
Constr Approx (2014) 39:385–395
DOI 10.1007/s00365-013-9219-x

Approximation of High-Dimensional Rank One Tensors

Markus Bachmayr · Wolfgang Dahmen ·
Ronald DeVore · Lars Grasedyck

Received: 14 March 2013 / Accepted: 18 June 2013 / Published online: 12 November 2013
© Springer Science+Business Media New York 2013

Abstract Many real world problems are high-dimensional in that their solution is a
function which depends on many variables or parameters. This presents a computa-
tional challenge since traditional numerical techniques are built on model classes for
functions based solely on smoothness. It is known that the approximation of smooth-
ness classes of functions suffers from the so-called ‘curse of dimensionality’. Avoid-
ing this curse requires new model classes for real world functions that match applica-
tions. This has led to the introduction of notions such as sparsity, variable reduction,
and reduced modeling. One theme that is particularly common is to assume a tensor
structure for the target function. This paper investigates how well a rank one function
f (x1, . . . , xd) = f1(x1) · · ·fd(xd), defined on Ω = [0,1]d can be captured through
point queries. It is shown that such a rank one function with component functions fj

in Wr∞([0,1]) can be captured (in L∞) to accuracy O(C(d, r)N−r) from N well-
chosen point evaluations. The constant C(d, r) scales like ddr . The queries in our
algorithms have two ingredients, a set of points built on the results from discrep-
ancy theory and a second adaptive set of queries dependent on the information drawn
from the first set. Under the assumption that a point z ∈ Ω with nonvanishing f (z) is
known, the accuracy improves to O(dN−r).

Communicated by Vladimir N. Temlyakov.

M. Bachmayr · W. Dahmen (B) · L. Grasedyck
Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55,
52056 Aachen, Germany
e-mail: dahmen@igpm.rwth-aachen.de

M. Bachmayr
e-mail: bachmayr@igpm.rwth-aachen.de

L. Grasedyck
e-mail: lgr@igpm.rwth-aachen.de

R. DeVore
Department of Mathematics, Texas A&M University, College Station, TX, USA
e-mail: rdevore@math.tamu.edu

mailto:dahmen@igpm.rwth-aachen.de
mailto:bachmayr@igpm.rwth-aachen.de
mailto:lgr@igpm.rwth-aachen.de
mailto:rdevore@math.tamu.edu

386 Constr Approx (2014) 39:385–395

Keywords Query algorithms · High-dimensional approximation · Separable
functions · Rate of approximation

Mathematics Subject Classification (2000) 41A25 · 65D15

1 Introduction

A recurring model in certain high-dimensional application domains is that the target
function is a low rank tensor, or can be approximated well by a linear combination of
such tensors. For an overview of numerical methods based on this concept and their
applications, we refer to [3] and the references therein. We consider a fundamental
question concerning the computational complexity of such low rank tensors: If we
know that a given function has such a tensor structure, to what accuracy can we
approximate it using only a certain number of deterministically chosen point queries?
In this paper, we treat this problem in the simplest setting where the tensors are of
rank one.

Given an integer r , we denote by Wr∞[0,1] the set of all univariate functions on
[0,1] which have r weak derivatives in L∞, with the semi-norm

|f |Wr∞[0,1] := ∥
∥f (r)

∥
∥

L∞ .

We shall study the following classes of rank one tensor functions defined on Ω :=
[0,1]d . If r is a positive integer and M > 0, we consider the class of functions

F r (M) :=
{

f ∈ C(Ω) : f (x) =
d

∏

i=1

fi(xi)

with ‖fi‖L∞[0,1] ≤ 1, |fi |Wr∞[0,1] ≤ M, i = 1, . . . , d

}

.

Note that we could equally well replace the bound 1 appearing in the definition by an
arbitrary positive value and arrive at the above class by simple rescaling. Note also
that whenever ‖f ‖L∞(Ω) ≤ 1, we can achieve the restriction on the ‖fi‖L∞[0,1] in
this definition by choosing a scaling of the individual factors so that ‖fi‖L∞[0,1] ≤ 1
for all i.

For ease of presentation, we assume from now on that M ≥ 1.
Let us note at the outset that F r is closely related to a class of functions with

bounded mixed derivatives. We use the notation Dν = D
ν1
x1 · · ·Dνd

xd
for multivari-

ate derivatives. Then, the class of functions MWr(L∞) consists of all functions
f (x1, . . . , xd) for which

|f |MWr(L∞(Ω)) :=
∑

ν∈Λr\{0}

∥
∥Dνf

∥
∥

L∞(Ω)
< ∞,

where Λr := {ν = (ν1, . . . , νd) : 0 ≤ νi ≤ r, i = 1, . . . , d}. We define the norm on
this space by adding ‖f ‖L∞(Ω) to the above semi-norm. This is a well-studied class

Constr Approx (2014) 39:385–395 387

of functions, especially for the analysis of cubature formulae. These function spaces
can also be characterized as tensor products of univariate Sobolev spaces, see [9].
Clearly, we have that F r (M) is contained in a finite ball of MWr(L∞(Ω)) (see
Chaps. III and V of [11]). It is known (see, e.g., [10], [11, IV.5], [1, Lemma 4.9]) that
one can sample functions in MWr(L∞(Ω)) on a set of points (called sparse grids)
with cardinality N and use these point values to construct an approximation to f with
accuracy C(d, r)‖f ‖MWr(L∞)N

−r [logN](r+1)(d−1) in L∞(Ω).
The main result of the present paper is to present a query algorithm for functions

f ∈ F r . The query algorithm works without knowledge of M , but would require a
bound on r . We show that we can query such a function f at O(N) suitably chosen
points and from these queries we can construct an approximation f̃N that approxi-
mates f to accuracy C(r, d)N−r . Thus, for rank one tensors, the [logN](r+1)(d−1)

appearing for mixed norm classes can be removed. Moreover, f̃N is again separable,
that is, the algorithm preserves this structural property of the original function f .

Given a budget N , our queries of f will have two stages. The first queries of f

occur at a set of O(N) points built from discrepancy theory. If f (z) �= 0 for one
of the points z of the initial query, then we continue and sample f at O(N) points
built from z. We then show how to build an approximation f̃N to f from these query
values which will provide the required accuracy.

2 Univariate Approximation

Our construction of approximations of multivariate functions in F r (M) is based on
the approximation of univariate functions. It is well known that for g ∈ Wr∞[0,1],
given the values g(i/N), we can construct an approximation IN((g(i/N))Ni=1) that
satisfies

∥
∥g − IN

((

g(i/N)
)N

i=1

)∥
∥

L∞[0,1] ≤ C1(r)min
{‖g‖L∞[0,1], |g|Wr∞[0,1]N−r

}

,

N = 1,2 (2.1)

There are many ways to construct such an approximation operator IN . One is to
use a quasi-interpolation operator built on univariate splines of order r . Another is
to simply take for each interval I = [j − 1/N, j/N), j = 1, . . . ,N , a set Sj of r

consecutive integers i + 1, . . . , i + r that contain j − 1 and j , and then define g on
the interval I as the polynomial of order r that interpolates g at the points in Sj .

In going further, we use any such construction of an operator IN . We note that
IN needs as input any vector y = (y0, . . . , yN). The yi are usually taken as function
values such as yi = g(i/N) above.

We need a second result about univariate functions summarized in the following
lemma.

Lemma 2.1 Suppose g ∈ Wr∞[0,1] is a univariate function that vanishes at r points
t1, . . . , tr ∈ [0,1]. If J is the smallest interval that contains all of the tj , j = 1, . . . , r ,
then

∣
∣g(t)

∣
∣ ≤ ∥

∥g(r)
∥
∥

L∞[0,1]
(|J | + dist(t, J)

)r
, t ∈ [0,1]. (2.2)

388 Constr Approx (2014) 39:385–395

Proof Note that each weak derivative g(k) for k = 0, . . . , r − 1 is in W 1∞[0,1] and
can thus be identified with a continuous function. From Rolle’s theorem, for each
k = 0, . . . , r − 1, there is a point ξk in J such that g(k)(ξk) = 0. This gives the bound
∣
∣g(r−1)(t)

∣
∣ ≤ ∥

∥g(r)
∥
∥

L∞[0,1]|t − ξr−1| ≤
∥
∥g(r)

∥
∥

L∞[0,1]
(|J | + dist(t, J)

)

, t ∈ [0,1].
From this, we obtain the bound

∣
∣g(r−2)(t)

∣
∣ ≤ ∥

∥g(r)
∥
∥

L∞[0,1]
(|J | + dist(t, J)

)|t − ξr−2|
≤ ∥

∥g(r)
∥
∥

L∞[0,1]
(|J | + dist(t, J)

)2
, t ∈ [0,1].

Continuing in this way, we arrive at (2.2). �

3 Low-Discrepancy Point Sequences

The first set of query points that we shall employ is a low-discrepancy sequence that
is commonly used in quasi-Monte Carlo methods for high-dimensional integration.
Roughly speaking, stopping at any place in the sequence gives a well scattered set of
points in Ω . The particular property we are interested in here is that no d-dimensional
rectangle contained in Ω can have large measure without containing at least one of
these points. We shall adopt a method for constructing such a sequence given in [4, 5]
which rests on base q expansions. For any prime number q and any positive integer n,
we have a unique base q representation

n =
∑

j≥0

bjq
j , bj = bj (q,n) ∈ {0, . . . , q − 1}.

The bj are the ‘bits’ of n in base q . For any n < qk , one has bj (q,n) = 0 for j ≥ k.
With the bit sequence (bj) = (bj (n)) in hand, we define

γq(n) :=
∑

j≥0

bjq
−j−1.

If q is fixed, the set of points Γq(m) := {γq(n) : 1 ≤ n < m} are in (0,1), and any
point x ∈ (0,1) satisfies

dist
(

x,Γq(m)
) ≤ q/m. (3.1)

Indeed, if m = qk for some positive integer k, then Γq(m) contains all points j/m,
j = 1, . . . ,m−1, and so the distance in (3.1) does not exceed 1/m. The general result
for arbitrary m follows from this.

Definition 3.1 (Halton Sequence) Given the space dimension d ≥ 1, we choose the
first d prime numbers p1, . . . , pd . The sequence of points (x̂k)k∈N in [0,1]d is then
defined by

x̂k := (

γp1(k), . . . , γpd
(k)

)

. (3.2)

Constr Approx (2014) 39:385–395 389

The following theorem (see [8] and [2]) shows that this sequence of points is well
scattered in the sense that we need.

Theorem 3.2 Let x̂k , k = 1,2, . . ., be defined as in (3.2). For any d-dimensional
rectangle R = (α1, β1) × · · · × (αd,βd) with 0 ≤ αi < βi ≤ 1 that does not contain
any of the points x̂k , k = 1, . . . ,N , we have the following bound for the measure |R|
of R:

|R| ≤ CH (d)

N
,

where CH (d) := 2d
∏d

i=1 pi .

Proof For completeness, we give the short proof of this theorem, following essen-
tially the presentation in [2, Thm. 3]. We first consider any d-dimensional rectangle
R0 ⊂ Ω of the form

R0 := I1 × · · · × Id, Ii := p
−νi

i

[

ti , (ti + 1)
)

, i = 1, . . . , d, (3.3)

where the νi ∈ N and satisfy p
ν1
1 · · ·pνd

d ≤ N and the ti are positive integers. Such a
rectangle obviously has volume ≥ 1/N . We shall show that such a rectangle always
contains a point x̂k for some 1 ≤ k ≤ N and thus obtain the theorem for rectangles of
this special type.

Since R0 ⊂ Ω , each ti is in {0, . . . , p
ν1
i − 1} and therefore has a unique expansion

ti =
νi−1
∑

j=0

ai,jp
j
i ,

with ai,j ∈ {0, . . . , pi − 1}. We introduce the integers

mi :=
νi−1
∑

j=0

ai,νi−j−1p
j
i , i = 1, . . . , d,

which satisfy

γpi
(mi) = tip

−νi

i , i = 1, . . . , d.

From the Chinese remainder theorem, there is an integer k < p
ν1
1 · · ·pνd

d ≤ N such
that

k ≡ mi mod p
νi

i , i = 1, . . . , d.

It follows that

γpi
(k) = tip

−νi

i + εi, i = 1, . . . , d,

where 0 ≤ εi < p
−νi

i , i = 1, . . . , d . Therefore x̂k = (γp1(k), . . . , γpd
(k)) is in R0, and

we have proved the theorem in this special case.
We now consider the general rectangle R in the statement of the theorem. We

claim that R contains a special rectangle R0 of the form (3.3) of volume larger than

390 Constr Approx (2014) 39:385–395

Algorithm 1 Query algorithm for prescribed N

Query 1:
for k = 1, . . . ,N ,

evaluate f at the points in Γn(x̂k), with n =
log2 N�,
if f (z) �= 0 for some z ∈ ⋃k

j=1 Γn(x̂j),
break from the loop over k.

Query 2:
if z with f (z) �= 0 has been found,

f̃N := CROSSAPPROXIMATION(z,N),
else

f̃N := 0.

CH (d)−1|R|. Indeed, for the given αi < βi , we define νi to be the smallest integer
such that there exists an integer ti with [tip−νi , (ti + 1)p−νi) ⊂ (αi, βi). Then, βi −
αi < 2p−νi+1, since otherwise νi would not be minimal. This means that R contains
a special rectangle R0 with volume |R0| ≥ CH (d)−1|R|. Since R does not contain
any of the x̂k , k = 0, . . . ,N , the same is true of R0. Hence |R0| ≤ N−1, and so |R| ≤
CH (d)N−1. �

4 Query Points and the Approximation

We now describe our query points. These will depend on r . If r = 1, then given
our budget N of queries, it would be sufficient to simply query f at the points
x̂1, x̂2, . . . , x̂N of a Halton sequence in succession. However, when r > 1, we will
occasionally have to query f at a cloud of points near each x̂k in order to take advan-
tage of the higher smoothness of f . We fix r ≥ 1 in what follows. We next describe
the cloud of points where we might query f . We define for each k = 1,2, . . . , and
each n ≥ k,

Γn(x̂k) :=
{

x̂k +
d

∑

i=1

ji

r2n
ei : ji ∈ {−r + 1, . . . ,0, . . . , r − 1}

}

∩ Ω,

where ei , i = 1, . . . , d , is the usual coordinate basis for Rd . For each k,n, this set
contains at most (2r − 1)d points and contains at least rd points. When asked to
query f at one of the sets Γn(x̂k), we traverse these points in lexicographic or-
der.

Our query algorithms first sample f at point clouds Γnk
(x̂k), k = 1, If we

stipulate the budget N in advance, we can then choose once and for all a single nk

as the smallest integer such that 2nk ≥ N . For a given f and fixed N , this gives
rise to the basic scheme given in Algorithm 1 for determining an approximation f̃N

to f .
The procedure CROSSAPPROXIMATION required in Query 2 is defined for any z

such that f (z) �= 0 and N ∈N as follows:

Constr Approx (2014) 39:385–395 391

Algorithm 2 Query algorithm with progressively increasing N

for N = 1,2, . . . ,

if z with f (z) �= 0 has not been found for a previous value of N ,
Query 1:
for k = 1, . . . ,N ,

define nk := k and evaluate f at the points in Γnk
(x̂k),

for all 1 ≤ j < k such that 2nj < k,
evaluate f at the points in Γk(x̂j) and update nj := nk ,

if f (z) �= 0 for a z ∈ ⋃k
j=1 Γnj

(x̂j),
fix this z for the remainder of the algorithm,
break from the loop over k.

Query 2:
if z with f (z) �= 0 has been found,

f̃N := CROSSAPPROXIMATION∗(z,N),
reusing previous evaluations of f for
CROSSAPPROXIMATION∗(z,N − 1),

else
f̃N := 0.

f̃N := CROSSAPPROXIMATION(z,N)

defining zj as the vector which agrees with z in all but the j -th coordinate and is
zero in the j -th coordinate, evaluate f at the points

z̃j,i := zj + i

N
ej , i = 1, . . . ,N, j = 1, . . . , d, (4.1)

and define

Fj := IN

(

f (z̃j,i)
N
i=1

)

, j = 1, . . . , d, (4.2)

where IN is the operator of Sect. 2. Then, setting A := f (z), return

f̃N (x) := A−d+1F1(x1) · · ·Fd(xd). (4.3)

Rather than proceeding to analyze the performance of Algorithm 1, we instead
modify this algorithm so that the sampling is progressive if we increase N ; i.e., when
the budget N is increased, one would still like to utilize the previous samples. This
requires modifying both query stages. First, we will occasionally update the assign-
ment of nk , which means that the function f has to be resampled at Γnk

(x̂j) for some
of the j < k. This leads us to the modification specified in Query 1 of Algorithm 2.
Note that this query loop may be exited at any value of N . As we will show below,
the asymptotic complexity of Algorithm 1 is preserved.

Second, note that once a point z with f (z) �= 0 is found for some N , Algorithm 2
proceeds directly to Query 2 for every subsequent value of N . To keep the complex-
ity of Query 2 proportional to N , as N increases, we should also reuse the samples in
preceding calls of Query 2. This can be done by dyadic nesting and leads to the modi-
fied procedure CROSSAPPROXIMATION∗(z,N) obtained by replacing N in (4.1) and
(4.2) by 2
log2 N�.

392 Constr Approx (2014) 39:385–395

To estimate the complexity of the progressive scheme, we define ΛN(f) as the set
of points where we have sampled f in Algorithm 2, up to a given budget index N .
We want next to bound the cardinality of ΛN(f). Since #(Γn(x̂k)) ≤ (2r − 1)d , for
all choices n, k, the only issue in bounding the number of samples in Query 1 will
be how many times we have resampled f near x̂j . Now, for a given x̂j , we originally
sample f at the points Γj (x̂j). This sampling will be updated to a sampling Γ2j (x̂j)

if 2j < N . It will be updated again if 22j
< N and so on. It follows that the only x̂j

whose sampling is updated are those with j ≤ log2 N and the maximum number of
times it is updated is bounded by log2 N . Thus, the total number of samples taken in
Query 1 does not exceed (2r − 1)d [N + (log2 N)2] ≤ 2 · (2r − 1)dN . This gives that
the total number of samples taken is

#
(

ΛN(f)
) ≤ C1(d, r)N, C1(d, r) := 2(2r − 1)d + d. (4.4)

5 Error of Approximation

We now analyze how well f̃N approximates f .

Theorem 5.1 If f ∈ F r (M), then for each N = 1,2, . . . , we have

‖f − f̃N‖L∞(Ω) ≤ [

CH (d)
]r

(2M)dN−r , (5.1)

with CH (d) as in Theorem 3.2. If, however, Query 1 stops at a point z where
f (z) �= 0, and N satisfies C1(r)MN−r < 1/(2d), then

‖f − f̃N‖L∞(Ω) ≤ √
eC1(r)dMN−r . (5.2)

The remainder of this section is devoted to the proof of this theorem. We will
consider the two cases used for the definition of f̃N in Algorithm 2.

Proof We fix an arbitrary N . We first consider:

Case 1: No z with f (z) �= 0 has been found in Query 1.
In this case, f̃N = 0. In order to obtain the required bound for ‖f ‖L∞(Ω), we begin

with:

Lemma 5.2 Under the assumptions of Theorem 5.1, for each k = 1, . . . ,N , there
is a j ∈ {1, . . . , d} such that fj vanishes at r distinct points in [0,1] of the form
(x̂k)j + ti,j , i ∈ {−r + 1, . . . ,0, . . . r − 1} with |ti,j | ≤ N−1.

Proof of Lemma 5.2 We know that f vanishes at all points in Γnk
(x̂k) where nk is

the last update associated to x̂k . We also know that 2−nk ≤ 1/N . We now prove the
lemma for ti,j = i

r2nk
. Suppose that the statement does not hold; then for this value of

k and for each j = 1, . . . , d , there is an ij ∈ {−r + 1, . . . ,0, . . . r − 1} such that zj :=
(x̂k)j + (r2nk)−1ij ∈ [0,1] and fj (zj) �= 0. But then z := (z1, . . . , zd) ∈ Γnk

(x̂k) and
f (z) �= 0, which is the desired contradiction. �

Constr Approx (2014) 39:385–395 393

For each k, we let Ck be the set of all such integers j ∈ {1, . . . , d} with the proper-
ties stated in Lemma 5.2. We refer to the integers j in Ck as the colors of x̂k .

In the case we are considering, we know that f vanishes at each of the points of
Query 1 and that f̃N = 0. Let x = (x1, . . . , xd) ∈ Ω . Our goal is to bound the value
f (x). We define

δj := δj (x) := inf
{∣
∣(x̂k)j − xj

∣
∣ : k ∈ {1, . . . ,N} such that j ∈ Ck

} ∪ {1},
j = 1, . . . , d.

In other words, δj (x) tells us how well we can approximate xj by the numbers (x̂k)j
using those k for which j is in Ck .

It follows that the rectangle R := Ω ∩ ∏d
j=1(xj − δj , xj + δj) does not contain

any points x̂k which have color j , and this is true for each j = 1, . . . , d . Since, as
we have already observed in Lemma 5.2, every x̂k has some colors, it follows that R

does not contain any of the points x̂k , k = 1, . . . ,N . From Theorem 3.2, we have that
|R| ≤ CH (d)/N . Since |R| ≥ ∏d

j=1 δj , we obtain

d
∏

j=1

δj (x) ≤ CH (d)/N. (5.3)

Now fix any 1 ≤ j ≤ d . In the case that the statement of Lemma 5.2 does not apply
with this j for any k, we have ‖fj‖L∞[0,1] ≤ 1 = δj = δr

j . Otherwise, we know from
the definition of coloring and the definition of δj that there exist r points t1, . . . , tr ∈
[0,1] contained in an interval J of length 1/N such that dist(xj , J) ≤ δj and fj

vanishes at each of these points. Hence, from Lemma 2.1, we obtain
∣
∣fj (xj)

∣
∣ ≤ ∥

∥f (r)
∥
∥

L∞[0,1]
(|J | + δj

)r ≤ M
(

N−1 + δj

)r ≤ 2M max
{

N−r , δr
j

}

.

It follows that

∣
∣f (x)

∣
∣ =

d
∏

j=1

∣
∣fj (xj)

∣
∣ ≤ 2dMd

d
∏

j=1

max
{

N−r , δr
j

} ≤ 2dMd
[

CH (d)
]r

N−r .

Here in the derivation of the last inequality, we used (5.3) and the fact that all the
δj , j = 1, . . . , d are not greater than one. This completes the proof of the theorem in
Case 1.

Case 2: Query 1 has produced z such that f (z) �= 0.
In this case, f̃N is obtained by CROSSAPPROXIMATION*. With such z =

(z1, . . . , zd), let A := f (z) �= 0 and Aj := ∏

i �=j fi(zi) for j = 1, . . . , d . Sampling f

at the points z̃j,i of (4.1) thus yields the values f (z̃j,i) = Ajfj (i/N), i = 1,2, . . . ,N .
Hence, from (2.1), we obtain

∥
∥Ajfj (x) − Fj (x)

∥
∥

L∞[0,1] ≤ C1(r)AjMN−r , j = 1, . . . ,N.

In other words,
∥
∥fj − A−1

j Fj

∥
∥

L∞[0,1] ≤ C1(r)MN−r , j = 1, . . . ,N. (5.4)

394 Constr Approx (2014) 39:385–395

Since
∏d

j=1 Aj = Ad−1, we can write our approximation in the form f̃N (x) =
∏d

j=1 A−1
j Fj (xj). Hence, the approximation error can be rewritten as

f (x) − f̃N (x) =
d

∏

j=1

fj (xj) −
d

∏

j=1

A−1
j Fj (xj).

Now, for any numbers yj , y
′
j ∈ [−L,L], j = 1, . . . , d , we have

∣
∣y1 · · ·yd −y′

1 · · ·y′
d

∣
∣ =

∣
∣
∣
∣
∣

d
∑

j=1

y1 · · ·yj−1y
′
j+1· · ·y′

d

(

yj −y′
j

)

∣
∣
∣
∣
∣
≤ dLd−1 max

1≤j≤d

∣
∣yj −y′

j

∣
∣.

We use this inequality with yj := fj (xj) and y′
j := A−1

j Fj (xj), in which case we can
take L := 1 + C1(r)MN−r to obtain

‖f − f̃N‖L∞(Ω) ≤ d
(

1 + C1(r)MN−r
)d−1

C1(r)MN−r , (5.5)

where we have used (5.4).
For ε := C1(r)MN−r , we have ε < 1/(2d) by our assumption, and hence

(1 + ε)d−1 ≤ exp(ε)d−1 ≤ e(d−1)/(2d) ≤ √
e.

Using this in (5.5), we obtain ‖f − f̃N‖L∞(Ω) ≤ d
√

eε, completing the proof of the
theorem. �

6 Optimality of the Algorithm

It is quite easy to see that our algorithm has asymptotically optimal performance, in
terms of N , on the class F r (M).

Theorem 6.1 Given positive integers r and d , there is an absolute constant c(d, r)

such that the following holds: Given any algorithm which uses N point queries to
approximate f by AN(f), there is a function f ∈F r (M) such that

∥
∥f − AN(f)

∥
∥

L∞(Ω)
≥ c(r, d)MdN−r . (6.1)

Proof We can assume without loss of generality that N = md − 1 for some positive
integer m. We divide Ω into N + 1 cubes of sidelength 1/m. To the proposed query
algorithm we return the value zero to each of the N query points. Now we can choose
a cube Q of sidelength 1/m which contains none of the N query points. There is a
function g ∈F r (M) which is supported in Q and has maximum value [c(r)Mm−r]d .
Since the proposed algorithm gives AN(g) = AN(0), for one of the two functions
f = 0 or f = g, (6.1) follows. �

Constr Approx (2014) 39:385–395 395

Let us finally relate our results to what is commonly referred to as the curse of di-
mensionality, see [6, 7]. First note that our estimate for the computational work in Al-
gorithms 1 and 2 may be dominated by Query 1. In fact, according to the bound (5.1),
the computational complexity of our algorithms—measured in terms of the number
of generated degrees of freedom—required to realize a desired target accuracy may
in general increase exponentially in the spatial dimension d and is therefore still sub-
ject to that “curse.” However, (5.2) says that, once a point z for which f (z) �= 0 has
been found, the complexity of the additional computational work needed to recover
f within a desired accuracy ε grows only like (d/ε)1/r , and hence this part of the
algorithm would break the curse of dimensionality. Moreover, under additional as-
sumptions on f , Query 1 can have much lower complexity. For example, if each
component function fj is a polynomial of a fixed degree p, or more generally if each
component has at most a fixed number p of zeros, then Query 1 will terminate af-
ter at most p steps. Indeed, the Halton sequence never repeats a coordinate value.
Even when further relaxing the assumptions on f , say to analyticity, and replacing in
Query 1 the sampling by random sampling, one could formulate a result according
to which the algorithm breaks the curse of dimensionality with high probability.

Acknowledgements This research was supported by the Office of Naval Research Contracts ONR
N00014-08-1-1113, ONR N00014-09-1-0107, and ONR N00014-11-1-0712; the AFOSR Contract
FA95500910500; the NSF Grants DMS-0810869, and DMS 0915231; and the DFG Special Priority Pro-
gram SPP-1324. This research was done when R.D. was a visiting professor at RWTH and the AICES
Graduate Program. This publication is based in part on work supported by Award No. KUS-C1-016-04
made by King Abdullah University of Science and Technology (KAUST).

References

1. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
2. Dumitrescu, A., Jiang, M.: On the largest empty axis-parallel box amidst n points. Algorithmica

(2012). doi:10.1007/s00453-012-9635-5
3. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer Series in Computational

Mathematics, vol. 42. Springer, Berlin (2012)
4. Halton, J.H.: On the efficiency of certain quasi-random sequences of points in evaluating multi-

dimensional integrals. Numer. Math. 2, 84–90 (1960)
5. Hammersley, J.M.: Monte Carlo methods for solving multivariable problems. Ann. N.Y. Acad. Sci.

86, 844–874 (1960)
6. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information.

EMS Tracts in Mathematics, vol. 6. Eur. Math. Soc., Zurich (2008)
7. Novak, E., Woźniakowski, H.: Approximation of infinitely differentiable multivariate functions is

intractable. J. Complex. 25, 398–404 (2009)
8. Rote, G., Tichy, R.F.: Quasi-Monte-Carlo methods and the dispersion of point sequences. Math. Com-

put. Model. 23, 9–23 (1996)
9. Sickel, W., Ullrich, T.: Tensor products of Sobolev–Besov spaces and applications to approximation

from the hyperbolic cross. J. Approx. Theory 161, 748–786 (2009)
10. Smolyak, S.A.: Quadrature and interpolation formulas tensor products of certain classes of functions.

Sov. Math. Dokl. 4, 240–243 (1963)
11. Temlyakov, V.: Approximation of Periodic Functions. Nova Science Publishers, New York (1993)

http://dx.doi.org/10.1007/s00453-012-9635-5

	Approximation of High-Dimensional Rank One Tensors
	Abstract
	Introduction
	Univariate Approximation
	Low-Discrepancy Point Sequences
	Query Points and the Approximation
	Error of Approximation
	Optimality of the Algorithm
	Acknowledgements
	References

