
L. De Lathauwer

Decompositions of Higher-Order Tensors:

Concepts and Computation

Lieven De Lathauwer

KU Leuven

Belgium

Lieven.DeLathauwer@kuleuven-kulak.be

1

L. De Lathauwer

Canonical Polyadic Decomposition

Rank: minimal number of rank-1 terms [Hitchcock, 1927]

Canonical Polyadic Decomposition (CPD): decomposition in minimal

number of rank-1 terms [Harshman ’70], [Carroll and Chang ’70]

T

=

a1

b1

c1

+ · · ·+

aR

bR

cR

• Unique under mild conditions on number of terms and differences

between terms

• Orthogonality (triangularity, . . .) not required (but may be imposed)

2

L. De Lathauwer

Overview

• Basics: Rank and Canonical Polyadic Decomposition

• Conceptual advances: CPD uniqueness

• Conceptual advances: more general decompositions and variants

• Computational advances: numerical optimization

3

L. De Lathauwer

Rank-1 tensor

• Rank-1 matrix: tensor (outer) product of 2 vectors u(1), u(2):

ai1i2
= u

(1)
i1

u
(2)
i2

A = u
(1) · u(2)T ≡ u

(1) ◦ u(2)

• Rank-1 tensor: tensor (outer) product of N vectors u(1), u(2), . . . , u(N):

ai1i2...iN
= u

(1)
i1

u
(2)
i2

. . . u
(N)
iN

A = u
(1) ◦ u(2) ◦ . . . ◦ u(N)

u(1)

u(2)
=

A

=
A

u(1)

u(2)

u(3)

4

L. De Lathauwer

Rank of a tensor

• The rank R of a matrix A is minimal number of rank-1 matrices that

yield A in a linear combination.

= +
A

λ1 λ2 λR

u
(1)
1 u

(1)
2 u

(1)
R

u
(2)
1 u

(2)
2 u

(2)
R+ . . .+

• The rank R of an Nth-order tensor A is the minimal number of rank-1

tensors that yield A in a linear combination.

replacements

= +

λ1 λ2 λR

u
(1)
1 u

(1)
2 u

(1)
R

u
(2)
1 u

(2)
2 u

(2)
R

u
(3)
1 u

(3)
2 u

(3)
R

+ . . .+
A

[Hitchcock, 1927]

5

L. De Lathauwer

Rank and dimension
Matrices:

The rank of a (K ×K) matrix is at most equal to K

Tensors:

The rank of a (K ×K × . . .×K) tensor can be greater than K

Partial explanation: number of free tensor parameters: KN

number of parameters in expansion: NKR

replacements

= +

λ1 λ2 λR

u
(1)
1 u

(1)
2 u

(1)
R

u
(2)
1 u

(2)
2 u

(2)
R

u
(3)
1 u

(3)
2 u

(3)
R

+ . . .+
A

Rank and multilinear rank: R > max(R1, R2, . . . , RN)

6

L. De Lathauwer

Overview

• Basics: Rank and Canonical Polyadic Decomposition

• Conceptual advances: CPD uniqueness

• Conceptual advances: more general decompositions and variants

• Computational advances: numerical optimization

7

L. De Lathauwer

Canonical Polyadic Decomposition

Rank: minimal number of rank-1 terms [Hitchcock, 1927]

Canonical Polyadic Decomposition (CPD): decomposition in minimal

number of rank-1 terms [Harshman ’70], [Carroll and Chang ’70]

T

=

a1

b1

c1

+ · · ·+

aR

bR

cR

• Unique under mild conditions on number of terms and differences

between terms

• Orthogonality (triangularity, . . .) not required (but may be imposed)

8

L. De Lathauwer

Factor Analysis and Blind Source Separation

• Decompose a data matrix in rank-1 terms that can be interpreted

E.g. statistics, telecommunication, biomedical applications,

chemometrics, data analysis, . . .

A = F ·GT

= +

f1 f2 fR

g1 g2 gR
+ . . .+

A

• F: mixing matrix

G: source signals

• Decompose a data matrix in rank-1 terms that can be interpreted

9

L. De Lathauwer

A = F ·GT

= +

f1 f2 fR

g1 g2 gR
+ . . .+

A

• Problem: decomposition in rank-1 terms is not unique

A = (FM) · (M−1GT
)

= F̃ · G̃T

10

L. De Lathauwer

What about SVD?

• SVD is unique

• . . . thanks to orthogonality constraints

A = U · S · VT =
R

∑

r=1

srrurv
T

r

U, V orthogonal, S diagonal

• Whether these constraints make sense, depends on the application

• SVD is great for dimensionality reduction

best rank-R approximation ← truncated SVD

=

U

VT

SA

11

L. De Lathauwer

Canonical Polyadic Decomposition

Rank: minimal number of rank-1 terms [Hitchcock, 1927]

Canonical Polyadic Decomposition (CPD): decomposition in minimal

number of rank-1 terms [Harshman ’70], [Carroll and Chang ’70]

T

=

a1

b1

c1

+ · · ·+

aR

bR

cR

• Unique under mild conditions on number of terms and differences

between terms

• Orthogonality (triangularity, . . .) not required (but may be imposed)

12

L. De Lathauwer

Uniqueness: Kruskal’s Theorem

Rank: at least one set of rA columns is independent

K-rank: every set of kA columns is independent (kA 6 rA) (kA + 1 is spark)

Theorem:

kA + kB + kC ≥ 2R + 2

→ rT = R and CPD is unique

[Kruskal ’77]

Generic: A(I × R) B(J × R) C(K × R)

CPD is unique for R bounded by I, J,K as in

min(I, R) + min(J,R) + min(K,R) > 2R + 2

13

L. De Lathauwer

New conditions

Kruskal-type corollary:

Let at least two of the following conditions hold:

kA + rB + rC ≥ 2R + 2

rA + kB + rC ≥ 2R + 2

rA + rB + kC ≥ 2R + 2

→ rT = R and CPD is unique

[Domanov, DL ’12]

14

L. De Lathauwer

Uniqueness: C has full column rank

CPD: T =
∑R

r=1 ar ◦ br ◦ cr ∈ C
I×J×K T[1,2;3] = (A⊙ B) · CT ∈ C

IJ×K

e.g. C-mode is sample mode

Khatri-Rao product second compound matrices:

U = C2(A)⊙ C2(B) ∈ C
I(I−1)

2
J(J−1)

2 ×R(R−1)
2

ui1i2j1j2r1r2
=

∣

∣

∣

∣

ai1r1
ai2r1

ai1r2
ai2r2

∣

∣

∣

∣

·
∣

∣

∣

∣

bj1r1 bj2r1
bj1r2 bj2r2

∣

∣

∣

∣

1 6 i1 < i2 6 I 1 6 j1 < j2 6 J 1 6 r1 < r2 6 R

Theorem: if U and C have full column rank, then CPD is unique

(proof is constructive)

[Jiang and Sidiropoulos, ’04], [DL ’06]

15

L. De Lathauwer

Uniqueness: C has full column rank (2)

Theorem: if U ∈ C
I(I−1)

2
J(J−1)

2 ×R(R−1)
2 and C ∈ C

K×R have full column rank,

then CPD is unique

Generic: CPD is unique for R bounded by I, J,K as in

I(I − 1)

2

J(J − 1)

2
>

R(R − 1)

2
and K > R

Approximately: IJ√
2
> R K > R

Compare to Kruskal:

min(I, R) + min(J,R) > R + 2 and K > R

16

L. De Lathauwer

Recent results

Unifying theory

Constructive proof

Algorithm for Kruskal’s condition (and beyond)

[Domanov, DL, ’12], [Domanov, DL, ’13]

17

L. De Lathauwer

Overview

• Basics: Rank and Canonical Polyadic Decomposition

• Conceptual advances: CPD uniqueness

• Conceptual advances:

– Block terms

– Coupled decompositions

– Constraints

• Computational advances: numerical optimization

18

L. De Lathauwer

Canonical Polyadic Decomposition

Rank: minimal number of rank-1 terms [Hitchcock, 1927]

Canonical Polyadic Decomposition (CPD): decomposition in minimal

number of rank-1 terms [Harshman ’70], [Carroll and Chang ’70]

T

=

a1

b1

c1

+ · · ·+

aR

bR

cR

• Unique under mild conditions on number of terms and differences

between terms

• Orthogonality (triangularity, . . .) not required (but may be imposed)

19

L. De Lathauwer

Decomposition in rank-(L,L, 1) terms

T

=

A1

B1

c1

+ · · ·+

AR

BR

cR

Unique under mild conditions

[DL ’08]

20

L. De Lathauwer

Decomposition in rank-(R1, R2, R3) terms

T

=

A1

B1

C1

+ · · ·+

AR

BR

CR

Unique under mild conditions

Rank-1 term ∼ data atom

Block term ∼ data molecule

[DL ’08]

21

L. De Lathauwer

Constraints

Examples: orthogonality [Sørensen and DL ’12]

nonnegativity [Cichocki et al. ’09]

Vandermonde [Sørensen and DL ’12]

independence [De Vos et al. ’12]

. . .

Not needed for uniqueness in tensor case

Pro: relaxed uniqueness conditions

easier interpretation

no degeneracy (NN, orthogonality)

higher accuracy

Depending on type of constraints, lower or higher computational cost

22

L. De Lathauwer

Coupled matrix/tensor decompositions

One or more matrices

One or more tensors

Symmetric and nonsymmetric

One or more factors shared (or parts of factors, or generators)

Constraints (orthogonal, nonnegative, exponential, constant modulus,

polynomial, rational, Toeplitz, Hankel, . . .)

Data fusion

23

L. De Lathauwer

Overview

• Basics: Rank and Canonical Polyadic Decomposition

• Conceptual advances: CPD uniqueness

• Conceptual advances: more general decompositions and variants

• Computational advances:

– Optimization of complex variables

– Numerical optimization

– Exact line and plane search

– Framework for (constrained) coupled decompositions

24

Between linear and nonlinear: numerical
computation of tensor decompositions

Laurent Sorber, Marc Van Barel and Lieven De Lathauwer

Introduction

What are tensors?

Tensor decompositions

Uniqueness & applications

Complex Optimization

Complex Taylor series

Algorithms and software

Computing tensor decompositions

Tensor optimization

Exact line and plane search

1

Introduction

What are tensors?

Tensor decompositions

Uniqueness & applications

Complex Optimization

Complex Taylor series

Algorithms and software

Computing tensor decompositions

Tensor optimization

Exact line and plane search

Tensor optimization

minimize
𝑧 ∈C𝑛

1

2

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦
𝑎1

𝑏1

𝑐1

+ · · ·+

𝑎𝑅

𝑏𝑅

𝑐𝑅

−
𝒯

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦
2

F

where 𝑧T :=
[︀
𝑎T1 · · · 𝑎T𝑅 𝑏T1 · · · 𝑏T𝑅 𝑐T1 · · · 𝑐T𝑅

]︀

16

Generalizing real optimization

minimize
𝑥 ∈R𝑛

𝑓 (𝑥)

I 𝑓 is not differentiable w.r.t. 𝑧
No real-valued functions are analytic in complex 𝑧!

I Defacto solution is to minimize 𝑓 (𝑧𝑅) where 𝑧𝑅 :=

[︃
Re{𝑧}
Im{𝑧}

]︃
I Alternatively, use complex optimization [S,VB,DL]

12

Generalizing real optimization

minimize
𝑧 ∈C𝑛

𝑓 (𝑧 , 𝑧)

I 𝑓 is not differentiable w.r.t. 𝑧
No real-valued functions are analytic in complex 𝑧!

I Defacto solution is to minimize 𝑓 (𝑧𝑅) where 𝑧𝑅 :=

[︃
Re{𝑧}
Im{𝑧}

]︃
I Alternatively, use complex optimization [S,VB,DL]

12

Generalizing real optimization

minimize
𝑧 ∈C𝑛

𝑓 (𝑧 , 𝑧)

I 𝑓 is not differentiable w.r.t. 𝑧
No real-valued functions are analytic in complex 𝑧!

I Defacto solution is to minimize 𝑓 (𝑧𝑅) where 𝑧𝑅 :=

[︃
Re{𝑧}
Im{𝑧}

]︃
I Alternatively, use complex optimization [S,VB,DL]

12

Generalizing real optimization

minimize
𝑧 ∈C𝑛

𝑓 (𝑧 , 𝑧)

I 𝑓 is not differentiable w.r.t. 𝑧
No real-valued functions are analytic in complex 𝑧!

I Defacto solution is to minimize 𝑓 (𝑧𝑅) where 𝑧𝑅 :=

[︃
Re{𝑧}
Im{𝑧}

]︃

I Alternatively, use complex optimization [S,VB,DL]

12

Generalizing real optimization

minimize
𝑧 ∈C𝑛

𝑓 (𝑧 , 𝑧)

I 𝑓 is not differentiable w.r.t. 𝑧
No real-valued functions are analytic in complex 𝑧!

I Defacto solution is to minimize 𝑓 (𝑧𝑅) where 𝑧𝑅 :=

[︃
Re{𝑧}
Im{𝑧}

]︃
I Alternatively, use complex optimization [S,VB,DL]

12

Complex gradient

Consider [︃
𝑧

𝑧

]︃
=

[︃
I I𝑖
I −I𝑖

]︃
·
[︃
Re{𝑧}
Im{𝑧}

]︃
𝑧𝐶 = 𝐽 · 𝑧𝑅

and define the complex gradient as

𝜕𝑓

𝜕𝑧𝐶
:= 𝐽−T · 𝜕𝑓

𝜕𝑧𝑅
=
1

2

[︃
𝜕𝑓

𝜕Re{𝑧} − 𝜕𝑓
𝜕Im{𝑧} 𝑖

𝜕𝑓
𝜕Re{𝑧} +

𝜕𝑓
𝜕Im{𝑧} 𝑖

]︃
=:

[︃
𝜕𝑓
𝜕𝑧
𝜕𝑓
𝜕𝑧

]︃

13

Complex gradient

Consider [︃
𝑧

𝑧

]︃
=

[︃
I I𝑖
I −I𝑖

]︃
·
[︃
Re{𝑧}
Im{𝑧}

]︃
𝑧𝐶 = 𝐽 · 𝑧𝑅

and define the complex gradient as

𝜕𝑓

𝜕𝑧𝐶
:= 𝐽−T · 𝜕𝑓

𝜕𝑧𝑅
=
1

2

[︃
𝜕𝑓

𝜕Re{𝑧} − 𝜕𝑓
𝜕Im{𝑧} 𝑖

𝜕𝑓
𝜕Re{𝑧} +

𝜕𝑓
𝜕Im{𝑧} 𝑖

]︃
=:

[︃
𝜕𝑓
𝜕𝑧
𝜕𝑓
𝜕𝑧

]︃

13

Complex gradient

Consider [︃
𝑧

𝑧

]︃
=

[︃
I I𝑖
I −I𝑖

]︃
·
[︃
Re{𝑧}
Im{𝑧}

]︃
𝑧𝐶 = 𝐽 · 𝑧𝑅

and define the complex gradient as

𝜕𝑓

𝜕𝑧𝐶
:= 𝐽−T · 𝜕𝑓

𝜕𝑧𝑅
=
1

2

[︃
𝜕𝑓

𝜕Re{𝑧} − 𝜕𝑓
𝜕Im{𝑧} 𝑖

𝜕𝑓
𝜕Re{𝑧} +

𝜕𝑓
𝜕Im{𝑧} 𝑖

]︃
=:

[︃
𝜕𝑓
𝜕𝑧
𝜕𝑓
𝜕𝑧

]︃

13

Complex Taylor series

Real Taylor series

𝑓 (𝑧(𝑘)) + 𝑝T𝑅

· 𝐽T𝐽−T·

𝜕𝑓 (𝑧(𝑘))

𝜕𝑧𝑅
+ 𝑝T𝑅

· 𝐽T𝐽−T·

𝜕2𝑓 (𝑧(𝑘))

𝜕𝑧𝑅𝜕𝑧
T
𝑅

· 𝐽T𝐽−T·

𝑝𝑅

14

Complex Taylor series

Real Taylor series

𝑓 (𝑧(𝑘)) + 𝑝T𝑅 · 𝐽T𝐽−T·
𝜕𝑓 (𝑧(𝑘))

𝜕𝑧𝑅
+ 𝑝T𝑅 · 𝐽T𝐽−T·

𝜕2𝑓 (𝑧(𝑘))

𝜕𝑧𝑅𝜕𝑧
T
𝑅

· 𝐽T𝐽−T· 𝑝𝑅

14

Complex Taylor series

Real Taylor series

𝑓 (𝑧(𝑘)) + 𝑝T𝑅 · 𝐽T𝐽−T·
𝜕𝑓 (𝑧(𝑘))

𝜕𝑧𝑅
+ 𝑝T𝑅 · 𝐽T𝐽−T·

𝜕2𝑓 (𝑧(𝑘))

𝜕𝑧𝑅𝜕𝑧
T
𝑅

· 𝐽T𝐽−T· 𝑝𝑅

14

Complex Taylor series

Complex Taylor series

𝑓 (𝑧(𝑘)) + 𝑝T𝐶 ·
𝜕𝑓 (𝑧(𝑘))

𝜕𝑧𝐶
+ 𝑝T𝐶 ·

𝜕2𝑓 (𝑧(𝑘))

𝜕𝑧𝐶𝜕𝑧
T
𝐶

· 𝑝𝐶

14

Algorithms and software

Complex Optimization Toolbox (COT) for MATLAB
esat.kuleuven.be/sista/cot

I Generalized nonlinear optimization
minf_lbfgs, minf_lbfgsdl, minf_ncg

I Generalized nonlinear least squares
nls_gndl, nls_lm, nls_gncgs, nlsb_gndl

I Complex differentiation and Moré–Thuente line search
deriv, ls_mt

15

Introduction

What are tensors?

Tensor decompositions

Uniqueness & applications

Complex Optimization

Complex Taylor series

Algorithms and software

Computing tensor decompositions

Tensor optimization

Exact line and plane search

Tensor optimization

minimize
𝑧 ∈C𝑛

1

2

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦
𝑎1

𝑏1

𝑐1

+ · · ·+

𝑎𝑅

𝑏𝑅

𝑐𝑅

−
𝒯

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦⃦
2

F

where 𝑧T :=
[︀
𝑎T1 · · · 𝑎T𝑅 𝑏T1 · · · 𝑏T𝑅 𝑐T1 · · · 𝑐T𝑅

]︀

16

Tensor optimization

minimize
𝑧 ∈C𝑛

1

2
‖ℳ(𝑧)− 𝒯 ‖2F

whereℳ is multilinear

16

Tensor optimization

minimize
𝑧 ∈C𝑛

1

2
‖ℱ(𝑧)‖2F

where ℱ is multilinear

16

Applications of tensor optimization

I canonical polyadic decomposition (CPD),

I low multilinear rank approximation (LMLRA),

I block term decompositions (BTD),

I support tensor machines (STM),

I coupled tensor-matrix factorizations (CTMF),

I . . .

17

Nonlinear least squares

0 20 40 60 80 100 120 140

10−16

10−12

10−8

10−4

100

iteration

‖ℱ
(𝑧
)‖
F

CPD of a 9× 9× 9× 9× 9 tensor of rank 11

ALS
NLS

18

Nonlinear least squares

The step is computed as

𝑝* = −𝐻−1𝑔

𝑓 (𝑧 , 𝑧) := 1
2‖ℱ(𝑧)‖2F is the objective function

𝑔 := 2𝜕𝑓𝜕𝑧 is the scaled conjugate cogradient
𝐻 := is (an approximation of) the complex Hessian

Where 𝐻 is

I a diagonal plus low-rank matrix in quasi-Newton

I 𝐽H𝐽 in NLS and 𝐽 := 𝜕ℱ
𝜕𝑧T

19

Exploiting the structure in 𝐽H𝐽

I However, NLS is expensive in both memory and flop/iteration

I 𝑁𝐼2 times more memory than ALS

I 𝑁2𝑅2 times more flop/iteration than ALS

I Exploit rank-one and diagonal block structure in 𝐽H𝐽 to
obtain a fast inexact NLS algorithm [S,VB,DL]

I Same memory cost as ALS

I Same flop/iteration as ALS for large tensors

I Additional benefits (compared to ALS)

I Almost “embarrassingly” parallel
Can theoretically achieve peak performance on GPUs

I Robust performance on difficult decompositions

21

Exploiting the structure in 𝐽H𝐽

I However, NLS is expensive in both memory and flop/iteration

I 𝑁𝐼2 times more memory than ALS

I 𝑁2𝑅2 times more flop/iteration than ALS

I Exploit rank-one and diagonal block structure in 𝐽H𝐽 to
obtain a fast inexact NLS algorithm [S,VB,DL]

I Same memory cost as ALS

I Same flop/iteration as ALS for large tensors

I Additional benefits (compared to ALS)

I Almost “embarrassingly” parallel
Can theoretically achieve peak performance on GPUs

I Robust performance on difficult decompositions

21

Exploiting the structure in 𝐽H𝐽

I However, NLS is expensive in both memory and flop/iteration

I 𝑁𝐼2 times more memory than ALS

I 𝑁2𝑅2 times more flop/iteration than ALS

I Exploit rank-one and diagonal block structure in 𝐽H𝐽 to
obtain a fast inexact NLS algorithm [S,VB,DL]

I Same memory cost as ALS

I Same flop/iteration as ALS for large tensors

I Additional benefits (compared to ALS)

I Almost “embarrassingly” parallel
Can theoretically achieve peak performance on GPUs

I Robust performance on difficult decompositions

21

Algorithm performance comparison

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

𝜏

𝜌

Performance profile (low collinearity)

GN-DL
GN-CGS
LM
ALS
L-BFGS-DL
L-BFGS-MT
NCG-MT

22

Algorithm performance comparison

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

𝜏

𝜌

Performance profile (medium collinearity)

GN-DL
GN-CGS
LM
ALS
L-BFGS-DL
L-BFGS-MT
NCG-MT

23

Tensorlab

Tensorlab — a MATLAB toolbox for tensor decompositions
esat.kuleuven.be/sista/tensorlab

I Elementary operations on tensors
Multicore-aware and profiler tuned

I Tensor decompositions with structure and/or symmetry
CPD, LMLRA, MLSVD, block term decompositions

I Global minimization of bivariate polynomials
Exact line and plane search for tensor optimization

I Cumulants, tensor visualization, estimating a tensor’s rank or
multilinear rank, . . .

25

Tensorlab

Tensorlab — a MATLAB toolbox for tensor decompositions
esat.kuleuven.be/sista/tensorlab

I Elementary operations on tensors
Multicore-aware and profiler tuned

I Tensor decompositions with structure and/or symmetry
CPD, LMLRA, MLSVD, block term decompositions

I Global minimization of bivariate polynomials
Exact line and plane search for tensor optimization

I Cumulants, tensor visualization, estimating a tensor’s rank or
multilinear rank, . . .

25

Exact line and plane search

minimize
𝛼

1

2
‖ℳ(𝑧 + 𝛼Δ𝑧)− 𝒯 ‖2F (LS)

minimize
𝛼, 𝛾

1

2
‖ℳ(𝛾𝑧 + 𝛼Δ𝑧)− 𝒯 ‖2F (SLS)

minimize
𝛼, 𝛽

1

2
‖ℳ(𝑧 + 𝛼Δ𝑧1 + 𝛽Δ𝑧2)− 𝒯 ‖2F (PS)

minimize
𝛼, 𝛽, 𝛾

1

2
‖ℳ(𝛾𝑧 + 𝛼Δ𝑧1 + 𝛽Δ𝑧2)− 𝒯 ‖2F (SPS)

29

Search problem objective functions

Problem
Field R C

LS
degree 2𝑁

analytic univariate
polynomial

coordinate degree 𝑁
polyanalytic univariate

polynomial

SLS
degree 2𝑁

analytic univariate
rational function

coordinate degree 𝑁
polyanalytic univariate

rational function

PS total degree 2𝑁
bivariate polynomial

—

SPS total degree 2𝑁
bivariate rational function

—

Requires computing roots of a univariate polynomial

32

Solving systems of bivariate polynomials

(S)LS-C and (S)PS-R are equivalent to solving{︂
𝑝(𝑥, 𝑦) = 0

𝑞(𝑥, 𝑦) = 0
where 𝑥, 𝑦 ∈ R

for some polynomials 𝑝 and 𝑞

How? Newton’s method, interval methods, semidefinite programming,
Gröbner bases, resultants, homotopy continuation, . . .

33

Examples

−1.5 −1 −0.5 0 0.5 1 1.5

−1

0

1

𝑥

𝑦

compact_surf

42

Examples

−4 −2 0 2 4

−4

−2

0

2

4

𝑥

𝑦

curve_issac

43

Examples

−1 −0.5 0 0.5 1 1.5

−1

0

1

𝑥

𝑦

deg16_7_curves

44

Examples

−1 −0.5 0 0.5 1 1.5

−1

0

1

𝑥

𝑦

deg16_7_curves

44

Examples

−1 −0.5 0 0.5 1

−0.5

0

0.5

𝑥

𝑦

dfold_10_6

45

Examples

−20 0 20 40

−20

0

20

40

𝑥

𝑦

grid_deg_10

46

Examples

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

𝑥

𝑦

lebesgue

47

Examples

−10 0 10

−2

0

2

𝑥

𝑦

spiral29_24

48

Examples

−4 −2 0 2

−2

0

2

𝑥

𝑦

ten_circles

49

Examples

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

𝑥

𝑦

vert_lines

50

Algorithm performance comparison

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

𝜏

𝜌

Performance profile (low degree)

BP
Isolate-RS
Isolate-RC
PHCPack
polysol2

51

Algorithm performance comparison

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

𝜏

𝜌

Performance profile (moderate degree)

BP
Isolate-RS
Isolate-RC
PHCPack
polysol2

52

Tensorlab v2.0
www.tensorlab.net

Tensorlab v2.0

Tensorlab v1.0
www.tensorlab.net

A MATLAB toolbox for tensor computations

▶ Tensor decompositions
cpd lmlra btd

▶ Complex optimization
minf_lbfgs nls_gndl

▶ Bivariate polynomial systems
polymin2 polysol2

▶ Visualization, rank estimation, statistics, . . .
voxel3 rankest mlrankest cum4

1

Tensorlab v2.0

Tensorlab v2.0
www.tensorlab.net

Major upgrade which brings:

▶ Full support for sparse and incomplete tensors

▶ Structured data fusion

Structured: choose from a large library of constraints to
impose on factors (nonnegative, orthogonal, Toeplitz, . . .)

Data fusion: jointly factorize multiple data sets

𝑌 𝒳
𝑍

1

Tensorlab v2.0

Example 1: eigenvalue decomposition

The colleague matrix

𝐴 =

⎡⎢⎢⎢⎢⎣
0 1/2

1 0 1/2

1/2 0
. . .

.

⎤⎥⎥⎥⎥⎦
of order 𝑛 has eigenvalues

𝜆𝑖 = cos

(︂
𝜋(2𝑖 + 1)

2𝑛

)︂
for 𝑖 = 0, . . . , 𝑛 − 1

2

Tensorlab v2.0

Variables

𝑧1

𝑧2

𝑧3

Factors

𝑥1(𝑧1)

⊥𝑥2(𝑧2)

+𝑥3(𝑧3)

Factorizations

ℳ(1) ⊥

+

ℳ(2) ⊥ +

≈

≈

𝒯 (1)

𝒯 (2)

3

Tensorlab v2.0

Example 1: eigenvalue decomposition

In MATLAB (solve EVD):

[V,D] = eig(A);

With SDF (define and solve EVD):

model.variables.v = randn(size(V));
model.variables.d = randn(1,length(D));

model.factors.V = 'v';
model.factors.Vinv = {'v',@struct_invtransp};
model.factors.D = 'd';

model.factorizations.evd.data = A;
model.factorizations.evd.cpd = {'V','Vinv','D'};
sol = sdf_nls(model); % sol.factors, sol.variables

4

Tensorlab v2.0

Example 1: eigenvalue decomposition

0 50 100 150 200

10−16

10−15

10−14

i

∣∣∣ λ̂i−λi
λi

∣∣∣

SDF

LAPACK

5

Tensorlab v2.0

Example 2: Netflix $1M challenge

An incomplete 480k users x 18k movies x 2k timestamps tensor
containing 100M integer ratings between 1 and 5 stars

Challenge: predict movie ratings with a RMSE which is 10 %
better than Netflix’s proprietary Cinematch algorithm

Solution with SDF: model ratings as mean + user bias + movie
bias + time bias + low-rank:

𝑟𝑢,𝑚,𝑡 = 𝜇+ 𝑏𝑢 + 𝑏𝑚 + 𝑏𝑡 +
∑︁
𝑘

𝑎𝑢,𝑘𝑏𝑚,𝑘𝑐𝑡,𝑘

Bias vectors are in fact structured rank-1 tensors ⇒ model is a
structured CPD

6

Tensorlab v2.0

Example 2: Netflix $1M challenge

Model RMSE on validation set

Mean 1.1296

Cinematch 0.9474

Bias + rank-1 0.9447

Bias + rank-2 0.9387

Bias + rank-3 0.9372

Bias + rank-4 0.9326

Bias + rank-5 0.9298

Bias + rank-6 0.9275

We have worked hard so that large data sets such as this 2 GB
example can be easily factorized with Tensorlab!

7

Tensorlab v2.0

Example 3: InsPyro materials data set

An incomplete tensor in which each dimension represents the
concentration of a metal in an alloy (e.g., 9 dimensions)

The tensor’s entries are the melting temperatures of an alloy
comprising of the selected concentrations

Challenge: predict melting temperatures of different alloys

Solution with SDF: use structured CPD where each factor vector
𝑢
(𝑛)
𝑟 is a sum of RBF kernels

𝑢
(𝑛)
𝑏,𝑟 =

8∑︁
𝑖=1

𝑎 exp
(︀
−(𝑡 − 𝑏)2/(2𝑐2)

)︀
where 𝑎 𝑏 and 𝑐 are the free parameters in 𝑢(𝑛)𝑟

8

Tensorlab v2.0

Example 3: InsPyro materials data set

0 10 20 30 40 50

0

5

10

15

20

c3 (%)

U (3)

9

Tensorlab v2.0

Example 3: InsPyro materials data set

0

20

40

0
20

40

0

1,000

2,000

800
1,
00

0

1
,2
0
0

1,2
00

1,4
00

1,
40

0

1,
60

0

1,6
00

1,60
0

1,
80

0
1
,8
0
0

2,
00

0

2,
20

0

2,
40

0

c2 (%)

c3 (%)

M
el

tin
g

te
m

pe
ra

tu
re

(°
C

)

10

Tensorlab v2.0

Example 3: InsPyro materials data set

0

20

40

0
20

40

0

1,000

2,000

400

600
800

80
0

1,000
1,200

1,20
0

1,40
0

1,40
0

1,60
0

1,
60

0

1,800

c2 (%)

c3 (%)

M
el

tin
g

te
m

pe
ra

tu
re

(°
C

)

11

Tensorlab v2.0

Example 3: InsPyro materials data set

0

20

40

0
20

40

0

1,000

2,000

200

400

600

60
0

800

800

1,000

1,0
00

1,200

1,200

1
,4
0
0

1,400

1,4
00

1,600

1,8
00

2,0
00

c2 (%)

c3 (%)

M
el

tin
g

te
m

pe
ra

tu
re

(°
C

)

12

Tensorlab v2.0

Example 4: GPS data set

Five coupled data sets: user-location-activity, user-user,
location-feature, activity-activity and user-location

Challenge: predict user participation in activities

Solution with SDF: compute coupled tensor factorization

minimize
𝑈,𝐿,𝐴,𝐹,𝜆,𝜇,𝜈

𝜔1
2

⃦⃦⃦
ℳ(1)(𝑈, 𝐿, 𝐴)− 𝒯 (1)

⃦⃦⃦2
𝒲(1)

+
𝜔2
2

⃦⃦⃦
ℳ(2)(𝑈,𝑈, 𝜆)− 𝒯 (2)

⃦⃦⃦2
+
𝜔3
2

⃦⃦⃦
ℳ(3)(𝐿, 𝐹)− 𝒯 (3)

⃦⃦⃦2
+
𝜔4
2

⃦⃦⃦
ℳ(4)(𝐴,𝐴, 𝜇)− 𝒯 (4)

⃦⃦⃦2
+
𝜔5
2

⃦⃦⃦
ℳ(5)(𝑈, 𝐿, 𝜈)− 𝒯 (5)

⃦⃦⃦2
+
𝜔6
2

(︁
‖𝑈‖2 + ‖𝐿‖2 + ‖𝐴‖2 + ‖𝐹‖2 + ‖𝜆‖2 + ‖𝜇‖2 + ‖𝜈‖2

)︁

13

Tensorlab v2.0

Example 4: 80% missing entries in user-location-activity tensor

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
ti

ve
ra

te

SDF
CPD

14

Tensorlab v2.0

Example 4: 50 users missing in user-location-activity tensor

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
ti

ve
ra

te

SDF

15

L. De Lathauwer

Conclusion

• Complex optimization

• Quasi-Newton/NLS vs ALS

• Exact (scaled) line/plane search

• Sets of two bivariate polynomials in real unknowns

• Structured factors: orthogonal, nonnegative, matrix inverse, Toeplitz,

Hankel, sums of exponentials, exponentially damped sinusoids, radial

basis functions, exponential polynomials, rational functions, . . .

• Coupled decompositions

• www.tensorlab.net

25

