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a b s t r a c t

In this paper, we aim to characterize the structure of hypergraphs in terms of structural complexity
measure. Measuring the complexity of a hypergraph in a straightforward way tends to be elusive since
the hyperedges of a hypergraph may exhibit varying relational orders. We thus transform a hypergraph
into a line graph which not only accurately reflects the multiple relationships exhibited by the hyper-
edges but is also easier to manipulate for complexity analysis. To locate the dominant substructure
within a line graph, we identify a centroid vertex by computing the minimum variance of its shortest
path lengths. A family of centroid expansion subgraphs of the line graph is then derived from the cen-
troid vertex. We compute the depth-based complexity traces for the hypergraph by measuring either the
directed or undirected entropies of its centroid expansion subgraphs. The resulting complexity traces
provide a flexible framework that can be applied to both hypergraphs and graphs. We perform (hyper)
graph classification in the principal component space of the complexity trace vectors. Experiments on
(hyper)graph datasets abstracted from bioinformatics and computer vision data demonstrate the effec-
tiveness and efficiency of the complexity traces.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

There has recently been an increasing interest in the use of
hypergraph models for higher order learning. A hypergraph is a
generalization of a graph. Unlike the pairwise nature of edges in a
graph, hypergraph representations allow a hyperedge to encom-
pass an arbitrary number of vertices, and can hence capture
multiple relationships among features.

Most existing methods attempt to approximate a hypergraph
by an equivalent graph, and exploit existing graph based methods
for learning higher order models. For instance, Agarwal et al. [1]
have performed hypergraph clustering by partitioning a weighted
graph obtained by transforming the original hypergraph using a
weighted sum of hyperedges to form edges. Zhou et al. [2], on the
other hand, have presented a similar graph approximation method
for hypergraphs by normalizing the Laplacian matrix of the star
expansion of a hypergraph. Wachman et al. [3] have developed a
hypergraph kernel by enumerating similar walks on two hyper-
graphs. Zass and Shashua [4] and Duchenne et al. [5] have sepa-
rately applied high-degree affinity arrays (i.e. tensors) to formulate
hypergraph matching problems using different cost functions.
tmail.com (L. Bai),
uk (E.R. Hancock).
Both methods address the matching process in an algebraic
manner but become intractable to compute if the hyperedges are
not suitably sampled. Shashua et al. [6,7] have performed visual
clustering using tensors to represent uniform hypergraphs (i.e.
those for which the hyperedges have identical cardinality)
extracted from images and videos. Their work has been com-
plemented by He et al.'s [8] algorithm for detecting number of
clusters in a tensor-based framework. Similar methods include
those described in [9–13], in which tensors (uniform hypergraphs)
are used to represent the multiple relationships between objects.

One limitation of most existing methods for hypergraph char-
acterization is that they are usually restricted to uniform struc-
tures and cannot be applied to hypergraphs with arbitrary rela-
tional orders. To address this shortcoming, Ren et al. [14] have
exploited a set of polynomial coefficients obtained from the
hypergraph Ihara zeta function for characterizing nonuniform
hypergraphs. Unfortunately, the computation of the hypergraph
Ihara coefficients tends to be computational burdensome.

The aim of this paper is to overcome the limitations of existing
methods for hypergraph analysis by computing a depth-based
complexity trace for a hypergraph. We have previously explored
this idea for ordinary graphs [15,32], but we have not shown how
to extend the idea to hypergraphs. Our idea is to transform a
hypergraph into an equivalent directed line graph that accurately
captures the multiple relationship exhibited by the hypergraph.
The complexity trace of a hypergraph can thus be computed by
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measuring the information content of a family of expansion sub-
graphs that are derived from the centroid vertex of its line graph.
Specifically, we explore how to characterize the layer expansion
subgraphs using complexity measures as a function of depth.

1.1. Literature review

Computing the entropy-based complexity of an undirected
(sub)graph has attracted significant attention due to its funda-
mental practical importance for network analysis [32]. In early
work, Körner [16] developed a classical undirected graph entropy
which poses complexity characterization as an optimization pro-
blem. This approach is based on a probability distribution asso-
ciated with the vertices, and the complexity is the minimal cross
entropy between the probability distribution and the vertex
packing polytype of the graph. Unfortunately, this entropy is not
applicable to more general unweighted graphs. Mowshowitz [17],
Rashevsky [18] and Trucco [19] have each developed a Shannon
entropy for a graph associated with the probability distribution
derived from different partitionings of the vertex set. Unfortu-
nately, determining the partitioning requires expansive computa-
tion, thus the entropy cannot be efficiently computed. To over-
come the shortcomings for these classical graph entropies, Deh-
mer et al. [20,21] have developed a novel means of computing
entropies of undirected graphs by using information functionals.
The information functionals for an undirected graph are derived
from the topological structure of the graph and quantify the
information content of the given graph structure. Moreover, this
approach avoids the combinatorial computations over different
vertex partitions by constructing local information subgraphs for a
given undirected graph, and thus achieves a polynomial time
complexity. Anand et al. [23] and Passerini and Severini [22] have
applied the von Neumann entropy (or quantum entropy) to the
domain of graphs through a mapping between discrete Laplacians
and quantum states [24]. If the discrete Laplacian [25] is scaled by
the inverse of the volume of the graph we obtain a density matrix
whose entropy can be computed using the spectrum of the dis-
crete Laplacian. The measure distinguishes between different
structures. For instance it is maximal for random undirected
graphs, minimal for complete ones and takes on intermediate
values for star graphs. In addition, when there is degree hetero-
geneity then the Shannon (classical) and von Neumann (quantum
information theoretic) entropies are correlated. However, since the
von Neumann entropy relies on the computation of the normal-
ized Laplacian spectrum, its computational complexity is cubic in
the number of vertices.

To render the computation of the von Neumann entropy more
efficient, Han et al. [26] have shown how the computation can be
rendered quadratic in the number of the vertices by approximat-
ing the Shannon entropy on the Laplacian eigenvalues using its
quadratic counterpart [36]. An analysis of the quadratic entropy
reveals that it can be computed from a number of permutation
invariant matrix trace expressions. This leads to a simple expres-
sion for the approximate entropy in terms of the degrees of the
adjacent vertices. Furthermore, to develop this work further, Ye
et al. [28] have shown how the von Neumann entropy for undir-
ected graphs can be extended to directed graphs. To do this, they
commenced by using Chung's [29] definition of the normalized
Laplacian on a directed graph. According to this definition, the
directed graph normalized Laplacian is Hermitian, and so the
interpretation of Anand et al. [23] still holds for the domain of
directed graphs. The von Neumann entropy is essentially the
Shannon entropy associated with the normalized Laplacian
eigenvalues. The resulting von Neumann entropy expression for
directed line graphs depends on the in-degree and out-degree of
pairs of vertices connected by edges.
Recently, depth-based representations of undirected graph
structures have been widely used for developing new complexity
measures for graphs [27,30,31]. One approach is to gauge infor-
mation content flow through K-layer subgraphs of a graph (e.g.
subgraphs around a vertex having a maximum topological dis-
tance or minimal path length K) of increasing size and to use the
flow as a structural signature. Following this approach, Bai and
Hancock [32–34] have developed a fast depth-based complexity
trace from the centroid vertex that has the minimum variance of
shortest path lengths to the remaining vertices (i.e., a depth-based
representation around the centroid vertex). They decompose a
graph into a family of K-layer centroid expansion subgraphs
around the centroid vertex. A complexity trace vector is computed
by measuring the entropies on the individual expansion sub-
graphs. Since the centroid based method can be used to efficiently
compute the entropy based complexity measures on a small set of
expansion subgraphs rooted at the centroid vertex, it can be thus
computed in a polynomial time. By contrast, the thermodynamic
depth complexity measure developed in [30] requires the expan-
sion subgraphs rooted at each vertex, and computes the intrinsic
complexity for each subgraph. It is thus less efficient to compute
on large graphs, e.g., a graph having thousands of vertices.

Unfortunately, all of the above mentioned complexity mea-
sures, both entropy-based and depth-based, are only developed
for (un)directed graphs and do not easily accommodate hyper-
graphs. The reason for this is that straightforwardly measuring the
complexity of a hypergraph tends to be an elusive problem since
the hyperedge in a hypergraph may exhibit varying relational
orders. Therefore, to measure the complexity of a hypergraph, in a
manner that can precisely capture the structural information
contained within it, we consider transforming a hypergraph into a
directed line graph using the Perron–Frobenius operator [14]. The
Perron–Frobenius operator can represent both uniform or non-
uniform hypergraphs characteristics and can also accurately reflect
the multiple relationships exhibited by hyperedges of different
orders. Hence, the directed line graph representation for a
hypergraph provides a convenient framework for complexity
analysis.

1.2. Contributions

As previously stated, the aim of this paper is to present a novel
framework for characterizing hypergraphs based on computing
depth-based complexity traces. Our starting point is the line graph
obtained by transforming a hypergraph into substructures using
the Perron–Frobenius operator. The complexity of the hypergraph
is then measured by computing the entropies of the substructures.
We develop two different classes of complexity traces for a
hypergraph HG based on two different decomposition strategies.
The first is to establish an undirected line graph GU of HG from the
equivalent directed line graph GDL by simply neglecting the edge
directions of GDL. We derive a family of expansion subgraphs with
increasing layer size K from GU. We construct an undirected
complexity trace of HG by measuring how the undirected entropy
measure varies on the expansion subgraphs with increasing K. The
second strategy is to establish a directed complexity trace for HG
by measuring the directed graph entropy on a family of expansion
subgraphs derived from the directed line graph GDL of HG. Since
we measure the entropy over the family of expansion subgraphs,
both methods are efficient and overcome the computational bot-
tlenecks existing in state-of-the-art methods for network com-
plexity analysis [26,30]. Our hypergraph complexity traces provide
a flexible framework that can be applied to both hypergraphs and
graphs. We perform experiments on several bioinformatics and
computer vision datasets. We empirically demonstrate that our
complexity traces not only readily accommodate nonuniform
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hypergraphs, but also easily scale to large hypergraphs. The per-
formance of our framework is competitive with alternative net-
work complexity analysis methods and other hypergraph based
methods reported in the literature.

The remainder of this paper is organized as follows. Sections 2 and 3
respectively introduce the entropy measures for undirected or directed
graphs that will be used in our framework. For an undirected graph,
Section 4 presents a family of centroid expansion subgraph that will
also be used in our framework. Section 5 describes how to compute an
undirected or a directed depth-based complexity trace for a hypergraph.
Section 6 provides experimental comparisons between the proposed
hypergraph complexity trace methods and state-of-the-art (hyper)
graph based methods. Section 7 concludes this work and makes sug-
gestions for future work.
2. Entropy measures on undirected graphs

In this section, we review how to compute the entropy for an
undirected graph. We commence by reviewing the concept of von
Neumann entropy used in previous work [26]. Here we commence
by explaining how the von Neumann entropy of an undirected
graph can be efficiently computed in terms of the degree statistics
using a quadratic approximation to the Shannon entropy. We also
introduce an alternative Shannon entropy using the probability
distribution associated with a steady state random walk on an
undirected graph [32,35].

2.1. von Neumann entropy of undirected graphs

The von Neumann entropy of an undirected graph is the
Shannon entropy associated with the eigenvalues of the normal-
ized undirected graph Laplacian [22]. We denote the undirected
graph under study by GðV ; EÞ where V is the set of vertices and
EDV � V is the set of undirected edges. The symmetric adjacency
matrix A for GðV ; EÞ is a jV j � jV j matrix that has elements

Aði; jÞ ¼ 1 ifðvi; vjÞAE;

0 otherwise:

�
ð1Þ

The vertex degree matrix of GðV ; EÞ is a diagonal matrix D whose
elements are given by Dðvi; viÞ ¼ dðiÞ ¼Pvj AVAði; jÞ. From the degree
matrix and the adjacency matrix we can construct the Laplacian
matrix L¼D�A. The normalized Laplacian matrix is given by
L̂ ¼D�1=2LD�1=2. The spectral decomposition of the normalized

Laplacian matrix is L̂ ¼ Φ̂Λ̂Φ̂
T
where Λ̂ ¼ diagðλ̂1; λ̂2;…; λ̂ j V j Þ is a

diagonal matrix with the ordered eigenvalues as elements ð0¼ λ̂1

o λ̂2o⋯o λ̂ j V j Þ and Φ̂ ¼ ðϕ̂1 j ϕ̂2 j…j ϕ̂ j V j Þ is a matrix with the
corresponding ordered orthonormal eigenvectors as columns. The
normalized Laplacian matrix is positive semi-definite and so has all
eigenvalues non-negative. The number of zero eigenvalues is the
number of connected components in GðV ; EÞ. The von Neumann
entropy of GðV ; EÞ associated with the normalized Laplacian eigen-
spectrum [22] is defined as

HVN ¼ �
Xj V j

i ¼ 1

λ̂i

jV j log
λ̂i

jV j ð2Þ

The computation of the von Neumann entropy requires a
number of operations that is cubic in the number of vertices jV j ,
since it requires the solution of the eigendecomposition. Han et al.
[26] have shown how the computation can be computed in
quadratic time by (a) approximating the Shannon entropy by its

quadratic counterpart, and (b) evaluating the traces of L̂ and L̂
2

using vertex degrees. To commence, they approximate the Shan-

non entropy λ̂ i
j V j ln

λ̂ i
j V j by its quadratic counterpart λ̂ i

j V j 1� λ̂ i
j V j

� �
and
obtain

HVN ¼ �
Xj V j

i ¼ 1

λ̂i

jV j log
λ̂i

jV jC
Xj V j

i ¼ 1

λ̂i

jV j 1� λ̂i

jV j

 !

¼ 1
jV j

Xj V j

i ¼ 1

λ̂i�
1

jV j 2
Xj V j

i ¼ 1

λ̂
2

i : ð3Þ

Based on the definition by Han et al. [26],
Pj V j

i ¼ 1 λ̂i ¼ Tr½L̂� ¼ jV j ,
and

Pj V j
i ¼ 1 λ̂

2

i ¼ Tr½L̂2� ¼ jV j þPðvi ;vjÞAE
1

dðiÞdðjÞ. Thus, the von Neu-
mann entropy defined in Eq. (3) can be re-written as

HVNðGÞ ¼ 1� 1
jV j �

1
jV j 2

X
ðvi ;vjÞAE

1
dðiÞdðjÞ ð4Þ

As a result, we can approximate the von Neumann entropy using
two measures of an undirected graph structure. The first is the
number of vertices, and the second is based on degree statistics for
pairs of vertices connected by edges. The approximation bypasses
calculating the normalized Laplacian eigenvalues of an undirected
graph which is ðOðjV j 3ÞÞ. Therefore, we estimate the von Neumann
entropy in time OðjV j 2Þ, and this renders the computation more
efficient.

2.2. Shannon entropy of undirected graphs

An alternative approach to computing the entropy of GðV ; EÞ is
to use a steady state randomwalk on GðV ; EÞ. The probability of the
steady state random walk on GðV ; EÞ visiting vertex vi is

PðiÞ ¼ dðiÞ=
X
vj AV

dðjÞ: ð5Þ

Based on Eq. (5), we obtain a probability distribution P asso-
ciated with the steady state random walk on GðV ; EÞ, and the
Shannon entropy for GðV ; EÞ is given by

HSðGÞ ¼ �
Xj V j

i ¼ 1

PðiÞ log PðiÞ: ð6Þ

For the undirected graph GðV ; EÞ, computing the Shannon
entropy HS(G) requires OðjV j 2Þ operations, because it needs to visit
all the jV j 2 pairs of entries in A to compute the probability of a
steady state random walk visiting each vertex. This indicates that
the Shannon entropy associated with a steady state random walk
can be efficiently computed.
3. Entropy measures on directed graphs

The entropy measures defined in Section 2 only apply to graphs
with undirected edges. However, in our study, we also require
entropy measures on graphs with directed edges (see Section 5.3
for details). In this section, we introduce two entropy measures for
directed graphs. We commence by introducing a directed von
Neumann entropy [28]. This method is based on extending the
definition of the von Neumann entropy (i.e., the von Neumann
entropy of undirected graphs defined in Section 2) from undir-
ected to directed graphs, and is expressed in terms of the in-
degree and out-degree statistics of vertices. Moreover, we also
introduce an asymptotic entropy in terms of the heat flow diffu-
sion [30].

3.1. von Neumann entropy of directed graphs

Let GDðVD; EDÞ is a directed graph with vertex set VD and edge
set EDDVD � VD, and AD is the adjacency matrix of GD. The in-
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degree and out-degree of vertex vD;i are

dinðiÞ ¼
Xj VD j

j ¼ 1

ADðj; iÞ; doutðjÞ ¼
Xj VD j

j ¼ 1

ADði; jÞ: ð7Þ

With these ingredients, the transition matrix T for the directed
graph GD is defined as

T ði; jÞ ¼
ADði; jÞ
doutðiÞ

ifðvD;i; vD;jÞAED

0 otherwise:

8<
: ð8Þ

In [29], Chung has shown that the normalized Laplacian matrix of
a directed graph can be written as

~LD ¼ I�Φ1=2
D TΦ�1=2

D þΦ�1=2
D T TΦ1=2

D

2
; ð9Þ

where ΦD ¼ diagðϕD;1;ϕD;2;…;ϕD;j VD j Þ and ϕD ¼ ðϕD;1 jϕD;2 j…j
ϕD;j VD j Þ is the left eigenvector of ~LD.

Similar to the von Neumann entropy of an undirected graph
[22], the von Neumann entropy for a directed graph can also be
approximated using the Shannon entropy associated with the
eigenvalues of its normalized Laplacian matrix. Using the
approximation, in [28] Ye at al. have extended the analysis of Han
et al. [26] from undirected to directed graphs. The starting point is
the quadratic approximation to the von Neumann entropy in
terms of the traces of normalized Laplacian and the squared nor-
malized Laplacian, i.e.,

HD
VN ¼ Tr½~LD�

jVD j
�Tr½~L2D�
jVD j 2

: ð10Þ

To simplify Eq. (10) one step further, let ED;1 and ED;2 are two
disjoint subsets of ED, and satisfy ED;1 ¼ fðvD;i; vD;jÞj ðvD;i; vD;jÞA ED
4 ðvD;j; vD;iÞ=2EDg and ED;2 ¼ fðvD;i; vD;jÞj ðvD;i; vD;jÞAED4ðvD;j; vD;iÞA
EDg. ED;1⋃ED;2 ¼ ED, and ED;1⋂ED;2 ¼∅. Based on [28], we have

Tr½~LD� ¼ Tr½I� ¼ jVD j ;
and

Tr½~L2D� ¼ jV j þ1
2
ðTr½T 2�þTr½T Φ�1

D T TΦD�Þ;

where Tr½T 2� ¼Pðvi ;vjÞAED;2
1

dout ðiÞdout ðjÞ and Tr½T Φ�1T TΦ� ¼P
ðvi ;vjÞAED

ϕðiÞ
ϕðiÞdout ðjÞ2

. Using the fact that ϕD;i

ϕD;j
� dinðiÞ

dinðjÞ [28], we can
approximate the von Neumann entropy of a directed graph in
terms of the in-degree and out-degree of the vertices as follows:

HD
VN ¼ 1� 1

jVD j
� 1
2jVD j 2

X
ðvi ;vjÞAED

1
doutðjÞdoutðiÞ

þ dinðjÞ
dinðiÞdoutðjÞ2

 !8<
:

�
X

ðvi ;vjÞAED;1

1
doutðjÞdoutðiÞ

9=
;; ð11Þ

or equivalently,

HD
VN ¼ 1� 1

jVD j
� 1
2jVD j 2

X
ðvD;i ;vD;jÞAED

dinðiÞ
dinðjÞdoutðiÞ2

þ
X

ðvD;i ;vD;jÞAED;2

1
doutðiÞdoutðjÞ

8<
:

9=
;:

ð12Þ
Eq. (11) or Eq. (12) can be consequently simplified according to

the relative sizes of the sets ED;1 and ED;2. If GD is a weakly directed
graph ðjED;1 j⪡jED;2 j Þ, i.e., few of the edges are not bidirectional,
the approximate von Neumann entropy is defined as [28]

HWD
VN ¼ 1� 1

jVD j
� 1
2jVD j 2

X
ðvD;i ;vD;jÞAED

dinðiÞ
doutðiÞ

þ dinðjÞ
doutðjÞ

doutðiÞdinðjÞ
: ð13Þ

On the other hand, if GD is a strongly directed graph ðjED;2 j⪡jED;1 j Þ,
i.e., there are few bidirectional edges, the approximate von
Neumann entropy is given by [28]

HSD
VN ¼ 1� 1

jVD j
� 1
2jVD j 2

X
ðvD;i ;vD;jÞAED

1
doutðiÞdinðjÞ

� �
: ð14Þ

Both the weakly and strongly directed forms of the von Neu-
mann entropy (HWD

VN and HSD
VN) contain two terms. The first is the

graph size while the second one depends on the in-degree and
out-degree statistics of each pair of vertices linked by an edge.
Moreover, the computational complexity of these expressions is
quadratic in the graph size.

3.2. Asymptotic (flow) entropy of directed graphs

Heat kernels are the solution KðβÞ to the heat/diffusion equa-
tion: ∂KðβÞ

∂β ¼ �LKðβÞ, where β means time [37] and L is the graph
Laplacian. Diffusion kernels are doubly stochastic matrices. Since
KðβÞ is semi-definite positive we have that the spectral decom-
position KðβÞ ¼Ψe�βΛΨ T where Λ¼ diagðλ1;…; λj V j Þ contains the
eigenvalues 0¼ λ1oλ2o⋯oλj V j and Ψ ¼ ðψ1 jψ2 j…jψ j V j Þ the
eigenvectors, leads to limβ-1KðβÞ ¼ψ1ψ T

1 and ψ1 ¼ 1ffiffiffiffiffiffiffi
j V j

p e, where

eT is the all ones row vector. Therefore, the latter limit is given the
van der Waerden matrix Bn ¼ eeT

j V j .
An alternative way to formulate entropy is to quantify the

amount of heat flowing through the graph at a particular instant.
Given an undirected graph G¼ ðV ; EÞ with unnormalized Laplacian
L¼D�A, the amount of entropy is bounded by the maximum
entropy of the Birkhoff–von Neumann decomposition of the heat
kernel KðβÞ ¼ e�βL. This is ensured by the phase-transition principle
described in [30]: every graph is endowed with a phase-transition
point corresponding to the earlier instant where entropy is max-
imal. In addition, maximal entropy is achieved when the max-
imum amount of heat is flowing through the graph.

Instantaneous heat flow as defined in [30] is given by the ele-
ments of the matrix product FðβÞ ¼ A : KðβÞ, where X : Y ¼PijXði;
jÞYði; jÞ is the Frobenius product. Hence, we have that Fð1Þ ¼ A :

Kð1Þ ¼ A : Bn ¼ j E j
j V j is associated with the asymptotic entropy log 2

ðnÞ of the Birkhoff decomposition for the kernel, and the asymp-
totic (flow) entropy of an undirected graph is

HF ¼ Fð1Þ ¼ jEj
jV j : ð15Þ

The computational complexity of the asymptotic entropy is
quadratic in the graph size, since it needs to visit all the jV j � jV j
entries of the adjacency matrix for G.

Given a directed graph GDðVD; EDÞ, we assume that it is strongly
connected and aperiodic and with transition matrix T given by Eq.
(8). Otherwise, T is patched as in Page et al. [38] so that a left
eigenvector ϕD. exists. The stationary distribution is given by
PDðiÞ ¼ϕD;i. Then, following [29] we have that the unnormalized
directed Laplacian LD is defined as

LD ¼Φ1=2
D

~LDΦ
1=2
D ¼ΦD�

ΦDT þT TΦD

2
¼ΦD�W : ð16Þ

Since Wði; jÞ ¼ ðϕD;iT ði; jÞþϕD;jT ðj; iÞÞ=2, the role of the weight
matrixW is to symmetrize LD by settingWðj; iÞ ¼ 1

2ϕD;iT ði; jÞ ¼Wði; jÞ
when doutðjÞ ¼ 0; doutðiÞ40, Wði; jÞ ¼ 1

2ϕD;jT ðj; iÞ ¼Wðj; iÞ when
doutðiÞ ¼ 0; doutðjÞ40, and Wði; jÞ ¼ ðϕD;iT ði; jÞþϕD;jT ðj; iÞÞ=2¼Wðj; iÞ
when doutðiÞ40; doutðjÞ40. Therefore, W can be seen as the
weighted adjacency matrix of an undirected graph GW ¼ ðVW ; EW Þ,
where VW¼VD, EW ¼ ED⋃fði; jÞ : ðj; iÞAEDg and the weights Wði; jÞ
are associated to the edges. Thus, if the original directed graph GD is
strongly connected, then so is GW since the latter symmetrization
enables alternative paths between the vertices of VD.

As a result, information diffusion constraints existing in GD are
relaxed in GW. The constraints are coupled to graph entropy
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through the phase-transition principle (the harder the constraints
the smaller the amount of heat flowing through the graph). The
analysis of the heat kernel associated with the directed Laplacian
KDðβÞ ¼ e�βLD ¼ e�βðΦD �WÞ entails the stationary distribution PD,
which is encoded in the diagonal of ΦD. More precisely, we have

KDðβÞ ¼ e�βðΦD �WÞ ¼ e�βΦD I j VD j þβWþβ2

2!
W2þβ3

3!
W3þ…

 !

�
Xj VD j 2

k ¼ 0

Wke�βΦDβk

k!
; ð17Þ

and Wk is defined in terms of walks of length k:

Wkði; jÞ ¼
X
Sk

∏
k

r ¼ 1

ϕD;irT ðir ; irþ1ÞþT ðirþ1; irÞϕD;irþ 1

2

 !
; ð18Þ

where Sk ¼ fi1 i2 …ikþ1g is a sequence of vertices defining a walk
of length k. Therefore Wkði; jÞ is the sum of all walks of length k
connecting i and j (see [39]). As a result of symmetrization, many
of these walks acquire now non-zero probability. For instance, if
ði; jÞAED but ðj; iÞ=2ED, there will be a directed path connecting
vertices j and i in GD, since it is strongly connected. However, in GW

we will have Wðj; iÞ40. Consequently, GW contributes with many
short links. The byproduct of a diffusion process is to create new
links, called transitivity links. These links (j,i) do not exist in the
original graph but are encoded in the components of the heat
kernel Kβ

Dðj; iÞ40 as β increases. The spectral decomposition of LD
ensures that limβ-1KDðβÞ ¼ Bn ¼ eeT

j VD j as in the undirected case.

However, since limβ-1e�βΦβk ¼ 0 for all k and the smaller ϕðiÞ
the less reachable is the i-th vertex in GD, the components Kβ

Dði; jÞ
of the kernel will tend to 1

n faster when they correspond to original
directed edges. This means that the asymptotic directed flow FDð
1Þ ¼ AD : KDð1Þ ¼ AD : Bn ¼ j ED j

j VD j is a good approximation of the
entropy trace even for moderate values of β. The reason for this is
that it relies on the density of the original directed graph GD whose
edges (and particularly their associated stationary distribution)
drive the diffusion process.

Hence, we have that the asymptotic (flow) entropy of a directed
graph is

HFD ¼ FDð1Þ ¼ jED j
jVD j

: ð19Þ

The computational complexity of the asymptotic entropy is
quadratic in the number of vertices in the graph GD.
4. Centroid expansion subgraphs

In this section we define a set of centroid expansion subgraphs
of an undirected graph. This set will be used for establishing
hypergraph complexity traces in Section 5. To commence, we
identify a centroid vertex and use this as the root vertex. To this
end, for an undirected graph GðV ; EÞ, we use Dijkstra's algorithm to
compute the shortest path matrix SG whose element SGði; jÞ
represents the shortest path length between vertices vi and vj of
GðV ; EÞ. The average-shortest-path vector SV for GðV ; EÞ is a vector
with the same vertex order as SG, and with each element SV ðiÞ ¼Pj V j

j ¼ 1 SGði; jÞ=jV j representing the average shortest path from
vertex vi to the remaining vertices. We identify the centroid vertex
vi for GðV ; EÞ as follows:

v̂i ¼ arg min
i

Xj V j

j ¼ 1

½SGði; jÞ�SV ðiÞ�2: ð20Þ

The centroid vertex v̂i of GðV ; EÞ is located by selecting the vertex
with the minimum variance of shortest path lengths from all
vertices in GðV ; EÞ. Therefore, the shortest paths starting from the
centroid vertex v̂i form a steady path set that exhibits the least
path length variance compared with those path sets originating
from the remaining vertices. The vertices surrounding the centroid
vertex in GðV ; EÞ lie along different shortest paths from the cen-
troid vertex, and the centroid vertex has a global view of the
vertex path length distribution surrounding it. Let NK

v̂C
be a subset

of V satisfying

NK
v̂C

¼ fuAV ∣SGðv̂C ;uÞrKg: ð21Þ

For a graph GðV ; EÞ with the centroid vertex v̂C , the K-layer cen-
troid expansion subgraph GK ðVK ; EK Þ has the vertex set VK and
edge set EK as follows

VK ¼ fuANK
vC g;

EK ¼ fðu; vÞ �NK
vC ∣ðu; vÞAEg:

8<
: ð22Þ

The number of centroid expansion subgraphs is equal to the
greatest length of the shortest path from the centroid vertex to the
remaining vertices of the graph.
5. Depth-based complexity traces of hypergraphs

A hypergraph is usually denoted by a pair of sets HGðVH ; EHÞ
where VH is a set of vertices and EH is a set of non-empty subsets of
VH called hyperedges. To obtain hypergraph complexity traces, we
first establish a directed line graph using the Perron–Frobenius
operator [40,14]. The reasons for using this graph representation
for a hypergraph are twofold. First, pairwise-order representations
for hypergraphs allow the graph based complexity analysis to be
applied to hypergraphs. Second, the directed line graph avoids the
order ambiguities that arise from the straightforward expansion-
or clique-based graph representations of a hypergraph [14]. Thus
we develop the complexity traces by computing the entropies of a
family of centroid expansion subgraphs obtained from the directed
line graph.

5.1. Directed line graph

The directed line graph of a hypergraph is a dual representation
in which each hyperedge is represented by a new vertex. For a

hypergraph HGðVH ; EHÞ, the directed line graph GDðVD; E
!

DÞ can be
established using Algorithm 1. Note that for step 1 there are
potential multiple edges between two vertices in GHðVG; EGÞ if the
two vertices are encompassed by more than one common hyper-
edge in HGðVH ; EHÞ. Suppose there are p hyperedges encompassing
two vertices in HGðVH ; EHÞ. The p hyperedges induce p separated
edges between the two vertices in GHðVG; EGÞ. For step 3, it is
important to stress that unlike the edge set E of an undirect graph

GðV ; EÞ; E!D is a set of directed edges of the directed graph

GDðVD; E
!

DÞ. The adjacency matrix TH of GDðVD; E
!

DÞ is the Perron–
Frobenius operator of the original hypergraph. For the (i,j)-th entry
of TH , THði; jÞ is 1 if there is a simple edge directed from the vertex i
to the vertex j in the directed line graph, and otherwise it is 0.
Unlike the adjacency matrix of an undirected graph, the Perron–
Frobenius operator for a hypergraph is not a symmetric matrix.
This is because the constraint in Eq. (24) arises in the construction
of directed edges. Specifically, any two directed edges induced by
the same hyperedge in the original hypergraph are not allowed to
establish a directed edge in the directed line graph.

An example of transforming a hypergraph into a directed line
graph has been shown in Fig. 1. For the example hypergraph HGð
VH ; EHÞ shown in Fig. 1(a), the clique graph GHðVG; EGÞ is shown in
Fig. 1(b). In GHðVG; EGÞ, the edges belonging to the common clique
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Fig. 1. An example of transformation a hypergraph into a directed line graph. (a) A hypergraph. (b) Clique. (c) Di-clique. (d) Directed line graph. (For interpretation of the
references to colour in this figure caption, the reader is referred to the web version of this paper.)
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are indicated by the same colour while the different cliques are
coloured differently. Furthermore, there are two different edges
between v4 and v5, and these edges are induced by the hyperedge
e3 and e4 of HGðVH ; EHÞ, respectively. The associated symmetric
digraph DGHðVG; EdÞ of GHðVG; EGÞ is shown in Fig. 1(c), and the

resulting directed line graph GDðVD; E
!

DÞ from DGHðVG; EdÞ is
shown in Fig. 1(d).

Algorithm 1. Establishing a directed line graph for a hypergraph.
Inp

Ou

1:
�

2:
�

w
ut: A hypergraph HGðVH ; EHÞ where VH is a set of vertices,
and E is a set of non-empty subsets of VH.
tput: A Perron–Frobenius operator of HGðVH ; EHÞ (i.e. the
adjacency matrix TH of a directed line graph GDðVD; E

!
DÞ for

HGðVH ; EHÞ).
Establish the clique expansion graph for HGðVH ; EHÞ.
Establish the clique expansion graph GHðVG; EGÞ for GðV ; EÞ

by connecting each pair of vertices in ei through an edge for
each hyperedge eiAE, the vertex and edge sets are
VG ¼ V ;

EG ¼ fðu; vÞ � ei∣eiAEg:

(
(23)
Establish the associated symmetric digraph for GHðVG; EGÞ.
For GHðVG; EGÞ, establish the associated symmetric digraph
DGHðVG; EdÞ by replacing each edge of GHðVG; EGÞ by a
directed edge pair in which the two directed edges are
inverse to each other.
Establish the directed line graph of GHðVG; EGÞ through
DGHðVG; EdÞ.
Establish the directed line graph GDðVD; E

!
DÞ of HGðVH ; EHÞ

based on DGHðVG; EdÞ. The vertex set VD and edge set E
!

D of

the GDðVD; E
!

DÞ are defined as
VD ¼ Ed;

E
!

D ¼ fðu; vÞi; ðv;wÞjAEd � Ed∣ia jg:

(
(24)
here the subscripts i and j denote the indices of the
hyperedges from which the directed edges (u,v) and (v,w)
are induced respectively.
The transformation of the hypergraph HGðVH ; EHÞ into the

directed line graph GDðVD; E
!

DÞ requires time complexity OðjVD j 2Þ.
This is because the construction of the adjacency matrix of GDðVD;

E
!

DÞ relies on visiting all the jVD j (jVD j ¼ jEd j ) edges in DGHðVG;
EdÞ and establishing all jVD j 2 entries in the incidence matrix of GD.

5.2. Theoretical properties

The directed line graph and its Perron–Frobenius operator have
several interesting properties.

(a) Compared to the (hyper)graph adjacency or Laplacian
matrix, the Perron–Frobenius operator spans a higher dimensional
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feature space where it may expose richer (hyper)graph char-
acteristics. This property is a result of the fact that the cardinality
of the vertex set for the directed line graph is much greater than,
or at least equal to, that of the original (hyper)graph. Hence, the
adjacency matrix (i.e. the Perron–Frobenius operator) of the
directed line graph is described in a higher dimensional space than
the original (hyper)graph.

(b) The directed line graph represents a (hyper)graph in a
complete manner such that it naturally avoids the information loss
arising in the spectral truncation [10] or the clique graph
approximation [2]. This property is due to the constraint in Eq.
(24), i.e., the connecting edge pair induced by the same hyperedge
in the original hypergraph cannot establish a directed edge in the
directed line graph. Actually this induces a bi-partition in the
vertices of VD. In other words, such a directed line graph can dis-
tinguish different edges derived from the same hyperedge. This
property is illustrated in Fig. 1(d). On the other hand, the clique
expansion graph GHðVG; EGÞ from the original hypergraph HGðVH ;

EHÞ only records adjacency relationships between vertex pairs of
the hypergraph, and cannot distinguish whether or not two edges
are derived from the same hyperedge. This property is illustrated
in Fig. 1(b). Hence, for two different hypergraphs (e.g., the hyper-
graphs shown in Fig. 2(a) and (b)) they may have the same clique
expansion graph, and thus the same resulted adjacency and
Laplacian matrices resulting from the clique expansion graph. On
the other hand, the directed line graph defined in Eq. (24) may still
produce total different structures for the two hypergraphs. In Fig. 2
(b) we have an unique hyperedge e1 that encodes the same clique
which defines the graph in Fig. 2(a).

These properties indicate that the direct line graph and its
Perron–Frobenius operator can offer us an elegant way for
hypergraph complexity analysis which can not only capture pre-
cise hypergraph complexity information but can also reflect richer
characteristics of hypergraphs.

5.3. Depth-based complexity traces of hypergraphs

We define a depth-based complexity trace for a hypergraph
based on its directed line graph. Simply establishing subgraphs
with increasing layer size along the shortest paths on a directed
line graph tends to ignore certain topological information. The
reason for this is that a path may not exist between two given
vertices in a connected directed line graph. To overcome this
problem, we identify the centroid vertex for the undirected line
graph of a hypergraph. The undirected line graph GU ðVU ; EUÞ of
hypergraph HGðVH ; EHÞ can be obtained by replacing each pair of

inversely directed edges in GDLðVDL; E
!

DLÞ by an undirected edge.
Then we develop two classes of complexity traces for HGðVH ; EHÞ,
which we refer to as the undirected complexity trace and directed
complexity trace respectively.

Definition 1 (Undirected complexity trace). For a hypergraph HGð
VH ; EHÞ and its undirected line graph GUðVU ; EU Þ, the undirected
complexity trace CTU is an Lmax dimensional vector

CTU ¼ ½HðGU1Þ;…;HðGUK Þ;…;HðGU Lmax Þ�T : ð25Þ
where Lmax is the greatest length of the shortest paths from the
centroid vertex v̂U

C to the remaining vertices in GU ðVU ; EU Þ, GUK is
the K-layer centroid expansion subgraph of GU ðVU ; EU Þ, and HðGUK Þ
is the entropy of GUK . □

Here the entropy function Hð�Þ could be either the von Neu-
mann entropy HVNð�Þ given in Eq. (4) or the Shannon entropy HSð�Þ
given in Eq. (6).

Next we describe how to extend these ideas to a directed
complexity trace for the hypergraph HGðVH ; EHÞ. For the directed

line graph GDLðVDL; E
!

DLÞ of HGðVH ; EHÞ, it is impossible to establish
a K-layer centroid expansion subgraph according to Eq. (22),

because the edges of GDLðVDL; E
!

DLÞ are directed. For a hypergraph
HGðVH ; EHÞ, given the K-layer centroid expansion subgraph GUK ð
VUK ; EUK Þ of GUðVU ; EUÞ, we develop a K-layer pseudo centroid

expansion subgraph GDK ðVDK ; ED
�!

K Þ of GDLðVDL; E
!

DLÞ with vertex
and edge sets as follows:

VDK ¼ VUK ;

ED
�!

K ¼ fðu; vÞA E
!

D∣ðu; vÞAEUKg:

(
ð26Þ

Note that there is a strict order for any pair of vertices ðu; vÞA ED
�!

K .

Definition 2 (Directed complexity trace). For a hypergraph HGðVH ;

EHÞ together with its directed line graph GDLðVDL; E
!

DLÞ and undirected
line graph GU ðVU ; EUÞ, the directed complexity trace CTD is an Lmax

dimensional vector defined as

CTD ¼ ½HDðGD1Þ;…;HDðGDK Þ;…;HDðGDLmax Þ�T : ð27Þ
where Lmax is the greatest length of the shortest paths from the cen-
troid vertex v̂U

C to the remaining vertices in GU ðVU ; EUÞ, GDK is the K-
layer pseudo centroid expansion subgraph of GDLðVDL; E

!
DLÞ, and HDð

GDK Þ is the entropy of the directed subgraph GDK . □

Based on the definition in Section 5.1, the directed line graph of
a (hyper)graph is a strongly directed graph. Hence the entropy
function HDð�Þ should be the strongly directed von Neumann
entropy HD

VNð�Þ in Eq. (14).
Hypergraphs of different sizes: Note that the Lmax layer expansion

subgraph is the undirected line graph itself. The dimension of a
hypergraph complexity trace vector is thus equal to the greatest
layer Lmax. However, the complexity trace vectors for hypergraphs
of different sizes may exhibit various lengths. To compare these
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hypergraphs by using complexity trace vectors, we need to make
the vector lengths uniform. This is achieved by padding out the
dimensions of the complexity trace vectors. Hence, for complexity
trace vectors CTi and CTj of the two hypergraphs HGi and HGj with
dimensions Lp and Lq respectively, where Lp4Lq, we use the Lq-th
element value of CTj as the added padding value for the extended
Lqþ1-th to Lp-th elements of CTj.

5.4. Discussions of the hypergraph complexity traces

The two proposed depth-based complexity traces possess the
following key features. (a) Eq. (4) indicates that the von Neumann
entropy HVN is associated with the degrees of connected vertices.
Accordingly, the undirected complexity trace CTU is sensitive to
changes of edge structures (e.g. edge deletions) associated with
vertices of low degrees in GU ðVU ; EU Þ. Such edges usually form
bridges between vertex clusters in GUðVU ; EUÞ. Hence, the proposed
undirected complexity trace CTU associated with the von Neumann
entropy HVN is sensitive to the interconnections between vertex
clusters within GUðVU ; EU Þ. (b) Eq. (6) indicates that for the Shannon
entropy HS vertices with large degrees dominate the value of the
entropy. Hence, the undirected complexity trace CTU associated
with HS is suited to characterizing hypergraphs with strongly intra-
connected structures. (c) Eq. (14) indicates that the von Neumann
entropy HVN

SD depends on the in-degree and out-degree statistics of
each pair of vertices linked by an edge. Hence, the directed com-
plexity trace CTD associated with HVN

SD is sensitive to the in-degree
and out-degree of each pair of vertices connected within GDL

ðVDL; E
!

DLÞ. (d) As a result of the properties of a directed line graph
stated in Section 5.1, the proposed complexity traces from line
graphs can reflect precisely the rich complexity information for
both uniform and nonuniform hypergraphs. (e) Eqs. (25) and (27)
indicate that the depth-based complexity traces provide a multi-
dimensional complexity characterization via the increasing layer
substructures of the line graph from the centroid vertex.

Furthermore, since a hypergraph is a generalization of a graph
and a graph can also be transformed into a directed line graph, the
construction of the complexity trace for a graph is just a special
case of our hypergraph method. On the other hand, the complexity
trace for a graph can be directly constructed from the original
graph by identifying its centroid vertex and establishing the cen-
troid expansion subgraphs on it (e.g., the depth-based complexity
traces for graph defined in [32]). However, the proposed com-
plexity traces for a graph through its line graph can capture richer
characteristics of complexity than those obtained from the original
graph, because the Perron–Frobenius operator can extract (hyper)
graph characteristics in a higher dimensional feature space than
that of the original (hyper)graph. The proposed complexity traces
for (hyper)graphs focus on measuring how the entropy based
complexities of their subgraphs from the line graphs (i.e. graphs
transformed from the original (hyper)graphs) vary with increasing
layer size. Such complexity traces reflect high dimensional depth-
based complexity characteristics of (hyper)graphs and can be used
for (hyper)graph clustering or classification. By contrast, the
depth-based complexity measure in [30], the Shannon entropy
measures in [21] and the von-Neumann entropy measure in [26]
are based on the global structure of the original graph, and only
provide an uni-dimensional complexity characterization.

5.5. Analysis of computational complexity

Suppose the line graph, either GDLðVDL; E
!

DLÞ or GUðVU ; EUÞ,
extracted from HGðVH ; EHÞ has n vertices. The computational com-
plexities for constructing the proposed complexity traces for HGð
VH ; EHÞ are governed by the following processes. (1) The
construction of the centroid expansion subgraphs which involves
using Dijkstra algorithm to compute the shortest path matrix to
locate the centroid vertex and implementing the transformation
from the hypergraph HGðVH ; EHÞ into the line graph. The Dijkstra
algorithm takes time Oðn2Þ. The transformation to the line graph has
time complexity Oðn2Þ. As a result the construction of the repre-
sentation has time complexity Oðn2Þ. (2) The computations of
(a) the von Neumann entropy in Eq. (4) and (b) the Shannon
entropy in Eq. (6) for the centroid expansion subgraphs from GUð
VU ; EU Þ (i.e., for the undirected complexity trace), or (c) the von
Neumann entropy in Eq. (14) and (d) the asymptotic (flow) entropy

in Eq. (19) for the centroid expansion subgraphs from GDLðVDL; E
!

DLÞ
(i.e., for the directed complexity trace). Through the definitions in
Sections 2–4, these entropies all require time complexity Oðn2LmaxÞ.

Lmax is equal to the greatest length of shortest paths from the
centroid vertex of GUðVU ; EU Þ, and Lmaxon. Therefore, the worst-
case time complexities of our undirected and directed complexity
traces for HGðVH ; EHÞ using the four required entropies are all
Oðn3Þ.

As a result, our depth-based complexity traces can be computed
in polynomial time. The reason for this is that we efficiently com-
pute the required entropies on a small set of expansion subgraphs
rooted at the centroid vertex of a line graph. By contrast, the depth-
based complexity measure described in [30] establishes expansion
subgraphs for each vertex of a given undirected graph (e.g. a graph
having n vertices) and then computes the intrinsic complexities on
the subgraphs. It hence requires time complexity Oðn7Þ.
6. Experimental evaluations

6.1. Hypergraph and graph datasets

We demonstrate the performance of our complexity traces on
several (hyper)graph datasets. We use a hypergraph based dataset
abstracted from the COIL image database and five standard graph
based datasets abstracted from bioinformatics databases
[30,43,44,42] for the experimental evaluations. These datasets are
COIL (for hypergraphs), MUTAG, CATH1, CATH2 and PPIs (for
graphs).

COIL: The COIL database consists of images of 100 3D objects. In
our experiments, we use selected images for three similar cups,
three similar bottles and three pieces of similar vegetables. For
each object we employ 18 images captured from different view-
points. The hypergraphs are abstracted using the feature hyper-
graph method [14]. Details about the feature hypergraph method
can be found in [14]. The maximum, minimum and average ver-
tices of the COIL dataset are 549, 213 and 412.5 respectively.

MUTAG: The MUTAG dataset consists of graphs representing
188 chemical compounds. The maximum, minimum and average
number of vertices are 28, 10 and 17.93 respectively. The edges of
each compound are labeled with a real number, we transform
these graphs into unweighted graphs.

CATH1 and CATH2: The CATH1 dataset consists of proteins in
the same class (i.e Mixed Alpha-Beta), but has different archi-
tectures (i.e. Alpha-Beta Barrel vs. 2-layer Sandwich). CATH2 has
proteins in the same class (i.e. Mixed Alpha-Beta), architecture (i.e.
Alpha-Beta Barrel), and topology (i.e. TIM Barrel), but in different
homology classes (i.e. Aldolase vs. Glycosidases). The CATH2
dataset is harder to classify, since proteins in the same topology
class are structurally similar. The protein graphs are 10 times lar-
ger in size than chemical compounds, with 200–300 vertices.
There are 712 and 190 testing graphs in the CATH1 and CATH2
datasets.

PPIs: The PPIs dataset consists of protein–protein interaction
networks (PPIs). The graphs describe the interaction relationships
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between histidine kinase in different species of bacteria. Histidine
kinase is a key protein in the development of signal transduction.
If two proteins have direct (physical) or indirect (functional)
association, they are connected by an edge. There are 219 PPIs in
this dataset and they are collected from 5 different kinds of bac-
teria. We select Proteobacteria40 PPIs and Acidobacteria46 PPIs as
the testing graphs. The maximum, minimum and average number
of vertices of the selected testing graphs are 232, 3 and 109.60
respectively.

6.2. Evaluation of interior complexity traces

We commence by illustrating the representational power of the
proposed complexity traces for hypergraphs. We demonstrate that
they can be used to distinguish different hypergraphs. The eva-
luation utilizes 36 hypergraphs abstracted separately from the
images of two different objects, namely a box and a cup in the COIL
image database. For each object we use 18 images captured from
different viewpoints. The hypergraphs for individual images are
established by using the feature hypergraph method. For each
hypergraph, we locate the centroid vertex of its (un) directed line
graph, and construct the proposed complexity traces. Fig. 3(a), (b),
(c) and (d) shows the mean values of the undirected complexity
traces using the Shannon entropy (UCTS) and the von Neumann
entropy (UCTV) , together with the directed complexity traces
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Fig. 3. Mean entropy values of complexity traces. (a) For UCTS. (b) For UCTV. (c) For DCT
the reader is referred to the web version of this paper.)
using the von Neumann entropy (DCTV) and the asymptotic (flow)
entropy (DCTA), respectively. In Fig. 3 the x-axis represents the
order of the K-layer centroid expansion subgraph for each hyper-
graph, while the y-axis represents the mean entropy value as a
function of the expansion subgraph order. Here the blue and red
lines represent the mean entropy values of the complexity traces
for the hypergraphs abstracted from the box and cup objects
respectively. The main feature to note is that the mean entropy
values for the different objects are quite dissimilar.

6.3. Experiments on image hypergraphs

6.3.1. Experimental setup
We illustrate the performance of our proposed complexity

traces UCTS, UCTV, DCTV and DCTA on a hypergraph classification
problem. The hypergraph dataset for testing is again abstracted
from the COIL image database. We also compare our methods with
several alternative state-of-the-art hypergraph based learning
methods. These methods include (1) the Ihara coefficients for
hypergraphs (HCIZF) [14,41], (2) the truncated Laplacian spectra
(TLS) and truncated normalized Laplacian spectra (TNLS) [2]. We
compute the feature vectors of test hypergraphs using both our
own methods and the alternatives. We then perform 10-fold cross-
validation using the Support Vector Machine (SVM) Classifier
associated with the Sequential Minimal Optimization (SMO) [45]
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Table 1
Experimental comparisons on hypergraphs.

Datasets Cups Bottles Vegetables

UCTS 100 100 10
UCTV 100 100 10
DCTV 100 100 10
DCTA 100 100 100

TLS 92.31 83.44 82.91

TNLS 55.27 90.00 71.96

HCIZF 100 – –

Table 2
Experimental comparisons on graphs.

Datasets MUTAG PPIs CATH1 CATH2

UCTS 87.23 83.72 98.87 78.94
UCTV 86.17 75.58 98.45 77.89
DCTV 86.17 76.21 98.79 78.94
DCTA 86.17 79.09 92.13 72.63
ECTS 86.35 74.41 98.87 78.42
ECTV 84.57 70.93 98.73 80.47
VNTD 83.51 67.44 – –

VNGE 85.10 63.95 98.45 75.78
SGE 85.10 67.44 98.17 76.31
FV 84.57 70.93 96.76 76.31
FP 85.63 70.93 96.91 76.31
WL 84.57 73.25 98.17 73.15
GCIZF 80.85 70.93 – –

UCTS 1″ 45″ 9015″ 6012″

UCTV 1″ 45″ 9015″ 6012″

DCTV 1″ 53″ 16032″ 10050″

DCTA 1″ 39″ 8055″ 5039″

ECTS 1″ 1″ 5″ 2″

ECTV 1″ 1″ 5″ 2″

VNTD 19053″ 49050″ 41day 41day
VNGE 1″ 1″ 1″ 1″

SGE 1″ 1″ 1″ 1″

FV 1″ 1″ 12″ 5″

FP 1″ 1″ 12″ 5″

WL 1″ 1″ 2041″ 51″

GCIZF 1″ 52″ – –
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and the Pearson VII universal kernel (PUK) [46] to compute the
classification accuracies. We use nine samples for training and one
for testing. All the SMO-SVMs and their parameters were per-
formed and optimized on a Weka workbench [46]. To exclude
random effects of fold assignments, we repeat the whole experi-
ments 10 times. We report the average classification accuracy in
Table 1.

6.3.2. Experimental results and evaluations
From Table 1 it is clear that our methods achieve the greatest

accuracies over all image datasets. (1) Our UCTS, UCTV, DCTV and
DCTA methods outperform TLS and TNLS which both use spectral
information for the hypergraphs. The reason for this is that our
methods based on the line graph of a (hyper) graph can capture
richer (hyper) graph characteristics than the (hyper) graph spec-
tral representations. They also avoid the spectral truncation arising
in TLS and TNLS. (2) For the hypergraphs extracted from the
images of the cup object, the maximum and minimum number of
vertices are 310 and 213 respectively. Here the accuracy of HCIZF is
competitive with that of our complexity traces. Like our com-
plexity traces, HCIZF also relies on directed line graphs, and
exploits richer (hyper) graph characteristics. However, for the
hypergraphs extracted from the images of the bottle and vegetable
objects, where the maximum and minimum number of vertices
are 549 and 305 respectively, HCIZF is intractable for character-
izing the hypergraph structures. The reason for this is that the
computation of the underlying Ihara coefficients tends to result in
infinities even for hypergraphs of moderate sizes. In contrast, our
proposed complexity traces can easily scale to large hypergraphs,
and our experimental results verify this advantage.

6.4. Experiments on graphs

6.4.1. Experimental setup
We evaluate the performance of our proposed complexity tra-

ces UCTS, UCTV and DCTV on a graph classification problem. The
datasets for testing are abstracted from bioinformatics databases.
We also compare our methods with alternative state-of-the-art
graph based learning methods. The comparative methods include
(1) the Weisfeiler–Lehman subtree kernel (WL) [47], (2) the von-
Neumann thermodynamic depth complexity (VNTD) [30], (3) the
von-Neumann graph entropy (VNGE) [26], (4) the Shannon graph
entropy (SGE) defined in Eq. (6), (5) the Shannon entropies asso-
ciated with the information functionals f V (FV) and f P (FP) [21],
(6) the Ihara coefficients for graphs (GCIZF) [14], and (7) the
depth-based complexity traces of graphs [32] computed using the
Shannon entropy associated with both the steady state random
walk (ECTS) and the von Neumann entropy (ECTV). For the
Weisfeiler–Lehman subtree kernel we compute the kernel matrix
of each dataset, and then perform Principle Component Analysis
(PCA) on the kernel matrix to embed graphs into a feature space.
For the remaining methods, we calculate the feature vectors or
feature values of testing graphs. We then perform 10-fold cross-
validation using the SMO-SVMs described in Section 6.3 to com-
pute the classification accuracies for each of the methods in turn.
We report the average classification accuracy over the 10-fold
cross validation for each method in Table 2. We also report the
runtime of each method in Table 2. The runtime is evaluated under
Matlab R2011a running on an Intel(i5) 2.5 GHz 2-Core processor
(i.e. i5-3210M) .

6.4.2. Experimental results and evaluations
From Table 2, we can obtain the following conclusions. (1) On

the MUTAG, CATH1 and PPIs datasets, our complexity trace UCTS
outperforms all the alternative methods. The complexity traces
UCTV, DCTV and DCTA outperform or are competitive to the
alternative methods. On the CATH2 dataset, our complexity trace
UCTS outperforms all the alternative methods, excluding the ECTV.
The complexity traces UCTV, DCTV and DCTA outperform or are
competitive to the alternative methods. Key to the effectiveness of
our methods is that our hypergraph complexity traces probe a
graph using the line graph, and can thus reflect richer graph
characteristics in a higher dimensional feature space. On the other
hand, the alternative methods are based on the original graph
representation. In particular, the entropy based complexity mea-
sures (i.e. VNGE, SGE, FV and FP) are simply computed based on
the global structure of the original graph, and only provide an uni-
dimensional complexity characterisation. (2) Although GCIZF is
also based on a line graph representation, it is outperformed by
our complexity trace methods on each of the datasets studied. This
is because the centroid expansion subgraphs allow our methods to
capture a depth-based information that GCIZF cannot convey. (3)
The runtime of our complexity trace methods is clearly faster than
that of the alternative depth-based complexity method VNTD. It is
also competitive with GCIZF, the fast subtree kernel WL and the
fast entropy measures VNGE, SGE, FV and FP. The reason for this
efficiency is that the required graph entropies in our methods can
all be computed in polynomial time. Compared to the depth-based
graph complexity measure VNTD, our complexity trace methods
avoid either establishing the expansion subgraphs from each
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vertex or computing the intrinsic complexities on the subgraphs.
(4) Generally speaking, the accuracies of our UCTS, UCTV and
DCTV methods are very similar on the MUTAG, CATH1 and CATH2
datasets. However, the accuracies of our UCTS method are
obviously higher than those of our UCTV and DCTV on the PPIs
dataset. The reason for this is that the entropy value of an (un)
directed graph computed using either the undirected or the
directed von Neumann entropy tends to be close to 1. This implies
that the Shannon entropy is better suited for distinguishing graphs
of different classes than the von Neumann entropy. (5) The
accuracies of the proposed complexity traces with the entropies
VNGE and SGE are obviously greater than those based on the
original entropies. This verifies again that our complexity trace
methods capture richer structural characteristics than the original
graph based methods. (6) The accuracy of the DCTV method is
generally greater than that of the UCTV method, because DCTV
considers directional information residing on the edges of a line
graph. However, UCTV ignores these edge directions. This also
implies that the performance of our complexity traces also
depends on that of the required graph entropy. Generally speak-
ing, the hypergraph complexity traces computed using the Shan-
non or von Neumann entropy (i.e., the UCTS or UCTV) outperform
the graph complexity traces using the same entropy (i.e., ECTS or
ECTV). The reason for this is that the directed line graph obtained
by transforming the original graph can capture rich structural
characteristics. This indicates that the complexity traces from the
line graph reflect deeper complexity information than those
obtained from the original graph. (7) Finally, for our DCTA method
the accuracies on the MUTAG and PPIs datasets are very good, but
a little lower on the CATH1 and CATH2 datasets. The main reason
for this is that the edge density of the line graph is related to that
of the original graph. The graphs in the MUTAG and PPIs datasets
are very sparse, with average edge density close to 2.19. However,
for the CATH1 and CATH2 datasets, the average edge density is
much larger, and is about 8.2. Since the required asymptotic (flow)
complexity for the DCTA method is jED j=jVD j , the complexities
for these (sub) graphs are thus similar. This indicates that the
complexity measure may not be suitable for graphs having high
edge density, but perform well on sparse graphs.
7. Conclusion

In this paper, we have shown how to construct depth-based
complexity traces for a hypergraph. Our methods are based on
transforming a hypergraph into a directed line graph. This not only
accurately reflects the multiple relationships exhibited by the
hypergraph, but is also amenable to complexity analysis. By
neglecting the directed edges of the directed line graph, we have
identified a centroid vertex, and thus obtained a family of
expansion subgraphs around the vertex with increasing layer size.
The complexity traces of a hypergraph have been characterized by
measuring how the required entropies of these subgraphs vary
with increasing layer size. Experiments demonstrate the effec-
tiveness and efficiency of our methods.

Our future plans are to extend the work in a number of ways.
First, in prior work we have developed methods for characterising
graphs using the commute time [48] and the heat kernel [49]. Both
the commute time and the heat kernel of an undirected graph
encapsulate the path length information between vertices. It
would be interesting to use the commute time or heat kernel as a
means of identifying a centroid vertex. Second, in [52] Haussler
has proposed a generic method, referred as R-convolution, to
define a kernel between two graphs by decomposing them and
measuring the pairwise similarities between the resulting sub-
structures. Examples include graph kernels based on all pairs of
(a) walks [50], (b) paths [51] and (c) restricted subgraph or subtree
structures [47]. It would be interesting to use the expansion sub-
graphs defined in this paper as a new type of depth-based (hyper)
graph decomposition to define a novel (hyper) graph kernel.
Finally, in [53] we have explored the use of the discrete-time
quantum walks on the directed line graph, which can be con-
structed by transforming a hypergraph. It would be interesting to
extend this work, using the discrete-time quantum walks to
compute the von Neumann entropy associated with a quantum
state. This may provide a more principled means of computing a
quantum depth-based complexity trace of a hypergraph.
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