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Abstract. This survey provides an overview of higher-order tensor decompositions, their applications,
and available software. A tensor is a multidimensional or N-way array. Decompositions
of higher-order tensors (i.e., N-way arrays with N ≥ 3) have applications in psycho-
metrics, chemometrics, signal processing, numerical linear algebra, computer vision, nu-
merical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular
tensor decompositions can be considered to be higher-order extensions of the matrix sin-
gular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a
sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal
component analysis. There are many other tensor decompositions, including INDSCAL,
PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative vari-
ants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are
examples of software packages for working with tensors.
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1. Introduction. A tensor is a multidimensional array. More formally, an N -
way or Nth-order tensor is an element of the tensor product of N vector spaces,
each of which has its own coordinate system. This notion of tensors is not to be
confused with tensors in physics and engineering (such as stress tensors) [175], which
are generally referred to as tensor fields in mathematics [69]. A third-order tensor has
three indices, as shown in Figure 1.1. A first-order tensor is a vector, a second-order
tensor is a matrix, and tensors of order three or higher are called higher-order tensors.

The goal of this survey is to provide an overview of higher-order tensors and their
decompositions. Though there has been active research on tensor decompositions
and models (i.e., decompositions applied to data arrays for extracting and explaining
their properties) for the past four decades, very little of this work has been published
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456 TAMARA G. KOLDA AND BRETT W. BADER

Fig. 1.1 A third-order tensor: X∈ R
I×J×K .

in applied mathematics journals. Therefore, we wish to bring this research to the
attention of SIAM readers.

Tensor decompositions originated with Hitchcock in 1927 [105, 106], and the idea
of a multiway model is attributed to Cattell in 1944 [40, 41]. These concepts received
scant attention until the work of Tucker in the 1960s [224, 225, 226] and Carroll
and Chang [38] and Harshman [90] in 1970, all of which appeared in psychometrics
literature. Appellof and Davidson [13] are generally credited as being the first to
use tensor decompositions (in 1981) in chemometrics, and tensors have since become
extremely popular in that field [103, 201, 27, 28, 31, 152, 241, 121, 12, 9, 29], even
spawning a book in 2004 [200]. In parallel to the developments in psychometrics
and chemometrics, there was a great deal of interest in decompositions of bilinear
forms in the field of algebraic complexity; see, e.g., Knuth [130, sec. 4.6.4]. The most
interesting example of this is Strassen matrix multiplication, which is an application
of a decomposition of a 4 × 4 × 4 tensor to describe 2 × 2 matrix multiplication
[208, 141, 147, 24].

In the last ten years, interest in tensor decompositions has expanded to other
fields. Examples include signal processing [62, 196, 47, 43, 68, 80, 173, 60, 61], numer-
ical linear algebra [87, 63, 64, 132, 244, 133, 149], computer vision [229, 230, 231, 190,
236, 237, 193, 102, 235], numerical analysis [22, 108, 23, 89, 114, 88, 115], data min-
ing [190, 4, 157, 211, 5, 209, 210, 44, 14], graph analysis [136, 135, 15], neuroscience
[20, 163, 165, 167, 170, 168, 169, 2, 3, 70, 71], and more. Several surveys have been
written in other fields [138, 52, 104, 27, 28, 47, 129, 78, 48, 200, 69, 29, 6, 184], and
a book has appeared very recently on multiway data analysis [139]. Moreover, there
are several software packages available for working with tensors [179, 11, 146, 85, 16,
17, 18, 239, 243].

Wherever possible, the titles in the references section of this review are hyper-
linked to either the publisher web page for the paper or the author’s version. Many
older papers are now available online in PDF format. We also direct the reader to
P. Kroonenberg’s three-mode bibliography,1 which includes several out-of-print books
and theses (including his own [138]). Likewise, R. Harshman’s web site2 has many
hard-to-find papers, including his original 1970 PARAFAC paper [90] and Kruskal’s
1989 paper [143], which is now out of print.

The remainder of this review is organized as follows. Section 2 describes the no-
tation and common operations used throughout the review; additionally, we provide
pointers to other papers that discuss notation. Both the CANDECOMP/PARAFAC

1http://three-mode.leidenuniv.nl/bibliogr/bibliogr.htm
2http://www.psychology.uwo.ca/faculty/harshman
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TENSOR DECOMPOSITIONS AND APPLICATIONS 457

(CP) [38, 90] and Tucker [226] tensor decompositions can be considered to be higher-
order generalizations of the matrix singular value decomposition (SVD) and principal
component analysis (PCA). In section 3, we discuss the CP decomposition, its con-
nection to tensor rank and tensor border rank, conditions for uniqueness, algorithms
and computational issues, and applications. The Tucker decomposition is covered
in section 4, where we discuss its relationship to compression, the notion of n-rank,
algorithms and computational issues, and applications. Section 5 covers other decom-
positions, including INDSCAL [38], PARAFAC2 [92], CANDELINC [39], DEDICOM
[93], and PARATUCK2 [100], and their applications. Section 6 provides information
about software for tensor computations. We summarize our findings in section 7.

2. Notation and Preliminaries. In this review, we have tried to remain as con-
sistent as possible with terminology that would be familiar to applied mathematicians
and with the terminology of previous publications in the area of tensor decomposi-
tions. The notation used here is very similar to that proposed by Kiers [122]. Other
standards have been proposed as well; see Harshman [94] and Harshman and Hong
[96].

The order of a tensor is the number of dimensions, also known as ways or modes.3

Vectors (tensors of order one) are denoted by boldface lowercase letters, e.g., a. Matri-
ces (tensors of order two) are denoted by boldface capital letters, e.g., A. Higher-order
tensors (order three or higher) are denoted by boldface Euler script letters, e.g., X.
Scalars are denoted by lowercase letters, e.g., a.

The ith entry of a vector a is denoted by ai, element (i, j) of a matrix A is
denoted by aij , and element (i, j, k) of a third-order tensor X is denoted by xijk .
Indices typically range from 1 to their capital version, e.g., i = 1, . . . , I. The nth
element in a sequence is denoted by a superscript in parentheses, e.g., A(n) denotes
the nth matrix in a sequence.

Subarrays are formed when a subset of the indices is fixed. For matrices, these
are the rows and columns. A colon is used to indicate all elements of a mode. Thus,
the jth column of A is denoted by a:j , and the ith row of a matrix A is denoted by
ai:. Alternatively, the jth column of a matrix, a:j , may be denoted more compactly
as aj .

Fibers are the higher-order analogue of matrix rows and columns. A fiber is
defined by fixing every index but one. A matrix column is a mode-1 fiber and a
matrix row is a mode-2 fiber. Third-order tensors have column, row, and tube fibers,
denoted by x:jk, xi:k, and xij:, respectively; see Figure 2.1. When extracted from the
tensor, fibers are always assumed to be oriented as column vectors.

Slices are two-dimensional sections of a tensor, defined by fixing all but two
indices. Figure 2.2 shows the horizontal, lateral, and frontal slides of a third-order
tensor X, denoted by Xi::, X:j:, and X::k, respectively. Alternatively, the kth frontal
slice of a third-order tensor, X::k, may be denoted more compactly as Xk.

The norm of a tensor X ∈ R
I1×I2×···×IN is the square root of the sum of the

squares of all its elements, i.e.,

‖X ‖ =
√√√√ I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN =1

x2
i1i2···iN

.

This is analogous to the matrix Frobenius norm, which is denoted ‖A ‖ for a matrix

3In some fields, the order of the tensor is referred to as the rank of the tensor. In much of the
literature and this review, however, the term rank means something quite different; see section 3.1.
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458 TAMARA G. KOLDA AND BRETT W. BADER

(a) Mode-1 (column) fibers: x:jk (b) Mode-2 (row) fibers: xi:k (c) Mode-3 (tube) fibers: xij:

Fig. 2.1 Fibers of a 3rd-order tensor.

(a) Horizontal slices: Xi:: (b) Lateral slices: X:j: (c) Frontal slices: X::k (or Xk)

Fig. 2.2 Slices of a 3rd-order tensor.

A. The inner product of two same-sized tensors X,Y ∈ RI1×I2×···×IN is the sum of
the products of their entries, i.e.,

〈X,Y 〉 =
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

xi1i2···iN yi1i2···iN .

It follows immediately that 〈X,X 〉 = ‖X ‖2.
2.1. Rank-One Tensors. An N -way tensor X ∈ RI1×I2×···×IN is rank one if it

can be written as the outer product of N vectors, i.e.,

X = a(1) ◦ a(2) ◦ · · · ◦ a(N).

The symbol “◦” represents the vector outer product. This means that each element
of the tensor is the product of the corresponding vector elements:

xi1i2···iN = a
(1)
i1
a
(2)
i2
· · · a(N)

iN
for all 1 ≤ in ≤ In.

Figure 2.3 illustrates X = a ◦ b ◦ c, a third-order rank-one tensor.

2.2. Symmetry and Tensors. A tensor is called cubical if every mode is the same
size, i.e., X ∈ RI×I×I×···×I [49]. A cubical tensor is called supersymmetric (though
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TENSOR DECOMPOSITIONS AND APPLICATIONS 459

Fig. 2.3 Rank-one third-order tensor, X = a ◦ b ◦ c. The (i, j, k) element of X is given by xijk =
aibjck.

this term is challenged by Comon et al. [49], who instead prefer just “symmetric”) if
its elements remain constant under any permutation of the indices. For instance, a
three-way tensor X ∈ RI×I×I is supersymmetric if

xijk = xikj = xjik = xjki = xkij = xkji for all i, j, k = 1, . . . , I.

Tensors can be (partially) symmetric in two or more modes as well. For example,
a three-way tensor X ∈ RI×I×K is symmetric in modes one and two if all its frontal
slices are symmetric, i.e.,

Xk = XT
k for all k = 1, . . . ,K.

Analysis of supersymmetric tensors, which can be shown to be bijectively related
to homogeneous polynomials, predates even the work of Hitchcock [106, 105], which
was mentioned in the introduction; see [50, 49] for details.

2.3. Diagonal Tensors. A tensor X ∈ RI1×I2×···×IN is diagonal if xi1i2···iN 	= 0
only if i1 = i2 = · · · = iN . Figure 2.4 illustrates a cubical tensor with ones along the
superdiagonal.

Fig. 2.4 Three-way tensor of size I × I × I with ones along the superdiagonal.

2.4. Matricization: Transforming a Tensor into a Matrix. Matricization, also
known as unfolding or flattening, is the process of reordering the elements of an N -way
array into a matrix. For instance, a 2×3×4 tensor can be arranged as a 6×4 matrix or
a 3× 8 matrix, and so on. In this review, we consider only the special case of mode-n
matricization because it is the only form relevant to our discussion. A more general
treatment of matricization can be found in Kolda [134]. The mode-n matricization of
a tensor X ∈ RI1×I2×···×IN is denoted by X(n) and arranges the mode-n fibers to be
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460 TAMARA G. KOLDA AND BRETT W. BADER

the columns of the resulting matrix. Though conceptually simple, the formal notation
is clunky. Tensor element (i1, i2, . . . , iN ) maps to matrix element (in, j), where

j = 1 +
N∑

k=1
k �=n

(ik − 1)Jk with Jk =
k−1∏
m=1
m �=n

Im.

The concept is easier to understand using an example. Let the frontal slices of X ∈
R3×4×2 be

(2.1) X1 =

1 4 7 10
2 5 8 11
3 6 9 12

 , X2 =

13 16 19 22
14 17 20 23
15 18 21 24

 .
Then the three mode-n unfoldings are

X(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 ,
X(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

 ,
X(3) =

[
1 2 3 4 5 · · · 9 10 11 12
13 14 15 16 17 · · · 21 22 23 24

]
.

Different papers sometimes use different orderings of the columns for the mode-n
unfolding; compare the above with [63] and [122]. In general, the specific permutation
of columns is not important so long as it is consistent across related calculations; see
[134] for further details.

Last, we note that it is also possible to vectorize a tensor. Once again the ordering
of the elements is not important so long as it is consistent. In the example above, the
vectorized version is

vec(X) =


1
2
...
24

 .
2.5. Tensor Multiplication: The n-Mode Product. Tensors can be multiplied

together, though obviously the notation and symbols for this are much more complex
than for matrices. For a full treatment of tensor multiplication see, e.g., Bader and
Kolda [16]. Here we consider only the tensor n-mode product, i.e., multiplying a
tensor by a matrix (or a vector) in mode n.

The n-mode (matrix) product of a tensor X ∈ RI1×I2×···×IN with a matrix U ∈
RJ×In is denoted by X ×n U and is of size I1 × · · · × In−1 × J × In+1 × · · · × IN .
Elementwise, we have

(X×n U)i1···in−1j in+1···iN
=

In∑
in=1

xi1i2···iN ujin .
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TENSOR DECOMPOSITIONS AND APPLICATIONS 461

Each mode-n fiber is multiplied by the matrix U. The idea can also be expressed in
terms of unfolded tensors:

Y = X×n U ⇔ Y(n) = UX(n).

The n-mode product of a tensor with a matrix is related to a change of basis in the
case when a tensor defines a multilinear operator.

As an example, let X be the tensor defined above in (2.1) and let U =
[

1 3 5
2 4 6

]
.

Then the product Y = X×1 U ∈ R2×4×2 is

Y1 =
[
22 49 76 103
28 64 100 136

]
, Y2 =

[
130 157 184 211
172 208 244 280

]
.

A few facts regarding n-mode matrix products are in order. For distinct modes
in a series of multiplications, the order of the multiplication is irrelevant, i.e.,

X×m A×n B = X×n B×m A (m 	= n).

If the modes are the same, then

X×n A×n B = X×n (BA).

The n-mode (vector) product of a tensor X ∈ R
I1×I2×···×IN with a vector v ∈ R

In

is denoted by X ×̄n v. The result is of order N − 1, i.e., the size is I1 × · · · × In−1 ×
In+1 × · · · × IN . Elementwise,

(X ×̄n v)i1···in−1in+1···iN
=

In∑
in=1

xi1i2···iN vin .

The idea is to compute the inner product of each mode-n fiber with the vector v.
For example, let X be as given in (2.1) and define v =

[
1 2 3 4

]T. Then

X ×̄2 v =

70 190
80 200
90 210

 .
When it comes to mode-n vector multiplication, precedence matters because the

order of the intermediate results changes. In other words,

X ×̄m a ×̄n b = (X ×̄m a) ×̄n−1 b = (X ×̄n b) ×̄m a for m < n.

See [16] for further discussion of concepts in this subsection.

2.6. Matrix Kronecker, Khatri–Rao, and Hadamard Products. Several matrix
products are important in the sections that follow, so we briefly define them here.

The Kronecker product of matrices A ∈ RI×J and B ∈ RK×L is denoted by
A⊗B. The result is a matrix of size (IK)× (JL) and defined by

A⊗B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB
...

...
. . .

...
aI1B aI2B · · · aIJB


=

[
a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
.
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462 TAMARA G. KOLDA AND BRETT W. BADER

The Khatri–Rao product [200] is the “matching columnwise” Kronecker product.
Given matrices A ∈ RI×K and B ∈ RJ×K , their Khatri–Rao product is denoted by
AB. The result is a matrix of size (IJ)×K defined by

AB =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
.

If a and b are vectors, then the Khatri–Rao and Kronecker products are identical,
i.e., a⊗ b = a b.

The Hadamard product is the elementwise matrix product. Given matrices A and
B, both of size I × J , their Hadamard product is denoted by A ∗ B. The result is
also of size I × J and defined by

A ∗B =


a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ

 .
These matrix products have properties [227, 200] that will prove useful in our

discussions:

(A⊗B)(C⊗D) = AC⊗BD,

(A⊗B)† = A† ⊗B†,
ABC = (AB)C = A (BC),

(AB)T(AB) = ATA ∗BTB,

(AB)† = ((ATA) ∗ (BTB))†(AB)T.(2.2)

Here A† denotes the Moore–Penrose pseudoinverse of A [84].
As an example of the utility of the Kronecker product, consider the following.

Let X ∈ RI1×I2×···×IN and A(n) ∈ RJn×In for all n ∈ {1, . . . , N}. Then, for any
n ∈ {1, . . . , N}, we have

Y = X×1 A(1) ×2 A(2) · · · ×N A(N) ⇔
Y(n) = A(n)X(n)

(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T

.

See [134] for a proof of this property.

3. Tensor Rank and the CANDECOMP/PARAFAC Decomposition. In 1927,
Hitchcock [105, 106] proposed the idea of the polyadic form of a tensor, i.e., express-
ing a tensor as the sum of a finite number of rank-one tensors; and in 1944 Cattell
[40, 41] proposed ideas for parallel proportional analysis and the idea of multiple axes
for analysis (circumstances, objects, and features). The concept finally became popu-
lar after its third introduction, in 1970 to the psychometrics community, in the form of
CANDECOMP (canonical decomposition) by Carroll and Chang [38] and PARAFAC
(parallel factors) by Harshman [90]. We refer to the CANDECOMP/PARAFAC de-
composition as CP, per Kiers [122]. Möcks [166] independently discovered CP in the
context of brain imaging and called it the topographic components model. Table 3.1
summarizes the different names for the CP decomposition.
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TENSOR DECOMPOSITIONS AND APPLICATIONS 463

Table 3.1 Some of the many names for the CP decomposition.

Name Proposed by
Polyadic form of a tensor Hitchcock, 1927 [105]
PARAFAC (parallel factors) Harshman, 1970 [90]
CANDECOMP or CAND (canonical decomposition) Carroll and Chang, 1970 [38]
Topographic components model Möcks, 1988 [166]
CP (CANDECOMP/PARAFAC) Kiers, 2000 [122]

X

c1 c2

aR

b1

a1

b2

a2

bR

cR

≈ + + · · ·+

Fig. 3.1 CP decomposition of a three-way array.

The CP decomposition factorizes a tensor into a sum of component rank-one
tensors. For example, given a third-order tensor X ∈ RI×J×K , we wish to write it as

(3.1) X ≈
R∑

r=1

ar ◦ br ◦ cr,

where R is a positive integer and ar ∈ RI , br ∈ RJ , and cr ∈ RK for r = 1, . . . , R.
Elementwise, (3.1) is written as

xijk ≈
R∑

r=1

air bjr ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

This is illustrated in Figure 3.1.
The factor matrices refer to the combination of the vectors from the rank-one

components, i.e., A =
[
a1 a2 · · · aR

]
and likewise for B and C. Using these

definitions, (3.1) may be written in matricized form (one per mode; see section 2.4):

X(1) ≈ A(CB)T,(3.2)

X(2) ≈ B(CA)T,

X(3) ≈ C(BA)T.

Recall that  denotes the Khatri–Rao product from section 2.6. The three-way model
is sometimes written in terms of the frontal slices of X (see Figure 2.2):

Xk ≈ AD(k)BT, where D(k) ≡ diag(ck:) for k = 1, . . . ,K.

Analogous equations can be written for the horizontal and lateral slices. In general,
though, slicewise expressions do not easily extend beyond three dimensions. Following
Kolda [134] (see also Kruskal [141]), the CP model can be concisely expressed as

X ≈ �A,B,C� ≡
R∑

r=1

ar ◦ br ◦ cr.
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464 TAMARA G. KOLDA AND BRETT W. BADER

It is often useful to assume that the columns of A, B, and C are normalized to length
one with the weights absorbed into the vector λ ∈ RR so that

(3.3) X ≈ �λ ;A,B,C� ≡
R∑

r=1

λr ar ◦ br ◦ cr.

We have focused on the three-way case because it is widely applicable and suf-
ficient for many needs. For a general Nth-order tensor, X ∈ RI1×I2×···×IN , the CP
decomposition is

X ≈ �λ ;A(1),A(2), . . . ,A(N)� ≡
R∑

r=1

λr a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r ,

where λ ∈ RR and A(n) ∈ RIn×R for n = 1, . . . , N . In this case, the mode-n matri-
cized version is given by

X(n) ≈ A(n)Λ(A(N)  · · · A(n+1) A(n−1)  · · · A(1))T,

where Λ = diag(λ).

3.1. Tensor Rank. The rank of a tensor X, denoted rank(X), is defined as the
smallest number of rank-one tensors (see section 2.1) that generate X as their sum
[105, 141]. In other words, this is the smallest number of components in an exact CP
decomposition, where “exact” means that there is equality in (3.1). Hitchcock [105]
first proposed this definition of rank in 1927, and Kruskal [141] did so independently
50 years later. For the perspective of tensor rank from an algebraic complexity point
of view, see [107, 37, 130, 24] and references therein. An exact CP decomposition
with R = rank(X) components is called the rank decomposition.

The definition of tensor rank is an exact analogue to the definition of matrix rank,
but the properties of matrix and tensor ranks are quite different. One difference is
that the rank of a real-valued tensor may actually be different over R and C. For
example, let X be a tensor whose frontal slices are defined by

X1 =
[
1 0
0 1

]
and X2 =

[
0 1
−1 0

]
.

This is a tensor of rank three over R and rank two over C. The rank decomposition
over R is X = �A,B,C�, where

A =
[
1 0 1
0 1 −1

]
, B =

[
1 0 1
0 1 1

]
, and C =

[
1 1 0
−1 1 1

]
,

whereas the rank decomposition over C has the following factor matrices instead:

A =
1√
2

[
1 1
−i i

]
, B =

1√
2

[
1 1
i −i

]
, and C =

[
1 1
i −i

]
.

This example comes from Kruskal [142], and the proof that it is rank three over R

and the methodology for computing the factors can be found in Ten Berge [212]. See
also Kruskal [143] for further discussion.

Another major difference between matrix and tensor rank is that (except in special
cases such as the example above) there is no straightforward algorithm to determine
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TENSOR DECOMPOSITIONS AND APPLICATIONS 465

Table 3.2 Maximum ranks over R for three-way tensors.

Tensor size Maximum rank Citation
I × J × 2 min{I, J}+ min{I, J, �max{I, J}/2}�} [109, 143]
3× 3× 3 5 [143]

Table 3.3 Typical rank over R for three-way tensors.

Tensor size Typical rank Citation
2× 2× 2 {2, 3} [143]
3× 3× 2 {3, 4} [142, 212]
5× 3× 3 {5, 6} [214]

I × J × 2 with I ≥ 2J (very tall) 2J [216]
I × J × 2 with J < I < 2J (tall) I [216]

I × I × 2 (compact) {I, I + 1} [212, 216]
I × J ×K with I ≥ JK (very tall) JK [213]

I × J ×K with JK − J < I < JK (tall) I [213]
I × J ×K with I = JK − J (compact) {I, I + 1} [213]

the rank of a specific given tensor; in fact, the problem is NP-hard [101]. Kruskal
[143] cites an example of a particular 9 × 9 × 9 tensor whose rank is only known to
be bounded between 18 and 23 (recent work by Comon et al. [51] conjectures that
the rank is 19 or 20). In practice, the rank of a tensor is determined numerically by
fitting various rank-R CP models; see section 3.4.

Another peculiarity of tensors has to do with maximum and typical ranks. The
maximum rank is defined as the largest attainable rank, whereas the typical rank is
any rank that occurs with probability greater than zero (i.e., on a set with positive
Lebesgue measure). For the collection of I × J matrices, the maximum and typical
ranks are identical and equal to min{I, J}. For tensors, the two ranks may be different.
Moreover, over R, there may be more than one typical rank, whereas there is always
only one typical rank over C. Kruskal [143] discusses the case of 2 × 2 × 2 tensors
which have typical ranks of two and three over R. In fact, Monte Carlo experiments
(which randomly draw each entry of the tensor from a normal distribution with mean
zero and standard deviation one) reveal that the set of 2× 2 × 2 tensors of rank two
fills about 79% of the space, while those of rank three fill 21%. Rank-one tensors are
possible but occur with zero probability. See also the concept of border rank discussed
in section 3.3.

For a general third-order tensor X ∈ R
I×J×K , only the following weak upper

bound on its maximum rank is known [143]:

rank(X) ≤ min{IJ, IK, JK}.
Table 3.2 shows known maximum ranks for tensors of specific sizes. The most general
result is for third-order tensors with only two slices.

Table 3.3 shows some known formulas for the typical ranks of certain three-way
tensors over R. For general I×J×K (or higher-order) tensors, recall that the ordering
of the modes does not affect the rank, i.e., the rank is constant under permutation.
Kruskal [143] discussed the case of 2× 2× 2 tensors having typical ranks of both two
and three and gave a diagnostic polynomial to determine the rank of a given tensor.
Ten Berge [212] later extended this result (and the diagnostic polynomial) to show
that I × I × 2 tensors have typical ranks of I and I + 1. Ten Berge and Kiers [216]
fully characterized the set of all I ×J × 2 arrays and further contrasted the difference
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466 TAMARA G. KOLDA AND BRETT W. BADER

Table 3.4 Typical rank over R for three-way tensors with symmetric frontal slices [219].

Tensor size Typical rank
I × I × 2 {I, I + 1}
3× 3× 3 4
3× 3× 4 {4, 5}
3× 3× 5 {5, 6}

I × I ×K with K ≥ I(I + 1)/2 I(I + 1)/2

Table 3.5 Comparison of typical ranks over R for three-way tensors with and without symmetric
frontal slices [219].

Tensor size Typical rank Typical rank
with symmetry without symmetry

I × I × 2 (compact) {I, I + 1} {I, I + 1}
2× 3× 3 (compact) {3, 4} {3, 4}

3× 2× 2 (tall) 3 3
I × 2× 2 with I ≥ 4 (very tall) 3 4
I × 3× 3 with I = 6, 7, 8 (tall) 6 I

9× 3× 3 (very tall) 6 9

between ranks over R and C. The typical rank over R of an I × J × 2 tensor is
min{I, 2J} when I > J , and the same holds true over C. However, the typical rank
for an I × J × 2 tensor with I = J (i.e., a tensor of size I × I × 2) is {I, I + 1} over
R but I over C. For general three-way arrays, Ten Berge [213] classified their ranks
over R according to the sizes of I, J , and K, as follows: A tensor with I > J > K
is called “very tall” when I > JK, “tall” when JK − J < I < JK, and “compact”
when I < JK − J . Very tall tensors trivially have maximal and typical rank JK
[213]. Tall tensors are treated in [213] (and [216] for I×J×2 arrays). Little is known
about the typical rank of compact tensors except for when I = JK − J [213]. Recent
results by Comon et al. [51] provide typical ranks for a larger range of tensor sizes.

The situation changes somewhat when we restrict the tensors in some way. Ten
Berge, Sidiropoulos, and Rocci [219] considered the case where the tensor is symmetric
in two modes. Without loss of generality, assume that the frontal slices are symmetric;
see section 2.2. The results are presented in Table 3.4. It is interesting to compare
the results for tensors with and without symmetric slices, as is done in Table 3.5. In
some cases, e.g., I × I × 2, the typical rank is the same in either case. But in other
cases, e.g., I × 2× 2, the typical rank differs.

Comon et al. [49] have recently investigated the special case of supersymmetric
tensors (see section 2.2) over C. Let X ∈ C

I×I×···×I be a supersymmetric tensor of
order N . Define the symmetric rank (over C) of X to be

rankS(X) = min

{
R : X =

R∑
r=1

ar ◦ ar ◦ · · · ◦ ar, where A ∈ C
I×R

}
,

i.e., the minimum number of symmetric rank-one factors. Comon et al. show that,
with probability one,

rankS(X) =


(

I+N−1
N

)
I

 ,D
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TENSOR DECOMPOSITIONS AND APPLICATIONS 467

except for when (N, I) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)}, in which case it should be in-
creased by one. The result is due to Alexander and Hirschowitz [7, 49].

3.2. Uniqueness. An interesting property of higher-order tensors is that their
rank decompositions are often unique, whereas matrix decompositions are not. Sidir-
opoulos and Bro [199] and Ten Berge [213] provide some history of uniqueness results
for CP. The earliest uniqueness result is due to Harshman in 1970 [90], which he in
turn credits to Dr. Robert Jennich. Harshman’s result is a special case of the more
general results presented here. Harshman presented further results in 1972 [91], which
are generalized in [143, 212].

Consider the fact that matrix decompositions are not unique. Let X ∈ R
I×J be

a matrix of rank R. Then a rank decomposition of this matrix is

X = ABT =
R∑

r=1

ar ◦ br.

If the SVD of X is UΣVT, then we can choose A = UΣ and B = V. However,
it is equally valid to choose A = UΣW and B = VW, where W is some R × R
orthogonal matrix. In other words, we can easily construct two completely different
sets of R rank-one matrices that sum to the original matrix. The SVD of a matrix is
unique (assuming all the singular values are distinct) only because of the addition of
orthogonality constraints (and the diagonal matrix of ordered singular values in the
middle).

The CP decomposition, on the other hand, is unique under much weaker condi-
tions. Let X ∈ RI×J×K be a three-way tensor of rank R, i.e.,

(3.4) X =
R∑

r=1

ar ◦ br ◦ cr = �A,B,C�.

Uniqueness means that this is the only possible combination of rank-one tensors that
sums to X, with the exception of the elementary indeterminacies of scaling and permu-
tation. The permutation indeterminacy refers to the fact that the rank-one component
tensors can be reordered arbitrarily, i.e.,

X = �A,B,C� = �AΠ,BΠ,CΠ� for any R×R permutation matrix Π.

The scaling indeterminacy refers to the fact that we can scale the individual vectors,
i.e.,

X =
R∑

r=1

(αrar) ◦ (βrbr) ◦ (γrcr),

as long as αrβrγr = 1 for r = 1, . . . , R.
The most general and well-known result on uniqueness is due to Kruskal [141, 143]

and depends on the concept of k-rank. The k-rank of a matrix A, denoted kA, is
defined as the maximum value k such that any k columns are linearly independent
[141, 98]. Kruskal’s result [141, 143] says that a sufficient condition for uniqueness for
the CP decomposition in (3.4) is

kA + kB + kC ≥ 2R+ 2.
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468 TAMARA G. KOLDA AND BRETT W. BADER

Kruskal’s result is nontrivial and has been reproven and analyzed many times over;
see, e.g., [199, 218, 111, 206]. Sidiropoulos and Bro [199] recently extended Kruskal’s
result to N -way tensors. Let X be an N -way tensor with rank R and suppose that
its CP decomposition is

(3.5) X =
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r = �A(1),A(2), . . . ,A(N)�.

Then a sufficient condition for uniqueness is

N∑
n=1

kA(n) ≥ 2R+ (N − 1).

The previous results provide only sufficient conditions. Ten Berge and Sidiropou-
los [218] showed that the sufficient condition is also necessary for tensors of rank R = 2
and R = 3, but not for R > 3. Liu and Sidiropoulos [158] considered more general
necessary conditions. They showed that a necessary condition for uniqueness of the
CP decomposition in (3.4) is

min{ rank(AB), rank(AC), rank(BC) } = R.

More generally, they showed that for theN -way case, a necessary condition for unique-
ness of the CP decomposition in (3.5) is

min
n=1,...,N

rank
(
A(1)  · · · A(n−1) A(n+1)  · · · A(N)

)
= R.

They further observed that since rank(AB) ≤ rank(A⊗B) ≤ rank(A) · rank(B),
an even simpler necessary condition is

min
n=1,...,N

 N∏
m=1
m �=n

rank(A(m))

 ≥ R.

De Lathauwer [55] has looked at methods to determine the rank of a tensor and
the question of when a given CP decomposition is deterministically or generically (i.e.,
with probability one) unique. The CP decomposition in (3.4) is generically unique if

R ≤ K and R(R− 1) ≤ I(I − 1)J(J − 1)/2.

Likewise, a fourth-order tensor X ∈ RI×J×K×L of rank R has a CP decomposition
that is generically unique if

R ≤ L and R(R− 1) ≤ IJK(3IJK − IJ − IK − JK − I − J −K + 3)/4.

3.3. Low-Rank Approximations and the Border Rank. For matrices, Eckart
and Young [76] showed that a best rank-k approximation is given by the leading k
factors of the SVD. In other words, let R be the rank of a matrix A and assume its
SVD is given by

A =
R∑

r=1

σr ur ◦ vr with σ1 ≥ σ2 ≥ · · · ≥ σR > 0.
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TENSOR DECOMPOSITIONS AND APPLICATIONS 469

Then a rank-k approximation that minimizes ‖A−B ‖ is given by

B =
k∑

r=1

σr ur ◦ vr.

This type of result does not hold true for higher-order tensors. For instance,
consider a third-order tensor of rank R with the following CP decomposition:

X =
R∑

r=1

λr ar ◦ br ◦ cr.

Ideally, summing k of the factors would yield a best rank-k approximation, but that
is not the case. Kolda [132] provides an example where the best rank-one approxima-
tion of a cubic tensor is not a factor in the best rank-two approximation. A corollary
of this fact is that the components of the best rank-k model may not be solved for
sequentially—all factors must be found simultaneously; see [200, Example 4.3].

In general, though, the problem is more complex. It is possible that the best rank-
k approximation may not even exist. The problem is referred to as one of degeneracy.
A tensor is degenerate if it may be approximated arbitrarily well by a factorization of
lower rank. An example from [180, 69] best illustrates the problem. Let X ∈ RI×J×K

be a rank-three tensor defined by

X = a1 ◦ b1 ◦ c2 + a1 ◦ b2 ◦ c1 + a2 ◦ b1 ◦ c1,

where A ∈ RI×2, B ∈ RJ×2, and C ∈ RK×2, and each has linearly independent
columns. This tensor can be approximated arbitrarily closely by a rank-two tensor of
the following form:

Y = α

(
a1 +

1
α
a2

)
◦

(
b1 +

1
α
b2

)
◦

(
c1 +

1
α

c2

)
− α a1 ◦ b1 ◦ c1.

Specifically,

‖X− Y ‖ = 1
α

∥∥∥∥a2 ◦ b2 ◦ c1 + a2 ◦ b1 ◦ c2 + a1 ◦ b2 ◦ c2 +
1
α

a2 ◦ b2 ◦ c2

∥∥∥∥ ,
which can be made arbitrarily small. As this example illustrates, it is typical of
degeneracy that factors become nearly proportional and that the magnitude of some
terms in the decomposition go to infinity but have opposite sign. We note that Paatero
[180] also cites independent, unpublished work by Kruskal [142], and De Silva and Lim
[69] cite Knuth [130] for this example.

Paatero [180] provides further examples of degeneracy. Kruskal, Harshman, and
Lundy [144] also discuss degeneracy and illustrate the idea of a series of lower-rank
tensors converging to one of higher rank. Figure 3.2 shows the problem of estimating
a rank-three tensor Y by a rank-two tensor [144]. Here, a sequence {Xk} of rank-two
tensors provides increasingly better estimates of Y. Necessarily, the best approxima-
tion is on the boundary of the space of rank-two and rank-three tensors. However,
since the space of rank-two tensors is not closed, the sequence may converge to a ten-
sor X∗ of rank other than two. The previous example shows a sequence of rank-two
tensors converging to rank three.
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!!

Rank 3Rank 2

!

!

!

X
(0) X

(1) X
(2)

X
∗

Y

Fig. 3.2 Illustration of a sequence of tensors converging to one of higher rank [144].

Lundy, Harshman, and Kruskal [159] later proposed an alternative numerical
model that combines CP with a Tucker decomposition in order to better avoid degen-
eracies. The earliest example of degeneracy is from Bini et al. [25, 69] in 1979, who
give an explicit example of a sequence of rank-five tensors converging to a rank-six
tensor. De Silva and Lim [69] show, moreover, that the set of tensors of a given
size that do not have a best rank-k approximation has positive volume (i.e., positive
Lebesgue measure) for at least some values of k, so this problem of a lack of a best
approximation is not a “rare” event. In related work, Comon et al. [49] show similar
examples for symmetric tensors and symmetric approximations. Stegeman [202] con-
siders the case of I × I × 2 arrays and proves that any tensor with rank R = I + 1
does not have a best rank-I approximation. Further, Stegeman [204] considers the
case of all tensors of size I × J × 3 with two typical ranks and shows that in most
cases the higher ranks can be approximated arbitrarily well by a lower-rank tensor.

In the situation where a best low-rank approximation does not exist, it is useful to
consider the concept of border rank [25, 24], which is defined as the minimum number
of rank-one tensors that are sufficient to approximate the given tensor with arbitrarily
small nonzero error. This concept was introduced in 1979 and developed within the
algebraic complexity community during the 1980s. Mathematically, border rank is
defined as

(3.6) r̃ank(X) = min{ r | for any ε > 0, there exists a tensor E

such that ‖E‖ < ε and rank(X + E) = r }.
An obvious condition is that

r̃ank(X) ≤ rank(X).

Much of the work on border rank has been done in the context of bilinear forms and
matrix multiplication. In particular, Strassen matrix multiplication [208] comes from
considering the rank of a particular 4 × 4 × 4 tensor that represents matrix-matrix
multiplication for 2 × 2 matrices. In this case, it can be shown that the rank and
border rank of the tensor are both equal to 7 (see, e.g., [147]). The case of 3 × 3
matrix multiplication corresponds to a 9× 9× 9 tensor that has rank between 19 and
23 [145, 26, 24] and a border rank between 14 and 21 [192, 26, 24, 148].

D
ow

nl
oa

de
d 

12
/0

1/
15

 to
 1

68
.1

50
.2

9.
12

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



TENSOR DECOMPOSITIONS AND APPLICATIONS 471

procedure CP-ALS(X,R)

initialize A(n) ∈ R
In×R for n = 1, . . . , N

repeat
for n = 1, . . . , N do

V← A(1)TA(1) ∗ · · · ∗A(n−1)TA(n−1) ∗A(n+1)TA(n+1) ∗ · · · ∗A(N)TA(N)

A(n) ← X(n)(A(N)  · · · A(n+1) A(n−1)  · · · A(1))V†

normalize columns of A(n) (storing norms as λ)
end for

until fit ceases to improve or maximum iterations exhausted
return λ,A(1),A(2), . . . , A(N)

end procedure

Fig. 3.3 ALS algorithm to compute a CP decomposition with R components for an Nth-order tensor
X of size I1 × I2 × · · · × IN .

3.4. Computing the CP Decomposition. As mentioned previously, there is no
finite algorithm for determining the rank of a tensor [143, 101]; consequently, the first
issue that arises in computing a CP decomposition is how to choose the number of
rank-one components. Most procedures fit multiple CP decompositions with different
numbers of components until one is “good.” Ideally, if the data are noise-free and
we have a procedure for calculating CP with a given number of components, then
we can do that computation for R = 1, 2, 3, . . . components and stop at the first
value of R that gives a fit of 100%. However, there are many problems with this
procedure. We will see below that there is no perfect procedure for fitting CP for
a given number of components. Additionally, as we saw in section 3.3, some tensors
may have approximations of lower rank that are arbitrarily close in terms of fit, and
this does cause problems in practice [164, 186, 180]. When the data are noisy (as is
frequently the case), then fit alone cannot determine the rank in any case; instead,
Bro and Kiers [34] proposed a consistency diagnostic called CORCONDIA to compare
different numbers of components.

Assuming the number of components is fixed, there are many algorithms to com-
pute a CP decomposition. Here we focus on what is today the “workhorse” algorithm
for CP: the alternating least squares (ALS) method proposed in the original papers by
Carroll and Chang [38] and Harshman [90]. For ease of presentation, we only derive
the method in the third-order case, but the full algorithm is presented for an N -way
tensor in Figure 3.3.

Let X ∈ R
I×J×K be a third-order tensor. The goal is to compute a CP decom-

position with R components that best approximates X, i.e., to find

(3.7) min
X̂
‖X− X̂‖ with X̂ =

R∑
r=1

λr ar ◦ br ◦ cr = �λ ;A,B,C�.

The ALS approach fixes B and C to solve for A, then fixes A and C to solve for B,
then fixes A and B to solve for C, and continues to repeat the entire procedure until
some convergence criterion is satisfied.

Having fixed all but one matrix, the problem reduces to a linear least-squares
problem. For example, suppose that B and C are fixed. Then, from (3.2), we can
rewrite the above minimization problem in matrix form as

min
Â
‖X(1) − Â(CB)T‖F ,
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472 TAMARA G. KOLDA AND BRETT W. BADER

where Â = A · diag(λ). The optimal solution is then given by

Â = X(1)

[
(CB)T

]†
.

Because the Khatri–Rao product pseudoinverse has the special form in (2.2), it is
common to rewrite the solution as

Â = X(1)(CB)(CTC ∗BTB)†.

The advantage of this version of the equation is that we need only calculate the
pseudoinverse of an R×R matrix rather than a JK×R matrix; however, this version
is not always advised due to the potential for numerical ill-conditioning. Finally, we
normalize the columns of Â to get A; in other words, let λr = ‖âr‖ and ar = âr/λr

for r = 1, . . . , R.
The full ALS procedure for an N -way tensor is shown in Figure 3.3. It assumes

that the number of components, R, of the CP decomposition is specified. The factor
matrices can be initialized in any way, such as randomly or by setting

A(n) = R leading left singular vectors of X(n) for n = 1, . . . , N.

See [28, 200] for more discussion on initializing the method. At each inner iteration,
the pseudoinverse of a matrix V (see Figure 3.3) must be computed, but it is only of
size R × R. The iterations repeat until some combination of stopping conditions is
satisfied. Possible stopping conditions include the following: little or no improvement
in the objective function, little or no change in the factor matrices, the objective value
is at or near zero, and exceeding a predefined maximum number of iterations.

The ALS method is simple to understand and implement, but can take many
iterations to converge. Moreover, it is not guaranteed to converge to a global minimum
or even a stationary point of (3.7), only to a solution where the objective function of
(3.7) ceases to decrease. The final solution can be heavily dependent on the starting
guess as well. Some techniques for improving the efficiency of ALS are discussed
in [220, 221]. Several researchers have proposed improving ALS with line searches,
including the ELS approach of Rajih and Comon [185], which adds a line search
after each major iteration that updates all component matrices simultaneously based
on the standard ALS search directions; see also [177]. Navasca, De Lathauwer, and
Kinderman [176] propose using Tikhonov regularization on the ALS subproblems.

Two recent surveys summarize other options. In one survey, Faber, Bro, and
Hopke [78] compare ALS with six different methods, none of which is better than
ALS in terms of quality of solution, though the alternating slicewise diagonalization
(ASD) method [110] is acknowledged as a viable alternative when computation time is
paramount. In another survey, Tomasi and Bro [223] compare ALS and ASD to four
other methods plus three variants that apply Tucker-based compression (see section 4
and section 5.3) and then compute a CP decomposition of the reduced array; see
[30]. In this comparison, damped Gauss–Newton (dGN) and a variant called PMF3
by Paatero [178] are included. Both dGN and PMF3 optimize all factor matrices
simultaneously. In contrast to the results of the previous survey, ASD is deemed to
be inferior to other alternating-type methods. Derivative-based methods (dGN and
PMF3) are generally superior to ALS in terms of their convergence properties but are
more expensive in both memory and time. We expect many more developments in
this area as more sophisticated optimization techniques are developed for computing
the CP model.
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TENSOR DECOMPOSITIONS AND APPLICATIONS 473

Sanchez and Kolwalski [189] propose a method for reducing the CP fitting problem
in the three-way case to a generalized eigenvalue problem, which works when the first
two factor matrices are of full rank. De Lathauwer, De Moor, and Vandewalle [66] cast
CP as a simultaneous generalized Schur decomposition (SGSD) if, for a third-order
tensor X ∈ R

I×J×K , rank(X) ≤ min{I, J} and the matrix rank of the unfolded tensor
X(3) is greater than or equal to 2. The SGSD approach has been applied to overcoming
the problem of degeneracy [205]; see also [137]. More recently, De Lathauwer [55]
developed a method based on simultaneous matrix diagonalization in the case that,
for an Nth-order tensor X ∈ RI1×I2×···×IN , max{In : n = 1, . . . , N} ≥ rank(X).

CP for large-scale, sparse tensors has only recently been considered. Kolda, Bader,
and Kenny [136] developed a “greedy” CP for sparse tensors that computes one triad
(i.e., rank-one component) at a time via an ALS method. In subsequent work, Kolda
and Bader [135, 17] adapted the standard ALS algorithm in Figure 3.3 to sparse
tensors. Zhang and Golub [244] proposed a generalized Rayleigh–Newton iteration to
compute a rank-one factor, which is another way to compute greedy CP. Kofidis and
Regalia [131] presented a higher-order power method for supersymmetric tensors.

We conclude this section by noting that there have also been substantial devel-
opments on variations of CP to account for missing values (e.g., [222]), to enforce
nonnegativity constraints (see, e.g., section 5.6), and for other purposes.

3.5. Applications of CP. CP’s origins lie in psychometrics in 1970. Carroll and
Chang [38] introduced CANDECOMP in the context of analyzing multiple similarity
or dissimilarity matrices from a variety of subjects. The idea was that simply averag-
ing the data for all the subjects annihilates different points of view. They applied the
method to one data set on auditory tones from Bell Labs and to another data set of
comparisons of countries. Harshman [90] introduced PARAFAC because it eliminates
the ambiguity associated with two-dimensional PCA and thus has better uniqueness
properties. He was motivated by Cattell’s principle of parallel proportional profiles
[40]. He applied it to vowel-sound data where different individuals (mode 1) spoke
different vowels (mode 2) and the formant (i.e., the pitch) was measured (mode 3).

Appellof and Davidson [13] pioneered the use of CP in chemometrics in 1981.
Andersson and Bro [9] surveyed its use in chemometrics to date. In particular, CP
has proved useful in the modeling of fluorescence excitation-emission data.

Sidiropoulos, Bro, and Giannakis [196] considered the application of CP to sensor
array processing. Other applications in telecommunications include [198, 197, 59].
CP also has important applications in independent component analysis (ICA); see
[58] and references therein.

Several authors have used CP decompositions in neuroscience. As mentioned
previously, Möcks [166] independently discovered CP in the context of event-related
potentials in brain imaging; this work also included results on uniqueness and remarks
about how to choose the number of factors. Later work by Field and Graupe [79] put
the work of Möcks in context with the other work on CP, discussed practical aspects
of working with data (scaling, etc.), and gave examples illustrating the utility of the
CP decomposition for event-related potentials. Andersen and Rayens [8] applied CP
to fMRI data arranged as voxels by time by run and also as voxels by time by trial by
run. Mart́ınez-Montes et al. [163, 165] applied CP to a time-varying EEG spectrum
arranged as a three-dimensional array with modes corresponding to time, frequency,
and channel. Mørup et al. [170] looked at a similar problem and, moreover, Mørup,
Hansen, and Arnfred [169] have released a MATLAB toolbox called ERPWAVELAB
for multichannel analysis of time-frequency transformed event-related activity of EEG
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474 TAMARA G. KOLDA AND BRETT W. BADER

and MEG data. Recently, Acar et al. [2] and De Vos et al. [70, 71] used CP for
analyzing epileptic seizures. Stegeman [203] explained the differences between a three-
way extension of ICA and CP for multisubject fMRI data in terms of the higher-order
statistical properties.

The first application of tensors in data mining was by Acar et al. [4, 5], who
applied different tensor decompositions, including CP, to the problem of discussion
detanglement in online chat rooms. In text analysis, Bader, Berry, and Browne [14]
used CP for automatic conversation detection in email over time using a term-by-
author-by-time array.

Shashua and Levin [194] applied CP to image compression and classification.
Furukawa et al. [82] applied a CP model to bidirectional texture functions in order to
build a compressed texture database. Bauckhage [19] extended discriminant analysis
to higher-order data (color images, in this case) for classification.

Beylkin and Mohlenkamp [22, 23] apply CP to operators and conjecture that the
optimal separation rank (which is the rank of an ε approximation) is low for many
common operators. They provide an algorithm for computing the rank and prove that
the multiparticle Schrödinger operator and inverse Laplacian operators have ranks
proportional to the log of the dimension. CP approximations have proven useful in
approximating certain multidimensional operators such as the Newton potential; see
Hackbusch, Khoromskij, and Tyrtyshnikov [89] and Hackbusch and Khoromskij [88].
Very recent work has focused on applying CP decompositions to stochastic PDEs
[242, 73].

4. Compression and the Tucker Decomposition. The Tucker decomposition
was first introduced by Tucker in 1963 [224] and refined in subsequent articles by Levin
[153] and Tucker [225, 226]. Tucker’s 1966 article [226] is the most comprehensive
of the early literature and is generally the one most cited. Like CP, the Tucker
decomposition goes by many names, some of which are summarized in Table 4.1.

Table 4.1 Names for the Tucker decomposition (some specific to three-way and some for N-way).

Name Proposed by
Three-mode factor analysis (3MFA/Tucker3) Tucker, 1966 [226]
Three-mode PCA (3MPCA) Kroonenberg and De Leeuw, 1980 [140]
N-mode PCA Kapteyn et al., 1986 [113]
Higher-order SVD (HOSVD) De Lathauwer et al., 2000 [63]
N-mode SVD Vasilescu and Terzopoulos, 2002 [229]

The Tucker decomposition is a form of higher-order PCA. It decomposes a tensor
into a core tensor multiplied (or transformed) by a matrix along each mode. Thus, in
the three-way case where X ∈ RI×J×K , we have

(4.1) X ≈ G×1 A×2 B×3 C =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr ap ◦ bq ◦ cr = �G ;A,B,C�.

Here, A ∈ R
I×P , B ∈ R

J×Q, and C ∈ R
K×R are the factor matrices (which are

usually orthogonal) and can be thought of as the principal components in each mode.
The tensor G ∈ RP×Q×R is called the core tensor and its entries show the level of
interaction between the different components. The last equality uses the shorthand
�G ;A,B,C� introduced in Kolda [134].
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TENSOR DECOMPOSITIONS AND APPLICATIONS 475

A

B

X

G

C

≈

Fig. 4.1 Tucker decomposition of a three-way array.

Elementwise, the Tucker decomposition in (4.1) is

xijk ≈
P∑

p=1

Q∑
q=1

R∑
r=1

gpqr aip bjq ckr for i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . ,K.

Here P , Q, and R are the number of components (i.e., columns) in the factor matrices
A, B, and C, respectively. If P,Q,R are smaller than I, J,K, the core tensor G can be
thought of as a compressed version ofX. In some cases, the storage for the decomposed
version of the tensor can be significantly smaller than for the original tensor; see Bader
and Kolda [17]. The Tucker decomposition is illustrated in Figure 4.1.

Most fitting algorithms (discussed in section 4.2) assume that the factor matrices
are columnwise orthonormal, but this is not required. In fact, CP can be viewed as a
special case of Tucker where the core tensor is superdiagonal and P = Q = R.

The matricized forms (one per mode) of (4.1) are

X(1) ≈ AG(1)(C⊗B)T,

X(2) ≈ BG(2)(C⊗A)T,

X(3) ≈ CG(3)(B⊗A)T.

These equations follow from the formulas in sections 2.4 and 2.6; see [134] for further
details.

Though it was introduced in the context of three modes, the Tucker model can
be and has been generalized to N -way tensors [113] as

(4.2) X = G×1 A(1) ×2 A(2) · · · ×N A(N) = �G ;A(1),A(2), . . . ,A(N)�

or, elementwise, as

xi1i2···iN =
R1∑

r1=1

R2∑
r2=1

· · ·
RN∑

rN=1

gr1r2···rN a
(1)
i1r1

a
(2)
i2r2
· · · a(N)

iN rN

for in = 1, . . . , In, n = 1, . . . , N.

The matricized version of (4.2) is

X(n) = A(n)G(n)(A
(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1))T.
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476 TAMARA G. KOLDA AND BRETT W. BADER

Two important variations of the decomposition are also worth noting here. The
Tucker2 decomposition [226] of a third-order array sets one of the factor matrices to
be the identity matrix. For instance, a Tucker2 decomposition is

X = G×1 A×2 B = �G ;A,B, I�.

This is the same as (4.1) except that G ∈ RP×Q×R with R = K and C = I, the
K × K identity matrix. Likewise, the Tucker1 decomposition [226] sets two of the
factor matrices to be the identity matrix. For example, if the second and third factor
matrices are the identity matrix, then we have

X = G×1 A = �G ;A, I, I�.

This is equivalent to standard two-dimensional PCA, since

X(1) = AG(1).

These concepts extend easily to the N -way case—we can set any subset of the factor
matrices to the identity matrix.

There are obviously many choices for tensor decompositions, which may lead to
confusion about which model to choose for a particular application. Ceulemans and
Kiers [42] discuss methods for choosing between CP and the different Tucker models
in the three-way case.

4.1. The n-Rank. Let X be an Nth-order tensor of size I1 × I2 × · · · × IN . Then
the n-rank of X, denoted rankn(X), is the column rank of X(n). In other words,
the n-rank is the dimension of the vector space spanned by the mode-n fibers (see
Figure 2.1). If we let Rn = rankn(X) for n = 1, . . . , N , then we can say that X is a
rank-(R1, R2, . . . , RN ) tensor, though n-mode rank should not be confused with the
idea of rank (i.e., the minimum number of rank-one components); see section 3.1.
Trivially, Rn ≤ In for all n = 1, . . . , N .

Kruskal [143] introduced the idea of n-rank, and it was further popularized by
De Lathauwer, De Moor, and Vandewalle [63]. The more general concept of multiplex
rank was introduced much earlier by Hitchcock [106]. The difference is that n-mode
rank uses only the mode-n unfolding of the tensor X, whereas the multiplex rank can
correspond to any arbitrary matricization (see section 2.4).

For a given tensor X, we can easily find an exact Tucker decomposition of rank
(R1, R2, . . . , RN ), where Rn = rankn(X). If, however, we compute a Tucker decompo-
sition of rank (R1, R2, . . . , RN ), where Rn < rankn(X) for one or more n, then it will
be necessarily inexact and more difficult to compute. Figure 4.2 shows a truncated
Tucker decomposition (not necessarily obtained by truncating an exact decomposi-
tion) which does not exactly reproduce X.

4.2. Computing the Tucker Decomposition. In 1966, Tucker [226] introduced
three methods for computing a Tucker decomposition, but he was somewhat hampered
by the computing ability of the day, stating that calculating the eigendecomposition
for a 300× 300 matrix “may exceed computer capacity.” The first method in [226] is
shown in Figure 4.3. The basic idea is to find those components that best capture the
variation in mode n, independent of the other modes. Tucker presented it only for the
three-way case, but the generalization to N ways is straightforward. This is sometimes
referred to as the “Tucker1” method, though it is not clear whether this is because a
Tucker1 factorization (discussed above) is computed for each mode or it was Tucker’s
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A

B

X

G

C

≈

Fig. 4.2 Truncated Tucker decomposition of a three-way array.

procedure HOSVD(X,R1,R2, . . . , RN )
for n = 1, . . . , N do

A(n) ← Rn leading left singular vectors of X(n)

end for
G← X×1 A(1)T ×2 A(2)T · · · ×N A(N)T

return G,A(1),A(2), . . . , A(N)

end procedure

Fig. 4.3 Tucker’s “Method I” for computing a rank-(R1, R2, . . . , RN ) Tucker decomposition, later
known as the HOSVD.

first method. Today, this method is better known as the higher-order SVD (HOSVD)
from the work of De Lathauwer, De Moor, and Vandewalle [63], who showed that the
HOSVD is a convincing generalization of the matrix SVD and discussed ways to more
efficiently compute the leading left singular vectors of X(n). When Rn < rankn(X)
for one or more n, the decomposition is called the truncated HOSVD. In fact, the
core tensor of the HOSVD is all-orthogonal, which has relevance to truncating the
decomposition; see [63] for details.

The truncated HOSVD is not optimal in terms of giving the best fit as measured
by the norm of the difference, but it is a good starting point for an iterative ALS algo-
rithm. In 1980, Kroonenberg and De Leeuw [140] developed an ALS algorithm called
TUCKALS3 for computing a Tucker decomposition for three-way arrays. (They also
had a variant called TUCKALS2 that computed the Tucker2 decomposition of a three-
way array.) Kapteyn, Neudecker, and Wansbeek [113] later extended TUCKALS3 to
N -way arrays for N > 3. De Lathauwer, De Moor, and Vandewalle [64] proposed
more efficient techniques for calculating the factor matrices (specifically, computing
only the dominant singular vectors of X(n) and using an SVD rather than an eigen-
value decomposition or even just computing an orthonormal basis of the dominant
subspace) and called it the higher-order orthogonal iteration (HOOI); see Figure 4.4.
If we assume that X is a tensor of size I1×I2×· · ·×IN , then the optimization problem
that we wish to solve is

(4.3)

min
G,A(1),...,A(N)

∥∥∥ X− �G ;A(1),A(2), . . . ,A(N)�
∥∥∥

subject to G ∈ R
R1×R2×···×RN ,

A(n) ∈ R
In×Rn and columnwise orthogonal for n = 1, . . . , N.
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478 TAMARA G. KOLDA AND BRETT W. BADER

procedure HOOI(X,R1,R2, . . . , RN )

initialize A(n) ∈ R
In×R for n = 1, . . . , N using HOSVD

repeat
for n = 1, . . . , N do

Y← X×1 A(1)T · · · ×n−1 A(n−1)T ×n+1 A(n+1)T · · · ×N A(N)T

A(n) ← Rn leading left singular vectors of Y(n)

end for
until fit ceases to improve or maximum iterations exhausted
G← X×1 A(1)T ×2 A(2)T · · · ×N A(N)T

return G,A(1),A(2), . . . , A(N)

end procedure

Fig. 4.4 ALS algorithm to compute a rank-(R1, R2, . . . , RN ) Tucker decomposition for an Nth-order
tensor X of size I1 × I2 × · · · × IN . Also known as the HOOI.

By rewriting the above objective function in vectorized form as∥∥∥ vec(X)− (A(N) ⊗A(N−1) ⊗ · · · ⊗A(1))vec(G)
∥∥∥ ,

it is straightforward to show that the core tensor G must satisfy

G = X×1 A(1)T ×2 A(2)T · · · ×N A(N)T.

We can then rewrite the (square of the) objective function as∥∥∥ X− �G ;A(1),A(2), . . . ,A(N)�
∥∥∥2

= ‖X‖2 − 2〈X, �G ;A(1),A(2), . . . ,A(N)� 〉+ ‖�G ;A(1),A(2), . . . ,A(N)�‖2
= ‖X‖2 − 2〈X×1 A(1)T · · · ×N A(N)T,G 〉+ ‖G‖2
= ‖X‖2 − 2〈G,G 〉+ ‖G‖2
= ‖X‖2 − ‖G‖2
= ‖X‖2 − ‖X×1 A(1)T ×2 · · · ×N A(N)T‖2.

The details of this transformation are readily available; see, e.g., [10, 64, 134]. Once
again, we can use an ALS approach to solve (4.3). Because ‖X‖2 is constant, (4.3) can
be recast as a series of subproblems involving the following maximization problem,
which solves for the nth component matrix:

(4.4)
max
A(n)

∥∥∥ X×1 A(1)T ×2 A(2)T · · · ×N A(N)T
∥∥∥

subject to A(n) ∈ R
In×Rn and columnwise orthogonal.

The objective function in (4.4) can be rewritten in matrix form as∥∥∥A(n)TW
∥∥∥ with W = X(n)(A

(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)).

The solution can be determined using the SVD; simply set A(n) to be the Rn leading
left singular vectors of W. This method will converge to a solution where the objective
function of (4.3) ceases to decrease, but it is not guaranteed to converge to the global
optimum or even a stationary point of (4.3) [140, 64]. Andersson and Bro [10] consider
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TENSOR DECOMPOSITIONS AND APPLICATIONS 479

methods for speeding up the HOOI algorithm, examining how to do the computations,
how to initialize the method, and how to compute the singular vectors.

Recently, Eldén and Savas [77] proposed a Newton–Grassmann optimization ap-
proach for computing a Tucker decomposition of a three-way tensor. The problem
is cast as a nonlinear program with the factor matrices constrained to a Grassmann
manifold that defines an equivalence class of matrices with orthonormal columns. The
Newton–Grassmann approach takes many fewer iterations than HOOI and demon-
strates quadratic convergence numerically, though each iteration is more expensive
than HOOI due to the computation of the Hessian. This method will converge to a
stationary point of (4.3).

The question of how to choose the rank has been addressed by Kiers and Der Kin-
deren [123], who have a straightforward procedure (cf. CORCONDIA for CP in
section 3.4) for choosing the appropriate rank of a Tucker model based on an HOSVD
calculation.

4.3. Lack of Uniqueness and Methods to Overcome It. Tucker decompositions
are not unique. Consider the three-way decomposition in (4.1). Let U ∈ RP×P ,
V ∈ RQ×Q, and W ∈ RR×R be nonsingular matrices. Then

�G ;A,B,C� = �G×1 U×2 V ×3 W ;AU−1,BV−1,CW−1�.

In other words, we can modify the core G without affecting the fit so long as we apply
the inverse modification to the factor matrices.

This freedom opens the door to choosing transformations that simplify the core
structure in some way so that most of the elements of G are zero, thereby eliminating
interactions between corresponding components and improving uniqueness. Super-
diagonalization of the core is impossible (even in the symmetric case; see [50, 49]),
but it is possible to try to make as many elements zero or very small as possible. This
was first observed by Tucker [226] and has been studied by several authors; see, e.g.,
[117, 103, 127, 172, 12]. One possibility is to apply a set of orthogonal rotations that
optimizes a function that measures the “simplicity” of the core as measured by some
objective [120]. Another is to use a Jacobi-type algorithm to maximize the magnitude
of the diagonal entries [46, 65, 162]. Finally, the HOSVD generates an all-orthogonal
core, as mentioned previously, which is yet another type of special core structure that
might be useful.

4.4. Applications of Tucker. Several examples of using the Tucker decomposition
in chemical analysis are provided by Henrion [104] as part of a tutorial on N -way
PCA. Examples from psychometrics are provided by Kiers and Van Mechelen [129]
in their overview of three-way component analysis techniques. The overview is a
good introduction to three-way methods, explaining when to use three-way techniques
rather than two-way (based on an ANOVA test), how to preprocess the data, guidance
on choosing the rank of the decomposition and an appropriate rotation, and methods
for presenting the results.

De Lathauwer and Vandewalle [68] consider applications of the Tucker decom-
position to signal processing. Muti and Bourennane [173] have applied the Tucker
decomposition to extend Wiener filters in signal processing.

Vasilescu and Terzopoulos [229] pioneered the use of Tucker decompositions in
computer vision with TensorFaces. They considered facial image data from multiple
subjects where each subject had multiple pictures taken under varying conditions.
For instance, if the variation is the lighting, the data would be arranged into three
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480 TAMARA G. KOLDA AND BRETT W. BADER

modes: person, lighting conditions, and pixels. Additional modes such as expression,
camera angle, and others can also be incorporated. Recognition using TensorFaces
is significantly more accurate than standard PCA techniques [230]. TensorFaces is
also useful for compression and can remove irrelevant effects, such as lighting, while
retaining key facial features [231]. Vasilescu [228] has also applied the Tucker decom-
position to human motion. Wang and Ahuja [236, 237] used Tucker to model facial
expressions and for image data compression, and Vlassic et al. [235] used Tucker to
transfer facial expressions. Nagy and Kilmer [174] used the Tucker decomposition to
construct Kronecker product approximations for preconditioners in image processing.
Vasilescu and Terzopolous [232] have also applied the Tucker decomposition to the
bidirectional texture function (BTF) for rendering texture in two-dimensional images.
Many related applications exist, such as watermarking MPEG videos using Tucker [1].

Grigorascu and Regalia [87] consider extending ideas from structured matrices to
tensors. They are motivated by the structure in higher-order cumulants and corre-
sponding polyspectra in applications and they develop an extension of a Schur-type
algorithm. Langville and Stewart [149] develop preconditioners for stochastic au-
tomata networks (SANs) based on Tucker decompositions of the matrices rearranged
as tensors. Khoromskij and Khoromskaia [115] have applied the Tucker decomposition
to approximations of classical potentials including optimized algorithms.

In data mining, Savas and Eldén [190, 191] applied the HOSVD to the problem
of identifying handwritten digits. As mentioned previously, Acar et al. [4, 5] applied
different tensor decompositions, including Tucker, to the problem of discussion detan-
glement in online chat rooms. J.-T. Sun et al. [211] used Tucker to analyze web site
click-through data. Liu et al. [157] applied Tucker to create a tensor space model, anal-
ogous to the well-known vector space model in text analysis. J. Sun et al. [209, 210]
have written a pair of papers on dynamically updating a Tucker approximation, with
applications ranging from text analysis to environmental and network modeling.

5. Other Decompositions. There are a number of other tensor decompositions
related to CP and Tucker. Most of these decompositions originated in the psychomet-
rics and applied statistics communities and have only recently become more widely
known in other fields such as chemometrics and social network analysis.

We list the decompositions discussed in this section in Table 5.1. We describe
the decompositions in approximately chronological order; for each decomposition, we
survey its origins, briefly discuss its computation, and describe some applications. We
finish this section with a discussion of nonnegative tensor decompositions and a few
more decompositions that are not covered in depth in this review.

Table 5.1 Other tensor decompositions.

Name Proposed by
Individual differences in scaling (INDSCAL) Carroll and Chang, 1970 [38]
Parallel factors for cross products (PARAFAC2) Harshman, 1972 [92]
CANDECOMP with linear constraints (CANDELINC) Carroll et al., 1980 [39]
Decomposition into directional components (DEDICOM) Harshman, 1978 [93]
PARAFAC and Tucker2 (PARATUCK2) Harshman and Lundy, 1996 [100]

5.1. INDSCAL. Individual differences in scaling (INDSCAL) is a special case
of CP for three-way tensors that are symmetric in two modes; see section 2.2. It
was proposed by Carroll and Chang [38] in the same paper in which they introduced
CANDECOMP; see section 3.
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TENSOR DECOMPOSITIONS AND APPLICATIONS 481

For INDSCAL, the first two factor matrices in the decomposition are constrained
to be equal, at least in the final solution. Without loss of generality, we assume that
the first two modes are symmetric. Thus, for a third-order tensor X ∈ RI×I×K with
xijk = xjik for all i, j, k, the INDSCAL model is given by

(5.1) X ≈ �A,A,C� =
R∑

r=1

ar ◦ ar ◦ cr.

Applications involving symmetric slices are common, especially when dealing with
similarity, dissimilarity, distance, or covariance matrices.

INDSCAL is generally computed using a procedure to compute CP. The two A
matrices are treated as distinct factors (AL and AR, for left and right, respectively)
and updated separately, without an explicit constraint enforcing equality. Though the
estimates early in the process are different, the hope is that the inherent symmetry of
the data will cause the two factors to eventually converge to be equal, up to scaling
by a diagonal matrix. In other words,

AL = DAR,

AR = D−1AL,

where D is an R × R diagonal matrix. In practice, the last step is to set AL = AR

(or vice versa) and calculate C one last time [38]. In fact, Ten Berge, Kiers, and De
Leeuw [217] have shown that equality does not always happen in practice. The best
method for computing INDSCAL is still an open question.

Ten Berge, Sidiropoulos, and Rocci [219] have studied the typical and maximal
ranks of partially symmetric three-way tensors of size I × 2 × 2 and I × 3 × 3 (see
Table 3.5 in section 3.1). The typical rank of these tensors is the same as or smaller
than the typical rank of nonsymmetric tensors of the same size. Moreover, the CP
solution yields the INDSCAL solution whenever the CP solution is unique and, sur-
prisingly, still does quite well even in the case of nonuniqueness. These results are
restricted to very specific cases, and Ten Berge, Sidiropoulos, and Rocci [219] note
that much more general results are needed. INDSCAL uniqueness is further studied
in [207]. Stegeman [204] studies degeneracy for certain cases of INDSCAL.

5.2. PARAFAC2. PARAFAC2 [92] is not strictly a tensor decomposition. Rather,
it is a variant of CP that can be applied to a collection of matrices that each have the
same number of columns but a different number of rows. Here we apply PARAFAC2
to a set of matrices Xk for k = 1, . . . ,K such that each Xk is of size Ik × J , where Ik
is allowed to vary with k.

Essentially, PARAFAC2 relaxes some of CP’s constraints. While CP applies the
same factors across a parallel set of matrices, PARAFAC2 instead applies the same
factor along one mode and allows the other factor matrix to vary. An advantage of
PARAFAC2 is that not only can it approximate data in a regular three-way tensor
with fewer constraints than CP, but it can also be applied to a collection of matrices
with varying sizes in one mode, e.g., same column dimension but different row size.

Let R be the number of dimensions of the decomposition. Then the PARAFAC2
model has the form

(5.2) Xk ≈ UkSkVT, k = 1, . . . ,K,

where Uk is an Ik ×R matrix, Sk is an R×R diagonal matrix for k = 1, . . . ,K, and
V is a J×R factor matrix that does not vary with k. The general PARAFAC2 model
for a collection of matrices with varying sizes is shown in Figure 5.1.
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482 TAMARA G. KOLDA AND BRETT W. BADER

Xk Uk
V

T

Sk

≈

Fig. 5.1 Illustration of PARAFAC2.

PARAFAC2 is not unique without additional constraints. For example, if T is an
R×R nonsingular matrix and Fk is an R×R diagonal matrix for k = 1, . . . ,K, then

UkSkVT = (UkSkT−1F−1
k )Fk(VTT)T = GkFkWT

is an equally valid decomposition. Consequently, to improve the uniqueness proper-
ties, Harshman [92] imposed the constraint that the cross product UT

kUk is constant
over k, i.e., Φ = UT

kUk for k = 1, . . . ,K. Thus, with this constraint, PARAFAC2 can
be expressed as

(5.3) Xk ≈ QkHSkVT, k = 1, . . . ,K.

Here, Uk = QkH, where Qk is of size Ik ×R and constrained to be orthonormal and
H is an R × R matrix that does not vary by slice. The cross-product constraint is
enforced implicitly since

UT
kUk = HTQT

kQkH = HTH = Φ.

5.2.1. Computing PARAFAC2. Algorithms for fitting PARAFAC2 either fit the
cross-products of the covariance matrices [92, 118] (indirect fitting) or fit (5.3) to the
original data itself [126] (direct fitting). The indirect fitting approach finds V, Sk,
and Φ corresponding to the cross-products

XT
kXk ≈ VSkΦSkVT, k = 1, . . . ,K.

This can be done by using a DEDICOM decomposition (see section 5.4) with positive
semidefinite constraints on Φ. The direct fitting approach solves for the unknowns
in a two-step iterative approach by first finding Qk from a minimization using the
SVD and then updating the remaining unknowns, H, Sk, and V, using one step of a
CP-ALS procedure. See [126] for details.

PARAFAC2 is (essentially) unique under certain conditions pertaining to the
number of matrices (K), the positive definiteness of Φ, full column rank of A, and
nonsingularity of Sk [100, 215, 126].

5.2.2. PARAFAC2 Applications. Bro, Andersson, and Kiers [31] use PARAFAC2
to handle time shifts in resolving chromatographic data with spectral detection. In
this application, the first mode corresponds to elution time, the second mode to wave-
length, and the third mode to samples. The PARAFAC2 model does not assume paral-
lel proportional elution profiles but rather that the matrix of elution profiles preserves
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TENSOR DECOMPOSITIONS AND APPLICATIONS 483

its “inner-product structure” across samples, which means that the cross-product of
the corresponding factor matrices in PARAFAC2 is constant across samples.

Wise, Gallagher, and Martin [240] applied PARAFAC2 to the problem of fault
detection in a semiconductor etch process. In this application (like many others),
there is a difference in the number of time steps per batch. Alternative methods such
as time warping alter the original data. The advantage of PARAFAC2 is that it can
be used on the original data.

Chew et al. [44] used PARAFAC2 for clustering documents across multiple lan-
guages. The idea is to extend the concept of latent semantic indexing [75, 72, 21]
in a cross-language context by using multiple translations of the same collection of
documents, i.e., a parallel corpus. In this case, Xk is a term-by-document matrix
for the kth language in the parallel corpus. The number of terms varies considerably
by language. The resulting PARAFAC2 decomposition is such that the document-
concept matrix V is the same across all languages, while each language has its own
term-concept matrix Qk.

5.3. CANDELINC. A principal problem in multidimensional analysis is the in-
terpretation of the factor matrices from tensor decompositions. Consequently, in-
cluding domain or user knowledge is desirable, and this can be done by imposing
constraints. CANDELINC (canonical decomposition with linear constraints) is CP
with linear constraints on one or more of the factor matrices and was introduced by
Carroll, Pruzansky, and Kruskal [39]. Though a constrained model may not explain as
much variance in the data (i.e., it may have a larger residual error), the decomposition
is often more meaningful and interpretable.

For instance, in the three-way case, CANDELINC requires that the CP factor
matrices from (3.4) satisfy

(5.4) A = ΦAÂ, B = ΦBB̂, C = ΦCĈ.

Here, ΦA ∈ RI×M , ΦB ∈ RJ×N , and ΦC ∈ RK×P define the column space for each
factor matrix, and Â, B̂, and Ĉ are the constrained solutions as defined below. Thus,
the CANDELINC model, which is (3.4) coupled with (5.4), is given by

(5.5) X ≈ �ΦAÂ,ΦBB̂,ΦCĈ�.

Without loss of generality, the constraint matrices ΦA,ΦB,ΦC are assumed to be
orthonormal. We can make this assumption because any matrix that does not satisfy
the requirement can be replaced by one that generates the same column space and is
columnwise orthogonal.

5.3.1. Computing CANDELINC. Fitting CANDELINC is straightforward. Un-
der the assumption that the constraint matrices are orthonormal, we can simply com-
pute CP on the projected tensor. For example, in the third-order case discussed
above, the projected M ×N × P tensor is given by

X̂ = X×1 ΦT
A ×2 ΦT

B ×3 ΦT
C = �X ;ΦT

A,Φ
T
B,Φ

T
C�.

We then compute its CP decomposition to get

(5.6) X̂ ≈ �Â, B̂, Ĉ�.

The solution to the original problem is obtained by multiplying each factor matrix of
the projected tensor by the corresponding constraint matrix as in (5.5).
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484 TAMARA G. KOLDA AND BRETT W. BADER

5.3.2. CANDELINC and Compression. If M � I, N � J , and P � K, then
the projected tensor X̂ is much smaller than the original tensor X, and so decompo-
sitions of X̂ are typically much faster. Indeed, CANDELINC is the theoretical base
for a procedure that computes CP as follows [124, 30]. First, a Tucker decomposition
is applied to a given data tensor in order to compress it to size M ×N × P . Second,
the CP decomposition of the resulting “small” core tensor is computed. Third, this is
translated to a CP decomposition of the original data tensor as described above, and
then the final result may be refined by a few CP-ALS iterations on the full tensor.
The utility of compression varies by application; Tomasi and Bro [223] report that
compression does not necessarily lead to faster computational times because more
ALS iterations are required on the compressed tensor.

5.3.3. CANDELINC Applications. As mentioned above, the primary applica-
tion of CANDELINC is computing CP for large-scale data via the Tucker compression
technique mentioned above [124, 30]. Kiers developed a procedure involving com-
pression and regularization to handle multicollinearity in chemometrics data [121].
Ibraghimov applied CANDELINC-like ideas to develop preconditioners for three-
dimensional integral operators [108]. Khoromskij and Khoromskaia [115] have applied
CANDELINC (which they call “Tucker-to-canonical”) to approximations of classical
potentials.

5.4. DEDICOM. DEDICOM (decomposition into directional components) is a
family of decompositions introduced by Harshman [93]. The idea is as follows. Sup-
pose that we have I objects and a matrix X ∈ R

I×I that describes the asymmetric
relationships between them. For instance, the objects might be countries and xij

might represent the value of exports from country i to country j. Typical factor anal-
ysis techniques do not account for the facts either that the two modes of a matrix may
correspond to the same entities or that there may be directed interactions between
them. DEDICOM, on the other hand, attempts to group the I objects into R la-
tent components (or groups) and describe their pattern of interactions by computing
A ∈ R

I×R and R ∈ R
R×R such that

(5.7) X ≈ ARAT.

Each column in A corresponds to a latent component such that air indicates the
participation of object i in group r. The matrix R indicates the interaction between
the different components, e.g., rij represents the exports from group i to group j.

There are two indeterminacies of scale and rotation that need to be addressed
[93]. First, the columns of A may be scaled in a number of ways without affecting
the solution. One choice is to have unit length in the 2-norm; other choices give rise
to different benefits of interpreting the results [95]. Second, the matrix A can be
transformed with any nonsingular matrix T with no loss of fit to the data because
ARAT = (AT)(T−1RT−T)(AT)T. Thus, the solution obtained in A is not unique
[95]. Nevertheless, it is standard practice to apply some accepted rotation to “fix” A.
A common choice is to adopt VARIMAX rotation [112] such that the variance across
columns of A is maximized.

A further practice in some problems is to ignore the diagonal entries of X in
the residual calculation [93]. For many cases, this makes sense because one wishes
to ignore self-loops (e.g., a country does not export to itself). This is commonly
handled by estimating the diagonal values from the current approximation ARAT

and including them in X.

D
ow

nl
oa

de
d 

12
/0

1/
15

 to
 1

68
.1

50
.2

9.
12

9.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



TENSOR DECOMPOSITIONS AND APPLICATIONS 485

A

R

D

X

D
A

T

≈

Fig. 5.2 Three-way DEDICOM model.

Three-way DEDICOM [93] is a higher-order extension of the DEDICOM model
that incorporates a third mode of the data. As with CP, adding a third dimension
gives this decomposition stronger uniqueness properties [100]. Here we assume X ∈
RI×I×K . In our previous example of trade among nations, the third mode may
correspond to time. For instance, k = 1 corresponds to trade in 1995, k = 2 to 1996,
and so on. The decomposition is then

(5.8) Xk ≈ ADkRDkAT for k = 1, . . . ,K.

Here A and R are as in (5.7), except that A is not necessarily orthogonal. The
matrices Dk ∈ RR×R are diagonal, and entry (Dk)rr indicates the participation of
the rth latent component at time k. We can assemble the matrices Dk into a tensor
D ∈ RR×R×K . Unfortunately, we are constrained to slab notation (i.e., slice-by-slice)
for expressing the model because DEDICOM cannot be expressed easily using more
general notation. Three-way DEDICOM is illustrated in Figure 5.2.

For many applications, it is reasonable to impose nonnegativity constraints on
D [92]. Dual-domain DEDICOM is a variation where the scaling array D and/or
matrix A may be different on the left and right of R. This form is encapsulated by
PARATUCK2 (see section 5.5).

5.4.1. Computing Three-Way DEDICOM. There are a number of algorithms
for computing the two-way DEDICOM model, e.g., [128], and variations such as
constrained DEDICOM [125, 187]. For three-way DEDICOM, see Kiers [116, 118]
and Bader, Harshman, and Kolda [15]. Because A and D appear on both the left
and right, fitting three-way DEDICOM is a difficult nonlinear optimization problem
with many local minima.

Kiers [118] presents an ALS algorithm that is efficient on small tensors. Each
column of A is updated with its own least-squares solution while holding the others
fixed. Each subproblem to compute one column of A involves a full eigendecomposi-
tion of a dense I × I matrix, which makes this procedure expensive for large, sparse
X. In a similar alternating fashion, the elements of D are updated one at a time by
minimizing a fourth degree polynomial. The best R for a given A and D is found
from a least-squares solution using the pseudoinverse of an I2×R2 matrix, which can
be simplified to the inverse of an R2 ×R2 matrix.

Bader, Harshman, and Kolda [15] have proposed an algorithm called alternating
simultaneous approximation, least squares, and Newton (ASALSAN). The approach
relies on the same update for R as in [118] but uses different methods for updating A
and D. Instead of solving for A columnwise, ASALSAN solves for all columns of A
simultaneously using an approximate least-squares solution. Because there are RK
elements of D, which is not likely to be many, Newton’s method is used to find all
elements of D simultaneously. The same paper [15] introduces a nonnegative variant.
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A

B
T

R

D
A

D
B

X ≈

Fig. 5.3 General PARATUCK2 model.

5.4.2. DEDICOM Applications. Most of the applications of DEDICOM in the
literature have focused on two-way (matrix) data, but there are some three-way ap-
plications. Harshman and Lundy [99] analyzed asymmetric measures of yearly trade
(import-export) among a set of nations over a period of 10 years. Lundy et al. [160]
presented an application of three-way DEDICOM to skew-symmetric data for paired
preference ratings of treatments for chronic back pain, though they note that they
needed to impose some constraints to get meaningful results.

Bader, Harshman, and Kolda [15] recently applied their ASALSAN method for
computing DEDICOM on email communication graphs over time. In this case, xijk

corresponded to the (scaled) number of email messages sent from person i to person
j in month k.

5.5. PARATUCK2. Harshman and Lundy [100] introduced PARATUCK2, a gen-
eralization of DEDICOM that considers interactions between two possibly different
sets of objects. The name is derived from the fact that this decomposition can be
considered as a combination of CP and Tucker2.

Given a third-order tensor X ∈ RI×J×K , the goal is to group the mode-one objects
into P latent components and the mode-two group into Q latent components. Thus,
the PARATUCK2 decomposition is given by

(5.9) Xk ≈ ADA
k RDB

k BT for k = 1, . . . ,K.

Here, A ∈ RI×P , B ∈ RJ×Q, R ∈ RP×Q, and DA
k ∈ RP×P and DB

k ∈ RQ×Q are
diagonal matrices. As with DEDICOM, the columns of A and B correspond to the
latent factors, so bjq is the association of object j with latent component q. Likewise,
the entries of the diagonal matrices Dk indicate the degree of participation for each
latent component with respect to the third dimension. Finally, the rectangular matrix
R represents the interaction between the P latent components in A and the Q latent
components in B. The matrices DA

k and DB
k can be stacked to form tensors DA and

DB, respectively. PARATUCK2 is illustrated in Figure 5.3.
Harshman and Lundy [100] prove the uniqueness of axis orientation for the general

PARATUCK2 model and for the symmetrically weighted version (i.e., where DA =
DB), all subject to the conditions that P = Q and R has no zeros.

5.5.1. Computing PARATUCK2. Bro [28] discusses an ALS algorithm for com-
puting the parameters of PARATUCK2. The algorithm proceeds in the same spirit
as Kiers’ DEDICOM algorithm [118], except that the problem is only linear in the
parameters A,DA,B,DB, and R and involves only linear least-squares subproblems.

5.5.2. PARATUCK2 Applications. Harshman and Lundy [100] proposed PARA-
TUCK2 as a general model for a number of existing models, including PARAFAC2
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TENSOR DECOMPOSITIONS AND APPLICATIONS 487

(see section 5.2) and three-way DEDICOM (see section 5.4). Consequently, there are
few published applications of PARATUCK2 proper.

Bro [28] mentions that PARATUCK2 is appropriate for problems that involve
interactions between factors or when more flexibility than CP is needed but not as
much as Tucker. This can occur, for example, with rank-deficient data in physical
chemistry, for which a slightly restricted form of PARATUCK2 is suitable. Bro [28]
cites an example of the spectrofluorometric analysis of three types of cow’s milk.
Two of the three components are almost collinear, which means that CP would be
unstable and could not identify the three components. A rank-(2, 3, 3) analysis with a
Tucker model is possible but would introduce rotational indeterminacy. A restricted
form of PARATUCK2, with two columns in A and three in B, is appropriate in this
case.

5.6. Nonnegative Tensor Factorizations. Paatero and Tapper [181] and Lee
and Seung [151] proposed using nonnegative matrix factorizations for analyzing non-
negative data, such as environmental models and grayscale images, because it is de-
sirable for the decompositions to retain the nonnegative characteristics of the original
data and thereby facilitate easier interpretation. It is also natural to impose nonneg-
ativity constraints on tensor factorizations. Many papers refer to nonnegative tensor
factorization generically as NTF but fail to differentiate between CP and Tucker.
Hereafter, we use the terminology NNCP (nonnegative CP) and NNT (nonnegative
Tucker).

Bro and De Jong [32] consider NNCP and NNT. They solve the subproblems
in CP-ALS and Tucker-ALS with a specially adapted version of the NNLS method
of Lawson and Hanson [150]. In the case of NNCP for a third-order tensor, sub-
problem (3.7) requires a least-squares solution for A. The change here is to impose
nonnegativity constraints on A.

Similarly, for NNCP, Friedlander and Hatz [81] solve a bound constrained linear
least-squares problem. Additionally, they impose sparseness constraints by regulariz-
ing the NNCP with an l1-norm penalty function. While this function is nondifferen-
tiable, it has the effect of “pushing small values exactly to zero while leaving large (and
significant) entries relatively undisturbed.” While the solution of the standard prob-
lem is unbounded due to the indeterminacy of scale, regularizing the problem has the
added benefit of keeping the solution bounded. They demonstrate the effectiveness
of their approach on image data.

Paatero [178] uses a Gauss–Newton method with a logarithmic penalty function
to enforce the nonnegativity constraints in NNCP. The implementation is described
in [179].

Welling and Weber [238] perform multiplicative updates like Lee and Seung [151]
for NNCP. For instance, the update for A in third-order NNCP is given by

air ← air

(X(1)Z)ir
(AZTZ)ir

, where Z = (CB).

It is helpful to add a small number like ε = 10−9 to the numerator and denominator to
add stability to the calculation and guard against introducing a negative number from
numerical underflow. Welling and Weber’s application is to image decompositions.
FitzGerald, Cranitch, and Coyle [80] use a multiplicative update form of NNCP for
sound source separation. Bader, Berry, and Browne [14] apply NNCP using multi-
plicative updates to discussion tracking in Enron email data. Mørup et al. [167] also
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develop a multiplicative update for NNCP. They consider both least-squares and
Kulbach–Leibler (KL) divergence, and the methods are applied to EEG data.

Shashua and Hazan [193] derive an EM-based method to calculate a rank-one
NNCP decomposition. A rank-R NNCP model is calculated by doing a series of
rank-one approximations to the residual. They apply the method to problems in
computer vision. Hazan, Polak, and Shashua [102] apply the method to image data
and observe that treating a set of images as a third-order tensor is better, in terms of
handling spatial redundancy in images, than using nonnegative matrix factorizations
on a matrix of vectorized images. Shashua, Zass, and Hazan [195] also consider
clustering based on nonnegative factorizations of supersymmetric tensors.

Mørup, Hansen, and Arnfred [168] develop multiplicative updates for an NNT
decomposition and impose sparseness constraints to enhance uniqueness. Moreover,
they observe that structure constraints can be imposed on the core tensor (to represent
known interactions) and the factor matrices (per desired structure). They apply NNT
with sparseness constraints to EEG data. Cichocki et al. [45] propose a nonnegative
version of PARAFAC2 for EEG data. They develop a multiplicative update based
on α- and β-divergences as well as a regularized ALS algorithm and an alternating
interior-point gradient algorithm based on β-divergences.

Bader, Harshman, and Kolda [15] imposed nonnegativity constraints on the DEDI-
COMmodel using a nonnegative version of the ASALSAN method. They replaced the
least-squares updates with the multiplicative update introduced in [151]. The Newton
procedure they used for updating D already employed nonnegativity constraints.

5.7. More Decompositions. Recently, several different groups of researchers
have proposed models that combine aspects of CP and Tucker. Recall that CP ex-
presses a tensor as the sum of rank-one tensors. In these newer models, the tensor
is expressed as a sum of low-rank Tucker tensors. In other words, for a third-order
tensor X ∈ R

I×J×K , we have

(5.10) X ≈
R∑

r=1

�Gr ;Ar,Br,Cr�.

Here we assume Gr is of sizeMr×Nr×Pr, Ar is of size I×Mr, Br is of size J×Nr, and
Cr is of size K × Pr for r = 1, . . . , R. Figure 5.4 shows an example. Bro, Harshman,
and Sidiropoulos [33, 6] propose a version of this called the PARALIND model. De
Almeida, Favier, and Mota [53] give an overview of some aspects of models of the form
in (5.10) and their application to problems in blind beamforming and multiantenna
coding. In a series of papers, De Lathauwer [56, 57] and De Lathauwer and Nion [67]
(and references therein) explore a general class of decompositions as in (5.10), looking

B1

X

G1

C1

A1

BR
GR

AR

CR

+ · · ·+≈

Fig. 5.4 Block decomposition of a third-order tensor.
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at their uniqueness properties, computational algorithms, and applications in wireless
communications; see also [176].

Mahoney, Maggioni, and Drineas [161] extend the matrix CUR decomposition to
tensors; others have done related work using sampling methods for tensor approxima-
tion [74, 54].

Vasilescu and Terzopoulos [233] explored higher-order versions of ICA, a varia-
tion of PCA that, in some sense, rotates the principal components so that they are
statistically independent. Beckmann and Smith [20] extended CP to develop a proba-
bilistic ICA. Bro, Sidiropoulos, and Smilde [35] and Vega-Montoto and Wentzell [234]
formulated maximum-likelihood versions of CP.

Acar and Yener [6] discuss several of these decompositions as well as some not
covered here: shifted CP and Tucker [97] and convoluted CP [171].

6. Software for Tensors. The earliest consideration of tensor computation issues
dates back to 1973, when Pereyra and Scherer [182] considered basic operations in
tensor spaces and how to program them. But general-purpose software for working
with tensors has become readily available only in the last decade. In this section, we
survey the software available for working with tensors.

MATLAB, Mathematica, and Maple all have support for tensors. MATLAB in-
troduced support for dense multidimensional arrays in version 5.0 (released in 1997)
and supports elementwise manipulation on tensors. More general operations and
support for sparse and structured tensors are provided by external toolboxes (N-
way Toolbox, CuBatch, PLS Toolbox, Tensor Toolbox), which are discussed below.
Mathematica supports tensors, and there is a Mathematica package for working with
tensors that accompanies Rúız-Tolosa and Castillo [188]. In terms of sparse ten-
sors, Mathematica 6.0 stores its SparseArray’s as Lists.4 Maple has the capacity
to work with sparse tensors using the array command and supports mathematical
operations for manipulating tensors that arise in the context of physics and general
relativity.

The N-way Toolbox for MATLAB, by Andersson and Bro [11], provides a large
collection of algorithms for computing different tensor decompositions. It provides
methods for computing CP and Tucker, as well as many of the other models such as
multilinear partial least squares (PLS). Additionally, many of the methods can handle
constraints (e.g., nonnegativity and orthogonality) and missing data. CuBatch [85] is
a graphical user interface in MATLAB for the analysis of data that is built on top of
the N-way Toolbox. Its focus is datacentric, offering an environment for preprocessing
data through diagnostic assessment, such as jackknifing and bootstrapping. The
interface allows custom extensions through an open architecture. Both the N-way
Toolbox and CuBatch are freely available.

The commercial PLS Toolbox for MATLAB [239] also provides a number of multi-
dimensional models, including CP and Tucker, with an emphasis toward data analysis
in chemometrics. Like the N-way Toolbox, the PLS Toolbox can handle constraints
and missing data.

The MATLAB Tensor Toolbox, by Bader and Kolda [16, 17, 18], is a general-
purpose set of classes that extends MATLAB’s core capabilities to support operations
such as tensor multiplication and matricization. It comes with ALS-based algorithms
for CP and Tucker, but the goal is to enable users to easily develop their own algo-
rithms. The Tensor Toolbox is unique in its support for sparse tensors, which it stores

4Visit the Mathematica web site (www.wolfram.com) and search on “tensors.”
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in coordinate format. Other recommendations for storing sparse tensors have been
made; see [156, 155]. The Tensor Toolbox also supports structured tensors so that
it can store and manipulate, e.g., a CP representation of a large-scale sparse tensor.
The Tensor Toolbox is freely available for research and evaluation purposes.

The Multilinear Engine by Paatero [179] is a FORTRAN code based on the con-
jugate gradient algorithm that also computes a variety of multilinear models. It
supports CP, PARAFAC2, and more.

There are also some packages in C++. The HUJI Tensor Library (HTL) by Zass
[243] is a C++ library of classes for tensors, including support for sparse tensors. HTL
does not support tensor multiplication, but it does support inner product, addition,
elementwise multiplication, etc. FTensor, by Landry [146], is a collection of template-
based tensor classes in C++ for general relativity applications; it supports functions
such as binary operations and internal and external contractions. The tensors are
assumed to be dense, though symmetries are exploited to optimize storage. The
Boost Multidimensional Array Library (Boost.MultiArray) [83] provides a C++ class
template for multidimensional arrays that is efficient and convenient for expressing
dense N -dimensional arrays. These arrays may be accessed using a familiar syntax of
native C++ arrays, but it does not have key mathematical concepts for multilinear
algebra, such as tensor multiplication.

7. Discussion. This survey has provided an overview of tensor decompositions
and their applications. The primary focus was on the CP and Tucker decompositions,
but we have also presented some of the other models such as PARAFAC2. There is a
flurry of current research on more efficient methods for computing tensor decomposi-
tions and better methods for determining typical and maximal tensor ranks.

We have mentioned applications ranging from psychometrics and chemometrics to
computer visualization and data mining, but many more applications of tensors are be-
ing developed. For instance, in mathematics, Grasedyck [86] uses the tensor structure
in finite element computations to generate low-rank Kronecker product approxima-
tions. As another example, Lim [154] (see also Qi [183]) discusses higher-order exten-
sions of singular values and eigenvalues. For supersymmetric tensor X ∈ R

I×I×···×I

of order N , the scalar λ is an eigenvalue and the vector v ∈ RI is its corresponding
eigenvector if

X ×̄2 v ×̄3 v · · · ×̄N v = λv.

No doubt more applications, both inside and outside mathematics, will find uses for
tensor decompositions in the future.

Thus far, most computational work is done in MATLAB and all is serial. In the
future, there will be a need for libraries that take advantage of parallel processors
and/or multicore architectures. Numerous datacentric issues exist as well, such as
preparing the data for processing; see, e.g., [36]. Another problem is missing data,
especially systematically missing data, which is an issue in chemometrics; see Tomasi
and Bro [222] and references therein. For a general discussion on handling missing
data, see Kiers [119].
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