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Abstract

In this paper, we provide local and global convergence guarantees for recovering CP (Can-
decomp/Parafac) tensor decomposition. The main step of the proposed algorithm is a simple
alternating rank-1 update which is the alternating version of the tensor power iteration adapted
for asymmetric tensors. Local convergence guarantees are established for third order tensors of
rank k in d dimensions, when k = o

(
d1.5

)
and the tensor components are incoherent. Thus, we

can recover overcomplete tensor decomposition. We also strengthen the results to global conver-
gence guarantees under stricter rank condition k ≤ βd (for arbitrary constant β > 1) through
a simple initialization procedure where the algorithm is initialized by top singular vectors of
random tensor slices. Furthermore, the approximate local convergence guarantees for p-th order
tensors are also provided under rank condition k = o

(
dp/2

)
. The guarantees also include tight

perturbation analysis given noisy tensor.

Keywords: Tensor decomposition, alternating minimization, overcomplete representation, latent
variable models.

1 Introduction

Tensor decompositions have been recently popular for unsupervised learning of a wide range of
latent variable models such as independent component analysis (De Lathauwer et al., 2007), topic
models, Gaussian mixtures, hidden Markov models (Anandkumar et al., 2014a), network commu-
nity models (Anandkumar et al., 2013a), and so on. The decomposition of a certain low order
multivariate moment tensor (typically up to fourth order) in these models is guaranteed to pro-
vide a consistent estimate of the model parameters. Moreover, the sample and computational
requirements are only a low order polynomial in the rank of the tensor (Anandkumar et al., 2014a;
Song et al., 2013). In practice, the tensor decomposition techniques have been shown to be ef-
fective in a number of applications such as blind source separation (Comon, 2002), computer vi-
sion (Vasilescu and Terzopoulos, 2003), contrastive topic modeling (Zou et al., 2013), and commu-
nity detection (Huang et al., 2013). In many cases, the tensor approach is shown to be orders of
magnitude faster than existing techniques such as the stochastic variational approach.
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The state of art for guaranteed tensor decomposition involves two steps: converting the in-
put tensor to an orthogonal symmetric form, and then solving the orthogonal decomposition
through tensor eigen decomposition (Comon, 1994; Kolda and Mayo, 2011; Zhang and Golub, 2001;
Anandkumar et al., 2014a). The first step of converting the input tensor to an orthogonal symmet-
ric form is known as whitening. For the second step, the tensor eigen pairs can be found through
a simple tensor power iteration procedure.

While having efficient guarantees, the above procedure suffers from a number of theoretical and
practical limitations. For instance, in practice, the learning performance is especially sensitive to
whitening (Le et al., 2011). Moreover, whitening is computationally the most expensive step in
deployments (Huang et al., 2013), and it can suffer from numerical instability in high-dimensions
due to ill-conditioning. Lastly, the above approach is unable to learn overcomplete representations
(this is the case when number of features/components is much larger than the dimension) due to the
orthogonality constraint, which is especially limiting, given the recent popularity of overcomplete
feature learning in many domains (Bengio et al., 2012; Lewicki and Sejnowski, 2000).

The current practice for tensor decomposition is the alternating least squares (ALS) procedure,
which has been described as the “workhorse” of tensor decomposition (Kolda and Bader, 2009).
This involves solving the least squares problem on a mode of the tensor, while keeping the other
modes fixed, and alternating between the tensor modes. The method is extremely fast since it
involves calculating linear updates, but is not guaranteed to converge to the global optimum in
general (Kolda and Bader, 2009).

In this paper, we provide local and global convergence guarantees for a modified alternating
method, for which the main step is making rank-1 updates along different modes of the tensor.
This update is basically a rank-1 ALS update. This method is extremely fast to deploy, trivially
parallelizable, and does not suffer from ill-conditioning issues faced by both ALS (Kolda and Bader,
2009) and whitening approaches (Le et al., 2011). Our analysis assumes the presence of incoherent
tensor components, which can be viewed as a soft-orthogonality constraint. Incoherent represen-
tations have been extensively considered in literature in a number of contexts, e.g., compressed
sensing (Donoho, 2006) and sparse coding (Arora et al., 2013; Agarwal et al., 2013). Incoher-
ent representations provide flexible modeling, can handle overcomplete signals, and are robust
to noise (Lewicki and Sejnowski, 2000). Moreover, when the latent variable model parameters are
generic or when we have randomly constructed (multiview) features (McWilliams et al., 2013), the
moment tensors have incoherent components, as assumed here. In this work, we establish that
incoherence leads to efficient guarantees for tensor decomposition. The guarantees also include a
tight perturbation analysis. In a subsequent work (Anandkumar et al., 2014b), we apply the tensor
decomposition guarantees of this paper to various learning settings, and derive sample complexity
bounds through novel covering arguments.

1.1 Summary of results

In this paper, we propose and analyze an algorithm for non-orthogonal CP (Candecomp/Parafac)
tensor decomposition; see Figure 1 for the details of the algorithm. The main step of the algorithm
is a simple alternating rank-1 update which is the alternating version of the tensor power iteration
adapted for asymmetric tensors. In each iteration, one of the tensor modes is updated by projecting
the other modes along their estimated directions, and the process is alternated between all the
modes of the tensor; see (5) for this update.

For the above update, we provide local convergence guarantees under incoherent tensor compo-

2



nents for a rank-k third order tensor in d dimensions. We prove a linear rate of convergence under
appropriate initialization when k = o(d3/2). Due to incoherence, the actual tensor components are
not the stationary points of the update (even in the noiseless setting), and thus, there is an approx-
imation error in the estimate after this update. The approximation error depends on the extent of
overcompleteness, and scales as 1 Õ(

√
k/d), which is small since k = o(d3/2). The generalization to

higher order tensors is also provided. To the best of our knowledge, we give the first guarantees for
overcomplete tensor decomposition under mild incoherence conditions.

In order to remove the approximation error Õ(
√
k/d) after the above rank-1 updates, we pro-

pose an additional update to the algorithm which is basically a type of coordinate descent update;
see (9). We run this update after the main rank-1 updates and show that this removes the approx-
imation error in a linear rate of convergence, and thus, we finally consistently recover the tensor
decomposition.

In the undercomplete or mildly overcomplete settings (k = O(d)), a simple initialization proce-
dure (see Procedure 2) based on rank-1 SVD of random tensor slices is provided. This initialization
procedure lands the estimate in the basin of attraction for the alternating update procedure in
polynomial number of trials (in the tensor rank k). This leads to global convergence guarantees for
tensor decomposition.

We then extend the global convergence guarantees to settings where two modes of the tensor
are (sufficiently) undercomplete (the dimension du is much larger than tensor rank k), and the
third tensor mode is (highly) overcomplete (the dimension do is much smaller than tensor rank
k). For instance, consider tensors arising from multi-view mixture models such as E[x1 ⊗ x2 ⊗ y],
where xi are multi-view high dimensional features and y is a low dimensional label. Previous proce-
dures in (Anandkumar et al., 2014a) which rely on transforming the input tensor to an orthogonal
symmetric form cannot handle this setting. Algorithms based on simultaneous diagonalization
(Harshman and Lundy, 1994) can handle this case, but is not as robust to noise. We prove global
convergence guarantees by considering rank-1 SVD of random tensor slices along the y-mode as
initialization for the xi-modes of the tensor, and then running the alternating update procedure.

Overview of techniques: Greedy or rank-1 updates are perhaps the most natural procedure for
CP tensor decomposition. For orthogonal tensors, they lead to guaranteed recovery (Zhang and Golub,
2001). However, when the tensor is non-orthogonal, greedy procedure is not optimal in gen-
eral (Kolda, 2001). Finding tensor decomposition in general is NP-hard (Hillar and Lim, 2009). We
circumvent this obstacle by limiting ourselves to tensors with incoherent components. We exploit
incoherence to prove error contraction under each step of the alternating update procedure with
an approximation error, which is decaying, when k = o(d1.5). To this end, we require tools from
random matrix theory, bounds on 2→ p norm for random matrices (Guédon and Rudelson, 2007;
Adamczak et al., 2011) for some p < 3, and matrix perturbation results to provide tight bounds on
error contraction.

1.2 Related work

CP tensor decomposition (Carroll and Chang, 1970), also known as PARAFAC decomposition (Harshman,
1970; Harshman and Lundy, 1994) is a classical definition for tensor decomposition with many ap-
plications. The most commonly used algorithm for CP decomposition is Alternating Least Squares

1Õ is O up to polylog factors.
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(ALS) (Comon et al., 2009), which has no convergence guarantees in general. Kolda (2001) and
Zhang and Golub (2001) analyze the greedy or the rank-1 updates in the orthogonal setting. In the
noisy setting, Anandkumar et al. (2014a) analyze deflation procedure for orthogonal decomposition,
and Song et al. (2013) extend the analysis to the nonparametric setting. For the non-orthogonal
tensors, a common strategy is to first apply a procedure called whitening to reduce it to the orthog-
onal case. But as discussed earlier, the whitening procedure can lead to poor performance and bad
sample complexity. Moreover, it requires the tensor factors to have full column rank, which rules
out overcomplete tensors.

Learning overcomplete tensors is challenging, and they may not even be identifiable in general.
Kruskal (1976, 1977) provided an identifiability result based on the Kruskal rank of the factor
matrices of the tensor. However, this result is limiting since it requires k = O(d), where k is the
tensor rank and d is the dimension. The FOOBI procedure by De Lathauwer et al. (2007) overcomes
this limitation by assuming generic factors, and shows that a polynomial-time procedure can recover
the tensor components when k = O(d2), and the tensor is fourth order. However, the procedure does
not work for third-order overcomplete tensors, and has no polynomial sample complexity bounds.
Simple procedures can recover overcomplete tensors for higher order tensors (five or higher). For
instance, for the fifth order tensor, when k = O(d2), we can utilize random slices along a mode
of the tensor, and perform simultaneous diagonalization on the matricized versions. Note that
this procedure cannot handle the same level of overcompleteness as FOOBI, since an additional
dimension is required for obtaining two (or more) fourth order tensor slices. The simultaneous
diagonalization procedure entails careful perturbation analysis, carried out by (Goyal et al., 2013;
Bhaskara et al., 2013). In addition, Goyal et al. (2013) provide stronger results for independent
components analysis (ICA), where the tensor slices can be obtained in the Fourier domain.

There are other recent works which can learn overcomplete models, but under different settings
than the ones considered in this paper. For instance, Arora et al. (2013); Agarwal et al. (2013)
provide guarantees for the sparse coding problem. Anandkumar et al. (2013b) learn overcomplete
sparse topic models, and provide guarantees for Tucker tensor decomposition under sparsity con-
straints. Specifically, the model is identifiable using (2n)th order moments when the latent dimension
k = O(dn) and the sparsity level of the factor matrix is O(d1/n), where d is the observed dimension.
The Tucker decomposition is different from the CP decomposition considered here (it has weaker
assumptions and guarantees), and the techniques in (Anandkumar et al., 2013b) differ significantly
from the ones considered here.

The algorithm employed here falls under the general framework of alternating minimization.
There are many recent works which provide guarantees on local/global convergence for alternating
minimization, e.g., for matrix completion (Jain et al., 2013; Hardt, 2013), phase retrieval (Netrapalli et al.,
2013) and sparse coding (Agarwal et al., 2013). However, the techniques in this paper are signifi-
cantly different, since they involve tensors, while the previous works only required matrix analysis.

1.3 Notations and tensor preliminaries

Let [n] denote the set {1, 2, . . . , n}.
Notice that while the standard asymptotic notation is to write f(d) = O(g(d)) and g(d) =

Ω(f(d)), we sometimes use f(d) ≤ O(g(d)) and g(d) ≥ Ω(f(d)) for additional clarity. We also use
the asymptotic notation f(d) = Õ(g(d)) if and only if f(d) ≤ αg(d) for all d ≥ d0, for some d0 > 0
and α = polylog(d), i.e., Õ hides polylog factors.
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Tensor preliminaries

A real p-th order tensor T ∈⊗p
i=1 R

di is a member of the outer product of Euclidean spaces R
di ,

i ∈ [p]. For convenience, we restrict to the case where d1 = d2 = · · · = dp = d, and simply
write T ∈ ⊗p

R
d. As is the case for vectors (where p = 1) and matrices (where p = 2), we may

identify a p-th order tensor with the p-way array of real numbers [Ti1,i2,...,ip : i1, i2, . . . , ip ∈ [d]],
where Ti1,i2,...,ip is the (i1, i2, . . . , ip)-th coordinate of T with respect to a canonical basis. For
convenience, we limit to third order tensors (p = 3) in our analysis, while the results for higher
order tensors are also provided.

The different dimensions of the tensor are referred to as modes. For instance, for a matrix, the
first mode refers to columns and the second mode refers to rows. In addition, fibers are higher order
analogues of matrix rows and columns. A fiber is obtained by fixing all but one of the indices of
the tensor (and is arranged as a column vector). For instance, for a matrix, its mode-1 fiber is any
matrix column while a mode-2 fiber is any row. For a third order tensor T ∈ R

d×d×d, the mode-1
fiber is given by T (:, j, l), mode-2 by T (i, :, l) and mode-3 by T (i, j, :). Similarly, slices are obtained
by fixing all but two of the indices of the tensor. For example, for the third order tensor T , the
slices along 3rd mode are given by T (:, :, l). For r ∈ {1, 2, 3}, the mode-r matricization of a third
order tensor T ∈ R

d×d×d, denoted by mat(T, r) ∈ R
d×d2 , consists of all mode-r fibers arranged as

column vectors.
We view a tensor T ∈ R

d×d×d as a multilinear form. Consider matrices Mr ∈ R
d×dr , r ∈ {1, 2, 3}.

Then tensor T (M1,M2,M3) ∈ R
d1 ⊗ R

d2 ⊗ R
d3 is defined as

T (M1,M2,M3)i1,i2,i3 :=
∑

j1,j2,j3∈[d]
Tj1,j2,j3 ·M1(j1, i1) ·M2(j2, i2) ·M3(j3, i3). (1)

In particular, for vectors u, v, w ∈ R
d, we have 2

T (I, v, w) =
∑

j,l∈[d]
vjwlT (:, j, l) ∈ R

d, (2)

which is a multilinear combination of the tensor mode-1 fibers. Similarly T (u, v, w) ∈ R is a
multilinear combination of the tensor entries, and T (I, I, w) ∈ R

d×d is a linear combination of the
tensor slices.

A 3rd order tensor T ∈ R
d×d×d is said to be rank-1 if it can be written in the form

T = w · a⊗ b⊗ c⇔ T (i, j, l) = w · a(i) · b(j) · c(l), (3)

where notation ⊗ represents the outer product and a ∈ R
d, b ∈ R

d, c ∈ R
d are unit vectors (without

loss of generality). A tensor T ∈ R
d×d×d is said to have a CP rank k ≥ 1 if it can be written as the

sum of k rank-1 tensors

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci, wi ∈ R, ai, bi, ci ∈ R

d. (4)

This decomposition is closely related to the multilinear form. In particular, for vectors â, b̂, ĉ ∈ R
d,

we have
T (â, b̂, ĉ) =

∑

i∈[k]
wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉.

2Compare with the matrix case where for M ∈ R
d×d, we have M(I, u) = Mu :=

∑
j∈[d] ujM(:, j) ∈ R

d.
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Input: Tensor T =
∑

i∈[k] wi · ai ⊗ bi ⊗ ci

Algorithm Initialization:
1) Random initialization
2) SVD-base method: Procedure 2

Tensor Power Iterations

Clustering the output of tensor
power method into k clusters

Coordinate descent updates
for removing the residual error

Output: estimates {(ŵi, âi, b̂i, ĉi)}i∈[k]

Algorithm 1

Procedure 3

Algorithm 4
& Procedure 5

Figure 1: Overview of tensor decomposition algorithm.

Consider the decomposition in equation (4), denote matrix A := [a1 a2 · · · ak] ∈ R
d×k, and similarly

B and C. Without loss of generality, we assume that the matrices have normalized columns (in
2-norm), since we can always rescale them, and adjust the weights wi appropriately.

Throughout, ‖v‖ := (
∑

i v
2
i )1/2 denotes the Euclidean (ℓ2) norm of a vector v, and ‖M‖ denotes

the spectral (operator) norm of a matrix M . Furthermore, ‖T‖ and ‖T‖F denote the spectral
(operator) norm and the Frobenius norm of a tensor, respectively. In particular, for a 3rd order
tensor, we have

‖T‖ := sup
‖u‖=‖v‖=‖w‖=1

|T (u, v, w)|, ‖T‖F :=

√ ∑

i,j,l∈[d]
T 2
i,j,l.

2 Tensor Decomposition Algorithm

In this section, we introduce the alternating tensor decomposition algorithm, and the guarantees
are provided in Section 3. The goal of tensor decomposition algorithm is to recover the rank-1
components of tensor; see (4) for the notion of tensor rank. Figure 1 depicts the overview of our
tensor decomposition method where the corresponding algorithms and procedures are also specified.
Our algorithm includes two main steps as 1) alternating tensor power iteration, and 2) coordinate
descent iteration for removing the residual error. The former one is performed in Algorithm 1 (see
equation (5), and the latter one is done in Algorithm 4 (see equation (9)). We now describe these
steps of the algorithm in more details as well as providing the auxiliary procedures required to
complete the algorithm.
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2.1 Tensor power iteration in Algorithm 1

The main step of the algorithm is tensor power iteration which basically performs alternating
asymmetric power updates 3 on different modes of the tensor as

â(t+1) =
T
(
I, b̂(t), ĉ(t)

)

∥∥∥T
(
I, b̂(t), ĉ(t)

)∥∥∥
, b̂(t+1) =

T
(
â(t), I, ĉ(t)

)
∥∥T
(
â(t), I, ĉ(t)

)∥∥ , ĉ(t+1) =
T
(
â(t), b̂(t), I

)

∥∥∥T
(
â(t), b̂(t), I

)∥∥∥
, (5)

where {â(t), b̂(t), ĉ(t)} denotes estimate in the t-th iteration. Recall that for vectors v,w ∈ R
d, the

multilinear form T (I, v, w) ∈ R
d used in the above update formula is defined in (2), where T (I, v, w)

is a multilinear combination of the tensor mode-1 fibers. Notice that the updates alternate among
different modes of the tensor which can be viewed as a rank-1 form of the standard Alternating
Least Squares (ALS) method. We later discuss this relation in more details.

Optimization viewpoint: Consider the problem of best rank-1 approximation of tensor T as

min
a,b,c∈Sd−1

w∈R

‖T − w · a⊗ b⊗ c‖F , (6)

where Sd−1 denotes the unit d-dimensional sphere. This optimization program is non-convex, and
has multiple local optima. It can be shown that the updates in (5) are the alternating optimization
for this program where in each update, optimization over one vector is performed while the other
two vectors are assumed fixed. This alternating minimization approach does not converge to the
true components of tensor T in general, and in this paper we provide sufficient conditions for the
convergence guarantees.

Intuition: We now provide an intuitive argument on the functionality of power updates in (5).
Consider a rank-k tensor T as in (4), and suppose we start at the correct vectors â = aj and b̂ = bj ,
for some j ∈ [k]. Then for the numerator of update formula (5), we have

T
(
â, b̂, I

)
= T (aj , bj , I) = wjcj +

∑

i 6=j
wi〈aj , ai〉〈bj , bi〉ci, (8)

where the first term is along cj and the second term is an error term due to non-orthogonality. For
orthogonal decomposition, the second term is zero, and the true vectors aj , bj and cj are stationary
points for the power update procedure. However, since we consider non-orthogonal tensors, this
procedure cannot recover the decomposition exactly leading to a residual error after running this
step. Under incoherence conditions which encourages soft-orthogonality constraints 4 (and some
other conditions), we show that the residual error is small (see Lemma 1 where the guarantees
for the tensor power iteration step is provided), and thus, with the additional step we propose in
Section 2.2, we can also remove this residual error.

3This is exactly the generalization of asymmetric matrix power update to 3rd order tensors.
4See Assumption (A2) in Appendix A for precise description.
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Algorithm 1 Tensor decomposition via alternating asymmetric power updates

Input: Tensor T ∈ R
d×d×d, number of initializations L, number of iterations N .

1: for τ = 1 to L do
2: Initialize unit vectors â

(0)
τ ∈ R

d, b̂
(0)
τ ∈ R

d, and ĉ
(0)
τ ∈ R

d as

• Option 1: SVD-based method in Procedure 2 when k ≤ βd for arbitrary constant β.

• Option 2: random initialization.

3: for t = 0 to N − 1 do
4: Asymmetric power updates (see (2) for the definition of the multilinear form):

â(t+1)
τ =

T
(
I, b̂

(t)
τ , ĉ

(t)
τ

)

∥∥∥T
(
I, b̂

(t)
τ , ĉ

(t)
τ

)∥∥∥
, b̂(t+1)

τ =
T
(
â
(t)
τ , I, ĉ

(t)
τ

)

∥∥∥T
(
â
(t)
τ , I, ĉ

(t)
τ

)∥∥∥
, ĉ(t+1)

τ =
T
(
â
(t)
τ , b̂

(t)
τ , I

)

∥∥∥T
(
â
(t)
τ , b̂

(t)
τ , I

)∥∥∥
.

5: end for
6: weight estimation:

ŵτ = T
(
â(N)
τ , b̂(N)

τ , ĉ(N)
τ

)
. (7)

7: end for
8: Cluster set

{(
ŵτ , â

(N)
τ , b̂

(N)
τ , ĉ

(N)
τ

)
, τ ∈ [L]

}
into k clusters as in Procedure 3.

9: return the center member of these k clusters as estimates (ŵj , âj , b̂j , ĉj), j ∈ [k].

Initialization and clustering procedures: We discussed that the tensor power updates in (5)
are the alternating iterations for the problem of rank-1 approximation of the tensor; see (6). This
is a non-convex problem and has many local optima. Thus, the power update requires careful
initialization to ensure convergence to the true rank-1 tensor components.

For generating initialization vectors
(
â(0), b̂(0), ĉ(0)

)
, we introduce two possibilities. One is the

simple random initializations, where â(0) and b̂(0) are uniformly drawn from unit sphere Sd−1. The
other option is SVD-based technique in Procedure 2 where top left and right singular vectors of
T (I, I, θ) (for some random θ ∈ R

d) are respectively introduced as â(0) and b̂(0). Under both
initialization procedures, vector ĉ(0) is generated through update formula in (5). We establish in
Section 3.2 that when k = O(d), the SVD procedure leads to global convergence guarantees under
polynomial number of trials. In practice random initialization also works well, however the analysis
is still an open problem.

Notice that the algorithm is run for L different initialization vectors for which we do not know
the good ones in prior. In order to identify which initializations are successful at the end, we also
need a clustering step proposed in Procedure 3 to obtain the final estimates of the vectors. The
detailed analysis of clustering procedure is provided in Appendix D.

2.2 Coordinate descent iteration in Algorithm 4

We discussed in the previous section that the tensor power iteration recovers the tensor rank-1
components up to some residual error. We now propose Algorithm 4 to remove this additional

8



Procedure 2 SVD-based initialization when k ≤ βd for arbitrary constant β

Input: Tensor T ∈ R
d×d×d.

1: Draw a random standard Gaussian vector θ ∼ N (0, Id).
2: Compute u1 and v1 as the top left and right singular vectors of T (I, I, θ) ∈ R

d×d.
3: â(0) ← u1, b̂(0) ← v1.
4: Initialize ĉ(0) by update formula in (5).
5: return

(
â(0), b̂(0), ĉ(0)

)
.

Procedure 3 Clustering process

Input: Tensor T ∈ R
d×d×d, set of 4-tuples

{
(ŵτ , âτ , b̂τ , ĉτ ), τ ∈ [L]

}
, parameter ν.

1: for i = 1 to k do
2: Among the remaining 4-tuples, choose â, b̂, ĉ which correspond to the largest |T (â, b̂, ĉ)|.
3: Do N more iterations of alternating updates in (5) starting from â, b̂, ĉ.
4: Let the output of iterations denoted by (â, b̂, ĉ) be the center of cluster i.
5: Remove all the tuples with max{|〈âτ , â〉|, |〈b̂τ , b̂〉|, |〈ĉτ , ĉ〉|} > ν/2.
6: end for
7: return the k cluster centers.

residual error. This algorithm mainly runs a coordinate descent iteration as

c̃
(t+1)
i = Norm

(
T
(
â
(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

)
, i ∈ [k], (9)

where for vector v, we have Norm(v) := v/‖v‖, i.e., it normalizes the vector. The above is similarly

applied for updating ã
(t+1)
i and b̃

(t+1)
i . Unlike the power iteration, it can be immediately seen that

ai, bi and ci are stationary points of the above update even if the components are not orthogonal
to each other. Inspired by this intuition, we prove that when the residual error is small enough (as
guaranteed in the analysis of tensor power iteration), this step removes it.

The analysis of this algorithm requires that the estimate matrices Â, B̂, Ĉ satisfy some bound
on the spectral norm and some column-wise error bounds; see Definition 2 in Appendix B.2 for the
details. The optimization program in (10) (which is only run in the first iteration) and projection
Procedure 5 ensure that these conditions are satisfied.

2.3 Discussions

We now provide some further discussions and comparisons about the algorithm.

Implicit tensor operations: In many applications, the input tensor T is not available in ad-
vance, and it is computed from samples. It is discussed in (Anandkumar et al., 2014b) that
the tensor is not needed to be computed and stored explicitly, where the multilinear tensor up-
dates (5) and (9) in the algorithm can be efficiently computed through multilinear operations on
the samples directly.

9



Algorithm 4 Coordinate descent algorithm for removing the residual error

Input: Tensor T ∈ R
d×d×d, initialization set

{
Â, B̂, Ĉ, ŵ(0)

}
, number of iterations N .

1: Initialize Â(0) as (similarly for B̂(0), Ĉ(0))

Â(0) := arg min
Ã

‖Ã‖ s. t. ‖ãi − âi‖ ≤ Õ
(√

k/d
)
, i ∈ [k]. (10)

2: for t = 0 to N − 1 do
3: for i = 1 to k do
4:

w̃
(t+1)
i =

∥∥∥∥T
(
â
(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

∥∥∥∥,

c̃
(t+1)
i =

1

w̃
(t+1)
i

(
T
(
â
(t)
i , b̂

(t)
i , I

)
−
∑

j 6=i
ŵ

(t)
j 〈â

(t)
i , â

(t)
j 〉〈̂b

(t)
i , b̂

(t)
j 〉 · ĉ

(t)
j

)
.

5: end for
6: Update Ĉ(t+1) by applying Procedure 5 with inputs C̃(t+1) and Ĉ(t).
7: Repeat the above steps (with appropriate changes) to update Â(t+1) and B̂(t+1).
8: Update ŵ(t+1):

for any i ∈ [k], ŵ
(t+1)
i =





w̃
(t+1)
i ,

∣∣∣w̃(t+1)
i − ŵ(t)

i

∣∣∣ ≤ η0
√
k
d ,

ŵ
(t)
i + sgn

(
w̃

(t+1)
i − ŵ(t)

i

)
· η0

√
k
d , o.w.

9: end for
10: return

{
Â(N), B̂(N), Ĉ(N), ŵ(N)

}
.

Comparison with symmetric orthogonal tensor power method: Algorithm 1 is similar
to the symmetric tensor power method analyzed by Anandkumar et al. (2014a) with the following
main differences, viz.,

• Symmetric and non-symmetric tensors: Our algorithm can be applied to both symmetric and
non-symmetric tensors, while tensor power method in Anandkumar et al. (2014a) is only for
symmetric tensors.

• Linearity: The updates in Algorithm 1 are linear in each variable, while the symmetric tensor
power update is a quadratic operator given a third order tensor.

• Guarantees: In Anandkumar et al. (2014a), guarantees for the symmetric tensor power up-
date under orthogonality are obtained, while here we consider non-orthogonal tensors under
the alternating updates.

Comparison with Alternating Least Square(ALS): The updates in Algorithm 1 can be
viewed as a rank-1 form of the standard alternating least squares (ALS) procedure. This is because
the unnormalized update for c in (5) can be rewritten as

c̃(t+1)
τ := T

(
â(t)τ , b̂

(t)
τ , I

)
= mat(T, 3) ·

(
b̂(t)τ ⊙ â(t)τ

)
, (11)
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Procedure 5 Projection procedure

input Matrices C̃(t+1), Ĉ(t).
1: Compute the SVD of C̃(t+1) = UDV ⊤.

2: Let D̂ be the truncated version of D as D̂i,i := min

{
Di,i, η1

√
k
d

}
.

3: Let Q := UD̂V ⊤.

4: Update Ĉ(t+1): for any i ∈ [k], ĉ
(t+1)
i =





Qi,
∥∥∥Qi − ĉ(t)i

∥∥∥ ≤ η0
√
k
d ,

ĉ
(t)
i + η0

√
k
d

(
Qi−ĉ(t)i

)

∥∥∥Qi−ĉ(t)i

∥∥∥
, o.w.

5: return Ĉ(t+1).

where ⊙ denotes the Khatri-Rao product, and mat(T, 3) ∈ R
d×d2 is the mode-3 matricization of

tensor T . On the other hand, the ALS update has the form

C̃(t+1) = mat(T, 3) ·
((

B̂(t) ⊙ Â(t)
)⊤)†

,

where k vectors (all columns of C̃(t+1) ∈ R
d×k) are simultaneously updated given the current

estimates for the other two modes Â(t) and B̂(t). In contrast, our procedure updates only one
vector (with the target of recovering one column of C) in each iteration. In our update, we do not
require finding matrix inverses. This leads to efficient computational complexity, and we also show
that our update procedure is more robust to perturbations.

3 Analysis

In this section, we provide the local and global convergence guarantees for the tensor decomposition
algorithm proposed in Section 2. Throughout the paper, we assume tensor T̂ ∈ R

d×d×d is of the
form T̂ = T + Ψ, where Ψ is the error or perturbation tensor, and5

T =
∑

i∈[k]
wi · ai ⊗ bi ⊗ ci,

is a rank-k tensor such that ai, bi, ci ∈ R
d, i ∈ [k], are unit vectors. Let A := [a1 a2 · · · ak] ∈ R

d×k,
and B and C are similarly defined. The goal of robust tensor decomposition algorithm is to recover
the rank-1 components {(ai, bi, ci), i ∈ [k]} given noisy tensor T̂ . Our analysis emphasizes on the
challenging overcomplete regime where the tensor rank is larger than the dimension, i.e., k > d.
Without loss of generality we also assume wmax = w1 ≥ w2 ≥ · · · ≥ wk = wmin > 0.

We require natural deterministic conditions on the tensor components to argue the convergence
guarantees; see Appendix A for the details. We show that all of these conditions are satisfied if the
true rank-1 components of the tensor are uniformly i.i.d. drawn from the unit d-dimensional sphere
Sd−1. Thus, for simplicity we assume this random assumption in the main part, and state the

5For 4th and higher order tensors, same techniques we introduce in this paper, can be exploited to argue similar
results.
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deterministic assumptions in Appendix A. Notice that it is also reasonable to assume these deter-
ministic assumptions hold for some non-random matrices. Among the deterministic assumptions,
the most important one is the incoherence condition which imposes a soft-orthogonality constraint
between different rank-1 components of the tensor.

The convergence guarantees are provided in terms of distance between the estimated and the
true vectors, defined below.

Definition 1. For any two vectors u, v ∈ R
d, the distance between them is defined as

dist(u, v) := sup
z⊥u

〈z, v〉
‖z‖ · ‖v‖ = sup

z⊥v

〈z, u〉
‖z‖ · ‖u‖ . (12)

Note that distance function dist(u, v) is invariant w.r.t. norm of input vectors u and v. Distance
also provides an upper bound on the error between unit vectors u and v as (see Lemma A.1 of
Agarwal et al. (2013))

min
z∈{−1,1}

‖zu− v‖ ≤
√

2 dist(u, v).

Incorporating distance notion resolves the sign ambiguity issue in recovering the components: note
that a third order tensor is unchanged if the sign of a vector along one of the modes is fixed and
the signs of the corresponding vectors in the other two modes are flipped.

3.1 Local convergence guarantee

In the local convergence guarantee, we analyze the convergence properties of the algorithm assuming
we have good initialization vectors for the non-convex tensor decomposition algorithm.

Settings of Algorithm in Theorem 1:

• Number of iterations: N = Θ
(

log
(

1
γǫR

))
, where γ := wmax

wmin
and ǫR := min

{
ψ

wmin
, Õ
(
γ
√
k
d

)}
.

Conditions for Theorem 1:

• Rank-k true tensor with random components: Let

T =
∑

i∈[k]
wi · ai ⊗ bi ⊗ ci, wi > 0, ai, bi, ci ∈ Sd−1,

where ai, bi, ci, i ∈ [k], are uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1. We
state the deterministic assumptions in Appendix A, and show that random matrices satisfy
these assumptions.

• Rank condition: k = o
(
d1.5
)
.

• Perturbation tensor Ψ satisfies the bound

ψ := ‖Ψ‖ ≤ wmin

6
.

• Weight ratio: The maximum ratio of weights γ := wmax
wmin

satisfies the bound

γ = O

(
min

{√
d,
d1.5

k

})
.
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• Initialization: Assume we have good initialization vectors â
(0)
j , b̂

(0)
j , j ∈ [k] satisfying

ǫ0 := max
{

dist
(
â
(0)
j , aj

)
,dist

(
b̂
(0)
j , bj

)}
= O(1/γ), ∀j ∈ [k], (13)

where γ := wmax
wmin

. In addition, given â
(0)
j and b̂

(0)
j , suppose ĉ

(0)
j is also calculated by the update

formula in (5).

Theorem 1 (Local convergence guarantee of the tensor decomposition algorithm). Consider noisy
rank-k tensor T̂ = T + Ψ as the input to the tensor decomposition algorithm, and assume the con-
ditions and settings mentioned above hold. Then the algorithm outputs estimates Â := [â1 · · · âk] ∈
R
d×k and ŵ := [ŵ1 · · · ŵk]⊤ ∈ R

k, satisfying w.h.p.

∥∥∥Â−A
∥∥∥
F
≤ Õ

(√
k · ψ
wmin

)
, ‖ŵ − w‖ ≤ Õ

(√
k · ψ

)
.

Same error bounds hold for other factor matrices B := [b1 · · · bk] and C := [c1 · · · ck].

See the proof in Appendix B.
Thus, we can efficiently decompose the tensor in the highly overcomplete regime k ≤ o

(
d1.5
)

under incoherent factors and some other assumptions mentioned above. The deterministic version
of assumptions are stated in Appendix A. We show that these assumptions are true for random
components which is assumed here for simplicity. If k is significantly smaller than d1.5 (k ≪ d1.25),
then many of the assumptions can be derived from incoherence. See Appendix A for the details.

The above local convergence result can be also interpreted as a local identifiability result for
tensor decomposition under incoherent factors.

The
√
k factor in the above theorem error bound is from the fact that the final recovery guarantee

is on the Frobenius norm of the whole factor matrix A. In the following, we provide stronger
column-wise guarantees (where there is no

√
k factor) with the expense of having an additional

residual error term. Recall that our algorithm includes two main update steps including tensor
power iteration in (5) and residual error removal in (9). The guarantee for the first step — tensor
power iteration — is provided in the following lemma.

Lemma 1 (Local convergence guarantee of the tensor power updates, Algorithm 1). Consider
the same settings as in Theorem 1. Then, the outputs of tensor power iteration steps (output of
Algorithm 1) satisfy w.h.p.

dist(âj , aj) ≤ Õ
(

ψ

wmin

)
+ Õ

(
γ

√
k

d

)
, |ŵj − wj| ≤ Õ (ψ) + Õ

(
wmax

√
k

d

)
, j ∈ [k].

Same error bounds hold for other factor matrices B and C.

The above result provides guarantees with the additional residual error Õ
(
γ
√
k
d

)
, but we believe

this result also has independent importance for the following reasons. The above result provides
column-wise guarantees which is stronger than the guarantees on the whole factor matrix in The-
orem 1. Furthermore, we can only have recovery guarantees for a subset of rank-1 components
of the tensor (the ones for which we have good initializations) without worrying about the rest of
components. Finally, in the high-dimensional regime (large d), the residual error term goes to zero.

The result in the above lemma is actually stated in the non-asymptotic form, where the details
of constants are explicitly provided in Appendix A.
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Symmetric tensor decomposition: The above local convergence result also holds for recovering
the components of a rank-k symmetric tensor. Consider symmetric tensor T with CP decomposition
T =

∑
i∈[k]wiai ⊗ ai ⊗ ai. The proposed algorithm can be also applied to recover the components

ai, i ∈ [k], where the main updates are changed to adapt to the symmetric tensor. The tensor
power iteration is changed to

â(t+1) =
T
(
â(t), â(t), I

)
∥∥T
(
â(t), â(t), I

)∥∥ , (14)

and the coordinate descent update is changed to the form stated in (27). Then, the same local
convergence result as in Theorem 1 holds for this algorithm. The proof is very similar to the proof
of Theorem 1 with some slight modifications considering the symmetric structure.

Extension to higher order tensors: We also provide the generalization of the tensor decom-
position guarantees to higher order tensors. We state and prove the result for the tensor power
iteration part in details, while the generalization of coordinate descent part (for removing the
residual error) to higher order tensors, can be argued by the same techniques we introduce in this
paper

For brevity, Algorithm 1 and local convergence guarantee in Lemma 1 are provided for a 3rd
order tensor. The algorithm can be simply extended to higher order tensors to compute the
corresponding CP decomposition. Consider p-th order tensor T ∈⊗p

R
d with CP decomposition

T =
∑

i∈[k]
wi · a(1),i ⊗ a(2),i ⊗ · · · ⊗ a(p),i, (15)

where a(r),i ∈ R
d is the i-th column of r-th component A(r) :=

[
a(r),1 a(r),2 · · · a(r),k

]
∈ R

d×k, for
r ∈ [p]. Algorithm 1 can be extended to recover the components of above decomposition where
update formula for the p-th mode is modified as

â
(t+1)
(p) =

T
(
â
(t)
(1), â

(t)
(2), . . . , â

(t)
(p−1), I

)

∥∥∥T
(
â
(t)
(1), â

(t)
(2), . . . , â

(t)
(p−1), I

)∥∥∥
, (16)

and similarly the other updates are changed. Then, we have the following generalization of Lemma 1
to higher order tensors.

Corollary 1 (Local convergence guarantee of the tensor power updates in Algorithm 1 for p-th
order tensor). Consider the same conditions and settings as in Lemma 1, unless tensor T is p-
th order with CP decomposition in (15) where p ≥ 3 is a constant. In addition, the bounds on
γ := wmax

wmin
and k are modified as

γ = O

(
min

{
d

p−2
2 ,

dp/2

k

})
, k = o

(
d

p
2

)
.

Then, the outputs of tensor power iteration steps (output of Algorithm 1) satisfy w.h.p.

dist
(
â(r),j, a(r),j

)
≤ Õ

(
ψ

wmin

)
+ Õ

(
γ

√
k

dp−1

)
, |ŵj − wj| ≤ Õ (ψ) + Õ

(
wmax

√
k

dp−1

)
,
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for j ∈ [k] and r ∈ [p]. The number of iterations is N = Θ
(

log
(

1
γǫ̃R

))
, where γ := wmax

wmin
and

ǫ̃R := min
{

ψ
wmin

, Õ
(
γ
√
k/dp−1

)}
.

3.2 Global convergence guarantee when k = O(d)

Theorem 1 provides local convergence guarantee given good initialization vectors. In this section,
we exploit SVD-based initialization method in Procedure 2 to provide good initialization vectors
when k = O(d). This method proposes the top singular vectors of random slices of the moment
tensor as the initialization. Combining the theoretical guarantees of this initialization method
(provided in Appendix C) with the local convergence guarantee in Theorem 1, we provide the
following global convergence result.

Settings of Algorithm in Theorem 2:

• Number of iterations: N = Θ
(

log
(

1
γǫR

))
, where γ := wmax

wmin
and ǫR := min

{
ψ

wmin
, Õ
(
γ
√
k
d

)}
.

• The initialization in each run of Algorithm 1 is performed by SVD-based technique proposed
in Procedure 2, with the number of initializations as

L ≥ kΩ(γ4(k/d)2).

Conditions for Theorem 2:

• Rank-k decomposition and perturbation conditions as 6

T =
∑

i∈[k]
wi · ai ⊗ bi ⊗ ci, ψ := ‖Ψ‖ ≤ wmin

√
log k

α0

√
d

,

where ai, bi, ci, i ∈ [k], are uniformly i.i.d. drawn from the unit d-dimensional sphere Sd−1,
and α0 > 1 is a constant.

• Rank condition: k = O(d), i.e., k ≤ βd for arbitrary constant β > 1.

Theorem 2 (Global convergence guarantee of tensor decomposition algorithm when k = O(d)).
Consider noisy rank-k tensor T̂ = T + Ψ as the input to the tensor decomposition algorithm,
and assume the conditions and settings mentioned above hold. Then, the same guarantees as in
Theorem 1 hold.

See the proof in Appendix B.
Thus, we can efficiently recover the tensor decomposition, when the tensor is undercomplete or

mildly overcomplete (i.e., k ≤ βd for arbitrary constant β > 1), by initializing the algorithm with
a simple SVD-based technique. The number of initialization trials L is polynomial when γ is a
constant, and k = O(d).

Note that the argument in Lemma 1 can be similarly adapted leading to global convergence
guarantee of the tensor power iteration step.

6Note that the perturbation condition is stricter than the corresponding condition in the local convergence guar-
antee (Theorem 1).
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Two undercomplete, and one overcomplete component

Here, we apply the global convergence result to the regime of two undercomplete and one overcom-
plete components. This arises in supervised learning problems under a multiview mixtures model
and employing moment tensor E[x1 ⊗ x2 ⊗ y], where xi ∈ R

du are multi-view high-dimensional
features and y ∈ R

do is a low-dimensional label.
Since in the SVD initialization Procedure 2, two components â(0) and b̂(0) are initialized through

SVD, and the third component ĉ(0) is initialized through update formula (5), we can generalize the
global convergence result in Theorem 2 to the setting where A, B are undercomplete, and C is
overcomplete.

Corollary 2. Consider the same setting as in Theorem 2. In addition, suppose the regime of
undercomplete components A ∈ R

du×k, B ∈ R
du×k, and overcomplete component C ∈ R

do×k such
that du ≥ k ≥ do. In addition, in this case the bound on γ := wmax

wmin
is

γ = O

(
min

{√
do,

du
√
do

k

})
.

Then, if k = O(du) and do ≥ polylog(k), the same convergence guarantee as in Theorem 2 holds.

See the proof in Appendix B.
We observe that given undercomplete modes A and B, mode C can be arbitrarily overcomplete,

and we can still provide global recovery of A,B and C by employing SVD initialization procedure
along modes A and B.

3.3 Proof outline

The global convergence guarantee in Theorem 2 is established by combining the local convergence
result in Theorem 1 and the SVD initialization result in Appendix C.

The local convergence result in Theorem 1 is derived by establishing error contraction in each
iteration of the tensor power iteration and the coordinate descent for removing the residual error.
Note that these convergence properties are broken down in Lemmata 1 and 12, respectively.

Since we assume generic factor matrices A,B and C, we utilize many useful properties such as
incoherence, bounded spectral norm of the matrices A,B and C, bounded tensor spectral norm
and so on. We list the precise set of deterministic conditions required to establish the local conver-
gence result in Appendix A. Under these conditions, with a good initialization (i.e., small enough
max{dist(â, aj),dist(b̂, bj)} ≤ ǫ0), we show that the iterative update in (5) provides an estimate ĉ
with

dist(ĉ, cj) < Õ

(
ψ

wmin

)
+ Õ

(
γ

√
k

d

)
+ qǫ0,

for some contraction factor q < 1/2. The incoherence condition is crucial for establishing this
result. See Appendix B for the complete proof.

The initialization argument for SVD-based technique in Procedure 2 has two parts. The first
part claims that by performing enough number of initializations (large enough L), a gap condition is
satisfied, meaning that we obtain a vector θ which is relatively close to cj compared to any ci, i 6= j.
This is a standard result for Gaussian vectors, e.g., see Lemma B.1 of Anandkumar et al. (2014a). In
the second part of the argument, we analyze the dominant singular vectors of T (I, I, θ), for a vector
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θ with a good relative gap, to obtain an error bound on the initialization vectors. This is obtained
through standard matrix perturbation results (Weyl and Wedin’s theorems). See Appendix C for
the complete proof.

4 Experiments

In this section, we provide some synthetic experiments to evaluate the performance of Algorithm 1.
Note that tensor power update in Algorithm 1 is the main step of our algorithm which is considered
in this experiment. A random true tensor T is generated as follows. First, three components
A ∈ R

d×k, B ∈ R
d×k, and C ∈ R

d×k are randomly generated with i.i.d standard Gaussian entries.
Then, the columns of these matrices are normalized where the normalization factors are aggregated
as coefficients wj , j ∈ [k]. From decomposition form in (4), tensor T is built through these random

components. For each new initialization, â(0) and b̂(0) are randomly generated with i.i.d. standard
Gaussian entries, and then normalized 7. Initialization vector ĉ(0) is generated through update
formula in (5).

For each initialization τ ∈ [L], an alternative option of running the algorithm with a fixed
number of iterations N is to stop the iterations based on some stopping criteria. In this experiment,
we stop the iterations when the improvement in subsequent steps is small as

max

(∥∥∥â(t)τ − â(t−1)
τ

∥∥∥
2
,
∥∥∥b̂(t)τ − b̂(t−1)

τ

∥∥∥
2
,
∥∥∥ĉ(t)τ − ĉ(t−1)

τ

∥∥∥
2
)
≤ tS,

where tS is the stopping threshold. According to the bound in Theorem 1, we set

tS := t1(log d)2
√
k

d
, (17)

for some constant t1 > 0.

Effect of size d and k

Algorithm 1 is applied to random tensors with d = 1000 and k = {10, 50, 100, 200, 500, 1000, 2000}.
The number of initializations is L = 2000. The parameter t1 in (17) is fixed as t1 = 1e−08. Figure
2 and Table 1 illustrate the outputs of running experiments which is the average of 10 random runs.

Figure 2 depicts the ratio of recovered columns versus the number of initializations. Both
horizontal and vertical axes are plotted in log-scale. We observe that it is much easier to recover
the columns in the undercomplete settings (k ≤ d), while it becomes harder when k increases.
Linear start in Figure 2 suggests that recovering the first bunch of columns only needs polynomial
number of initializations. For highly undercomplete settings like d = 1000 and k = 10, almost all
columns are recovered in this linear phase. After this start, the concave part means that it needs
many more initializations for recovering the next bunch of columns. As we go ahead, it becomes
harder to recover true columns, which is intuitive.

Table 1 has the results from the experiments. Parameters k, stopping threshold tS, and the
average square error of the output, the average weight error and the average number of iterations

7Drawing i.i.d. standard Gaussian entries and normalizing them is equivalent to drawing vectors uniformly from
the d-dimensional unit sphere.
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Figure 2: Ratio of recovered columns versus the number of initializations for d = 1000, and k =
{10, 50, 100, 200, 500, 1000, 2000}. The number of initializations is L = 2000. The stopping parameter is
set to t1 = 1e− 08. The figure is an average over 10 random runs.

Table 1: Parameters and more outputs related to results of Figure 2. Note that d = 1000.

Parameters Outputs

k tS
avg. square

error
avg. weight

error
avg. # of
iterations

10 1.51e-08 1.03e-05 9.75e-09 7.71
50 3.37e-08 5.54e-05 6.69e-08 8.53
100 4.77e-08 1.08e-04 1.51e-07 8.81
200 6.75e-08 2.07e-04 3.41e-07 9.09
500 1.07e-07 5.09e-04 1.14e-06 9.52
1000 1.51e-07 1.01e-03 3.40e-06 10.01
2000 2.13e-07 2.00e-03 1.12e-05 10.69

are stated. The output averages are over several initializations and random runs. The square error
is given by

1

3

[
‖aj − â‖2 +

∥∥∥bj − b̂
∥∥∥
2

+ ‖cj − ĉ‖2
]
,

for the corresponding recovered j. The error in estimating the weights is defined as |ŵ − wj |2/w2
j

which is the square relative error of weight estimate. The number of iterations performed before
stopping the algorithm is mentioned in the last column. We observe that by increasing k, all of
these outputs are increased which means we get less accurate estimates with higher computation.
This shows that recovering the overcomplete components is much harder. Note that by running
the coordinate descent Algorithm 4, we can also remove this additional residual error left after the
tensor power iteration step. Similar results and observations as above are seen when k is fixed and
d is changed.

Running experiments with SVD initialization instead of random initialization yields nearly the
same recovery rates, but with slightly smaller number of iterations. But, since the SVD computation
is more expensive, in practice, it is desirable to initialize with random vectors. Our theoretical
results for random initialization appear to be highly pessimistic compared to the efficient recovery
results in our experiments. This suggests additional room for improving our theoretical guarantees
under random initialization.
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Appendix

More Matrix Notations

Given vector w ∈ R
d, let Diag(w) ∈ R

d×d denote the diagonal matrix with w on its main diagonal.
Given matrix A ∈ R

d×k, the following notations are defined to refer to its sub-matrices. Aj denotes
the j-th column and Aj denotes the j-th row of A. In addition, A\j ∈ R

d×(k−1) is A with its j-th

column removed, and A\j ∈ R
(d−1)×k is A with its j-th row removed.

For two matrices A ∈ R
d1×k and B ∈ R

d2×k, the Khatri-Rao product is denoted by A ⊙ B ∈
R
d1d2×k, and its (i, j)th entry is given by

A⊙B(i, j) := Ai1,jBi2,j, i = (i1, i2) ∈ [d1]× [d2], j ∈ [k].

For two matrices A ∈ R
d×k and B ∈ R

d×k, the Hadamard product is defined as the entry-wise
multiplication of the matrices,

A ∗B(i, j) := A(i, j)B(i, j), i ∈ [d], j ∈ [k].

Let ‖u‖p denote the ℓp norm of vector u. Let ‖A‖∞ denote the ℓ∞ element-wise norm of matrix
A, and the induced q → p norm is defined as

‖A‖q→p := sup
‖u‖q=1

‖Au‖p.

A Deterministic Assumptions

In the main text, we assume matrices A, B, and C are randomly generated. However, we are not
using all the properties of randomness. In particular, we only need the following assumptions.

(A1) Rank-k decomposition: The third order tensor T has a CP rank of k ≥ 1 with decompo-
sition

T =
∑

i∈[k]
wi(ai ⊗ bi ⊗ ci), wi > 0, ai, bi, ci ∈ Sd−1,∀ i ∈ [k], (18)

where Sd−1 denotes the unit d-dimensional sphere, i.e. all the vectors have unit 8 2-norm
as ‖ai‖ = ‖bi‖ = ‖ci‖ = 1, i ∈ [k]. Furthermore, define wmin := mini∈[k]wi and wmax :=
maxi∈[k]wi.

8This normalization is for convenience and the results hold for general case.
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(A2) Incoherence: The components are incoherent, and let

ρ := max
i 6=j
{|〈ai, aj〉|, |〈bi, bj〉|, |〈ci, cj〉|} ≤

α√
d
, (19)

for some α = polylog(d). In other words, A⊤A = I + JA, B⊤B = I + JB , and C⊤C =
I + JC , where JA, JB , and JC , are incoherence matrices with zero diagonal entries. We have
max {‖JA‖∞, ‖JB‖∞, ‖JC‖∞} ≤ ρ as in (19).

(A3) Spectral norm conditions: The components satisfy spectral norm bound

max {‖A‖, ‖B‖, ‖C‖} ≤ 1 + α0

√
k

d
,

for some constant α0 > 0.

(A4) Bounds on tensor norms: Tensor T satisfies the bound

‖T‖ ≤ wmaxα0,

∥∥T\j(aj , bj , I)
∥∥ :=

∥∥∥∥
∑

i 6=j
wi〈ai, aj〉〈bi, bj〉cj

∥∥∥∥ ≤ αwmax

√
k

d
,

for some constant α0 and α = polylog(d).

(A5) Rank constraint: The rank of the tensor is bounded by k = o
(
d1.5/polylog d

)
.

(A6) Bounded perturbation: Let ψ denote the spectral norm of perturbation tensor as

ψ := ‖Ψ‖. (20)

Suppose ψ is bounded as 9

ψ ≤ min

{
1

6
,

√
log k

α0

√
d

}
· wmin,

where α0 is a constant.

(A7) Weights ratio: The maximum ratio of weights γ := wmax
wmin

satisfies the bound

γ = O

(
min

{√
d,
d1.5

k

})
.

(A8) Contraction factor: The contraction factor q in Theorem 1 is defined as

q :=
2wmax

wmin


 2α√

d

(
1 + α0

√
k

d

)2

+ β′


 , (21)

for some constants α0, β
′ > 0, and α = polylog(d). In particular, we need αα0

√
k/d + β′ <

wmax/10wmin which ensures q < 1/2. This is satisfied when
√
k/d < wmax/wmin poly log d

and β′ < wmax/20wmin. The parameter β′ is determined by the following assumption (initial-
ization).

9Note that for the local convergence guarantee, only the first condition ψ ≤
wmin

6
is required.
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(A9) Initialization: Let

ǫ0 := max
{

dist
(
â(0), aj

)
,dist

(
b̂(0), bj

)}
,

denote the initialization error w.r.t. to some j ∈ [k]. Suppose it is bounded as

ǫ0 ≤ min

{
β′

α0
,

√
wmin

6wmax
,
wminq

4wmax
,
2wmax

wminq

(
wmin

6wmax
− α
√
k

d

)}
,

for some constants α0, β
′ > 0, α = polylog(d), and 0 < q < 1/2 which is defined in (21).

(A10) 2→ p norm: For some fixed constant p < 3, max{‖A⊤‖2→p, ‖B⊤‖2→p, ‖C⊤‖2→p} ≤ 1+o(1).

Remark 1. Many of the assumptions are actually parameter choices. The only properties of ran-
dom matrices required are (A2), (A3), (A4) and (A10),. See Appendix A.1 for detailed discussion.

Let us provide a brief discussion about the above assumptions. Condition (A1) requires the pres-
ence of a rank-k decomposition for tensor T . We normalize the component vectors for convenience,
and this removes the scaling indeterminacy issues which can lead to problems in convergence.
Additionally, we impose incoherence constraint in (A2), which allows us to provide convergence
guarantee in the overcomplete setting. Assumptions (A3) and (A4) impose bounds on the spectral
norm of tensor T and its decomposition components. Note that assumptions (A2)-(A4) and (A10)
are satisfied w.h.p. when the columns of A, B, and C are generically drawn from unit sphere Sd−1

(see Lemma 2 and Guédon and Rudelson (2007)), all others are parameter choices. Assumption
(A5) limits the overcompleteness of problem which is required for providing convergence guarantees.
The first bound on perturbation in (A6) as ψ ≤ wmin

6 is required for local convergence guarantee

and the second bound ψ ≤ wmin
√
log k

α0

√
d

is needed for arguing initialization provided by Procedure 2.

Assumption (A7) is required to ensure contraction happens in each iteration. Assumption (A8)
defines contraction ratio q in each iteration, and Assumption (A9) is the initialization condition
required for local convergence guarantee.

The tensor-spectral norm and 2→ p norm assumptions (A4) and (A10) may seem strong as we
cannot even verify them given the matrix. However, when k < d1.25−ǫ for arbitrary constant ǫ > 0,
both conditions are implied by incoherence. See Lemma 4. We only need these assumptions to go
to the very overcomplete setting.

A.1 Random matrices satisfy the deterministic assumptions

Here, we provide arguments that random matrices satisfy conditions (A2), (A3), (A4), and (A10).
It is well known that random matrices are incoherent, and have small spectral norm (bound on
spectral norm dates back to Wigner (1955)). See the following lemma.

Lemma 2. Consider random matrix X ∈ R
d×k where its columns are uniformly drawn at random

from unit d-dimensional sphere Sd−1. Then, it satisfies the following incoherence and spectral
bounds with high probability as

max
i,j∈[k],i 6=j

|〈Xi,Xj〉| ≤
α√
d
,

‖X‖ ≤ 1 + α0

√
k

d
,
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for some α = O(
√

log k) and α0 = O(1).

The spectral norm of the tensor is less well-understood. However, it can be bounded by the
2→ 3 norm of matrices. Using tools from Guédon and Rudelson (2007); Adamczak et al. (2011),
we have the following result.

Lemma 3. Consider a random matrix A ∈ R
d×k whose columns are drawn uniformly at random

from unit sphere. If k < dp/2/polylog(d), then

∥∥A⊤∥∥
2→p
≤ 1 + o(1).

This directly implies Assumption (A10). In particular, since we only apply Assumption (A10)
to unsupervised setting (k ≤ O(d)) in Appendix D, for randomly generated tensor, Assumption
(A10) holds for all p > 2 (notice that we only need it to hold for some p < 3).

We also give an alternative proof of 2 → p norm which does not assume randomness and only
relies on incoherence.

Lemma 4. Suppose columns of matrix A ∈ R
d×k have unit norm and satisfy the incoherence

condition (A2). If k ≤ d1.25−ǫ for arbitrary constant ǫ > 0, then for any p > 3− 2ǫ, we have

∥∥A⊤∥∥
2→p
≤ 1 + o(1).

Proof: Let L =
√
d/poly log d. By incoherence assumption we know every subset of L columns

in A has singular values within 1± o(1) (by Gershgorin Disk Theorem).
For any unit vector u, let S be the set of L indices that are largest in A⊤u. By the argument

above we know ‖(AS)⊤u‖ ≤ ‖AS‖‖u‖ ≤ 1 + o(1). In particular, the smallest entry in A⊤
S u is at

most 2/
√
L. By construction of S this implies for all i not in S, |A⊤

i u| is at most 2/
√
L. Now we

can write the ℓp (p > 2) norm of A⊤u as

‖A⊤u‖pp =
∑

i∈S
|A⊤

i u|p +
∑

i 6∈S
|A⊤

i u|p

≤
∑

i∈S
|A⊤

i u|2 + (2/
√
L)p−2

∑

i 6∈S
|A⊤

i u|2

≤ 1 + o(1).

Here the second inequality uses that every entry outside S is small, and last inequality uses the
fact that p > 3− 2ǫ. �

The 2→ 3 norm implies a bound on the tensor spectral norm by Hölder’s inequality.

Fact 1 (Hölder’s Inequality). When 1/p+1/q = 1, for two sequence of numbers {ai}, {bi}, we have

∑

i

aibi ≤
(
∑

i

|ai|p
)1/p(∑

i

|bi|q
)1/q

.

Consequently, we have the following corollary.
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Corollary 3. For vectors f, g, h, and weights wi ≥ 0, we have

∑

i

wifigihi ≤ wmax‖f‖3‖g‖3‖h‖3.

Proof: The proof applies Hölder’s inequality twice as

∑

i

wifigihi ≤ wmax

∑

i

|figihi| ≤ wmax(
∑
|fi|3)1/3(

∑
|gihi|3/2)2/3 ≤ wmax‖f‖3‖g‖3‖h‖3,

where in the first application, p = 3 and q = 3/2, and in the second application, p = q = 2 (which
is the special case known as Cauchy-Schwartz). �

In the following lemma, it is shown that the first bound in Assumption (A4) holds for random
matrices w.h.p.

Lemma 5. Let A, B, and C be random matrices in R
d×k whose columns are drawn uniformly at

random from unit sphere. If k < d3/2/polylog(d), and

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci,

then
‖T‖ ≤ O(wmax).

Proof: For any unit vectors â, b̂, ĉ, we have

T (â, b̂, ĉ) =
∑

i∈[k]
wi(A

⊤â)i(B
⊤b̂)i(C

⊤ĉ)i

≤ wmax‖A⊤â‖3‖B⊤b̂‖3‖C⊤ĉ‖3
≤ wmax‖A⊤‖2→3‖â‖ · ‖B⊤‖2→3‖b̂‖ · ‖C⊤‖2→3‖ĉ‖
= O(wmax),

where Corollary 3 is exploited in the first inequality, and Lemma 3 is used in the last inequality.
�

For the case with two undercomplete and one overcomplete dimensions (see Corollary 2), we
can prove the tensor spectral norm using basic properties of the matrices A,B,C.

Lemma 6. Let A,B ∈ R
du×k be matrices with spectral norm bounded by O(1), and C ∈ R

do×k be
a matrix whose columns have unit norm. Let

T =
k∑

i=1

wiai ⊗ bi ⊗ ci,

then we have
‖T‖ ≤ O(wmax).
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Proof: For any unit vectors u, v ∈ R
du and w ∈ R

do , by assumptions we know ‖A⊤u‖ ≤
O(1), ‖B⊤v‖ ≤ O(1) and ‖C⊤w‖∞ ≤ 1. Now we have

T (u, v, w) =
k∑

i=1

wi〈ai, u〉〈bi, v〉〈ci, w〉

≤ wmax

k∑

i=1

|〈ai, u〉〈bi, v〉|

≤ wmax‖A⊤u‖‖B⊤v‖
= O(wmax).

The first inequality uses triangle inequality and the fact that |〈ci, w〉| ≤ 1. The Cauchy-Schwartz
inequality is exploited in the second inequality. Therefore, the spectral norm of the tensor is
bounded by O(wmax). �

Finally, we show in the following lemma that the second bound in Assumption (A4) is satisfied
for random matrices.

Lemma 7. Let A,B,C ∈ R
d×k be independent, normalized (column) Gaussian matrices. Then for

all i ∈ [k], we have with high probability

∥∥∥C\i Diag(w\i)(JA ∗ JB)
\i
i

∥∥∥ = Õ

(
wmax

√
k

d

)
.

Proof: We have

C\i Diag(w\i)(JA ∗ JB)
\i
i =

∑

j 6=i
Cjwj〈Ai, Aj〉〈Bi, Bj〉 =

∑

j 6=i
Cjδj ,

where δj := wj〈Ai, Aj〉〈Bi, Bj〉 is independent of Cj. From Lemma 2, columns of A and B are
incoherent, and therefore, for j 6= i, we have

|δj | = Õ(wmax/d).

Now since Cj’s are independent, zero mean vectors, the sum
∑

j 6=i δjCj is zero mean and its variance

is bounded by Õ(w2
maxk/d

2). Then, from vector Bernstein’s bound we have with high probability

∥∥∥C\i Diag(w\i)(JA ∗ JB)
\i
i

∥∥∥ = Õ

(
wmax

√
k

d

)
.

The proof is completed by applying union bound. �

Spectral norm of Khatri-Rao product

For the convergence guarantees of the second step of algorithm on removing residual error, we need
the following additional bound on the spectral norm of Khatri-Rao product of random matrices.
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(A11) Spectral Norm Condition on Khatri-Rao Products: The components satisfy the
following spectral norm bound on the Khatri-Rao products as

max {‖A⊙B‖, ‖B ⊙ C‖, ‖A⊙ C‖} ≤ 1 + α0

√
k

d
,

for α0 ≤ poly log d.

We now prove that Assumption (A11) is satisfied with high probability, if the columns of A, B
and C are uniformly i.i.d. drawn from unit d-dimensional sphere.

The key idea is to view (A⊙B)⊤(A⊙B) as the sum of random matrices, and use the following
Matrix Bernstein’s inequality to prove concentration results.

Lemma 8. Let M =
∑n

i=1Mi be sum of independent symmetric d × d matrices with E[Mi] = 0,
assume all matrices Mi’s have spectral norm at most R almost surely, let σ2 = ‖E[M2

i ]‖, then for
any τ

Pr[‖M‖ ≥ τ ] ≤ 2d exp

( −τ2/2
σ2 +Rτ/3

)
.

Remark: Although the lemma requires all Mi’s to have spectral norm at most R almost surely, it
suffices to have spectral norm bounded by R with high probability and bounded by R∞ = poly(d, k)
almost surely. This is because we can always condition on the fact that ‖Mi‖ ≤ R for all i.
Such conditioning can only change the expectations by a negligible amount, and does not affect
independence between Mi’s.

Random unit vectors are not easy to work with, as entries in the same column are not indepen-
dent. Thus, we first prove the result for matrices A and B whose entries are independent Gaussian
variables.

Lemma 9. Suppose A, B ∈ R
d×k(k > polylog d) are independent random matrices with indepen-

dent Gaussian entries, let M = (A⊙B)⊤(A⊙B) = (A⊤A) ∗ (B⊤B), then with high probability

‖M −Diag(M)‖ ≤ O(d
√
k log d)

Proof: Let a1, a2, ..., ad ∈ R
k be the columns of A⊤ (the rows of A, but treated as column

vectors). We can rewrite M −DiagM as

M −DiagM = (
∑

i∈[d]
aia

⊤
i ) ∗ (B⊤B −Diag(B⊤B)) =

∑

i∈[d]
(aia

⊤
i ) ∗ (B⊤B −Diag(B⊤B)).

Now let Q = B⊤B−Diag(B⊤B), and Mi = (aia
⊤
i )∗Q, we would like to bound the spectral norm

of the sum M =
∑

i∈[d]Mi. Clearly these entries are independent, E[Mi] = E[aia
⊤
i ]∗Q = I ∗Q = 0,

so we can apply Matrix Bernstein bound.
Note that when d < k, by standard random matrix theory we know ‖Q‖ ≤ O(k). Also, every

row of Q has norm smaller than the corresponding row of B⊤B, which is bounded by ‖B‖‖b(i)‖ ≤
O(
√
kd). When d ≥ k, again by matrix concentration we know ‖Q‖ ≤ O(

√
dk log d). Every row of

Q has norm bounded by O(
√
kd) (because entries in a row are independently random, with variance

equal to d).
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First let us bound the spectral norm for each of the Mi’s. Notice that for any vector v,
v⊤[(aia

⊤
i ) ∗ Q]v = (v ∗ ai)⊤Q(v ∗ ai) by definition of Hadamard product. On the other hand,

‖v ∗ ai‖ ≤ ‖v‖‖ai‖∞. With high probability ‖ai‖∞ ≤ O(
√

log k), hence ‖Mi‖ ≤ ‖ai‖2∞‖Q‖. This is
bounded by O(k log d) when d < k and O(

√
kd log2 d) when k ≤ d.

Next we bound the variance ‖E[
∑

i∈[d]M
2
i ]‖. Since all the Mi’s are i.i.d., it suffices to analyze

E[M2
1 ]. Let T = E[M2

1 ] = E[((a1a
⊤
1 ) ∗Q)2], by definition of Hadamard product, we know

Tp,q = E[
∑

r∈[k]
Qp,rQr,qa1(p)a1(q)a1(r)2].

This number is 0 when p 6= q by independence of entries of a1. When p = q, this is bounded
by 3

∑
r∈[k]Q

2
p,r because E[a1(p)

2a1(r)2] is 1 when p 6= r and 3 when p = r. Therefore Tp,p ≤
3
∑

r∈[k]Q
2
p,r = 3‖Q(p)‖2 ≤ O(dk). Since T is a diagonal matrix, we know ‖T‖ ≤ O(dk), and

σ2 = ‖dT‖ = O(d2k).
By Matrix Bernstein we know with high probability ‖M‖ ≤ O(d

√
k log d). �

Using this lemma, it is easy to get a bound when columns of A, B are unit vectors. In this case,
we just need to normalize the columns, the normalization factor is bounded between d2/2 and 2d2

with high probability, and therefore, ‖(A⊤A)(B⊤B)− I‖ ≤ O(
√
k log d/d).

B Proof of Convergence Results in Theorems 1 and 2

The main part of the proof is to show that error contraction happens in each iteration of Algo-
rithms 1 and 4 as the two main parts of the algorithm. Then, the contraction result after t iterations
is directly argued.

In the following, we first provide a local contraction result for the tensor power iteration (5) in
Algorithm 1 given noisy tensor T̂ . This leads to Lemma 1 which is the local convergence guarantee
of the tensor power updates. Then, we provide a local contraction argument for the coordinate
descent step (9) in Algorithm 4.

Combining the above convergence arguments for both updates conclude the overall local con-
vergence guarantee in Theorem. 1. Then, combing this local convergence guarantee and the initial-
ization result in Theorem 3 leads to the global convergence guarantee in Theorem 2. In addition,
the result in Corollary 2 is similarly argued where the bound on the spectral norm of the tensor is
argued in Lemma 6.

B.1 Convergence of tensor power iteration: Algorithm 1

In this section, we prove Lemma 1 which is the local convergence guarantee of the tensor power
updates in Algorithm 1.

Define function f(ǫ; k, d) as

f(ǫ; k, d) := α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ǫ + α0ǫ
2, (22)

where α = polylog(d) and α0 = O(1). Notice that this function is a small constant when k <
d1.5/poly log d.
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Lemma 10 (Contraction result of Algorithm 1 in one update). Consider T̂ = T + Ψ as the input
to Algorithm 1, where T is a rank-k tensor, and Ψ is a perturbation tensor. Suppose Assumptions
(A1)-(A5) hold, and estimates â and b̂ satisfy distance bounds

dist(â, aj) ≤ ǫa,
dist(b̂, bj) ≤ ǫb,

for some j ∈ [k], and ǫa, ǫb > 0. Let ǫ := max{ǫa, ǫb}, and suppose ψ defined in (20) be small
enough such that 10

wj − wjǫ2 − wmaxf(ǫ; k, d) − ψ > 0,

where f(ǫ; k, d) is defined in (22). Then, update ĉ in (5) satisfies the following distance bound with
high probability (w.h.p.)

dist(ĉ, cj) ≤
wmaxf(ǫ; k, d) + ψ

wj − wjǫ2 − wmaxf(ǫ; k, d)− ψ . (23)

Furthermore, if the bound in (23) is such that dist(ĉ, cj) ≤ ǫ, then the update ŵ := T̂ (â, b̂, ĉ) in (7)
also satisfies w.h.p.

|ŵ − wj| ≤ 2wjǫ
2 +wmaxf(ǫ; k, d) + ψ.

Remark 2. In the asymptotic regime, f(ǫ; k, d) is

f(ǫ; k, d) = Õ

(√
k

d

)
+ Õ

(
max

{
1√
d
,
k

d3/2

})
ǫ+O(1)ǫ2.

Note that the last term is the only effective contracting term. The other terms include a constant

term, and the term involving ǫ disappears in only one iteration as long as k, d→∞, and Õ
(

k
d3/2

)
→

0.

Remark 3 (Rate of convergence). The local convergence result provided in Theorem 1 has a linear
convergence rate. But, Algorithm 1 actually provides an almost-quadratic convergence rate in the
beginning, and linear convergence rate later on. It can be seen by referring to one-step contraction
argument provided in Lemma 10 where the quadratic term α0ǫ

2 exists. In the beginning, this term
is dominant over linear term involving ǫ, and we have almost-quadratic convergence. Writing
α0ǫ

2 = α0ǫ
ζǫ2−ζ , we observe that we get rate of convergence equal to 2 − ζ as long as we have

initialization error bounded as ǫζ0 = O(1). Therefore, we can get arbitrarily close to quadratic
convergence with appropriate initialization error. Note that when the model is more overcomplete,
the algorithm more rapidly reaches to the linear convergence phase. For the sake of clarity, in
proposing Theorem 1, we approximated the almost-quadratic convergence rate in the beginning with
linear convergence.

Lemma 10 is proposed in the general form. In Lemma 11, we provide explicit contraction
result by imposing additional perturbation, contraction and initialization Assumptions (A6), (A8)
and (A9). We observe that under reasonable rank, perturbation and initialization conditions, the
denominator in (23) can be lower bounded by a constant, and the numerator is explicitly bounded
by a term involving ǫ, and a constant non-contracting term.

10This is the denominator of bound provided in (23).
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Lemma 11 (Contraction result of Algorithm 1 in one update). Consider T̂ = T + Ψ as the input
to Algorithm 1, where T is a rank-k tensor, and Ψ is a perturbation tensor. Let Assumptions 11

(A1)-(A9) hold. Note that initialization bound in (A9) is satisfied for some j ∈ [k]. Then, update
ĉ in (5) satisfies the following distance bound with high probability (w.h.p.)

dist(ĉ, cj) ≤ Const.︸ ︷︷ ︸
non-contracting term

+ qǫ0︸︷︷︸
contracting term

,

where

Const. :=
2

wmin

(
ψ + wmaxα

√
k

d

)
, (24)

and contraction ratio q < 1/2 is defined in (21). Note that α = polylog(d). In addition, if the
above bound be such that dist(ĉ, cj) ≤ ǫ0, then the update ŵ := T̂ (â, b̂, ĉ) in (7) also satisfies w.h.p.

|ŵ − wj| ≤
wmin

2
Const.+wminqǫ0.

Proof of Lemma 1: We incorporate condition (A7) to show that q < 1/2 in assumption (A8)
is satisfied. In addition, (A7) implies that the bound on ǫ0 in assumption (A9) holds where it can
be shown that the bound in (A9) is bounded as O(1/γ). Then, the result is directly proved by
iteratively applying the result of Lemma 11. �

Proof of auxiliary lemmata: tensor power iteration in Algorithm 1

Before providing the proofs, we remind a few definitions and notations.
In Assumption (A2), matrices JA, JB , and JC , are defined as incoherence matrices with zero

diagonal entries such that A⊤A = I + JA, B⊤B = I + JB , and C⊤C = I + JC . We have
max {‖JA‖∞, ‖JB‖∞, ‖JC‖∞} ≤ ρ as in (19).

Given matrix A ∈ R
d×k, the following notations are defined to refer to its sub-matrices. Aj

denotes the j-th column and Aj denotes the j-th row of A. Hence, we have Aj = aj , j ∈ [k]. In
addition, A\j ∈ R

d×(k−1) is A with its j-th column removed, and A\j ∈ R
(d−1)×k is A with its j-th

row removed.
Proof of Lemma 10: Let z∗a ⊥ aj and z∗b ⊥ bj denote the vectors that achieve supremum

value in (12) corresponding to dist(â, aj) and dist(b̂, bj), respectively. Furthermore, without loss of

generality, assume ‖z∗a‖ = ‖z∗b ‖ = 1. Then, â and b̂ are decomposed as

â = 〈aj , â〉aj + dist(â, aj)z
∗
a, (25a)

b̂ = 〈bj , b̂〉bj + dist(b̂, bj)z
∗
b . (25b)

Let C := C Diag(w) denote the unnormalized matrix C, and c̃ := T̂ (â, b̂, I) denote the unnormalized
update in (5). The goal is to bound dist

(
c̃, Cj

)
. Consider any zc ⊥ Cj such that ‖zc‖ = 1. Then,

we have
〈zc, c̃〉 = T̂ (â, b̂, zc) = T (â, b̂, zc) + Ψ(â, b̂, zc).

11As mentioned in the assumptions, from perturbation bound in (A6), only the bound ψ ≤
wmin

6
is required here.
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Substituting â and b̂ from (25a) and (25b), we have

T (â, b̂, zc) = 〈aj , â〉〈bj , b̂〉T (aj , bj , zc)︸ ︷︷ ︸
S1

+ 〈aj , â〉dist(b̂, bj)T (aj , z
∗
b , zc)︸ ︷︷ ︸

S2

+ dist(â, aj)〈bj , b̂〉T (z∗a, bj , zc)︸ ︷︷ ︸
S3

+ dist(â, aj) dist(b̂, bj)T (z∗a, z
∗
b , zc)︸ ︷︷ ︸

S4

.

In the following derivations, we repeatedly use the equality that for any u, v ∈ R
d, we have

T (u, v, I) = C(A⊤u ∗B⊤v). For S1, we have

S1 ≤ |T (aj , bj , zc)| = |z⊤c C(A⊤aj ∗B⊤bj)|
=
∣∣∣z⊤c C

[
ej + (JA ∗ JB)j

]∣∣∣

=
∣∣∣z⊤c C\j (JA ∗ JB)

\j
j

∣∣∣

≤ wmaxα

√
k

d
,

where equalities A⊤A = I + JA and B⊤B = I + JB are exploited in the second equality, and the
assumption that zc ⊥ Cj is used in the last equality. The last inequality is from Assumption (A4).
For S2, we have

S2 ≤ ǫb|T (aj , z
∗
b , zc)| = ǫb|z⊤c C(A⊤aj ∗B⊤z∗b )|

= ǫb

∣∣∣z⊤c C\j
[
(JA)

\j
j ∗

(
B\j
)⊤
z∗b
]∣∣∣

≤ ǫb
∥∥C\j

∥∥ ·
∥∥∥(JA)

\j
j

∥∥∥
∞
·
∥∥∥
(
B\j
)⊤
z∗b

∥∥∥

≤ wmax
α√
d

(
1 + α0

√
k

d

)2

ǫb,

for some α = polylog(d) and α0 = O(1). Second inequality is concluded from ‖u ∗ v‖ ≤ ‖u‖∞ · ‖v‖,
and Assumptions (A2) and (A3) are exploited in the last inequality. Similarly, for S3, we have

S3 ≤ ǫa
∣∣∣z⊤c C\j

[
(JB)

\j
j ∗

(
A\j
)⊤
z∗a
]∣∣∣

≤ wmax
α√
d

(
1 + α0

√
k

d

)2

ǫa.

Finally, for S4, we have

S4 ≤ ǫaǫb|T (z∗a, z
∗
b , zc)| ≤ ǫaǫb‖T‖ ≤ wmaxα0ǫaǫb,

for some α0 = O(1). The bound on ‖T‖ is from Assumption (A4). Note that for random compo-
nents, we showed in Lemma 5 that this bound holds w.h.p. exploiting Assumption (A5) and results
of Guédon and Rudelson (2007). For the error term Ψ(â, b̂, zc), we have

Ψ(â, b̂, zc) ≤ ψ,
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which is concluded from the definition of spectral norm of a tensor. Note that all vectors â, b̂, zc
have unit norm.

Let ǫ := max{ǫa, ǫb}. Then, combining all the above bounds, we have w.h.p.

〈zc, c̃〉 ≤ wmaxf(ǫ; k, d) + ψ,

where f(ǫ; k, d) is

f(ǫ; k, d) := α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ǫ + α0ǫ
2.

For c̃, we have

c̃ = T (â, b̂, I) + Ψ(â, b̂, I)

=
∑

i

wi〈ai, â〉〈bi, b̂〉ci + Ψ(â, b̂, I)

= wj〈aj, â〉〈bj , b̂〉cj +
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉ci + Ψ(â, b̂, I),

and therefore,

‖c̃‖ ≥
∥∥∥wj〈aj , â〉〈bj , b̂〉cj

∥∥∥−
∥∥∥∥
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉ci

∥∥∥∥− ‖Ψ(â, b̂, I)‖

≥ wj − wjǫ2 − wmaxf(ǫ; k, d)− ψ,

where inequality 〈aj , â〉〈bj , b̂〉 ≥ 1 − ǫ2 is exploited in the last inequality. Hence, as long as this
lower bound on ‖c̃‖ is positive (small enough ǫ and ψ), we have

dist(c̃, Cj) ≤
wmaxf(ǫ; k, d) + ψ

wj − wjǫ2 − wmaxf(ǫ; k, d)− ψ . (26)

Since dist(·, ·) function is invariant with respect to norm, we have dist (ĉ, cj) = dist
(
c̃, Cj

)
which

finishes the proof for bounding dist (ĉ, cj). Note that c̃ = ‖c̃‖ĉ, and Cj = wjcj where wj > 0.
Now, we provide the bound on |wj − ŵ|. As assumed in the lemma, we have distance bounds

max
{

dist (â, aj) ,dist
(
b̂, bj

)
,dist (ĉ, cj)

}
≤ ǫ.

The estimate ŵ = T̂ (â, b̂, ĉ) proposed in (7) can be expanded as

ŵ = T (â, b̂, ĉ) + Ψ(â, b̂, ĉ)

=
∑

i

wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉+ Ψ(â, b̂, ĉ)

= wj〈aj , â〉〈bj , b̂〉〈cj , ĉ〉+
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉+ Ψ(â, b̂, ĉ),
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and therefore,

|wj − ŵ| ≤
∣∣∣wj

(
1− 〈aj, â〉〈bj , b̂〉〈cj , ĉ〉

)∣∣∣+

∣∣∣∣
∑

i 6=j
wi〈ai, â〉〈bi, b̂〉〈ci, ĉ〉

∣∣∣∣+
∣∣∣Ψ(â, b̂, ĉ)

∣∣∣

≤ wj
(

1−
(
1− ǫ2

)1.5)
+ wmaxf(ǫ; k, d) + ψ

≤ 2wjǫ
2 + wmaxf(ǫ; k, d) + ψ,

where 〈aj , â〉〈bj , b̂〉〈cj , ĉ〉 ≥
(
1− ǫ2

)1.5
is exploited in the second inequality. Notice that this argu-

ment is similar to the argument provided earlier for lower bounding ‖c̃‖.
�

Proof of Lemma 11: The result is proved by applying Lemma 10, and incorporating additional
conditions (A6), (A8), and (A9). f(ǫ0; k, d) in (22) can be bounded as

f(ǫ0; k, d) = α

√
k

d
+

2α√
d

(
1 + α0

√
k

d

)2

ǫ0 + α0ǫ
2
0

≤ α
√
k

d
+


 2α√

d

(
1 + α0

√
k

d

)2

+ β′


 ǫ0

= α

√
k

d
+

wmin

2wmax
qǫ0,

where ǫ0 ≤ β′

α0
from Assumption (A9) is exploited in the inequality. The last equality is concluded

from definition of contracting factor q in (21). On the other hand, the denominator in (23) can be
lower bounded as

wmin

[
1− wmax

wmin
ǫ20 −

wmax

wmin
f(ǫ0; k, d) − ψ

wmin

]
≥ wmin

[
1− 1

6
− 1

6
− 1

6

]
=
wmin

2
,

where Assumptions (A9) and (A6) are used in the inequality. Applying Lemma 10, the result on
dist(ĉ, cj) is proved.

From Lemma 10, we also have

|ŵ − wj | ≤ 2wjǫ
2
0 + wmaxf(ǫ0; k, d) + ψ

≤ wmin

2
Const.+2wjǫ

2
0 +

wmin

2
qǫ0

≤ wmin

2
Const.+wminqǫ0.

where ǫ0 ≤ wminq
4wmax

from Assumption (A9) is used in the last inequality. �

B.2 Convergence of removing residual error: Algorithm 4

In this section, we provide convergence of the coordinate descent of Algorithm 4 for removing the
residual error. We first provide the following definition.
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Definition 2 ((η0, η1)-nice). Suppose

max{‖A‖, ‖B‖, ‖C‖} ≤ η1
√
k

d
.

Given an approximate solution {Â, B̂, Ĉ, ŵ}, we call it (η0, η1)-nice if matrix Â (similarly B̂ and
Ĉ) satisfies

‖∆Ai‖ := ‖âi − ai‖ ≤ η0
√
k

d
, ∀i ∈ [k],

‖Â‖ ≤ η1
√
k

d
,

and the weights satisfy

|ŵi − wi| ≤ η0wmax

√
k

d
.

Given above conditions are satisfied, we prove the following guarantees for removing residual
error, Algorithm 4.

Lemma 12 (Local convergence guarantee of the iterations for removing residual error, Algo-
rithm 4). Consider T as the input to Algorithm 4, where T is a rank-k tensor. Suppose Assumptions
(A1)-(A5) and (A11) hold (which are satisfied whp when the components are uniformly i.i.d. drawn

from unit d-dimensional sphere). Given initial solution
{
Â(0), B̂(0), Ĉ(0), ŵ(0)

}
which is (η0, η1)-

nice, all the following iterations of Algorithm 4 are (2η0, 3η1)-nice. Furthermore, given the exact
tensor T , the Frobenius norm error max{‖∆A‖F , ‖∆B‖F , ‖∆C‖F , ‖∆w‖/wmin} shrinks by at least
a factor of 2 in every iteration. In addition, if we have a noisy tensor T̂ = T+Ψ such that ‖Ψ‖ ≤ ψ,
then

max{‖∆A(t)‖F , ‖∆B(t)‖F , ‖∆C(t)‖F , ‖∆w(t)‖/wmin} ≤ 2−tη0
k

d
+O

(
ψ
√
k

wmin

)
.

Proof: iteration for removing residual error in Algorithm 4

We now prove Lemma 12 as the local convergence guarantee of the iterations for removing residual
error, Algorithm 4.

To prove this lemma, we first observe that the algorithm update formula in (9) is (before
normalization) wi〈ai, âi〉〈bi, b̂i〉ci + ǫi where

ǫi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj).

In the following lemma, we show that the error terms ǫi’s are small.

Lemma 13. Before normalization w̃ic̃i = wi〈ai, âi〉〈bi, b̂i〉ci + ǫi where

k∑

i=1

‖ǫi‖2 ≤ o(1)(wmax(‖∆(A)‖2F + ‖∆(B)‖2F + ‖∆(C)‖2F ) + ‖∆w‖2).
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Proof: By the update formula in (9), we know

ǫi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj).

We expand it into several terms as follows.

ǫi =
∑

j 6=i
(wi〈aj , âi〉〈bj , b̂i〉cj − ŵi〈âi, âj〉〈̂bi, b̂j〉ĉj)

=
∑

j 6=i
〈ai, aj〉〈bi, bj〉(wjcj − ŵj ĉj) (type 1)

+
∑

j 6=i
wj〈aj ,∆Ai〉〈bj , bi〉cj +

∑

j 6=i
wj〈aj , ai〉〈bj ,∆Bi〉cj (type 2)

−
∑

j 6=i
ŵj〈aj , ai〉〈bj ,∆Bi〉ĉj −

∑

j 6=i
ŵj〈aj , ai〉〈∆Bj , b̂i〉ĉj

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈bj , bi〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈bj , bi〉ĉj

+
∑

j 6=i
〈aj ,∆Ai〉〈bj ,∆Bi〉cj (type 3)

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈bj ,∆Bi〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈bj ,∆Bi〉ĉj

−
∑

j 6=i
ŵj〈aj ,∆Ai〉〈∆Bj , b̂i〉ĉj −

∑

j 6=i
ŵj〈∆Aj , âi〉〈∆Bj , b̂i〉ĉj .

The norm of three different types of terms mentioned above are bounded in Section B.2, which
conclude the desired bound in the lemma. �

We are now ready to prove main Lemma 12.
Proof of Lemma 12: Since w̃i is the norm of wi〈ai, âi〉〈bi, b̂i〉ci + ǫi, we know

|w̃i − wi| ≤ ‖ǫi‖+ wi(Θ(‖∆Ai‖2 + ‖∆Bi‖2)),

and therefore

‖w̃ − w‖ ≤ o(1)(wmax(‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F ) + ‖∆w‖).

On the other hand, since the coefficient wi〈ai, âi〉〈bi, b̂i〉 is at least 1− o(1), we know ‖c̃i− ci‖ ≤
4‖ǫi‖/wmin. This implies

‖C̃ − C‖F ≤ o(1)((‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F ) + ‖∆w‖/wmin).

By Lemma 14, we know after the projection procedure, we get ‖Ĉ − C‖F ≤ 2‖C̃ − C‖F .
Therefore combining the two steps we know

‖Ĉ − C‖F ≤ 2‖C̃ − C‖F ≤ o(1)(‖∆(A)‖F + ‖∆(B)‖F + ‖∆(C)‖F + ‖∆w‖/wmin).

When we have noise, all the ǫi’s have an additional term Ψ(âi, b̂i, I) which is bounded by ψ,
and thus, the second part of the lemma follows directly.

�
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Handling Symmetric Tensors: For symmetric tensors we should change the algorithm as com-
puting the following:

T (âi, b̂i, I)− 1

d

d∑

i=1

T (ei, ei, I)−
∑

j 6=i
ŵj(〈âi, âj〉〈̂bi, b̂j〉 −

1

d
)ĉj . (27)

The result of this will be a change in the term of type 1. Now the Q matrix will be (A⊙A)T (A⊙
A)− (1− 1

d)I − 1
dJ which has desired spectral norm for random matrices.

Claims for proving Lemma 13

The first term deals with the difference between C and Ĉ.

Claim 1. We have
√√√√

k∑

i=1

‖
∑

j 6=i
〈ai, aj〉〈bi, bj〉(wici − ŵiĉi)‖2 ≤ o(1)(wmax‖∆C‖F + ‖ŵ − w‖).

Proof: This sum is equal to the Frobenius norm of a matrix M = QZ. Here the matrix Q is a
matrix such that is equal to Q = (A⊙B)⊤(A⊙B)− I:

Qi,j =

{
〈ai, aj〉〈bi, bj〉, i 6= j,
0, i = j,

The matrix Z has columns Zi = wici − ŵiĉi. By assumption we know ‖Q‖ ≤ o(1), and ‖Z‖F ≤
wmax‖∆C‖F + ‖ŵ − w‖. Therefore we have

‖M‖F = ‖QZ‖F ≤ ‖Q‖‖Z‖F ≤ o(1)(wmax‖∆C‖F + ‖ŵ − w‖).

�

Of course, in the error ǫi, we don’t have
∑

j 6=i〈ai, aj〉〈bi, bj〉wici, instead we have terms like
∑

j 6=i〈âi, aj〉〈̂bi, bj〉wici. The next two lemmas show that these two terms are actually very close.

Claim 2. We have
√√√√

k∑

i=1

‖
∑

j 6=i
〈∆Ai, âj〉〈bi, bj〉ŵiĉi‖2 ≤ o(wmax)‖∆A‖F .

√√√√
k∑

i=1

‖
∑

j 6=i
〈∆Aj , âi〉〈bi, bj〉ŵiĉi‖2 ≤ o(wmax)‖∆A‖F .

Same is true if any ·̂ is replaced by the true value.

Proof: Similar as before, we treat the left hand side as the Frobenius norm of some matrix
M = QZ. Here Zi = ŵiĉi, and Q is the following matrix:

Qi,j =

{
〈∆Ai, âj〉〈bi, bj〉, i 6= j,
0, i = j,

34



We shall bound ‖M‖F by ‖Z‖‖Q‖F . By assumption we know ‖Z‖ ≤ wmax·2η1
√
k/d = O(wmax

√
k/d).

On the other hand, we know 〈bi, bj〉 ≤ Õ(1/
√
d) hence ‖Q‖F ≤ Õ(1/

√
d)‖ÂT∆A‖F ≤ Õ(1/

√
d)‖Â‖‖∆A‖F =

Õ(
√
k/d)‖∆A‖F . Therefore we have

‖M‖F ≤ ‖Z‖‖Q‖F ≤ O(wmax

√
k/d)·Õ(wmax

√
k/d)‖∆A‖F = Õ(k/d

√
d)‖∆A‖F = o(wmax)‖∆A‖F .

Notice that the proof works for both terms. �

Claim 3. We have
√√√√

k∑

i=1

‖
∑

j 6=i
〈∆Ai, âj〉〈∆Bi, b̂j〉ŵiĉi‖2 ≤ o(wmax)(‖∆A‖F + ‖∆B‖F ).

The same is true if the inner-products are between 〈∆Aj , âi〉 or 〈∆Bj, b̂i〉, or if any ·̂ is replaced by
the true value.

Proof: Similar as before, we treat the left hand side as the Frobenius norm of some matrix
M = QZ. Here Zi = ŵiĉi, and Q is the following matrix

Qi,j =

{
〈∆Ai, âj〉〈∆Bi, bj〉, i 6= j,
0, i = j,

Now using definition of 2 → 4 norm and 2ab ≤ a2 + b2 we first bound the Frobenius norm of the
matrix Q:

∑

i 6=j
(〈∆Ai, âj〉〈∆Bi, b̂j〉)2 ≤

∑

i 6=j
(〈∆Ai, âj〉)4+(〈∆Bi, b̂j〉)4 ≤

k∑

i=1

‖Â⊤‖2→4‖∆Ai‖4+‖B̂⊤‖2→4‖∆Bi‖4

Now we first bound the 2→ 4 norm of the matrix Â⊤ = A⊤ + ∆A⊤. By assumption we already
know ‖A⊤‖2→4 ≤ O(1). On the other hand, for any unit vector u

k∑

i=1

〈∆Ai, u〉4 ≤
k

max
i=1
〈∆Ai, u〉2

k∑

i=1

〈∆Ai, u〉2 ≤ Õ(k2/d3) = o(1).

Here we used the assumption that ‖∆Ai‖ ≤ Õ(
√
k/d) and ‖∆A‖ ≤ O(

√
k/d). Therefore ‖Â⊤‖2→4 ≤

‖A⊤‖2→4 + ‖∆A⊤‖2→4 ≤ O(1) (and similarly for B̂⊤).
Therefore

‖Q‖F ≤

√√√√
k∑

i=1

‖Â⊤‖2→4‖∆Ai‖4 + ‖B̂⊤‖2→4‖∆Bi‖4

≤ O(1)

√√√√
k∑

i=1

‖∆Ai‖4 + ‖∆Bi‖4

≤ O(1) · k
max
i=1

(‖∆A‖i + ‖∆B‖i)

√√√√
k∑

i=1

‖∆Ai‖2 + ‖∆Bi‖2

≤ Õ(
√
k/d)(‖∆A‖F + ‖∆B‖F ).
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On the other hand we know ‖Z‖ ≤ O(wmax

√
k/d), hence ‖M‖F ≤ ‖Z‖‖Q‖F ≤ o(wmax)(‖∆A‖F+

‖∆B‖F ).
�

Projection Procedure 5

In this section, we describe the functionality of projection Procedure 5. Suppose the initial solution
{Â0, B̂0, Ĉ0, ŵ0} is (η0, η1)-nice. Then, given an arbitrary solution {Ã, B̃, C̃, w̃}, we run projection
Procedure 5 to get a (2η0, 4η1)-nice solution without losing too much in Frobenius norm error. This
is shown in the following Lemma.

Lemma 14. Suppose the initial solution {Â0, B̂0, Ĉ0, ŵ0} is (η0, η1)-nice. For any solution {Ã, B̃, C̃, w̃},
let error E = max{‖Ã−A‖F , ‖B̃−B‖F , ‖C̃−C‖F , ‖w̃−w‖/wmin}. Then after the projection Pro-
cedure 5, the new solution is (2η0, 3η1)-nice and has error at most 2E.

Proof: Intuitively, by truncating D the matrix we get is closest to Ã among matrices with
spectral norm η1

√
k/d. We first prove this fact:

Claim 4.
‖Q− Ã‖F = min

‖M‖≤η1
√
k/d

‖M − Ã‖F .

Proof: By symmetric properties of Frobenius and spectral norm (both are invariant under
rotation), we can rotate the matrices Q,M, Ã simultaneously, so that Ã becomes a diagonal matrix
D. Since M has spectral norm bounded by η1

√
k/d, in particular all its entries must be bounded

by η1
√
k/d. Also, we know ‖D − D̂‖F = min∀(i,j)Mi,j≤η1

√
k/d
‖D −M‖F , therefore ‖D − D̂‖F =

min‖M‖≤η1
√
k/d
‖D −M‖F . By the rotation invariant property this implies the claim. �

Since the optimal solution A has spectral norm bounded by η1
√
k/d, in particular from above

claim we know ‖Q− Ã‖F ≤ ‖Ã−A‖F . By triangle inequality we get ‖Q−A‖F ≤ 2E. In the next
step we are essentially projecting the solution Q to a convex set that contains A (the set of matrices
that are column-wise η1

√
k/d close to Â0), so the distance can only decrease. Similar arguments

work for B̂, Ĉ, ŵ, therefore the error of the new solution is bounded by 2E.
By construction it is clear that the columns of the new solution is within η0

√
k/d to the columns

of the initial solution, so they must be within 2η0
√
k/d to the columns of the true solution. The

only thing left to prove is that ‖Â‖ ≤ 3η1
√
k/d.

First we observe that Â = Â0 +Z where Z is a matrix whose columns are multiples of Q− Â0,
and the multiplier is never larger than 1. Therefore ‖Â‖ ≤ ‖hA0‖ + ‖Z‖ ≤ ‖Â0‖ + ‖Q − Â0‖ ≤
2‖Â0‖+ ‖Q‖ ≤ 3η1

√
k/d. �

C SVD Initialization Result

In this section, we analyze the SVD-based initialization technique proposed in Procedure 2. The
goal is to provide good initialization vectors close to the columns of true components A and B in
the regime of k = O(d).

36



Given a vector θ ∈ R
d, matrix T (I, I, θ) results a linear combination of slices of tensor T . For

tensor T in (18), we have

T (I, I, θ) =
∑

i∈[k]
wi〈θ, ci〉aib⊤i =

∑

i∈[k]
λiaib

⊤
i = ADiag(λ)B⊤, (28)

where λi := wi〈θ, ci〉, i ∈ [k], and λ := [λ1, λ2, . . . , λk]
⊤ ∈ R

k is expressed as

λ = Diag(w)C⊤θ.

Since A and B are not orthogonal matrices, the expansion in (28) is not the SVD 12 of T (I, I, θ).
But, we show in the following theorem that if we draw enough number of random vectors θ in the
regime of k = O(d), we can eventually provide good initialization vectors through SVD of T (I, I, θ).
Define

g(L) :=
√

2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)
−
√

2 ln(k).

Theorem 3 (SVD initialization when k = O(d)). Consider tensor T̂ = T + Ψ where T is a rank-k
tensor, and Ψ is a perturbation tensor. Let Assumptions (A1)-(A3) hold and k = O(d). Draw L

i.i.d. random vectors θ(j) ∼ N (0, Id), j ∈ [L]. Let u
(j)
1 and v

(j)
1 be the top left and right singular

vectors of T̂ (I, I, θ(j)). This is L random runs of Procedure 2. Suppose L satisfies the bound

g(L) ≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)
4
√

log k,

with µ = 2µR+µ̃−1
1−µ̃ < wmin

wmaxρ
− 1, for µR and µmin defined in (31), and some 0 < µ̃ < 1. Note that

ρ ≤ α√
d
is also defined as the incoherence parameter in Assumption (A2). Then, w.h.p., at least

one of the pairs (u
(j)
1 , v

(j)
1 ), j ∈ [L], say j∗, satisfies

max
{

dist
(
u
(j∗)
1 , a1

)
,dist

(
v
(j∗)
1 , b1

)}
≤ 4wmaxµmin(1 + ρ)

√
log k + α0

√
dψ

wminµ̃g(L)− α0

√
dψ

,

where ψ := ‖Ψ‖ is the spectral norm of perturbation tensor Ψ, and α0 > 1 is a constant.

Proof: Let λ(j) := Diag(w)C⊤θ(j) ∈ R
k and λ̃(j) := C⊤θ(j) ∈ R

k. From Lemmata 15 and 16,
there exists a j∗ ∈ [L] such that w.h.p., we have

max
{

dist
(
u
(j∗)
1 , a1

)
,dist

(
v
(j∗)
1 , b1

)}
≤
µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ .

From (29), with probability at least 1− 2k−1, we have

λ
(j∗)
1 ≥ wming(L).

From (30), with probability at least 1− k−7, we have

λ
(j∗)
(2) ≤ wmax

(
ρλ̃

(j∗)
1 + 4

√
log k

)
≤ 4wmax(1 + ρ)

√
log k,

where in the last inequality, we also applied upper bound on λ̃
(j∗)
1 . Combining all above bounds

and Lemma 20 finishes the proof. �

12Note that if A and B are orthogonal matrices, columns of A and B are directly recovered by computing SVD of
T (I, I, θ).
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C.1 Auxiliary lemmata for initialization

In the following Lemma, we show that the gap condition between the maximum and the second
maximum of vector λ required in Lemma 16 is satisfied under some number of random draws.

Lemma 15 (Gap condition). Consider an arbitrary matrix C ∈ R
d×k with unit-norm columns

which also satisfies incoherence condition maxi 6=j |〈ci, cj〉| ≤ ρ for some ρ > 0. Let

λ := Diag(w)C⊤θ ∈ R
k,

denote the vector that captures correlation of θ ∈ R
d with columns of C. Without loss of generality,

assume that λ1 = maxi |λi|, and let λ(2) := maxi 6=1 |λi|. Draw L i.i.d. random vectors θ(j) ∼
N (0, Id), j ∈ [L], and λ(j) := Diag(w)C⊤θ(j). Suppose L satisfies the bound

√
ln(L)

8 ln(k)

(
1− ln(ln(L)) + c

4 ln(L)
−
√

ln(k)

ln(L)

)
≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)
,

for some 0 < µ < wmin
wmaxρ

− 1. Then, with probability at least 1− 2k−1 − k−7, we have the following
gap condition for at least one draw, say j∗,

λ
(j∗)
1 ≥ (1 + µ)λ

(j∗)
(2) .

Proof: Define λ̃ := Diag(w)−1λ = C⊤θ. We have λj = wj λ̃j, j ∈ [k].

Each vector λ̃(j) is a random Gaussian vector λ̃(j) ∼ N (0, C⊤C). Let j∗ := arg maxj∈[L] λ̃
(j)
1 . Since

maxj∈[L] λ̃
(j)
1 , is a 1-Lipschitz function of L independent N (0, 1) random variables, similar to the

analysis in Lemma B.1 of Anandkumar et al. (2014a), we have

Pr

[
λ̃
(j∗)
1 ≥

√
2 ln(L)− ln(ln(L)) + c

2
√

2 ln(L)
−
√

2 ln(k)

]
≥ 1− 2

k
. (29)

Any vector ci, i 6= 1, can be decomposed to two components parallel and perpendicular to c1 as
ci = 〈ci, c1〉c1 + P⊥c1

(ci). Then, for any λ̃i, i 6= 1, we have

λ̃i := 〈θ, ci〉 = θ⊤〈ci, c1〉c1︸ ︷︷ ︸
=:λ̃i,‖

+ θ⊤P⊥c1
(ci)︸ ︷︷ ︸

=:λ̃i,⊥

.

Since P⊥c1
(ci) ⊥ c1, i 6= 1, we have λ̃i,⊥, i 6= 1, are independent of λ̃1 := θ⊤c1, and therefore, the

following bound can be argued independent of bound in (29). From Lemma 18, we have

Pr

[
max
i 6=1

λ̃
(j∗)
i,⊥ ≥ 4

√
log k

]
≤ k−7.

For λ̃i,‖, we have

λ̃i,‖ = θ⊤〈ci, c1〉c1 ≤ ρθ⊤c1 = ρλ̃1,

where we also assumed that λ̃1 := θ⊤c1 > 0 which is true for large enough L, concluded from (29).
By combining above two bounds, with probability at least 1− k−7, we have

λ̃
(j∗)
(2) ≤ ρλ̃1 + 4

√
log k. (30)
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From the given bound on L in the lemma and inequalities (29) and (30), with probability at least
1− 2k−1 − k−7, we have

λ̃
(j∗)
1 ≥ wmax(1 + µ)

wmin − ρwmax(1 + µ)

(
λ̃
(j∗)
(2) − ρλ̃

(j∗)
1

)
.

Simple calculations imply that

wminλ̃
(j∗)
1 ≥ (1 + µ)wmaxλ̃

(j∗)
(2) .

Incorporating inequalities λ1 ≥ wminλ̃1 and λ(2) ≤ wmaxλ̃(2) finishes the proof saying that the result
of lemma is valid for the j∗-th draw. �

In the following lemma, we show that if a vector θ ∈ R
d is relatively more correlated with c1

(comparing to ci, i 6= 1), then dominant singular vectors of T̂ (I, I, θ) provide good initialization
vectors for a1 and b1.

Before proposing the lemma, we define

µE := α

√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
, µR :=

(
1 + α0

√
k

d

)2

, µmin := min{µE , µR}. (31)

where α = polylog(d), and α0 > 0 is a constant.

Lemma 16. Consider T̂ = T + Ψ, where T is a rank-k tensor, and Ψ is a perturbation tensor.
Let assumptions (A1)-(A3) hold for T . Let u1 and v1 be the top left and right singular vectors of
T̂ (I, I, θ). Let

λ := Diag(w)C⊤θ ∈ R
k,

denote the vector that captures correlation of θ with different ci, i ∈ [k], weighted by wi, i ∈ [k].
Without loss of generality, assume that λ1 = maxi |λi|, and let λ(2) := maxi 6=1 |λi|. Suppose the
relative gap condition

λ1 ≥ (1 + µ)λ(2), (32)

is satisfied for some µ > λ1
λ1−‖Ψ(I,I,θ)‖2µR − 1, where µR and µmin are defined in (31). Then, with

high probability (w.h.p.),

max{dist(u1, a1),dist(v1, b1)} ≤ µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,

for ‖Ψ(I, I, θ)‖/λ1 < µ̃ < 1 defined as

µ̃ :=
1 + µ− 2µR

1 + µ
.

Proof: From Assumption (A1), T (I, I, θ) can be written as equation (28), Expanded as

T (I, I, θ) = λ1a1b
⊤
1 +

∑

i 6=1

λiaib
⊤
i

︸ ︷︷ ︸
=:R

.
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From here, we prove the result in two cases. First when µE < µR and therefore µmin = µE, and
second when µE ≥ µR and therefore µmin = µR.
Case 1 (µE < µR): According to the subspaces spanned by a1 and b1, we decompose matrix
R to two components as R = P⊥(R) + P‖(R). First term P⊥(R) is the component with column
space orthogonal to a1 and row space orthogonal to b1, and P‖(R) is the component with either
the column space equal to a1 or the row space equal to b1. We have

P⊥(R) = (I − Pa1)R(I − Pb1),

P‖(R) = Pa1R+RPb1 − Pa1RPb1 ,
where Pa1 = a1a

⊤
1 is the projection operator on the subspace in R

d spanned by a1, and similarly
Pb1 = b1b

⊤
1 is the projection operator on the subspace in R

d spanned by b1. Thus, for T̂ = T + Ψ,
we have

T̂ (I, I, θ) = λ1a1b
⊤
1 + P⊥(R)︸ ︷︷ ︸
=:M

+P‖(R)
︸ ︷︷ ︸
=:E

+Ψ(I, I, θ).

Looking at M , it becomes more clear why we proposed the above decomposition for R. Since the
column and row space of P⊥(R) are orthogonal to a1 and b1, respectively, the SVD of M has a1
and b1 as its left and right singular vectors, respectively. Hence, M has the SVD form

M = [a1 Ũ2]

[
λ1 0

0 Σ̃2

]
[b1 Ṽ2]⊤,

where P⊥(R) = Ũ2Σ̃2Ṽ
⊤
2 is the SVD of P⊥(R). Let σ̃2 := maxi(Σ̃2)ii. From gap condition (32)

assumed in the lemma and inequality (33), we have λ1 ≥ σ̃2, and therefore, a1 and b1 are the top
left and right singular vectors of M . On the other hand, T̂ (I, I, θ) has the corresponding SVD form

T̂ (I, I, θ) = [u1 U2]

[
σ1 0
0 Σ2

]
[v1 V2]

⊤,

where u1 and v1 are its top left and right singular vectors. We have

σ̃2 = ‖P⊥(R)‖ ≤ ‖R‖

=

∥∥∥∥∥

k∑

i=2

λiaib
⊤
i

∥∥∥∥∥

≤ λ(2)
∥∥A\1

∥∥
∥∥∥B⊤

\1

∥∥∥

≤ λ(2) ‖A‖
∥∥∥B⊤

∥∥∥

≤
(

1 + α0

√
k

d

)2

λ(2) =: µRλ(2), (33)

where the sub-multiplicative property of spectral norm is used in the second inequality, and the
last inequality is from Assumption (A3). From Weyl’s theorem, we have

|σ1 − λ1| ≤ ‖E‖ + ‖Ψ(I, I, θ)‖

≤ λ(2)α
√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
+ ‖Ψ(I, I, θ)‖

=: µEλ(2) + ‖Ψ(I, I, θ)‖, (34)
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where (35) is used in the second inequality. Therefore, we have

σ1 − σ̃2 = σ1 − λ1 + λ1 − σ̃2
≥ −µEλ(2) − ‖Ψ(I, I, θ)‖ + λ1 − µRλ(2)

≥
(

1− µE + µR
1 + µ

)
λ1 − ‖Ψ(I, I, θ)‖,

=: µ̃1λ1 − ‖Ψ(I, I, θ)‖ =: ν,

where bounds (33) and (34) are used in the first inequality, and the second inequality is concluded
from the gap condition (32) assumed in the lemma. Therefore, since σ1 ≥ β + ν and σ̃2 ≤ β for
some β > 0, Wedin’s theorem is applied to the equality T̂ (I, I, θ) = M + E + Ψ(I, I, θ), which
implies that

max
{√

1− 〈u1, a1〉2,
√

1− 〈v1, b1〉2
}
≤ ‖E + Ψ(I, I, θ)‖

ν

≤ µEλ(2) + ‖Ψ(I, I, θ)‖
µ̃1λ1 − ‖Ψ(I, I, θ)‖

≤ µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,

where we used µmin = µE and µ̃1 > µ̃ in the last inequality when µE < µR. Since dist2(u1, a1) +
〈u1, a1〉2 = 1, the proof is complete for this case.

Bounding the spectral norm of E: For any i 6= j, let ρ
(a)
ij := |〈ai, aj〉| and ρ

(b)
ij := |〈bi, bj〉|. We

have

E := P‖(R) = Pa1R+RPb1 − Pa1RPb1 ,
= a1a

⊤
1 R+Rb1b

⊤
1 − a1a⊤1 Rb1b⊤1

=
∑

i 6=1

λia1a
⊤
1 aib

⊤
i +

∑

i 6=1

λiaib
⊤
i b1b

⊤
1 −

∑

i 6=1

λia1a
⊤
1 aib

⊤
i b1b

⊤
1

=
∑

i 6=1

λiρ
(a)
1i a1b

⊤
i +

∑

i 6=1

λiρ
(b)
1i aib

⊤
1 −

∑

i 6=1

λiρ
(a)
1i ρ

(b)
1i a1b

⊤
1

= A(1) Diag(λ(a))B
⊤
\1︸ ︷︷ ︸

E1

+A\1 Diag(λ(b))B
⊤
(1)︸ ︷︷ ︸

E2

−A(1) Diag(λ(a,b))B
⊤
(1)︸ ︷︷ ︸

E3

,

where A(1) :=
[ k−1 times︷ ︸︸ ︷
a1|a1| · · · |a1

]
∈ R

d×(k−1), B\1 := [b2|b3| · · · |bk] ∈ R
d×(k−1), and λ(a) := [λiρ

(a)
1i ]i 6=1 ∈

R
k−1. The other notations are similarly defined.

For E1, we have

‖E1‖ ≤ ‖A(1) Diag(λ(a))‖‖B⊤
\1‖

= ‖λ(a)‖‖a1‖‖B⊤
\1‖

≤
√
kλ(2)ρ‖B⊤‖

≤ λ(2)α
√
k

d

(
1 + α0

√
k

d

)
.
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Where the first equality is concluded from Lemma 19, and Assumptions (A2) and (A3) are exploited
in the last inequality. Similarly, for E2 and E3, we have

‖E2‖ ≤ λ(2)α
√
k

d

(
1 + α0

√
k

d

)
,

‖E3‖ ≤ λ(2)α2

√
k

d
.

Therefore, we have

‖E‖ ≤ λ(2)α
√
k

d

(
2 + 2α0

√
k

d
+

α√
d

)
. (35)

Case 2 (µR ≤ µE): The result can be similarly achieved when µR ≤ µE. Here we directly apply
Wedin’s theorem to T̂ (I, I, θ) = λ1a1b

⊤
1 +R+ Ψ(I, I, θ), treating R+ Ψ(I, I, θ) as the error term.

From Weyl’s theorem, we have

σ1 ≥ λ1 − ‖R‖ − ‖Ψ(I, I, θ)‖ ≥
(

1− µR
1 + µ

)

︸ ︷︷ ︸
=:µ̃2

λ1 − ‖Ψ(I, I, θ)‖,

where (33) and gap condition (32) are used in the second inequality. Since σ̃2 = 0, by Wedin’s
theorem, we have

max
{√

1− 〈u1, a1〉2,
√

1− 〈v1, b1〉2
}
≤ µRλ(2) + ‖Ψ(I, I, θ)‖

µ̃2λ1 − ‖Ψ(I, I, θ)‖

≤ µminλ(2) + ‖Ψ(I, I, θ)‖
µ̃λ1 − ‖Ψ(I, I, θ)‖ ,

where we used µmin = µR and µ̃2 ≥ µ̃ in the last inequality when µR ≤ µE . Since dist2(u1, a1) +
〈u1, a1〉2 = 1, the proof is complete for this case. �

The above lemma concludes the proof for initialization procedure, except for a few auxiliary
lemmata that we prove next.

First we use Gaussian tail bounds to prove that the largest entry of a Gaussian vector can be
quite large with inverse polynomial probability:

Lemma 17. Let x ∼ N (0, σ) be a Gaussian random variable with mean zero and variance σ2.
Then, for any t > 0, we have

(
σ

t
− σ3

t3

)
f(t/σ) ≤ Pr[x ≥ t] ≤ σ

t
f(t/σ),

where f(t) = 1√
2π
e−t

2/2.

Proof: Let z = x
σ , where z ∼ N (0, 1) is a standard Gaussian random variable. Then, we have

Pr[x ≥ t] = Pr[z ≥ t/σ], and therefore, the result is proved by using standard tail bounds for
Gaussian random variable. �
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Lemma 18. Consider r = [r1, r2, . . . , rk]
⊤ ∈ R

k as a k-dimensional random Gaussian vector with
zero mean and covariance Σ, i.e., r ∼ N (0,Σ). For any k ≥ 2, we have

Pr
[
r(1) ≥ 4σmax

√
log k

]
≤ k−7.

Proof: From Lemma 17, for any i ∈ [k], we have

Pr
[
|ri| ≥ 4σmax

√
log k

]
≤ 1

2
√

2π log k
k−8 ≤ k−8,

where the last inequality is concluded from the fact that k ≥ 2. The result is then proved by taking
a union bound. �

Next we prove a basic fact about spectral norm that is used in the proof of Lemma 16.

Lemma 19. Given h ∈ R
m and v ∈ R

n, let H = [h|h| · · · |h] Diag(v) ∈ R
m×n. Then, ‖H‖ =

‖h‖‖v‖.

Proof: By definition
‖H‖ = sup

‖x‖=1
‖Hx‖.

We have Hx = 〈v, x〉h, and therefore, ‖Hx‖ = |〈v, x〉|‖h‖. This is maximized by x = v/‖v‖, and
this finishes the proof. �

Finally, we show that noise matrix Ψ(I, I, θ) has bounded norm with high probability which is
useful for initialization argument in Theorem 3.

Lemma 20. Let θ ∈ R
d be standard multivariate Gaussian as N (0, Id). Then, for any α0 > 1, we

have
Pr
[
‖Ψ(I, I, θ)‖ ≤ α0

√
dψ
]
≥ 1− e−(α0−1)2d/2,

where ψ := ‖Ψ‖ is the spectral norm of error tensor Ψ.

Proof: Let θn := 1
‖θ‖θ denote the normalized version of θ. Then, we have

‖Ψ(I, I, θ)‖ = ‖θ‖ · ‖Ψ(I, I, θn)‖ ≤ ‖θ‖ψ,

where the last inequality is from the definition of tensor spectral norm. Applying the bound on
‖θ‖ in Lemma 21 finishes the proof. �

The following lemma provides concentration bound for the norm of standard Gaussian vector
which is basically a tail bound for the chi-squared random variable.

Lemma 21 (Lemma 15 of Dasgupta et al. (2006)). Let the random vector θ is distributed as
N (0, Id). Then, for any α0 > 1, we have

Pr
[
‖θ‖ ≥ α0

√
d
]
≤ e−(α0−1)2d/2.
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D Clustering Process

In the last step of main algorithm, we need to cluster the generated 4-tuples into k clusters. The-
oretically, we only have convergence guarantees when the initialization vectors are good enough,
while the other initializations can potentially generate arbitrary 4-tuples. In the worst case, these
arbitrary 4-tuples can make the clustering process hard, and therefore, we provide specific Proce-
dure 3 for which the output properties are provided in Lemma 24.

Note that the key observation for the algorithm is if T (â, b̂, ĉ) is large for some (â, b̂, ĉ), then
these vectors are close to (ai, bi, ci) for some i ∈ [k].

For simplicity, we only prove this when the initialization procedure in Theorem 2 takes poly-
nomial time, namely k = O(d) and wmax/wmin = O(1). Without loss of generality, we also assume
wmax = w1 ≥ w2 ≥ · · · ≥ wk = wmin. In this case, we choose the threshold ǫ in the following
lemmata to be some small constant depending on k/d and wmax/wmin. Also, we work in the case
when noise Ψ = 0, however the proof still works when the noise ψ = ‖Ψ‖ = o(1).

Lemma 22. Suppose

max{|〈ai, â〉|, |〈bi, b̂〉|, |〈ci, ĉ〉|} ≤ ǫ, ∀i ∈ [t− 1],

for some t ∈ [k]. Let δ := O
(
wmax
wmin

ǫ3−p
)
, and assume |T (â, b̂, ĉ)| ≥ (1 − δ)wt. Then, there exists

some j such that

max{dist(â, aj),dist(b̂, bj),dist(ĉ, cj)} <
wmin

10wmax
.

Proof: Partition tensor T =
∑

i∈[k]wiai ⊗ bi ⊗ ci to T1 + T2, where T1 contains all the terms
indexed from 1 to t− 1, and T2 contains the remaining terms. From Corollary 3, we have

|T1(â, b̂, ĉ)| ≤ wmax

∥∥∥A⊤
[t−1]â

∥∥∥
3
·
∥∥∥B⊤

[t−1]b̂
∥∥∥
3
·
∥∥∥C⊤

[t−1]ĉ
∥∥∥
3
,

where A[t−1] ∈ R
d×(t−1) denotes the first t − 1 columns of A, and similarly for B[t−1] and C[t−1].

We also have ∥∥∥A⊤
[t−1]â

∥∥∥
3

3
≤
∥∥∥A⊤

[t−1]â
∥∥∥
p

p
· max
i∈[t−1]

|〈ai, â〉|3−p = O
(
ǫ3−p

)
,

where Assumption (A10) and the assumption in the lemma are exploited in the last step. Similar
arguments hold for b and c. Combining with the earliest inequality, we have

|T1(â, b̂, ĉ)| ≤ wmaxO
(
ǫ3−p

)
≤ wtδ,

where the definition of δ is exploited in the last inequality. Applying assumption |T (â, b̂, ĉ)| ≥
(1− δ)wt to the above bound, we have

|T2(â, b̂, ĉ)| ≥ (1− 2δ)wt. (36)

On the other hand, from Corollary 3,

|T2(â, b̂, ĉ)| ≤ wt‖A⊤â‖3‖B⊤b̂‖3‖C⊤ĉ‖3.
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Since all the 3-norms are bounded by 1 + o(1), each of them must be at least 1 − O(δ) to let
inequality (36) hold. Now we have

1−O(δ) ≤
k∑

j=1

|〈aj , â〉|3 ≤ max{|〈aj , â〉|}3−p
k∑

t=1

|〈aj , â〉|p ≤ (1 + o(1)) max{|〈aj , â〉|}3−p,

where the last inequality is from Assumption (A10). This implies max{|〈aj , â〉|} = 1−O(δ), which
in turn implies there exists a j such that

dist(â, aj) < wmin/10wmax

when ǫ and δ are small enough.
By symmetry we know there is also a j′ such that dist(b̂, bj′) < wmin/10wmax. If j 6= j′, then it

is easy to check T2(â, b̂, ĉ) cannot be large. Hence, j = j′ and the Lemma is correct. �

On the other hand, we know if there is a good initialization, the largest T (â, b̂, ĉ) must be large.

Lemma 23. Suppose there exists a good initialization (see initialization condition (13) in the local
convergence theorem) for some column t ∈ [k], and

max{|〈ai, â(0)〉|, |〈bi, b̂(0)〉|, |〈ci, ĉ(0)〉|} ≤ ǫ, ∀i 6= t.

Let δ := O
(
wmax
wmin

ǫ3−p
)
. Then the corresponding output of iterations in Algorithm 1 denoted by

(â, b̂, ĉ) satisfy
|T (â, b̂, ĉ)| > (1− δ)wt.

Furthermore, for any i 6= t, max{|〈â, ai〉|, |〈b̂, bi〉|, |〈ĉ, ci〉|} ≤ o(ǫ).

Proof: Similar to the proof of Lemma 22, partition tensor T =
∑

i∈[k]wiai ⊗ bi ⊗ ci to T2 =
wtat ⊗ bt ⊗ ct and T1 = T − T2. Since the initialization is good, by the local convergence result in
Theorem 1, we have

dist(â, at) ≤ Õ
(
wmax

wmin

√
k

d

)
≤ o(δ),

where the incoherence condition and p > 2 are exploited in the last step. Therefore, |T2(â, b̂, ĉ)| ≥
(1− δ/2)wt.

Similar to Lemma 22, by using Corollary 3, we have |T1(â, b̂, ĉ)| ≤ wtδ/2. Applying these
bounds, we have

|T (â, b̂, ĉ)| ≥ |T2(â, b̂, ĉ)| − |T1(â, b̂, ĉ)| ≥ (1− δ)wt.
The last part of the Lemma is trivial because dist(â, at) is small and 〈ai, at〉 is small by inco-

herence. �

Finally we prove the clustering process succeeds.

Lemma 24. Procedure 3 outputs k cluster centers that are Õ
(
wmax
wmin

√
k
d

)
close to the true compo-

nents of the tensor.
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Proof: We prove by induction to show that every step of the algorithm correctly computes one
component.

Suppose all previously found 4-tuples are Õ(wmax

√
k/wmind) close to some (ai, bi, ci) (notice

that this is true at the beginning when no components are found). Let t be the smallest index that
has not been found. Then all the remaining 4-tuples satisfy

max{|〈ai, â〉|, |〈bi, b̂〉|, |〈ci, ĉ〉|} ≤ ǫ, ∀i < t.

By Lemma 23 we know there must be a 4-tuple with |T (â, b̂, ĉ)| > wt(1− δ). On the other hand, by
Lemma 22 we know the 4-tuple we found must satisfy max{dist(â, aj),dist(b̂, bj)} < wmin/10wmax

for some j (and this cannot be some j that has already been found). This tuple then satisfies the
conditions of the local convergence Theorem 1. Hence, after N iterations it must have converged
to (aj , bj , cj). At this step the algorithm successfully found a new component of the tensor.

�
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