

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. MATRIX ANAL. APPL. c© 2013 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 148–172

THIRD-ORDER TENSORS AS OPERATORS ON MATRICES: A
THEORETICAL AND COMPUTATIONAL FRAMEWORK WITH

APPLICATIONS IN IMAGING∗

MISHA E. KILMER† , KAREN BRAMAN‡ , NING HAO† , AND RANDY C. HOOVER§

Abstract. Recent work by Kilmer and Martin [Linear Algebra Appl., 435 (2011), pp. 641–
658] and Braman [Linear Algebra Appl., 433 (2010), pp. 1241–1253] provides a setting in which the
familiar tools of linear algebra can be extended to better understand third-order tensors. Continuing
along this vein, this paper investigates further implications including (1) a bilinear operator on the
matrices which is nearly an inner product and which leads to definitions for length of matrices, angle
between two matrices, and orthogonality of matrices, and (2) the use of t-linear combinations to
characterize the range and kernel of a mapping defined by a third-order tensor and the t-product
and the quantification of the dimensions of those sets. These theoretical results lead to the study
of orthogonal projections as well as an effective Gram–Schmidt process for producing an orthogonal
basis of matrices. The theoretical framework also leads us to consider the notion of tensor polynomials
and their relation to tensor eigentuples defined in the recent article by Braman. Implications for
extending basic algorithms such as the power method, QR iteration, and Krylov subspace methods
are discussed. We conclude with two examples in image processing: using the orthogonal elements
generated via a Golub–Kahan iterative bidiagonalization scheme for object recognition and solving
a regularized image deblurring problem.

Key words. eigendecomposition, tensor decomposition, singular value decomposition, multi-
dimensional arrays, Krylov methods, tensor SVD

AMS subject classifications. 15A69, 65F30

DOI. 10.1137/110837711

1. Introduction. The term tensor, as used in the context of this paper, refers
to a multidimensional array of numbers, sometimes called an n-way or n-mode array.
If, for example, A ∈ Rn1×n2×n3 , then we say A is a third-order tensor where order is
the number of ways or modes of the tensor. Thus, matrices and vectors are second-
order and first-order tensors, respectively. Third-order (and higher) tensors arise
in a wide variety of application areas, including, but not limited to, chemometrics
[30], psychometrics [20], and image and signal processing [6, 7, 29, 23, 13, 26, 34,
33, 35]. Various tensor decompositions such as CANDECOMP/PARAFAC (CP) [4,
12], TUCKER [32], and higher-order SVD [8] have been developed to facilitate the
extension of linear algebra tools to this multilinear context. For a thorough review of
tensor decompositions and their applications, see [18].

Recent work by Kilmer and Martin [16] and Braman [1] provides an alterna-
tive setting in which the familiar tools of linear algebra can be extended to better
understand third-order tensors. Specifically, in [17] and [16] the authors define a
multiplication operation which is closed on the set of third-order tensors. This mul-
tiplication allows tensor factorizations which are analogues of matrix factorizations

∗Received by the editors June 17, 2011; accepted for publication (in revised form) October 26,
2012; published electronically February 28, 2013.

http://www.siam.org/journals/simax/34-1/83771.html
†Department of Mathematics, Tufts University, Medford, MA 02155 (misha.kilmer@tufts.edu,

ning.hao@tufts.edu). The work of these authors was supported by NSF grant 0914957.
‡Department of Mathematics and Computer Science, South Dakota School of Mines and Tech-

nology, Rapid City, SD 57701 (karen.braman@sdsmt.edu).
§Department of Electrical and Computer Engineering, South Dakota School of Mines and Tech-

nology, Rapid City, SD 57701 (randy.hoover@sdsmt.edu).

148

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 149

such as SVD, QR, and eigendecompostions. In addition, [1] defines a free module of
matrices (or n×1×n tensors) over a commutative ring where the elements are vectors
(or 1 × 1 × n tensors) and shows that every linear transformation upon that space
can be represented by multiplication by a third-order tensor. Thus, the significant
contribution of those papers is the development of a framework which allows new ex-
tensions of familiar matrix analysis to the multilinear setting while avoiding the loss
of information inherent in matricization or flattening of the tensor.

Continuing along this vein, this paper investigates further implications of this new
point of view. In particular, we develop new constructs that lead us ultimately (see
section 6) to the extension of traditional Krylov methods to applications involving
third order tensors. We are not the first to consider extensions of Krylov methods
to tensor computation. Other recent work in this area includes the work in [27, 28].
Our methods are different from their work, however, because we rely on the t-product
construct in [16] to generate the space in which we are looking for solutions, which
makes more sense in the context of the applications we will discuss. The algorithms
we present here are in the spirit of a proof-of-concept that is consistent with our
new theoretical framework. The numerical results are intended to show the potential
suitability in a practical sense. However, in order to maintain the paper’s focus, the
important but subtle and complicated numerical analysis of the algorithms in finite
precision are left for future work.

The work in this paper includes results from the authors’ technical report [15].
We should also note that there is overlap with the recent report [9], in which the
authors adopt some of the same notational conventions for the spaces in which we
work and in which the authors focus on computation of eigentuples as defined in
[1]. We will make it clear in the text where there is consistency between the two
bodies of work. The authors of [9] also have a freely available MATLAB toolbox
in which some of what we propose in the present manuscript could readily be imple-
mented.

This paper is organized as follows. After establishing basic definitions and no-
tation in section 2, section 3 presents a bilinear operator on the module of matrices.
This operator leads to definitions for length of matrices (which we prove in Appendix
A also provides a new valid matrix norm), for a tube of angles between two matrices,
and for orthogonality of matrices. In section 4 we introduce the concept of t-linear
combinations in order to characterize the range and kernel of a third-order tensor
and to quantify the dimensions of those sets, thus defining a tensor’s multirank and
multinullity. These theoretical results lead, in section 5, to the study of orthogonal
projections and an effective Gram–Schmidt process for producing an orthogonal basis
of matrices. In section 6 we consider powers of tensors, preliminary notes for compu-
tation of tensor eigendecompositions, and Krylov methods. In section 7, we utilize the
constructs from the previous section in the context of two image processing problems:
object recognition and image deblurring. We give concluding remarks and future work
in section 8.

On a first pass, the reader may wish to bypass section 4 and proceed directly to
the algorithms and numerical examples in sections 5–7. The details and definitions
in section 4 provide the keys to understanding the performance and pitfalls of the
algorithms and also complete the theoretical framework, but this material is not
crucial in understanding the premise of the algorithms on a first read.

2. Preliminaries. In this section, we give the basic definitions from [16] and
introduce the notation used in the rest of the paper. We will use calligraphic script

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

150 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

to denote third-order tensors, capital letters to denote matrices, and lowercase math
font to denote scalars.

2.1. Notation and indexing. It will be convenient to break a tensor A in
R�×m×n up into various slices and tubal elements, and to have an indexing on those.
The ith lateral slice will be denoted �Ai, whereas the jth frontal slice will be denoted
A(j). In terms of MATLAB indexing notation, this means �Ai ≡ A(:, i, :), which is a
tensor, while A(j) ≡ A(:, :, j), which is a matrix.

We use the notation aik to denote the i, kth tube fiber inA, that is, aik = A(i, k, :).
The jth entry in that tube is a

(j)
ik . Indeed, these tubes have special meaning for us in

the present work, as they will play a role similar to scalars in R. Thus, we make the
following definition.

Definition 2.1. An element c ∈ R1×1×n is called a tubal scalar of length n.
Note that c(j) refers to a scalar, namely, the jth frontal face of the tubal scalar.

Following this, we get a series of additional notation.
Definition 2.2. The space of all tubal scalars is denoted Kn (see also [1, 9]).
Definition 2.3. Let C ∈ R�×1×n. Then C is a length � vector of tubal scalars

and will be denoted K�
n. Thus, we will use the notation �C to denote elements of K�

n.
Definition 2.4. Let C ∈ R�×m×n. Then C is an � ×m matrix of tubal scalars

and will be denoted by K�×m
n .

In order to discuss multiplication between two tensors and to understand the
basics of the algorithms we consider here, we first must introduce the concept of
converting A ∈ R�×m×n into a block circulant matrix.

If A ∈ R�×m×n with �×m frontal slices denoted A(i), then

bcirc(A) =

⎡
⎢⎢⎢⎢⎣

A(1) A(n) A(n−1) . . . A(2)

A(2) A(1) A(n) . . . A(3)

...
. . .

. . .
. . .

...

A(n) A(n−1) . . . A(2) A(1)

⎤
⎥⎥⎥⎥⎦

is a block circulant matrix of size �n×mn.
We anchor the unfold command to the frontal slices of the tensor. That is,

unfold(A) takes an �×m×n tensor and returns a block �n×m matrix, whereas the
fold command undoes the operation:

unfold(A) =

⎡
⎢⎢⎢⎣

A(1)

A(2)

...

A(n)

⎤
⎥⎥⎥⎦ , fold(unfold(A)) = A.

When we are dealing with matrices, the vec command unwraps the matrix into a
vector by column stacking, so that in MATLAB notation vec(A) ≡ A(:).

2.2. t-Product, identity, inverse. The following definition of the t-product
between two tensors was introduced in [17, 16].

Definition 2.5. Let A be � × p × n and B be p × m × n. Then the t-product
A ∗ B is the � ×m× n tensor

A ∗ B = fold (bcirc(A) · unfold(B)) .

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 151

Note that in general the t-product of two tensors will not commute. There is one
special exception in which the t-product always commutes: the case when � = p =
m = 1, that is, when the tensors are tubal scalars.

We give an example of the t-product that will help illustrate a fundamental fact
going forward, namely, that third-order tensors under the t-product can be considered
as operators on matrices when those matrices are twisted into the third dimension
and considered themselves as third-order tensors.

Example 2.6. Let A ∈ K3×2
2 with frontal faces

A(1) =

⎡
⎣ 1 0

0 2
−1 3

⎤
⎦ and A(2) =

⎡
⎣ −2 1
−2 7
0 −1

⎤
⎦ ,

and let �B ∈ K2
2 with frontal faces B(1) =

[
3−1

]
and B(2) =

[−2
−3

]
. Note that �B is a

2× 2 matrix oriented as the sole lateral slice of a third-order tensor. Then

A ∗ �B = fold

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −2 1
0 2 −2 7
−1 3 0 −1
−2 1 1 0
−2 7 0 2
0 −1 −1 3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

3
−1
−2
−3

⎤
⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= fold

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

4
−19
−3
−9
−19
−6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠
∈ K3×2

2

is a 3 × 1 × 2 tensor. In other words, in this example, �C := A ∗ �B is a 3 × 2 matrix,
oriented as a lateral slice of a third-order tensor.

Before moving on, we need a few more definitions from [16] and examples.
Definition 2.7. If A is �×m× n, then AT is the m× �× n tensor obtained by

transposing each of the frontal slices and then reversing the order of transposed frontal
slices 2 through n.

Definition 2.8. The m×m× n identity tensor Immn is the tensor whose first
frontal slice is the m×m identity matrix, and whose other frontal slices are all zeros.

As a special case, the 1× 1× n identity tensor is the tubal scalar e1 with a 1 in
the first frontal face, and zeros in the remaining faces. For m > 1, Immn is a diagonal
matrix of tubal scalars with diagonal elements all equal to e1.

Definition 2.9. An m×m× n real-valued tensor Q is orthogonal if QT ∗ Q =
Q ∗ QT = I.

For an m×m× n tensor, an inverse exists if it satisfies the following.
Definition 2.10. An m×m× n tensor A has an inverse B, provided that

A ∗ B = Immn, and B ∗ A = Immn.

(Note that, due to the definition of the ∗ operation, invertibility of A is equivalent
to invertibility of bcirc(A).) When it is not invertible, then, as we will see, the kernel
of the operator induced by the t-product will be nontrivial.

2.3. A new view on tensors. One observation that is central to the work
presented here is that tensors in Rm×1×n (i.e., elements of Km

n) are simply matrices
in Rm×n, oriented laterally. (See Figure 2.1.)

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

152 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

squeeze
−−−−−→
←−−−−−
twist

Fig. 2.1. m×1×n tensors and m×n matrices related through the squeeze and twist operations.

To go back and forth between elements in Km
n and elements of Rm×n, we introduce

two operators: squeeze and twist.1

X = squeeze(�X)⇒ X(i, j) = �X (i, 1, j); twist(squeeze(�X)) = �X .

Let �X := twist(X) ∈ Km
n , c ∈ Kn. Then it is straightforward, using the definition

of t-product, to show the following equivalence:

(2.1) squeeze(�X ∗ c) = Xbcirc(cT).

2.4. Mapping matrices to matrices. In the context of the matrix factoriza-
tions presented in [16] (see also [1]), the authors also noted the following when p > 1.

Observation 2.11. A ∗ B = [A ∗ �B1,A ∗ �B2, . . . ,A ∗ �Bp].
Thus it is natural to specifically consider the action of third-order tensors on

matrices, where those matrices are oriented as m× 1× n tensors. In particular, this
means that the t-product

T (�X) = A ∗ �X

defines a linear operator (in the traditional sense) from the set of all m× n matrices
to �×n matrices, where those matrices are oriented laterally. Moreover, T describes a
t-linear operator from Km

n → K�
n when elements of Kn are used in place of traditional

scalars (that is, T (�X ∗c+ �Y ∗d) = T (�X)∗c+T (�Y)∗d for arbitrary tubal scalars c,d

and arbitrary �X , �Y ∈ Km
n). If � = m, then T will be invertible when A is invertible.

2.5. The Fourier domain connection. From a theoretical and a practical
point of view, it now behooves us to understand the role of the Fourier transform in
this setting. It is well known that block circulant matrices can be block diagonalized
by using the Fourier transform. Mathematically, this means that if Fn denotes the
n× n (normalized) DFT matrix, then for A ∈ R�×m×n, there exist n, �×m matrices
Â(i), possibly with complex entries, such that
(2.2)

(Fn⊗I�)bcirc(A)(FH
n ⊗Im)=blockdiag(Â(1), . . . , Â(n))=

⎡
⎢⎢⎢⎣
Â(1) 0 · · · 0

0 Â(2) 0 · · ·
...

. . .
. . .

. . .

0 · · · 0 Â(n)

⎤
⎥⎥⎥⎦.

1The squeeze operation works on a tensor �X in Rm×1×n just as it does in MATLAB. Our thanks
to Tamara Kolda for suggesting the twist operator.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 153

Fortunately, it is not necessary to form bcirc(A) explicitly to generate the matrices
Â(i). Using MATLAB notation, define Â := fft(A, [], 3) as the tensor obtained by
applying the FFT along each tubal element of A. Then Â(i) := Â(:, :, i). For the
remainder of the paper, hat notation is used to indicate that we are referencing the
object after having taken an FFT along the third dimension.

The consequence of (2.2) is that t-products, as well as tensor factorizations, can
be computed in the Fourier domain. For more details, see [17] and [16]. We cover two
important examples here.

Observation 2.12. Given a,b ∈ Kn, a ∗ b can be computed as

a ∗ b := ifft(â� b̂, [], 3),

where � of two tubal scalars means pointwise multiplication.
Observation 2.13. Factorizations of A, such as the t-QR and t-SVD (written

A = Q ∗ R and A = U ∗ S ∗ VT , respectively) are created (implicitly) by applying
the appropriate matrix factorization to each of the Â(i) on the block diagonal of the
right-hand side of (2.2). For example,

A = Q ∗R ⇐⇒ Â(i) = Q̂(i)R̂(i).

The MATLAB-like pseudocode for computing this t-QR factorization is given in Al-
gorithm 1. Other third-order tensor factorizations based on the t-product can be com-
puted similarly. It is possible to show that Q arising from the t-QR factorization gives
an example of an orthogonal tensor.

Algorithm 1: Full tensor QR factorization, Fourier domain computation.

Input: A ∈ K�×p
n , � ≥ p

Output: Q ∈ K�×p
n ,R ∈ Kp×p

n such that A = Q ∗R
Â ← fft(A, [], 3);
for i = 1 to n

Factor Â(:, :, i) = QR where Q is unitary;
Q̂(:, :, i)← Q; R̂(:, :, i)← R

end for

Q ← ifft(Q̂, [], 3);R← ifft(R̂, [], 3);

For reference, we recall the conjugate symmetry of the Fourier transform. That
is, if v ∈ Kn, then v̂ satisfies the following:

1. If n is even, then for i = 2, . . . , n/2, v̂(i) = conj(v̂(n−i+2)).
2. If n is odd, then for i = 2, . . . , (n+ 1)/2, v̂(i) = conj(v̂(n−i+2)).

This means for, say, n odd and i > 1 that Â(i) = conj(Â(n−i+2)). This provides a
savings in computational time in computing tensor products in the Fourier domain
or computing a tensor factorization in the tensor domain: for example, to compute
A = Q∗R, we would only need to compute individual matrix QRs for about half the
faces of Â.

It is particularly interesting and illustrative to consider the t-product C = AT ∗A.
Example 2.14. Define C = AT ∗ A. We can compute this via n matrix products

in the Fourier domain. But, due to the tensor transpose definition and conjugate
symmetry of Fourier coefficients, this means Ĉ(i) = (Â(i))H(Â(i)). That is, each face
of Ĉ is Hermitian and at least semidefinite. Also we only have to do about half of the
facewise multiplications to calculate C.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

154 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

This example motivates a new definition.
Definition 2.15. A ∈ Km×m

n is symmetric positive definite if the Â(i) are
Hermitian positive definite.

Clearly, C as defined in the previous example is symmetric positive definite.
Let us now investigate what the definitions in section 2 imply when specifically

applied to elements of Km
n (which, according to the previous discussion, we can think

of interchangeably as elements of Rm×n).

3. Inner products, norms, and orthogonality of matrices. In the follow-
ing, uppercase letters always describe the matrix equivalent of an m × 1 × n tensor.
That is, in terms of our previous definitions, X := squeeze(�X).

Suppose that �X , �Y ∈ Km
n . Then the authors of [16] refer to a := �X T ∗ �Y ∈ Kn

as an inside product in analogy with the notion of an inner product. Indeed, with
the appropriate definition of “conjugacy” we can use this observation to determine a
bilinear form on Km

n .

Lemma 3.1. Let �X , �Y , �Z ∈ Km
n and let a ∈ Kn. Then 〈 �X , �Y〉 := �X T ∗ �Y satisfies

the following:
1. 〈 �X , �Y + �Z〉 = 〈 �X , �Y〉+ 〈 �X , �Z〉.
2. 〈 �X , �Y ∗ a〉 = (�X T ∗ �Y) ∗ a = a ∗ (�X T ∗ �Y) = a ∗ 〈 �X , �Y〉.
3. 〈 �X , �Y〉 = 〈�Y, �X〉T .

Of course, 〈 , 〉 does not produce a map to the reals, and so in the traditional

sense does not define an inner product. Indeed, 〈 �X , �X〉 is a 1 × 1 × n tensor and it

is possible for 〈 �X , �X〉 to have negative entries, so the standard notion of positivity of
the bilinear form does not hold.

On the other hand, the (1,1,1) entry in tubal scalar 〈 �X , �X〉, denoted 〈 �X , �X〉(1),
is given by vec(X)Tvec(X). In other words, 〈 �X , �X〉(1) is the square of the Frobenius

norm of �X (likewise of X). Thus, it is zero only when �X is 0, and nonnegative
otherwise. Therefore, we can make the following definition.

Definition 3.2. Given �X �= 0 ∈ Km
n and �X = twist(X), the length of any

nonzero �X is given as

‖ �X‖ := ‖〈
�X , �X〉‖F√
〈 �X , �X〉(1)

=
‖〈 �X , �X〉‖F
‖ �X‖F

,

while ‖ �X‖ = 0 if �X = 0.

Note that �X can only have unit length if 〈 �X , �X〉 = e1. Note also that when n = 1,

so that �X is in Rm, this definition coincides with the 2-norm of that vector.
For completeness, we define a tube of angles between two matrices. More detailed

discussion and an intuitive illustration are reserved for Appendix B.
Definition 3.3. Given nonzero �X , �Y ∈ Km

n , the tubal angle between them is
given implicitly by the tube

cos(θ) =
1

2‖ �X‖F ‖�Y‖F
(|〈 �X , �Y〉+ 〈�Y , �X〉|),

where | · | is understood to be componentwise absolute value.

Note that when n = 1, so that �X , �Y are in Rm, this definition coincides with the
usual notion of angle between two vectors. Otherwise, we have a length-n tube of
angles (i.e., a length-n vector) describing the orientation of one matrix relative to the
another.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 155

Using the bilinear form, the definition of orthogonal tensors in Definition 2.9 and
Observation 2.11, we are in a position to define what we mean by an orthogonal set2

in Km
n .
Definition 3.4. Given a collection of k, m×n matrices Xj, with corresponding

tensors �Xj = twist(Xj), the collection is called orthogonal if

〈 �Xi, �Xj〉 =
{

αie1, i = j,
0, i �= j,

where αi is a nonzero scalar. The set is orthonormal if αi = 1.
Suppose Q is an orthogonal tensor. It is easily verified that the (i, j) tubal

scalar entry of the product QT ∗ Q is given by �QT
i ∗ �Qj = 〈 �Qi, �Qj〉, and since Q is

orthogonal, the (i, j) entry is e1 if i = j and 0 otherwise. Thus this definition of
orthogonality is consistent with our earlier definition of an orthogonality for tensors
in that Q ∈ Rm×m×n is an orthogonal tensor iff the lateral slices { �Q1, �Q2, . . . , �Qm}
form an orthonormal set.

4. Linear combinations with tubal scalars, range, and kernel. In the
previous section, we gave a definition of a set of orthogonal matrices in Km

n . In
analogy with standard linear algebra and in light of the framework we have set up,
one would hope that if the orthogonal set contains m elements, we should be able
to reconstruct any element in Km

n from those m elements. That is obviously not the
case if we consider “linear combination” in the traditional sense, with the scalars as
elements of R. However, it will be the case if we consider what we will call t-linear
combinations, where tubal-scalars now take the role of scalars.

Definition 4.1. Given k tubal scalars cj , j = 1, . . . , k, in Kn, a t-linear combi-

nation of �Xj , j = 1, . . . , k, of Km
n is defined as

�X1 ∗ c1 + �X2 ∗ c2 + · · ·+ �Xk ∗ ck ≡ X ∗ �C, where X := [�X1, . . . , �Xk], �C :=

⎡
⎢⎣

c1
...
ck

⎤
⎥⎦ .

Note that the order of multiplication is important, as in general cj ∗ �Xj will not
be defined unless m = 1.

Example 4.2. Using A ∈ K
3×2
2 and �B ∈ K2

2 from Example 2.6, we see that

A ∗ �B = �A1 ∗ b11 + �A2 ∗ b21

= fold

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

7
4
−3
−8
−6
2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

+ fold

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

−3
−23
0
−1
−13
−8

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

= fold

⎛
⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎣

4
−19
−3
−9
−19
−6

⎤
⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, �C := A ∗ �B is a t-linear combination of the lateral slices of A.
Next, observe that a matrix Y can be built from the matrices squeeze(�Xj) as

follows.

2We could equivalently refer to this as an orthogonal set of matrices in Rm×n, but tend to avoid
this nomenclature since it could be confused with a set of orthogonal matrices, which is different.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

156 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

Lemma 4.3. With X , �C as defined in Definition 4.1,

(4.1) Y := squeeze(X ∗ �C) =
k∑

i=1

Xibcirc(c
T
i) ∈ Rm×n.

Proof. The proof follows from (2.1) and from squeeze(�X + �Y) = squeeze(�X)+
squeeze(�Y).

Since the circulant matrices bcirc(cTi) will not be scalar multiples of the identity
in general, this isn’t a linear combination of the Xi. However, since these n × n
circulant matrices can be diagonalized by the n× n DFT matrix, it follows that the
jth column of the matrix Y Fn is a (traditional) linear combination of the jth columns
of XiFn, i = 1, . . . , k. This multilinear perspective will be helpful in interpreting the
range of the t-linear operator in the next subsection.

4.1. Tubal rank, range, and kernel. There is one important sense in which
tubal scalars differ from elements in R. Even though a may have all nonzero entries, a
may not be invertible.3 According to the definition of invertibility, a is only invertible
if there exists b such that a ∗ b = b ∗ a = e1. However, we noted previously that
t-products can be implemented by Fourier transforming in the third dimension, com-
puting pairwise products of faces, then inverse Fourier transforming the result. Thus,
an element a ∈ Kn can be invertible iff â (obtained by Fourier transforming a in the
third dimension) has no zero entries (i.e., a can have no zero Fourier coefficients).

In order to appropriately characterize the range, denoted R(A), and kernel, de-
noted N(A), of the map defined by tensor A, it is necessary to capture information
about the dimensionality that is more subtle than in the standard linear algebra sit-
uation of matrices over a scalar field. Specifically, we need to separate tubal scalars
that are invertible from those that are not.

Definition 4.4. Suppose b ∈ Kn. Then its tubal rank is the number of its
nonzero Fourier coefficients. If its tubal rank is n, we say it is invertible; if it is less
than n, it is not.4 In particular, the tubal rank is 0 iff b = 0.

We will use the tensor SVD, or t-SVD introduced in [16], to characterize R(A)
and N(A) for A ∈ R�×m×n. The authors show there exists an � × � × n orthogonal
U , an �×m× n f-diagonal S, and an m×m× n orthogonal V such that

A = U ∗ S ∗ VT =

min(�,m)∑
i=1

�Ui ∗ si ∗ �VT
i , si := S(i, i, :),

where the si are the singular tuples. (See Figure 4.1.)
It is worth noting that the t-SVD can be derived using (2.2). Specifically, the

tensors U ,S,V are derived from individual matrix SVDs in Fourier space; that is,
Û (i)Ŝ(i)(V̂ (i))T = Â(i). If Â(i) has rank ri < min(�,m), then for j ≥ ri, ŝj has a 0
in the ith position; i.e., sj has at least one zero Fourier coefficient, and therefore sj
is not invertible. If all the faces of Â have ranks less than min(�,m), then there will
be at least one sj which is identically 0 because all n of its Fourier coefficients are
zero. However, we will need a way of keeping track of the sj that have zero Fourier
coefficients but which are not necessarily equal to 0 if we want to specify something
useful about the range and/or kernel.

3This is equivalent to the observation that Kn in [1] cannot form a field.
4These observations are consistent with those in [16] adapted to the special case when � = m = 1.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 157

=

Fig. 4.1. The t-SVD of an l×m× n tensor. (Originally appeared in [11].)

Let p = min(�,m). Ideally, we would like to be able to describe the range of A
in terms of a t-linear combination of a subset of the �Ui, and the kernel in terms of a
subset of the �Vi. As we will see, this will be sufficient in the case when all the nonzero
si are invertible. But when there are some nonzero si which are not invertible, we
will have to take special care. Indeed, observe that for any �X ∈ Km

n ,

(4.2) A ∗ �X =

min(�,m)∑
i=1

�Ui ∗ (si ∗ �VT
i ∗ �X︸ ︷︷ ︸
di

),∈ K�
n,

where the term in parenthesis is a tubal scalar that is the product of two tubal scalars,
si and di. Hence, the range of A is a t-linear combination of the �Ui. However, the
range is special because each term in parentheses will have zero Fourier coefficients
exactly where each si has zero Fourier coefficients. To see this more clearly, observe
that from Lemma 4.3, in Fourier space is
(4.3)

squeeze(
̂A ∗ �X) =

p∑
i=1

[ŝ
(1)
i d̂

(1)
i Û (1)(:, i), ŝ

(2)
i d̂

(2)
i Û (2)(:, i), . . . , ŝ

(n)
i d̂

(n)
i Û (n)(:, i)],

where, as mentioned above, Û (i)Ŝ(i)(V̂ (i))T = Â(i). In summary, the jth column of

squeeze(
̂A ∗ �X) is a linear combination of the first p columns of Û (j) with scalar

expansion coefficients ŝ
(j)
i d̂

(j)
i , i = 1, . . . , p.

Accordingly, we define the following concept.
Definition 4.5. The multirank of the A is the tubal scalar ρ := ρ(A) ∈ Kn such

that ρ(i) is the rank of the ith matrix Â(i). Since Â(i) is �×m, ρ(i) ≤ min(�,m). The
multinullity is the complimentary tubal scalar η := η(A) with entries m− ρ(i).

Next, we characterize range and null space.
Theorem 4.6. Suppose the first j singular tuples are invertible, the next k are

nonzero but not invertible, and that for p = min(�,m), p − (j + k) are identically 0.
The sets R(A), N(A) are given unambiguously by

R(A) = {�U1 ∗ c1 + · · ·+ �Uj+k ∗ cj+k|ci = si ∗ di,di ∈ Kn, j < i ≤ j + k},

N(A) = {�Vj+1 ∗ cj+1 + · · ·+ · · ·+ �Vm ∗ cm|si ∗ ci = 0, j < i ≤ j + k}.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

158 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

Proof. That anything in the range must be a t-linear combination of the first
j + k lateral slices of U is clear from (4.2). However, if there are singular tuples with
nonzero tubal rank less than n, it is not true that every t-linear combination of the
of the first j + k lateral slices of U is in the range.

Indeed, the equation

A ∗ �X =

k+j∑
i=1

�Ui ∗ ci

is solvable only if ci, i = j + 1, . . . , j + k, has zero Fourier coefficients in exactly the
same positions as the zero Fourier coefficients of si for those terms (i.e., compare the
right-hand side of (4.3) to the right-hand side of the Fourier-space version of the above
equation). In other words, we need ci = di ∗ si for some di for i = j + 1, . . . , j + k.

Now, if j + k + 1 ≤ m,

A ∗ �Vi = 0, i = j + k + 1, . . . ,m,

but there are other vectors that map to zero as well. For example, let ci be a tubal
scalar that has zero Fourier coefficients where si, for j + 1 ≤ i ≤ j + k, has nonzero
Fourier coefficients, and 1’s where si has zero Fourier coefficients. Then

A ∗ (�Vi ∗ ci) = 0 but A ∗ �Vi �= 0.

With these observations, the result is proved.
This analysis shows that the number of matrices (elements of Km

n) necessary
to generate any element in R(A) is equal to the number of nonzero singular tuples,
whether or not those tuples are invertible. The number of matrices necessary to
generate an arbitrary element of N(A) is equal to m− p plus the number of nonzero
and noninvertible singular tuples. For this reason, we refer to the first j + k columns
of U as the generators for the range (but abstain from using the term basis, in the
sense that knowledge of the tubal ranks of the singular tuples must be included to
describe the range). Likewise, columns j + 1 through m of V are the generators for
the null space.

Furthermore, a traditional rank plus nullity theorem does not hold if we consider
the “dimension” of R(A) as the min/max number of matrices necessary to generate
any element in the set, and similarly for N(A). Thus, when we define dimension, it
should be consistent with the multi-rank of the matrix (see also (4.3)).

Thus, we set dim(R(A)) := ‖ρ(A)‖1, dim(N(A)) := ‖η(A)‖1, and under this
convention, it will always be the case that

dim(R(A)) + dim(N(A)) = nm = ‖ρ(A) + η(A)‖1.

Finally, we set a notion of conditioning for a tensor that is consistent with the
aforementioned new concepts.

Definition 4.7. If A ∈ R�×m×n, its condition number is infinite if m > � or the
multinullity is nonzero (i.e., ‖η(A)‖1 > 0). If the condition number is not infinite,
then the condition tubal scalar is well defined and is given by the length n tubal scalar
with entries defined by the condition numbers of each of the respective Â(i).

5. Orthogonal projectors and Gram–Schmidt for orthogonal matrices.
Now that we understand how to define the range and kernel in terms of t-linear

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 159

combinations, you might ask whether it is possible to design orthogonal projectors
onto the spaces.

The following definition is consistent with the concept of projectors with respect
to matrices.

Definition 5.1. P is a projector if P2 = P ∗ P = P, and it is orthogonal if
PT = P.

In particular, if { �Qi}ki=1 is an orthogonal set in Km
n , then P = [�Q1, . . . , �Qk] ∗

[�Q1, . . . , �Qk]
T defines an orthogonal projector, as does I − P .

Note that when AT ∗A is invertible, A∗ (AT ∗A)−1 ∗AT is an orthogonal projec-
tor onto R(A). If one or more singular tuples are not invertible, then to describe an
orthogonal projector onto R(A) requires more information than just an orthogonal
set of generating matrices for the R(A), as noted in Theorem 4.6. Define the diag-
onal tensor D so that the Fourier coefficients of each tubal scalar along the diagonal
satisfy

d̂
(j)
i =

{
1 if ŝ

(j)
i �= 0,

0 otherwise.

It is easily shown that an orthogonal projector onto R(A) is given by Uk ∗ D ∗ UT
k ,

where k is the number of nonzero singular tuples and Uk = U(:, 1:k, :).
It is natural to think about a classical Gram–Schmidt process for generating an

orthonormal set of matrices. The key, however, to doing it correctly is the normal-
ization. Algorithm 2 takes a nonzero �X ∈ Km

n and returns �V ∈ Km
n , a ∈ Kn such

that

�X = �V ∗ a,

where ‖�V‖ = 1. Note that a might not be invertible. Recall that a(j) is a scalar (i.e.,

the jth frontal face of the 1× 1× n tensor a), and that if �X is m× 1× n, �X (j) is the

jth frontal face of �X , which is vector of length m.
The following classical Gram–Schmidt algorithm (see Algorithm 3) takes A ∈

R�×m×n with � ≥ m as input and returns the factorization A = Q ∗ R, where Q is
�×m×n with orthonormal “columns” �Qk, k = 1, . . . ,m, and R is m×m×n f-upper
triangular. The tubes on the diagonal of R correspond to normalization terms.

Algorithm 2: Normalize.

Input: �X ∈ Km
n �= 0

Output: �V ∗ a = �X with ‖�V‖ = 1

�V ← fft(�X , [], 3)
for j = 1 to n

a(j) ← ‖�V(j)‖2 (note �V(j) is a vector)
if a(j) > tol then

�V(j) ← 1
a(j)

�V(j)

else
�V(j) ← randn(n, 1); a(j) ← ‖�V(j)‖2; �V(j) ← 1

a(j)
�V(j); a(j) ← 0

end
�V ← ifft(�V , [], 3); a← ifft(a, [], 3)

end for

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

160 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

Algorithm 3: Classical Gram–Schmidt, QR version.

Input: A ∈ K�×p
n , � ≥ p

Output: Q ∈ K�×p
n ,R ∈ Kp×p

n such that A = Q ∗R
[�Q1,R(1, 1, :)]← Normalize(�A1)
for i = 2 to m

�X ← �Ai;
for j = 1 to i− 1

R(j, i, :)← �QT
j ∗ �X ;

�X ← �X − �Qj ∗ R(j, i, :);
end for

[�Qi,R(i, i, :)]← Normalize(�X);
end for

This algorithm is consistent with the tensor QR factorization introduced in [17,
16] and described in the first section. Having introduced the concept of orthogonal
projectors, it is straightforward to derive the modified Gram–Schmidt analogue of
this, so we will leave this exercise to the reader. If the number of nonzero tubal
scalars on the diagonal of R is k, then the first k lateral slices of Q can be used to
describe (or project onto) R(A); however, as described above, if some of the diagonals
of R are not invertible, this information must be taken into account when generating
(or projecting onto) the range.

6. Tensor polynomials, computation of tensor eigendecomposition, and
Krylov subspace methods. In this section, we will assume Â has diagonalizable
faces, that is, Â(i) = X̂(i)D̂(i)(X̂(i))−1. It follows that if the invertible tensor X̂ and
f-diagonal tensor D̂ are defined facewise as X̂ (i) = X̂(i) and D̂(i) = D̂(i), then, upon
taking the inverse FFT along tubes, we have an eigendecomposition [1]

A = X ∗ D ∗ X−1 =⇒A ∗ X = X ∗ D =⇒ A ∗ �Xj = �Xj ∗ dj ,

where the latter follows from Observation 2.11. See [9] for a definition of a canonical
decomposition and explicit ordering of eigentuples in a slightly different notational
framework.

A word of caution to the reader. Eigenvalue decomposition for tensors means
different things to different researchers (see [19, 22, 24, 25], for example). In some
scenarios, one really does desire a single scalar eigenvalue and an eigenvector of length
n. Our approach differs in that we are looking for eigentuples dj and their correspond-

ing eigenmatrices �Xj . In our case, eigendecompositions can exist even when m �= n,
although � = m is required.

Recall from the first section that the faces of Â ≡ B̂T ∗ B̂ are Hermitian semi-
definite. Thus, if A = BT ∗B for some tensor B, such an eigendecomposition exists. It
has been shown in [16, 2, 10] that the t-SVD is useful in image processing applications.
In analogy with the matrix case, it is easy to show that there is a connection between
the t-SVD of B and the eigendecompositions of BT ∗ B and B ∗ BT . This suggests
that efficient algorithms to compute eigenpairs can be used to compute full or partial
t-SVDs.

The concept of determinant for third-order tensors was defined in [15, 9], its

implication in terms of the number of eigentuples for A ∈ Kn×n
n (up to

(
n/2+1

2

)
for

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 161

n even, for instance), was also cited in those works, and will not be pursued further
here. The upshot of the results in those papers is that, in light of (2.2), computing
eigentuples and corresponding eigenmatrices is equivalent to computing eigenvalues
and eigenvectors for the blocks Â(i) simultaneously, but choosing a consistent ordering
scheme for the individual matrix eigendecompositions is crucial.

Moreover, as we will see in the next section, generalizing matrix eigenvalue algo-
rithms, such as the power iteration, and Krylov subspace iteration will not be com-
pletely straightforward without appropriate normalization.

6.1. Powers of tensors. If we want to investigate the extension of any matrix
algorithm based implicitly on powers of matrices (e.g., the power iteration and Krylov
subspace methods) to tensors under the t-product framework, we need to look closely
at what Ak means for positive integer k and our m×m× n tensor, A.

Let k be a positive integer. Then Ak :=

k times︷ ︸︸ ︷
A ∗ A · · · ∗ A can be computed by

1. Â = fft(A, [], 3);
2. for i = 1 : n

Ĉ(i) = (Â(i))k (a matrix power);
3. Ak = ifft(Ĉ, [], 3).

Recall our assumption Â(i) = X̂(i)D̂(i)(X̂(i))−1. Then (Â(i))k = X̂(i)(D̂(i))k(X̂(i))−1.
For convenience, suppose entries in each of the diagonal matrices D̂(i) are ordered in

decreasing magnitude so that the (1,1) entry of Λ(i), denoted as λ
(i)
1 , has the property

|λ(i)
1 | > |λ

(i)
2 | ≥ · · · ≥ |λ

(i)
m |.

Let �W ∈ Km
n be the initial vector for a power iteration. Consider Ak ∗ �W. Now

�W =
∑m

i=1
�Vi ∗ ai for some tubal scalars ai, and so

Ak ∗ �W =
m∑
i=1

�Vi ∗ dk
i ∗ ai = D[d1]

k
m∑
i=1

�Vi ∗
(
di

d1

)k

∗ ai,

where D[d1] is the diagonal tensor with tubal scalar d1 repeated along the diagonal.
So, one would expect that, under this ordering of eigenvalues in the Fourier

domain, a power iteration for the tensor A (in the original space) should converge
to the eigentuple corresponding to the largest magnitude entries of each D̂(i). But
without the proper normalization of the candidate eigenmatrix at each iteration, this
will not happen! The easiest way to see this is to recall (2.2) so that we can either try
to do a power iteration on the big block diagonal matrix on the right, or we can do
individual power iterations on each of the blocks. What we want to do is equivalent
to running individual power iterations on each of the blocks, which requires that
each of the individual length-m candidate eigenvectors be normalized (in the 2-norm)
to length 1. But without this normalization, one would end up running the power
iteration on the big block diagonal matrix, which would pick off only one (or 2,
given conjugate symmetry) eigenvalues of the big block diagonal matrix and their
corresponding length-m eigenvectors.

We therefore propose the following power iteration (see Algorithm 4), which uses
our notation of length and normalization from the previous section, which will con-
verge to the eigentuple that corresponds to finding the largest magnitude eigenvalue
of each Â(i).

We conclude this section by noting that extending algorithms such as the Arnoldi
iteration [9] and QR iteration [15, 3] are likewise possible, though a number of numeri-
cal issues must be addressed in order for these methods to be properly implemented [9].

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

162 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

Algorithm 4: Power iteration.

Input: A ∈ Km×m
n

Output: d ∈ Kn, �V ∈ Km
n such that A ∗ �V ≈ �V ∗ d

�V ← randn(m, 1, n);
�V ← Normalize(�V);
for i = 1 to . . .

�V ← A ∗ �V ;
�V ← Normalize(�V);
d← �VT ∗ (A ∗ �V);

end for

6.2. Krylov subspace methods. The Krylov tensor generated by G and �B
composed of k lateral slices is defined according to

Kk(G, �B) := [�B,G ∗ �B,G2 ∗ �B, . . . ,Gk−1 ∗ �B].

We assume that k ≤ min(�,m), that the tubal rank of each singular tuple of G
is min(�,m), and that when �B is normalized, the normalization term is an invertible
tubal scalar. We consider here only the case where (using the definition in the previous
section) dim(N(Kk)) = 0, which should ensure that we have no “breakdowns” (see
below for definition).

The basic idea is to directly extend Krylov iterations by replacing matrix-vector
products by t-products between the tensor and a matrix. Based on the discussion
in the previous subsection, this approach is equivalent to applying a matrix Krylov
method on each of the blocks Ĝ(i) in the block diagonal matrix (in Fourier space)
simultaneously, and therefore to get the method to work the way we want, we have
to normalize appropriately.

Suppose A is symmetric positive definite. Then the Symmetric Lanczos iteration
(compare to the matrix version [31, Algorithm 36.1]) is as shown in Algorithm 5,
which implicitly generates a set of orthogonal generating matrices for R(Kk(A,B)).

Since we have assumed for simplicity that the algorithm does not break down
(i.e., that ci is always invertible), in exact arithmetic taken to k steps this would

Algorithm 5: Symmetric Lanczos iteration.

�Q0 ← 0.
[�Q1, z0]← Normalize(�B)
for i = 1 to . . .

�V ← A ∗ �Qi

ci ← �QT
i ∗ �V

�V ← �V − �Qi−1 ∗ zi−1 − �Qi ∗ ci
[�Qi+1, zi]← Normalize(�V)

end for

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 163

produce QT
k ∗ A ∗ Qk = T , where

T =

⎡
⎢⎢⎢⎢⎢⎢⎣

c1 z1 0 0 0
z1 c2 z2 · · · 0

0 z2 c3
. . .

...
. . .

. . .
. . . zk−1

0 · · · 0 zk−1 ck

⎤
⎥⎥⎥⎥⎥⎥⎦

is a tridiagonal k× k× n tensor. Suppose that T = V ∗D ∗ VT ; then in analogy with
matrix computation, we call lateral slices of Qk ∗V the Ritz matrices. Note that when
k is small, we can possibly afford to find the eigendecomposition of T directly: we
need only compute O(k) FFTs and inverse FFTs of length n, then O(n/2) tridiagonal
matrix eigenvalue problems (in the Fourier domain).

Golub–Kahan iterative bidiagonalization (often referred to as Lanczos bidiagonal-
ization), which implicitly generates an orthogonal matrix generating set for Kk(AT ∗
A,AT ∗ �B), can likewise be extended to the tensor case (see Algorithm 6).

Algorithm 6: Golub–Kahan iterative bidiagonalization.

Input: A ∈ K�×m
n , �B ∈ Km

n �= 0

�Q0 ← 0.
[�Q1, z1]← Normalize(�B) with z1 invertible
for i = 1 to . . .

�Wi ← AT ∗ �Qi − �Wi−1 ∗ zi
[�Wi, ci]← Normalize(�Wi)
�Qi+1 ← A ∗ �Wi − �Qi ∗ ci
[�Qi+1, zi+1]← Normalize(�Qi+1)

end for

The algorithm after k steps and no breakdowns produces the decomposition

A ∗W = Q ∗ P ,

where W and Q have k and k + 1 orthogonal lateral slices, respectively, and P is a
(k + 1) × k × n tensor. Similar to the case above, we get approximate SVDs from
the Ritz triples that are formed using the t-SVDs of P . Thus if P = U ∗ S ∗ VT , the
approximate singular tuples and the corresponding right and left singular matrices
are given by

(si,W ∗ �Vi,Q ∗ �Ui)

for i up to k. Since P is facewise bidiagonal, P̂ is facewise bidiagonal, and so com-
puting the t-SVD of P from scratch amounts to computing O(k) forward and inverse
FFTs, and O(n/2) SVDs of bidiagonal matrices.5

5Since P̂ does not change values in its leading principle submatrices, bidiagonal matrix SVD
updating techniques could be employed to make this process more efficient from one iteration to the
next.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

164 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

The final question we are interested in is in developing Krylov-iterative solvers.
In other words, we would like to consider solutions to problems of the form

A ∗ �X = �B or min
�X
‖A ∗ �X − �B‖F ,

where we restrict our approximate solution so that it is a t-linear combination of
the columns of a Krylov tensor, �X = Kk ∗ �C, and Kk is generated by A, �B (if A is

symmetric positive definite) or AT ∗ A,AT ∗ �B, respectively.
Working backwards, if we can run a conjugate gradient (CG) iteration on each

block in the Fourier domain, we ought to be able to specify a CG iteration for tensors.
An alternative view would be to develop a CG algorithm directly from the symmetric
Lanczos iteration. We present one implementation of the CG algorithm here (see
Algorithm 7; compare to [31, Algorithm 38.1], for example). The one difference with

tensor CG vs. matrix CG is that the expression �X T ∗ A ∗ �X is a tubal scalar rather
than a scalar (see the discussion of bilinear forms in section 3). If A is symmetric
positive definite, then since the tensor CG routine is in exact arithmetic doing CG
on n, m×m subproblems in the Fourier domain, the Â(i)-norm of the error is being
reduced on each of the subproblems as a function of k. Thus, the Fourier coefficients
of �X T

k ∗ A ∗ �Xk are being reduced as a function of k, from which it follows that

‖ �X T
k ∗ A ∗ �Xk‖ is decreasing. In exact arithmetic, using our tensor definition of

orthogonality, we do still get orthogonality of the residual matrices, and A-conjugacy
of the search directions. Note that we perform a normalization step initially to prevent
growth in factors.

Algorithm 7: t-CG.

Input: A ∈ Km×m
n positive definite, �B ∈ Km

n �= 0

Output: Estimate �X , A-conjugate �Pi, orthogonal �Ri

�X0 ← 0.
[�R0, a]← Normalize(�B); �P0 ← �R0.
for i = 1 to . . .

c← (�PT ∗ A ∗ �P)−1 ∗ (�RT ∗ �R)
�Xi ← �Xi−1 + �Pi−1 ∗ c
�Ri ← �Ri−1 −A ∗ (�Pi ∗ c)
d← (�RT

i−1 ∗ �Ri−1)
−1 ∗ (�RT

i ∗ �Ri)
�Pi ← �Ri + �Pi−1 ∗ d

end for
�X ← �X ∗ a.

7. Numerical examples. In this section we give two examples illustrating the
potential of the previously developed theoretical and computational framework.

7.1. Image deblurring. The most basic model of linear image blurring is given
via the matrix vector equation

Kx+ e = b,

where x := vec(X) is the vectorized version of the original image, K represents the
known blurring operator, and b := vec(B) is the vectorized version of the recorded

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 165

blurry and noisy image. The noise vector e is usually assumed to be white and
unknown. In many deblurring applications, the matrix K has significant structure.
For purposes of illustrating our Krylov solver algorithm, we will assume thatK is block
circulant, which is not an uncommon assumption and is consistent with a model for
spatially invariant blur given periodic boundary conditions in that direction.

The presence of the noise forces one to use regularization to damp the effects
of the noise and make the system better conditioned. The most well-known type of
regularization is Tikhonov regularization, in which case one solves

min
x
‖Kx− b‖22 + λ2‖x‖22,

and λ controls the amount of damping.
The normal equations for this optimization problem are

(KTK + λ2I)x = KT b.

The assumed structure on K ensures that KTK+λ2I is still a block circulant matrix.
Given this structure, as discussed in [16], an equivalent way to formulate the problem
above is

(AT ∗ A+D[d]) ∗ �X ≈ AT ∗ �B,

where A is obtained by stacking the first block column of K, and �X = twist(X),
�B = twist(B), d = λ2e1, and D[d] is the diagonal tensor with d repeated down the
diagonal. For more on exploiting circulant structure with respect to tensor computa-
tions in image processing, see [26].

Since the purpose of this example is to illustrate the performance of the tensor-CG
algorithm, we will assume that a reasonable value of λ is already known—choosing
regularization parameters is an important and well-researched topic and far beyond
the scope of this paper. The parameter we chose in this problem was simply selected
by a very few trial and error experiments.

In our test problem, we will consider a 128 by 128 satellite image. We construct
a blurring matrix K that is block circulant with Toeplitz blocks as described in [16]
(specifically, K here is equivalent to Ã in that paper) and fold the first block column to
obtain A. The true image X is given in left of Figure 7.1. The blurred, noisy image
is created first by computing A ∗ �X , where �X = twist(X), then adding random
Gaussian noise with a noise level of 0.1 percent. The blurred noisy image is shown
in the middle of Figure 7.1. We set λ2 = 2 and find that after 42 iterations, the
minimum relative error between �X and the image estimate is obtained. The resulting
reconstruction is given in the rightmost subplot of Figure 7.1.

In this problem, since we did not have the exact solution to the normal equations,
we could not track ‖�ET ∗ (AT ∗A+D[d]) ∗ �E‖, where �E is the error between the exact

and computed solutions. However, assuming λ2 is a reasonable value, �E ≈ �X − �Xk,
where �Xk denotes the kth iterate, and plugging this estimate in for �E , the resulting
approximation to ‖�ET ∗ (AT ∗ A + D[d]) ∗ �E‖ is given in Figure 7.2. It is indeed
decreasing, and stagnates where we appear to have reached the optimal regularized
solution.

7.2. Projections and dimensionality reduction. In this experiment, we are
provided with a set of 128 gray scale training images of size 128 × 128. The images
are of 3 different objects being rotated through a single degree of freedom throughout

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

166 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

Fig. 7.1. True image (left), blurred noisy image (middle), reconstruction after 42 iterations
our tensor CG algorithm on the regularized normal equations with λ2 = 2 (right).

Fig. 7.2. Estimate of the norm of the error as a function of iteration.

360◦ and were generated by ray-tracing high fidelity CAD models provided by [21].
We construct a normalized database of these images by first subtracting the mean
of all the images from each individual image and then concatenating them as lateral
slices into the tensor A, i.e., A = [�Y1, �Y2, . . . , �Yn], where �Yi represents the ith image
tensor.

In a real object classification (recognition and pose estimation) scenario, when

a new (normalized) image �Y becomes available, we are interested in recognizing the
object within the image as well as determining its orientation. The naive approach
to this problem would be to compare the new image �Y with each image in A to
classify the object. Unfortunately, due to the shear size of the image database, this
approach is computationally infeasible. Thus, the desire is to compress the database,
and one way to do this would be to truncate the t-SVD of A to provide the best
rank-k approximation [2, 10, 11]. The implication is that the first k lateral slices of U
contain enough information about A that the object of interest can be reconstructed
by computing the coefficients of the projection onto the range of those lateral slices. In
other words, because �Aj ≈ Uk(�Cj), where �Cj = UT

k ∗ �Aj and Uk is the tensor containing

the first k lateral slices of U , object classification can be carried out by comparing �Cj
with UT

k ∗ �Y. Furthermore, if the object is in the database and k is sufficiently large,

then �Y ≈
(
Uk ∗ UT

k

)
∗ �Y provides a rank-k reconstruction of �Y once the mean image

is added to �Y. This reconstruction can serve as an estimate to what dimension k is
required for accurate classification. Note that the tensor-tensor product Uk ∗UT

k is an
orthogonal projector as defined in section 5.

An alternate method for determining an appropriate dimension k required for
accurate object classification was defined for the matrix SVD in [5] and is referred

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 167

Fig. 7.3. Reconstructions of certain poses of objects in the image database A. The leftmost
column shows the images to be reconstructed, the middle column shows images reconstructed using
the t-SVD, and the rightmost column shows images the reconstructed using the G-K bidiagonaliza-
tion. As is apparent from the figure, for k = 20, both the t-SVD as well as the Uk computed using
the G-K bidiagonalization are capable of reconstructing the original images quite well.

to as the energy recovery ratio. The energy recovery ratio was extended to tensors
in [14] and is computed as

(7.1) ρ(A,Uk) =
∑k

i=1‖si‖2F
‖A‖2F

,

where si is the ith singular tuple. Note that because the lateral slices of U are
orthonormal, the energy recovery ratio ρ ≤ 1 and achieves a maximum value when
k = n.

To illustrate the tensor Golub–Kahan (G-K) iterative bidiagonalization algorithm

described in section 6, a random input image �Y is chosen for each of the three objects
in the database. A rank k = 20 reconstruction is then performed using the capability

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

168 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

Fig. 7.4. Energy recovery plots for the objects shown in Figure 7.3 (left: boat; right: cup)
comparing the energy recovered using the estimated left-singular matrices Uk computed via the G-K
bidiagonalization and the true left-singular matrices computed via the t-SVD. Note that the energy
recovered using the estimates is nearly identical to that computed using the t-SVD. A nearly identical
pattern is observed for the hose reel image.

of the left-singular matrices Uk as computed by the t-SVD as well as their estimates as
computed by the G-K bidiagonalization. The results of this experiment are illustrated
in Figure 7.3, where the leftmost images, the images are to be reconstructed, the
middle images illustrate the reconstruction using the t-SVD, and the rightmost images
illustrate the reconstruction using the G-K bidiagonalization. As is apparent from
the figure, for k = 20, both the t-SVD as well as the Uk computed using the G-K
bidiagonalization are capable of reconstructing the original image.

To compare the accuracy of the estimates of Uk computed using the G-K bidiag-
onalization to those computed using the t-SVD, the energy recovery ratio was used.
Figure 7.4 shows the results of this comparison for a dimension k = 20. As can be
seen from the figure, the energy recovered using the G-K generated estimates is al-
most exactly the same as that recovered using the t-SVD. Notice that divergence of
the two energy recovery plots occurs only near the last 4–5 dimensions (i.e., dimen-
sions 15–20). For analysis of this phenomenon for larger k, we need to consider that
convergence is not happening on each face of Â(i) at the same rate. The study of
convergence is left for future work.

8. Conclusions. The purpose of this paper was twofold. First, we set up the
necessary theoretical framework for tensor computation by delving further into the
insight explored in [1] in which the author considered tensors as operators on a set
of matrices. As our numerical examples illustrate, there are applications that benefit
from treating inherently two-dimensional objects (e.g., images) in their multidimen-
sional format. Thus, our second purpose was to demonstrate how one might build al-
gorithms around our new concepts and constructs to tackle practical problems. To this
end, we were able to extend familiar matrix algorithms (e.g., power, Krylov subspace
iteration) to tensors. Clearly, more work needs to be done to analyze the behavior of
such algorithms in finite precision arithmetic and to enhance their performance—for
instance, adding multiple shifts to power iteration. Also, monitoring the estimates of
the condition vector introduced here may help to explain when the problem could be
“projected” down to a problem of smaller dimension, as certain components may have

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 169

already converged. We anticipate that further study will reveal additional applications
where the framework presented here will indeed prove valuable.

Appendix A. A new matrix norm. A nice consequence of the length definition
given in Definition 3.2 is that it in fact defines a valid matrix norm6 on X . To prove
this fact, we first need the following lemma.

Lemma A.1. For �U := twist(U), U ∈ Rm×n, we have

‖〈�U , �U〉‖F = ‖�UT ∗ �U‖F(A.1)

= ‖bcirc(�UT)unfold(�U)‖2
≤ ‖bcirc(�UT)‖2‖u‖2
≤ ‖bcirc(�U)‖2‖u‖2,

where u = unfold(�U) ∈ Rmn, which implies

(A.2)
‖〈�U , �U〉‖F
‖u‖2

≤ ‖bcirc(�U)‖2.

Theorem A.2. Let X ∈ Rm×n. Define ‖X‖d = ‖ �X‖, where the right-hand side
is as defined above. Then ‖X‖d is a valid matrix norm on Rm×n.

Proof. The fact that ‖X‖d ≥ 0 and ‖X‖d = 0 iffX = 0 follows from the definition.

Also, if c ∈ R, cX ≡ �X ∗c, where c has c on the first face and zeros on the other faces.
Thus, it’s easy to see that the denominator ‖ �X ∗ c‖F = |c|‖ �X‖F . In the numerator,

〈 �X ∗ c, �X ∗ c〉 = (cT ∗ c) ∗ 〈 �X , �X〉, which means that every element of the tubal scalar

〈 �X , �X〉 is multiplied by c2, and so ‖〈 �X ∗ c, �X ∗ c〉‖F = c2‖〈 �X , �X〉‖F . It follows that
‖cX‖d = |c|‖X‖d.

The real work is in establishing the triangle inequality. Observe that

‖X + Y ‖d =
〈 �X + �Y , �X + �Y〉‖F

‖x+ y‖2
≤ ‖bcirc(�X + �Y)‖2,

where the latter inequality follows from (A.2) in the lemma and x = unfold(�X), y =

unfold(�Y). But

‖bcirc(�X + �Y)‖2 ≤ ‖bcirc(�X)‖2 + ‖bcirc(�Y)‖2

by the triangle inequality on the matrix 2-norm. However,

‖bcirc(�X)‖2 + ‖bcirc(�Y)‖2 ≤
‖bcirc(�X)x‖2

‖x‖2
+
‖bcirc(�Y)y‖2

‖y‖2
follows from the definition of the matrix 2-norm as an induced matrix norm. Since
the first term on the right-hand side above, by the lemma, is ‖ �X‖ and the second is

‖�Y‖, the proof is complete.

Appendix B. Discussion of angles between elements of Km
n . In the next

two examples, we show why it is important to keep track of an entire tuple of angles.
Example B.1. Let X = [0 1

0 0], Y = [1 0
0 0]. Then

cos(θ)(1) = 0, cos(θ)(2) = 1.

6Thanks to Christino Tamon for suggesting we try to prove this.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

170 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

Example B.2. Let X = [0 1
0 0], Y = [0 0

1 0]. Then

cos(θ)(1) = 0, cos(θ)(2) = 0.

If we let A(:, 1, :) = X ;A(:, 2, :) = Y , then in the first case, the tensor A is not
invertible (and thus certainly not orthogonal), while in the second, the tensor A so
formed is orthogonal. This might seem odd, since in both examples vec(X) ⊥ vec(Y).
The difference is that, in vectorizing, we would remove the inherent multidimensional
nature of the objects. As we will see, it is possible to construct any 2× 2 matrix from
an appropriate combination of the X and Y in the second example, but it is not be
possible to construct any 2 × 2 matrix from the same type of combination using X
and Y in the first example.

The entries in the tubal angle are a measure of how close to the Zj−1-conjugate
each of the rows ofX,Y are to each other. Using the definition of ∗, X = squeeze(�X),
and using xj to denote a column of X (with similar definitions for Y and yj),

〈 �X , �Y〉(j) =
m∑
i=1

xT
i Z

j−1yi =

m∑
i=1

(xT
i F

H
n)(FnZ

j−1FH
n)(Fnyi) =

m∑
i=1

conj(x̂i)
T Ẑj−1ŷi,

where Z is the upshift matrix, and Ẑj−1 = FnZ
j−1FH

n is a diagonal matrix with
powers of roots of unity on the diagonal, since Z is circulant.

In particular, ifX,Y are such that their respective rows are all pairwise orthogonal
to each other, 〈 �X , �Y〉(1) = 0 = 〈�Y, �X〉(1), as in these two examples. However, in the
first example, xT

1 Zy1 = 1;xT
2 Zy2 = 0, whereas xT

1 Zy1 = 0 = xT
2 Zy2 in the second

example.
Thus, to truly have a consistency in the definition of a pair of orthogonal elements

of Km
n , we need all the angles to be π/2. That is, an orthogonal set in Km

n should
be characterized by the fact that they have the highest degree of rowwise conjugacies
possible, which implicitly accounts for our being able to describe any element of Km

n

with only m elements using the notion of a t-linear combination.
Note the following:
• For each element of the orthonormal set, ‖�Ui‖ = 1.

• If �Ui and �Uj are orthogonal, θ(j) = π/2, j = 1, . . . , n.

• In general, some of the angles will be nonzero, even if �X = �Y, which is
in contrast to standard linear algebra, when we expect that if v ∈ Rn is a
nonzero vector, the angle between v and itself is zero. However, if �X = �Y,
the first entry in the tubal angle will be zero. This is due to the fact that the
first component of the tubal angle is the angle between vec(X) and vec(Y).

In particular, if 〈 �X , �X〉 = αe1, the first angle is zero, while the rest are π/2.

REFERENCES

[1] K. Braman, Third-order tensors as linear operators on a space of matrices, Linear Algebra
Appl., 433 (2010), pp. 1241–1253.

[2] K. Braman and R. Hoover, Tensor decomposition and application in signal and image
processing, abstract, Invited Minisymposium Presentation, 2010 SIAM Annual Meeting;
http://www.siam.org/meetings/an10/An10abstracts.pdf, p. 58, MS35.

[3] K. Braman and M. Kilmer, Householder abstract booklet, abstract and talk, Householder
Symposium, 2011.

[4] J. Carroll and J. Chang, Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970),
pp. 283–319.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FRAMEWORK FOR THIRD-ORDER TENSORS 171

[5] C.-Y. Chang, A. A. Maciejewski, and V. Balakrishnan, Fast eigenspace decomposition of
correlated images, IEEE Trans. Image Process., 9 (2000), pp. 1937–1949.

[6] P. Comon, Tensor decompositions, in Mathematics in Signal Processing V, J. G. McWhirter
and I. K. Proudler, eds., Clarendon Press, Oxford, UK, 2002, pp. 1–24.

[7] L. De Lathauwer and B. De Moor, From matrix to tensor: Multilinear algebra and signal
processing, in Mathematics in Signal Processing IV, J. McWhirter and I. K. Proudler, eds.,
Clarendon Press, Oxford, UK, 1998, pp. 1–15.

[8] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decom-
position, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.

[9] D. F. Gleich, C. Greif, and J. M. Varah, The power and Arnoldi methods in an algebra of
circulants, Numer. Linear Algebra Appl., doi: 10.1002/nla.1845.

[10] N. Hao and M. Kilmer, Tensor-SVD with applications in image processing, Invited Minisym-
posium Presentation, 2010 SIAM Annual Meeting; http://www.siam.org/meetings/an10/
An10abstracts.pdf, p. 58, MS35.

[11] N. Hao, M. E. Kilmer, K. Braman, and R. C. Hoover, Facial recognition using tensor-tensor
decompositions, SIAM J. Imaging Sci., 6 (2013), pp. 437–463.

[12] R. Harshman, Foundations of the PARAFAC procedure: Model and conditions for an “ex-
planatory” multi-mode factor analysis, UCLA Working Papers in Phonetics, 16 (1970),
pp. 1–84.

[13] W. S. Hoge and C.-F. Westin, Identification of translational displacements between N-
dimensional data sets using the high order SVD and phase correlation, IEEE Trans. Image
Process., 14 (2005), pp. 884–889.

[14] R. C. Hoover, K. S. Braman, and N. Hao, Pose estimation from a single image using
tensor decomposition and an algebra of circulants, in Proceedings of the IEEE International
Conference on Intelligent Robots and Systems (IROS), 2011, pp. 2928–2939.

[15] M. E. Kilmer, K. Braman, and N. Hao, Third Order Tensors as Operators on Matrices:
A Theoretical and Computational Framework with Applications in Imaging, Tech. Report
CS-TR-01-11, Tufts University, 2011.

[16] M. E. Kilmer and C. D. Martin, Factorization strategies for third-order tensors, Linear
Algebra Appl., 435 (2011), pp. 641–658.

[17] M. E. Kilmer, C. D. Martin, and L. Perrone, A Third-Order Generalization of the Matrix
SVD as a Product of Third-Order Tensors, Tech. Report TR-2008-4, Tufts University,
2008.

[18] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51
(2009), pp. 455–500.

[19] T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM
J. Matrix Anal. Appl., 32 (2011), pp. 1095–1124.

[20] P. Kroonenberg, Three-Mode Principal Component Analysis: Theory and Applications,
DSWO Press, Leiden, 1983.

[21] K. Legaz, 3-D Model Database for Blender, http://3dmodels.katorlegaz.com/, 2007.
[22] L.-H. Lim, Singular values and eigenvalues of tensors: A variational approach, in CAMSA

P’05: Proceeding of the IEEE International Workshop on Computational Advances in
Multi-sensor Adaptive Processing, 2005, pp. 129–132.

[23] J. Nagy and M. Kilmer, Kronecker product approximation for preconditioning in three-
dimensional imaging applications, IEEE Trans. Image Process., 15 (2006), pp. 604–613.

[24] M. Ng, L. Qi, and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J.
Matrix Anal. Appl., 31 (2009), pp. 1090–1099.

[25] L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl., 325 (2007), pp. 1363–1367.
[26] M. Rezghi and L. Eldèn, Diagonalization of tensors with circulant structure, Linear Algebra

Appl., 435 (2011), pp. 422–447
[27] B. Savas and L. Eldén, Krylov Subspace Methods for Tensor Computations, Tech. Report

LITH-MAT-R-2009-02-SE, Department of Mathematics, Linköpings Universitet, 2009.
[28] B. Savas and L. Eldén, Krylov-type methods for tensor computations I, Linear Algebra Appl.,

438 (2013), pp. 891–918.
[29] N. Sidiropoulos, R. Bro, and G. Giannakis, Parallel factor analysis in sensor array pro-

cessing, IEEE Trans. Signal Process., 48 (2000), pp. 2377–2388.
[30] A. Smilde, R. Bro, and P. Geladi, Multi-way Analysis: Applications in the Chemical Sci-

ences, John Wiley, Chichester, UK, 2004.
[31] L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, 1997.
[32] L. Tucker, Some mathematical notes on three-mode factor analysis, Psychometrika, 31 (1966),

pp. 279–311.
[33] M. Vasilescu and D. Terzopoulos, Multilinear analysis of image ensembles: Tensorfaces, in

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

172 M. E. KILMER, K. BRAMAN, N. HAO, AND R. C. HOOVER

Proceedings of the 7th European Conference on Computer Vision (ECCV 2002), Lecture
Notes in Comput. Sci. 2350, Springer, New York, 2002, pp. 447–460.

[34] M. Vasilescu and D. Terzopoulos, Multilinear image analysis for facial recognition, in Pro-
ceedings of the 16th International Conference on Pattern Recognition (ICPR 2002), Vol. 2,
IEEE Computer Society Press, 2002, pp. 511–514.

[35] M. Vasilescu and D. Terzopoulos, Multilinear subspace analysis of image ensembles, in
Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR 2003), IEEE Computer Society Press, 2003, pp. 93–99.

D
ow

nl
oa

de
d

03
/0

1/
16

 to
 1

69
.2

37
.2

15
.1

79
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

