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Abstract. This is an elementary introduction to the Hodge Laplacian on a
graph, a higher-order generalization of the graph Laplacian. We will discuss

basic properties including cohomology and Hodge theory. At the end we will
also discuss the nonlinear Laplacian on a graph, a nonlinear generalization of

the graph Laplacian as its name implies. These generalized Laplacians will be

constructed out of coboundary operators, i.e., discrete analogues of exterior
derivatives. The main feature of our approach is simplicity — this article

requires only knowledge of linear algebra and graph theory.

1. Introduction

The primary goal of this article is to introduce readers to the Hodge Laplacian
on a graph and discuss some of its properties, notably the Hodge decomposition.
To understand its significance, it is inevitable that we will also have to discuss the
basic ideas behind cohomology, but we will do so in a way that is as elementary as
possible and with a view towards applications in the information sciences.

If the classical Hodge theory on Riemannian manifolds [41, 67] is “differen-
tiable Hodge theory,” the Hodge theory on metric spaces [7, 61] “continuous Hodge
theory,” and the Hodge theory on simplicial complexes [29, 31] “discrete Hodge
theory,” then the version here may be considered “graph-theoretic Hodge theory.”

Unlike physical problems arising from areas such as continuum mechanics or
electromagnetics, where the differentiable Hodge–de Rham theory has been applied
with great efficacy for both modeling and computations [3, 30, 45, 53, 65, 66, 70],
those arising from data analytic applications are likely to be far less structured
[4, 15, 16, 26, 40, 43, 56, 69]. Often one could at best assume some weak notion
of proximity of data points. The Hodge theory introduced in this article requires
nothing more than the data set having the structure of an undirected graph and
is conceivably more suitable for non-physical applications such as those arising
from the biological or information sciences. We will discuss two examples of such
applications, to ranking and to game theory.
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Readership. To some mathematical cognoscenti, cohomology is like calculus
— an everyday tool used without a second thought. This article is not for them. It is
intended for those who, like the author, have attempted to learn about cohomology
from standard sources in algebraic topology but found them impenetrable and gave
up. However, the author has had the good fortune to interact with some of those
cognoscenti and did ultimately pick up bits and pieces through diffusion. One goal
of this article is to share with a wider audience these bits and pieces that he believes
make up the gist of the idea, which is remarkably simple.

This article also serves as an expanded written record of the author’s lecture
in the AMS Short Course on Geometry and Topology in Statistical Inference at the
2014 Joint Mathematics Meetings. The target audience, as per AMS’s guidelines
[1], comprises:

• the idly curious, knowing little or nothing specific of the field beyond a
layman’s or graduate student’s familiarity;

• peripheralists, who have read a few articles, perhaps dabbled once or twice
in the field, and would like to have a perspective of the field presented on
a silver platter;

• young specialists and prospective teachers, who want to make sure they
see the forest for the trees, and haven’t missed something significant.

As such, the target readership of this article is one that would most likely appreciate
our simple take on cohomology and Hodge theory, via an approach that requires
only linear algebra and graph theory.

In our approach, we have isolated the algebra from the topology to show that a
large part of cohomology and Hodge theory is nothing more than the linear algebra
of matrices satisfying AB = 0. For the remaining topological aspect, we cast our
discussions entirely in terms of graphs as opposed to less-familiar topological objects
like simplicial complexes. We believe that by putting these in a simple framework,
we could facilitate the development of applications as well as communication with
practitioners who may not otherwise see the utility of these notions.

Lastly, we write with a view towards readers whose main interests, like the
author’s, may lie in machine learning, matrix computations, numerical PDEs, opti-
mization, statistics, or theory of computing, but have a casual interest in the topic
and may perhaps want to explore potential applications in their respective fields.

The occasional whimsical section headings are inspired by [11, 50, 51, 59, 60].

2. Cohomology and Hodge theory for pedestrians

We will present in this section what we hope is the world’s most elementary
approach towards cohomology and Hodge theory, requiring only linear algebra.

2.1. Cohomology on a bumper sticker. Given two matrices A ∈ Rm×n
and B ∈ Rn×p satisfying the property that

(2.1) AB = 0,

a property equivalent to

im(B) ⊆ ker(A),

the cohomology group with respect to A and B is the quotient vector space

ker(A)/ im(B),
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and its elements are called cohomology classes. The word ‘group’ here refers to the
structure of ker(A)/ im(B) as an abelian group under addition.

We have fudged a bit because we haven’t yet defined the matrices A and B.
Cohomology really refers to a special case when A and B are certain matrices with
topological meaning, as we will define in Section 3.

2.2. Harmonic representative. The definition in the previous section is
plenty simple, provided the reader knows what a quotient vector space is, but
can it be further simplified? For instance, can we do away with quotient spaces and
equivalence classes1 and define cohomology classes as actual vectors in Rn?

Note that an element in ker(A)/ im(B) is a set of vectors

x+ im(B) := {x+ y ∈ Rn : y ∈ im(B)}
for some x ∈ ker(A). We may avoid equivalence classes if we could choose an
xH ∈ x + im(B) in some unique way to represent the entire set. A standard
way to do this is to pick xH so that it is orthogonal to every other vector in
im(B). Since im(B)⊥ = ker(B∗), this is equivalent to requiring that xH ∈ ker(B∗).
Hence we should pick an xH ∈ ker(A) ∩ ker(B∗). Such an xH is called a harmonic
representative of the cohomology class x+ im(B).

The map that takes the cohomology class x + im(B) to its unique harmonic
representative xH gives a natural isomorphism of vector spaces

(2.2) ker(A)/ im(B) ∼= ker(A) ∩ ker(B∗).

So we may redefine the cohomology group with respect to A and B to be the
subspace ker(A) ∩ ker(B∗) of Rn, and a cohomology class may now be regarded as
an actual vector xH ∈ ker(A) ∩ ker(B∗) (cf. Theorem A.3).

A word about our notation: B∗ denotes the adjoint of the matrix B. Usually we
will work over R with the standard l2-inner product on our spaces and so B∗ = BT.
However we would like to allow for the possibility of working over C or with other
inner products.

Numerical linear algebra interlude. For those familiar with numerical linear
algebra, the way we choose a unique harmonic representative xH to represent a
cohomology class x + im(B) is similar to how we would impose uniqueness on a
solution to a linear system of equations by requiring that it has minimum norm
among all solutions [34, Section 5.5]. More specifically, the solutions to Ax = b
are given by x0 + ker(A) where x0 is any particular solution; we impose uniqueness
by requiring that x0 ∈ ker(A)⊥ = im(A∗), which gives the minimum norm (or
pseudoinverse) solution x0 = A†b. The only difference above is that we deal with
two matrices A and B instead of a single matrix A.

2.3. Hodge theory on one foot. We now explain why an element in ker(A)∩
ker(B∗) is called ‘harmonic’. Again assume that AB = 0, the Hodge Laplacian is
the matrix

(2.3) A∗A+BB∗ ∈ Rn×n.

It is an easy exercise (cf. Theorem A.2) to show that

(2.4) ker(A∗A+BB∗) = ker(A) ∩ ker(B∗).

1Practitioners tend to dislike working with equivalence classes of objects. One reason is that
these are often tricky to implement in a computer program.
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So the harmonic representative xH that we constructed in Section 2.2 is a solution
to the Laplace equation

(2.5) (A∗A+BB∗)x = 0.

Since solutions to the Laplace equation are called harmonic functions, this explains
the name ‘harmonic’ representative.

With this observation, we see that we could also have defined the cohomology
group (with respect to A and B) as the kernel of the Hodge Laplacian since

ker(A)/ im(B) ∼= ker(A∗A+BB∗).

It is also an easy exercise (cf. Theorem A.2) to show that one has a Hodge decom-
position, an orthogonal direct sum decomposition

(2.6) Rn = im(A∗)⊕ ker(A∗A+BB∗)⊕ im(B).

In other words, whenever AB = 0, every x ∈ Rn can be decomposed uniquely as

x = A∗w + xH +Bv, 〈A∗w, xH〉 = 〈xH , Bv〉 = 〈A∗w,Bv〉 = 0,

for some v ∈ Rp and w ∈ Rm.
Recall the well-known decompositions (sometimes called the Fredholm alterna-

tive) associated with the four fundamental subspaces [64] of a matrix A ∈ Rm×n,

(2.7) Rn = ker(A)⊕ im(A∗), Rm = ker(A∗)⊕ im(A).

The Hodge decomposition (2.6) may be viewed as an analogue of (2.7) for a pair
of matrices satisfying AB = 0. In fact, combining (2.6) and (2.7), we obtain

(2.8) Rn =

ker(B∗)︷ ︸︸ ︷
im(A∗)⊕ ker(A∗A+BB∗)⊕ im(B)︸ ︷︷ ︸

ker(A)

.

The intersection of ker(A) and ker(B∗) gives ker(A∗A + BB∗), confirming (2.4).
Since A∗A+BB∗ is Hermitian, it also follows that

(2.9) im(A∗A+BB∗) = im(A∗)⊕ im(B).

For the special case when A is an arbitrary matrix and B = 0, the Hodge
decomposition (2.6) becomes

(2.10) Rn = im(A)⊕ ker(A∗A),

which may also be deduced directly from the Fredholm alternative (2.7) since

(2.11) ker(A∗A) = ker(A).

Numerical linear algebra interlude. To paint an analogy like that in the last
paragraph of Section 2.2, our characterization of cohomology classes as solutions to
the Laplace equation (2.5) is similar to the characterization of solutions to a least
squares problem minx∈Rn‖Ax− b‖ as solutions to its normal equation A∗Ax = A∗b
[34, Section 6.3]. Again the only difference is that here we deal with two matrices
instead of just one.
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2.4. Terminologies. One obstacle that the (impatient) beginner often faced
when learning cohomology is the considerable number of scary-sounding terminolo-
gies that we have by-and-large avoided in the treatment above.

In Table 1, we summarize some commonly used terminologies for objects in
Sections 2.1, 2.2, and 2.3. Their precise meanings will be given in Sections 3 and
4, with an updated version of this table appearing as Table 3. As the reader can

Table 1. Topological jargons (first pass)

name meaning

coboundary maps A ∈ Rm×n, B ∈ Rn×p

cochains elements of Rn

cochain complex Rp B−→ Rn A−→ Rm

cocycles elements of ker(A)

coboundaries elements of im(B)

cohomology classes elements of ker(A)/ im(B)

harmonic cochains elements of ker(A∗A+BB∗)

Betti numbers dim ker(A∗A+BB∗)

Hodge Laplacians A∗A+BB∗ ∈ Rn×n

x is closed Ax = 0

x is exact x = Bv for some v ∈ Rp

x is coclosed B∗x = 0

x is coexact x = A∗w for some w ∈ Rm

x is harmonic (A∗A+BB∗)x = 0

see, there is some amount of redundancy in these terminologies; e.g., saying that a
cochain is exact is the same as saying that it is a coboundary. This can sometimes
add to the confusion for a beginner. It is easiest to just remember equations and
disregard jargons. When people say things like ‘a cochain is harmonic if and only
if it is closed and coclosed,’ they are just verbalizing (2.4).

In summary, we saw three different ways of defining cohomology : If A and B
are matrices satisfying AB = 0, then the cohomology group with respect to A and
B may be taken to be any one of the following,

(2.12) ker(A)/ im(B), ker(A) ∩ ker(B∗), ker(A∗A+BB∗).

For readers who have heard of the term homology, that can be defined just by
taking adjoints. Note that if AB = 0, then B∗A∗ = 0 and we may let B∗ and A∗

play the role of A and B respectively. The homology group with respect to A and
B may then be taken to be any one of the following,

(2.13) ker(B∗)/ im(A∗), ker(B∗) ∩ ker(A), ker(BB∗ +A∗A).

As we can see, the last two spaces in (2.12) and (2.13) are identical, i.e., there is no
difference between cohomology and homology in our context (but see Section 5.1
for caveats).
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3. Coboundary operators and Hodge Laplacians on graphs

Observe that everything in Section 2 relies only on the assumption that AB = 0.
We haven’t been entirely forthright: What we have discussed up to this point is
really the linear algebra of operators satisfying AB = 0 — the ‘algebraic half’ of
of cohomology and Hodge theory. There is also a ‘topological half’ that is just
one step away — they refer to the special case when A and B are the so-called
coboundary operators. This special case allows us to attach topological meanings
to the objects in Section 2.

Just like the last section requires nothing more than elementary linear algebra,
this section requires nothing more than elementary graph theory. We will discuss
simplicial complexes (family of subsets of vertices), cochains (functions on a graph),
and coboundary operators (operators on functions on a graph) — all in the context
of the simplest type of graphs: undirected, unweighted, no loops, no multiple edges.

3.1. Graphs. Let G = (V,E) be an undirected graph where V := {1, . . . , n}
is a finite set of vertices and E ⊆

(
V
2

)
is the set2 of edges. Note that once we have

specified G, we automatically get cliques of higher order — for example, the set of
triangles or 3-cliques T ⊆

(
V
3

)
is defined by

{i, j, k} ∈ T iff {i, j}, {i, k}, {j, k} ∈ E.

More generally the set of k-cliques Kk(G) ⊆
(
V
k

)
is defined by

{i1, . . . , ik} ∈ Kk(G) iff {ip, iq} ∈ E for all 1 ≤ p < q ≤ k,
i.e., all pairs of vertices in {i1, . . . , ik} are in E.

In particular we have

K1(G) = V, K2(G) = E, K3(G) = T.

Note that once we have specified V and E, all Kk(G) for k ≥ 3 would have been
uniquely determined.

In topological parlance, a nonempty family K of finite subsets of a set V is
called a simplicial complex (more accurately, an abstract simplicial complex) if for
any set S in K, every S′ ⊆ S also belongs to K. Evidently the set comprising all
cliques of a graph G,

K(G) :=
⋃ω(G)

k=1
Kk(G),

is a simplicial complex and is called the clique complex of the graph G. The clique
number ω(G) is the number of vertices in a largest clique of G.

There are abstract simplicial complexes that are not clique complexes of graphs.
For example, we may just exclude cliques of larger sizes —

⋃m
k=1Kk(G) is still an

abstract simplicial complex for any m = 3, . . . , ω(G)−1, but it would not in general
be a clique complex of a graph.

3.2. Functions on a graph. Given a graph G = (V,E), we may define real-
valued functions on its vertices f : V → R. We may also define real-valued functions
on E and T and Kk(G) in general but we shall require them to be alternating. By
an alternating function on E, we mean one of the form X : V × V → R where

X(i, j) = −X(j, i)

2Henceforth
(V
k

)
denotes the set of all k-element subsets of V . In particular E is not a

multiset since our graphs have no loops nor multiple edges.
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for all {i, j} ∈ E, and

X(i, j) = 0

for all {i, j} 6∈ E. An alternating function on T is one of the form Φ : V ×V ×V → R
where

Φ(i, j, k) = Φ(j, k, i) = Φ(k, i, j) = −Φ(j, i, k) = −Φ(i, k, j) = −Φ(k, j, i)

for all {i, j, k} ∈ T , and

Φ(i, j, k) = 0

for all {i, j, k} 6∈ T . More generally, an alternating function is one where permuta-
tion of its arguments has the effect of multiplying by the sign of the permutation,
as we will see in (4.1).

In topological parlance, the functions f,X,Φ are called 0-, 1-, 2-cochains. These
are discrete analogues of differential forms on manifolds [67]. Those who prefer to
view them as such often refer to cochains as discrete differential forms [27, 39] or
Whitney forms [12, 68] and in which case, f,X,Φ are 0-, 1-, 2-forms on G.

Observe that a 1-cochain X is completely specified by the values it takes on
the set {(i, j) : i < j} and a 2-cochain Φ is completely specified by the values it
takes on the set {(i, j, k) : i < j < k}. We may equip the spaces of cochains with
inner products, for example, as weighted sums

〈f, g〉V =
∑n

i=1
wif(i)g(i), 〈X,Y 〉E =

∑
i<j

wijX(i, j)Y (i, j),(3.1)

〈Φ,Ψ〉T =
∑

i<j<k
wijkΦ(i, j, k)Ψ(i, j, k),

where the weights wi, wij , wijk are given by any positive values invariant under
arbitrary permutation of indices. When they take the constant value 1, we call it
the standard l2-inner product. By summing only over the sets3 {(i, j) : i < j} and
{(i, j, k) : i < j < k}, we count each edge or triangle exactly once in the inner
products.

We will denote the Hilbert spaces of 0-, 1-, and 2-cochains as L2(V ), L2
∧(E),

L2
∧(T ) respectively. The subscript ∧ is intended to indicate ‘alternating’. Note that

L2
∧(V ) = L2(V ) since for a function of one argument, being alternating is a vacuous

property. We set L2
∧(∅) := {0} by convention.

The elements of L2
∧(E) (i.e., 1-cochains) are well-known in graph theory, of-

ten called edge flows. While the graphs in this article are always undirected and
unweighted, a directed graph is simply one equipped with a choice of edge flow
X ∈ L2

∧(E) — an undirected edge {i, j} ∈ E becomes a directed edge (i, j) if
X(i, j) > 0 or (j, i) if X(i, j) < 0; and the magnitude of X(i, j) may be taken as
the weight of that directed edge. So L2

∧(E) encodes all weighted directed graphs
that have the same underlying undirected graph structure.

3.3. Operators on functions on a graph. We will consider the graph-
theoretic analogues of grad, curl, div in multivariate calculus. The gradient is the
linear operator grad : L2(V )→ L2

∧(E) defined by

(grad f)(i, j) = f(j)− f(i)

3Our choice is arbitrary; any set that includes each edge or triangle exactly once would also
serve the purpose. Each such choice corresponds to a choice of orientation on elements of E or T .
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for all {i, j} ∈ E and zero otherwise. The curl is the linear operator curl : L2
∧(E)→

L2
∧(T ) defined by

(curlX)(i, j, k) = X(i, j) +X(j, k) +X(k, i)

for all {i, j, k} ∈ T and zero otherwise. The divergence is the linear operator
div : L2

∧(E)→ L2(V ) defined by

(divX)(i) =

n∑
j=1

wij
wi

X(i, j)

for all i ∈ V .
Using these, we may construct other linear operators, notably the well-known

graph Laplacian, the operator ∆0 : L2(V )→ L2(V ) defined by

∆0 = −div grad,

which is a graph-theoretic analogue of the Laplace operator (cf. Lemma B.3). Less
well-known is the graph Helmholtzian, the operator ∆1 : L2

∧(E) → L2
∧(E) defined

by

∆1 = − grad div + curl∗ curl,

which is a graph-theoretic analogue of the Helmholtz or vector Laplace operator.
It is straightforward to derive an expression for the adjoint of the curl operator,
curl∗ : L2

∧(T )→ L2
∧(E) is given by

(curl∗ Φ)(i, j) =

n∑
k=1

wijk
wij

Φ(i, j, k)

for all {i, j} ∈ E and zero otherwise (cf. Lemma B.2).
The gradient and curl are special cases of coboundary operators, discrete ana-

logues of exterior derivatives, while the graph Laplacian and Helmholtzian are spe-
cial cases of Hodge Laplacians.

The matrices A and B that we left unspecified in Section 2 are coboundary
operators. It is easy to see that the composition

(3.2) curl grad = 0

and so setting A = curl and B = grad gives us (2.1) (cf. Theorem B.4).
Note that divergence and gradient are negative adjoints of each other:

(3.3) div = − grad∗,

(cf. Lemma B.1). With this we get ∆1 = A∗A+BB∗ as in (2.3).
If the inner products on L2(V ) and L2

∧(E) are taken to be the standard l2-inner
products, then (3.3) gives ∆0 = B∗B = BTB, a well-known expression of the graph
Laplacian in terms of vertex-edge incidence matrix B. The operators

grad∗ grad : L2(V )→ L2(V ) and curl∗ curl : L2
∧(E)→ L2

∧(E)

are sometimes called the vertex Laplacian and edge Laplacian respectively. The
vertex Laplacian is of course just the usual graph Laplacian but note that the edge
Laplacian is not the same as the graph Helmholtzian.
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Physics interlude. Take the standard l2-inner products on L2(V ) and L2
∧(E),

the divergence of an edge flow at a vertex i ∈ V may be interpreted as the netflow,

(3.4) (divX)(i) = (inflowX)(i)− (outflowX)(i),

where inflow and outflow are defined respectively for any X ∈ L2
∧(E) and any

i ∈ V as

(inflowX)(i) =
∑

j:X(i,j)>0
X(i, j), (outflowX)(i) =

∑
j:X(i,j)<0

X(i, j).

Sometimes the terms incoming flux, outgoing flux, total flux are used instead of
inflow, outflow, net flow. Figure 2 shows two divergence-free edge flows, i.e., inflow
equals outflow at every vertex.

Let X ∈ L2
∧(E). A vertex i ∈ V is called a sink of X if X(i, j) > 0 for

every neighbor {i, j} ∈ E of i. Likewise a vertex i ∈ V is called a source of X if
X(i, j) < 0 for every neighbor {i, j} ∈ E of i. In general, an edge flow may not
have any source or sink4 but if it can be written as

(3.5) X = − grad f

for some f ∈ L2(V ), often called a potential function, then X will have the property
of flowing from sources (local maxima of f) to sinks (local minima of f). See
Figure 8b for an example of an edge flow given by the gradient of a potential
function, flowing from two sources into two sinks.

Example 3.1. We highlight a common pitfall regarding curl on a graph. Con-
sider C3 and C4, the cycle graphs on three and four vertices in Figure 1.

Figure 1. Cycle graphs C3 (left) and C4 (right).

Number the vertices and consider the edge flows in Figure 2. What are the
values of their curl? For the one on C3, the answer is 2 + 2 + 2 = 6 as expected.
But the answer for the one on C4 is not 2 + 2 + 2 + 2 = 8, it is in fact 0.

1

2 3

2

2

2

12

3 4

2

2

2

2

Figure 2. Edge flows on C3 (left) and C4 (right).

4There is an alternative convention that defines i ∈ V to be a source (resp. sink) of X as
long as divX(i) > 0 (resp. divX(i) < 0) but our definition is much more restrictive.
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The second answer may not agree with a physicist’s intuitive idea of curl and
is a departure from what one would expect in the continuous case. However it is
what follows from the definition. Let X ∈ L2

∧(E(C3)) denote the edge flow on C3

in Figure 2. It is given by

X(1, 2) = X(2, 3) = X(3, 1) = 2 = −X(2, 1) = −X(3, 2) = −X(1, 3),

and the curl evaluated at {1, 2, 3} ∈ T (C3) is by definition indeed

(curlX)(1, 2, 3) = X(1, 2) +X(2, 3) +X(3, 1) = 6.

On the other hand C4 has no 3-cliques and so T (C4) = ∅. By convention L2
∧(∅) =

{0}. Hence curl : L2
∧(E(C4)) → L2

∧(T (C4)) must have curlX = 0 for all X ∈
L2
∧(E(C4)) and in particular for the edge flow on the right of Figure 2.

Table 2. Electrodynamics/fluid dynamics jargons

name meaning alternate name(s)

divergence-free element of ker(div) solenoidal

curl-free element of ker(curl) irrotational

vorticity element of im(curl∗) vector potential

conservative element of im(grad) potential flow

harmonic element of ker(∆1)

anharmonic element of im(∆1)

scalar field element of L2(V ) scalar potential

vector field element of L2
∧(E)

3.4. Helmholtz decomposition for graphs. The graph Laplacian ∆0 :
L2(V )→ L2(V ),

∆0 = −div grad = grad∗ grad,

particularly under the context of spectral graph theory [21, 63], has been an enor-
mously useful construct, with great impact on many areas. We have nothing more
to add except to remark that the Hodge decomposition of ∆0 is given by (2.10),

L2(V ) = ker(∆0)⊕ im(div).

Recall from (2.11) that ker(∆0) = ker(grad). Since grad f = 0 iff f is piecewise
constant, i.e., constant on each connected component of G, the number β0(G) =
dim ker(∆0) counts the number of connected component of G — a well known fact
in graph theory.

The Hodge decomposition for the graph Helmholtzian ∆1 : L2
∧(E)→ L2

∧(E),

∆1 = − grad div + curl∗ curl = grad grad∗+ curl∗ curl .

is called the Helmholtz decomposition. It says that the space of edge flows admits
an orthogonal decomposition into subspaces

(3.6) L2
∧(E) =

ker(div)︷ ︸︸ ︷
im(curl∗)⊕ ker(∆1)⊕ im(grad)︸ ︷︷ ︸

ker(curl)

,
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and moreover the three subspaces are related via

(3.7) ker(∆1) = ker(curl) ∩ ker(div), im(∆1) = im(curl∗)⊕ im(grad).

In particular, the first equation is a discrete analogue of the statement “a vector
field is curl-free and divergence-free if and only if it is a harmonic vector field.”

There is nothing really special here — as we saw in Section 2.3, any matrices
A and B satisfying AB = 0 would give such a decomposition: (3.6) and (3.7) are
indeed just (2.6), (2.4), and (2.9) where A = curl and B = grad. This is however a
case that yields the most interesting applications (see Section 6 and [15, 43]).

Example 3.2 (Beautiful mind problem on graphs). This is a discrete analogue
of a problem5 that appeared in a blockbuster movie: Let G = (V,E) be a graph.
If X ∈ L2

∧(E) is curl-free, then is it true that X is a gradient? In other words, if
X ∈ ker(curl), must it also be in im(grad)? Clearly the converse always holds by
(3.2) but from (3.6), we know that

(3.8) ker(curl) = ker(∆1)⊕ im(grad)

and so it is not surprising that the answer is generally no. We would like to describe
a family of graphs for which the answer is yes.

Figure 3. Problem from A Beautiful Mind : V = {F : R3 \X →
R3 so ∇× F = 0}, W = {F = ∇g}, dim(V/W ) = ?

The edge flow X ∈ L2
∧(E(C4)) on the right of Figure 2 is an example of one

that is curl-free but not a gradient. It is trivially curl-free since T (C4) = ∅. It is
not a gradient since if X = grad f , then

f(2)− f(1) = 2, f(3)− f(2) = 2, f(4)− f(3) = 2, f(1)− f(4) = 2,

and summing them gives ‘0 = 8’ — a contradiction. Note that X is also divergence-
free by (3.4) since inflowX = outflowX. It is therefore harmonic by (3.7), i.e.,
X ∈ ker(∆1) as expected.

5Due to Dave Bayer [13], now a ubiquitous homework problem in many multivariate calculus
courses thanks to him and the movie. See Figure 3.
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Every divergence-free edge flow on C4 must be of the same form as X, taking
constant value on all edges or otherwise we would not have inflowX = outflowX.
Since all edge flows on C4 are automatically curl-free, ker(∆1) = ker(div) and is
given by the set of all constant multiples of X. The number

β1(G) = dim ker(∆1)

counts the number of ‘1-dimensional holes’ of G and in this case we see that indeed
β1(C4) = 1. To be a bit more precise, the ‘1-dimensional holes’ are the regions that
remain uncovered after the cliques are filled in.

We now turn our attention to the contrasting case of C3. Looking at Figure 1,
it may seem that C3 also has a ‘1-dimensional hole’ as in C4 but this is a fallacy
— holes bounded by triangles are not regarded as holes in our framework.

For C3 it is in fact true that every curl-free edge flow is a gradient. To see
this, note that as in the case of C4, any divergence-free X ∈ L2

∧(E(C3)) must be
constant on all edges and so

(curlX)(1, 2, 3) = X(1, 2) +X(2, 3) +X(3, 1) = c+ c+ c = 3c,

for some c ∈ R. If a divergence-free X is also curl-free, then c = 0 and so X = 0.
Hence for C3, ker(∆1) = {0} by (3.8) and ker(curl) = im(grad) by (3.7). It also
follows that β1(C3) = 0 and so C3 has no ‘1-dimensional hole’.

What we have illustrated with C3 and C4 extends to any arbitrary graph. A
moment’s thought would reveal that the property β1(G) = 0 is satisfied by any
chordal graph, i.e., one for which every cycle subgraph of four or more vertices
has a chord, an edge that connects two vertices of the cycle subgraph but that is
not part of the cycle subgraph. Equivalently, a chordal graph is one where every
chordless cycle subgraph is C3.

Figure 4. Left two graphs: not chordal. Right two graphs: chordal.

There are however non-chordal graphs with β1(G) = 0. Take for example the
wheel graph Wn, formed by joining all n− 1 vertices of the cycle graph Cn−1 to an
extraneous nth vertex, n ≥ 4. It is clear that β1(Wn) = 0 for all n ≥ 4 but that
only W4 is a chordal graph. For the wheel graphs W5,W6,W7 in Figure 5, their
cycle subgraphs C4, C5, C6 are evidently all chordless.

Figure 5. Wheel graphs W4, W5, W6, W7 (left to right).
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4. Higher order

We expect the case of alternating functions on edges, i.e., k = 1, discussed in
Section 3 to be the most useful in applications. However for completeness and since
it is no more difficult to generalize to k > 1, we provide the analogue of Section 3
for arbitrary k here.

4.1. Higher-order cochains. Let K(G) be the clique complex of a graph
G = (V,E) as defined in Section 3.1. We will write Kk = Kk(G) for simplicity.

A k-cochain (or k-form) is an alternating function on Kk+1, or more specifically,
f : V × · · · × V → R where

(4.1) f(iσ(0), . . . , iσ(k)) = sgn(σ)f(i0, . . . , ik)

for all {i0, . . . , ik} ∈ Kk+1 and all σ ∈ Sk+1, the symmetric group of permutations
on {0, . . . , k}. We set f(i0, . . . , ik) = 0 if {i0, . . . , ik} 6∈ Kk+1.

Again, we may put an inner product on k-cochains,

〈f, g〉 =
∑

i0<···<ik
wi0···ikf(i0, . . . , ik)g(i0, . . . , ik),

with any positive weights satisfying wiσ(0)···iσ(k) = wi0···ik for all σ ∈ Sk+1.

We denote the resulting Hilbert space by L2
∧(Kk+1). This is a subspace of

L2(
∧k+1

V ), the space of alternating functions with k+ 1 arguments in V . Clearly,

dimL2
∧(Kk+1) = #Kk+1.

A word of caution regarding the terminology: a k-cochain is a function on a
(k + 1)-clique and has k + 1 arguments. The reason is due to the different naming
conventions — a (k+ 1)-clique in graph theory is called a k-simplex in topology. In
topological lingo, a vertex is a 0-simplex, an edge a 1-simplex, a triangle a 2-simplex,
a tetrahedron a 3-simplex.

4.2. Higher-order coboundary operators. The k-coboundary operators δk :
L2
∧(Kk)→ L2

∧(Kk+1) are defined by

(4.2) (δkf)(i0, . . . , ik+1) =

k+1∑
j=0

(−1)jf(i0, . . . , ij−1, ij+1, . . . , ik+1),

for k = 0, 1, 2, . . . . Readers familiar with differential forms may find it illuminating
to think of coboundary operators as discrete analogues of exterior derivatives. Note
that f is a function with k+1 arguments but δkf is a function with k+2 arguments.
A convenient oft-used notation is to put a carat over the omitted argument

(4.3) f(i0, . . . , îj , . . . , ik+1) := f(i0, . . . , ij−1, ij+1, . . . , ik+1).

The crucial relation AB = 0 in Section 2 is in fact

(4.4) δkδk−1 = 0,

which is straightforward to verify using (4.2) (cf. Theorem B.4). This generalizes
(3.2) and is sometimes called the fundamental theorem of topology :

The boundary of a boundary is empty.

The reader is encouraged to envision any common geometric objects and see this
for himself. The message expressed by (4.4) is really the dual statement:

The coboundary of a coboundary is zero.
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As in Section 2.1, (4.4) is equivalent to saying im(δk−1) is a subspace of ker(δk).
We define the kth cohomology group of G to be the quotient vector space

Hk(G) = ker(δk)/ im(δk−1),

for k = 1, 2, . . . , ω(G)− 1.
To keep track of the coboundary operators, it is customary to assemble them

into a sequence of maps written in the form

L2
∧(K0)

δ0−→ L2
∧(K1)

δ1−→ · · · δk−1−→ L2
∧(Kk)

δk−→ L2
∧(Kk+1)

δk+1−→ · · · δω−→ L2
∧(Kω).

This sequence is called a cochain complex.
For k = 1, we get δ0 = grad, δ1 = curl, and the first two terms of the cochain

complex are

L2(V )
grad−−−→ L2

∧(E)
curl−−→ L2

∧(T ).

4.3. Hodge theory. The Hodge k-Laplacian ∆k : L2
∧(Kk) → L2

∧(Kk) is de-
fined as

∆k = δk−1δ
∗
k−1 + δ∗kδk.

We call f ∈ L2
∧(Kk) a harmonic k-cochain if it satisfies the Laplace equation

∆kf = 0.

Applying the results in Section 2.3 with A = δk and B = δk−1, we obtain the
unique representation of cohomology classes as harmonic cochains

Hk(G) = ker(δk)/ im(δk−1) ∼= ker(δk) ∩ ker(δ∗k−1) = ker(∆k),

as well as the Hodge decomposition

L2
∧(Kk) =

ker(δ∗k−1)︷ ︸︸ ︷
im(δ∗k)⊕ ker(∆k)⊕ im(δk−1)︸ ︷︷ ︸

ker(δk)

,

and the relation

im(∆1) = im(δ∗k)⊕ im(δk−1).

Example 4.1 (Graph isomorphism). Two undirected graphs G and H on n
vertices are said to be isomorphic if they are essentially the same graph up to rela-
beling of vertices. The graph isomorphism problem, an open6 problem in computer
science, asks whether there is a polynomial-time algorithm for deciding if two given
graphs are isomorphic [5]. Clearly two isomorphic graphs must be isospectral in the
sense that the eigenvalues (ordered and counted with multiplicities) of their graph
Laplacians are equal,

λi(∆0(G)) = λi(∆0(H)), i = 1, . . . , n,

a condition that can be checked in polynomial time. Not surprisingly, the converse is
not true, or we would have been able to determine graph isomorphism in polynomial
time. We should mention that there are several definitions of isospectral graphs,
in terms of the adjacency matrix, graph Laplacian, normalized Laplacian, signless
Laplacian, etc. See [14, 36] for many interesting examples.

6Perhaps not for much longer — a significant breakthrough has been announced [6] as this
article is going to press.
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The reader may perhaps wonder what happens if we impose the stronger re-
quirement that the eigenvalues of all their higher-order Hodge k-Laplacians be equal
as well?

λi(∆k(G)) = λi(∆k(H)), i = 1, . . . , n, k = 0, . . . ,m.

For any m ≥ 1, these indeed give a stronger set of sufficient conditions that can be
checked in polynomial time. For example, the eigenvalues of ∆0 for the two graphs
in Figure 6 are 0, 0.76, 2, 3, 3, 5.24 (all numbers rounded to two decimal figures).
On the other hand, the eigenvalues of ∆1 are 0, 0.76, 2, 3, 3, 3, 5.24 for the graph on
the left and 0, 0, 0.76, 2, 3, 3, 5.24 for the graph on the right, allowing us to conclude
that they are not isomorphic. These calculations are included in Section C.

Figure 6. These graphs have isospectral Laplacians (Hodge 0-
Laplacians) but not Helmholtzians (Hodge 1-Laplacians).

Non-isomorphic graphs can nevertheless have isospectral Hodge Laplacians of
all order. The two graphs in Figure 7 are clearly non-isomorphic. Neither contains
cliques of order higher than two, so their Hodge k-Laplacians are zero for all k > 2.
It is straightforward to check that the first three Hodge Laplacians ∆0, ∆1, ∆2, of
both graphs are isospectral (cf. Section C).

Figure 7. Non-isormorphic graphs with isospectral Hodge k-
Laplacians for all k = 0, 1, 2, . . . .

5. Further information

5.1. Topological caveats. The way we defined cohomology in Section 2.1 is
more or less standard. The only simplification is that we had worked over a field.
The notion of cohomology in topology works more generally over arbitrary rings
where this simple linear algebraic approach falls short, but not by much — all we
need is to be willing to work with modules over rings instead of modules over fields,
i.e., vector spaces. Unlike a vector space, a module may not have a basis and we
may not necessarily be able to represent linear maps by matrices, a relatively small
price to pay.
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Table 3. Topological jargons (second pass)

name meaning

coboundary maps δk : L2
∧(Kk)→ L2

∧(Kk+1)

cochains elements of L2
∧(Kk)

cochain complex · · · −→ L2
∧(Kk−1)

δk−1−→ L2
∧(Kk)

δk−→ L2
∧(Kk+1) −→ · · ·

cocycles elements of ker(δk)

coboundaries elements of im(δk−1)

cohomology classes elements of ker(δk)/ im(δk−1)

harmonic cochains elements of ker(∆k)

Betti numbers dim ker(∆k)

Hodge Laplacians ∆k = δk−1δ
∗
k−1 + δ∗kδk

f is closed δkf = 0

f is exact f = δk−1g for some g ∈ L2
∧(Kk−1)

f is coclosed δ∗k−1f = 0

f is coexact f = δ∗kh for some h ∈ L2
∧(Kk+1)

f is harmonic ∆kf = 0

However the further simplifications in Sections 2.2 and 2.3 to avoid quotient
spaces only hold when we have a field of characteristic zero (we chose R). For
example, if instead of R, we had the field F2 of two elements with binary arithmetic
(or indeed any field of positive characteristic), then we can no longer define inner
products and statements like ker(B)⊥ = im(B∗) make no sense. While the adjoint
of a matrix may still be defined without reference to an inner product, statements
like ker(A∗A) = ker(A) are manifestly false in positive characteristic.

We saw in Section 2.4 that in the way we presented things, there is no difference
between cohomology and homology. This is an artifact of working over a field. In
general cohomology and homology are different and are related via the universal
coefficient theorem [37].

From the perspective of topology, the need to restrict to fields of zero charac-
teristic like R and C is a big shortcoming. For example, one would no longer be
able to ‘detect torsion’ and thereby perform basic topological tasks like distinguish-
ing between a torus and a Klein bottle, which is a standard utility of cohomology
groups over rings or fields of positive characteristics.

Another technical reason against the Hodge-theoretic approach in Sections 2.2
and 2.3 is that it is not functorial. However, if one is primarily interested in
engineering and scientific applications, then it is our belief that our approach in
Sections 2, 3, and 4 is adequate. Despite our restriction to clique complexes of
graphs, our discussions in Section 4 apply verbatim to any simplicial complex.

We should add that although we did not discuss it, one classical use of coho-
mology and Hodge theory is to deduce topological information about an underlying
topological space. Even over a field of characteristic zero, if we sample sufficiently
many points V from a sufficiently nice metric space Ω, and set G = (V,E) to be an
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appropriately chosen nearest neighbor graph, then

βk(G) = dimHk(G) = dim ker(∆k)

gives the number of ‘k-dimensional holes’ in Ω. While the kernel or 0-eigenspace
captures qualitative topological information, the nonzero eigenspaces often capture
quantitative geometric information. In the context of graphs [21, 63], this is best
seen in ∆0 — its 0-eigenpair tells us whether a graph is connected (β0(G) gives the
number of connected components of G, as we saw in Section 3.4) while its smallest
nonzero eigenpair tells us how connected the graph is (eigenvalue by way of the
Cheeger inequality and eigenvector by way of the Fiedler vector).

5.2. More linear algebra. Since V is a finite set, L2(V ), L2
∧(E), L2

∧(T ) are
finite-dimensional vector spaces. We may choose bases on these spaces and get

L2(V ) ∼= Rp, L2
∧(E) ∼= Rn, L2

∧(T ) ∼= Rm

where p, n,m are respectively the number of vertices, edges, and triangles in G.
Nevertheless, a more natural way would be to regard L2

∧(E) as an n-dimensional
subspace of skew-symmetric matrices{

[xij ]
p
i,j=1 ∈ Rp×p : xij = −xji, xij = 0 whenever {i, j} 6∈ E

}
,

and L2
∧(T ) as an m-dimensional subspace of skew-symmetric hypermatrices [48]{

[ϕijk]pi,j,k=1 ∈ Rp×p×p : ϕijk = ϕjki = ϕkij = −ϕjik = −ϕikj = −ϕkji,
ϕijk = 0 whenever {i, j, k} 6∈ T

}
.

See also Section C for examples of how one may in practice write down matrices
representing k-coboundary operators and Hodge k-Laplacians for k = 0, 1, 2.

5.3. Continuous analogue. The continuous analogue of Section 3 where the
graph G is replaced by a region Ω in Rn could be illuminating for readers who
are familiar with partial differential equations and physics. This section requires
nothing more than multivariate calculus.

The Laplace or homogeneous Poisson equation is the PDE

∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
= 0

over a domain Ω ⊆ R3, or more generally,

(5.1) −∆0f = −∇2f = −∇ · ∇f = div grad f =

n∑
i=1

∂2f

∂x2
i

= 0

over a domain Ω ⊆ Rn.
The Laplace equation is ubiquitous in physical phenomena, we find it in electro-

statics, describing electric potential in free space with no charge; in fluid mechanics,
describing the velocity potential of an incompressible fluid; in thermal conduction,
as the stationary heat equation without a heat source. Furthermore, it tells us a
great deal about the topology and geometry of the domain Ω [44].

To ensure uniqueness of solution, one would usually study the Laplace equation
with some boundary conditions, say,{

∆0f = 0 in Ω,

f = g on ∂Ω,
or

{
∆0f = 0 in Ω,

∂f/∂ν = g on ∂Ω.
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0-cohomolgy may be viewed as the study of solutions to Laplace equation with
no boundary conditions. A 0-cohomology class is a harmonic function, i.e., a scalar
field f : Ω → R that satisfies (5.1). The 0th cohomology group is then the set of
all harmonic functions or harmonic 0-forms,

H0(Ω) = ker(∆0) = {f : Ω→ R : ∆0f = 0}.

There is also the vector Laplace or homogeneous vector Poisson equation in
R3, usually stated with some boundary conditions:{

− grad div f + curl curl f = 0 in Ω,

f · ν = 0, curl f × ν = 0 on ∂Ω.

If we drop the boundary conditions, we get

(5.2) ∆1f = ∇(∇ · f)−∇× (∇× f) = curl curl f − grad div f = 0,

where ∆1 is the Helmholtz operator or vector Laplacian in R3.
1-cohomolgy may be viewed as the study of solutions to the vector Laplace

equation with no boundary conditions. A 1-cohomology class is a harmonic 1-form,
i.e., a vector field f : Ω → R3 that satisfies (5.2). The 1st cohomology group is
then the set of all harmonic 1-forms,

H1(Ω) = ker(∆1) = {f : Ω→ R3 : ∆1f = 0}.

5.4. Computations. One particular nice feature of the Hodge decomposition
is that it can be efficiently computed by solving least squares problems. For exam-
ple, to compute the decomposition in (3.7) for any given X ∈ L2

∧(E), we may solve
the two least squares problems

min
f∈L2(V )

‖ grad f −X‖ and min
Φ∈L2

∧(T )
‖ curl∗ Φ−X‖,

to get XH as X − grad f − curl∗Φ. Alternatively, we may solve

min
Y ∈L2

∧(E)
‖∆1Y −X‖

for the minimizer Y and get XH as the residual X −∆1Y directly. Once we obtain
∆1Y , we may use the decomposition (2.9),

im(∆1) = im(grad) ⊕ im(curl∗),

∆1Y = grad f + curl∗Φ,

and solve either

min
f∈L2(V )

‖ grad f −∆1Y ‖ or min
Φ∈L2

∧(T )
‖ curl∗Φ−∆1Y ‖

to get the remaining two components.
We have the choice of practical, efficient, and stable methods like Krylov sub-

space methods for singular symmetric least squares problems [19, 20] or specialized
methods for the Hodge 1-Laplacian with proven complexity bounds [23].
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6. Applications

Applications of cohomology and Hodge theory are plentiful, we find them in
numerical analysis [3], peridynamics [30], topological data analysis [26], compu-
tational topology [33], graphics [66], image processing [70], robotics [45], sensor
networks [65], neuroscience [53], and many other areas in physical science and
engineering. But these applications are not ‘surprising’ in the sense that they all
concern physics, geometry, or topology — areas that gave birth to cohomology and
Hodge theory in the first place.

What we find somewhat unexpected are recent applications of cohomology and
Hodge theory to game theory [15] and ranking [43]. It is not at first obvious
how cohomology and Hodge theory can play a role in these areas, which are less
structured compared to applications arising from manifestation of physical laws (e.g.
Maxwell’s equations or Navier–Stokes equations) naturally amenable to cohomology
and Hodge theory. We will briefly describe these in the next two sections.

The headings game theory and ranking provide basic frameworks that underlie
other data analytic or information theoretic applications such as ad auction, social
networks (for the former), web search, recommendation systems, crowd sourcing
(for the latter). Other recent works along these lines may be found in [16, 28, 40,
56, 69]. Cohomology and Hodge theory are more widely applicable than they seem
at first.

6.1. Rankings. The application to ranking in [43] involves nothing more than
attaching ranking-theoretic meanings to the mathematical objects in Section 3.
There is a very readable account of this in [4].

Suppose V is a set of alternatives to be ranked and E ⊆
(
V
2

)
is the set of pairs

of alternatives that have been compared. The degree of preference of an alternative
i over another alternative j is then naturally quantified as X(i, j), since if X(i, j) is
the amount one favors i over j, then it is natural to assume that X(j, i) = −X(i, j)
is the amount one disfavors j over i. This is the only assumption required of the
method.

We call the resulting edge flow X ∈ L2
∧(E) a pairwise ranking. If there is more

than one voter, X may be computed by aggregating over all voters using a variety
of rank aggregation methods that are standard in Statistics [24]. The Helmholtz
decomposition (2.6) gives

(6.1)
L2
∧(E) = im(grad) ⊕ ker(∆1) ⊕ im(curl∗),

X = grad f + XH + curl∗Φ,

may then be interpreted as

pairwise ranking = consistent + globally inconsistent + locally inconsistent .

Inconsistency refers to situations where we have circular preference relations like
i � j � k � i. Consistency means an absence of inconsistencies.

The consistent component XP = − grad f yields a score7 function f ∈ L2(V )
that allows alternatives to be globally ranked: i � j iff f(i) > f(j). The total size of
the two inconsistent components (measured by their norms) provides a ‘certificate
of reliability’ for the global ranking obtained — if the sum of the inconsistent
components is large relative to the consistent component, then the global ranking

7A score function is a potential function, cf. (3.5), in the context of ranking.
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obtained is unreliable. This method of obtaining a global ranking of alternatives
via the Helmholtz decomposition is called HodgeRank.

The further splitting of the inconsistent component into local and global parts
gives finer details about the nature of the inconsistencies. Roughly speaking, the
local inconsistent component curl Φ measures inconsistencies among items ranked
closed together whereas the global inconsistent component XH measures inconsis-
tencies among items ranked far apart. One may view the two inconsistent com-
ponents as a quantification of various conundrums in voting theory: Condorcet
paradox, Arrow’s impossibility, McKelvey chaos, etc [58].

In this context, other quantities that we discussed in Section 3 also have
ranking-theoretic meanings. For example, assuming we use the standard l2-inner
products, the divergence of a pairwise ranking X ∈ L2

∧(E) is a function divX ∈
L2(V ) and for each alternative i ∈ V ,

(divX)(i) =
∑n

j=1
X(i, j)

gives a generalization of the Borda count [25, 58]. In particular, divX(i) = 0
implies that the alternative i is preference-neutral.

Table 4 provides an illustration, where a variant of HodgeRank [35] is applied
to the dataset from the 2006 Netflix Prize competition [10] to obtain a global
ranking of the 17,770 movies8 (the alternatives) based on 100,480,507 ratings given
by 480,189 viewers (the voters). The middle and right columns show the top 15
results obtained when HodgeRank is used in conjunction with the log-odds model
and linear model for rank-aggregation. The left column shows the ranking obtained
via simple averaging of the ratings; the shortcoming of such an approach is obvious
— if Movie X gets one single 5-star rating and Movie Y gets 10,000 5-star ratings
and one single 1-star rating, ranking by average ratings would put Movie X ahead of
Movie Y. We call such ratings imbalanced. The results shown here already includes
a mitigating factor whereby infrequently rated movies are filtered out beforehand
but the imbalanced effect is still visible in the left column. One reason the effect is
not as pronounced in HodgeRank is that it uses an inner product with

wij = wji = number of voters who have compared alternatives i and j

for the weights in (3.1) to correct for such imbalanced ratings.

6.2. Games. Consider a game with n players, indexed 1, . . . , n. We will define
a graph G = (V,E) as follows. The vertex set V is a finite set of the form

V = S1 × · · · × Sn
where Si is a finite set of all possible strategies for the ith player. An element
(s1, . . . , sn) ∈ V is called a strategy profile where si ∈ Si denotes the strategy of the

ith player. Once we have specified V , the edge set E ⊆
(
V
2

)
is completely determined

in the following way: for any pair of vertices (s1, . . . , sn), (t1, . . . , tn) ∈ V ,

(6.2) {(s1, . . . , sn), (t1, . . . , tn)} ∈ E iff there exists exactly one i where si 6= ti.

In other words, E comprises all pairs of strategy profiles that differ only in the
strategy of a single player. Note that in this application E cannot be arbitrary but
is completely determined by V .

8LOTR III appears twice because of the two DVD editions, theatrical and extended.
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Table 4. Top 15 movies in the Netflix dataset generated by a
variant of HodgeRank (middle and right). For comparison, left
column is a ranking via the mean ratings of the movies. (Repro-
duced verbatim from [35, Table 2, p. 62])

mean ratings HodgeRank/log-odds HodgeRank/linear

LOTR III: Return . . . LOTR III: Return . . . LOTR III: Return . . .

LOTR I: The Fellowship . . . LOTR I: The Fellowship . . . LOTR I: The Fellowship . . .

LOTR II: The Two . . . LOTR II: The Two . . . LOTR II: The Two . . .

Lost: Season 1 Star Wars V: Empire . . . Lost: S1

Battlestar Galactica: S1 Raiders of the Lost Ark Star Wars V: Empire . . .

Fullmetal Alchemist Star Wars IV: A New Hope Battlestar Galactica: S1

Trailer Park Boys: S4 Shawshank Redemption Star Wars IV: A New Hope

Trailer Park Boys: S3 Star Wars VI: Return . . . LOTR III: Return . . .

Tenchi Muyo! . . . LOTR III: Return . . . Raiders of the Lost Ark

Shawshank Redemption The Godfather The Godfather

Veronica Mars: S1 Toy Story Shawshank Redemption

Ghost in the Shell: S2 Lost: S1 Star Wars VI: Return . . .

Arrested Development: S2 Schindler’s List Gladiator

Simpsons: S6 Finding Nemo Simpsons: S5

Inu-Yasha CSI: S4 Schindler’s List

Once we have specified V and therefore E, a game on the graph G = (V,E) is
determined by the utility function fi ∈ L2(V ) of the ith player, i = 1, . . . , n. We
write F := (f1, . . . , fn). So F : V → Rn is a vector field on V and we will call it
the utility vector field of the game. We denote the set of all vector fields by

L2(V ;Rn) := {F : V → Rn : f1, . . . , fn ∈ L2(V )} ∼= L2(V )⊕ · · · ⊕ L2(V ).

Since every game on G is specified by a utility vector field, L2(V ;Rn) parameterizes
all games on G.

A potential game is one where the utility vector field F = (f1, . . . , fn) satisfies

grad f1 = · · · = grad fn.

This condition implies that fi and fj differ at most by an additive constant9. It
may be interpreted to mean that the utilities of all players are aligned with a global
objective. Such games were first proposed in [54] and are widely studied in game
theory. They are easy to analyze and have pure Nash equilibria, i.e., strategy profiles
(s1, . . . , sn) ∈ V such that

fi(s1, . . . , si, . . . , sn) ≥ fi(s1, . . . , s
′
i, . . . , sn)

for every s′i ∈ Si and for each i = 1, . . . , n.
A harmonic game is one where the utility vector field F = (f1, . . . , fn) satisfies

∆0(f1 + · · ·+ fn) = 0,

i.e., f1 + · · · + fn ∈ ker(∆0) is a harmonic function. These were first defined in
[15] based on similar earlier ideas [42]. Such games generically have no pure Nash

9By the definition of E, G is connected and so grad f = 0 implies f is a constant function.
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equilibrium and may be regarded essentially as sums of cycles [15]. A well-known
simple example would be the rock-paper-scissors game.

We define subspaces of utility vector fields corresponding to potential and har-
monic games respectively:

P = {F ∈ L2(V ;Rn) : grad fi = grad fj for all i, j = 1, . . . , n},
H = {F ∈ L2(V ;Rn) : ∆0(f1 + · · ·+ fn) = 0},
C = {F ∈ L2(V ;Rn) : f1, . . . , fn constant functions}.

As before, F = (f1, . . . , fn). C is the set of constant vector fields and it is easy to
see that P ∩H = C.

The Jacobian is Jac : L2(V ;Rn)→ L2
∧(E;Rn) takes F ∈ L2(V ;Rn) to

JacF = (grad f1, . . . , grad fn),

in L2
∧(E;Rn) := {(X1, . . . , Xn) : X1, . . . , Xn ∈ L2

∧(E)}. In the context of games,
an edge flow in L2

∧(E) is called a game flow and an element of L2
∧(E;Rn) is a

vector field of game flows. The image of the spaces P,H,C under the Jacobian are
respectively,

Jac(P ) = {(X, . . . ,X) ∈ L2
∧(E;Rn) : X ∈ L2

∧(E)},
Jac(H) = {(X1, . . . , Xn) ∈ L2

∧(E;Rn) : div(X1 + · · ·+Xn) = 0},

and Jac(C) = {0}.
In [15], the reader would find a decomposition of games into potential, har-

monic, and nonstrategic components, induced by the Helmholtz decomposition of
game flows. The details are a bit too involved for this article and we would in-
stead just describe the latter. The main distinction is that a decomposition of
games is a decomposition of L2(V ;Rn) whereas a decomposition of game flows is a
decomposition of L2

∧(E).
A departure from the general Helmholtz decomposition is that game flows are

always curl-free, i.e., always in ker(curl). So the Helmholtz decomposition of game
flows takes the form

ker(curl) = im(grad) ⊕ ker(∆1),

X = XP + XH ,

with the following interpretation,

game flow = potential game flow + harmonic game flow .

Example 6.1 (Road sharing game). We discuss a beautiful three-player game
with nonzero potential and harmonic components first given in [15]. In this game,
three players C,R, P each chooses one of two roads a, b.

The scenario is the immediate aftermath of a bank robbery where a policeman
(player P ) is in pursuit of the bank robber (player R). Naturally the policeman
wants to be on the same road as the robber while the robber wants to avoid that.
The commuter (player C), an innocent bystander, does not want collateral damage
by being on the same road as either the robber or the policeman.

The respective utility functions, or rather, changes to the values of the utility
functions (i.e., payoffs), are described as follows:

• commuter’s payoff decreases by 2 with each other player sharing his road;
• robber’s payoff is −1 if the policeman shares his road and 0 otherwise;
• policeman’s payoff is exactly the negative of the robber’s payoff.
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Here SC = SR = SP = {a, b} and the set of strategy profiles is therefore

V = {(sC , sR, sP ) : sC ∈ SC , sR ∈ SR, sP ∈ SP }
= {(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, a), (b, a, b), (b, b, a), (b, b, b)}.

E is uniquely determined by V according to (6.2) and comprises pairs of strategy
profiles that differ only in the strategy of a single player:

{(a, a, a), (a, a, b)}, {(a, a, a), (a, b, a)}, {(a, a, a), (b, a, a)}, {(a, a, b), (a, b, b)},
{(a, a, b), (b, a, b)}, {(a, b, a), (a, b, b)}, {(a, b, a), (b, b, a)}, {(b, a, a), (b, a, b)},
{(b, a, a), (b, b, a)}, {(a, b, b), (b, b, b)}, {(b, a, b), (b, b, b)}, {(b, b, a), (b, b, b)}.

The Helmholtz decomposition of this game is shown in Figure 8. An edge flow
between two vertices (i.e., strategy profiles) is represented by an arrow and a weight
— the direction of the arrow represents an improvement in the payoff of the player
who changes its strategy; the amount of improvement is given by the corresponding
weight.

(a, a, a)

(b, a, a)

(b, b, a)

(a, b, a)

(b, b, b)

(b, a, b)

(a, b, b)

(a, a, b)

4
1

1

1

1

1
4

1

1

1

(a) flow of road-sharing game

(a, a, a)

(b, a, a)

(b, b, a)

(a, b, a)

(b, b, b)

(b, a, b)

(a, b, b)

(a, a, b)

2
1

1

1

1
2

1

1

1

1

(b) potential component

(a, a, a)

(b, a, a)

(b, b, a)

(a, b, a)

(b, b, b)

(b, a, b)

(a, b, b)

(a, a, b)

2

2

2

2

2

2

(c) harmonic component

Figure 8. Helmholtz decomposition of the road sharing game.
(Reproduced with slight modification from [15, Figure 1, p. 475])

Observe that the game flow X ∈ L2
∧(E) shown in Figure 8a is indeed curl-free

since T = ∅ and so L2
∧(T ) = {0}. The potential component XP in Figure 8b

flows out of sources (a, a, a) and (b, b, b) into sinks (a, b, b) and (b, a, a). An explicit
potential function f ∈ L2(V ) is easy to construct, for example,

f(a, a, a) = f(b, b, b) = 1, f(a, b, b) = f(b, a, a) = −1,

f(a, a, b) = f(a, b, a) = f(b, a, b) = f(b, b, a) = 0.



24 LEK-HENG LIM

Check that XP = − grad f , as in (3.5).
The harmonic component XH ∈ L2

∧(E) shown in Figure 8c is evidently a
cycle10 that goes from

(a, a, a)→ (b, a, a)→ (b, b, a)→ (b, b, b)→ (a, b, b)→ (a, a, b)→ (a, a, a)

in a loop. The divergence of XH is easily seen to be zero by (3.4) since the inflow
equals the outflow at every vertex. Given that X and therefore XH is in ker(curl),
we conclude that XH ∈ ker(curl) ∩ ker(div) = ker(∆1) by (3.7), i.e., it is indeed a
harmonic 1-cochain.

7. Nonlinear Laplacians on a graph

In this last section, we will introduce another generalization of the graph
Laplacian that is also constructed out of the coboundary operators in Section 3.3.
Whereas the Hodge Laplacians may be viewed as a higher order generalization
of the graph Laplacian, acting linearly on functions of higher order cliques as op-
posed to functions of vertices (i.e., 1-cliques), the generalization in this section takes
things in a different direction — they act on functions of vertices but are nonlinear
operators.

The nonlinear p-Laplacians are defined on open subsets of Rn [32, 49] by

(7.1) Lpf = −div(‖ grad f‖p−2 grad f)

for 1 < p <∞, and

(7.2) L1f = −div

(
grad f

‖ grad f‖

)
, L∞f = −(grad f)T(grad ‖ grad f‖2)

for p = 1,∞ respectively. Here grad f = ∇f is taken to be a column vector and
‖ · ‖ refers to the usual Euclidean norm on Rn, i.e.,

‖ grad f‖2 =

n∑
i=1

( ∂f
∂xi

)2

.

These are all nonlinear operators with the exception of the case p = 2, which is
a linear operator. The nonlinear 1-Laplacian is sometimes also called the mean
curvature operator.

For 1 ≤ p ≤ ∞, the nonlinear p-Laplacians on a graph G = (V,E) are defined
by the same formulas in (7.1) and (7.2) except that the gradient and divergence
operators div and grad should now be taken to be the coboundary operators in-
troduced in Section 3.3. In particular, the (non)linear 2-Laplacian is exactly the
Hodge 0-Laplacian defined in Section 4.3,

L2 = −div grad = ∆0,

which is of course the usual graph Laplacian. Note that as before, our graphs are
undirected and have no loops or multiple edges

For 1 ≤ p < 2, Lp has a singularity whenever grad f vanishes. To define it
everywhere we borrow some ideas from nondifferentiable optimization [22]. For
p = 1, the nonlinear 1-Laplacian [38] on a graph is given by

L1f = −div(sgn(grad f)),

10Or more accurately, a cocycle, since we are talking about functions. The directed edges
form a 1-cycle but functions on them form 1-cocycles. See Tables 1 and 3.
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essentially obtained from (7.2) by replacing x/‖x‖ with sgn(x). The function sgn
is a set-valued function defined on R by

sgn(x) =


−1 if x < 0,

[−1, 1] if x = 0,

+1 if x > 0,

and extended to Rn coordinatewise, i.e.,

sgn(x) = (sgn(x1), . . . , sgn(xn))

for x = (x1, . . . , xn) ∈ Rn. This is the subdifferential of the 1-norm on Rn, i.e.,
∂‖x‖1 = sgn(x).

An example of an instance where the nonlinear 1-Laplacian appears is the
following. In spectral graph theory, a well-known fundamental result is that the
isoperimetric or Cheeger constant,

h(G) = min
S⊂V

|E(S, V \ S)|
min(Vol(S),Vol(V \ S))

,

of a connected graph G satisfies [2, 47] the Cheeger inequality

1

2
λ2(L2) ≤ h(G) ≤

√
2λ2(L2),

where λ2(L2) is the second eigenvalue of the usual graph Laplacian. But what if
we want equality? The answer, as demonstrated in [38, 18], is that if we replace
L2 by L1, then we get

λ2(L1) = h(G).

We will end this section with a few words about applications. The continuous
nonlinear 1-Laplacian, usually under its better-know name ‘mean curvature oper-
ator,’ plays a central role in the Level Set Method [55]. In a similar spirit, the
discrete version has also been found [46] to have a game-theoretic interpretation
— the so-called balancing games in Rn [62] may be regarded as a discrete motion
by mean curvature. A simple example of a balancing game is as follows: Player I
chooses a direction, i.e., a unit vector xi ∈ Rn, and Player II chooses whether to
flip it, i.e., εi ∈ {−1,+1}, in a way so that

∥∥∑t
i=1 εixi

∥∥ is minimized at step t.

8. Conclusion

Traditional applied mathematics largely involves using partial differential equa-
tions to model physical phenomena and traditional computational mathematics
largely revolves around numerical solutions of PDEs.

However, one usually needs substantial and rather precise knowledge about a
phenomenon in order to write it down as PDEs. For example, one may need to
know the dynamical laws (e.g. laws of motions, principle of least action, laws of
thermodynamics, quantum mechanical postulates, etc) or conservation laws (e.g.
of energy, momentum, mass, charge, etc) underlying the phenomenon before being
able to ‘write down’ the corresponding PDEs (as equations of motion, of continuity
and transfer, constitutive equations, field equations, etc). In traditional applied
mathematics, it is often taken for granted that there are known physical laws behind
the phenomena being modeled.

In modern data applications, this is often a luxury. For example, if we want to
build a spam filter, then it is conceivable that we would want to understand the ‘laws
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of emails.’ But we would quickly come to the realization that these ‘laws of emails’
would be too numerous to enumerate and too inexact to be formulated precisely,
even if we restrict ourselves to those relevant for identifying spam. This is invariably
the case for any human generated data: movie ratings, restaurant reviews, browsing
behavior, clickthrough rates, newsfeeds, tweets, blogs, instagrams, status updates
on various social media, etc, but the perhaps surprising thing is that it also applies
to many data sets from modern biology and medicine.

For such data sets, all one has is often a rough measure of how similar two
data points are and how the dataset is distributed. Topology can be a useful tool
in such contexts [17] since it requires very little — essentially just a weak notion
of separation, i.e., is there a non-trivial open set that contains those points?

If the data set is discrete and finite, which is almost always the case in appli-
cations, we can even limit ourselves to simplicial topology, where the topological
spaces are simplicial complexes (cf. Section 3.1). Without too much loss of gener-
ality, these may be regarded as clique complexes of graphs (cf. Section 5.1): data
points are vertices in V and proximity is characterized by cliques: a pair of data
points are near each other iff they form an edge in E, a triplet of data points are
near one another iff they form a triangle in T , and so on.

In this article, we have undertaken the point of view that

graphs are discrete Riemannian manifolds

and that cohomology is a much-relaxed discrete analogue of PDEs (cf. Sections 3.3,
5.3). Furthermore, standard partial differential operators on Riemannian manifolds
— gradient, divergence, curl, Jacobian, Hessian, Laplace and Helmholtz operators,
Hodge and nonlinear Laplacians — all have natural counterparts on graphs (cf.
Sections 3, 4, 7) with useful roles in data applications (cf. Section 6). An example
of a line of work that carries this point of view to great fruition is [8, 9, 52].
Also, in this article we have only scratched the surface of cohomological and Hodge
theoretic techniques in graph theory; see [57] for results that go much further.

In traditional computational mathematics, discrete PDEs arise as discretiza-
tion of continuous PDEs, intermediate by-products of numerical schemes. But in
data analytic applications, discrete PDEs tend to play a more central and direct
role. Despite these differences, the discrete partial differential operators on graphs
introduced in this article may perhaps serve as a bridge on which insights from tra-
ditional applied and computational mathematics could cross over and be brought
to bear on modern data analytic applications.
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Appendix A. Numerical Linear Algebra Refresher

By numerical linear algebra, we mean linear algebra over any subfield of C. We
will provide routine proofs for some numerical linear algebraic facts that we have
used freely in Section 2. We will work over R for convenience.

Theorem A.1. Let A ∈ Rm×n. Then

À ker(A∗A) = ker(A),
Á im(A∗A) = im(A∗),
Â ker(A∗) = im(A)⊥,
Ã im(A∗) = ker(A)⊥,
Ä Rn = ker(A)⊕ im(A∗).

Proof.

À Clearly ker(A) ⊆ ker(A∗A). If A∗Ax = 0, then ‖Ax‖2 = x∗A∗Ax = 0, so
Ax = 0, and so ker(A∗A) ⊆ ker(A).

Á Applying rank-nullity theorem twice with À, we get

rank(A∗A) = n− nullity(A∗A)

= n− nullity(A) = rank(A) = rank(A∗).

Since im(A∗A) ⊆ im(A∗), the result follows.
Â If x ∈ im(A)⊥, then 0 = 〈x,Ay〉 = 〈A∗x, y〉 for all y ∈ Rn, so A∗x = 0. If
x ∈ ker(A∗), then 〈x,Ay〉 = 〈A∗x, y〉 = 0 for all y ∈ Rn, so x ∈ im(A)⊥.

Ã By Â, im(A∗)⊥ = ker(A∗∗) = ker(A) and result follows.
Ä Rn = ker(A)⊕ ker(A)⊥ = ker(A)⊕ im(A∗) by Ã. �

Our next proof ought to convince readers that the Hodge decomposition theo-
rem is indeed an extension of the Fredholm alternative theorem to a pair of matrices.
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Theorem A.2. Let A ∈ Rm×n and B ∈ Rn×p with AB = 0. Then

Å ker(A∗A+BB∗) = ker(A) ∩ ker(B∗),
Æ ker(A) = im(B)⊕ ker(A∗A+BB∗),
Ç ker(B∗) = im(A∗)⊕ ker(A∗A+BB∗),
È Rn = im(A∗)⊕ ker(A∗A+BB∗)⊕ im(B),
É im(A∗A+BB∗) = im(A∗)⊕ im(B).

Proof. Note that im(B) ⊆ ker(A) asAB = 0, im(A∗) ⊆ ker(B∗) asB∗A∗ = 0.

Å Clearly ker(A) ∩ ker(B∗) ⊆ ker(A∗A + BB∗). Let x ∈ ker(A∗A + BB∗).
Then A∗Ax = −BB∗x.
• Multiplying by A, we get AA∗Ax = −ABB∗x = 0 since AB = 0. So
A∗Ax ∈ ker(A). But A∗Ax ∈ im(A∗) = ker(A)⊥ by Ã. So A∗Ax = 0
and x ∈ ker(A∗A) = ker(A) by À.
• Multiplying by B∗, we get 0 = B∗A∗Ax = −B∗BB∗x since B∗A∗ =

0. So BB∗x ∈ ker(B∗). But BB∗x ∈ im(B) = ker(B∗)⊥ by Â. So
BB∗x = 0 and x ∈ ker(BB∗) = ker(B∗) by À.

Hence x ∈ ker(A) ∩ ker(B∗).
Æ Applying Ä to B∗,

ker(A) = Rn ∩ ker(A) = [ker(B∗)⊕ im(B)] ∩ ker(A)

= [ker(B∗) ∩ ker(A)]⊕ [im(B) ∩ ker(A)]

= ker(A∗A+BB∗)⊕ im(B),

where the last equality follows from Å and im(B) ⊆ ker(A).
Ç Applying Ä,

ker(B∗) = Rn ∩ ker(B∗) = [ker(A)⊕ im(A∗)] ∩ ker(B∗)

= [ker(A) ∩ ker(B∗)]⊕ [im(A∗) ∩ ker(B∗)]

= ker(A∗A+BB∗)⊕ im(A∗),

where the last equality follows from Å and im(A∗) ⊆ ker(B∗). Alterna-
tively, apply Æ with B∗, A∗ in place of A,B.

È Applying Ä to B∗ followed by Ç, we get

Rn = ker(B∗)⊕ im(B) = im(A∗)⊕ ker(A∗A+BB∗)⊕ im(B).

É Applying Ä to A∗A+BB∗, which is self-adjoint, we see that

im(A∗A+BB∗) = ker(A∗A+BB∗)⊥ = im(A∗)⊕ im(B),

where the last equality follows from È. �

Any two vector spaces of the same dimension are isomorphic. So saying that
two vector spaces are isomorphic isn’t saying very much — just that they have the
same dimension. The two spaces in (2.12) are special because they are naturally
isomorphic, i.e., if you construct an isomorphism, and the guy in the office next door
constructs an isomorphism, both of you would end up with the same isomorphism,
namely, the one below.

Theorem A.3. Let A ∈ Rm×n and B ∈ Rn×p with AB = 0. Then the following
spaces are naturally isomorphic

ker(A)/ im(B) ∼= ker(A) ∩ ker(B∗) ∼= ker(B∗)/ im(A∗).



HODGE LAPLACIANS ON GRAPHS 31

Proof. Let π : Rn → im(B)⊥ be the orthogonal projection of Rn onto the
orthogonal complement of im(B). So any x ∈ Rn has a unique decomposition into
two mutually orthogonal components

Rn = im(B)⊥ ⊕ im(B),

x = π(x) + (1− π)(x).

Let πA be π restricted to the subspace ker(A). So any x ∈ ker(A) has a unique
decomposition into two mutually orthogonal components

ker(A) =
(
ker(A) ∩ im(B)⊥

)
⊕ im(B),

x = πA(x) + (1− πA)(x),

bearing in mind that ker(A) ∩ im(B) = im(B) since im(B) ⊆ ker(A).
As π is surjective, so is πA. Hence im(πA) = ker(A) ∩ im(B)⊥. Also, for any

x ∈ ker(A), πA(x) = 0 iff the component of x in im(B)⊥ is zero, i.e., x ∈ im(B).
Hence ker(πA) = im(B). The first isomorphsim theorem,

ker(A)/ ker(πA) ∼= im(πA) = ker(A) ∩ im(B)⊥

yields the required result since im(B)⊥ = ker(B∗) by Â. The other isomorphism
may be obtained as usual by using B∗, A∗ in place of A,B. �

In mathematics, linear algebra usually refers to a collection of facts that follow
from the defining axioms of a field and of a vector space. In this regard, every single
statement in Theorems A.1, A.2, A.3 is false as a statement in linear algebra —
they depend specifically on our working over a subfield of C and are not true over
arbitrary fields. For example, consider the finite field of two elements F2 = {0, 1}
and take

A = B =

[
1 1
1 1

]
.

Then A∗ = A = B = B∗, and AB = B∗A∗ = A∗A = BB∗ = A∗A + BB∗ = 0,
which serves as a counterexample to À, Á, Ä, Æ, Ç, È, É, and Theorem A.3.

Appendix B. Div, Grad, Curl, and All That

We provide routine verifications of statements claimed in Sections 3 and 4.

Lemma B.1. Equip L2(V ) and L2
∧(E) with the inner products in (3.1), we have

grad∗X(i) = −
n∑
j=1

wij
wi

X(i, j) = −divX(i).
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Proof. The required expression follows from

〈grad∗X, f〉V = 〈X, grad f〉E

=
∑

i<j
wijX(i, j) grad f(i, j)

=
∑

i<j
wijX(i, j)[f(j)− f(i)]

=
∑

i<j
wijX(i, j)f(j) +

∑
i<j

wijX(j, i)f(i)

À
=
∑

j<i
wjiX(j, i)f(i) +

∑
i<j

wijX(j, i)f(i)

Á
=
∑

j<i
wijX(j, i)f(i) +

∑
i<j

wijX(j, i)f(i)

=
∑

i6=j
wijX(j, i)f(i)

=
∑n

i=1
wi

[∑
j:j 6=i

wij
wi

X(j, i)
]
f(i)

Â
=
∑n

i=1
wi

[∑n

j=1

wij
wi

X(j, i)︸ ︷︷ ︸
grad∗X(i)

]
f(i).

À follows from swapping labels i and j in the first summand.
Á follows from wij = wji.
Â follows from X(i, i) = 0. �

Lemma B.2. Equip L2
∧(E) and L2

∧(T ) with the inner products in (3.1), we have

curl∗Φ(i, j) =

n∑
k=1

wijk
wij

Φ(i, j, k).

Proof. The required expression follows from

〈curl∗ Φ, X〉E = 〈Φ, curlX〉T =
∑

i<j<k
wijkΦ(i, j, k) curlX(i, j, k)

=
∑

i<j<k
wijkΦ(i, j, k)[X(i, j) +X(j, k) +X(k, i)]

=
∑

i<j<k
wijkΦ(i, j, k)X(i, j) +

∑
i<j<k

wijkΦ(i, j, k)X(j, k)

+
∑

i<j<k
wijkΦ(i, j, k)X(k, i)

À
=
∑

i<j<k
wijkΦ(i, j, k)X(i, j) +

∑
i<j<k

wijkΦ(j, k, i)X(j, k)

+
∑

i<j<k
wijkΦ(k, i, j)X(k, i)

Á
=
∑

i<j<k
wijkΦ(i, j, k)X(i, j) +

∑
k<i<j

wkijΦ(i, j, k)X(i, j)

+
∑

i<k<j
wikjΦ(j, i, k)X(j, i)

Â
=
∑

i<j<k
wijkΦ(i, j, k)X(i, j) +

∑
k<i<j

wkijΦ(i, j, k)X(i, j)

+
∑

i<k<j
wikjΦ(i, j, k)X(i, j)

=
∑

i<j

[(∑n

k=j+1
+
∑i−1

k=1
+
∑j−1

k=i+1

)
wijkΦ(i, j, k)

]
X(i, j)
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=
∑

i<j
wij

[∑
k:k 6=i,j

wijk
wij

Φ(i, j, k)
]
X(i, j)

Ã
=
∑

i<j
wij

[∑n

k=1

wijk
wij

Φ(i, j, k)︸ ︷︷ ︸
curl∗ Φ(i,j)

]
X(i, j).

À follows from the alternating property of Φ.
Á follows from relabeling j, k, i as i, j, k in the second summand and swap-

ping labels j and k in the third summand.
Â follows from Φ(j, i, k)X(j, i) = Φ(i, j, k)X(i, j) since both changed signs.
Ã follows from Φ(i, j, i) = Φ(i, j, j) = 0. �

Lemma B.3. The operator ∆0 = −div grad gives us the usual graph Laplacian.

Proof. Let f ∈ L2(V ). By definition,

grad f(i, j) =

{
f(j)− f(i) if {i, j} ∈ E,
0 otherwise.

Define the adjacency matrix A ∈ Rn×n by

aij =

{
1 if {i, j} ∈ E,
0 otherwise.

The gradient may be written as grad f(i, j) = aij(f(j)− f(i)) and so

(B.1)
(∆0f)(i) = −[div(grad f)](i) = −[div aij(f(j)− f(i))](i)

= −
∑n

j=1
aij [f(j)− f(i)] = dif(i)−

∑n

j=1
aijf(j),

where for any vertex i = 1, . . . , n, we define its degree as

di = deg(i) =
∑n

j=1
aij .

If we regard a function f ∈ L2(V ) as a vector (f1, . . . , fn) ∈ Rn where f(i) = fi
and set D = diag(d1, . . . , dn) ∈ Rn×n, then (B.1) becomes

∆0f =


d1 − a11 −a12 · · · −a1n

−a21 d2 − a22 · · · −a2n

...
. . .

...
−an1 −an2 · · · dn − ann



f1

f2

...
fn

 = (D −A)f.

So ∆0 may be regarded as D −A, the usual definition of a graph Laplacian. �

Theorem B.4. We have that

curl grad = 0, div curl∗ = 0,

and more generally, for k = 1, 2, . . . ,

δkδk−1 = 0, δ∗k−1δ
∗
k = 0.
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Proof. We only need to check δkδk−1 = 0. The other relations follow from
taking adjoint or specializing to k = 1. Let f ∈ L2

∧(Kk−1). By (4.2) and (4.3),

(δkδk−1f)(i0, . . . , ik+1) =
∑k+1

j=0
(−1)jδk−1f(i0, . . . , îj , . . . , ik+1)

À
=
∑k+1

j=0
(−1)j

[∑j−1

`=0
(−1)`f(i0, . . . , î`, . . . , îj , . . . , ik+1)

+
∑k+1

`=j+1
(−1)`−1f(i0, . . . , îj , . . . , î`, . . . , ik+1)

]
=
∑

j<`
(−1)j(−1)`f(i0, . . . , îj , . . . , î`, . . . , ik+1)

+
∑

j>`
(−1)j(−1)`−1f(i0, . . . , î`, . . . , îj , . . . , ik+1)

Á
=
∑

j<`
(−1)j+`f(i0, . . . , îj , . . . , î`, . . . , ik+1)

+
∑

`>j
(−1)j+`−1f(i0, . . . , îj , . . . , î`, . . . , ik+1)

=
∑

j<`
(−1)j+`f(i0, . . . , îj , . . . , î`, . . . , ik+1)

−
∑

j<`
(−1)j+`f(i0, . . . , îj , . . . , î`, . . . , ik+1) = 0.

The power of −1 in the third sum in À is `− 1 because an argument preceding î`
is omitted and so î` is the (` − 1)th argument (which is also omitted). Á follows
from swapping labels j and ` in the second sum. �

Appendix C. Calculations

We will work out the details of Example 4.1. While we have defined coboundary
operators and Hodge Laplacians as abstract, coordinate-free linear operators, any
actual applications would invariably involve ‘writing them down as matrices’ to
facilitate calculations. Readers might perhaps find our concrete approach here
instructive.

A simple recipe for writing down a matrix representing a coboundary operator
and a Hodge Laplacian is as follows: Given an undirected graph, label its vertices
and edges arbitrarily but differently for easy distinction (e.g. we used numbers for
vertices and letters for edges) and assign arbitrary directions to the edges. From
the graphs in Figure 6, we get the labeled directed graphs G1 (left) and G2 (right)
in Figure 9.
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Figure 9. The graphs in Figure 6, with vertices and edges arbi-
trarily labeled and directions on edges arbitrarily assigned.
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The next step is to write down a matrix whose columns are indexed by the
vertices and the rows are indexed by the edges and whose (i, j)th entry is +1 if jth
edge points into the ith vertex, −1 if jth edge points out of the ith vertex, and 0
otherwise. This matrix represents the gradient operator δ0 = grad. We get

A1 =



1 2 3 4 5 6

a −1 1 0 0 0 0
b 0 −1 1 0 0 0
c 0 0 −1 1 0 0
d 1 0 0 −1 0 0
e 0 0 −1 0 1 0
f 0 0 0 0 −1 1
g 0 0 −1 0 0 1


, A2 =



1 2 3 4 5 6

a −1 1 0 0 0 0
b 0 −1 1 0 0 0
c 0 0 −1 1 0 0
d 1 0 0 −1 0 0
e 0 0 −1 0 1 0
f 0 0 0 −1 0 1
g 0 1 0 0 0 −1


for G1 and G2 respectively. Note that every row must contain exactly one +1 and
one −1 since every edge is defined by a pair of vertices. This matrix is also known as
a vertex-edge incidence matrix of the graph. Our choice of ±1 for in/out-pointing
edges is also arbitrary — the opposite choice works just as well as long as we are
consistent throughout.

The graph Laplacians may either be computed from our definition as

L1 = A∗1A1 =



1 2 3 4 5 6

1 2 −1 0 −1 0 0
2 −1 2 −1 0 0 0
3 0 −1 4 −1 −1 −1
4 −1 0 −1 2 0 0
5 0 0 −1 0 2 −1
6 0 0 −1 0 −1 2

,

L2 = A∗2A2 =



1 2 3 4 5 6

1 2 −1 0 −1 0 0
2 −1 3 −1 0 0 −1
3 0 −1 3 −1 −1 0
4 −1 0 −1 3 0 −1
5 0 0 −1 0 1 0
6 0 −1 0 −1 0 2

,

or written down directly using the usual definition [21, 63],

`ij =


deg(vi) if i = j,

−1 if vi is adjacent to vj ,

0 otherwise.

We obtain the same Laplacian matrix irrespective of the choice of directions on
edges and the choice of ±1 for in/out-pointing edges. For us there is no avoiding
the gradient operators since we need them for the graph Helmholtzian below.

We may now find the eigenvalues of L1 and L2 and see that they are indeed
the values we claimed in Example 4.1:

λ(L1) = (0, 3−
√

5, 2, 3, 3, 3 +
√

5) = λ(L2).
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To write down the graph Helmholtzians, we first observe that G1 has exactly
one triangle (i.e., 2-clique) whereas G2 has none11. We will need to label and pick
an arbitrary orientation for the triangle in G1: We denote it as T and orient it
clockwise 3 → 5 → 6 → 3. A matrix representing the operator δ1 = curl may
be similarly written down by indexing the columns with edges and the rows with
triangles. Here we make the arbitrary choice that if the jth edge points in the same
direction as the orientation of the ith triangle, then the (i, j)th entry is +1 and if
it points in the opposite direction, then the entry is −1. For G1 we get

B1 =
[ a b c d d e f

T 0 0 0 0 1 1 −1
]
.

Since G2 contains no triangles, B2 = 0 by definition.
We compute the graph Helmholtzians from definition,

H1 = A1A
∗
1 +B∗1B1 =



a b c d d e f

a 2 −1 0 −1 0 0 0
b −1 2 −1 0 −1 0 −1
c 0 −1 2 −1 1 0 1
d −1 0 −1 2 0 0 0
e 0 −1 1 0 3 0 0
f 0 0 0 0 0 3 0
g 0 −1 1 0 0 0 3



H2 = A2A
∗
2 +B∗2B2 =



a b c d d e f

a 2 −1 0 −1 0 0 1
b −1 2 −1 0 −1 0 −1
c 0 −1 2 −1 1 −1 0
d −1 0 −1 2 0 1 0
e 0 −1 1 0 2 0 0
f 0 0 −1 1 0 2 −1
g 1 −1 0 0 0 −1 2


and verify that they have different spectra, as we had claimed in Example 4.1,

λ(H1) = (0, 3−
√

5, 2, 3, 3, 3, 3+
√

5) 6= (0, 0, 3−
√

5, 2, 3, 3, 3+
√

5) = λ(H2).

We now repeat the routine and convert the undirected graphs in Figure 7
into labeled directed graphs G3 (left) and G4 (right) in Figure 10. We label both
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Figure 10. Labeled directed versions of the graphs in Figure 7.

11Those who see two triangles should note that these are really squares, or C4’s to be accurate.
See also Example 3.1.
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triangles in G3 and G4 as T and orient it clockwise 2 → 1 → 3 → 2, giving us a
matrix that represents both curl operators on G3 and G4,

B3 = B4 =
[ a b c d e f g

T 1 1 −1 0 0 0 0
]
.

With these choices, we obtain the following matrix representations of the gra-
dients, Laplacians, and Helmholtzians on G3 and G4,

A3 =



1 2 3 4 5 6 7

a 1 −1 0 0 0 0 0
b −1 0 1 0 0 0 0
c 0 −1 1 0 0 0 0
d 0 0 −1 1 0 0 0
e 0 0 0 −1 1 0 0
f 0 0 0 −1 0 1 0
g 0 0 0 −1 0 0 1


,

A4 =



1 2 3 4 5 6 7

a 1 −1 0 0 0 0 0
b −1 0 1 0 0 0 0
c 0 −1 1 0 0 0 0
d 0 0 −1 1 0 0 0
e 0 0 0 −1 1 0 0
f 0 0 −1 0 0 1 0
g 0 0 0 −1 0 0 1


,

L3 = A∗3A3 =



1 2 3 4 5 6 7

1 2 −1 −1 0 0 0 0
2 −1 2 −1 0 0 0 0
3 −1 −1 3 −1 0 0 0
4 0 0 −1 4 −1 −1 −1
5 0 0 0 −1 1 0 0
6 0 0 0 −1 0 1 0
7 0 0 0 −1 0 0 1


,

L4 = A∗4A4 =



1 2 3 4 5 6 7

1 2 −1 −1 0 0 0 0
2 −1 2 −1 0 0 0 0
3 −1 −1 4 −1 0 −1 0
4 0 0 −1 3 −1 0 −1
5 0 0 0 −1 1 0 0
6 0 0 −1 0 0 1 0
7 0 0 0 −1 0 0 1


,

H3 = A3A
∗
3 +B∗3B3 =



a b c d e f g

a 3 0 0 0 0 0 0
b 0 3 0 −1 0 0 0
c 0 0 3 −1 0 0 0
d 0 −1 −1 2 −1 −1 −1
e 0 0 0 −1 2 1 1
f 0 0 0 −1 1 2 1
g 0 0 0 −1 1 1 2


,
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H4 = A4A
∗
4 +B∗4B4 =



a b c d e f g

a 3 0 0 0 0 0 0
b 0 3 0 −1 0 −1 0
c 0 0 3 −1 0 −1 0
d 0 −1 −1 2 −1 1 −1
e 0 0 0 −1 2 0 1
f 0 −1 −1 1 0 2 0
g 0 0 0 −1 1 0 2


.

As we intend to show that G3 and G4 have isospectral Hodge k-Laplacians for
all k, we will also need to examine the Hodge 2-Laplacian ∆2. Since G3 and G4

have no cliques of order higher than two, δk = 0 for all k > 2 and in particular
∆2 = δ1δ

∗
1 . So the 1× 1 matrix representing ∆2 is just

P3 = B3B
∗
3 = [3] = B4B

∗
4 =: P4

for both G3 and G4.
Finally, we verify that the spectra of the Hodge k-Laplacians of G3 and G4 are

identical for k = 0, 1, 2, as we had claimed in Example 4.1:

λ(L3) = (0, 0.40, 1, 1, 3, 3.34, 5.26) = λ(L4),

λ(H3) = (0.40, 1, 1, 3, 3, 3.34, 5.26) = λ(H4),

λ(P3) = 3 = λ(P4).

Observe that three eigenvalues of L3, L4, H3, H4 have been rounded to two decimal
places — these eigenvalues have closed form expressions (zeros of a cubic polyno-
mial) that are a hassle to typeset. So to verify that they are indeed isospectral, we
check their characteristic polynomials instead, since these have integer coefficients
and can be expressed exactly:

det(L3 − xI) = −21x+ 112x2 − 209x3 + 178x4 − 73x5 + 14x6 − x7

= −x(x− 3)(x− 1)2(x3 − 9x2 + 21x− 7) = det(L4 − xI),

det(H3 − xI) = 63− 357x+ 739x2 − 743x3 + 397x4 − 115x5 + 17x6 − x7

= −(x− 3)2(x− 1)2(x3 − 9x2 + 21x− 7) = det(H4 − xI).
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