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I
n many areas of science and technol-
ogy, data structures have more than 
two dimensions, and are naturally 
represented by multidimensional 
arrays or tensors. Two-dimensional 

matrix methods, such as the singular 
value decomposition (SVD), are wide-
spread and well studied mathematically. 
However, they do not take into account 
the multidimensionality of data. In some 
scientific areas, notably chemometrics 
and psychometrics, tensor methods have 
been developed and used with great suc-
cess since the 1960s for the analysis of 
multidimensional data. 

RELEVANCE
During the last decade, there has been a 
fast development of mathematical theory, 
new algorithms, and new application 
areas. The tensor view has been intro-
duced in diverse applications, including 
signal and image processing, bioinfor-
matics, visualization, pattern recogni-
tion, data mining, brain modeling, and 
environmental modeling. We give an 
introduction to state-of-the-art tensor 
methods, especially the higher- order 
SVD (HOSVD), with an application in 
signal processing. 

PREREQUISITES
The reader should be familiar with linear 
algebra, especially the SVD. We shall 
consider real-valued matrices and ten-
sors unless stated otherwise. 

PROBLEM STATEMENT
To illustrate the HOSVD, we will consid-
er the problem of automatically recog-
nizing a handwritten digit. We start with 
the training set of 7,291 digits in the 
U.S. postal service database, where each 

digit is 16 3 16 pixels, and each pixel 
has a gray scale intensity that is a real 
number between –1 and 1. See Figure 1 
for examples of digits in this training 
set. For each d5 0, 1, c, 9, one can 
define a 256 3 N 1d 2  matrix Ad, where 
N 1d 2  is the number of appearances of d  
among the 7,291 test digits. Then, given 
a new test digit zi [ R256, one can check 
for which d  the new digit is closest to a 
linear combination of columns in Ad. To 
do this, for each d, find the  coefficients 
aj
1d2  that minimize ||zi 2a

N1d2

j51
 aj
1d2 1Ad 2 ij||. 

With the standard norm on R256 these 
are least-squares problems. From a com-
putational point of view, and to save 
memory, it is desirable to reduce the size 
of the matrices before beginning the 
process. A standard tool to obtain such a 

data compression of the Ads, is to trun-
cate the SVD of each one and obtain 
much smaller matrices A|d,  against 
which the new unknown digit should 
be tested. 

Another possibility is to view the 
training set as a single 256 3 N 

* 3 10 
three-way-array (3-array) Tijk , where the 
three modes represent pixels, digits in 
training set, and class. Here, N 

* is the 
largest N 1d 2  for d5 0, c, 9, in fact 
N 

*5N 10 2 5 1194. For values of d  with 
N 1d 2 , N 

*,  some digits need to be 
repeated to obtain a complete 3-array. 
The question is: can this higher-order 
array view of the data be the basis to pro-
duce algorithms with improved compu-
tational efficiency without a loss in 
accuracy? 

SOLUTIONS
To solve the problem, we seek generaliza-
tions to q-arrays of the SVD, which is a 
standard matrix-algebraic tool in many 
applications. For an (m 3 n)-matrix A 
we recall the SVD as being 

A5U SV 
T5a

r

k51
sk 

uk 
vk

T 5a
r

k51
sk 

uk # vk.  
 (1)

That is, for the elements Aij of A, 

 Aij5 a
r

k51
UikSkkVjk5 a

r

k51
sk UkVjk. 

The SVD is illustrated in Figure 2. Here 
# denotes the tensor (or outer) product: 
x # y ! xyT. Also, r #  min 1m, n 2  is 
the rank of A, that is, the dimension of the 
space spanned by the columns of A or 
equivalently the dimension of the space 
spanned by its rows. S is a diagonal (r 3 r) 
matrix with the nonzero singular values of 
A (the square roots of the eigenvalues of 
ATA) on its diagonal. The singular values 
are real valued and nonnegative, being 
adopted the following convention 
s1 . c . sr . 05sr11 

5c5 sn. 
uk and vk are the orthonormal columns of 
the matrices U (m 3 r) and V 1n 3 r 2 , 
respectively, with vk being eigenvectors of 
ATA  and uk5 Avk/sk. U and V can be 

The Higher-Order Singular Value Decomposition: 
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[FIG1] Examples of digits of all ten 
classes in the training set. This figure 
was created by widely used data freely 
available at http://www-stat.stanford.
edu/~tibs/ElemStatLearn/.
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augmented with columns to square and 
orthogonal (m 3 m) and (n 3 n) matri-
ces. S is then expanded with zero ele-
ments to an (m 3 n) matrix. 

A fundamental fact is that the set of 
truncated series 

 A < a
s

k51
sk uk vk

T  1s , r 2  (2)

is the best rank-s approximation of A, 
both with respect to the operator norm 
and to the Frobenius norm. In many 
applications, one wants to approximate a 
data matrix with a low-rank matrix. The 
SVD does this in the best way. Such low-
rank approximations can be used, for 
example, for denoising or data compres-
sion. In statistics, the SVD is also called 
the principal component expansion of 
the matrix ATA. 

The SVD is useful whenever we have a 
two-dimensional data set 5Aij6, which is 
naturally expressed in terms of a matrix A. 
In many applications, such as the one we 
consider here, we have a  multidimensional 
data set 5Ti1ciq

6, 1 # ij # nj, of dimen-
sion q, say. In this case, the data may be 
arranged into a multiway array (also 
known as multiarray or q-mode array or 
tensor) T. The basic problem is whether 
tensors can be approximated in a fashion 
similar to the truncated-SVD expansion in 
(2). The case of interest is q . 2 since for 
q5 2, T is a conventional matrix and we 
can use the SVD. What are the possible 
generalizations of the SVD to q . 2? 

GENERALIZATIONS OF THE SVD
The SVD may be generalized to higher-
order tensors or multiway arrays in sev-
eral ways. The two main approaches are 
the so-called Tucker/HOSVD decompo-
sition and the CP expansion (from can-
o nical decomposition (CANDECOMP) 

and parallel factors (PARAFAC) [4]). The 
CP expansion is a special case of the 
Tucker/HOSVD decompositions. For 
simplicity, we present these decomposi-
tions for tensors of order q5 3. This 
shows all fundamental differences to 
the case of a conventional matrix 
(q5 2), and generalizations to q . 3 
are rather direct. 

The Tucker decomposition of an 
(m 3 n 3 p) tensor T of order q5 3 is 

 T5 a
M

I51
a
N

J51
a

P

K51
GIJK uI # vJ # wK  

or for the components,

   Tijk5 a
M

I51
a
N

J51
a

P

K51
 GIJK UiI VjJ WkK . (3)

The HOSVD is a special case of (3) 
when the matrices involved are orthogo-
nal and matrix slices of G are mutually 

orthogonal; we return to this shortly. 
The CP expansion of T is 

 T 5 a
r

l51
 xl # yl # zl   or

  Tijk 
5 a

r

l51
 Xil Yjl Zkl . (4)

The Tucker and CP decompositions are 
illustrated in Figure 3. Here, xl and uI  
are the columns of the matrices X and 
U, and GIJK  are the components of an 
1M 3 N 3 P 2 -core tensor G.  We will 
discuss the Tucker and CP decomposi-
tions separately, but note that the CP 
expansion is the special case of the 
Tucker expansion when G is superdiag-
onal, i.e., GIJK5 0 if any two indices are 
distinct, and M5N5 P5 r. In princi-
ple, G may be larger than T. 

The are several rank concepts for ten-
sors [1], [3], [4]. The rank of T is the 
minimal possible value of r in the CP 
expansion (4). This rank is always well 
defined. The column (mode-1) rank of T 
is the dimension of the subspace of Rm 
spanned by the np  columns of T (for 
every fixed pair of values of jk we have 
such a column). The row (mode-2) rank 
r2 and the mode-3 rank r3 are defined 
analogously. The triple (r1, r2, r3 ) is 
called the multirank of T. A typical rank 
of T is a rank that appears with nonzero 
probability if the elements Tijk are ran-
domly chosen according to a continuous 
probability distribution. A generic rank is 
a typical rank which appears with proba-
bility one. In the matrix case (q5 2), the 
number of terms r in the SVD expansion 
is always equal to the column rank of the 
matrix, which in turn is equal to the row 
rank. However, for tensors, r, r1, r2, and 
r3  can all be different. For matrices 
(q5 2), the typical and generic ranks of 
an ( m 3 n )-matrix are always min 
1m, n 2 . However, for a higher-order ten-
sor a generic rank over the real numbers 
does not necessarily exist. Both the typi-
cal and generic ranks of an 1m3 n3 p 2
-tensor may be strictly greater than min 
1m, n, p 2 , and are hard to calculate. 

THE TUCKER AND 
HOSVD EXPANSIONS
Most common for the Tucker decomposi-
tion is to assume that M # m, N # n, 

m

n

A = σ1 ·

m

u1

n
v1

T vr
T

+ · · · + σr · ur
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m

r
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[FIG2] The SVD of a matrix A. The matrices U and V can be expanded with columns 
to quadratic orthogonal matrices. S is then augmented with zero elements so that 
its size becomes equal to that of A.
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and P # p, so that G is a compression of 
T. The vectors ui, vj, and wk are seen as 
columns of matrices U  (m 3 M ), V  
1n 3 N 2 , and W  1p 3 P 2  respectively, 
and they are usually assumed to be ortho-
normal. The matrices U, V , and W  are 
sometimes seen as generalized principal 
components. 

In [2], it was shown that U, V, and W  
can be taken to be orthogonal matrices, 
so that G  has the same size as T. 
Simultaneously, the different matrix slices 
of G along any mode can be cho sen to be 
mutually orthogonal (with respect to the 
standard inner product on matrix spaces), 
and with decreasing Frobenius norm. 
This is clearly a generalization of the 
matrix SVD, in which rows and columns 
of the singular value matrix S are mutu-
ally orthogonal and with decreasing 
norm. In this case, the Tucker decomposi-
tion is called the HOSVD. Owing to the 
orthogonality conditions, the HOSVD is 
essentially unique. The HOSVD is “rank 
revealing,” which means that if T has 
multirank 1r1, r2, r3 2 , then the last 
m2 r1, n2 r2, and p2 r3 slices along 
the different modes in G are zero matri-
ces. Then one can use thin matrices U 
(m 3 r1), V 1n 3 r2 2 , W 1p 3 r3 2 , and 
also a smaller 1r1 3 r2 3 r3 2  core tensor, 
to write the expansion. 

There are several algorithms for cal-
culating Tucker expansions and the 
HOSVD [2], [4]. In HOSVD, U can be 
calculated by performing a matrix SVD 
on the 1m 3 np 2  matrix obtained by a 
flattening or matricization of T. V  and 
W  are found in the same way. Since U, 
V , and W  are orthogonal, G is then eas-
ily calculated from GIJK5 a

m

i51a
n

j51
 

a
p

k51
 Tijk UiI VjJ WkK.

As opposed to the SVD for matrices, 
the order-(s1 3 s2 3 s3) truncation of the 
HOSVD is not the best multirank- 
1s1, s2, s3 2  approximation of T. However, 
for many applications, it is considered to 
be sufficiently good, or else it can serve as 
an initial value in algorithms for finding 
the best approximation. For the problem 
of finding the best multirank- (s1, s2, s3) 
approximation of T, alternating least-
squares has been the traditional method 
but very recently improved methods have 
been developed [4]. 

THE CP EXPANSION
Formally, the CP expansion (4) is the 
special case of the Tucker decomposi-
tion (3) when G is superdiagonal. It is 
important to know to what degree the 
terms in the CP expansion (4) are 
unique. The uniqueness of the SVD for 
matrices (1) essentially depends on the 
orthogonality conditions on U and V. 

The uniqueness of the CP expansion 
(4) is, up to a trivial rescaling and 
reordering, guaranteed under milder 
assumptions, and orthogonality can-
not in general be imposed. One suffi-
cient condition for uniqueness is 
kX1 kY1 kZ $ 2 1r1 1 2  [5], where kX  

is the largest number such that any kX  
columns of X  are linearly independent. 
Various other conditions have also 
been derived [4]. To calculate the CP 
expansion, one can use alternating 
least-squares methods to minimize the 
difference between T and an expansion 
with a fixed number of terms. One 
then increases the number of terms 
until a match between T and the series 
is obtained. 

The truncated CP expansion with 
s , r terms is in general not the best 
rank-s approximation of T but, again, for 
many applications it is sufficiently good. 
To calculate the best rank-s approxima-
tion one can use the same method as for 
determining the entire expansion but with 
the number of terms kept to s. An impor-
tant difference to the SVD for conventional 
matrices is that the best rank-1 approxi-
mation may not be one of the terms in the 
best rank-2 approximation, and so on. 
Even more importantly, the rank- s 
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[FIG3] (a) The Tucker and HOSVD expansions of a tensor T. For data compression, 
the core tensor G is smaller than T (that is, M * m,m, N * n, P * p), and U, V and W 
are thin matrices. In HOSVD, G has the same size as T (M 5 m, N 5 n, P 5 p). U, V, 
and W are then quadratic orthogonal matrices. (b) The CP (CANDECOMP/PARAFAC) 
expansion of a rank-r tensor T. 

THERE ARE SEVERAL 
ALGORITHMS FOR 

CALCULATING TUCKER 
EXPANSIONS AND 

THE HOSVD.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on June 15,2010 at 20:38:38 UTC from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE   [154]   MAY 2010

[lecture NOTES] continued

approximation problem is ill-posed [3]. 
Specifically, a sequence of tensors of rank 
s, such that inf 1 ||T2 T|||; rank 1T| 2 5 s 2  
is approached, may converge to a tensor of 
rank greater than s. That is, the infimum 
is not attained by any tensor of rank # s. 
This problem is, of course, relevant for sta-
bility of algorithms and for applications. 

THE APPLICATION OF HOSVD 
TO HANDWRITTEN DIGIT 
CLASSIFICATION
In [7], the HOSVD was applied to hand-
written digit classification. The 
256 3 N 

* 3 10 3-array Tijk of data from 
the training set is by HOSVD truncation 
reduced to a m 3 n 3 10 3-array. The 
HOSVD of Tijk is 

 Tijk5 a
256

I51
a
1194

J51
a

9

K50
 GIJK UiIVjJWkK

 < a
m

I51
a

n

J51
a

9

K50
 GIJK UiIVjJWkK

 5 a
m

I51
a

n

J51
 FIJkUiIVjJ ,  (5)

where FIjk5 a
9

K50
 GIJK WkK . Values of 

m and n between 30 and 60 were used, 
which means that the data were com-
pressed by about 99%. Only the first m 
and n columns of U  and V, respectively, 
need to be calculated. The reduced 
m 3 n 3 10 tensor FIJk is computed by 
FIjk5 a

256

i51a
1194

j51
 Tijk UiI VjJ . 

For an unknown digit zi [ R256, the 
low dimensional  representation 
1U 

Tz 2 i5 a
256

j51
Uji zj [ Rm is calculated. 

For each d5 0, c, 9 it is straightfor-
ward, by least-squares, to see how well 
1U 

Tz 2 i is approximated by the columns 
of the m 3 n matrix 1F|d 2 ij5 Fijd. By a 
matrix SVD, F|d  is further reduced to an 
m 3 k matrix with k < 10 during this 
process. The value of d  with the smallest 
residual determines the classification of 
the digit. 

With the tensor model, all digits from 
different classes are projected to a com-
mon subspace. Only one projection of a 
test digit zi is then needed rather the ten, 
one for each d, needed if the training data 
is modeled as ten matrices. This saves 
memory in the test phase. Various tests 

run in [7] show that compared to other 
methods the algorithm is computationally 
efficient (and simple), and has a satisfac-
tory error rate of only 5% when the data is 
compressed by 99%. 

OTHER APPLICATIONS TO 
SIGNAL PROCESSING
The CP decomposition has been used to 
solve various problems in the statistical 
signal processing literature. For example, 
[8] considers a sensor array composed of 
several subarrays that receive a linear 
superposition of signals emitted by r 
sources. The model for the received signals 
has the precise form of (4) and the received 
tensor T has three dimensions: time, 
antenna index, and subarray index. Another 
example is blind multiantenna receivers for 
code-division multiple- access systems [6]. 
Here, the CP model (4) applies with r being 
the number of users whose signals are 
simultaneously received, and T represent-
ing the received data along the dimensions 
antenna, chip, and symbol index. 

The Tucker decomposition and the 
HOSVD are more recent tools than the CP, 
and therefore they are not as widely known 
in the SP community. The HOSVD has, 
however, been used before in other related 
applications. For example, the recent 
paper [9] shows how the HOSVD can be 
used in image processing and face recog-
nition. Therein, face image data were mod-
eled via three tensors with texels, 
illuminations and views as the three 
modes, and recognition algorithms that 
exploit this structure were  presented. 

CONCLUSIONS: WHAT 
WE HAVE LEARNED
Tensor modeling and algorithms for 
computing various tensor decomposi-

tions (the Tucker/HOSVD and CP 
decompositions, as discussed here, 
most notably) constitute a very active 
research area in mathematics. Most of 
this research has been driven by appli-
cations. There is also much software 
available, including MATLAB toolboxes 
[4]. The objective of this lecture has 
been to provide an accessible intro-
duction to state of the art in the field, 
written for a signal processing audi-
ence. We believe that there is good 
potential to find further applications of 
tensor modeling techniques in the sig-
nal processing field. 
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