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a b s t r a c t

Three-way principal component analysis (3WPCA) models have been developed for
analyzing a three-way data array of objects × variables × sources. Among the 3WPCA
models, the least restrictive is the Tucker2 model, in which an extended core array
describes the source-specific relationships between the components underlying objects
and those for variables. In contrast to Tucker2 with the core array unconstrained, the
Parafac model is highly restrictive in that the core slices in the array are constrained to be
diagonal matrices. In this paper, we propose a procedure by which a suitably constrained
intermediatemodel between Tucker2 and Parafac can be found. In the proposed procedure,
the Tucker2 loss function isminimized subject to a specified number of core elements being
zero with their locations unknown; the optimal locations of zero elements and nonzero
parameter values are simultaneously estimated. This technique can be called sparse core
Tucker2 (ScTucker2), as the matrices including a number of zeros are said to be sparse. We
present an alternating least squares algorithm for ScTucker2 with a procedure for selecting
a suitable number of zero elements. This procedure is assessed in a simulation study and
illustrated with real data sets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A time-honored dimension-reduction method for a two-way data matrix is principal component analysis (PCA), which
has been extended for analyzing a three-way data array {xijk; i = 1, . . . , I; j = 1, . . . , J; k = 1, . . . , K}, i.e., an I-objects
× J-variables × K -sources array of xijk. Here, the terms ‘‘objects’’, ‘‘variables’’, and ‘‘sources’’ are used merely for the sake of
distinguishing the three-modes in the array. Such extended procedures are generally called three-way PCA (3WPCA). The
most popular 3WPCA procedures are Tucker2, Tucker3, and Parafac; the former two were originally proposed by Tucker
(1966) and the latter was proposed by Harshman (1970). Among those procedures, Tucker2 is the most comprehensive, in
that the other procedures are derived by imposing constraints in Tucker2 (Kroonenberg, 2008; Smilde et al., 2004): Tucker3
is a constrained version of Tucker2 (Kroonenberg, 1983;Murakami and Kroonenberg, 2003) and Parafac is a constrained one
of Tucker3 (Kiers, 1991).

Using Xk = (xijk) for the I-objects × J-variables data matrix for source k whose (i, j) element is xijk, the Tucker2 model
can be expressed as

Xk = AHkB′
+ Ek, (1)
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with Ek an errormatrix (Tucker, 1966). The parametermatrices to be obtained in (1) are an I-objects× P-componentsmatrix
A, a J-variables × Q -components matrix B, and P × Q matrices Hk, k = 1, . . . , K , where A and B are constrained as

A′A = Ip and B′B = IQ , (2)

with IP the P× P identitymatrix. In the 3WPCA literature, A and B are called componentmatrices, whileHk (P× Q ) is called
a core slice, and the P × QK block matrix H = [H1, . . . , HK ] is referred to as an extended core array (Kroonenberg, 2008;
Smilde et al., 2004). In this paper,H is simply called a core array. Themain features of the Tucker2model (1) are summarized
as follows: [1] A and B do not have a subscript k, but it is attached to Hk, which implies that A and B are invariant across
sources k = 1, . . . , K , while H = [H1, . . . , HK ] serves to explain the differences in Xk across sources; and [2] each core
slice Hk describes the relationships between the P components for objects (the columns in A) and the Q components for
variables (in B) for source k (Adachi, 2011; Murakami and Kroonenberg, 2003).

In contrast to Tucker2, the most restrictive method among the popular 3WPCA procedures is Parafac, in which Hk is
constrained to be a P × P diagonal matrix (Harshman, 1970). If Hk remains to be of P × Q and Dk is used for the diagonal
matrix, the Parafac model is expressed as (1) with

Hk = [Dk, O] for P < Q , Hk = [Dk, O]
′ for P > Q , and Hk = Dk for P = Q . (3)

Here, O is the matrix of zeros by which Hk is completed. We can view the Tucker2 and Parafac models as two extremes in
the sparseness of the core array H = [H1, . . . ,HK ], where the sparseness refers to the number of zero elements in a matrix.
In the Parafac model, H is very sparse; its Hk block is filled with zeros, except for the diagonal elements. On the other hand,
H = [H1, . . . ,HK ] is unconstrained in Tucker2, thus the elements of H are typically nonzero, i.e., not sparse.

The contrast in the sparseness of the core array shows that the unconstrained Tucker2model fits a data set better than the
Parafac one, while the array in Parafac might be too sparse for its model to fit a data set well. However, the sparser Parafac
model is advantageous in model parsimony and interpretability; the number of parameters to be estimated is smaller and
the core sliceHk can be interpreted only by focusing on its diagonal elements. Those arguments suggest that it is desirable for
the core array H to have moderate sparseness. We thus propose a modified Tucker2 procedure with a sparseness constraint
for H, that is, a procedure for obtaining the optimal A, B, and H = [H1, . . . , HK ] in (1) subject to (2), with the additional
constraint

Sp(H) = c. (4)

Here, Sp(H) denotes the number of zero elements inH and c is a specified integer.We further consider a strategy for selecting
a suitable sparseness c. This procedure is referred to as sparse core Tucker2 (ScTucker2).

In order to introduce ScTucker2, we have so far contrasted Tucker2 with Parafac, whose core array is structured as (3).
However, ScTucker2 can provide any type of sparse core array without a specific structure, since only the number of zero
elements in H is constrained with their locations unknown (to be estimated). For example, it may give the core array

H = [H1, H2] =

 # 0 0 0 0 #
0 # 0 # 0 #
0 0 # 0 # 0


(5)

for Sp(H) = 11 and P = Q = 3, where # indicates a nonzero element. As the core slice H2 is not a diagonal matrix, (5)
cannot be located anywhere between Tucker2 and Parafac. Moreover, ScTucker2may produce a core array sparser than that
with Parafac, for example,

H = [H1, H2] =

 # 0 0 0 # 0
0 # 0 0 0 0
0 0 0 0 0 #


, (6)

under a stronger sparseness constraint. Examples (5) and (6) illustrate that ScTucker2 can be viewed as a procedure for
selecting a model without a special name such as Parafac.

A benefit of sparse core arrays, such as (5) and (6), is that we may only focus on a few nonzero elements for interpreting
H. Here, it should be noted that some elements of the core array in the ordinary Tucker2 can also be close to zero by applying
rotation techniques (Kroonenberg, 2008; Smilde et al., 2004) to Tucker2 solutions, as they have rotational freedom.However,
the rotation techniques have drawbacks, namely, that the elements in the resulting core array cannot equal exact zero, and
the rotation is made without fitting a model to data, which is discussed in more detail and illustrated in Sections 6 and 7.

Although a sparse version of Tucker2 has never been considered so far, to the best of our knowledge, the standard PCA
for two-way data has already been modified so as to give sparse solutions (Jolliffe et al., 2003; Zou et al., 2006; Trendafilov
and Adachi, 2015). Such modified PCA procedures are generally called sparse PCA. The prevailing approach involves using
penalty functions, i.e., combining the original PCA objective function with additional functions that penalize solutions for
not being sparse (Trendafilov, 2014). A different approach without the use of a penalty function has been presented by
Adachi and Trendafilov (in press). In their approach, the PCA objective function is optimized subject to the sparseness of the
solution directly fixed to an integer, as in (4). We also use the latter approach in ScTucker2.

ScTucker2 can be related to Kiers’ (1992) approach in which some elements of core array H are constrained to be
zeros. But, the locations of zero elements are fixed, which differs from ScTucker2 with those locations estimated optimally.
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However, Kiers’ (1992) procedure is less restrictive in that the column-orthogonality constraint (2) is not imposed on
component matrices. Whether or not constraint (2) should be imposed is an open question. Imposing it detracts from the
goodness of fit of the model, but, on the other hand, it helps interpretation of the components as independent entities; and
it allows for simple interpretation of fit contributions by the components. For these reasons, we imposed this constraint in
ScTucker2.

The remaining parts of this paper are organized as follows: In Section 2, ScTucker2 is formulated in more detail, whose
algorithm is then presented in Section 3. The methodology for selecting a suitable sparseness is described in Section 4.
A simulation study for assessing the behaviors of ScTucker2 is reported in Section 5. ScTucker2 is compared with Tucker2
followed by rotation in Section 6, and is illustrated using real data examples in Section 7.

2. Sparse core Tucker2

The Tucker2 model (1) is rewritten as

X = AH(IK ⊗ B′) + E (1′)

with X = [X1, . . . ,XK ] (I × JK ), E = [E1, . . . , EK ] (I × JK ), and ⊗ denoting the Kronecker product (e.g., Harville, 1997). In
the ordinary Tucker2, the least squares function is defined as the sum of squares of the errors in (1), as follows:

f = ∥E∥2
= ∥X − AH(IK ⊗ B′)∥2, (7)

with ∥ ∥
2 denoting the squared Frobenius norm. Also in our proposed ScTucker2, the loss function is defined as (7), but the

sparseness constraint (4) is imposed on the core array H. ScTucker2 is thus formulated as minimizing (7) subject to (4) and
the normalization condition (2):

minA,B,H f = ∥X − AH(IK ⊗ B′)∥2 subject to Sp(H) = c, A′A = IP , B′B = IQ . (8)

Using constraint (2), we can decompose the loss function (7) as

f = ∥X − AH(IK ⊗ B′)∥2
= ∥X − AG(IK ⊗ B′)∥2

+ ∥G − H∥
2, (9)

with G = [G1, . . . , GK ] the P × QK block matrix whose kth block is the P × Q matrix defined as

Gk = A′XkB, or equivalently, G = A′X(IK ⊗ B). (10)

The decomposition (9) is derived by rewriting (7) as

f = ∥X − AG(IK ⊗ B′) + AG(IK ⊗ B′) − AH(IK ⊗ B′)∥2

= ∥X − AG(IK ⊗ B′)∥2
− 2η + φ. (7′)

Here,

η = tr{X − AG(IK ⊗ B′)}′{AG(IK ⊗ B′) − AH(IK ⊗ B′)} (11)

is found to be zero, as shown in Appendix A, and

φ = ∥AG(IK ⊗ B′) − AH(IK ⊗ B′)∥2
= ∥A(G − H)(IK ⊗ B′)∥2

= ∥G − H∥
2 (12)

can be derived using (2) and (IK ⊗ B′)(IK ⊗ B′)′ = IK ⊗ (B′B). The decomposition (9) shows that only the term φ = φ(H) =

∥G−H∥
2 is relevant to H, which allows us to easily obtain the sparseness-constrained H that minimizes (7), as described in

Section 3.
The advantage of imposing constraint (2) for ScTucker2 is shown by the fact that the decomposition of the loss function

without using (2) does not give a simple function of H as (12) in which H is simply matched with G. That is, even if (2) was
not supposed, the loss function (7) can be decomposed as f = ∥X−AG#(IK ⊗ B′)∥2

+ φ# with G#
= A+X(IK ⊗ B′+) defined

using A+ for the Moore–Penrose inverse of A and

φ#
= ∥AG#(IK ⊗ B′) − AH(IK ⊗ B′)∥2, (13)

whose derivation is detailed in Appendix B. However, without constraint (2), A and (IK ⊗B′) bywhichH is multiplied in (13)
does not vanish, and (13) cannot be minimized over H subject to (4) in the manner to be shown in Section 3.
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3. Algorithm

In order to obtain the solution for the ScTucker2 problem (8), we present an alternating least squares (ALS) algorithm in
which the initialization of A and B is followed by alternately iterating the following steps:
[A-step] (7) is minimized over A subject to A′A = IP , while H and B are kept fixed.
[B-step] (7) is minimized over B subject to B′B = IQ , with H and A fixed.
[H-step] (7) is minimized over H subject to (4), with A and B kept fixed.

Theminimizations in the A- and B-steps are attained in the sameways as those in the ordinary Tucker2 algorithm (Smilde
et al., 2004, pp. 123–124). That is, the optimal A and B in those steps are given by

A = KL′, (14)

B = UV′. (15)

Here, K and L are given through the singular value decomposition (SVD) of X(IK ⊗ B)H′, defined as X(IK ⊗ B)H′
= K3L′,

with K′K = L′L = IP and 3 a diagonal matrix, while U and V are obtained through the SVD of X̃(IK ⊗ A)H̃′
= U1V′, with

X̃ = [X′

1, . . . ,X
′

K ] (J × IK ) and H̃ = [H′

1, . . . ,H
′

K ] (Q × PK ), U′U = V′V = IQ , and 1 a diagonal matrix. The above solutions
are derived using the fact that (7) is expanded as

f = ∥X∥
2
+ ∥H∥

2
− 2trA′X(IK ⊗ B)H′

= ∥X∥
2
+ ∥H∥

2
− 2ρA(A), (16)

and also as ∥X̃∥
2
+∥H̃∥

2
−2ρB(B)with ρA(A) = trA′X(IK ⊗B)H′ and ρB(B) = tr B′X̃(IK ⊗A)H̃′; minimizing (7) is equivalent

to the maximization of ρA(A) and that of ρB(B) subject to (2). Those are found to be attained for (14) and (15) using the
theorems of ten Berge (1983, 1993).

The decomposition (9) shows that the H-step is attained byminimizing φ(H) = ∥G−H∥
2 overH for fixed A and B. Using

G = (gpr) and H = (hpr) (p = 1, . . . , P; r = 1, . . . , QK ), the function φ(H) is rewritten as

φ(H) = ∥G − H∥
2

=


(p,r)∈O

g2
pr +


(p,r)∈O⊥

(gpr − hpr)
2

≥


(p,r)∈O

g2
pr . (17)

Here, O denotes the set of c indices (p, r) indicating the locations of the elements hpr to be zero. The complement set O⊥ is
the set containing the PQK − c indices (p, r) indicating the locations of the non-zero hpr . The inequality (17) shows that φ(H)

attains its lower limit


(p,r)∈O g2
pr when the non-zero elements hpr with (p, r) ∈ O⊥ are taken as equal to the corresponding

gpr . Moreover, the limit


(p,r)∈O g2
pr isminimalwhenO contains the indices for the c smallest g2

pr among all squared elements
of G. Thus, the optimal H = (hpr) in the H-step is given by

hpr =


0 iff g2

pr ≤ g2
[c]

gpr otherwise,
(18)

with g2
[c] the cth smallest value among all g2

pr .
It should be noted that the core H resulting in (18) satisfies H·H = G·H, with · denoting the Hadamard product

(e.g., Harville, 1997). Using this equation and (10) in (16), we can find that the value of the loss function (7) after the H-
step can be expressed as

f = ∥X∥
2
+ ∥H∥

2
− 2trGH′

= ∥X∥
2
− ∥H∥

2. (19)

Its division by ∥X∥
2 gives

fs =
f

∥X∥
2 = 1 −

∥H∥
2

∥X∥
2 , (20)

which is standardized so as to take a valuewithin the range [0, 1]. Thismeasure is convenient for testing convergence, which
suggests that it should be tested immediately after the H-step.

The algorithm for ScTucker2 is thus listed as follows:
[1] Initialize A and B.
[2] Update H with (18).
[3] Finish if convergence is reached; otherwise, go to [4].
[4] Update A with (14).
[5] Update B with (15) and go back to [2].

In Step [2], the convergence is defined as having a decrease in (20) from the previous round (fs[t−1]
− fs[t]) that is less than

10−8. The initialization in Step [1] is performed using the matrices A0 (I × P) and B0 (J × Q ) whose elements are drawn
from U(−1, 1), with U(α, β) the uniform distribution over the range [α, β]. The left singular vectors of A0 and B0 give the
initial matrices for A and B, respectively, with their satisfying (2). In order to avoid selecting a local minimizer as a solution,
we run the above algorithm 200 times to choose the solution with the lowest loss function value as the optimal one.
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4. Selection of sparseness

In this section, we consider how to choose the sparseness c in constraint (4). It can be viewed as a problem of selecting
a model with suitable sparseness and good fitting for a data set. Between them, the following trade-off relationship exists:
one minus (20) leads to the goodness-of-fit (GOF) index

GOF(c) = 1 − fs =
∥H∥

2

∥X∥
2 , (21)

which is a function of the sparseness c. With the decrease in c , (21) increases, and finally reaches the upper limit GOF(0),
which is the GOF of the ordinary Tucker2 solution with c = 0. We thus need a procedure for finding the best trade-off
between GOF and sparseness. This can be attained using indices called information criteria, of which AIC and BIC are popular
ones (Akaike, 1974; Schwarz, 1978). In those criteria, bothGOF and thenumber of parameters to be estimated are considered,
where the latter number is directly related to the sparseness c , since the c zero elements in H are excluded from those
parameters whose values must be estimated.

The information criteria are defined with a maximum likelihood estimate (MLE). Though a ScTucker2 solution is a least
squares estimate (LSE), it is also aMLEunder the assumption that each element ofEk = (eijk) is identically and independently
distributed according to the normal distribution whose average is zero and whose variance equals σ 2:

eijk ∼ N(0, σ 2). (22)

This equivalence of LSE to MLE is proved in Appendix C with the maximum log-likelihood being given by

log Lmax = −
IJK
2

{log[1 − GOF(c)] + const}. (23)

Here, const = log ∥X∥
2
+ log 2π − log IJK + 1 is a constant irrelevant to parameters.

Using (23), AIC and BIC are defined as functions of c:

AIC(c) = −2 log Lmax + 2θ = −IJK{log[1 − GOF(c)] + const} + 2(N − c), (24)
BIC(c) = −2 log Lmax + θ log(IJK) = −IJK{log[1 − GOF(c)] + const} + (N − c) log(IJK), (25)

where θ denotes the number of parameters to be estimated and N = IP + JQ + KPQ is the total number of elements in A, B,
and H, thus, θ = N − c . A lower value of AIC/BIC indicates a better solution. In (24) and (25), we can find that those indices
take lower values when GOF(c) and c are greater. The optimal sparseness ĉ is thus given by

ĉ = argmin
cmin≤c≤cmax

BIC(c) (26)

if BIC is used; otherwise BIC(c) is replaced by AIC(c) in (26). Here, the lower limit of c is cmin = P0 + Q0 rather than zero,
with P0 = P(P − 1)/2 and Q0 = Q (Q − 1)/2, since ScTucker2 solutions with 0 ≤ c ≤ cmin can be regarded as equivalent to
the Tucker2 solution with c = 0, for the reason described in Appendix D. On the other hand, the upper limit of c is chosen
as cmax = KPQ − max(P, Q ) so that at least max(P, Q ) elements of H are nonzero. Otherwise, at least one component in A
or B disappears in the model part in the loss function (7), as explained in Appendix E.

5. Simulation study

Weperformed a simulation study in order to examine [1] how often the best solution is obtained, [2] howwell parameter
values are recovered by the ScTucker2 algorithm with c set to true values, and [3] how accurately the true sparseness c is
identified by AIC/BIC. Their results are reported in Section 5.2, after the procedures for synthesizing and analyzing data sets
are described in Section 5.1.

5.1. Procedures

With I = J = K = 12 and P = Q = 3, we generated a data matrix X according to the Tucker2 model (1) subject to (2)
and (4). The true parameter and error matrices in those equations are synthesized as follows:

[1] Each element of A and B is drawn from U(−1, 1) and the resulting A and B are transformed so as to satisfy (2), with
U(α, β) the uniform distribution over the range [α, β].

[2] The true sparseness c is randomly set to an integer within the range [0.5KPQ , 0.8KPQ ], and the locations of c zero
elements inH are randomly chosen subject to core sliceHk not being filledwith zeros. The value of each nonzero element
in H is drawn randomly from U(0.5, 1) or U(−1, −0.5).

[3] The error matrix E is filled with the standard normal variables multiplied by the constant that equalizes ∥E∥2/∥X∥
2 to

0.4 (a higher error level), 0.2 (a lower level) or 0.0 (an error-free setting).

We replicated the above procedures to have 100 X’s.
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Table 1
Statistics for the frequency of the best solution found during 200 runs.

Error Error-free Lower Higher
Index AFBS F true

BS AFBS F true
BS AFBS F true

BS

5% 45.1 12.0 42.7 12.0 42.8 6.0
25% 51.8 32.8 48.2 30.0 46.3 17.0
50% 72.7 71.0 63.7 72.0 57.7 50.0
75% 114.0 130.0 78.1 137.0 79.2 134.5
95% 146.9 183.1 107.7 182.1 91.2 172.5
Average 83.9 81.7 66.7 82.4 63.2 75.8

Table 2
Statistics for the differences between true and resulting parameters.

Error level Index MR0 MR# AAD
Matrix H H H A B

Error-Free

50% 0.000 0.000 0.000 0.000 0.000
75% 0.000 0.000 0.000 0.000 0.000
95% 0.000 0.000 0.000 0.000 0.000
Average 0.000 0.000 0.000 0.000 0.000

Lower

50% 0.000 0.000 0.017 0.016 0.016
75% 0.000 0.000 0.023 0.018 0.018
95% 0.000 0.000 0.030 0.020 0.020
Average 0.002 0.002 0.019 0.017 0.017

Higher

50% 0.000 0.000 0.029 0.026 0.028
75% 0.000 0.000 0.043 0.029 0.030
95% 0.018 0.023 0.055 0.035 0.036
Average 0.005 0.007 0.033 0.027 0.030

For each data set, we set P and Q at the true values to perform ScTucker2 with the sparseness selection procedure
in Section 4. As described in Section 3, the algorithm for ScTucker2 was run 200 times. We use Acu, Bcu, and Hcu for
the solutions of A, B, and H resulting from the uth run for a specific value of Sp(H) = c. That is, Acu, Bcu, and Hcu
(c = cmin, . . . , cmax; u = 1, . . . , 200) were obtained for each data set. We express the optimal solution of H for a specific c
as Hc = argmin1≤u≤200fs(Hcu) and the corresponding A and B as Ac and Bc , respectively, where fs(Hcu) is the value of (20)
for H = Hcu.

5.2. Results

In order to study how often the best solution is obtained out of 200 runs, we defined Hcu being the best as fs(Hcu) −

fs(Hc) ≤ 0.001, with 0 ≤ fs(H) ≤ 1, on the supposition that fs(Hc) is the global minimum. For a specific c value, we counted
the frequency Fc with which the best solution is obtained during the 200 runs, then obtained the averaged frequency of the
best solution, AFBS =

cmax
c=cmin

Fc/∆c , in the∆c solutions for each data set, where∆c = cmax − cmin +1. We further obtained
the frequency F true

BS = Fc when c was the true sparseness. The percentiles and averages of AFBS and F true
BS over 100 data sets

are shown in Table 1. There, we can find that their averages indicate sufficient frequencies of the best solution and even the
worst five percentile is six. We can thus consider that 200 is a reasonable number of runs for finding the optimal solution
among the resulting ones.

Since ScTucker2 solutions have permutational and reflectional nonuniqueness, we accommodated Ac , Bc , and Hc for the
true counterparts, as described in Appendix F. Let us use Ĥ, Â, and B̂ for the solutions Hc , Ac , and Bc when c is the true
sparseness. We define three indices for studying the recovery of the trueH = (hpr) by Ĥ = (ĥpr). One is themisidentification
rate of zero elementsMR0 = 1−N00/N0, whereN0 is the number of zero elements inH andN00 is the number of zero elements
in Ĥ whose true counterparts are also zero: ĥpr = hpr = 0. In a parallel manner, we can define the misidentification rate of
nonzero elements as MR# = 1 − N##/N# with N## the number of nonzero elements in Ĥ whose true counterparts are also
nonzero. The other index is the averaged absolute differences AAD(H) = (PQK)−1ΣpΣr |ĥpr − hpr |. We can also use AAD(A)
and AAD(B) for measuring the recovery of A and B, respectively. Obviously, lower values in those indices stand for better
recovery. Their percentiles and averages over 100 data sets are presented in Table 2. There, the results for MR0 and MR#
show that the locations of zero and nonzero elements were recovered very well; in particular, they were exactly identified
for all error-free data sets and almost all ones of the lower error level. The recovery of the parameter values in A, B, and H
was also found to be fairly good in the statistics of the AAD indices, with the recovery for the error-free data perfect. These
results allow us to conclude that parameters can be well recovered in ScTucker2.

Finally, we studied the accuracy in the identification of sparseness, using c for the true sparseness and ĉ for the sparseness
selected by AIC or BIC. In this study, it is senseless to consider error-free data, since AIC and BIC cannot be defined for them:



H. Ikemoto, K. Adachi / Computational Statistics and Data Analysis 98 (2016) 1–18 7

Table 3
Statistics for the bias of sparseness selected by AIC and
BIC.

Error Lower Higher
Index AIC BIC AIC BIC

5% −17.05 −2.00 −19.00 −2.00
25% −14.00 −1.00 −15.00 −1.00
50% −12.00 0.00 −12.00 0.00
75% −9.75 0.00 −9.00 0.00
95% −6.95 0.00 −6.00 1.00

Average −12.03 −0.47 −12.39 −0.57

those data lead to f (the sum of squared errors (7)) being 0, which implies that the maximum log-likelihood (23) diverges
toward infinity with σ 2

= (IJK)−1f = 0 as found in Appendix C. We thus only analyzed error-perturbed data. For each data
set, we obtain the bias ĉ − c , and its percentiles and average over the 100 data sets are shown in Table 3. There, we can
find that the sparseness was selected almost correctly (on average) by BIC for both cases of lower and higher error levels.
On the other hand, the sparseness was found to be considerably underestimated by AIC. We thus do not use AIC in real data
analysis (Section 7).

6. Differences from Tucker2 followed by rotation

Asmentioned in Section 1, the ordinary Tucker2 can produce a core array that approximates a sparse array, by exploiting
the rotational freedom of solutions. This freedom is shown by the fact that the Tucker2 model (1) can be rewritten as
Xk = AS(S′HkT)(T′B′) + Ek = A#H#

kB
#′

+ Ek. Here, S and T are arbitrary orthonormal matrices of P × P and Q × Q ,
respectively. That is, A#

= AS, B#
= BT, and H#

k = S′HkT (k = 1, . . . , K ) which is rewritten as

H#
= S′H(IK ⊗ T) or H̃#

= T′H̃(IK ⊗ S) (27)

with H#
= [H#

1 , . . . ,H
#
K ] (P × QK ) and H̃ = [H#′

1 , . . . ,H#′

K ] (Q × PK ). Furthermore, the A and B in (2) can be replaced by
A# and B#, respectively; they also satisfy the orthonormality conditions indicated by (2). Those facts imply that if A, B, and
Hk are the optimal solutions, the rotated matrices in A#

= AS, B#
= BT, and (27) can also be so. Therefore, the following

two-stage procedure can be used in Tucker2:

[1] Data fitting: (1) is fitted to Xk to obtain an initial solution of A, B, and Hk (k = 1, . . . , K ).
[2] Rotation: A function of (27) is maximized or minimized over orthonormal S and T so that the resulting core array (27)

has a simple structure.

Here, a simple structure refers to a property of a matrix that it has a number of elements close to zero (Browne, 2001;
Thurstone, 1947). Giving such a structure to a matrix is restated as simplifying the matrix.

As a procedure for [2], Kiers’ (1997) orthomax rotation procedure for three-way data can be used, which is formulated
as maximizing

κ1Dp(H#, τ1) + κ2Dp(H̃#, τ2) = κ1Dp((S′H(IK ⊗ T))′, τ1) + κ2Dp((T′H̃(IK ⊗ S))′, τ2) (28)

over orthonormal S and T. Here, κ1 and κ2 are nonnegative constants and Dp(M, τ ) = ∥M·M∥
2

− τn−1
∥1N ′(M·M)∥2

expresses the dispersion of the squares of the elements in an n×mmatrixMwith τ ≥ 0. When τ = 1, Dp(M, τ ) is the well
known varimax criterion (Kaiser, 1958). Though Kiers (1998a) has extended the procedure for also simplifying component
matrices, the extended one is not treated in this paper, as we only consider simplifying/sparsifying the core array.

Kiers’ (1998b) simplimax rotation for three-way data can also be used for [2]. In this method, a sparse target matrix
HT = (hT

pr) to be approximated by H#
= (h#

pr) is considered:

∥HT − H#
∥
2

= ∥HT − S′H(IK ⊗ T)∥2 (29)

is minimized over S, T, and HT subject to

Sp(HT) = s (30)

with s a specified integer. This method is similar to ScTucker2 in thatHT has the sparseness constraint (30) equivalent to (4):
the locations of nonzero elements and their values in HT are optimally estimated. Indeed, S and T given, the minimization
of (29) over HT under (30) is attained by the formula (18) with its hpr , gpr , and g[c]

2 replaced by hT
pr , h

#
pr , and the sth smallest

value among all h# 2
pr , respectively. However, a difference is that the core array is constrained to be sparse in ScTucker2,

while the target matrix (rather than the core array) is sparsified in the simplimax rotation. For selecting the Sp(HT) value in
(30), a scree procedure is used, in which an increase in the value of (29) as a function of Sp(HT) is noted: Sp(HT) is selected
whereafter (29) value shows a considerable relative increase (Kiers, 1994).
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The above rotation methods might produce the core array similar to the sparse ones obtained by ScTucker2. However,
Tucker2 followed by rotation differs from ScTucker2 in the following ways:

[A] The elements of rotated matrices cannot exactly be zero.
[B] Rotation does not involve data; the function in [2] is defined without Xk.

These two properties are possessed by every rotation technique.
In spite of [A], we can regard the elements of small absolute values as zeros. Thismay be good enough for interpretational

purposes. However, it needs a troublesome job of deciding a threshold, the values less thanwhich are considered to be small
enough to be neglected. For this job, we need a subjective decision. In contrast, such a job is unnecessary in ScTucker2: the
Sp(H) elements in a core array become exactly zero.

The property [B] is found in (28) and (29), which are functions of a core array and the orthonormal matrices simplifying
the array without a data matrix considered. That is, in Tucker2 before rotation, its model is optimally fitted to data, but the
objective function in the subsequent rotation is optimized only for simplifying a solution. On the other hand, the Tucker2
model is fitted to data, subject to the sparseness constraint, in ScTucker2; and the appropriate sparseness can be selected
using BIC which is defined by considering the fitness to a data set. However, such a measure is not available in rotation:
though the sparseness value in (30) can be chosen by the scree procedure, the function (29) used in the procedure does not
involve data.

Besides Kiers’ (1997, 1998a,b) orthomax and simplimax rotation methods described above, some rotation methods have
been proposed for Tucker2 solutions (Brouwer and Kroonenberg, 1991; Kroonenberg, 1983; Adachi, 2011). However, they
have special purposes beyond giving simple structures to the resulting matrices. In the next examples, we thus compare
ScTucker2 with Tucker2 followed by Kiers’ (1997, 1998) orthomax and simplimax rotation. There, the former rotation is
performed with κ1 = (QK)−1, κ2 = (PK)−1 and τ1 = τ2 = 1 in (28) set to one, while the latter is done with S and T con-
strained to be orthonormal so that A and B satisfy (2). Without this constraint, the simplimax rotation has been originally
proposed (Kiers, 1994) and it can provide simpler core slices than the constrained version, but we use this version, as it is out
of our scopewhether or not (2) should be imposed and the use of the constrained version is thought to facilitate the compar-
isons to the ScTucker2 and the orthomax solutions with (2). In the next section, we further compare ScTucker2 with Parafac,
which is formulated asminimizing (1) overA,B, andDk subject to (2) and (3),with the solution not having rotational freedom
(Smilde et al., 2004). The constraint (2) is also dispensable in Parafac, i.e., its unconstrained version provides the solutions
without rotational freedom, but they tend to degenerate (Smilde et al., 2004) which is also found in the next example.

7. Real data examples

Wewill now illustrate ScTucker2 and compare it with Tucker2 and Parafac using two real data sets. One of the data sets
is a three-way array of impression ratings. The other data set is an array describing the physical growth patterns of girls. For
the data sets, ScTucker2 is performed in the same procedure as in Section 5.

7.1. Impression rating data

The first example is Osgood and Luria’s (1954, pp. 582–583) data array {yijk} of 15-concepts × 10-adjectives ×

6-occasions, which is available at http://three-mode.leidenuniv.nl. From that web page, we downloaded the data set. It
contains rating values describing how strongly the concepts are associated with the adjectives. The rating was performed
twice by a female suffering from dissociative identity disorder under each of the three assumed personalities, known as
Jane, Eve White, and Eve Black, for a total of six occasions. That is, three personalities × two cases formed the six occasions.
For the rating, a bipolar scale ranging from 1 to 7 was used, with each end of the scale corresponding to either an adjective
or its antonym. For the analysis, 4 (the midpoint of 1 and 7) was subtracted from the raw value yijk and standardized with
xijk = (xijk − 4)/{ΣiΣj(xijk − 4)2/150}1/2, so that xijk = 0 implies a neutral rating and the sum of squares of xijk over i and j
is equivalent across k.

ScTucker2, Tucker2 and Parafac were carried out for {xijk} with the six occasions treated as sources. Here, P and Q were
set to three, as Osgood and Luria (1954) have assumed that concepts and adjectives are distributed in a three-dimensional
space. The Tucker2 solution was rotated by the orthomax and simplimax methods described in Section 6, where the scree
procedure described in the next paragraph was used for the latter method. In ScTucker2, the BIC-based selection of the
sparseness Sp(H) = c showed the best Sp(H) being 37, with BIC = 2048.9. As described in Appendices C, D and F, BIC
can also be defined for the Tucker2 and Parafac models under the normality assumption (22) for errors. The BIC values
were 2201.6 and 2439.8 for the resulting Tucker2 and Parafac solutions. By comparing the three BIC values, we can find
that the ScTucker2 model with Sp(H) = 37 is the best one for the data set among the models considered. The GOF values,
which are defined as (21), were GOF(37) = 0.715 for the ScTucker2 solution and GOF(0) = 0.733 for the Tucker2 one. It
should be noted that GOF(37) is not so much lower than GOF(0): the ScTucker2 solution approximates the data set well in
spite of 37 elements’ vanishing among the 54 ones in the core array. The GOF value for Parafac, defined as in Appendix G,

http://three-mode.leidenuniv.nl
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Fig. 1. Plot of the simplimax function values against Sp(HT) for impression rating data, with only the range of Sp(HT) shown within which a reasonable
Sp(HT) is found.

was GOF PA = 0.564, which suggests that the Parafac model does not approximate the data very well. The frequency of
the best solution which is defined as in Section 5.2 was 73.8 in average and 23 for Sp(H) = 37 (the selected sparseness).
In Appendix H, we report the CPU time taken by the ScTucker2 and simplimax methods in which algorithms must be run
for the multiple values of sparseness.

In the simplimaxmethod, the scree procedurewas used, inwhich the values of the simplimax function (29)were obtained
for Sp(HT) = cmin, . . . , cmax for choosing the best Sp(HT) with cmin and cmax defined in Section 4. Fig. 1 shows the plot of
the resulting function values. In the figure, the value is found to increase remarkably after Sp(HT) = 42, which allows us
to choose Sp(HT) = 42. It is greater than Sp(H) = 37, which allows us to hypothesize that the simplimax function values
tend to suggest the choice of the Sp(HT) value greater than the true Sp(H). This hypothesis is congruous to the result of a
simulation study reported in Appendix I, though it cannot be concluded that the hypothesis was supported, as only one set
of simulated data was examined in that study.

The resulting componentmatricesA andB are shown in Table 4. There,we can find that the values of the elements are very
similar among the four solutions, and their components can thus be interpreted in the same manner. The ‘‘L, H, I’’ and ‘‘E, A,
S’’ indicating the columns of A and B are the abbreviations for the names which we can give the corresponding components.
That is, the three components for concepts inA can be related to (daily) life (L), health (H), and illness (I), respectively, from the
signs of the elements and their absolute values. Those in B allow us to interpret the components for adjectives as standing
for evaluation (E), activity (A), and (the width of ) scope (S), respectively.

The six core slices H1, . . . ,H6 resulting in ScTucker2 and Tucker2 are presented in Table 5 together with the diagonal
matricesD1, . . . ,D6 obtained by Parafac. There, bold font is used for the nonzero elements in the ScTucker2 solution and the
corresponding ones in the Tucker2 and Parafac solutions. We can find that the values of the boldfaced elements are similar
and their signs are equivalent among the four methods. However, the ScTucker2 solution obviously differs from that from
Parafac with the off-diagonal elements of Dk restricted to zero. For example, in the ScTucker2 solution, the strong link of H
to E in Eve Black 1 and 2 is found with the corresponding off-diagonal elements 8.4 and 9.9, but such a link cannot be found
by Parafac. Furthermore, we should note that the ScTucker2 solution with Sp(H) = 37 is sparser than the Parafac one with
Sp([D1, . . . ,D6]) = 36. It demonstrates the flexibility of ScTucker2, in that the locations of zero elements are estimated
optimally in contrast to Parafac with their locations fixed; the flexibility allowed ScTucker2 to find sparser core slices with
better locations of nonzero elements.

On the other hand, the solutions of Tucker2 followed by rotation may approximate the ScTucker2 one if the elements
whose absolute values are less than a threshold value in the former are regarded as zeros. However, such a value is difficult
to choose in an objective manner. An approach may be to use the Sp(HT) value selected in the simplimax, i.e., to regard the
Sp(HT) smallest absolute values as zeros, but Sp(HT) can be too great as shown in Appendix I, so that some elements ofHmay
become unreasonably close to zero. Indeed, some of the elements in Table 5, whichwere estimated as nonzero in ScTucker2,
are found to take the values close to zero in the simplimax solution and also in the orthomax one. For example, the element
for the L and E components in Eve Black 2 takes −2.4 in the ScTucker2 solution, while the corresponding elements are −1.7
and −1.4 in the simplimax and orthomax solutions, respectively. They must be neglected as zero, if we use the threshold
value by which the Sp(HT) = 42 smallest absolute values are regarded as zeros.

The interpretation of the ScTucker2 core slices Hk can be facilitated by representing them as the network diagrams in
Fig. 2, which has been depicted in the following manner:
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Table 4
Component matrices for impression rating data.

ScTucker2 Tucker2-Simplimax Tucker2-Orthomax PARAFAC

L H I L H I L H I L H I

A

Love 0.34 −0.24 −0.03 0.32 −0.27 0.01 0.31 −0.28 0.00 0.38 −0.16 0.01
My child 0.27 −0.16 0.16 0.25 −0.16 0.15 0.25 −0.17 0.14 0.24 −0.09 0.14
My doctor 0.36 0.43 −0.05 0.40 0.41 −0.03 0.40 0.41 −0.02 0.27 0.50 −0.09
Me 0.04 0.36 0.22 0.04 0.33 0.25 0.05 0.32 0.26 0.00 0.33 0.19
My job 0.26 −0.26 0.09 0.23 −0.28 0.09 0.22 −0.29 0.07 0.31 −0.34 0.15
Mental sick 0.19 −0.23 0.39 0.14 −0.25 0.43 0.14 −0.27 0.42 0.24 −0.13 0.45
My mother 0.29 0.10 0.27 0.28 0.10 0.27 0.29 0.08 0.27 0.24 0.20 0.26
Peace of mind 0.33 0.37 −0.23 0.37 0.33 −0.16 0.37 0.33 −0.15 0.33 0.40 −0.24
Fraud −0.24 0.21 0.40 −0.26 0.23 0.38 −0.25 0.22 0.39 −0.30 0.22 0.34
My spouse 0.17 −0.23 −0.04 0.16 −0.25 −0.02 0.15 −0.25 −0.03 0.19 −0.22 −0.04
Self control 0.33 0.09 −0.03 0.34 0.06 0.00 0.34 0.05 0.00 0.33 0.11 −0.01
Hatred −0.19 0.23 0.44 −0.20 0.24 0.45 −0.19 0.22 0.46 −0.22 0.20 0.42
My father 0.35 0.22 0.14 0.35 0.20 0.15 0.36 0.19 0.15 0.28 0.25 0.14
Confusion 0.05 −0.20 0.51 0.00 −0.20 0.51 0.00 −0.22 0.50 0.03 −0.11 0.52
Sex 0.16 −0.29 −0.02 0.14 −0.33 0.03 0.13 −0.33 0.02 0.20 −0.24 0.00

E A S E A S E A S E A S

B

Hot 0.19 −0.35 0.19 0.21 −0.29 0.21 0.26 −0.25 0.21 0.12 −0.30 0.19
Worthless −0.43 −0.03 −0.01 −0.44 −0.09 0.01 −0.41 −0.16 0.01 −0.44 0.06 0.00
Relaxed 0.13 −0.36 0.60 0.16 −0.28 0.60 0.21 −0.25 0.60 0.05 −0.30 0.63
Large 0.39 0.27 −0.05 0.39 0.26 −0.09 0.34 0.32 −0.09 0.44 0.10 −0.10
Fast 0.06 0.70 0.21 0.07 0.76 0.17 −0.06 0.76 0.17 0.32 0.73 0.12
Clean 0.43 0.18 −0.09 0.43 0.18 −0.12 0.39 0.25 −0.12 0.44 −0.01 −0.10
Tasty 0.32 −0.06 0.29 0.32 −0.09 0.29 0.33 −0.03 0.29 0.28 −0.17 0.30
Weak −0.38 0.00 −0.25 −0.37 0.06 −0.25 −0.38 −0.01 −0.25 −0.34 0.14 −0.27
Deep −0.33 0.01 0.44 −0.31 0.06 0.46 −0.31 0.00 0.46 −0.28 0.16 0.43
Active −0.26 0.40 0.44 −0.25 0.37 0.43 −0.31 0.32 0.43 −0.13 0.44 0.43

Table 5
Core slices across multiple personalities for impression rating data with blank cells denoting zero elements.

ScTucker2 Tucker2-Simplimax Tucker2-Orthomax PARAFAC
E A S E A S E A S E A S

Jane 1
L 9.0 L 8.9 0.4 0.1 L 8.7 1.9 0.0 L 8.7
H H −1.1 −0.7 −0.8 H −1.2 −1.0 −0.6 H −1.0
I −5.1 I 1.2 1.0 −5.0 I 0.8 1.1 −5.1 I −5.1

Jane 2
L 10.2 L 10.1 −0.8 0.3 L 10.1 1.0 0.2 L 9.5
H H −1.4 −0.8 −0.5 H −1.5 −1.0 −0.3 H −1.3
I −4.0 I 0.8 −0.6 −3.9 I 0.8 −0.5 −4.0 I −3.9

Eve White 1
L 8.5 L 8.6 0.6 −0.7 L 8.3 2.1 −0.7 L 8.3
H H −0.6 −0.5 1.3 H −0.7 −0.7 1.5 H −0.6
I −1.8 −4.9 I −1.4 0.3 −4.9 I −1.6 0.0 −4.8 I −5.0

Eve White 2
L 8.5 L 8.6 0.0 0.0 L 8.5 1.5 −0.1 L 7.9
H H 0.5 −0.9 0.4 H 0.5 −0.8 0.6 H −1.6
I −5.1 I −0.6 −0.6 −5.2 I −0.6 −0.8 −5.1 I −5.0

Eve Black 1
L −1.6 L −1.0 0.5 −0.6 L −0.9 0.2 −0.6 L −2.1
H 8.4 −4.6 H 8.5 −4.5 0.1 H 9.2 −2.9 0.1 H −6.8
I I −0.3 −1.1 −1.0 I 0.3 −1.3 −1.0 I −1.0

Eve Black 2
L −2.4 −1.9 L −1.7 −0.6 −1.7 L −1.4 −0.9 −1.7 L −3.6
H 9.9 −3.8 H 10.1 −3.7 0.2 H 10.7 −1.7 0.2 H −6.7
I −1.6 I −1.0 −1.3 −1.6 I −0.3 −1.5 −1.6 I −1.5

[1] The components for concepts and those for adjectives are depicted as left and right boxes, respectively, with their
abbreviations.

[2] No link exists between the components associated with h̃pqk = 0, where h̃pqk is the (p, q) elements of Hk.
[3] The components with h̃pqk > 0 and those with h̃pqk < 0 are linked by solid and dotted lines, respectively, with the h̃pqk

values attached to the lines and their width proportional to the absolute values of h̃pqk.

In Fig. 2, we can find that the component links shown by the resulting core slices are almost invariant across the two
cases within the same personality. Further, the links are almost equivalent between Jane and Eve-White, but their links
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Fig. 2. Network representation of the core slices for ScTucker2 in Table 5.

differ from those for Eve-Black. That is, the core slices for Jane and Eve-White show a strong positive link between L (life)
and E (evaluation) and a negative one between I (illness) and S (scope), without a link between H (heath) and A (activity). In
contrast, L is rather negatively linked to E, and H is linked positively to E but negatively to A in the core slices for Eve-Black.

As already stated, the model with Sp(H) = 37 chosen in ScTucker2 is sparser than the Parafac one with
Sp([D1, . . . ,D6]) = 36. In spite of the number of parameters being smaller for the former model, its GOF(37) = 0.715
was higher than the latter GOF PA = 0.564, which suggests that the Parafac is not suitable to this data set. It can be shown
clearly by the ScTucker2 solutionwith Sp(H) = 36, that is, by equalizing the sparseness to that of [D1, . . . ,D6] in Parafac. The
resulting GOF(36) = 0.717 for ScTucker2 allows us to state that it explains more amount of the variances in the data than
Parafac by 100×(0.717−0.564) = 15.3%. The ScTucker2with Sp(H) = 36 is shown in Table 6,whose core slices are found to
differ from the diagonalmatrices supposed in Parafac. Table 6 also demonstrates the stability of ScTucker2 solutions between
different Sp(H). That is, the locations of nonzero elements for ScTucker2 core arrays are equivalent between Sp(H) = 36
(Table 6) and Sp(H) = 37 (Table 5), except the (2,3) element for Eve white 1 being nonzero for the former. Further, the
values of the nonzero elements of the component matrices and core arrays in the ScTucker2 solution in Tables 4 and 5 are
found to be almost equivalent to those in Table 6.

As stated in Section 6, Parafac can be performed without the constraint (2). This unconstrained Parafac showed high
goodness of fit with GOF PA = 0.724, but the solution was degenerate and not useful: the resulting A and B were rank
deficient with themaximum of the cosines between the column vectors in A being 0.97 and that for B 0.99. How degenerate
the solution was can be found in Adachi (2013, pp. 47–49), where the same analysis has also been performed.

7.2. Physical growth data

The second example is the data set that describes the eight physical measurements of 30 normal French girls at ages
4, 5, . . . , 15 (Janssen et al., 1987). It gives 30-girls × 8-measures × 12-ages array of measurements which is available at
http://three-mode.leidenuniv.nl. We standardized the raw value yijk in the array as xijk = (yijk − ȳ.j.)/sj, with ȳ.j. and s.j. the
average and standard deviation of yijk over i = 1, . . . , 30 and k = 1, . . . , 12, respectively. This standardization removes
the influence of different scales among measures. We chose P = 2 and Q = 3, for the sake of illustrating a case with
P ≠ Q and the consideration that ScTucker2 and Tucker 2 show satisfactorily high GOF as found below in spite of small
P and Q values. Tucker2 with the two rotation methods and ScTucker2 were carried out for the data set. In ScTucker2, the
sparseness Sp(H) = 32 was selected with the corresponding BIC value 1477.7. This was less than BIC = 1648.6 for the
Tucker2 solution, showing that the ScTucker2 model is better for this data set. The GOF(32) for the ScTucker2 solution was
0.930, which is almost equivalent to GOF(0) = 0.932 for Tucker2 solution. The frequency of the best solution which is
defined as in Section 5.2 was 113.0 in average and 46 for Sp(H) = 32.

In the simplimax rotation, the scree selection of Sp(HT)was performed in the same procedure as in the last example. Fig. 3
shows the plot of the resulting values of the simplimax function. There, we can find some candidates for the best Sp(HT). One
is Sp(HT) = 56, as the gradient of the curve before Sp(HT) = 56 is different from the one after it. However, the increase in
the value is remarkable after Sp(HT) = 58 and furthermore remarkable after Sp(HT) = 59. Here, we selected Sp(HT) = 56,
though in a subjectivemanner. This demonstrates a drawback of the simplimax rotation inwhichwemust resort to the scree
selection requiring a subjective decision. As in the last example, Sp(HT) = 56 was greater than Sp(H) = 32 for ScTucker2,
which gives the hypothesis that the selected Sp(HT) is too great. This hypothesis is congruous to the results of a simulation
study in Appendix J.

http://three-mode.leidenuniv.nl
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Table 6
ScTucker2 solution with Sp(H) set to the sparseness of the Parafac core.

Component matrices Core slices
L H I E A S

Love 0.34 −0.24 −0.03
Jane 1

L 9.0
My child 0.27 −0.16 0.16 H
My doctor 0.37 0.43 −0.03 I −5.1
Me 0.04 0.35 0.23 E A S
My job 0.26 −0.26 0.09

Jane 2
L 10.2

Mental sick 0.18 −0.24 0.39 H
My mother 0.29 0.10 0.27 I −4.0
Peace of mind 0.33 0.37 −0.22 E A S
Fraud −0.25 0.21 0.40

Eve White 1
L 8.5

My spouse 0.17 −0.23 −0.04 H 1.3
Self control 0.33 0.09 −0.03 I −1.8 −4.9
Hatred −0.19 0.23 0.45 E A S
My father 0.35 0.22 0.15

Eve White 2
L 8.5

Confusion 0.04 −0.22 0.51 H
Sex 0.16 −0.29 −0.03 I −5.1

E A S E A S

Hot 0.20 −0.35 0.19
Eve Black 1

L −1.5
Worthless −0.43 −0.03 0.00 H 8.4 −4.6
Relaxed 0.13 −0.36 0.60 I
Large 0.39 0.27 −0.06 E A S
Fast 0.06 0.69 0.21

Eve Black 2
L −2.3 −1.8

Clean 0.43 0.18 −0.09 H 9.9 −3.8
Tasty 0.32 −0.06 0.29 I −1.6
Weak −0.38 0.00 −0.26
Deep −0.32 0.01 0.45
Active −0.25 0.40 0.45

Fig. 3. Plot of the simplimax function values against Sp(HT) for growth data, with only the range of Sp(HT) shown within which reasonable Sp(HT) is
found.

Fig. 4 presents the loadings in the resulting component matrix A. There, the values of the elements are found to be
similar among the three solutions, and their components can thus be interpreted in the same manner. The first component
is interpreted as a common (C) component, as its loadings for all girls are similar positive values. In contrast, the second
one can be named an individual difference (D) component, as the signs of its loadings allow us to classify the girls into
two groups. Table 7 shows the resulting B. Among the solutions, small differences are found, but the same names can be
given to the components. The first one can be called a size (S) component, as it shows positive loadings for all measures
associated with physical sizes. The second can be named a length component, as it gives large positive loadings for the two
length measures. The third component can be called a parts (P) component, as its loadings differ among physical parts: the
loadings for the arm and chest circumferences are positive, while the loading for the head’s circumference is negative and
of a large absolute value.
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Fig. 4. The first and second component loadings connected by real and dotted lines, respectively.

Table 7
Component matrices for measures in growth data.

Measure ScTucker2 Tucker2-Simplimax Tucker2-Orthomax
S L P S L P S L P

Weight 0.33 0.14 0.31 0.37 −0.23 0.31 0.37 0.04 0.38
Length 0.16 0.65 −0.44 0.36 0.72 0.00 0.36 0.51 −0.51
Crown.rump.length 0.24 0.40 −0.04 0.36 0.28 0.13 0.37 0.29 −0.11
Head.circumference 0.57 −0.55 −0.52 0.33 −0.22 −0.85 0.31 −0.75 −0.46
Chest.circumference 0.31 0.16 0.46 0.36 −0.27 0.39 0.36 0.07 0.46
Arm 0.41 −0.17 0.46 0.34 −0.46 0.08 0.34 −0.28 0.38
Calf 0.31 0.19 −0.03 0.36 0.09 −0.01 0.36 0.05 −0.07
Pelvis 0.35 0.09 −0.15 0.36 0.05 −0.11 0.36 −0.05 −0.12

The core slices provided by ScTucker2 and the rotation following Tucker2 are presented in Table 8, where bold font is
used for the nonzero elements in the ScTucker2 solution and the corresponding ones in the solutions of rotation. The values
of (C, S) elements are found to be similar among the three solutions, where the (C, S) one stands for the element of each core
slice associated with the C and S components. The value of that element is found to increase monotonically with age, which
indicates that the growth in physical sizes is common to all girls. However, the (D, S) elements in the simplimax solution
differ from those in the ScTucker2 and orthomax ones. The latter solutions allow us to find that how girls differ in sizes is
invariant across ages, since the signs of the elements are equally negative and their absolute values are not very different
among ages. However, such an interpretation cannot be made for the simplimax (D, S) elements, as their signs for the first
three ages differ from the signs for the other ages. The differences of the ScTucker2 solution from the two rotation ones
are found in the (C, L) and (C, P) elements. In the ScTucker2 solution, the value of the (C, L) element is found to increase
monotonically with age, which can be reasonably interpreted as showing that the growth in lengths is common to all girls
as those in sizes. On the other hand, such a clear interpretation cannot be made for the (C, L) elements in the rotation
solutions, as [1] their values are close to zero and [2] the sign of the element for the final age is negative. The former result
[1] is congruous to that the scree procedure suggested a greater value of Sp(HT) than Sp(H). The closeness of the rotated
elements to zero is also found in almost all of (C, P) elements for which ScTucher2 provided nonzero values.

The result in Appendix J allows us to consider that the Sp(HT) value 56 selected in the simplimax rotation is too great,
which suggests that the rotation with Sp(HT) set to Sp(H) = 32 selected in ScTucker2 may give a more reasonable solution.
We thus performed the rotation with Sp(HT) = 32, which provided the solution very similar to the ScTucker2 one as found
in Table 9. It presents the resultingB andH, whose elements are similar to the ScTucker2 ones in Tables 7 and 8. Furthermore,
the loadings in A = (aip) given by the simplimax rotation were almost equivalent to those for ScTucker2 shown in Fig. 4,
which is indicated by (IP)−1Σi,p|a

(spx)
ip − a(sc)

ip | = 0.001 with a(spx)
ip and a(sc)

ip the simplimax and ScTucker2 solutions of aip,
respectively. Here, it should be remembered that the simplimax solution of H for Sp(HT) = 56 differed from the ScTucker2
one as described in the last paragraph, but the change of Sp(HT) into 32 allows the simplimax solution to approach the
ScTucker2 one. It suggests that ScTucker2 can help the selection of Sp(HT) in the simplimax rotation. At least, the BIC-based
selection of sparseness in ScTucker2 allows us to avoid a subjective decision required by the scree selection in the simplimax.

8. Discussion

We proposed a sparse core Tucker2 (ScTucker2) method, in which the Tucker2 loss function is minimized subject to the
sparseness constraint for the core array. In the alternating least squares algorithm for ScTucker2, the fact was used that the
loss function is decomposed into a term irrelevant to the core array and its simple function, which allows us to easily attain
the sparseness-constrained minimization of the Tucker2 loss function. We further presented a procedure for selecting a
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Table 8
Core slices across ages for growth data with blank cells denoting zero elements.

Age ScTucker2 Tucker2-Simplimax Tucker2-Orthomax
S L P S L P S L P

4 C −19.0 −7.7 1.6 C −20.6 −1.8 1.4 C −20.1 −0.3 2.3
D −3.5 D 2.1 1.1 0.9 D −4.8 1.4 0.7

5 C −15.9 −6.5 C −17.4 −0.9 0.4 C −16.8 −0.4 0.9
D −3.7 D 0.9 0.8 1.1 D −4.9 1.2 0.6

6 C −12.8 −5.2 C −14.2 −0.3 0.0 C −13.5 −0.3 0.1
D −3.6 D 0.2 0.6 1.3 D −4.5 1.3 0.6

7 C −9.9 −3.9 −1.1 C −11.3 0.4 −0.4 C −10.3 −0.3 −0.7
D −4.2 D −1.1 0.6 1.5 D −4.8 1.5 0.4

8 C −6.5 −2.6 −1.1 C −7.8 0.6 −0.5 C −6.7 −0.3 −0.9
D −4.4 D −2.2 0.7 1.6 D −4.6 1.7 0.4

9 C −3.3 −1.2 −1.1 C −4.6 0.9 −0.4 C −3.2 −0.2 −1.0
D −4.6 D −3.3 0.8 1.6 D −4.5 1.7 0.3

10 C C −1.0 0.8 −0.2 C 0.5 −0.1 −0.7
D −4.7 D −4.3 1.0 1.1 D −4.4 1.7 −0.1

11 C 4.4 1.8 C 3.3 0.8 0.0 C 5.1 0.0 −0.4
D −5.3 D −6.1 1.2 0.8 D −4.7 1.6 −0.4

12 C 9.3 4.0 C 8.4 1.1 0.2 C 10.4 0.2 −0.7
D −5.4 D −7.5 1.0 1.0 D −4.3 1.7 −0.2

13 C 14.2 6.2 C 13.7 1.3 0.7 C 15.9 0.5 −0.3
D −5.4 D −8.9 1.2 0.6 D −3.9 1.8 −0.5

14 C 19.0 7.4 1.4 C 18.5 0.3 1.1 C 20.7 0.0 0.7
D −5.1 D −9.7 1.8 0.6 D −3.0 2.0 −0.6

15 C 22.1 7.9 2.1 C 21.7 −0.5 1.3 C 23.8 −0.6 1.3
D −4.4 D −9.8 1.9 0.6 D −2.0 1.9 −0.4

Table 9
Simplimax solution with Sp(HT) set to the sparseness selected in ScTucker2.

Component matrix B Core slices in H
S L P Age S L P Age S L P

Weight 0.33 0.13 0.40 4 C −19.0 −7.6 1.5 10 C 0.1 0.1 −0.7
Length 0.16 0.65 −0.45 D −3.4 0.2 0.5 D −4.7 0.0 −0.1
Crown.rump.length 0.24 0.41 −0.07 5 C −15.9 −6.4 0.3 11 C 4.4 1.8 −0.3
Head.circumference 0.56 −0.55 −0.52 D −3.7 −0.1 0.5 D −5.3 −0.2 −0.4
Chest.circumference 0.31 0.15 0.48 6 C −12.8 −5.1 −0.4 12 C 9.3 3.9 −0.3
Arm 0.42 −0.18 0.36 D −3.6 −0.1 0.5 D −5.4 −0.3 −0.2
Calf 0.32 0.18 −0.05 7 C −10.0 −3.9 −1.0 13 C 14.2 6.1 0.3
Pelvis 0.35 0.09 −0.11 D −4.2 0.0 0.5 D −5.5 −0.2 −0.5

8 C −6.5 −2.5 −1.1 14 C 19.0 7.3 1.4
D −4.4 0.1 0.4 D −5.1 0.2 −0.6

9 C −3.4 −1.2 −1.1 15 C 22.1 7.8 2.1
D −4.6 0.1 0.4 D −4.4 0.5 −0.5

suitable sparseness using AIC or BIC. A simulation study showed that the parameter matrices can be recovered well by
ScTucker2 and the sparseness of the core array can be suitably chosen using BIC, but is underestimated by AIC. Real data
examples demonstrated the benefits of using ScTucker2 rather than Tucker2 and Parafac.

In ScTucker2, the sparseness constraint is imposed only upon the core array. If the constraint was also imposed on
component matrices A and B, the interpretation of ScTucker2 solutions would be further facilitated, as we might only
focus on the nonzero elements in A, B and H for capturing the relationships of objects to components, those of variables
to components, and inter-component relations. A modified Tucker2 procedure with a sparseness-constrained core array
and component matrices remains to be developed for future studies.

Another remaining subject may be considering a sparse Tucker2 procedure in which the constraint (2) is not imposed
on component matrices. As explained in Section 2, the loss function (13), which is more complex than the function (12)
treated in this paper, must be minimized over H, if (2) is not imposed. To form an algorithm for that minimization may be
an essential task for the subject.
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Appendix A. Proof of η = 0

We can expand (11) as
η = trX′AG(IK ⊗ B′) − trX′AH(IK ⊗ B′) − tr(IK ⊗ B′)′G′A′AG(IK ⊗ B′) + tr(IK ⊗ B′)′G′A′AH(IK ⊗ B′),

which is rewritten as
η = trG′G − trG′H − trG′A′AG{IK ⊗ (B′B)} + trG′A′AH{IK ⊗ (B′B)} (A.1)

using (IK ⊗ B′)(IK ⊗ B′)′ = IK ⊗ (B′B) and (10). Further, the use of (2) in (A.1) leads to
η = trG′G − trG′H − trG′G + trG′H = 0.

Appendix B. Proof for the decomposition of (7) without using (2)

Loss function (7) can be rewritten as
f = ∥X − AG#(IK ⊗ B′) + AG#(IK ⊗ B′) − AH(IK ⊗ B′)∥2

= ∥X − AG#(IK ⊗ B′)∥2
− 2η#

+ φ#.

Here,
η#

= tr{X − AG#(IK ⊗ B′)}′{AG#(IK ⊗ B′) − AH(IK ⊗ B′)}

= tr81 − tr82 − tr83 + tr84

with
81 = X′AG#(IK ⊗ B′), 82 = X′AH(IK ⊗ B′),

83 = (IK ⊗ B)G#′A′AG#(IK ⊗ B′), and 84 = (IK ⊗ B)G#′A′AH(IK ⊗ B′).

Using G#
= A+X(IK ⊗ B′+), we can find tr81 = tr83 and tr82 = tr84 to have η#

= 0 as follows:
tr83 = tr(IK ⊗ B)G#′A′AA+X(IK ⊗ B′+)(IK ⊗ B′)

= trG#′(A′AA+)X{IK ⊗ (B′+B′B)} = trG#′A′X(IK ⊗ B) = tr81,

tr84 = tr(IK ⊗ B)(IK ⊗ B+)X′A′+A′AH(IK ⊗ B′).

= tr{IK ⊗ (B′BB+)}X′(A′+A′A)H = tr(IK ⊗ B′)X′AH = tr82,

where we have used A′
= A+AA′ (Magnus and Neudecker, 1991, p. 33).

Appendix C. Maximum likelihood Tucker2 and ScTucker2

Let (AHkB′)ij denote the (i, j) element ofAHkB′. Incorporating the assumption (22) for errors into (1) leads to xijk following
N((AHkB′)ij, σ

2) independently across different i, j, k. Thus, the joint probability density of xijk over all i, j, k is given by

P(X) =

I
i=1

J
j=1

K
k=1

1
√
2πσ 2

exp

−

[xijk − (AHkB′)ij]
2

2σ 2


.

The log likelihood for X can thus be written as

log L = log P(X) = −
IJK
2

log 2π −
IJK
2

log σ 2
−

1
2σ 2

Σk∥Xk − AHkB′
∥
2

= −
IJK
2

log 2π −
IJK
2

log σ 2
−

1
2σ 2

f , (C.2)

with f being the Tucker2 loss function defined in (7).
The equation d log L/dσ 2

= 0 shows that the MLE of the variance satisfies σ 2
= (IJK)−1f . Substituting this into (C.2)

leads to

log L = −
IJK
2

log 2π −
IJK
2

log
f
IJK

−
IJK
2

= −
IJK
2

(log f + log 2π − log IJK + 1). (C.3)

We can find the maximization of (C.3) to be equivalent to minimizing f or (7). That is, Tucker2 can also be formulated as
maximizing (C.3) subject to (2) and incorporating (4) into this formulation leads to ScTucker2.

Using the equation f = ∥X∥
2
[1 − GOF s(c)] derived from (20) and (21), the attained maximum of (C.3) is expressed as

log Lmax = −
IJK
2

{log ∥X∥
2
[1 − GOF s(c)] + log 2π − log IJK + 1}

= −
IJK
2

{log[1 − GOF s(c)] + const}, (C.4)

i.e., (23), with const = log ∥X∥
2
+ log 2π − log IJK + 1. The maximum log likelihood for ScTucker2 is given by (C.4) and that

for Tucker2 is given by (C.4) with c = 0.
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Appendix D. BIC for Tucker2

As described in Appendix C, Tucker2 can be formulated as an ML procedure and BIC can thus be defined for the Tucker2
model. Here, it should be cautioned that the Tucker2 model has rotational indeterminacy; its solutions can be rotated as in
(27). This implies that a set of the rotation matrices S and T in (27) allows the P0 = P(P − 1)/2 elements of the rotated core
array and its other Q0 = Q (Q − 1)/2 elements to take exact zero. Subtracting those numbers from the apparent number of
parameters N = IP + JQ + KPQ gives NT2 = N − P0 − Q0, which is the number of parameters considered in BIC. Therefore,
by substituting NT2 and GOF(0) for N − c and GOF(c) in (25), BIC for Tucker 2 is expressed as

BIC = −IJK{log[1 − GOF(0)] + const} + NT2 log(IJK).

Appendix E. Upper limit of sparseness

We show that at least one component in A = [a1, . . . , aP ] or B = [b1, . . . , bQ ] disappears in the model part in the
ScTucker2 loss function (7), if Sp(H) = c is larger than KPQ − max(P,Q ), or equivalently, Card(H) < max(P,Q ), with
Card(H) the number of the nonzero elements in H (i.e., its cardinality). Here, we note that (7) is also expressed as

f =

K
k=1

Xk −

P
p=1

Q
q=1

hpqkapb′

q


2

(E.5)

with hpqk the (p, q)th element of Hk, and P = max(P,Q ) is supposed without loss of generality.
If Card(H) < P , then hp∗qk = 0 (q = 1, . . . ,Q ; k = 1, . . . , K ) for at least one p∗ and (E.5) can be rewritten as

f =

K
k=1

Xk −


p≠p∗

Q
q=1

hpqkapb′

q


2

, (E.6)

where the p∗th component is found to vanish in themodel part: ap∗ is not fitted to data: An example for P = 3, Q = 2, K =

2, and Card(H) = 2 < P is given by

H = [H1,H2] =

 0 # 0 0
0 0 0 0
0 0 # 0


:

with p∗
= 2. Then, (E.6) is expressed as f = ∥X1 − h121a1b′

2∥
2
+ ∥X2 − h312a3b′

1∥
2. Here, a2 does not appear, which implies

that the component a2 is unnecessary.
On the other hand, when Card(H) is at least P , all components in A and B can be fitted to data. An example for P = 3,

Q = 2, K = 2, and Card(H) = P is given by

H = [H1,H2] =

 # 0 0 0
0 0 0 #
0 # 0 0


which allows us to rewrite (7) as f = ∥X1−(h111a1b′

1+h321a3b′

2)∥
2
+∥X2−h222a2b′

2∥
2. Here,we can find that all components

appear. However, Card(H) ≥ P does not guarantee that all components are fitted to X. For example,

H = [H1,H2] =

 # 0 0 0
0 # 0 #
0 0 0 0


.

Then, f = ∥X1 − (h111a1b′

1 + h221a2b′

2)∥
2
+ ∥X2 − h222a2b′

2∥
2, where a3 vanishes.

It is not problematic that a component disappears in the model part, in that it implies the component being unnecessary
and thus might be regarded as a suggestion for reducing the number of components. However, this subject is beyond our
scope. In this paper, we simply avoid the cases where at least a component inevitably disappears in the model, by setting
Card(H) > max(P,Q ), i.e., cmax = KPQ − max(P,Q ).

Appendix F. Accommodation of solutions

The model part in (7) can be rewritten as

AH(IK ⊗ B′) = A5P5
′

PH(IK ⊗ 5Q ){IK ⊗ (B5Q )′}

with 5P = 2PΩP . Here, 2P is a P × P permutation matrix and ΩP is a P × P diagonal matrix with each diagonal element
being one or minus one. That is, if Ac, Bc , and Hc are the optimal solutions of A, B, and H for a specified c , then Ac5P , Bc5Q ,
and 5′

PHc(IK ⊗ 5Q ) are also the optimal ones. In the simulation study, we chose 5P that minimizes the average of the
absolute values of the differences between the elements of Ac5P and the true counterparts. In a parallel manner, 5Q was
selected.
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Fig. I.1. Plot of the simplimax function values against Sp(HT) for simulated data, with only the range of Sp(HT) shown within which a reasonable Sp(HT)

is found.

Appendix G. Maximum likelihood Parafac

The maximum likelihood (ML) version of Parafac can be formulated merely by incorporating additional constraint (3)
into theML-based Tucker2 in Appendix C, i.e., by replacingHk with a diagonal matrixDk.. Thus, the log likelihood for Parafac
is expressed as (C.2) with (AHkB′)ij replaced by (ADkB′)ij and the maximum log likelihood is given by

LogL[PA]

max = −
IJK
2

{log ∥X∥
2
[1 − GOF PA] + log 2π − log IJK + 1}

= −
IJK
2

{log[1 − GOF PA] + const}. (G.7)

Here, GOF PA = ∥D∥
2/∥X∥

2 with D = [D1, . . . ,DK ]. We can find that (E.5) is equivalent to (C.4), except GOF. Parafac does
not have rotational indeterminacy and the number of parameters is NPA = (I + J + K)P . We thus have the following BIC for
Parafac:

BIC = −IJK{log[1 − GOF PA] + const} + NPA log(IJK),

by substituting NPA and GOF PA for N − c and GOF(c) in (25).

Appendix H. Computation time

The computations for ScTucker2 and the simplimax following Tucker2 were performed with the statistical package R
(R Development Core Team, 2008) executing on a Core i7-2640M 2.8 GHz computer with 8 GB of memory. We used the
function system.time to measure CPU times. As a result, the ScTucker2 and the simplimax procedures were found to take
1232 and one 1322 s, respectively, to provide the solutions over considered multiple values of sparseness, for the data
set in Section 7.1. This result shows that ScTucker2 is a bit faster than the simplimax procedure. It was also found for the
computations in Section 7.2: the ScTucker2 and simplimax procedures took 663 and 891 s, respectively.

Appendix I. Supplementary simulation for Section 7.1

To empirically test the hypothesis that the simplimax function values suggest choosing Sp(HT) greater than the true
Sp(H), we performed the following simulation study: the simplimax solution for Sp(HT) = 42 (Tables 4 and 5) with the
37 smallest absolute values of core elements replaced by zero was regarded as a set of the true parameter values with the
true Sp(H) = 37. From them, we synthesized a data set through (1′) so that ∥E∥2/∥X∥

2
= 0.1. For the data set, BIC in

ScTucker2 showed the best Sp(H) being 36 which is close to the true value 37, while the simplimax following Tucker2 gave
the function values in Fig. I.1, which suggests to choose Sp(HT) = 42 greater than 37. This result supports our hypothesis.
Such a greater Sp(HT) may make the recovery of H worse. Indeed, AAD(H) (the averaged absolute difference between the
resulting and true H used in Section 5.2) for the simplimax solution was 0.215 which is greater than AAD(H) = 0.129 for
ScTucker2. Further, we substituted zero into the elements of the simplimax Hwhose absolute values are less than the 43th
smallest so that Sp(H) was 42 and matched with the chosen Sp(HT) value. The resulting H showed AAD(H) = 0.168, which
is also greater than 0.129 for ScTucker2, though AAD(A) and AAD(B)were equivalent between the simplimax and ScTucker2
solutions.
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Fig. J.2. Plot of the simplimax function values against Sp(HT) for simulated data, with only the range of Sp(HT) shown within which reasonable Sp(HT) is
found.

Appendix J. Supplementary simulation for Section 7.2

To test the hypothesis that the simplimax function values suggest too great Sp(HT), we performed the simulation study,
whose procedure is the same as in Appendix I except that the true parameter values were set to those of the simplimax
solutions shown in Fig. 4, Table 7, and Table 8 with the 32 smallest absolute values of H replaced by zeros, i.e., the true
Sp(H) = 32. For the data set, BIC in ScTucker2 showed the best Sp(H) being 36, which was not very different from the true
value, though it was overestimated. On the other hand, the simplimax following Tucker2 gave the function values in Fig. J.2.
There, we cannot find a value that is clearly considered to be the best Sp(HT), but for it Sp(HT) = 58 can be chosen, as the
function value shows a considerable relative increase after Sp(HT) = 58, which is much greater than the true Sp(H) = 32.
It supports our hypothesis.
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