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Abstract We generalize Laplacian matrices for graphs to Laplacian tensors for even
uniform hypergraphs and set some foundations for the spectral hypergraph theory
based upon Laplacian tensors. Especially, algebraic connectivity of an even uniform
hypergraph based on Z-eigenvalues of the corresponding Laplacian tensor is intro-
duced and its connections with edge connectivity and vertex connectivity are dis-
cussed.
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1 Introduction

Like graphs, hypergraphs have many applications in various fields (Berge 1973;
Lim 2007; Rota Bulò 2009; Rota Bulò and Pelillo 2009). As we know, many prob-
lems associated to graphs are combinatorial optimization problems which turn to
be NP-hard or NP-complete problems (Chung 1997; Nemhauser and Wolsey 1988;
Rota Bulò 2009). Nevertheless, many continuous characterizations of these NP-hard
or NP-complete problems were developed in the past several decades. Among them,
spectral graph theory plays a fundamental role (Chung 1997; Nemhauser and Wolsey
1988). So, the corresponding spectral hypergraph theory becomes the focus of many
researchers in recent years. As graphs are related to matrices, hypergraphs are re-
lated to tensors (Berge 1973; Lim 2007; Qi 2005; Rota Bulò 2009) which could
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reveal more higher order structures than matrices. The spectral theory for matrices
hence serves as a foundation for developing spectral graph theory (Chung 1997;
Fiedler 1973). Unlike matrices, spectral theory for tensors was only developed re-
cently in Lim (2005), Qi (2005, 2007). Several kinds of eigenvalues and singu-
lar values for tensors have been proposed. Based on these, it is natural to de-
velop spectral hypergraph theory. The recent work (Lim 2007; Rota Bulò 2009;
Rota Bulò and Pelillo 2009) is just in this stream. Nonetheless, these results are
based on the so called adjacency tensor of a uniform hypergraph (Lim 2007;
Rota Bulò 2009; Rota Bulò and Pelillo 2009). This kind of tensors only involves
elements which have pairwise different indices. Hence, it is hard to obtain useful
properties for adjacency tensors such as positive semidefiniteness like that in spec-
tral graph theory (Chung 1997), and many properties developed in spectral graph
theory (Chung 1997) are still mysterious for hypergraphs (Berge 1973; Lim 2007;
Rota Bulò 2009).

In this paper, we introduce Laplacian tensors for even uniform hypergraphs. By
even uniform hypergraphs, we mean r-uniform hypergraphs with even r ≥ 4. The
reason why we restrict our discussion to even uniform hypergraphs is that positive
semidefiniteness of the proposed Laplacian tensors is crucial for the main results
(e.g., Theorems 12 and 16) while there is no nontrivial odd order tensor which is
positive semidefiniteness. We present the results only for 4-uniform hypergraphs for
the sake of simplicity ((4) in Definition 2 and the proof for Lemma 19 would be more
complicated for r > 4). Nonetheless, all the results could be extended to the content
of r-uniform hypergraphs with even r ≥ 6.

We show in the next section that the Laplacian tensor of an even hypergraph is
symmetric, positive semidefinite and has a zero Z-eigenvalue with the normalized
vector of all ones as a Z-eigenvector. We introduce the algebraic connectivity of an
even hypergraph as the second smallest Z-eigenvalue of the Laplacian tensor like that
for graphs (Chung 1997; Fiedler 1973), and show that the algebraic connectivity of
an even hypergraph is larger than zero if and only if the hypergraph is connected. We
also show that the number of connected components of an even hypergraph is actually
the dimension of the set of Z-eigenvectors of the Laplacian tensor corresponding to
the zero Z-eigenvalue. We characterize algebraic connectivity of an even hypergraph
by a generalized Courant-Fischer Theorem (Horn and Johnson 1985) for the Lapla-
cian tensor. Hence, computing the algebraic connectivity of an even hypergraph is
transformed into computing the smallest Z-eigenvalue of another tensor resulted by
multilinear transformation (Lim 2007) of its Laplacian tensor. We also point out the
relationships between the Z-eigenvalue problems for Laplacian tensors and the gen-
eralized Laplace-Beltrami operators (Chung 1997). Two other foundational lemmas
concerned algebraic connectivity are established at the end of Sect. 2, while some
applications of them that involve the connections of algebraic connectivity with edge
connectivity and vertex connectivity of an even hypergraph are discussed in Sect. 3.
Some final remarks are given in the last section.

We add a comment on the notation that is used. Scalars are written as lowercase
letters (λ,α, a, b, . . .), vectors are written as bold lowercase letters (x,y, . . .), the i-th
entry of a vector x is denoted by xi , matrices and tensors correspond to italic capitals
(A,L,T , . . .), sets correspond to blackboard bold letters (E,X,V, . . .), the usual sym-
bol ⊗ is used to denote the outer product of tensors, and e and I are reserved for the



566 J Comb Optim (2012) 24:564–579

vector of all ones and the identity matrix, respectively. In this paper, tensors refer to
fourth order tensors (Lim 2007; Qi 2005, 2007). For a tensor T with entries Tijkl and
a vector x ∈ �n, we associate them a scalar, denoted T x4, as

∑n
i,j,k,l=1 Tijklxixj xkxl ,

and a vector, denoted T x3, as its i-th element being
∑n

j,k,l=1 Tijklxj xkxl .

1.1 Preliminaries

Throughout the sequel discussion, we focus on 4-uniform hypergraphs. By a
4-uniform hypergraph (we will abbreviate it graph in the sequel if there is no con-
fusion), we mean a hypergraph G = (V,E) with vertices set V = {1, . . . , n} of
size n ≥ 4 and edges set E = {E1, . . . ,Em} with size m and |Ei | = 4 for every
i ∈ {1, . . . ,m}. Here | · | means the cardinality of a set. A finite path from vertex
i to vertex j is a finite sequence of vertices with its start vertex i and its end vertex j

such that from each of its vertices there is an edge to the next vertex. Two vertices are
called connected if there is a finite path between them. A connected component X of
G is a subset of V such that any two vertices in X are connected and no other vertex
in V \ X is connected to any vertex in X.

Definition 1 For every i ∈ V, the degree of vertex i, denoted as di , is defined as the
cardinality of the set D := {Ep ∈ E | i ∈ Ep}. Vertex i is called isolated if di = 0.

Let L be the Laplacian matrix of a 2-uniform graph G = (V,E), then for any
x ∈ �n (Merris 1994)

xT Lx =
∑

{i,j}∈E

(xi − xj )
2. (1)

So, L is positive semidefinite with e its eigenvector corresponding to zero eigenvalue.
A natural generalization of (1) to fourth order is as follows: for a 4-uniform hyper-
graph G = (V,E), its Laplacian tensor T corresponds to the following quartic form:

T x4 :=
∑

Ep∈E

L(Ep)x4, ∀x ∈ �4 (2)

with

L(Ep)x4 = 1

84

[
(xi + xj + xk − 3xl)

4 + (xi + xj + xl − 3xk)
4

+ (xi + xk + xl − 3xj )
4 + (xj + xk + xl − 3xi)

4], (3)

here L(Ep) is a tensor associated to edge Ep . It is easy to see that Tiiii = di for all
i ∈ V as those for 2-uniform graphs (Merris 1994). This is one of reasons why 1

84 is
multiplied in (3).

Now, we collect the above idea into the following formal definitions.
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Definition 2 Given any nonempty subset I ⊆ V, we associate it an n dimensional
tensor L(I), called the core tensor with respect to I, as:

[L(I)]ijkl :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 i = j = k = l ∈ I;
− 1

3 {i, j, k, l} ⊆ I, three of them equal, but not all;
5
21 {i, j, k, l} ⊆ I, two different pairs of them equal;
1
21 {i, j, k, l} ⊆ I, one pair equal, three of them different;
− 1

7 {i, j, k, l} ⊆ I, pairwise different;
0 otherwise.

(4)

We call L(V) the core tensor of graph G = (V,E), denoted by L.

Definition 3 Given a graph G = (V,E), we associate it an n dimensional nonnegative
integer tensor K , called the degree tensor of G , as Kijkl being the cardinality of the set
D := {Ep ∈ E | {i, j, k, l} ⊆ Ep}. It is easy to see that Kiiii = di for all i ∈ {1, . . . , n}.

Definition 4 Given a graph G = (V,E), let K be the degree tensor of G , and L be its
core tensor. The Laplacian tensor T of G is defined as tensor K ∗L. Here ∗ represents
the Hadamard product of tensors, i.e., the componentwise product.

It is a direct computation to see that the Lapalcian tensor T of a graph defined by
Definition (4) indeed satisfies (2). A tensor T is called symmetric if Tijkl = Ti1i2i3i4

for arbitrary permutation (i, j, k, l) of (i1, i2, i3, i4). A tensor T is called positive
semidefinite if T x4 ≥ 0 for any x ∈ �n.

Definition 5 The symmetric rank r of a symmetric tensor T is the minimum nonneg-
ative integer k such that T has the following representation:

T =
k∑

j=1

αj uj ⊗ uj ⊗ uj ⊗ uj ,

here αj ∈ � and uj ∈ �n for all j ∈ {1, . . . , k}.

2 Algebraic connectivity

In this section, we introduce algebraic connectivity of a graph and discuss some of
its properties.

Lemma 6 For any Ep = {i, j, k, l} with 1 ≤ i, j, k, l ≤ n, let L(Ep) be the core
tensor with respect to Ep and x ∈ �n. We have

L(Ep) = 1

84

4∑

s=1

us
Ep

⊗ us
Ep

⊗ us
Ep

⊗ us
Ep

(5)
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with u1
Ep

:= ei +ej +ek −3el , u2
Ep

:= ei +ej +el −3ek , u3
Ep

:= ei +ek +el −3ej and

u4
Ep

:= ej +ek +el −3ei , where et is the t-th coordinate vector for any t ∈ {i, j, k, l}.
So, L(Ep) is positive semidefinite.

Proof It is easy to see that (5) follows from (3) and Definition 2 directly. The positive
semidefiniteness of L(Ep) follows directly from (3). �

Proposition 7 For any graph G = (V,E), its associated Laplacian tensor T is sym-
metric, positive semidefinite with symmetric rank at most 4m with m = |E|.

Proof By Definitions 2 and 3, the core tensor L and the degree tensor K of a graph
are both symmetric, then their Hadamard product T is symmetric as well. Actually,

T = K ∗ L =
∑

Ep∈E

L(Ep) (6)

by Definitions 2 and 3.
Now, for any x ∈ �n

T x4 =
∑

Ep∈E

L(Ep)x4

= 1

84

∑

Ep∈E

4∑

s=1

(us
Ep

• x)4

≥ 0

with us
Ep

’s are defined in (5) and • the usual inner product in �n. Hence, T is positive
semidefinite.

The rank estimation follows from the above representations (6) and (5) directly. �

The concept of Z-eigenvalues is important for the sequel analysis, which is defined
as follows.

Definition 8 For a tensor T , a pair (λ,x) is a Z-eigenpair of T if the follows hold:

{
T x3 = λx,

λ ∈ �, x ∈ �n, xT x = 1.
(7)

λ is called a Z-eigenvalue and x is the associated Z-eigenvector (Qi 2005, 2007).

From Definition 8 and the fact that the gradient of T x4 with respect to x is 4T x3

when T is symmetric, the following theorem is easy to get. See also the proofs for
(Qi 2005, Theorems 3 and 5).
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Theorem 9 The Z-eigenvectors of a symmetric tensor T and the critical points of the
following minimization problem have a one to one correspondence:

min T x4

s.t. ‖x‖2 = 1, x ∈ �n.
(8)

Here ‖ · ‖2 represents 2-norm in �n. Furthermore, if x is a Z-eigenvector of T , then
the corresponding Z-eigenvalue is T x4.

Since the minimization problem (8) is minimizing a continuous function on a com-
pact set, it must have at least one critical point. Hence, there is at least one Z-eigenpair
for a symmetric tensor.

Theorem 10 For any graph G = (V,E), let T be its Laplacian tensor. Then, e
‖e‖2

is
a Z-eigenvector of T with the corresponding Z-eigenvalue zero.

Proof For any {i, j, k, l} = Ep ∈ E, we have L(Ep)e4 = L(Ep)(ei + ej + ek + el)
4 =

0 by Lemma 6. So,

T e4 =
∑

Ep∈E

L(Ep)e4 =
∑

{i,j,k,l}=Ep∈E

L(Ep)(ei + ej + ek + el)
4 = 0.

This, together with Proposition 7, implies that e
‖e‖2

is a global minimizer of problem
(8). By Theorem 9, e

‖e‖2
is a Z-eigenvector of T with Z-eigenvalue zero. �

Lemma 11 Let {i, j, k, l} = Ep ∈ E, then L(Ep)x4 = 0 if and only if xi = xj =
xk = xl .

Proof By Lemma 6, we have that L(Ep)x4 = 0 if and only if

xi + xj + xk = 3xl, xi + xj + xl = 3xk,

xi + xk + xl = 3xj , and xk + xj + xl = 3xi.

It is easy to see that the latter is equivalent to xi = xj = xk = xl . �

Theorem 12 Given a graph G = (V,E), let T be its Laplacian tensor. Let

S0 :=
{

x ∈ �n \ {0}
∣
∣
∣
∣

x
‖x‖2

is a Z-eigenvector of T with Z-eigenvalue 0

}

∪ {0}.

Then, S0 is a linear subspace of �n, and graph G has exactly Dim(S0) connected
components.

Proof Suppose that {I1, . . . , Iq} are the connected components of graph G . For any
x ∈ �n, s ∈ {1, . . . , q}, denote by xIs

∈ �n a vector with its r-th element being xr if
r ∈ Is and zero otherwise.
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For every y := eIs
, we have that T y4 = 0 by Lemma 6 and (6). Hence, by Theo-

rem 9 and Proposition 7, eIs‖eIs ‖2
is a Z-eigenvector of T with Z-eigenvalue zero. So,

eIs
∈ S0 for every s ∈ {1, . . . , q}. Obviously, the set of vectors {eI1, . . . , eIq

} is lin-
early independent. By Theorem 9 and Lemma 11, every nonzero linear combination
of {eI1, . . . , eIq

} is in S0 \ {0}.
Now, for any x ∈ S0 \ {0}, by Theorem 9, we have

0 = T x4 =
∑

Ep∈E

L(Ep)x4.

By Lemma 6, every L(Ep) is positive semidefinite. Hence, L(Ep)x4 = 0 for every
Ep ∈ E. Thus, by Lemma 11, xi ’s are a constant for all i ∈ Is for every s ∈ {1, . . . , q}.
This, together with the fact that x �= 0, implies that x = α1eI1 + · · · + αqeIq

for some
α ∈ �q satisfying

∑q

i=1 α2
i > 0.

So, S0 is a linear space of dimension q , i.e., Dim(S0) = q , which is the exact
number of connected components of graph G . �

Like that in the linear algebra setting (Horn and Johnson 1985), Dim(S0) is called
the geometrical multiplicity of the zero Z-eigenvalue of T . By Theorems 10 and 12,
we get the following result.

Corollary 13 Graph G = (V,E) is connected if and only if its geometrical multiplic-
ity of the zero Z-eigenvalue of its Laplacian tensor is one.

By Proposition 7, the Laplacian tensor T of a graph G is positive semidefinite. By
(Qi 2005, Theorem 5), T is positive semidefinite if and only if all its Z-eigenvalues are
nonnegative. Thus, using these and Theorem 10, we could order all the Z-eigenvalues
of T with multiplicity as:

0 = λ0 ≤ λ1 ≤ · · · ≤ λb.

It is easy to see that

λb = max T x4

s.t. ‖x‖2 = 1
(9)

by Theorem 9 since (8) and (9) have the same critical points. By Cartwright and
Sturmfels (2011), Ni et al. (2007), we know that

1 ≤ b ≤ 3n − 1

2
.

So it is not vacuous to talk about λ1. As in the literature (Chung 1997; Fiedler 1973),
we introduce the following concept.

Definition 14 We call λ1 the algebraic connectivity of graph G = (V,E), denoted as
α(G).
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Corollary 15 For a graph G = (V,E), α(G) > 0 if and only if Dim(S0) = 1.

Here we give a variational characterization of α(G).

Theorem 16 For any graph G = (V,E), we have that

α(G) := λ1 = min T x4

s.t. ‖x‖2 = 1, eT x = 0.
(10)

Proof The result is true when G is disconnected. Since then α(G) = 0 by Corol-
lary 15. Let X ⊂ V be one of the connected components of graph G , and y :=∑

i∈X
ei . We have an orthogonal decomposition of y as y = βe+x such that eT x = 0.

Actually, β = |X|
n

and x = (
∑

i∈X

n−|X|
n

ei − ∑
i /∈X

|X|
n

ei ). Now, T x4 = T y4 = 0 by
Lemmas 6 and 11. This, together with the positive semidefiniteness of T by Propo-
sition 7, implies that the optimal value of minimization problem (10) is actually
α(G) = 0.

In the following, we assume that G is connected.
We first show that a global minimizer x of minimization problem (10) is indeed a

Z-eigenvector of T . By the first order necessary optimality condition, the minimizer
x of (10) satisfies ‖x‖2 = 1 and

T x3 = κx + νe

with some κ ∈ � and ν ∈ �. Taking inner products of the both sides with e, we get

nν = κx • e + νe • e

= e • T x3

= e •
⎡

⎣
∑

Ep∈E

L(Ep)x3

⎤

⎦

= e •
⎡

⎣ 1

84

∑

Ep∈E

4∑

s=1

(us
Ep

• x)3us
Ep

⎤

⎦

= 1

84

∑

Ep∈E

4∑

s=1

(us
Ep

• x)3(us
Ep

• e)

= 0.

Here the first equality follows from the fact that x • e = 0, the fourth from Lemma
6, and the last from the fact that us

Ep
• e = 0 by the definition of us

Ep
in Lemma 6.

Hence, ν = 0, and then T x3 = κx. So, x is a Z-eigenvector of T with Z-eigenvalue
κ = p∗. Here we denote by p∗ the optimal value of the minimization problem (10).
Furthermore, by the hypothesis of that G is connected, Theorem 10 and Corollary 13,
we get that p∗ > 0.
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Then, we prove that if y ∈ �n with yT y = 1 is a Z-eigenvector of T with
Z-eigenvalue λ > 0, then λ ≥ p∗. Hence, by the definition of algebraic connectiv-
ity of graph G , α(G) = λ1 = p∗.

To this end, suppose that y ∈ �n with yT y = 1 is a Z-eigenvector of T with
Z-eigenvalue λ > 0. We have an orthogonal decomposition of y as y = βe + x for
some β ∈ � and x ∈ �n with xT e = 0 and x �= 0 by Corollary 13 and the assumption
λ > 0. Moreover, we have

T y3 =
∑

Ep∈E

L(Ep)y3

=
∑

Ep∈E

4∑

s=1

(
us

Ep
⊗ us

Ep
⊗ us

Ep
⊗ us

Ep

)
y3

=
∑

Ep∈E

4∑

s=1

(
us

Ep
• y

)3
us

Ep

=
∑

Ep∈E

4∑

s=1

(
us

Ep
• x

)3
us

Ep
,

and T y3 = λ(βe + x). Taking inner products of the both sides with e, we get 0 =
λβn + 0 since us

Ep
• e = 0 by the definition of us

Ep
in Lemma 6. So, β = 0 as λ > 0.

Hence, y = x and xT e = 0. That is to say y is feasible for minimization problem (10).
By the fact that λ = T y4, we conclude that λ ≥ p∗. �

Remark 17 Here are several remarks.

• Similar results for Theorem 16 are true for Laplacian matrices, namely the
Courant-Fischer Theorem (Horn and Johnson 1985). Nevertheless, Theorem 16
is not true for general tensors, even for general positive semidefinite tensors. One
reason why Theorem 16 is true is that the Z-eigenvalue problem (7) has the prop-
erty of orthogonally transformational invariance (Qi 2005, 2007). It is worth to note
that another eigenvalue problem (H-eigenvalue) introduced in Qi (2005, 2007) does
not have the property of orthogonally transformational invariance. Hence, there are
fundamental differences between the spectral theory of tensors and that of matri-
ces.

• For usual graphs, similar results of Theorem 16 (Chung 1997) imply

α(G) = inf
x⊥e,x�=0

Mx2

‖x‖2
2

= inf
x⊥e,x�=0

∑
{i,j}=Ep∈E

(xi − xj )
2

∑n
i=1 x2

i

(11)

with M = D(G)−A(G) as the Laplacian matrix (Merris 1994) and Mx2 := xT Mx,
which corresponds to the eigenvalue problem of the Laplace-Beltrami operator in



J Comb Optim (2012) 24:564–579 573

Riemannian manifolds of the following form:

λM := inf

∫
M

|∇h|2
∫
M

|h|2 , (12)

where h ranges over functions satisfying
∫
M

h = 0. Here the measure on edges
Ep ∈ E and vertices i ∈ V is 1. In an equivalent form,

λM := inf
∫

M

|∇h|2,

where h ranges over functions satisfying
∫
M

h = 0 and
∫
M

|h|2 = 1. One of the
generalizations to fourth order is:

λT := inf
∫

T

|∇h|4,

where h ranges over functions satisfying
∫
T

h = 0 and
∫
T

|h|2 = 1. When it is
discrete, the resulting problem is actually (10). This is one of our motivations to
define the core tensors in Definition 2.

• If we modify the constraint
∫
T

|h|2 = 1 into
∫
T

|h|4 = 1, the resulting eigenvalue
problem is actually the H-eigenvalue problem: a pair (λ,x) is an H-eigenpair of T

if the follows hold:
{

T x3 = λx[3],
λ ∈ �, x ∈ �n \ {0}. (13)

λ is called an H-eigenvalue and x is the associated H-eigenvector. Here x[3] :=
(x3

1 , . . . , x3
n)T .

• As mentioned before, H-eigenvalues and H-eigenvectors are not orthogonal trans-
formation invariant (Qi 2005, 2007) even for Laplacian tensors which have spe-
cial structure. Nevertheless, (13) is a more natural generalization of (11) and (12)
to higher order case. Maybe, it has a closer relationship with similar operators
in Finsler geometry like (11) with the Laplace-Beltrami operator in Riemannian
manifolds.

Lemma 18 Let T be the Laplacian tensor of graph G = (V,E) and α(G) be the
algebraic connectivity of G . We have

α(G) ≤ 2n2

n2 − 2
min

1≤i≤n
di . (14)

Proof Denote by the feasible solution set of (10) as F := {x ∈ �n | ‖x‖2 = 1,

eT x = 0}. Now, for any y ∈ S n−1 := {y ∈ �n | ‖y‖2 = 1}, we could get a decom-
position of y as y = c1e + c2x for some c1, c2 ∈ � and x ∈ F. So,

[

2T − α(G)

(

I ⊗ I − 2

n2
e ⊗ e ⊗ e ⊗ e

)]

y4
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= 2T (c2x)4 − α(G)
[
(nc2

1 + c2
2‖x‖2

2)
2 − 2c4

1n
2
]

≥ 2T (c2x)4 − α(G)
[
2(n2c4

1 + c4
2‖x‖4

2) − 2c4
1n

2
]

= 2T (c2x)4 − 2c4
2α(G)

≥ 0

for any y ∈ S n−1. Here the first inequality follows from the facts that α(G) ≥ 0 and
(a + b)2 ≤ 2(a2 + b2) for a, b ∈ �, and the second from the fact that x ∈ F and
Theorem 16. Hence, tensor W := 2T − α(G)(I ⊗ I − 2

n2 e ⊗ e ⊗ e ⊗ e) is positive
semidefinite. Especially, the diagonal elements of tensor W are nonnegative. So,

min
1≤i≤n

Wiiii = 2 min
1≤i≤n

Tiiii − α(G)

(

1 − 2

n2

)

≥ 0

which, together with Definition 1, implies (14) directly. �

Lemma 19 Let G = (V,E) be a graph, and G′ be a graph by removing a vertex from
G and all adjacent edges. Then,

α(G′) ≥ α(G) − (|V| − 1)3

2
. (15)

Proof Let G1 be the graph by adding a vertex to G′ and all the possible adjacent edges.
Then G is a subgraph of G1. Denote by F(p) := {x ∈ �p | ‖x‖2 = 1, eT x = 0} for
p ≥ 4. Let W be the Laplacian tensor of graph G1, and A be the Laplacian tensor of
graph G . Let Ē be the set of edges of graph G1. Then, E ⊆ Ē by the construction of G1.
Now, by Theorem 16, α(G) = min{Ax4 | x ∈ F(|V(G)|)}, and α(G1) = min{Wx4 | x ∈
F(|V(G)|)}. While,

Ax4 =
∑

Ep∈E

L(Ep)x4, and

Wx4 =
∑

Ep∈Ē

L(Ep)x4 =
∑

Ep∈E

L(Ep)x4 +
∑

Ep∈Ē\E

L(Ep)x4.

So, Ax4 ≤ Wx4 for any x ∈ F(|V(G)|) since every L(Ep) is positive semidefinite by
Lemma 6. Hence,

α(G1) ≥ α(G). (16)

Now, let T be the Laplacian tensor of graph G′. Then, by Theorem 16, α(G′) =
T x4 for some x ∈ F(|V(G)| − 1). Let l ∈ V(G) be the removed vertex and y ∈ �|V(G)|
with yV(G)−{l} = x and yl = 0, we have

Wy4 = T x4 +
∑

Ep∈M

L(Ep)y4,
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where M = {Ep | Ep = {i, j, k, l}, i, j, k ∈ V(G′)}. For any {i, j, k, l} = Ep ∈ M, we
have that

L(Ep)y4 = 1

84
[(xi + xj + xk)

4 + (xi + xj − 3xk)
4 + (xi + xk − 3xj )

4

+ (xj + xk − 3xi)
4]

= 1

84
[84(x4

i + x4
j + x4

k ) − 112(x3
i xj + x3

i xk + x3
j xi + x3

j xk + x3
k xi + x3

k xj )

+ 120(x2
i x2

j + x2
j x2

k + x2
k x2

i ) + 48(x2
i xj xk + x2

j xixk + x2
k xixj )].

Denote by q := |V(G′)| = |V(G)| − 1 ≥ 3 as assumed in Introduction, we have
that |M| = ( q

3

)
, and

1

3

∑

Ep∈M

L(Ep)y4 =
(

q

3

) q∑

i=1

x4
i − 2

(
q − 2

1

)
112

84

q∑

i=1

x3
i

(∑

j �=i

xj

)

+
(

q − 2
1

)
120

84

q∑

i=1

x2
i

(∑

j �=i

x2
j

)

+ 1

2

48

84

∑

i �=j

xixj

∑

k �=i, k �=j

x2
k

=
(

q

3

) q∑

i=1

x4
i + 2

(
q − 2

1

)
112

84

q∑

i=1

x3
i xi

+
(

q − 2
1

)
120

84

q∑

i=1

x2
i (1 − x2

i ) + 24

84

∑

i �=j

xixj (1 − x2
i − x2

j )

=
(

q

3

) q∑

i=1

x4
i + 2

(
q − 2

1

)
112

84

q∑

i=1

x3
i xi

−
(

q − 2
1

)
120

84

q∑

i=1

x4
i +

(
q − 2

1

)
120

84

+ 24

84

∑

i �=j

(xixj − x3
i xj − xix

3
j )

=
(

q

3

) q∑

i=1

x4
i + 2

(
q − 2

1

)
112

84

q∑

i=1

x3
i xi

−
(

q − 2
1

)
120

84

q∑

i=1

x4
i +

(
q − 2

1

)
120

84

− 48

84

q∑

i=1

x2
i + 4

24

84

q∑

i=1

x4
i
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=
(

q(q − 1)(q − 2)

6
+ 224(q − 2) − 120(q − 2) + 96

84

) q∑

i=1

x4
i

+ 120(q − 2) − 48

84

≤ q(q − 1)(q − 2)

6

+ 224(q − 2) − 120(q − 2) + 96 + 120(q − 2) − 48

84

= q(q − 1)(q − 2)

6
+ 224(q − 2) + 48

84

= q3

6
+ −42q2 + 252q − 400

84

≤ q3

6
,

where the second and the fourth equalities follow from the fact that ‖x‖2 = 1 and
xT e = 0, the first inequality from the fact that ‖x‖4 ≤ ‖x‖2 and ‖x‖2 = 1, and the last
inequality from the fact that −42q2 + 252q − 400 < 0 for q ≥ 3.

So, by the fact that ‖y‖2 = ‖x‖2,
∑

i∈V(G) yi = eT x = 0 and Theorem 16,

α(G1) ≤ Wy4 ≤ α(G′) + q3

2
. (17)

Hence, (17), together with (16), implies (15). �

The following is a direct corollary from Lemma 19.

Corollary 20 Let G = (V,E) be a graph, and G′ be a graph by removing k ≤ n :=
|V(G)| vertices from G and all adjacent edges. Then,

α(G′) ≥ α(G) − k

2
(n − 1)3.

3 Applications

In this section, we discuss some issues of graphs that relate to its algebraic connec-
tivity. Let G = (V,E) be a graph. The edge cut means: given any nonempty proper
subset X ⊂ V, the edge cut of X is the set of edges

EX := {Ep ∈ E | ∃i ∈ X, ∃j /∈ X, s.t. {i, j} ⊂ Ep}.
The edge connectivity of G , denoted by e(G), is defined as the minimum cardinal-

ity of EX over all nonempty proper subsets X of V such that the resulting graph is
disconnected.
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Lemma 21 Let G = (V,E) be a graph, T be its Laplacian tensor, α(G) be its alge-
braic connectivity and λb be the largest Z-eigenvalue of T . Then, for all X ⊂ V

|X|2(n − |X|)2

n2
α(G) ≤ |EX| ≤ 21|X|2(n − |X|)2

16n2
λb. (18)

Proof Let X be a nonempty proper subset of V and EX its associated edge cut. Let
x := ∑

i∈X
ei , we have an orthogonal decomposition of x as x = βe + g such that

eT g = 0. Actually, β = |X|
n

and g = (
∑

i∈X

n−|X|
n

ei − ∑
i /∈X

|X|
n

ei ). So,

T g4 = T x4

=
∑

{i,j,k,l}=Ep∈EX

1

84
[(xi + xj + xk − 3xl)

4 + (xi + xj + xl − 3xk)
4

+ (xi + xk + xl − 3xj )
4 + (xj + xk + xl − 3xi)

4].
For every {i, j, k, l} = Ep ∈ EX, there are three situations:

• Three of {xi, xj , xk, xl} are zero and one of them is 1.
• Two of {xi, xj , xk, xl} are zero and two of them are 1.
• One of {xi, xj , xk, xl} is zero and three of them are 1.

So, we have

16

21
≤ L(Ep)x4 ≤ 1

by a direct computation for the three cases. Thus,

16|EX|
21

≤ T g4 ≤ |EX|.

Hence, by (9), Theorem 16 and the fact that ‖g‖2
2 = |X|(n−|X|)

n
, we get that

16|EX|
21

≤ |X|2(n − |X|)2

n2
λb, and

|X|2(n − |X|)2

n2
α(G) ≤ |EX|. (19)

Now, (19) implies (18) directly. �

Here we give an intuitive example for the lower bound in Lemma 21.

Example 22 Consider graph G = (V,E) with vertices set V = {1,2,3,4,5} and
edges set E = {{1,2,3,4}, {1,2,4,5}, {1,3,4,5}, {1,2,3,5}, {2,3,4,5}}. Since |EX|
is easy to compute when |X| = 1 for any graphs. We consider the more nontrivial
cases. The lower bound for |EX| when |X| = 2 provided by Lemma 21 is 36

25α(G).
It is easy to see that |EX| = 5 when |X| = 2. It is difficulty to solve minimization
problem (10), so we randomly select 100000 points in the feasible set of (10) to get
an approximate α(G) = 2.98. Then, the lower bound computed is 4.29. Since |EX| is
an integer, we see that the computed lower bound is tight.
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The following result is a direct corollary from Lemma 21.

Theorem 23 Let G = (V,E) be a graph, T be its Laplacian tensor, α(G) be the
algebraic connectivity of G , λb be the largest Z-eigenvalue of T , and e(G) be the
edge connectivity of G . Then,

(n − 1)2

n2
α(G) ≤ e(G) ≤

⎧
⎨

⎩

21n2

256 λb if n is even,

21(n2−1)2

256n2 λb if n is odd.

The vertex connectivity of G , denoted by v(G), is defined as the minimum car-
dinality of X ⊂ V such that the resulting graph by removing vertices in X and their
associated edges is disconnected.

Theorem 24 Let G = (V,E) be a graph, α(G) be the algebraic connectivity of G and
v(G) be the vertex connectivity of G . We have

α(G) ≤ v(G)
(n − 1)3

2
.

Proof Let X be a subset of vertices such that X is the vertex cut to disconnect graph G .
Then |X| = v(G), and the resulting graph is disconnected. Hence, its algebraic con-
nectivity is zero by Corollaries 13 and 15. Thus, the result follows from Corollary 20
directly. �

4 Conclusion

We introduced in this paper the Laplacian tensor for an even uniform hypergraph,
and the algebraic connectivity through the concept of Z-eigenvalues of tensors. We
established several properties of algebraic connectivity for an even hypergraph and
its connections with edge connectivity and vertex connectivity.

It is far away from a comprehensive and a complete discussion of spectral theory
for hypergraphs like these for graphs (Chung 1997). It is just an initial step towards
the investigation of spectral theory for hypergraphs based on eigenvalues of tensors
introduced in Qi (2005). Besides the spectral theory for hypergraphs, the class of ten-
sors with structure similar to Laplacian tensors introduced in this paper has its own
interest. It has already shown some properties (e.g., Theorem 16) that are not true
for general tensors. Furthermore, this class of tensors is related to sums of powers
of real linear forms (Reznick 1992) and belongs to the class of Cholesky decompos-
able tensors introduced in Lim (2011), which has significant applications in medical
imaging.
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