition (7.4.5) of the1 1 œ45
35 3

4$
Christoffel symbols of the second kind, we end up with the following set of
second order, generally non-linear ordinary differential equations by invert-
ing the coefficient matrix Ò1 Ó34

;  Ð Ñ ; ; œ  1
ÞÞ † † `Z

`;
3 3 4 5 34

45 4
> q .

When we suppose that , these equations reveal the fact that Z œ ! points
representing dynamical systems that are free of forces must move on some
geodesics in the configuration manifold see  [ (7.2.16)].

The set of second order differential equations (11.2.3) can be trans-
formed into an equivalent but larger set of first order ordinary differential
equations by introducing certain auxiliary variables. To this end, we shall
select the new variables  with  that will be called the: 3 œ "ß #ß á ß 73

generalised momenta as follows

: œ
`P

`;†
3 3 . (11.2.4)

When the condition
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det det’ “ ’ “`: ` P

`; `; `;† † †œ Á !
3
4 3 4

#

is met, then by resorting to the inverse mapping, (11.2.4) yields in principle

; œ Ð: ß á ß : ß ; ß á ß ; Ñ† 3 3 " 7
" 7ª . (11.2.5)

So long as the quantities  are given by (11.2.5), the ;† 3 Hamiltonian function
L œ LÐ ß Ñp q  can now be defined by the Legendre transformation

LÐ ß Ñ œ : ;  PÐ ß Ñ†p q q q3
3 † . (11.2.6)

When we evaluate the differential of the function (11.2.6) and employ the
equations (11.2.4) and (11.2.3), we conclude that

.L œ .:  .; œ ; .:  : .;  .;  .;
`L `L `P `P

`: `; `; `;
† † †

†

œ ; .:  : .;† †
3

3 3 33 3
3 3 3 3 3

3

3 3
3 3

from which we derive the first order Hamilton equations

; œ ß : œ  ß 3 œ "ß #ß á ß 7† †`L `L

`: `;
3

3
3 3

    . (11.2.7)

In order to fully understand the exact nature of generalised momenta
:3, we wish to examine their behaviour under a coordinate transformation
U œ Ð; Ñ3 3 4d  in the configuration manifold. To this end, let us define an
7 ‚ 7 matrix byd  

d œ Ð Ñ œ Þ
`

`;
 ‘ ’ “Ä

d
4
3

3

4
q

so that the time derivative of the coordinate transformation is expressible as

U œ ; œ ; œ œ
† `

`;
† †3

3

4
4 3 4 "

4

d
Ä    or    or  .Q q q Q    † †† †Ä Ä

Making use of these relations we obtain

T œ œ œ Ð Ñ : œ :
`P `P `; `;

`U `U
† † †`; `U

†
3 4 43 4 3

4 4
"

3
4

3
Ä

which means that the elements  behaves like components ofÖ: ß : ß á ß : ×" # 7

a covariant vector that is a member of the cotangent bundle, in other words,
they are the components of a -form. Therefore, the coordinate cover of the"
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#7 W œ X ÐQÑ Ö; ß : ×-dimensional differentiable manifold  is given by .‡ 3
3

We name this manifold as the , or in short, merelymomentum phase space
the . Thus, the vector fields  satisfying the Hamiltonphase space Ö; ß : ×† †3

3

equations (11.2.6) inhabit the tangent bundle . On the other hand,X ÐX ÐQÑÑ‡

the -form defined by"

) Aœ : .; œ : .;  â  : .; − ÐWÑ3 " 7
3 " 7 " (11.2.8)

and usually known as the  is a member of the cotangentLiouville form
bundle . From the exterior derivative of the form (11.2.8) we can ge-X ÐQÑ‡

nerate a closed -form#

= )

A

œ  . œ  .: • .; œ .; • .:

œ .; • .:  â  .; • .: − ÐWÑ

3 3
3 3

" 7 #
" 7 .

(11.2.9)

Let us denote the coordinate cover of the manifold  by W ÖB ß + œ "ß #ß+

á ß #7× ;. These coordinates will represent the coordinates  when we take3

+ œ 3 " Ÿ 3 Ÿ 7 : + œ 7  3 with , and the coordinates  when we take  if3

we do not mind a slight abuse of notation due to the unfamiliar positions of
superscripts and subscripts. Hence, the form  can now be written as=
follows

= =œ Ð Ñ.B • .B ß " Ÿ +ß , Ÿ #7
"

#
+,

+ ,x .

In this case, the coefficients  of the form  can now be expressed by the= =+,

#7 ‚ #7 antisymmetric matrix

J 0 I
I 0œ Ò Ó œ


 . (11.2.10)=+,

7

7
” •

where  identity matrix is denoted by . Since , then the7 ‚ 7 œ "I J7 det
rank of -form  is maximal, namely, it is . We shall see a little later that# #7=
= = is also non-degenerate. Hence,  is a symplectic form [   46]. Wesee :Þ
shall call this form whose structure has been manifested by (11.2.9) as the
canonical symplectic form. The generalised coordinates  that enableÖ; ß : ×3

3

us to write the symplectic form locally in this way are also called canonical
coordinates. We refer a manifold  endowed with a symplectic form as aW
symplectic manifold. Inasmuch as the rank of  is , the Darboux class of= #7
the form  is . Consequently, Theorem 6.6.2 states that we can always) 7
find canonical coordinates that make it possible to write the symplectic form
locally in the canonical form (11.2.9).

The matrix  is called a [  Exercise ]. We canN symplectic matrix see 3.4
immediately see that this matrix enjoys the following properties
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N N

N

T œ œ 


œ œ
  



œ 

” •
” •” • ” •

0 I
I 0

0 I 0 I I 0
I 0 I 0 0 I

I

7

7

# 7 7 7

7 7 7

#7

whence we deduce that

N N N" œ  œ T.

We would like now to introduce a mapping  betweenW À X ÐWÑ Ä X ÐWÑ=
‡

the tangent and cotangent bundles of a symplectic manifold  which may beW
equivalently interpreted as a mapping  between the tan-W À ÐWÑ Ä ÐWÑ= É A"

gent module  and the module of -forms . For each vector fieldÉ AÐWÑ " ÐWÑ"

Z − X ÐWÑ, we define this mapping by employing the symplectic form in the
following fashion

W Z œ Ð Ñ − ÐWÑ= iZ
"= A . (11.2.11)

Because of the properties (5.4.7), we immediately see that W= is a linear
operator on the module ÉÐWÑ. The value of this -form on a vector field"
Y − X ÐWÑ is naturally given by

W Z ÐY Ñ œ Ð Ñ œ ÐZ ß Y Ñ − ÐWÑ= i iY Z
!ˆ ‰= = A .

If we write

Z œ @ œ @  − X ÐWÑ
` ` `

`B `; `:
+ 3

+ 3 3
3

¯ ,

then (11.2.11) yields

W Z œ Ð Ñ œ @ .B œ @ .:  .; − ÐWÑ= iZ +, 3 3
+ , 3 3 "= = ¯ A .

Let us consider a form  by! A− ÐWÑ"

! 0 (œ .;  .:3 3
3 3 .

It is straightforward to observe immediately that this -form is the image"
W Z= ! of the vector

Z œ  œ Ð Ñ
` `

`; `:
! ( 0 ! =3

3 3 Z
3
,    . (11.2.12)i !

Hence, the operator  will be surjective. On the other hand, if we writeW=
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W Z œ ! @ œ !=  we end up with the expression . Since the matrix=+,
+

J œ Ò Ó @ œ ! Z œ !=+,
+ is regular, we find only the trivial solution  or , that

is, the operator  is injective, and consequently it is bijective. Therefore,W=

the operator  is one of the isomorphisms between tangent and cotangentW=

spaces. Thus, the inverse mapping  assigns to each -W À ÐWÑ Ä ÐWÑ "" "
= A É

form field

! 0 ( Aœ .;  .: − ÐWÑ3 3
3 3 "

a unique vector field

W œ Z œ  − X ÐWÑ
` `

`; `:
" 3

3 3
3

= !! ( 0 .

It is evident that one can write . Since the relation ! = =œ W Z Ð Ñ œ ÐZ Ñ= ! iZ

œ ! Z œ ! is satisfied if and only if , we gather that the form  is = non-
degenerate.

Let us next consider the smooth function . A vector fieldL − ÐWÑA!

ZL  complying with the condition

W Z œ Ð Ñ œ .L − ÐWÑ= L Z
"i

L
= A (11.2.13)

is called a . Since  is an isomorphism, when aHamiltonian vector field W=

function  is chosen, the Hamiltonian vector field corresponding to thisL
function is  determined through the relation . If weuniquely Z œ W Ð.LÑL

"
=

explicitly write  as.L

.L œ .;  .:
`L `L

`; `:3
3

3
3,

then the corresponding Hamiltonian vector field is given by the relation

Z œ 
`L ` `L `

`: `; `; `:
L

3 3
3 3

. (11.2.14)

It is now obvious that trajectories of such a vector field will have to satisfy
the Hamilton equations

; œ ß : œ † †`L `L

`: `;
3

3
3 3

cited in (11.2.7). Thus, it would be then quite reasonable to state that the
equation (11.2.13) is the  .symplectic form of the Hamilton equations

Example 11.2.1. Suppose that  where  is aL œ ;:  ;:  +: +#

constant. In that case, the Hamilton equations become
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.;

.>
œ #;:  ;  +ß

.:

.>
œ  :  :# .

The integration of these differential equations yields easily

:Ð>Ñ œ ß
"

"  /

;Ð>Ñ œ "  / - / "  /  +

Ð>- Ñ

Ð>- Ñ > Ð>- Ñ
#

"

" "ˆ ‰ ˆ ‰ ‘.

- -" # and  are integration constants to be determined through the initial con-
ditions. If we evaluate the given Hamiltonian function on these trajectories,
we find that

L œ ;Ð>Ñ:Ð>Ñ  ;Ð>Ñ:Ð>Ñ  +:Ð>Ñ œ +  / - œ Þ# -
#

" constant

Clearly, this constant will generally be different on each trajectory in the
phase space. è

11.3. POISSON BRACKET OF 1-FORMS AND SMOOTH
         FUNCTIONS

ÐWß Ñ ß − ÐWÑ= ! " A is a symplectic manifold. We consider the forms ."

The Poisson bracket of -forms  and  is also a -form " "! " Ö ß × − ÐWÑ! " A"

defined by the following relation

Ö ß × œ  W Ð Z ß Z Ñ œ  Ð Ñ

œ  W Ð W ß W Ñ

! " =

! "

= ! "

= = =

Ò Ó

Ò Ó

iÒ ÓZ ßZ

" "
! "

(11.3.1)

where the vector fields  and  are generated from theZ œ W Z œ W! "= =
" "! "

forms  and , respectively, through the isomorphism . Consequently, on! " W=

the module  the expressionÉÐWÑ

W ÐÖ ß ×Ñ œ  W ß W" " "
= = =! " ! "Ò Ó (11.3.2)

would be valid. On the other hand, if we recall that  we can write. œ !=

i i i i i
i i i
i

Ò ÓZ ßZ Z Z Z Z Z Z Z

Z Z Z Z

Z Z

! " ! " " " "! ! !

! ! !"

! "

Ð Ñ œ Ð Ñ œ ß Ð Ñ œ Ð Ñ  Ð Ñ

œ  Ð. Ñ  . Ð Ñ

œ  . Ñ

= = = = =

" = =

" !

£Z
Ò Ó£ £ £

£

£

ˆ ‰
ˆ

owing to the equality (5.11.7). However, if we take into account the Cartan
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magic formula £  and anticommutativity (5.4.4) ofi iZ Z Z" " "
ˆ ˆ. Ñ œ  . Ñ! ! !

the interior product, the Poisson bracket becomes expressible as

Ö ß × œ  Ð Ñ œ   . Ð Ñ! " = ! " =i i iÒ ÓZ ßZ Z Z Z Z! " " "! !
£ £ . (11.3.3)ˆ ‰

It then follows from (11.3.3) that the Poisson bracket of two closed -forms"
is an exact -form" . In fact, when  and , then we have. œ ! . œ !! "

£ £Z Z Z Z Z Z! ! !" " "
" = ! =œ . Ð Ñ ß œ  . Ð Ñˆ ‰ ˆ ‰i i i i

and (11.3.3) leads to

Ö ß × œ  . Ð Ñ œ  . ÐZ ß Z Ñ

œ . ÐZ ß Z Ñ

! " = =

=

ˆ ‰ ˆ ‰ˆ ‰i iZ Z! " " !

! " .

(11.3.4)

From the definition of the Poisson bracket and the linearity of the operator
W=, we see that the following properties are valid:

Ð3ÑÞ Ö ß × œ  Ö ß × Ð

Ð33ÑÞ Ö ß ,  - × œ ,Ö ß ×  -Ö ß ×ß ,ß - − Ð ÑÞ

! " " !

! " # ! " ! # ‘

Antisymmetry      
Linearity

Ñß

    

Furthermore, the Poisson bracket satisfies the Jacobi identity

Ð333ÑÞ Ö ß Ö ß ××  Ö ß Ö ß ××  Ö ß Ö ß ×× œ !! " # " # ! # ! " .

In order to see this, it only suffices to notice that one can write

Ö ß Ö ß ×× œ  W Ð Z ß Z ß Z Ñ! " # = ! " #Ò Ò ÓÓ

and the operator  is linear.W=

Ð3@ÑÞ 0 − ÐWÑ W Let us consider a function . The linearity of the operatorA!
=

and the relation (2.10.19) result in

Ö ß 0 × œ  W Ð Z ß 0Z Ñ

œ  W 0 Z ß Z  Z Ð0ÑZ

œ  0W Ð Z ß Z  Z Ð0ÑW Z

œ 0Ö ß ×  Z Ð0Ñ

! "

! " "

= ! "

= ! " ! "

= ! " ! = "

!

Ò Ó

Ò Ó

Ò ÓÑ

ˆ ‰
.

The properties  and  demonstrate that the module  ofÐ3Ñß Ð33Ñ Ð333Ñ ÐWÑA"

"-forms constitutes a Lie algebra with respect to the Poisson bracket if we
rightly interpret the Poisson bracket as the Lie product of -forms. Since the"
Poisson bracket of two closed form is an exact, consequently, a closed form,
we realise at once that closed -forms is a subalgebra of such a Lie algebra"
of -forms. It then obviously follows from the relation (11.3.1) that " Ö ß ×! "
œ ! Z ß Z œ ! whenever .Ò Ó! "
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Let us next take into account -forms  that are exterior" .0ß .1 − ÐWÑA1

derivatives of functions . We know that the isomorphism 0ß 1 − ÐWÑ WA!
=

generates the vectors

Z œ W .0 œ  ß
`0 ` `0 `

`: `; `; `:

Z œ W .1 œ 
`1 ` `1 `

`: `; `; `:

0
"

3 3
3 3

1
"

3 3
3 3

=

= .

In view of the relation (11.2.13), these vectors are Hamiltonian vector fields
associated with functions  and . Since  and  are closed forms, then0 1 .0 .1
(11.3.4) yields

Ö.0ß .1× œ  . Ð Ñ œ .Ö0ß 1×ˆ ‰i iZ Z0 1 = (11.3.5)

where the    are defined by the fol-Poisson bracket of the functions  and 0 1
lowing relation

Ö0ß 1× œ  Ð Ñ œ Ð Ñ − ÐWÑi i i iZ Z Z Z
!

0 01 1= = A . (11.3.6)

On the other hand, we can easily evaluate that

i

i

Z 3
3

3
3

Z 0

1

0

Ð Ñ œ .:  .; œ .1ß
`1 `1

`: `;
Ð.1Ñ œ Z Ð1Ñ

=

.

Therefore, we conclude that the Poisson bracket of two functions  and  is0 1
determined by the expression

Ö0ß 1× œ  Z Ð1Ñ œ Z Ð0Ñ œ 
`0 `1 `0 `1

`; `: `: `;
0 1 3 3

3 3
. (11.3.7)

We can thereby deduce from the relations (11.3.2) and (11.3.5) that

W ÐÖ.0ß .1×Ñ œ W .Ö0ß 1× œ  W .0ß W .1" " " "
= = = =Ò Ó.

This simply implies that Hamiltonian vector fields generated by functions ,0
1 Ö0ß 1× and  are connected by the relation

Z œ  Z ß ZÖ0ß1× 0 1Ò Ó. (11.3.8)

The equation (11.3.8) amounts to say that if  and  are Hamiltonian vec-Z Z0 1

tor fields, then their Lie product  is also a Hamiltonian vector field.Ò ÓZ ß Z0 1

This, of course, means that Hamiltonian vector fields constitute a Lie subal-
gebra. We then observe from the expression (11.3.6) that the equality



708 XI  Some Physical Applications

Ö0ß 1× œ  Ö1ß 0× 

holds. On the other hand, for three functions  (11.3.7) leads0ß 1ß 2 − ÐWÑA!

to the relations

Ö0ß Ö1ß 2×× œ Z Z Ð2Ñß Ö1ß Ö2ß 0×× œ Z Z Ð0Ñ œ  Z Z Ð2Ñ

Ö2ß Ö0 ß 1×× œ  ÖÖ0ß 1×ß 2× œ Z Ð2Ñ œ  Z ß Z Ð2Ñ
0 1 1 2 1 0

Ö0 ß1× 0 1Ò Ó

from which we deduce the identity

Ö0ß Ö1ß 2××  Ö1ß Ö2ß 0××  Ö2ß Ö0ß 1×× œ Ð Z ß Z  Z ß Z ÑÐ2Ñ œ !Ò Ó Ò Ó0 1 0 1 .

Hence, Poisson brackets on smooth functions verify the Jacobi identity as
well. Accordingly, the module  equipped with the Poisson bracket is aA!ÐWÑ
Lie algebra. One readily sees that the Poisson bracket  is a bilinearÖ0ß 1×
function on real numbers. Moreover, we find that

Ö0ß 21× œ  Z Ð21Ñ œ  Z Ð2Ñ1  Z Ð1Ñ2

œ 1Ö0ß 2×  2Ö0ß 1×
0 0 0

.

Let us now consider canonical local coordinates. Then (11.3.7) leads to the
relations

Ö; ß ; × œ !ß Ö: ß : × œ !ß Ö; ß : × œ  Ö: ß ; × œ5 6 5 5 5
5 6 6 6 6$

and for a function  we obtain0 − ÐWÑA!

Ö0 ß ; × œ  Ö; ß 0× œ  ß Ö0ß : × œ  Ö: ß 0× œ
`0 `0

`: `;
3 3

3
3 3 3

.

Hence, the Hamilton equations can now be written in the form

; œ Ö; ß L×ß : œ Ö: ß L×† †3 3
3 3 . (11.3.9)

We shall next try to evaluate the change in a function  on0 − ÐWÑA!

the flow  generated by a Hamiltonian vector field  on the/ À W Ä W Z>Z
1

1

manifold . We know that we can write and the necessary andW 0Ð>Ñ œ / 0>£Z 1

sufficient condition for the function  to remain invariant under this flow is0
£ . However, this condition means thatZ 10 œ !

£ . (11.3.10)Z 1 10 œ Z Ð0Ñ œ Ö0ß 1× œ !

Accordingly, if the Poisson bracket, or equivalently the Lie product, of
functions  and  vanishes, then the function  has to remain 'constant' on0 1 0
the flow on  generated by the Hamiltonian vector field , i.e., W Z 0Ð ß Ñ1 q p
œ 0Ð ß Ñ Ð ß Ñ œ / Ð ß Ñq p q p q p! ! ! !

>Z where  although this constant may take1
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different values on each trajectory. The relation (11.3.10) requires, of
course, that the function  will, in turn, remain constant on the flow pro-1
duced by the Hamiltonian vector field . We already know that a trajec-Z0  

tory of the Hamiltonian vector field  associated with the HamiltonianZL

function  determines the evolution of a dynamical system with particularL
initial conditions on the symplectic manifold . The time rate of change of aW
function  during the evolution of the dynamical system can now0 − ÐWÑA!

be calculated by

.0 `0 `0 `0 `L `0 `L

.> `; `: `; `: `: `;
œ ;  : œ  œ Ö0ß L×Þ† †

3 3 3
3

3 3 3
3

Thus, in case a function  verifies the condition0 − ÐWÑA!

Ö0 ß L× œ !ß

it remains constant in association with the evolution of the dynamical sys-
tem. A relation between generalised coordinates and generalised momenta
in the form

0Ð Ð>Ñß Ð>ÑÑ œ - œq p constant

corresponds to an  and help us to reduce the numberintegral of the motion
of the dependent variables . Due to the property of the Poisson bracket,pÐ>Ñ
we clearly obtain . Hence, the Hamiltonian function  is anÖLß L× œ ! L
integral of the motion. The relation

LÐ ß Ñ œ : ;  PÐ ß Ñ œ†p q q q3
3 † constant

is known as the . As a matter of fact, when theconservation of energy
kinetic energy is prescribed by (11.2.1) we find at once that

: œ œ 1 ; : ; œ 1 ; ; œ #X
`P

`;†
† † † †

3 34 3 343
4 3 3 4   and  .

Thus, the Hamiltonian function

L œ #X  X  Z œ X  Z

represents now the total energy of the dynamical system that is conserved
during the motion of the system.

Finally, we attempt to calculate the Lie derivative of the symplectic
form  with respect to a Hamiltonian vector field . Since , we= =Z . œ !0

easily obtain

£ . (11.3.11)Z Z
#

0 0
= =œ . Ð Ñ œ .Ð.0Ñ œ . 0 œ !i
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Consequently, the symplectic form  remains invariant under the flow pro-=
duced by a Hamiltonian vector field. In other words, under the mapping
9>

>Zœ / À W Ä W0 , we get

= 9 = = =‡ ‡
>

>œ œ / œ£Z0 .

The volume form of the symplectic manifold  is of courseW

. Aœ .; • .; • â • .; • .: • .: • â • .: − ÐWÑÞ" # 7 #7
" # 7

It is quite easy now to prove the following theorem .
Theorem 11.3.1 (The Liouville Theorem). Let  be a -di- ÐWß Ñ #7=

mensional symplectic manifold and be the flow of a Hamiltonian vector9>  
field. The mapping preserves the volume form of the symplectic mani-9 .‡

>   
fold for all , namely, the invariance condition  is satisfied.> 9 . .‡

> œ
Indeed, the volume form  is expressible as. A− ÐWÑ#7

. = = = =œ • • â • œ G
Ð"Ñ

7x

7Ð7"Ñ
# ðóóóóóñóóóóóò

7

7.

Nevertheless, on account of the relations (5.7.4) and  we obtain9 = =‡
> œ

9 . 9 = 9 = 9 = = = = .‡ ‡ ‡ ‡
> > > >œ G • • â • œ G • • â • œ .  

According to this theorem the volume of the phase space is conserved
under a flow generated by trajectories of a Hamiltonian vector field. This
statement is of course true for every volume elements in the phase space.

Next, let us consider a form H = = = = A5
5 #5

5

œ œ • • â • − ÐWÑßðóóóóóñóóóóóò
" Ÿ 5 Ÿ 7 Z. For an arbitrary Hamiltonian vector field , we obviously find0

that £  Hence, all the forms  remain invariant underZ 5 50
H Hœ !Þ ß " Ÿ 5 Ÿ 7

flows generated by Hamiltonian vector fields.

11.4. CANONICAL TRANSFORMATIONS

ÐWß Ñ Ö; ß : ×=  is a symplectic manifold with canonical coordinates . If3
3

a mapping  transforming this manifold into itself leaves the sym-9 À W Ä W
plectic form invariant, that is, if it satisfies the condition

9 = =‡ œ ß (11.4.1)

then it is called a  or . Accordingly, thecanonical symplectic transformation
flow of every Hamiltonian vector field produces a canonical transformation.
Because of (11.4.1), we have  so that one obtains  [  9 . . 9‡ œ œ "det see
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(5.7.11)]. Therefore, a canonical transformation will preserve a volume form
and its orientation. Furthermore, it must be locally a diffeomorphism. A ca-
nonical transformation  will best be expressed as a local coordinate trans-9
formations  with  in the phase space specifi-ÐU ß T Ñ Ä Ð; ß : Ñ 3 œ "ß á ß 73 3

3 3

ed by the functions

; œ ; ÐU ß á ß U ß T ß á ß T Ñß : œ : ÐU ß á ß U ß T ß á ß T Ñ3 3 " 7 " 7
" 7 3 3 " 7 .

Insofar as we have assumed that  is a diffeomorphism, the inverse transfor-9
mations

U œ U Ð; ß á ß ; ß : ß á ß : Ñß T œ T Ð; ß á ß ; ß : ß á ß : Ñ3 3 " 7 " 7
" 7 3 3 " 7

will exist, at least, locally. Our expectation from such a canonical transfor-
mation would be to make the equations of motion acquire a simpler struc-
ture. The relation (11.4.1) now takes the form

9 9 9‡ 3 ‡ 3 ‡
3 3

3 3
3 3

Ð.; • .: Ñ œ .Ð ; Ñ • .Ð : Ñ

œ .U • .T œ .; • .: .

(11.4.2)

Thus, in order that  turns out to be a canonical transformation, the func-9
tions  and  must satisfy the relationsU T3

3

`U `T `U `T

`; `; `: `:
.; • .;  .: • .:

  .; • .: œ .; • .:
`U `T `U `T

`; `: `: `;

3 3

4 5

3 34 5

4 5
4 5

3 3

4 4

3 3

5 5

4 3
5 3Š ‹ .

If we take into account the antisymmetry of the exterior product, the above
relation leads to the following equations

`U `T `U `T `U `T `U `T

`; `; `; `; `: `: `: `:
 œ !ß  œ !

`U `T `U `T

`; `: `: `;
 œ

3 3 3 3

4 5 5 4

3 3 3 3

4 5 5 4

3 3

4 4

3 3

5 5
4
5

   

                         .$

To treat this matter in a more general context, let us consider two -#7
dimensional symplectic manifolds  and . A local diffeomor-ÐW ß Ñ ÐW ß Ñ" " # #= =
phism  satisfying the relation9 À W Ä W" #

9 = =‡
# "œ (11.4.3)

is called a  or . If  is a symplectic mapping,canonical symplectic mapping 9
it will preserve the volume form so we must have the condition .det9 œ "
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Theorem 11.4.1 (The Jacobi Theorem).   Let and  beÐW ß Ñ ÐW ß Ñ" " # #= =
#7 À W Ä W-dimensional symplectic manifolds. A diffeomorphism  is a9 " #

symplectic mapping if and only if Hamiltonian vector fields  andZ0 − X ÐW Ñ#

Z9‡0 − X ÐW Ñ"  are to satisfy the relation

Ð. Ñ Z œ Z œ Z Z œ Z9 9 9" "
0 0 0 0 ‡ 0‡ 9 9‡ ‡   or   . (11.4.4)

for all .0 − ÐW ÑA!
#

Let us first demonstrate that the relation

W Ð Ñ œ W Ð Ñ" ‡ " "
‡= =" #

9 ! 9 ! (11.4.5)

is satisfied for all  if and only if  is a symplectic mapping. Let! A 9− ÐW Ñ"
#

Z œ W Ð Ñ − X ÐW Ñ"
#=#

! . Utilising the relation (5.7.7), we find that

9 ! 9 = 9 =‡ ‡ ‡
Z # #Zœ Ð Ñ œi i9"

‡
.

By applying the operator  to this expression, we obtainW"
="

W Ð Ñ œ W W Ð Z Ñ œ W W W Ð Ñ" ‡ " " " " "
‡ ‡= = = =9 = 9 =" " " #

‡ ‡
# #

9 ! 9 9 !ˆ ‰.

Since the condition  must be obeyed when  is a symplectic9 = = 9‡
# "œ

mapping, we simply find the identity mapping W W œ W W œ 3" "
ÐW Ñ= =9 = = É" "

‡
# " "

and the relation (11.4.5) follows immediately. Conversely, if we suppose
that the relation (11.4.5) is satisfied for all forms , we readily! A− ÐW Ñ"

#

observe that the equality  must result inW Ð Ñ œ W W W Ð Ñ" ‡ " " ‡
= = =9 =" " "

‡
#

9 ! 9 !ˆ ‰
W W œ M œ" ‡

ÐW Ñ # "= 9 = É"
‡

# "
. This is, of course, realisable if only , i.e., if 9 = = 9

is a symplectic mapping.
Let us now assume that  is a symplectic mapping. In this case, the re-9

lation (11.4.5) leads to the result

9 9 9 9‡ ‡
" "

0 0Z œ ZW Ð.0Ñ œ W Ð .0Ñ œ W .Ð 0Ñ œ" " ‡ " ‡
= = = 9# " "

ˆ ‰ ‡

in view of Theorem 5.8.2. Conversely, let us now assume that the equality
(11.4.4) is satisfied for all . We then successively obtain0 − ÐW ÑA!

#

.Ð 0Ñ œ .0 œ W Z œ Ð Ñ œ œ9 9 9 9 = 9 = 9 =‡ ‡ ‡ ‡ ‡ ‡
0 Z # # Z #Z= 9# 0

"
‡ 0

i i i
9‡0

.

On the other hand, the same expression can also be written in the form

.Ð 0Ñ œ W Z œ9 =‡
0 Z "= 9"

‡ i
9‡0

.

This implies that we obtain the relation

i iZ # Z "
‡

9 9‡ ‡0 0
9 = =œ
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for each function and Hamiltonian vector field 0 − ÐW ÑA!
# 0 Z − X ÐW Ñ9‡ "

from which it follows that

 .iZ # "
‡

9‡0
Ð  Ñ œ !9 = =

Since the rank of symplectic forms must be maximal, the above equation is
satisfied if and only if , that is, if the diffeomorphism  is a sym-9 = = 9‡

# "œ
plectic mapping.

If a diffeomorphism  is mapping a symplectic manifold 9 À W Ä W W
onto itself, then the above conditions are reduced to the ones such that the
condition

9‡
"

0 0Z œ Z9‡

and consequently,

W Ð Ñ œ W Ð Ñ" ‡ " "
‡= =9 ! 9 !

must hold for all functions and forms .0 − ÐWÑA!  ! A− ÐWÑ" 
We can easily prove the existence of an important property related to

symplectic diffeomorphisms and Poisson brackets.
Theorem 11.4.2.    -Let and  be dimensional sym-ÐW ß Ñ ÐW ß Ñ #7" " # #= =

plectic manifolds. A diffeomorphism  is symplectic if and only if9 À W Ä W" #

it preserves Poisson brackets, that is, if and only if the relation

9 9 9‡ ‡ ‡Ö0 ß 1× œ Ö 0ß 1× (11.4.6)

is satisfied for all .0ß 1 − ÐW ÑA!
#

In view of (11.3.7) and (11.3.10), we can write the Poisson bracket
Ö0ß 1× − ÐW ÑA!

#  in the form

Ö0ß 1× œ Z Ð0Ñ œ 01 Z 1£ .

On account of (11.4.4), we have

Z œ Z1 ‡ 19 9‡

if and only if  is a symplectic mapping9 . Hence, making use of (5.11.17) we
obtain

9 9 9 9 9‡ ‡ ‡ ‡ ‡Ö0 ß 1× œ 0 œ Ð 0Ñ œ Ö 0ß 1×£ £ .9‡ ‡ ‡1 1Z Z9 9

This is tantamount to say that a symplectic mapping provides a homomor-
phism on with respect to the Lie product defined by the PoissonA!

#ÐW Ñ 
bracket. 

It is quite straightforward to show that Theorem 11.4.2 will also be in
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effect for Poisson brackets of -forms" . If we employ the relation (2.10.21),
we obtain

9 ! " 9 = 9 =

9 = 9 =

‡ ‡ ‡
Z ßZ # #Z ßZ

‡ ‡
Z ß Z Z ß Z# #

Ö ß × œ  Ð Ñ œ  Ð Ñ

œ  Ð Ñ œ  Ð Ñ

i i
i i
Ò Ó Ò Ó

Ò Ó Ò Ó

! " ! "

! !" "

9 9

9 9 9 9 9

‡ ‡

‡ ‡ ‡ ‡ ‡

"

" " " " .

On the other hand, the definition  yields! =œ Ð ÑiZ #!

9 ! 9 = 9 =‡ ‡ ‡
Z # #Zœ Ð Ñ œ Ð Ñi i
! !9"

‡
.

If  is a symplectic mapping, one must have  and the relation9 9 = =‡
# "œ

9 ! =‡
Z "œ Ð Ñi9"

‡ !
 will follow. So we easily obtain

9 ! " = 9 ! 9 "‡ ‡ ‡
Z ß Z "Ö ß × œ  Ð Ñ œ Ö ß ×iÒ Ó9 9" "

‡ ‡! "
. (11.4.7)

Conversely, if (11.4.7) is to be satisfied for all forms , then! " Aß − ÐW Ñ"
#

the relation

 Ð Ñ œ  Ð Ñi iÒ Ó Ò Ó9 9 9 9" " " "
‡ ‡ ‡ ‡Z ß Z Z ß Z

‡
# "! !" "

9 = =

requires that .9 = =‡
# "œ 

Let us now consider a canonical mapping  on a symplectic9 À W Ä W
manifold . This mapping is of course represented by transformationsÐWß Ñ=
between local canonical coordinates. We know that in this situation both
sets of canonical coordinates must satisfy the relation (11.4.2). In order to
systematically investigate the implication of (11.4.2), let us first define -"
forms  and  as follows) @

) @œ : .; ß œ T .U3 3
3 3.

The relation (11.4.2) compels us to write

9 ) @ @ 9 )‡ ‡. œ . .Ð  Ñ œ !     or     .

Thus, according to the Poincaré lemma we obtain at least locally

@ 9 ) A œ .J ß J − ÐWÑ‡ ! .

where  is an arbitrary function. Hence, whenever  satisfiesJ À W Ä W9
locally the expression

T .U  : .; œ .J3 3
3 3 , (11.4.8)

then it becomes a canonical mapping. However, we have also to keep in
mind that the function  should be so chosen that the mapping  must be aJ 9
diffeomorphism. For instance, if we choose a smooth function J œ J Ð ß Ñp q
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in (11.4.8), the canonical mapping is determined by the equations

T œ :  ß T œ
`U `J `U `J

`; `; `: `:
3 4 3

3 3

4 4
4 4

Example 11.4.1. For , we define a mapping  by7 œ " Ð:ß ;Ñ Ä ÐT ß UÑ

T œ Ð:  ; Ñß U œ
" ;

# :
# # arctan .

We can then write

T .U  : .; œ Ð:  ; Ñ  : .;
" : .;  ; .:

#
: " 

;

:

œ  Ð: .;  ; .:Ñ œ  .Ð:;Ñ
" "

# #

# #

#
#

#
Š ‹

and find that

T .U  : .; œ .J ß J œ  :;
"

#
.

Hence, this diffeomorphism is a canonical mapping. è

Theorem 11.4.3. -Let  be a dimensional symplectic manifold.ÐWß Ñ #7=
A canonical mapping  preserves the form of the Hamilton equa-9 À W Ä W
tions governing the motion of a dynamical system on this manifold.

Let the canonical mapping  be prescribed by the coordinate9 À W Ä W
transformation . In the local coordinates  of theÐU ß T Ñ Ä Ð; ß : Ñ Ð; ß : Ñ3 3 3

3 3 3

manifold  we shall assume that the Hamilton equations are specified in theW
symplectic form by

iZL
Ð Ñ œ .L=

where  is the Hamiltonian function. On applying the pull-back ope-LÐ ß Ñp q
ration on this equation, we obtain

9 = 9 = 9 9‡ ‡ ‡ ‡
Z Zi i

L ‡
"

L
Ð Ñ œ Ð Ñ œ .L œ .Ð LÑ9

Since  is a canonical mapping, we can, of course, write  so we9 9 = =‡ œ
finally find that

iZ
‡

9‡L
Ð Ñ œ .Ð LÑ= 9 .

Therefore, by defining the function , we end up inOÐ ß Ñ œ L œ L ‰P Q 9 9‡

the following expression
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i P Q p P Q q P QZO
Ð Ñ œ .Oß OÐ ß Ñ œ L Ð ß Ñ Ð ß Ñ= ˆ ‰.

Thus, the vector field  associated with the function  is a HamiltonianZ OO

vector field and its trajectories satisfy the Hamilton equations

U œ ß T œ 
† `O `O

`T `U
†3

3
3 3

corresponding to the Hamiltonian function .O 
This result brings to mind to search for an appropriate canonical trans-

formation that simplifies the structure of the function  to a great extent soO
much so that the Hamilton equations take a much simpler form in the new
canonical coordinates. Achievement of such a strategy entails, of course,
much facile integration of differential equations. After having obtained the
solution corresponding to the simplified system, we need to perform only
some algebraic operations concerning canonical coordinates in order to ob-
tain the actual solution associated with the physical system. We shall dis-
cuss this approach later in detail in Sec. 11.5 in a more general context.

11.5.  NON-CONSERVATIVE MECHANICS

Let us consider a dynamical system of  degrees of freedom. We as-7
sume that the constraints between members of the system may be rhe-
onomic, namely, they may be time-dependent. Or some parameters describ-
ing the system may be time-dependent. We further suppose that the poten-
tial function associated with the system may also be depending on time. In
this situation, the kinetic energy of the system and its potential function now
take in general the following forms

X œ 1 Ð ß >Ñ ; ;  1 Ð ß >Ñ ;  1Ð ß >Ñß Z œ Z Ð ß >Ñ
"

#
† † †

34 3
3 4 3q q q q .

Thus, the Lagrangian function becomes explicitly dependent on time:

PÐ ß Ñ œ X Ð ß Ñ  Z Ð ß >Ñq q q q q† †,t ,t . (11.5.1)

As a result of this both the Hamiltonian function and thus the generalised
momenta become dependent explicitly on time:

: œ ß
`PÐ ß ß >Ñ

`;†

LÐ ß ß >Ñ œ : ;  PÐ ß ß >ÑÞ†

3 3

3
3

q q

p q q q

†

†

(11.5.2)

Thus, the Hamiltonian function is now a mapping like L À W ‚ Ä‘ ‘
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where  is again a symplectic manifold. The generalisedÐWß œ .; • .: Ñ= 3
3

coordinates  and the generalised momenta  still satisfy the Hamiltonq p
equations (11.2.7). We next like to introduce a -dimensional mani-Ð#7  "Ñ
fold  whose coordinate cover is evidently given by . WeÆ ‘œ W ‚ Ö ß ß >×p q
then define the following form :) A ÆL

"− Ð Ñ

) )L 3
3œ : .; L.> œ  L.>. (11.5.3)

We further introduce the form  by= A ÆL
#− Ð Ñ

= )

=
L L 3

3œ  . œ .; • .:  .L • .>

œ  .L • .>.
(11.5.4)

Insofar as , the -form , too, is closed. Due to the. œ  . œ ! #= ) =L L L
#

fact that the dimension of the manifold  is , the rank of the formÆ #7  "
=L  would be at most . On the other hand, if one takes , one#7 > œ constant
finds  so that the rank of  cannot be less than . Consequently,= = =L Lœ #7
the rank of the form  is , that is, it is maximal. But  is no longer a= ÆL #7
symplectic manifold because its dimension is an odd number. Nevertheless,
although  is not a symplectic manifold, it is straightforward to seeÐ ß ÑÆ =L

that its restriction on a submanifold  is a symplectic manifold> œ constant
that is diffeomorphic to the manifold .ÐWß Ñ=

We now define a vector field  depending on a Hamiltoniani ÆL − X Ð Ñ
function  in the following wayL

iL Lœ  Z
`

`>
(11.5.5)

where the  generated by the Hamiltonian functionHamiltonian vector field
LÐ ß ß >Ñp q  is again given by

Z Ð ß ß >Ñ œ 
`L ` `L `

`: `; `; `:
L

3 3
3 3

p q .

Since , it follows from (11.5.5) thatZ ÐLÑ œ !L

iL ÐLÑ œ
`L

`>
. (11.5.6)

Because we obviously have , we conclude thati iiL L
Ð Ñ œ Ð Ñ= =Z

i i i ii i iL L L L
Ð Ñ œ Ð Ñ  Ð.L • .>Ñ œ Ð Ñ  ÐLÑ.>  .L

œ .;  .:  .>  .L œ !
`L `L `L

`; `: `>

= = = iL Z L

3
3

3
3 .
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As a matter of fact, we can readily show that each vector field i − X Ð ÑÆ
satisfying the relation  can only be a multiple of the vector fieldiiÐ Ñ œ !=L  
iL  by a scalar function. Indeed, let us consider an arbitrary vector

i œ  
` ` `

`; `: `>
0 ( 73

3 3
3

where . The condition0 ( 7 A Æ3 !
3ß ß − Ð Ñ

iiÐ Ñ œ .:  .;  Z ÐLÑ .>  .L

œ  .:   .;   .> œ !
`L `L `L `L

`: `; `; `:

= 0 ( 7

0 7 ( 7 0 (

L 3 3
3 3

3 3 3

3 3
3 3 33 3

Š ‹ Š ‹ Š ‹
now requires that the components of the vector  must satisfyi

0 7 ( 7 0 (3 3

3 3
3 33 3

œ ß œ  ß  œ !
`L `L `L `L

`: `; `; `:
.

It is obvious that the last expression vanishes identically. Thus, the desired
vector field is obtained as follows

i œ   œ
`L ` `L ` `

`: `; `; `: `>
7 7 iŠ ‹

3 3
3 3 L

where  is an arbitrary function. It is easily observed that trajec-7 A Æ− Ð Ñ!

tories of such a vector field determine the time evolution of the dynamical
system under various initial conditions. If we denote the parameter of a
trajectory by , we can write=

.; `L .: `L .>

.= `: .= `; .=
œ ß œ  ß œ

3

3

3

3
7 7 7 .

However, once we eliminate the parameter , we again arrive at the usual=
Hamilton equations

.; `L .: `L

.> `: .> `;
œ ß œ 

3

3

3

3
.

This result reveals then the possibility of determining the vector field iL

uniquely by imposing the conditions

i ii iÐ Ñ œ !ß Ð.>Ñ œ œ "= 7L . (11.5.7)

Therefore, the equations (11.5.7) can now be regarded as equivalent to the
Hamilton equations associated with a time dependent Hamiltonian function
LÐ ß ß >Ñ Ð Ñ œ !p q i. On account of the satisfaction of the relation  by ai =L
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non-zero vector we realise that the form  happens to be i, a degenerate=L

#-form. This conclusion should, of course, be expected.
We would like now to evaluate the Lie derivative of the form  with=L

respect to the vector field . Because of the relations  andi =L L. œ !
iiL

Ð Ñ œ !=L , we find that

£ .i i iL L L
= = =L L Lœ . Ð Ñ  Ð. Ñ œ !i i

Hence, the form  will remain invariant under the flow on the manifold = ÆL

which is brought into being by the vector field . This result will naturallyiL

imply that the forms  remainH = = = =5 L L LL
5

5

œ œ • • â • ß " Ÿ 5 Ÿ 7ðóóóóóóóóñóóóóóóóóò
invariant as well under the same flow.

Inasmuch as the vector field  corresponding to a function i A Æ1
!1 − Ð Ñ

has been given by

i1
3 3

3 3
œ  

`1 ` `1 ` `

`: `; `; `: `>
,

we then obtain

£i1Ð0Ñ œ Ð0Ñ œ  
`1 `0 `1 `0 `0

`: `; `; `: `>

œ  Ö0ß 1×
`0

`>

i1
3 3

3 3

for a function . This result means that the necessary and suffi-0 − Ð ÑA Æ!

cient condition in order that a given function  remains invariant, or in other0
words, constant under the flow generated by a vector field  is the satisfac-i1

tion of the following equation

`0

`>
 Ö0ß 1× œ !. (11.5.8)

In this case, when we consider the motion of a dynamical system described
by the flow produced by a vector field associated with a given Hamiltonian
function , a function  verifying the equationL 0 − Ð ÑA Æ!

£ (11.5.9)iL
Ð0Ñ œ  Ö0ß L× œ !

`0

`>

must satisfy the relation

0 Ð>Ñß Ð>Ñß > œ 0 Ð> Ñß Ð> Ñß > œˆ ‰ ˆ ‰q p q p! ! ! ! ! constant.
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Therefore, it corresponds to an integral of the motion of the system. On the
other hand, when  is time dependent, we of course obtainL

`L `L

`> `>
 ÖLß L× œ Á !.

Hence, such a Hamiltonian function is no longer an integral of the motion.
In other words, the conservation of energy loses its validity in such systems.

Let us now specify a diffeomorphism  by the following9 Æ ÆÀ Ä" #

transformations between local coordinates  and :ÐU ß T ß X Ñ Ð; ß : ß >Ñ3 3
3 3

; œ ; Ð ß ß X Ñß : œ : Ð ß ß X Ñß > œ X3 3
3 3Q P Q P (11.5.10)

Suppose that , . If theL œ LÐ ß ß >Ñ − Ð Ñ O œ OÐ ß ß >Ñ − Ð Ñq p Q PA Æ A Æ! !
# "

relation

9‡ 3 3
3 3ˆ ‰.; • .:  .LÐ ß ß >Ñ • .> œ .U • .T  .OÐ ß ß >Ñ • .>q p Q P

is satisfied, then we say that  is a . It is clear in9 canonical transformation
this case that the mapping  is also a canonical transformation. The short9"

version of the foregoing expression can, of course, be written as follows

9 = =‡
L Oœ . (11.5.11)

Since ,  and , we readily deduce from= = 9" 3 # 3
3 3 ‡œ .U • .T œ .; • .: > œ >

(11.5.11) that the relation

9 = = Y‡
# "œ  . • .>

must be satisfied if  is a canonical transformation. Here,  is an arbitrary9 Y
smooth function defined by

Y 9 A Æœ O  L − Ð ÑÞ‡ !
"

Thus, we can write . We can immediately realise thatO œ L 9 Y‡  every
canonical transformation preserves the form of the Hamilton equations. A
vector field on the manifold  satisfying the conditionsi Æ ÆL #− X Ð Ñ#  
i ii iL L

Ð Ñ œ ! Ð.>Ñ œ "= ÆL  and  gives rise to the Hamilton equations on #:

.; `L .: `L

.> `: .> `;
œ ß œ 

3

3

3

3
.

On the other hand, we know that a vector field  satisfying thei − X Ð ÑÆ"

conditions ,  is a uniquely determined vector field i ii iÐ Ñ œ ! Ð.>Ñ œ "= iO O

generated by a Hamiltonian vector field. Trajectories of this vector field will
also satisfy the Hamilton equations on :Æ"
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.U `O .T `O

.> `T .> `U
œ ß œ 

3

3

3

3
. (11.5.12)

The connection between the vectors  and  associated with a canonicali iL O

transformation can easily be found. Consider a vector field i ÆL #− X Ð Ñ
satisfying the conditions  and . If  is ai ii iL L

Ð Ñ œ ! Ð.>Ñ œ " À Ä= 9 Æ ÆL " #

canonical transformation, then the pull-back operator 9 A Æ A Æ‡
# "À Ð Ñ Ä Ð Ñ

yields the equalities

! œ Ð Ñ œ Ð Ñ œ Ð Ñß

" œ Ð.>Ñ œ Ð .>Ñ œ Ð. >Ñ œ Ð.>Ñ

9 = 9 = =

9 9 9

‡ ‡
L L O

‡ ‡ ‡

i i i
i i i i
i 9 i 9 i

i 9 i 9 i 9 i

L ‡ ‡
" "

L L

L ‡ ‡ ‡
" " "

L L L
.

When we are given the form , we know that a vector field = i fO O "− X Ð Ñ
satisfying the conditions  and  will be determinedi ii iO OÐ Ñ œ ! Ð.>Ñ œ "=O

uniquely. Hence, the above relations show unequivocally that the connec-
tion between  and  is provided byi iL O

i 9 i i 9 iO L L ‡ O‡
"œ œ    or    .

Since  is a diffeomorphism,  is an isomorphism.9 9 Æ Æ‡ " #À X Ð Ñ Ä X Ð Ñ
In order to illuminate the local structure of canonical transformations

9 Æ Æ ÆÀ Ä  that maps the manifold  onto itself and to disclose unambigu-
ously the interrelation between Hamiltonian functions  and , we canL O
make use of the expression (11.5.4). From the relation

 . œ  . œ  .9 ) 9 ) )‡ ‡
L L O

we find that the equation  has to be satisfied. Thus,.Ð  Ñ œ !9 ) )‡
L O

according to the Poincaré lemma canonical transformations must obey at
least locally to the condition  where  is an ar-9 ) ) A Æ‡ !

L O œ .J J − Ð Ñ
bitrary function. This expression can be written explicitly as

9‡ 3 3
3 3Ð: .;  L.>Ñ œ T .U  O.>  .J (11.5.13)

The function  is called a  because it is instrumental inJ generating function
designating a canonical transformation. In order to specify a transformation
between old and new canonical coordinates, the function  must depend onJ
%7  " ß ß ß ß > variables . But, owing to equations (11.5.10), we are al-q p Q P
lowed to choose only  independent variables. Therefore, we can#7  "
consider only four different alternatives characterising a canonical transfor-
mation between old and new coordinates that are listed below:

Ö ß ß >×ß Ö ß ß >×ß Ö ß ß >×ß Ö ß ß >×q Q q P p Q p P .
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We shall now discuss these choices separately.
Ð3ÑÞ J œ J Ð ß ß >Ñ Let us chose . When we insert this function intoq Q

(11.5.13) and arrange the resulting terms, we obtain

Š ‹ Š ‹ Š ‹:  .;  T  .U  O  L  .> œ !
`J `J `J

`; `U `>
3 33 3

3 3 .

Hence, the canonical transformation is specified by the equations

: œ ß T œ  ß O œ L 
`J `J `J

`; `U `>
3 33 3

(11.5.14)

In case , then (11.5.14)  yields  throughdetŠ ‹` J

`U `;
Á ! ; œ ; Ð ß ß >Ñ

#

3 4 #
3 3 Q P

the inverse function theorem. On introducing these relations into equations
(11.5.14)  we are led to . Substituting functions so obtained" 3 3: œ : Ð ß ß >ÑQ P
into the functions  and  we can determine the Hamilton-LÐ ß ß >Ñ J Ð ß ß >Ñq p q Q
ian function .OÐ ß ß >ÑQ P

For instance, let us choose , . Then, theJ œ + Ð>Ñ ; U Ò+ Ó Á !34 34
3 4 det

canonical transformation becomes

: œ + Ð>Ñ U ß T œ  + Ð>Ñ ; ; œ  , Ð>ÑT ß œ Ð Ñ3 34 3 43 4
4 4 3 34 " or  .B AT

If we take , this transformation merely interchanges the generalisedA Iœ
coordinates and generalised momenta.

Ð33ÑÞ J œ  T U  J Ð ß ß >Ñ Let us choose . (11.5.13) gives then3 "
3 q P

Š ‹ Š ‹ Š ‹:  .;  U  .U  O  L  .> œ !
`J `J `J

`; `T `>
3

" " "

3
3 3 3

3

from which it follows that

: œ ß U œ ß O œ L 
`J `J `J

`; `T `>
3

" " "

3
3

3
. (11.5.15)

If  , then (11.5.15)  yields the relation detŠ ‹` J

`T `;
Á ! ; œ ; Ð ß ß >Ñ

#
"

3
4 #

3 3 Q P

and (11.5.15)  provides . Finally, the transformed Hamilton-" 3 3: œ : Ð ß ß >ÑQ P
ian function  follows from (11.5.15) .OÐ ß ß >ÑQ P $

For instance, let us choose , . The canonicalJ œ + Ð>Ñ ; T Ò+ Ó Á !" 4
4 4
3 3

3 det
transformation becomes

: œ + Ð>Ñ T ß U œ + Ð>Ñ ; ; œ , Ð>ÑU ß œ Ð Ñ3 4
4
3

3 3 4 3 3 4 "
4 4   or    .B AT

If we take this transformation does not change at all the canonicalA I, œ
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variables.
Ð333ÑÞ J œ : ;  J Ð ß ß >Ñ Let us chose . Then, (11.5.13) results in3 #

3 p Q

 ;  .:  T  .U  O  L  .> œ !
`J `J `J

`: `U `>
Š ‹ Š ‹ Š ‹3 3# # #

3
3 3 3

and the canonical transformation is prescribed by the equations

; œ  ß T œ  ß O œ L 
`J `J `J

`: `U `>
3 # # #

3
3 3

. (11.5.16)

If , the expression (11.5.16)  determines the func-detŠ ‹` J

`U `:
Á !

#
#

3
4

#

tions , and (11.5.16)  yields the functions .: œ : Ð ß ß >Ñ ; œ ; Ð ß ß >Ñ3 3 "
3 3Q P Q P

By employing these expressions, we deduce the transformed Hamiltonian
function from (11.5.16) .$

For instance, if we choose , , then theJ œ + Ð>Ñ : U Ò+ Ó Á !2
3 4 3
4 43 det

canonical transformation is found to be

; œ  + Ð>Ñ U ß T œ  + Ð>Ñ : : œ  , Ð>ÑT ß œ Ð Ñ3 3 4 "
4 3 4 3 4

4 4
3 3   or   .B AT

If we take , then this transformation changes only the signs of theA Iœ
canonical variables.

Ð3@ÑÞ J œ : ;  T U  J Ð ß ß >Ñ Let us choose . Then, it follows3 3 $
3 3 p P

from (11.5.13) that

 ;  .:  U  .T  O  L  .> œ !
`J `J `J

`: `T `>
Š ‹ Š ‹ Š ‹3 3$ $ $

3 3
3 3 .

Consequently, the canonical transformation is specified by the equations

; œ  ß U œ ß O œ L 
`J `J `J

`: `T `>
3 3$ $ $

3 3
. (11.5.17)

Indeed, if , then (11.5.17)  leads to  anddetŠ ‹` J

`T `:
Á ! : œ : Ð ß ß >Ñ

#
$

3 4
# 3 3 Q P

(11.5.17)  gives . We obtain the transformed Hamiltonian"
3 3; œ ; Ð ß ß >ÑQ P

function  from the equation (11.5.17) .OÐ ß ß >ÑQ P $

For instance, if we choose , , then theJ œ + Ð>Ñ : T Ò+ Ó Á !3
34 34

3 4 det
canonical transformation becomes

; œ  + Ð>Ñ T ß U œ + Ð>Ñ : : œ , Ð>ÑU ß œ Ð Ñ3 34 3 43 4 "
4 4 3 34   or   .B AT
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If we take , this transformation interchanges the generalised coordi-A Iœ
nates and generalised momenta with a change of sign in one set of variables.

The equations (11.5.14-17) specify also the canonical transformations
in conservative mechanics. However, in this situation the functions J ß J ß"

J ß J# $ are either independent of time or may only be certain particular func-
tions of time. The transformation

OÐ ß Ñ œ L Ð ß Ñß Ð ß ÑQ P q Q P p Q Pˆ ‰
gives then the Hamiltonian function.

After having established the structure of the canonical transformations,
Jacobi thought quite an ingenious idea for that time which seems to be rath-
er natural to us now and he had asked this question: whether is it possible to
determine a canonical transformation in such a manner that the transformed
Hamiltonian function  turns out to be a constant that can be taken zeroO
without loss of generality?  If we can make such a choice leading to

OÐ ß ß >Ñ œ !Q P  ,

then the corresponding Hamilton equations (11.5.12) take their simplest
possible form

.U .T

.> .>
œ !ß œ !

3
3 .

Thus,  integrals of motion are simply obtained as follows#7

U Ð ß ß >Ñ œ + œ T Ð ß ß >Ñ œ , œ3 3
3 3q p q pconstant constantß

in terms of new canonical variables. On the other hand, such a canonical
transformation can be prescribed by selecting the generating function  asJ
to satisfy the equation

`J Ð ß ß >Ñ

`>
 LÐ ß ß >Ñ œ !

q Q
q p .

In this case, however, the coordinates  are constant so that the function U J3

depends only on variables  and the constants ; ß ; ß á ß ; ß > U œ + ß" # 7 " "

U œ + ß á ß U œ + :# # 7 7
3. The generalised momenta  are then given by

(11.5.14) . Consequently, the function  must satisfy the " J Hamilton-Jacobi
differential equation

`J Ð ß ß >Ñ `J

`> `
 LÐ ß ß ß >Ñ œ !

q a
q a

q
. (11.5.18)

where .a œ Ð+ ß + ß á ß + Ñ" # 7
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Although this equation is always attributed today to two mathema-
ticians W. R. Hamilton and C. G. J. Jacobi, it has been actually published
first by Hamilton in 1834. Here, we have obviously employed the abbrevi-
ated notations

J Ð ß >Ñ œ J Ð; ß ; ß á ß ; ß >Ñ

LÐ ß ß >Ñ œ LÐ; ß ; ß á ß ; ß ß ß á ß ß >Ñ
`J `J `J `J

` `; `; `;

q

q
q

" # 7

" # 7
" # 7

.

The Hamilton-Jacobi equation is a first order, generally non-linear, partial
differential equation with  independent variables . Therefore, the7  " ; ß >3

function  depends on  integration constants , .J 7  " + ß + ß á + ß +" # 7 7"

But, it is evident that the function  satisfies likewise the equationJ  +7"

(11.5.18). Since transformation equations involve only some derivatives of
J , this constant will have no effect in this approach. Hence, it can be
discarded. Thus, by using the representation , , the func-a œ Ö+ ß + ß á + ×" # 7

tion  that is the solution of the equation (11.5.18) may be expressible inJ
the form

J œ J Ð ß ß >Ñq a

where we obviously have . Hence, the following equations are de-U œ +3 3

duced from the relations (11.5.14)

: œ œ : Ð ß ß >Ñß
`J

`;

T œ  œ  œ T Ð ß ß >Ñ œ ,
`J `J

`U `+

3 33

3 3 33 3

q a

q a .

(11.5.19)

The initial conditions of the dynamical system corresponding to generalised
positions and velocities may be given in the following way

q q p pÐ> Ñ œ œ ß Ð> Ñ œ œ! ! ! !constant constant.

Since we have assumed that , insertion of the initialdetŠ ‹` J Î`+ `; Á !# 3 4

conditions into (11.5.19)  leads to the determination of the constants  that" a
are arbitrary at the outset as

a a q pœ Ð ß ß > Ñ! ! ! .

Substituting the constants  so obtained together with initial conditions into+3

(11.5.19) , we determine the constants :#
3,

b P q a q pœ ß Ð ß ß > Ñß >ˆ ‰! ! ! ! ! .
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Recalling again the condition , we can in principledetŠ ‹` J Î`+ `; Á !# 3 4

construct the inverse function from (11.5.19) , to arrive eventually at the#

following equations

q q a bœ Ð>à ß Ñ

that describe the evolution of the system with time. It is thus evident that in
case we can determine the function , sometimes called the J Ð ß >Ñq Hamilton
principal function, satisfying the first order partial differential equation
(11.5.18), then the expressions describing the motion of the system are
found by almost algebraic manipulations. Therefore, this method seems, at
first glance, to be a much more effective approach to determine the motion
of a system than trying to solve directly the Hamilton equations. In reality, it
is highly unlikely to be able solve directly the Hamilton-Jacobi equation,
except in very few cases. The standard technique of characteristics to solve
this non-linear partial differential equation requires again to obtain the so-
lution of the Hamilton equations [ Example 9.2.3]. Therefore, it does notsee 
bring about a fresh approach. Nonetheless the discussion of the Hamilton-
Jacobi equation may provide rather significant qualitative information about
the behaviour of a dynamical system.

In order to comprehend better the meaning of the function , let usJ
calculate its derivative with respect to time along the trajectory of the
system. When (11.5.14) and (11.5.18) are taken into account, it is easily
found that

.J `J `J .;

.> `> `; .>
œ  œ : ;  L œ P†

3

3

3
3 .

Hence, this time rate of change of  yields the Lagrangian function.J
If the Hamiltonian function  does not explicitly depend on time theL

equation (11.5.18) leads of course to the result

` J Ð ß ß >Ñ

`>
œ !

#

#

q Q

since . A simple integration then gives`LÎ`> œ !

J Ð ß ß >Ñ œ  IÐ ß Ñ>  [ Ð ß Ñß œq Q q Q q Q Q a.

Consequently, the generalised momenta become

: œ œ  > 
`J `I `[

`; `; `;
3 3 3 3

.
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Hence,  will be explicitly independent of time  if only .L > `IÎ`; œ !3

According to the definition of the function , we have to take J œ œQ a
constant constant. Hence, we must write . Thus,  will nowIÐ Ñ œ + œ JQ 7

be expressible in the form

J Ð ß ß >Ñ œ  I>  [ Ð; ß á ß ; à + ß á ß + ß IÑq a " 7 " 7" (11.5.20)

whence we can deduce the following relations

: œ ß 3 œ "ß #ß á ß 7
`[

`;

, œ  ß 3 œ "ß #ß á ß 7  "
`[

`+

, œ  œ > 
`J `[

`I `I

3 3

3 3

7 .

(11.5.21)

In this case, the Hamilton-Jacobi equation reduces to the non-linear partial
differential equation

LÐ ß Ñ œ I
`[

`
q

q
(11.5.22)

that helps determine the function  that is called sometimes the [ Hamilton
characteristic function.

Example 11.5.1. Harmonic Oscillator. Let us denote by  the coordi-;
nate of the -dimensional configuration manifold associated with the recti-"
linear harmonic motion of a particle with mass . Then, the kinetic and7
potential energies are prescribed in the following manner

X œ 7; ß Z œ 5;
" "

# #
† # #.

Introducing the definition , we see that the Lagrangian function=# œ 5Î7
and the generalised momentum that is equal to the ordinary momentum in
this case are given by

P œ Ð;  ; Ñß
7

#
†

: œ œ 7;
`P

`;†
†

# # #=

.

Hence, the Hamiltonian function takes the form

L œ Ð:  7 ; Ñ œ I
"

#7
# # # #= .
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and the equation (11.5.20) becomes

Š ‹.[

.;
 7 ; œ #7I

#
# # #= .

When we choose the  sign in front of the square root, we obtain the
differential equation

.[ #I

.; 7
œ 7  ;=

=
Ê

#
#

whose solution is easily found as follows

[ Ð;à IÑ œ 7  ; .;  +
#I

7

œ ;  ;   +
7 #I #I ;

# 7 7 #I

7
 ;

=
=

=

= =

=

( Ê
’ “Ê

Ê

#
#

# #
#

#
#

arctan .

Therefore, (11.5.21)  yields$

, œ  œ >  œ > 
`J `[ " ;

`I `I #I

7
 ;

=

=

arctan

Ê
#

#

and we finally obtain by using inverse trigonometric functions

; œ Ð>  ,Ñ
#I

7
Ê

=
=

#
sin .

The constants  and  are to be determined from the initial conditions.I , è

Example 11.5.2. Central-Force Motion. Let us denote the polar coor-
dinates of the -dimensional configuration manifold that is associated with#
the central motion of a particle with mass  by . Then, its7 ; œ <ß ; œ" # )
Lagrangian function can be written as follows

P œ 7Ð<  < Ñ  Z Ð<Ñ
"

#
† †# # #

) .

Hence, the generalised momenta become

: œ : œ œ 7< ß : œ : œ œ 7<
`P `P

`<†
†

`
†

†
" < #

#
)

)
)

and the Hamiltonian function is prescribed by the expression
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L œ 7Ð<  < Ñ  Z Ð<Ñ œ :   Z Ð<Ñ
" "

# #7 <
† † :# # ##

<

#

#
) Š ‹) .

Equation (11.5.22) now takes the form

" `[ " `[

#7 `< < `
  Z Ð<Ñ œ I’Š ‹ Š ‹ “# #

# )

with . Since the function  does not depend on  expli-[ œ [ Ð<ß à + ß IÑ L) )"

citly, the Hamilton equations yield , and . Thus,: œ ! : œ + œ†
) )

" constant
we are allowed to write from (11.5.21)

: œ ß : œ œ + ß
`[ `[

`< `

, œ  ß , œ > 
`[ `[

`+ `I

<
"

" #"

)
)

.

It then follows from the second equation above

[ Ð<ß à + ß IÑ œ +  AÐ<à + ß IÑ) )" " " .

If we take into consideration the  sign in front of the square root, we ob-
serve that the function  must satisfy the following differential equationA

.A +

.< <
œ #7 I  Z Ð<Ñ Ê  ‘ Š ‹" #

whose solution is easily obtainable in the form

AÐ<à + ß IÑ œ #7 I  Z Ð=Ñ  .=
+

=
"

<

< " #( Ê  ‘ Š ‹
!

where  is yet an arbitrary constant. Upon introducing this relation into<!

(11.5.21) , we find that2-3

, œ   ß
+ .=

= #7 I  Z Ð=Ñ  Ð+ Î=Ñ

, œ > 
7 .=

#7 I  Z Ð=Ñ  Ð+ Î=Ñ

"
<

< "

# " #

#
<

<

" #

) ( É  ‘
( É  ‘

!

!

.

If the initial conditions are such that  and  for  , we get< œ < œ > œ >! ! !) )

, œ  ß , œ >" ! # !) .



730 XI  Some Physical Applications

Hence, in terms of the parameter , the equations describing the motion of<
the particle are expressible as

) ) œ ß
+ .=

= #7 I  Z Ð=Ñ  Ð+ Ñ

>  > œ
7= .=

#7 I  Z Ð=Ñ  Ð+ Ñ

!
<

< "

# " #

!
<

<

# " #

( É  ‘
( É  ‘

!

!

s

s
.

We have to take  in order to discuss perhaps the most importantZ Ð<Ñ œ 5Î<
application of the central-force motion. When , this potential corres-5  !
ponds to the Newton law of gravitational attraction [the English mathema-
tician and physicist Sir Isaac Newton (1643-1727)]. If the constant  may be5
taken either negative or positive, this potential represents the Coulomb law
describing the force between point electric charges that can be attractive or
repulsive [the French engineer and physicist Charles Augustin de Coulomb
(1736-1806)]. When , we readily find thatZ Ð<Ñ œ 5Î<

) ) œ ß
+ .=

= #7I  #75=  Ð+ Ñ

>  > œ
7= .=

#7I  #75=  Ð+ Ñ

!
<

< "

# " #

!
<

<

# " #

( È
( È

!

!

s

s
.

If we make the substitution  in the first equation above and rename= œ "Î5
the constant  by , we obtain+ 6"

) )
5

5 5

5

 œ 
.

#7I #75

6 6
 

œ 

6

75
 "

" 
#I6

75

!
"Î<

"Î<

# #
#

#

#

#

"Î<

"Î<

( Ê
ââââââââÊ

!

!

arccos .

Let us define an angle  by .) )" "

# #

!
#

œ  " " 
6 #I6

75< 75
arccos ’Š ‹‚ “Ê

Then, we finally reach to the conclusion

" 75 #I6

< 6 75
œ "  "  Ð   Ñ

# #

#

! "’ “Ê cos ) ) ) .
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Introducing the definition  and  we arrive: œ 6 Î75 / œ "  Ð#I6 Î75 Ñ# # #È
at the standard equation describing conics in polar coordinates

< œ ß œ 
:

"  / Ð  Ñcos ) )
) ) )

w
w

! ".

On defining a function

0Ð Ñ œ  
#7I #75

6 6
5 5 5Ê

# #
#

we determine the function  in a similar way as follows> œ >Ð<Ñ

>Ð<Ñ  > œ >  > œ  œ X Ð Ñ
7 .

6 0Ð Ñ
! !

"Î<

"Î<

#

"Î<
"Î<( k

!
!

5

5 5
5  

where the function  is given byX Ð Ñ5

X Ð Ñ œ

#I 60Ð Ñ  Ð#7Ñ 5
#7I  57  Ð#7IÑ 60Ð Ñ

%I

5

5 5
5 5

5     

"Î# "Î#
"Î#

$Î#

log

The function  determines the time taken by the particle on its trajectoryX Ð Ñ5
traversing from the radial distance  to the radial distance .< <! è

11.6. ELECTROMAGNETISM

Let us consider the -dimensional manifold . Its coordinates will be% ‘%

denoted by .  correspond to spatial coordi-B ß œ "ß #ß $ß % B ß 3 œ "ß #ß $. . 3

nates while  denotes the time coordinate. Electromagnetic fields onB œ >%

this manifold, representing a material medium or the vacuum, are governed
by the [the English mathematician and physicist JamesMaxwell equations 
Clerk Maxwell (1831-1879)] that are given, in rationalised M.K.S. units, by

f‚ ! f †

f‚ f †

E B
B

H J D
D

 œ ß œ !
`

`>

 œ ß œ
`

`>
3

(11.6.1)

where the vectors , ,  and  specify, respectively, , E  H  B D the electric field the
magnetic field the magnetic induction the electric displacement field.,  and 
The vector  is whereas the scalar  is J the free electric current density the3
free electric charge density. The divergence of the equation (11.6.1)  yields$
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an equation corresponding to the conservation of electric charge

`

`>
 œ !

3
f † J . (11.6.2)

Actually, the vector fields , , ,  and cannot be utterly inde-E  H  B D J 
pendent of one another. There are relations among them called constitutive
equations reflecting the physical properties of the medium. The simplest
physically meaningful relations of that kind can be given by

D E B H J Eœ ß œ ß œ% . 5

where the three physical constants  are known, respectively, as % . 5ß ß the
dielectric the magnetic permittivities the electric conduction coeffi- and and 
cient vacuum. The values of these constants in the  are

% %

. . 1

œ œ ‚ Ð Î

œ œ ‚ Î Ð Î Ñ

!
"#

!
 # #

8.854187817620 10 F/m Farad metre)

4 10  N A  Newton ampere7

and . These constants satisfy the relation  where the5 % .œ ! - œ "ÎÈ ! !

physical constant  is the speed of light in the vacuum  The most recent- Þ
value of  is 299792.458 km sec.- Î

The equation (11.6.1)  is known as the [the" Faraday induction law 
autodidact English physicist and chemist Michael Faraday (1791-1867)]
that shows that a mechanical energy causing a magnetic induction in a re-
gion to change with time can be converted to the electrical energy. The
equation (11.6.1)  is the  implying that magnetic charges# Gauss law
(monopoles) do not exist in nature in the realm of the classical physics The. 
equation (11.6.1)  is a somewhat modified version of the  ex- $ Ampère law
pressing the fact that electric currents create magnetic fields. Equation
(11.6.1) , when written in the form , is originally obtained from% f † œ ÎE 3 %
the  that specifies the repulsive or attractive force between twoCoulomb law
electric point charge as the expression  by exactly following the; ; Î <" #

#%
path leading to the Gauss law. In the original version of the Ampère law the
term  which will be called later  does not` `>DÎ the displacement current
exist. However, the governing equations at that form are not consistent
because they violate the equation (11.6.2) associated with the conservation
of charge that can also be derived independently. The genius of Maxwell
has caused the creation of a consistent theory of electromagnetism. He has
cleverly introduced a displacement vector  to recover the conservation ofD
charge. It has been realised, however, that only in particular, but practically
very important, cases this vector could be identified as . This theory of%E
electromagnetism was perhaps the greatest scientific achievement in the
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19th century and has paved the way for incredible technological develop-
ments in the 20th century.

Let us now express equations (11.6.1) in terms of their components in
Cartesian coordinates by paying attention to the dictates of the summa-
tion convention as follows

/ I  œ !ß F œ !à / L  œ N ß H œ
`F `H

`> `>
345 3 345 3 3

5ß4 5ß4

3 3

ß3 ß3 3.

Next, we wish to introduce the   and% ‚ % œ ÒJ Óantisymmetric matrices … ./

‡ œ ÒL Ó  by the following entries./

J œ  J œ / I ß J œ  J œ F ß

L œ  L œ / L ß L œ  L œ  H

34 43 435 %3 3% 3
5

34 43 435 %3 3% 3
5 .

        (11.6.3)

In matrix notation, we can, of course, write

…

‡

œ ß

! I I F

I ! I F

I I ! F

F F F !

œ

! L L H

L ! L H

L L ! H

 H  H  H !

Ô ×Ö ÙÖ ÙÕ Ø
Ô ×Ö ÙÖ ÙÕ Ø

$ #
"

$ "
#

# "
$

" # $

$ #
"

$ "
#

# "
$

" # $

.

Hence, the Maxwell equations are now expressible in the form

`J `J `J

`B `B `B
 œ !ß œ !à

`L `L `L

`B `B `B
 œ N ß œ

43 %3 3%

4 % 3

43 %3 3%

4 % 3
3 3.

 Let us now define a -vector  and note that % ÖN × œ ÖN ß N œ × J œ !. 3 % %%3
and . Then, it is straightforward to see that the Maxwell equationsL œ !%%

can be written concisely as follows

`J `L

`B `B
œ !ß œ N

./ ./

. .
/  . (11.6.4)

Let  be the volume form in the manifold . By. ‘œ .B • .B • .B • .B" # $ % %

using the familiar bases  induced by this volume form, we can introduce../
the two -forms  and  by employing the antisym-# − Ð Ñ − Ð ÑY A ‘ [ A ‘# % # %

metric coefficients  and  throughJ L./ ./
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Y .

[ .

œ J ß
"

#

œ L
"

#

./
./

./
./

where  and a vector field  by. . ] ‘./ .œ ‰ Ð Ñ − X Ð Ñi i` `
%

/

] 3œ N  œ N
` ` `

`B `B `B
3

3 %
.

.
. (11.6.5)

As is easily seen, we can now write

. œ J .B •
"

#

œ J Ð  Ñ œ J
"

#

Y .

$ . $ . .

ß

ß ß

#
./ #

./

# . / .
./ # # ./

/ . / .

Hence, the equations (11.6.4)  are equivalent to the exterior equation"

. œ !Y . (11.6.6)

On the other hand, because of the relation

i] /
/Ð Ñ œ N − Ð Ñ. . A ‘$ %

the equations (11.6.4)  become equivalent to the exterior equation#

. œ Ð Ñ[ .i] . (11.6.7)

Let us now express the form  with respect to the natural basis  asY .B.

follows:

Y . Yœ J œ .B • .B
" "

# #
./ ! "

./ !" .

On the other hand, for  and  the relation (5.5.10) yields the fol-7 œ % 5 œ #
lowing expression

../ /.!"
! "œ / .B • .B

"

#
.

Therefore, we find that

Y Y!" "! /.!"
./

!"./
./

œ  œ / J
"

#

œ  / J
"

#
.
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Consequently, we obtain

Y

Y $

34 345% 345% 345
5% 5 5

3% 3%45 345 6 6 3
45 456 6

3

œ  / J œ / F œ / F ß

œ  / J œ / / I œ I œ I
" "

# #

from which we deduce that

Y Y Y

Y Y Y

"# "$ "% "
$% $ #% # #$

#$ #% # $% $
"% " "$ "#

œ  J œ F ß œ J œ  F ß œ  J œ I ß

œ  J œ F ß œ J œ I ß œ  J œ I .

Thus, the antisymmetric matrix  is given by Y œ Ò ÓY!"

Y œ

! F  F I

 F ! F I

F  F ! I
 I  I  I !

Ô ×Ö ÙÖ Ù
Õ Ø

$ #
"

$ "
#

# "
$

" # $

. (11.6.8)

Similarly, the form  can be rewritten as[

[ [ [œ .B • .B ß œ  / L
" "

# #
!" !" !"./

! " ./

and one finds that

[ [34 345 3% 3
5œ  / H ß œ L .

Hence, the antisymmetric matrix  is given by[ œ Ò Ó[!"

[ œ

!  H H L

H !  H L

 H H ! L
 L  L  L !

Ô ×Ö ÙÖ Ù
Õ Ø

$ #
"

$ "
#

# "
$

" # $

. (11.6.9)

With these representations, Equation (11.6.6) leads to

. œ .B • .B • .B
"

#

œ .B • .B • .B œ !
"

$x

Y Y

Y

!" #
# ! "

#!"
# ! "

ß

and we arrive at the equations [ 265]see  :Þ

Y
Y Y Y

#!"
!"

# ! "

"# #!
œ   œ !

`

`B `B `B

` `
(11.6.10)
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that are counterparts of Equations (11.6.4) . Similarly, on considering the"

definition (5.5.8), Equation (11.6.7) leads to

. œ .B • .B • .B
"

$x

œ / N .B • .B • .B
"

$x

[ [#!"
# ! "

/#!"
/ # ! "

from which follow the equations

[
[ [ [

#!" /#!"
!"

# ! "

"# #! /œ   œ / N
`

`B `B `B

` `
(11.6.11)

that are counterparts of Equations (11.6.4) .#

It is immediately seen that the equation (11.6.7) elicits the condition

. Ð Ñ œ N œ !i] /
/. .ß

that is none other than the equation (11.6.2) for the conservation of charge:

N œ N  œ !
`

`>ß ß 3
3

/
/ 3

.

The exterior equations (11.6.6) and (11.6.7) are obviously coordinate
free versions of Maxwell equations. We shall now try to establish a general
solution of these equations. Since the manifold  is star-shaped with re-‘%

spect to each of its points, the use the homotopy operator with the centre
x! œ ! enables us to represent the forms  and  as followsY [

Y Y Y Y

[ [ [ [ .

œ .LÐ Ñ  LÐ. Ñ œ .LÐ Ñ

œ .LÐ Ñ  LÐ. Ñ œ .LÐ Ñ  L Ð Ñˆ ‰i] .

Let us now introduce -forms"

LÐ Ñ œ − Ð Ñß LÐ Ñ œ − Ð ÑY F A ‘ [ G A ‘" % " % .

In accordance with (6.3.1), we obtain for  the following -form5 œ $ #

L Ð Ñ œ B N Ð= Ñ = .= œ B = N Ð= Ñ .=ˆ ‰ ˆ ‰( (Š ‹i i x x] / ./
. / . /. . .

! !

" "

`
# #

.

If we define a linear operator  by the ruleE À Ð Ñ Ä Ð ÑA ‘ A ‘! % ! %

EÐ0ÑÐ Ñ œ = 0Ð= Ñ .=ß 0 − Ð Ñx x(
!

"
# ! %A ‘

we find at once that
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L Ð Ñ œ B EÐN Ñ œ B EÐN Ñˆ ‰i] ./ ./
. / . /. . .[ ] .

Therefore, the general structure of exterior forms determining electromag-
netic fields takes the shape

Y F

[ G .

œ . ß

œ .  B EÐN Ñ[ ]. /
./ .

(11.6.12)

It is clear that the forms  and  cannot be prescribed uniquely unless weF G
impose some restrictions. As a matter of fact, for arbitrary smooth functions
0ß 1  .0  .1, the exterior forms  and  satisfy perfectly again theF G
equations (11.6.12).

Let us now consider -forms  and . If" œ Ð Ñ .B œ Ð Ñ .BF F G G. .
. .x x

we explicitly write the equation (11.6.12) , we get"

"

#
.B • .B œ .B • .B œ  .B • .BY F F./ . / . /

. / / . . /
ß ß[ ]

from which we find that

Y F F F./ . / / . . /œ  # œ [ ]ß ß ß .

We thus obtain

Y F F34 345 4ß3 3ß4
5œ / F œ  .

From this relation, we can easily deduce that

/ / F œ #F œ / Ð  Ñ œ #/346 5 6 346 634
345 4ß3 3ß4 4ß3F F F

and finally . Let us now regard three functions F œ / Ð ß ß Ñi 345
5ß4 " # $F F F F

defined on the manifold  as the components of a -vector field .‘% $ Ð ß >ÑF x
Thus, we come to the conclusion that we can write

B œ f‚F

by using the familiar curl operator. On the other hand, the remaining rela-
tions yield

Y F F3% 3 %ß3 3ß%œ I œ 

that can be expressed obviously as

E œ 
`

`>
f9

F

when we introduce the scalar function  . If we repeat the sameF 9% œ Ð ß >Ñx
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operations for (11.6.12) , then we easily obtain#

" "

# #
.B • .B œ .B • .B  B EÐN Ñ / .B • .B[ G./ / . "!./

. / . / ! " . /
[ ]

[ ]
ß  

and hence we find that

[ G G./ / . . / ./!"
! "œ   / B EÐN Ñß ß .

Consequently, we reach to the relations

[ G G34 345 4ß3 3ß4 345 345
5 5 % % 5œ  / H œ   / B EÐN Ñ  / B EÐN Ñ.

If we note that , the components  are then determined by the/ / œ # H346 6 3
345 5$

relations

H œ  /  B EÐ Ñ  >EÐN Ñ3 345 3 3
5ß4G 3 .

Therefore, the representation of the vector field becomesD 

D x Jœ  EÐ Ñ  >EÐ Ñf‚ G 3

where we define the -vector . Finally the remaining$ Ð ß >Ñ œ Ð ß ß ÑG x G G G" # $

expressions lead to the relations

[ G G3% 3 %ß3 3ß% 3%45
4 5œ L œ   / B EÐN Ñ

from which we infer that  orL œ   / B EÐN Ñ3 ß3 3ß% 345
4 5< G

H x Jœ   EÐ Ñ
`

`>
f ‚<

G

where we have introduced the scalar function . If we collect allG <% œ Ð ß >Ñx
the results that have been obtained so far, we then express the general solu-
tion of the Maxwell equations in the following form

B E

D x J H x J

œ ß œ 
`

`>

œ  EÐ Ñ  >EÐ Ñß œ   EÐ Ñ
`

`>

f‚ f

f‚  f ‚

F
F

G
G

9

3 <

(11.6.13)

in terms of arbitrary vector fields  and , and arbitrary scalar fields  andF G 9
< depending on independent variables . As we have mentioned aboveÐ ß >Ñx
these fields cannot be prescribed uniquely. Indeed, when  and - AÐ ß >Ñ Ð ß >Ñx x
are arbitrary scalar functions, we immediately observe that the relations
(11.6.13) remains unchanged if we replace the vector-valued functions F
and , and scalar-valued functions  and  byG 9 <
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F G ß  à  ß 
` `

`> `>
f f- 9 A <

- A
.

As we have mentioned before, in a physical medium the field vectors
will not be all independent and they will be interconnected by some consti-
tutive relations. Naturally, these relations affect the structure of the equa-
tions (11.6.1) to a great extent. As an example, let us choose the constitutive
relations , . Although these relations are quite simple, theyD E B Hœ œ% .
are considerably important as far as practical applications are concerned.
When we insert these relations into the Maxwell equations, they become

f ! f

f f

‚  œ ß † œ !ß
`

`>

‚  œ ß † œ
" `

- `>

E B
B

B J E
E

  (11.6.14)

#
.

3

%

where we define .  is a constant of the dimension of velocity.- œ "Î -È%.

In terms of the components these equations take the form

/ I  œ !ß F œ !à / F  œ N ß I œ
`F " `I

`> - `>
345 3 345 3 3

5ß4 5ß4

3 3

ß3 ß3#
.

3

%
.

We see now that the same field vectors  and  appear in both group ofE B
equations. However, the positions of upper and lower indices, that were em-
ployed to comply with the summation convention, evoke covariant and con-
travariant components of vectors. To explore this possibility, we shall try to
equip the manifold  with an indefinite metric to make it an incomplete‘%

Riemannian manifold. We shall now introduce the indefinite Lorentz metric
by the relation [  Exercise ]see 7.8

1 .B .B œ Ð.B Ñ  Ð.B Ñ  Ð.B Ñ  - Ð.B Ñ-.
- . " # # # $ # # % # (11.6.15)

where . Hence, the metric tensor and its inverse are given by the fol-B œ >%

lowing matrices, respectively

Ò1 Ó œ ß Ò1 Ó œ

" ! ! !
! " ! !
! ! " !

! ! !  -

" ! ! !
! " ! !
! ! " !

! ! ! 
"

-

-.
-.

Ô ×Ö Ù Ö ÙÖ Ù Ö Ù
Õ Ø

Ô ×Ö Ù
Ö Ù
Õ Ø#

#

and we have . Now, by using this metric we may deter-1 œ l Ò1 Ól œ -det -.
#

mine covariant components of an antisymmetric tensor whose contravariant
components are given by  as followsJ ./
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J œ  J œ 1 1 J!" "! !. "/
./ .

Thus, we easily find that

J œ 1 1 J œ / I ß

J œ 1 1 J œ  - F

34 3 4 345
5

%3 % 3 3
#

. /
./

. /
./

Next, we define a new antisymmetric tensor by its contravariant compo-
nents through the relation

J œ J œ / J
" "

#- #-

µ !" !"./ !"./
./ ./%

#

whence we readily deduce that

J œ / J œ / J œ / F
" "

#- #-

J œ / J œ / J œ  / J
" " "

#- #- #-

œ  / / I œ I œ I
" " "

#- - -

µ

µ

34

# #
34 345% 345

5% 5

%4

# # #
%4 %456 456

56 56

# # #
456 7 4 7 4

657 7

./
./

./
./

$ .

(11.6.16)

The components of the divergence of the tensor , which is a -vector,J %
µ ./

are clearly given now by the following expressions

`J `J `J

`B `B `B
œ 

œ / 
`F " `I

`B - `>

œ  / 
`F " `I

`B - `>

`J `J " `I

`B `B - `B
œ œ 

µ µ µ

µ µ

.

.

.

.

3 43 %3

4 %

435 5

4 #

3

345 5

4 #

3

% 3%

3 # 3

3

Š ‹
.

Consequently, the admitted forms of the constitutive relations transform the
Maxwell equations into the form

`J `J

`B `B
œ !ß œ  N

!"

! !

!"

"  . (11.6.17)
µ

.

The existence of the constitutive relations make it possible to write the
field equations (11.6.13) in much more interesting and meaningful forms. In
order to simplify the necessary manipulations, we prefer to take  andJ œ !
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3 œ !. In that case, it is clear that the resolving functions must satisfy the
relations

 œ  ß
`

`>

œ 
`

`>

f‚ f

f‚ f

G
F

F
G

% 9

. <

Š ‹
Š ‹.

(11.6.18)

When we evaluate the divergences of these two equations, we are led,
respectively, to the equations

f  Ð Ñ œ !ß
`

`>

f  Ð Ñ œ !
`

`>

#

#

9

<

f †

f †

F

G

(11.6.19)

where  denotes the Laplace operator in the configuration manifold. Letf#

us next evaluate the curls of the equations (11.6.18):

f‚f‚ f‚

f‚f‚ f‚

G F

F G

œ Ð Ñß
`

`>

œ  Ð Ñ
`

`>

%

. .

On recalling the well-known and easily verifiable following vectorial identi-
ty involving curl, gradient and divergence operators

f‚f‚ f f † fG G Gœ Ð Ñ  # ,

where  denotes the Laplace operator on -vector fields, utilising thef# $
equations (11.6.18) and introducing again the constant , we easily- œ "Î# %.
find that

f f

f f

#
# #

#

#
# #

#

G
G

F
F

 œ 0ß
" `

- `>

 œ 1
" `

- `>

where the functions  and  are given by0 1

0 œ ß
" `

- `>

1 œ
" `

- `>

f † 

f † 

G

F

#

#

<

9
.
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Differentiating these functions with respect to time and making use of the
equations (11.6.19), we obtain

f  œ ß
" ` `0

- `> `>

f  œ
" ` `1

- `> `>

#
# #

#

#
# #

#

<
<

9
9

.

We would like now to remove the arbitrariness in the selection of functions
Ð ß Ñ Ð ß Ñ 0 œ ! 1 œ !G F< 9 and  by imposing that the   and Lorenz conditions
[after Danish physicist and mathematician Ludvig Valentin Lorenz (1829-
1891)] should be satisfied. To this end, it suffices to choose

f †  ß

f † 

G

F

" `

- `>
œ !

" `

- `>
œ !

#

#

<

9
.

In this case, we can easily verify that all field quantities can be prescribed
by considering only one pair of functions, say, for instance . Indeed,Ð ß ÑF 9
(11.6.13) now takes the form

B E

D H

œ ß œ  ß
`

`>

œ  ß œ
` "

`>

f‚ f

f f‚ Þ

F
F

F
F

        9

% 9
.

Š ‹
These functions have to satisfy the scalar-valued and vector-valued wave
equations

f  œ !ß
" `

- `>

 œ
" `

- `>

#
# #

#

#
# #

#

9
9

f !F
F

.

9 and  are called, respectively, and  of electro-F scalar vector potentials
magnetic fields. The number  denotes naturally the velocity of propagation-
of electromagnetic waves in such a medium.

11.7. THERMODYNAMICS

Let us consider a thermodynamic system  occupying a finite region in“
‘$. The variables that describe the behaviour of the system will be called as
the . We distinguish three different sets of substate variables:state variables
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the external variables the internal variables  ,  Ö; ß 3 œ "ß #ß á ß 8× Ö ß œ3 / !!

"ß #ß á ß R× X and  or solely  .the empirical temperature the temperature
Thus, we may assume that the system  is incorporated in an -“ Ð8  R  "Ñ
dimensional Euclidean manifold. The acting upon theexternal agencies 
system  is called the set of   .“ external forces ÖJ Ð ß ß X Ñß 3 œ "ß #ß á ß 8×3 q /
The  that will occur during some infinitesimal changes ininfinitesimal work
the external variables will be denoted by the -form"

[ œ J Ð ß ß X Ñ .;3
3q / . (11.7.1)

We adopt the convention that the signs of forces  are positive when theJ3

forces do work on the system  whereas are negative if  the system   do“ “
work on the external agencies. We say that the external forces are conser-
vative if they satisfy the relations

`J `J

`; `;
œ

3 4

4 3
.

In the present context, we shall consider this particular situation. In this case
when we restrict the form  to the submanifold given by ,[ œ/ constant
X œ constant, we obtain

k.[ œ J .; • .;

œ ÐJ  J Ñ.; • .; œ !
"

#

/ ßX 3ß4
4 3

3ß4 4ß3
4 3

where we employed the notation . Hence the form  isJ œ [
`J

`;
3ß4

3

4 ßXk/
closed and it is exact since the manifold is star-shaped so that we can write

k k[ œ ./ /ßX ßXG .

The function  which we shall call  canGÐ ß ß X Ñq / isothermal work function
be evaluated as follows by the homotopy operator

  (11.7.2)G GÐ ß ß X Ñ œ Ð ß X Ñ  Ð; ; Ñ J  >Ð  Ñß ß X .>q q q q/ / /! 3 ! !
!

"
3 3

!(  ‘
on resorting to Theorem 6.3.1  and the relation (6.3.1).  is an arbitraryÐ3Ñ q!

point. From this relation, we immediately deduce that

J œ
`

`;
3 3

G
. (11.7.3)

Thus, the -form  is now expressible as" .G
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. œ .;  .  .X
` ` `

`; ` `X

œ J .;  R .  R .X

G /
G G G

/

/

3
3

3
3

!
!

!
!

where we have defined

R Ð ß ß X Ñ œ ß RÐ ß ß X Ñ œ 
` `

` `X
! !

q q/ /
G G

/
(11.7.4)

The trivial condition  then leads at once to the celebrated . œ !#G Maxwell
reciprocity relations

`J `J `J `R `J `R

`; `; ` `; `X `;
œ ß œ ß œ  ß

`R `R `R `R

` ` `X `
œ ß œ

3 4 3 3

4 3 3 3
     

  .

/

/ / /

!

!

! " !

" ! !

Then, the work form (11.7.1) can be written in the following manner

[ œ .  R .X  R .G /!
! (11.7.5)

whence we obtain

.[ œ .R • .X  .R • .!
!/ .

The expression (11.7.5) implies that if all components  do not vanish,R!

then the Darboux class of the form  is at least 4. If the external forces are[
dependent on some of the internal variables, then the Maxwell reciprocity
relations clearly show that at least some of the coefficients  should notR!

vanish as a consequence of this property.
If we denote the heat input to the system  by the  - , then“ heat form " U

the first law of thermodynamics states that in quasistatic situations in which
the time change of the system is so slow that its kinetic energy can be neg-
lected, one can write

.I œ [  U

where  is called the . Therefore, whenIÐ ß ß X Ñq / internal energy function
we make use of (11.7.5), we obtain

U œ .ÐI  Ñ  R .X  R .G /!
!

and consequently

.U œ  .R • .X  .R • . œ  .[!
!/ .
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In his case, the Darboux class of the form  is at least , that is, in view ofU %
Theorem 6.6.3 it does not possess the inaccessibility property. Hence, the
form  is in general not completely integrable and Theorem 5.13.4 requiresU
that . On the other hand, we naturally findU • .U Á !

k.U œ  .R • .X/

on the submanifold . Experimental information show that we/ œ constant
cannot get our system occupying a state on the submanifold / œ constant
to reach to another state on the same submanifold without exchanging heat.
In other words, two states on the submanifold  cannot be/ œ constant
connected by an  in this manifold. This means that .adiabatic path k.U Á !/

Let us now discuss the condition under which the form  becomes com-kU /

pletely integrable. The relation

k kU • .U œ !/ /

yields

.ÐI  Ñ • .R • .X œ !G

This, in turn, indicates that  is functionally dependent on variables I  RG
and . Thus, we can writeX

IÐ ß ß X Ñ œ Ð ß ß X Ñ  0 RÐ ß ß X Ñß ß Xq q q/ / / /G ˆ ‰. (11.7.6)

So we find that

U œ .0ÐRß ß X Ñ  R .X  R ./ !
!/ . (11.7.7)

Let us now consider two thermodynamic systems  and  having exactly“ “" #

the same temperature and internal variables. In this case, we can obviously
write

R Ð ß ß X Ñ œ  ß R Ð ß ß X Ñ œ 
` `

`X `X
" " # #

" #q q/ /
G G

.

If we let these two systems to interact, our physical experience tells us that
the common isothermal work function should be expressed in the following
fashion

G G G <"# " # " " # # " #Ð ß ß ß X Ñ œ Ð ß ß X Ñ  Ð ß ß X Ñ  Ð ß ß Ñq q q q q q/ / / / .

This relation implies that isothermal work function must be a semi-additive
function (in thermodynamics, it is frequently taken . In such a case, < Gœ !
will become a strictly additive function). This is tantamount that interaction
forces in the composite system are independent of the temperature. It is now



746 XI  Some Physical Applications

clear that we can write

R œ  œ   œ R  R
` ` `

`X `X `X
"# " #

"# " #G G G
.

The composition rule of the internal energy will follow from the physical
assumption that the function  is strictly additive and it is found asI  G

I Ð ß ß ß X Ñ œ I Ð ß ß X Ñ  I Ð ß ß X Ñ  Ð ß ß Ñ"# " # " " # # " #q q q q q q/ / / /< .

Then, (11.7.6) provides the functional relation

0ÐR ß ß X Ñ œ 0ÐR  R ß ß X Ñ

œ 0ÐR ß ß X Ñ  0ÐR ß ß X Ñ
"# " #

" #

/ /

/ /

(11.7.8)

that must be held by the function . With the definition , this0 ? œ R  R" #

relation leads to

`0 `0 `0

`R `R `?
œ œ

" #
.

Since  and  are independent variables, we finally obtainR R" #

0ÐRß ß X Ñ œ 1Ð ß X ÑR  1 Ð ß X Ñ/ / /" .

However, (11.7.8) now implies that  and we thus reach to the1 Ð ß X Ñ œ !" /
conclusion

0ÐRß ß X Ñ œ 1Ð ß X ÑR/ / .

Consequently, we can write

IÐ ß ß X Ñ œ Ð ß ß X Ñ  1Ð ß X Ñ RÐ ß ß X Ñ

UÐ ß ß X Ñ œ . 1Ð ß X Ñ RÐ ß ß X Ñ  RÐ ß ß X Ñ .X  R .

q q q
q q q
/ / / /

/ / / /

G

/ ‘ !
!.

(11.7.9)

We shall now try to reduce these functional relations for  and  intoI U
simpler forms. To this end, we want to introduce a thermodynamic temper-
ature depending on the empirical temperature and internal variables by the
following expression

) )
7

7
Ð ß X Ñ œ Ð Ñ

.

1Ð ß Ñ
/ /

/
!

X

X

exp ’ “(
!

. (11.7.10)

Obviously,  will satisfy the relation)

`

`X 1
œ

) )
.
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On the other hand, we can extract, in principle, from (11.7.10) the inverse
function  connecting the empirical temperature to the thermo-X œ X Ð ß Ñ/ )
dynamic temperature. Let us now introduce the functions

< ) G )

) )

Ð ß ß Ñ œ ß ß X Ð ß Ñ ß

/Ð ß ß Ñ œ I ß ß X Ð ß Ñ

q q
q q
/ / /

/ / /

ˆ ‰ˆ ‰
and the quantity

( )
<

)
Ð ß ß Ñ œ 

`

`
q / . (11.7.11)

From the chain rule of differentiation, we obtain

R œ  œ  œ
` ` `

`X ` `X 1

G < ) )(

)

that yields the relation . Then, the equation (11.7.9)  leads us to1R œ )( #

the expression

U œ .Ð Ñ  R.X  R .

œ .  .  R.X  R .

œ .  .X  .  .X  R .
` `

`X ` 1

)( /

) ( ( ) /

) ( ( / /
) ) )(

/

!
!

!
!

!
! !

!Š ‹ .

Let us now consider the expression

8 œ  R
`

`
! !!

(
)

/
.

From the chain rule again, we can write

R œ  œ 
` ` ` ` `

` ` ` ` `
! ! ! ! !

< < ) < )

/ ) / / /
(

so that we find

8 Ð ß ß Ñ œ
`

`
! !

q / )
<

/
. (11.7.12)

Thus the equations (11.7.9) take now the forms

/Ð ß ß Ñ œ Ð ß ß Ñ  Ð ß ß Ñ

œ 
`

`
U œ .  8 .

q q q/ / /) < ) ) ( )

< )
<

)
) ( /

,

.

(11.7.13)

!
!
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We call the function  as the and the function  as the ( <entropy Helmholtz
free energy function [after German mathematician, physicist and medical
doctor Hermann Ludwig Ferdinand von Helmholtz (1821-1894)]. When we
take , it follows from (11.7.13)  that/ œ constant #

kU œ ./ ) (

Hence, the heat -form  is completely integrable in this case as it should" U
be expected.

If we choose  in (11.7.10), then the condition  is satisfied.) )!  !  !
We can then also write  . The temperature verifying this conditioninf ) œ !
will be called the . Moreover (11.7.13)  givesabsolute temperature "

- œ œ 
`/ `

` `
qß

#

#/
) )

)
<

.

The quantity  is known as the  under the restrictions - œqß/ specific heat q
constant constant and . We know that  is positive in real materials./ œ - qß/

This implies that the following inequality must be satisfied

`

`
 !

#

#

<

)

due to the fact that .)  !

XI.  EXERCISES

11.1.  Let  be a symplectic manifold. Show that every vector field ÐWß Ñ Z − X ÐWÑ=
 satisfying the condition £ 0 is a Hamiltonian vector field.Z = œ
11.2. The Hamiltonian function of the  [after Japanese physicistToda lattice 
 Morikazu Toda (1917-2010)] involving three particles, which we encounter
 in the solid state physics, is given by the following function on the
 symplectic manifold W œ X Ð Ñ‡ $‘

LÐ ß Ñ œ Ð:  :  : Ñ  /  /  /
"

#
q p # # # ; ; ; ; ; ;

" # $

" # # $ $ "

.

  Write the Hamilton equations governing the motion of the system.  InÐ+Ñ Ð,Ñ
 order that the function  be an integral of the motion, we know that0 − ÐWÑA!

 the condition  should be satisfied. Searching for the integrals ofÖ0 ß L× œ !
 the partial differential equation so obtained for the function , show that the0
 following functions are integrals of the motion

0 Ð ß Ñ œ Lß

0 Ð ß Ñ œ :  :  :
"

# " # $

q p
q p



XI  Exercises 749

0 Ð ß Ñ œ Ð:  :  : Ñ  : /  /
"

$

 : /  /  : /  /

$ "
$ $ $ ; ; ; ;
" # $

# $
; ; ; ; ; ; ; ;

q p ˆ ‰
ˆ ‰ ˆ ‰

" # $ "

# $ " # $ " # $

.

11.3. Show that the function

1Ð ß Ñ œ : : :  : /  : /  : /q p " # $ " # $
; ; ; ; ; ;# $ $ " " #

 is also an integral of the motion for the Toda lattice.
11.4. Is the transformation

U œ Ð; :Ñß T œ ; :log sin cot"

   canonical?
11.5. Determine the structure of the function  so that the mapping0Ð; ß á ß ; Ñ" 8

U œ 0Ð; ß á ß ; Ñ : ß

T œ 0Ð; ß á ß ; Ñ : ß 3 œ "ß á ß 8

3 " 8
3

3 3
" 8

sin

cos

 

 becomes a canonical transformation in the phase space.
11.6. A Find the structure of the constant matrix  so that the mappingœ Ò+ Ó34

U œ ; ß T œ :  + ;3 3 4
3 3 34

 becomes a canonical transformation in the phase space. Determine the gen-
 erating function  corresponding to this case.J Ð ß Ñ" q P
11.7. We can build a symplectic structure in the non-conservative mechanics by
 introducing an  . Let us denote the coordinate cover in theenergy variable I
 manifold  by . We then define a symplectic form as follows‘#8# Ð ß ß Iß >Ñq p

= œ .; • .:  .I • .>3
3 .

 Let  be the Hamiltonian function of the system. We next considerLÐ ß ß >Ñq p
 a function

T Ð ß ß Iß >Ñ œ LÐ ß ß >Ñ  Iq p q p .

   Show that along the integral curves of a Hamiltonian vector field
  defined by the relation  and associated with theZ − X Ð Ñ œ .TT Z

#8#‘ =i
T

 function , the following equations are satisfiedT

.; `L .: `L .I `L

.> `: .> `; .> `>
œ ß œ  ß œ

3

3

3

3
.

11.8. Let the functions  and  be two integrals of the motion in a non-con-0 1
 servative system so that they satisfy the following equations

`0

`>
 Ö0 ß L× œ !ß
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`1

`>
 Ö1ß L× œ !.

 Show that the Poisson bracket  is also an integral of the motion thisÖ0 ß 1× Ð
 result is known as the .Poisson theoremÑ
11.9. q pUtilising the Poisson theorem prove that if the function  is an0Ð ß ß >Ñ
 integral of the motion in a conservative system , then allˆ ‰L œ LÐ ß Ñq p

 derivatives ,  are also integrals of the motion.
` 0

`>
8œ"ß #ß á

8

8

11.10. The energy balance in a perfect fluid can be expressed in the form

./ œ .  : .) ( /

 where  is the pressure,  is the specific volume. Find the relations to which: /

 the exterior derivatives of the forms  and  give rise under the following./
./

)
 assumptions:

Ð+Ñ / œ /Ð ß Ñß : œ :Ð ß Ñß

Ð,Ñ œ Ð ß Ñß : œ :Ð ß Ñß

Ð-Ñ œ Ð ß Ñß : œ :Ð ß ÑÞ

 
 
 

) / ) /

) ) ( / ( /

( ( ) / ) /

  
  
  
 
 




