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AbstractÐWe address the problem of epipolar geometry estimation efficiently and effectively, by formulating it as one of hyperplane

inference from a sparse and noisy point set in an 8D space. Given a set of noisy point correspondences in two images of a static scene

without correspondences, even in the presence of moving objects, our method extracts good matches and rejects outliers. The

methodology is novel and unconventional, since, unlike most other methods optimizing certain scalar, objective functions, our

approach does not involve initialization or any iterative search in the parameter space. Therefore, it is free of the problem of local

optima or poor convergence. Further, since no search is involved, it is unnecessary to impose simplifying assumption (such as affine

camera or local planar homography) to the scene being analyzed for reducing the search complexity. Subject to the general epipolar

constraint only, we detect wrong matches by a novel computation scheme, 8D Tensor Voting, which is an instance of the more

general N-dimensional Tensor Voting framework. In essence, the input set of matches is first transformed into a sparse 8D point set.

Dense, 8D tensor kernels are then used to vote for the most salient hyperplane that captures all inliers inherent in the input. With this

filtered set of matches, the normalized Eight-Point Algorithm can be used to estimate the fundamental matrix accurately. By making

use of efficient data structure and locality, our method is both time and space efficient despite the higher dimensionality. We

demonstrate the general usefulness of our method using example image pairs for aerial image analysis, with widely different views,

and from nonstatic 3D scenes (e.g., basketball game in an indoor stadium). Each example contains a considerable number of wrong

matches.

Index TermsÐTensor, hyperplane inference, epipolar geometry, matching, robust estimation.

æ

1 INTRODUCTION

IN computer vision, epipolar geometry is a fundamental
constraint used whenever two images of a static scene are

to be registered. Two issues needed to be addressed are: the
correspondence problem and the parameter estimation problem
given a set of correspondences. The main difficulty stems
from the unavoidable outliers inherent in the given
matches. Most robust techniques require that the majority
of matches be correct or else some form of outlier detection
and removal is usually performed before actual parameter
estimation.

Both outlier detection and parameter estimation are often
formulated as a nonlinear optimization and search process
in the parameter space. In the case of the full perspective
camera model, this search space can be prohibitively large.
Consequently, gradient-based and other nonlinear heuristic
search techniques have been proposed. The output, how-
ever, may not be initialization free and poor initialization
may seriously affect convergence rate. Though simplifying
assumptions, such as affine camera model and local planar

homography [14], can reduce the search complexity, the
class of transformations which can be represented is
somewhat restricted.

In this paper, we propose an unconventional, effective,
and efficient approach to solve the outlier detection
problem for epipolar geometry estimation. The solution
technique is unconventional since we do not formulate the
problem into an iterative, optimization framework, as many
other researchers already did. We demonstrate the effec-
tiveness of our approach by using difficult examples and
quantitatively justify our method. Our method is efficient
since, as shown in the space and time complexity section,
our algorithm is independent of the dimensionality of the
parameter space.

A compact conference version of this paper has appeared
in [16], which includes a brief description of the 8D instance
of the more general, N-dimensional tensor voting formal-
ism, the latter of which is detailed in Section 2 in this paper.
The present coverage contains a more detailed description
and illustration on our methodology.

As shown in Section 1.2, the epipolar constraint is a
linear and homogeneous one that defines an 8D hyperplane
in its parameter space. Therefore, given a candidate set of
(usually noisy) matches, suppose that we could visualize in
8D, the subset of inlier matches should cluster themselves
onto a hyperplane in the corresponding 8D space. Thus,
analogous to line detection in a 2D point cloud, we can pose
our outlier detection problem as one of hyperplane
inference in 8D. Therefore, it is of great value and
theoretical interest if we can extract this salient hyperplane
feature from the given sparse and noisy 8D cluster, without
performing any iterative or multidimensional parameter
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search. Simplifying assumption will become unnecessary,
as the size of the search space is no longer an issue.

An intuition to a noniterative solution for hyperplane
inference is inspired by the Hough Transform [7]. It
employs a voting technique that outputs the solution
receiving maximal support. However, as the dimensionality
grows, the Hough Transform is extremely inefficient. Thus,
it is impractical in most higher-dimensional detection
problems.

Therefore, the contributions of this paper are twofold: A
formal framework, the N-dimensional tensor voting form-
alism, is proposed. It is generalized from the 2D version
[12]. The N-D tensor voting resembles the Hough transform
in that it uses a voting technique; but is different since the
time and space complexities are independent of dimension-
ality. The second contribution consists of the application of
this higher-dimensional methodology in outlier detection
and removal for general epipolar geometry estimation. We
demonstrate the general usefulness of this novel estimation
methodology with a variety of image pairs as examples.

1.1 Previous Work

If the input set of correspondences is already very good,
then, a linear method, such as Eight-Point Algorithm [10],
can be used for accurate parameter estimation. This
algorithm is probably the most cited method for computing
the essential (respectively fundamental) matrix from two
calibrated (respectively uncalibrated) camera images. With
more than eight points, a least mean square minimization is
used, then followed by the enforcement of the singularity
constraint so that the rank of the resulting matrix is 2. Its
obvious advantages are speed and ease of implementation.
However, in practice, the input set of matches contains a
considerable amount of outliers. The linear method is
extremely sensitive to wrong matches.

In [8], Hartley normalizes the data before using the
Eight-Point Algorithm and shows that this normalized
version performs comparably well with more complicated
iterative techniques, which are described below. Outlier
rejection is performed before the algorithm is used. Note
that the Eight-Point Algorithm is not optimal since it
minimizes an algebraic distance. Therefore, a nonlinear
geometric error measure should be used.

More complicated, iterative optimization methods are
proposed to address the issues of noisy matches, some of
them are described in [22]. These nonlinear, robust methods
make use of certain optimization criteria, such as distance
between points and their corresponding epipolar lines or
gradient-weighted epipolar errors. Iterative methods, in
general, require careful (or at least sensible) initialization for
early convergence to the desired optimum (or, in other
words, avoiding local optimum). In particular, the method
proposed by Zhang [22] uses least median of squares, data
subsampling, and certain adapted criterion, to discard
outliers by solving a nonlinear minimization problem. The
fundamental matrix is then estimated. Note that robust
methods require a majority of the data be correct, whereas
we can tolerate much higher outlier to inlier ratio, as shown
in the Section 6.

Torr and Murray [19] proposed the use of RANSAC:
Random sampling of a minimum subset (seven pairs) for
parameter estimation is performed. The solution is given by
the candidate subset that maximizes the number of

consistent points and minimizes the residual. It is, however,
computationally infeasible to consider all possible subsets,
since it is exponential in number. Therefore, additional
statistical measures are needed to derive the minimum
number of sample subsets. Extra samples are also needed to
avoid degeneracy. In our approach, we can afford to
consider all input matches, since it is linear in time and
space.

Chai and Ma [2] proposed the use of genetic algorithm to
avoid the problem of local minima, by using properly
defined genetic operators. The optimization process can be
sped up through incorporating the ideas of evolution that
properly guides the search process.

Ke et al. [4] proposed the use of Reactive Tabu Search
which avoids the prohibitive search complexity by guiding
a local heuristic search among neighborhood configurations
beyond local optima. A cost function is minimized while
outliers are discarded, using a certain criterion.

In [14], Pritchett and Zisserman proposed the use of local
homography (planar projective transformation). Homogra-
phies are generated by Gaussian pyramid techniques. Point
matches are then generated using a homography. The set of
matches is then enlarged, by using RANSAC for selecting a
subset of initial matches consistent with a given homo-
graphy. Besides its viewpoint invariance, homography
drastically reduces the search space. However, the homo-
graphy assumption, as noted, does not generally apply to
the entire image (e.g., curved surfaces), although local
homography applies in most situations.

1.2 Review of Epipolar Geometry

Here, we briefly review epipolar geometry (more details in
[5]), and formulate the estimation problem as one of
8D hyperplane inference.

Given two images of a static scene taken from two camera
systems (see Fig. 1), let �u`; v`� be the image coordinates of a
point in the first image. Its corresponding point �ur; vr� is
constrained to lie on the epipolar line derived from �u`; v`�.
This line is the intersection of two planes: The first is defined
by the two optical centers C1; C2, and �u`; v`� and the other
plane is the image plane of the second image. A symmetric
relation applies for �ur; vr�. This is known as the epipolar
constraint. The fundamental matrix F that relates any
matching pair �u`; v`� and �ur; vr� is given by u1

TFu2 � 0,
where u1 � �u`; v`; 1�T and u2 � �ur; vr; 1�T . Note that F is a
rank 2, 3� 3 homogeneous matrix.
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The epipolar constraint can be rewritten as a linear and
homogeneous equation in terms of the nine unknown
coefficients in F or uT f � F33 � 0, where

u � u`ur v`ur ur u`vr v`vr vr u` v`� �T �1�
f � F11 F12 F13 F21 F22 F23 F31 F32� �T �2�

which defines a hyperplane equation in the 8D space
parameterized by u`; ur; v`; vr. Note that u is our
measurement, which is an 8D point defined by a
match u1 $ u2. Although we have nine unknowns
F11; F12; F13; F21; F22; F23; F31; F32; F33 since F is homoge-
neous, the parameter space is still 8D.

The hyperplane normal (given by f ) and F33 are
unknowns and they are estimated using our 8D version of
tensor voting.

1.3 Overall Approach and Outline of this Paper

Using epipolar geometry estimation as an example, Fig. 2
shows our overall N-D approach, in which ªTensorizationº
and ªDensificationº are implemented as 8D voting pro-
cesses (the more general N-dimensional tensor voting is
described in Section 2).

The input set of point matches, obtained by automatic
means such as cross-correlation techniques, is first converted
into a sparse 8D point set as described in Section 1.2. This
point set is then ªtensorizedº into a discrete tensor field, which
encodes the most preferred normal direction at each point.

Then, this tensor field is locally ªdensified,º producing local
dense structures suitable for extrema detection, from which the
salient hyperplane containing all good matches can be
estimated. Eight-dimensional tensorization, densification,
and extrema detection are described in Section 3. Each input
match is then checked against the inferred hyperplane,
producing a set of filtered inliers. Other pertinent issues on
implementation are described in Section 4.

Finally, the normalized eight-point algorithm (least
mean square minimization followed by the enforcement
of singularity constraint) is applied to the verified matches

for fundamental matrix estimation. Complexity analysis
and results on a variety of image pairs are described in
Sections 5 and 6, respectively.

2 N-DIMENSIONAL TENSOR VOTING

In this section, we describe how to generalize the tensor
voting formalism to N-dimension for any N > 2, using the
2D case as the basis. The 2D tensor voting formalism, as
described in [12], can be generalized to N-D readily. For this
reason, we shall relate the 2D version to facilitate our
N-D discussion whenever appropriate. Table 1 summarizes
the key concepts in this section:

. N-D tensor representation and interpretation,

. N-D tensor communication,

. N-D tensor voting implementation, and

. N-D feature extraction.

Before describing the above elements in N-D tensor voting,
let us first motivate our study of N-dimensional voting.

2.1 Motivation

We first justify our approach in this section. While a more
rigorous analysis is a subject of further research, the
following should provide some insightful intuition to
explain the efficacy of our approach. Our formalism
consists of two important aspects: tensor for representation
and voting for communication. We shall describe, in
Section 2.3, the fundamental stick voting field (Fig. 5)
which is the most important element. Given a point P with
its finite neighborhood, what is the most likely direction at
this point? Consider an analogy in particle physics in which
two particles vibrate. Each emits a waveform to commu-
nicate with each other. If their frequencies agree, they will
reinforce each other, producing a maxima (or resonance). If
their frequencies do not agree, no maxima is produced. The
fundamental stick voting field (and its derivations) is used
to mimic this communication process, reporting a solution
that produces the highest agreement, or the maximal
response. Fig. 3 shows three scenarios:

1. A point atD receives vector votes fromA;B;C;E; and
F , Fig. 3a. Suppose that points A;B;C;E; and F are
associated with a direction consistent with an under-
lying smooth curve (the dotted curve), on which D is
lying. To propagate the continuity constraint (using
the 2D fundamental stick field), each point casts a
vector vote at D. Only one vector (20�) is consistent
with the given curve tangent directions at A;B;C;E;
and F simultaneously, which are depicted as ª�º in
Fig. 3a. If we plot the corresponding histogram, a
maxima (resonance) exists at 20�.

Note that the situation is simplified in this

illustration: in practice, other angles should receive

some response. The dotted curve in the histogram is

closer in appearance to the real situation.
2. A point at D receives votes from voters without any

direction information, Fig. 3b. Now, suppose all the
points are not associated with any direction informa-
tion. Given that they are still lying on a smooth curve,
when they ªcommunicateº with each other (using the
2D ball voting field, derived from the 2D fundamental
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stick field), only one direction at each site produces a
maximum response to satisfy the continuity con-
straint. In other words, a strong maxima (resonance) at
certain angle is detected at each location.

3. A point receives votes from many directions, Fig. 3c.
At a point junction where more than one curves
intersect, a set of votes with inconsistent directions is
obtained. All orientations are equally likely. No
maxima or resonance is produced.

2.2 Tensor Representation and Interpretation

In this section, we describe the components in N-D tensor

voting in detail, which are used to realize the communica-

tion process described in Section 2.1.

2.2.1 Second Order Symmetric Tensor in N-D

Suppose we perform curve detection in a 2D point cluster. A

point in this cluster either belongs to a curve, a point junction

where intersecting curves meet, or is an outlier. Consider the

two extremes in which a point on a curve is very certain about

its tangent direction, whereas a point junction at which many

curves intersect has absolute orientation uncertainty. Thus,

we use a ªstickº to indicate absolute orientation certainty and

a ªballº to indicate absolute orientation uncertainty. This

whole continuum can be abstracted as a second order

symmetric tensor in 2D, which can be visualized geometri-

cally as an ellipse (Fig. 4). This ellipse can be described by the
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TABLE 1
Generalization of 2D Tensor Voting to N-D

Fig. 3. (a) Vote for tangent at D, (b) each site returns the most probable tangent direction after communicating with each other using the fundamental

stick field, and (c) no maxima is detected when there is no direction preference.



equivalent 2 � 2 eigensystem, with its two unit eigenvectors

ê1 and ê2 and the two corresponding eigenvalues �1 � �2:

��1 ÿ �2�S� �2B; �3�
where S � ê1ê

T
1 defines a stick tensor, and B � ê1ê

T
1 � ê2ê

T
2

defines a ball tensor, in 2D. Note that these tensors define the

two basis tensors for any 2D ellipse.
Analogously in N-D, in hypersurface detection, a point in

the N-D space can either be: on hypersurface (smooth), at a

discontinuity of order between two and N , or is an outlier.

Consider the two extremes: an N-D point on a hypersurface

is very certain about its normal direction, whereas a point at

a junction has absolute orientation uncertainty. As in 2D,

this whole continuum can be abstracted as a second order

symmetric N-D tensor, or equivalently, a hyperellipsoid. This

hyperellipsoid can be equivalently described by the

corresponding eigensystem with its N eigenvectors

ê1; ê2; � � � ; êN and the N corresponding eigenvalues,

�1 � �2 � � � � � �N . Rearranging the N �N eigensystem,

the N-D ellipsoid is given by:

��1 ÿ �2�S�
XNÿ1

i�2

��i ÿ �i�1�
Xi
j�1

êjê
T
j � �NB: �4�

In particular, S � ê1ê
T
1 and B �PN

i�1 êiê
T
i defines an

N-D stick and ball, respectively, among all the N basis
tensors. We call the rest of N ÿ 2 basis tensors

Pi
j�1 êjê

T
j

plate tensors. Any hyperellipsoid in N-D can be represented
by a linear combination of these N basis tensors.

2.2.2 N-D Tensor Interpretation

We now explain the geometric meaning of the eigensystem

we derived in the previous section. Return to the 2D case.

The eigenvectors encode orientation (un)certainties: Tangent

direction is described by the stick tensor, indicating certainty

along a single direction. At point junctions, where more than

two intersecting lines converge, a ball tensor is used since

there is no preferred orientation. The eigenvalues encode the

magnitude of orientation (un)certainties since they indicate

the size of the ellipse. Hence, given a generic ellipse and its

equivalent eigensystem, we have the following geometric

interpretation:

. ��1 ÿ �2� corresponds to 2D curve saliency, with a
stick tensor ê1ê

T
1 indicating the curve tangent

direction,
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Fig. 4. A second order symmetric 2D tensor.

Fig. 5. The fundamental 2D stick voting field.



. �2 corresponds to 2D junction saliency, with total
uncertainty in orientation as indicated by the ball
tensor, or �ê1ê

T
1 � ê2ê

T
2 �.

In N-D, we have similar geometric interpretation: The

eigenvectors effectively encode orientation (un)certainties:

A normal to a hypersurface is described by the stick tensor,

which indicates certainty along a single, N-D direction.

Orientation uncertainty is indicated by the ball tensor, where

many intersecting hypersurfaces are present and, thus, no

single orientation is preferred. The eigenvalues encode the

magnitudes of orientation (un)certainties:

. ��1 ÿ �2� corresponds to N-D hypersurface saliency,
with ê1ê

T
1 indicating the normal direction,

. for 2 � i < N , ��i ÿ �i�1�, and
Pi

j�1 êjê
T
j correspond

to orientation uncertainty in i directions, which
actually defines a �N ÿ i�-D feature whose direc-
tion(s) are given by êi�1; � � � ; êN . For example, given
N � 3; i � 2, ��2 ÿ �3��ê1ê

T
1 � ê2ê

T
2 � defines a plate

tensor in 3D, which describes a 1D feature, a curve
element, with tangent direction given by ê3. Here,
the normal orientation uncertainty only spans a plane
perpendicular to ê3, indicated by a plate tensor
defined as

P2
j�1 êjê

T
j .

. �N
Pn

j�1 êjê
T
j corresponds to N-D hyperjunction sal-

iency, with the N-D ball tensor specifying total
orientation uncertainty.

2.2.3 Uniform Encoding

Therefore, given an N-D point, with or without orientation,

we can unify the input into a tensor field by the following: If

the input token is a point without any directional information,

it is encoded as a N-D ball tensor (�1 � �2 � � � � � �N � 1)

since initially there is no preferred orientation. �ê1 ê2 � � � êN �T
is an N �N identity matrix.

If the input token is a curve element in N-D, it is encoded

as a plate tensor (�1 � �2 � � � � � �Nÿ1 � 1; �N � 0), with êN
equal to the direction of the curve tangent. Other plates are

encoded accordingly.
If the input tokenis aN-Dhypersurface patch element, then

it is encoded as a stick tensor (�1 � 1; �2 � �3 � � � � � �N � 0),

with ê1 equal to the direction of the surface normal to the given

hypersurface patch.
In implementation, we first encode the input uniformly

into a tensor field. Each input tensor token then commu-

nicates, by a voting algorithm, in order to obtain a generic

tensor, which describes the orientation preference (or no

preference) at that site.

2.3 N-D Tensor Communication: N-D Tensor Voting

Each input token votes, or is made to align, with

precomputed, discrete versions of the basis tensors in a

convolution-like way, propagating preferred direction in a

neighborhood. We call these precomputed basis tensors

voting fields. As a result, preferred orientation information is

propagated and gathered at each input site. This voting

process consists of two phases:

. token refinement (ªtensorizationº): tensor votes are
collected at input sites only and

. dense extrapolation (ªdensificationº): tensor votes
fill the volume for feature extraction.

2.3.1 Token Refinement and Dense Extrapolation

Given a set of input tokens, they are first encoded as tensors as

described in Section 2.2.3. These initial tensors communicate

with each other by token refinement and dense extrapolation.
In essence, in token refinement, each token collects all the

tensor values cast at its location by all the other tokens in a

neighborhood. The resulting tensor value is the tensor sum

of all the tensor votes cast at the token location. In dense

extrapolation, each token is first decomposed into its

corresponding N elements. By using an appropriate voting

field, each token broadcasts the information in a neighbor-

hood. The size of the neighborhood is given by the size of

the voting field used. As a result, a tensor value is put at

every location in the neighborhood. The resulting dense

information can be used for feature extraction in which first

derivatives are computed.
In fact, these two tasks can be implemented by a voting

process, which in essence involves having each input token
aligned with precomputed, dense, N-D voting fields. The
alignment is simply a translation followed by rotation in the
N-D space.

Therefore, it remains to describe the N-D voting fields,
which can be derived from the most basic, fundamental
2D stick voting field.

2.3.2 Derivation of N-D Voting Fields

The fundamental 2D stick voting field. Voting fields of any
dimensions can be derived from the 2D stick tensor and,
therefore, it is called the fundamental 2D stick voting field.
Fig. 5 shows this fundamental 2D stick voting field.

In 2D, a direction can be defined by either the tangent
vector, or the normal vector, which are orthogonal to each
other. We can therefore define two equivalent fundamental
fields, depending on whether we assign a tangent or normal
vector at the receiving site.

Here, we describe the normal version of the 2D stick
kernel. The tangent version is similar. Given a point at the
origin with a known normal (N), we ask the following
question: For a given point P in space, what is the most likely
normal (at P ) to a curve passing through O and P and normal to
N? Fig. 6 illustrates this situation. We claim that the
osculating circle connecting O and P is the most likely one
since it keeps the curvature constant along the hypothesized
circular arc. For a detailed theoretical treatment, please refer
to [12]. The most likely normal is given by the normal to the
circular arc at P . The length of the normal vector at P , which
represents the saliency of the vote, is inversely proportional
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Fig. 6. The design of fundamental 2D stick voting field.



to the arc length OP and also to the curvature of the
underlying circular arc. In doing so, both the proximity and
the smoothness (or lower curvature) constraints are effec-
tively encoded as the corresponding saliency measure,
representing the likelihood of a smooth curve passing
through that point.

In spherical coordinates, the decay of the fundamental
2D stick field takes the following form:

DF �r; '; �� � eÿ r2�c'2

�2

ÿ �
; �5�

where r is the arc length OP , ' is the curvature, and � is the
scale of analysis, the only free parameter in our formalism.

Note that the connection as given by the osculating circle

becomes less likely if the angle subtended by N and OP is

less than 45�. Therefore, we only consider the set of

orientations for which the angle defined above is not less

than 45�. See Fig. 5.
Derivation of N-D stick kernel. Without loss of general-

ity, we derive the N-D stick kernel oriented at either

��1 0 0 � � � 0�T in world coordinate system (note we do not

distinguish the polarity of orientation which is unknown).

Other orientations can be achieved by a simple rotation in the

N-D space. We first rotate the normal version of the

2D stick kernel so that it describes the orientation ��1 0�T .

Denote the rotated, normal version of the fundamental

2D stick voting field V 0F . We adopt the parameterization

T��1; �2; � � � ; �N; �N; �Nÿ1; � � � ; �1�, where �i are angles of

rotation about the axis i. Therefore, this parameterization

characterizes the magnitude and orientation of the tensor T.

Using this parameterization, the N-D stick S��� is:

S�1; 0; � � � ; 0|����{z����}
Nÿ1

; �N; �Nÿ1; � � � ; �1� �
Z �

0

V 0Fd�1j�N��Nÿ1������2�0:

�6�
Derivation of N-D ball kernel. The N-D ball kernel can

be obtained by rotating the above N-D stick kernel S about
the remaining N ÿ 1 axes and integrating the contributions:

B�1; 1; � � � ; 1|������{z������}
n

; �N; �Nÿ1; � � � ; �1�

�
Z �

0

Z �

0

� � �
Z �

0

Sd�2d�3 � � � d�N j�1�0:

�7�

Derivation of other N-D kernels. For the other i kernels,
2 � i < N , we have

P�1; 1; � � � ; 1
z������}|������{i

; 0; 0; � � � ; 0
z������}|������{nÿi

; �N; �Nÿ1; � � � ; �1�
�
Z �

0

Z �

0

� � �
Z �

0

Sd�nÿi�2 � � � d�N j�1��2������nÿi�1�0;

�8�

which actually describes the rotation of the N-D stick field S

about the i axes and the integration of the contributions
from all possible angles of rotation.

2.4 Algorithms on N-Dimensional Tensor Voting

In Section 2.3.2, we give the continuous definitions for the

stick, plate, and ball voting fields. In this section, we

describe the discrete algorithms on tensor voting which use

discrete voting fields. C++ source codes are available at

http://www.cs.ust.hk/~cktang. The voter makes use of

GENTENSORVOTE (Algorithm 1) to cast a tensor vote to

vote receiver (votee), by integrating contribution using a

stick rotated about an eigenvector, Section 2.3.2. Stick votes

generated by GENSTICKVOTE (Algorithm 2) are accumu-

lated using COMBINE (Algorithm 3). An N �N outTensor

is the output. The votee thus receives a set of outTensor

from voters within its neighborhood. The resulting tensor

matrices can be summed up by ADDTENSOR (not shown

here), which performs ordinary N �N matrix addition.

These algorithms work for any dimension � 2. To increase

efficiency, a dense voting field is precomputed once, by

calling GENTENSORVOTE kN times, where k is the scale or

size of the neighborhood. In particular, it is sufficient to use

a 1D array of size k to store an N-D ball since an N-D ball is

isotropic in all directions.

Algorithm 1 GENTENSORVOTE (dimension,voter,votee)

First, the stick component of a tensor vote is computed (if
direction is given). Then, all other tensor components
(plates and balls) are computed, by integrating the resulting
stick votes cast by a rotating stick at the voter.

for all 0 � i; j < dimension, outTensor[i][j]  0
for all 0 � i < dimensionÿ 1,

voterSaliency[i]  voter[�i� ÿ voter[�i�1]
voterSaliency[dimension-1]  voter[�dimensionÿ1]
if (voterSaliency[0] > 0) then

vecVote  GENSTICKVOTE (dimension,voter,votee)
COMBINE (dimension,outTensor,vecVote)

end if

transformVoter  voter
for i � 1 to dimensionÿ 1 do

if (voterSaliency[i] > 0) then

// count[i] is a sufficient number of samples uniformly
distributed on a unit �i� 1�-D sphere.

while (count[i] 6� 0) do

transformVoter[direction]  random[direction]  
GENRANDOMUNIFORMPT()

if (i 6� dimensionÿ1) then

= � Compute the alignment matrix, except the
isotropic ball tensor �=

transformVoter[direction]  
voter[eigenvectorMatrix] � random[direction]

end if

vecVote  GENSTICKVOTE

(dimension,transformVoter,votee)
COMBINE (outTensor, vecVote, voterSaliency[i])
count[i]  count[i] ÿ 1

end while

end if

end for

return outTensor
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Algorithm 2 GENSTICKVOTE (dimension, voter, votee)

A stick vote (vector) is returned.

v votee[position] ÿ voter[position]

= � check if voter and votee are connected by high

curvature �=
if (angle(voter[direction],v) < �=4) then

return ZeroVector {smoothness constraint violated}

end if

= � voter and votee on a straight line, or voter and votee are

the same point �=
if (angle(voter[direction],v) � �=2) or (voter � votee) then

return voter[direction]

end if

Compute center and radius of the osculating N-dimensional

hemisphere

stickvote[direction]  center ÿ voter[position]

stickvote[length]  e
s2�c�2

�2 {equation (5)}

stickvote[position]  votee[position]

return stickvote

Algorithm 3 COMBINE (dimension, tensorvote,
stickvote, weight)

It performs tensor addition, given a stick vote.

for all i; j such that 0 < i; j < dimensionÿ 1 do

tensorvote[i][j] tensorvote[i][j] �weight � stickvote[i]
� stickvote[j]

end for

2.5 Implementation of N-D Tensor Voting

The N-D tensor voting process aggregates tensor contribu-

tion from a neighborhood of voters by using tensor

addition. Consider the case that we have only two input

tokens. Initially, before any voting occurs, each token

location encodes the local tensor information (i.e.,

Section 2.2.3). Denote these two tensors by T0;1 and T0;2.

The following describes the token refinement step. The

dense extrapolation step can easily be generalized from it.
Tensor Encoding. The input is encoded into a perfect

ball, a perfect stick, or a perfect plate (note that, in the case,

of N-D, we have a total of N ÿ 2 cases of plate tensors). One

example is a ªhypercurveº: a space curve occupying in the

N-D space.

. Stick. �1 � 1; �2 � �3 � � � � � �N � 0, with ê1 equals
to the given orientation, ê2; � � � ; êN are unit vectors
orthonormal to each other and also to the given ê1.
Therefore, a local, Cartesian coordinate system
aligned with ê1 can be used to determine ê2; � � � ; êN .

. P l a t e s . F o r 2 � i < N , �1 � �2 � � � � � �i � 1,
�i�1 � �i�2 � � � � � �N � 0. We set êi�1; êi�2; � � � ; êN
to be the given orientations, respectively. ê1; ê2; � � � ; êN
are unit vectors chosen such that they are orthonormal

to each other, and to êi�1; êi�2; � � � ; êN . Again, a
local, Cartesian coordinate system aligned with
êi�1; êi�2; � � � ; êN can be used to determine ê1; � � � ; êN .

(For example, for N � 3; i � 2, we use �1 � �2 � 1
and �3 � 0 to represent a curve element as a 3D plate
tensor, with ê3 being equal to the given curve tangent
direction. Having determined ê3, we can align ê3 with
a local 3D Cartesian coordinate system to determine
ê1 and ê2.)

. Ball. �1 � �2 � � � � � �N � 1, with ê1 � �1 0 � � � 0�T ,

and ê2 � 0 1 � � � 0� �T , � � � , and êN � 0 0 � � � 1� �T .

Therefore, the input is unified into a N-D second order
symmetric tensor T0;j; 1 � j � 2 by

T0;j � ê1 ê2 � � � êN� �

�1 0 � � � 0

0 �2 � � � 0

� � � � � � � � � � � �
0 0 � � � �N

26664
37775

êT1
êT2

..

.

êTN

266664
377775 �9�

� ��1 ÿ �2�S�
XNÿ1

k�2

��k ÿ �k�1�
Xk
l�1

êlê
T
l � �NB �10�

� TS
0;j �

XNÿ1

k�2

TPk
0;j �TB

0;j; �11�

where S � ê1ê
T
1 and B �PN

l�1 êlê
T
l defines an N-D stick and

ball, respectively. The N ÿ 2 plate tensors are defined
respectively by ��k ÿ �k�1�

Pk
l�1 êlê

T
l , 2 � k < N . These

N basis tensors define any hyperellipsoid in N-D, by a
linear combination of them.

Note that all the N �N matrices TS
0;j;T

Pk
0;j;T

B
0;j are

symmetric, semipositive definite and they describe a stick,
plate, and ball tensor, respectively.

Tensor Voting. An input site j collects the tensor vote
cast from the voter i. This vote consists of a stick
component, N ÿ 2 plate components, and a ball component.

. Stick vote. Let v1 v2 � � � vN� �T be the stick vote
collected at site j, which is cast by voter i after
aligning the ê1 component of the tensor T0;i at i
(obtained in the tensor encoding stage) with the
N-D stick voting field, by translation and rotation.
Then,

TS
1;j � TS

0;j � ��1 ÿ �2�

v2
1 v1v2 � � � v1vN

v2v1 v2
2 � � � v2vN

� � � � � � � � � � � �
vNv1 vNv2 � � � v2

N

26664
37775�12�

� TS
0;j � ��1 ÿ �2�T; �13�

where T is N �N a symmetric, semipositive definite
matrix, consisting of the second order moment
collection of the vote contribution. That is, by using
Algorithm 3: COMBINE.

. Plate votes. Let TPk be the plate vote, 2 � k < N ,
collected at site j, which is cast by voter i.
Then, TPk

1;j � TPk
0;j � ��k ÿ �k�1�TPk . That is, by using

ADDTENSOR.
. Ball vote. Let TB be the ball vote, collected at site j,

which is cast by voter i. Then, TB
1;j � TB

0;j � �NTB.
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Therefore, T1;j � TS
1;j �

PNÿ1
k�2 TPk

1;j �TB
1;j is obtained.

That is, by using ADDTENSOR. Note that this tensor

sum, T1;j, is still symmetric and semipositive definite

since TS
1;j,
PNÿ1

k�2 TPk
1;j, and TB

1;j are all symmetric and

semipositive definite. Hence, T1;j produced by the

above is also a second order symmetric tensor.

Tensor Decomposition. After T1;1, T1;2 have been
obtained by the above voting process implemented as
tensor addition, we decompose each of them into the
corresponding eigensystem.

Note that the same tensor sum applies to the tensor
voting process for extrapolating directional estimates, with
the following changes:

. First, site j may or may not hold an input token. For
noninput site j, T0;j is a zero matrix.

. Second, we do not propagate the ball component
from voting sites since the ball component corre-
sponds to junction information and thus should not
be propagated.

2.6 N-D Feature Extraction

Recall that we need dense extrapolation to produce a dense
structure for feature extraction. After the dense extrapola-
tion stage, N dense structures, which are dense scalar or
vector fields, are produced after the tensor decomposition
step into the corresponding eigensystem. Here, we only
consider the two extreme cases, the stick and the ball maps:

. hypersurface map: Each N-D voxel in this map
consists of 2-tuple �s; n̂�, where s � �1 ÿ �2 indicate
the hypersurface-ness, or hypersurface saliency, and
n̂ � ê1 denotes the hypersurface normal direction.

. hyperjunction map: It is a dense scalar map f�Ng
which denote, the hyperjunction-ness, or hyperjunc-
tion saliency.

Since the other N ÿ 2 vector maps are more complicated
and we have not applied them in applications, we shall not
study the feature extraction from these maps in this paper.

The extraction of maximal junction in the hyperjunction
map is very straightforward: It is a local maxima of the
scalar value �N .

2.6.1 N-D Hypersurface Extremality

Here, we generalize 3D extremal surface [18] to N-D extremal
hypersurface. Recall that the hypersurface map is a
dense vector field f�s; n̂�g which encodes hypersurface
normals n̂ � ê1 associated with saliency values s � �1 ÿ �2.

To illustrate, suppose the dense structure as obtained
after the dense extrapolation stage, or densification, is dense

and continuous, i.e., f�s; n̂�g is defined for every point P in
the N-D space.

Suppose that we could traverse and look at the s values
along the N-D vector n̂ (Fig. 7a). By the definition of the
N-D stick kernel, if a patch exists, after tensor voting, a
maxima in s (Fig. 7b) should be detected.

Therefore, we define an extremal hypersurface as the locus
of points for which the saliency s is locally extremal along
the direction of the N-D normal, i.e., ds

dn̂ � 0. This is only a
necessary condition for extrema detection. The sufficient
condition, which is used in the implementation, is defined
in terms of zero crossings along the line defined by n̂ (Fig. 7c).
We first compute the saliency gradient along theN principal
axes x1; x2; � � � ; xN :

g � 5s � @s
@x1

@s
@x2

� � � @s
@xN

h iT
:

Then, we project g onto n̂ by computing the inner product,
i.e., q � n̂ � g. Thus, an extremal hypersurface is the locus of
points with q � 0.

2.6.2 Discrete Version

In implementation, we have a discrete f�si1;i2;���;iN ; n̂i1;i2;���;iN �g
dense map. We can define the corresponding discrete
versions of g and q, i.e.,

gi1;i2;���;iN �
si1�1;i2;���;iN ÿ si1;i2;���;iN
si1;i2�1;���;iN ÿ si1;i2;���;iN

..

.

si1;i2;���;iN�1 ÿ si1;i2;���;iN

26664
37775 �14�

and qi1;i2;���;iN � n̂i1;i2;���;iN � gi1;i2;���;iN . Given an input point, we
compute qi1;i2;���;i8 at each vertex voxel (a total of 2N that
makes up the hypercube quantization unit, or hypercuboid,
that contains the input site). Thus, the set of all fqi1;i2;���;iN g
constitutes a scalar field. If the signs of the q's of two
adjacent vertex voxels are different, a zero crossing occurs on
the corresponding hypercuboid edge (there is a total of
N2Nÿ1 of them). Implementation issues on N-D feature
extractions which arose from the increase in N are
described in Section 3.

2.6.3 Extraction of �N ÿ 1�-D Entity

When the zero crossings have been detected, in our
N-D case, we need to group these zero crossings in order
to find an �N ÿ 1�-D entity, or a hypersurface patch, that
intersects with the N-D hypercuboid.

Weigle and Banks [20] describe a contour meshing
procedure which generalizes well toN dimensions. We only
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outline the procedure here. Details (and terms in italics
below) can be found in the paper and in a technical report [17].

. First, a splitting operation is performed, which
divides a hypercuboid, made up of 2N vertex voxels,
into a set of 2Nÿ1N! N-simplexes.

. Zero crossings are then detected on the edges of
these resulting simplexes.

. A contouring algorithm is applied recursively,
starting by contouring 1-simplexes (edge) and then
2-simplexes (triangle), so on.

Given a hypercuboid, which is made up of 2N vertices, a
contour, made up of �N ÿ 1�-simplexes, should be produced if
a hypersurface (an �N ÿ 1�-D entity) passes through that
hypercuboid. Therefore, the detection of hypersurface is
translated into the following verification: If the candidate
contour as produced by the above contour meshing proce-
dure can be triangulated into a set of �N ÿ 1�-simplexes and
nothing more, i.e., without any ªdanglingº simplex of lower
dimensions left behind, then, we can conclude that a
hypersurface is detected.

We have now explained the generalized N-D version of
tensor voting, and extraction of 0D entity (hyperjunction)
and �N ÿ 1�-D entity (hypersurface), and cited the relevant
reference on N-D feature extraction. In the following
section, we specialize the N-D tensor voting and feature
extraction into 8D and describe implementation details to
cope with the complexity issues which arose in feature
extraction, as a result of higher dimensionality.

3 EPIPOLAR GEOMETRY ESTIMATION

In this section, we specialize the N-D version and apply it to
the estimation of epipolar geometry. First, we transform
each match as described in Section 1.2 into a point in an
8D space parameterized by u`; ur; v`; vr. Then, we perform
the following steps, which are depicted as shaded processes
in the flowchart of Fig. 2.

3.1 Tensorization in 8D

Each 8D point, which corresponds to a potential match, is
first encoded as an 8D ball. Then, these input balls
communicate with each other, propagating ball votes in a
neighborhood. After each input site has collected all the
8D tensor votes in its neighborhood, the resulting tensor is
decomposed into the corresponding eight components.
Since we want to infer a hyperplane, the 8D ball component
is discarded as it corresponds to junction information,
which should not be propagated in the dense voting stage.

3.2 Local Densification in 8D

After the input has been tensorized, the stick component at
each input tensor is made to align with the 8D stick voting
field for obtaining a densified structure SMap f�s; n̂�g,
which indicates hypersurface-ness, as defined in Section 2.6.
This dense structure is used for extrema detection (Section
3.3), which discards outlier matches. This voting process is
exactly the same as tensorization, except that directed votes
are also collected at noninput sites in the volume.

We first give a 2D analogy to motivate the issue we need
to address due to higher dimensionality. In 2D line
extraction, we can afford to densify the whole 2D domain,
i.e., votes are cast everywhere, Fig. 8a. Or, more efficiently,
since we have obtained saliency information after tensor-
ization (in 2D), densification starts out from the most salient
site first. Votes are then propagated subject to connectivity
(since a connected line should be extracted). Hence, only a
slab of votes enveloping the line are computed during the
extraction process, Fig. 8b.

In our 8D version, two implementation differences are
made to avoid the drastic increase in time and space
complexities in feature extraction due to the higher
dimensionality.

For time efficiency, we do not even need to compute a
slab of votes, since all we need is outlier rejection, for which
an explicit hyperplane represented as connected hypersur-
face patches (analogous to connected line segments) is not
necessary. We pose this outlier rejection problem as one of
extrema detection in 8D (next section), which is performed at
each input site only. Therefore, it is sufficient to perform
local densification, Fig. 8c. Each input site gathers all the stick
votes cast within the neighborhood (defined by the size of
the voting field), performs smoothing, computes the
eigensystem, interprets the vote, and produces a hypersur-
face patch (if any) for that site only, all on-the-fly. The result
produced by vote gathering is the same as vote casting since
they are reciprocal to each other.

For space efficiency, both local densification and vote
gathering imply that it is unnecessary to keep the sparse
input in an explicit 8D voxel array, which would be very
expensive. Since we quantize the input, we use a ªlinear-
ized 8D red-black treeº to store each input site. This data
structure is an ordinary red-black tree, but we concatenate
the eight integer coordinates as the search key. Its size is
only O�m�, m is the input size. Hence, it is much less
expensive than a whole 8D array. Please refer to a standard
algorithm text (such as [4]) for details on red-black tree.
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3.3 Extrema Detection and Outlier Rejection

Now, for each input site, we have computed a dense and
local collection f�s; n̂�g of the SMap that encodes surface
normals n̂ associated with saliency values s. We want to
infer a salient hyperplane, with subvoxel accuracy, that
contains the set of inliers. It is done by extrema detection,
which indicates whether a salient hyperplane passes
through that site.

3.3.1 8D Extremality

We specialize the N-D extremality to 8D extremality in this
section. In the 8D implementation, we compute the saliency
gradient

g � 5s � @s

@x1

@s

@x2
� � � @s

@x8

� �T
;

and then project g onto n̂, i.e., q � n̂ � g. Thus, an extremal
hypersurface is the locus of points with q � 0.

We have discrete f�si1;i2;���;i8 ; n̂i1;i2;���;i8�g in implementa-
tion. We can define the corresponding discrete versions of g
and q, and qi1;i2;���;i8 � n̂i1;i2;���;i8 � gi1;i2;���;i8 . Given an input
point, we compute qi1;i2;���;i8 at each vertex voxel (a total of
28 � 256 voxels, making up a hypercuboid). Thus, the set of
all fqi1;i2;���;i8g constitutes a scalar field. If the signs of the qs
of two adjacent vertex voxels are different, a zero crossing
occurs on the corresponding hypercuboid edge (there is a
total of 1,024 of them).

3.3.2 Grouping of Detected Zero Crossings

The mere existence of zero crossings does not necessarily
imply the presence of a salient hyperplane because outlier
noise can produce local perturbations of the scalar field.
Therefore, we need to group the zero crossings detected at
each input site into meaningful entities.

In 2D, the Marching Squares algorithm can be used to
link or order all zero crossings detected on a grid edge in
order to produce a curve, which is a 1D entity.

In 3D, the classical Marching Cubes [11] algorithm orders
detected zero crossings on the 3D cuboid edges (a total of 12
of them) to form nontrivial cycles. One cycle corresponds to
a surface patch, which is a 2D entity. In practice, a surface
patch can be detected by checking a precomputed lookup
table of all feasible configurations: the set of all zero
crossings detected on cuboid edges should exactly form a set
of cycles without any zero crossing left.

The grouping of zero crossings detected on the hypercu-
boid edges in a discretized 8D space is analogous. We
precompute once all feasible configurations (rotationally
symmetric counterparts are counted as a single configura-
tion), and store each template configuration as an ordered
edge set in a lookup table. Then, the subset of hypercuboid
edges with zero crossings (detected as described in
Section 3.3.1) are matched against the stored templates.
This template matching is very efficient, since a configura-
tion can be quickly discarded by a simple check on the
number of edges in the template, followed by the ordering
of edges. If a match occurs, then we conclude that a salient
hyperplane passes through this 8D site, or equivalently, an
inlier is found.

Given the set of inliers found, we estimate the hyperplane
normal and F33 as follows: The hyperplane normal is the

saliency-weighted mean of the normals inferred at all
classified inliers. F33 is the saliency-weighted mean of the
F33's at all inliers, obtained using the estimated hyperplane
normal.

4 OTHER ISSUES

In this section, we describe other implementation details
which augment the 8D tensor voting system in order to be
applied to the estimation of epipolar geometry.

4.1 Data Normalization

A data normalization (translation and scaling) step as
described in Hartley [8] is performed. The normalization
step is performed independently for the two image pairs.
The set of image points on one image, obtained from all
potential point matches, is first translated so that their
centroid is at the origin. Then, the point coordinates are
scaled so that the mean distance from the origin is

���
2
p

. See
[8] for the underlying reason on data normalization.

4.2 Scaling

In the epipolar case, the eight dimensions are independent,
but not normalized or orthogonal. Since the fundamental
stick voting field assumes isotropic and orthogonal dimen-
sions, scaling of the dimensions of the 8D space is needed so
that the bounding box of the input is a hypercube
(normalized in all dimensions).

The smallest dimension of all the eight dimensions of the
bounding box is first computed. Then, a scale factor is
computed for the each of the remaining seven dimensions.
The resulting bounding box is scaled to a bounding cube
with its eight dimensions are equal to the smallest
dimension of the box. The scale factor for each dimension
can therefore be different.

Note that scaling does not make the spanning axes of the
epipolar space orthogonal. But, since the eight dimensions
are already independent, the voting kernels should still be
used over a wide applicable range of scale. Because of the
scaling, the normal inferred at each inlier needs to be
rescaled back to the original space before the estimated
hyperplane normal and F33 are computed.

4.3 Multipass Refinement

To improve accuracy, we need to run several passes to filter
the output from the previous pass. The set of classified
inliers is progressively refined as more outliers are rejected
in each pass. Typically, only four to five passes are needed
and the refinement stops when the output inlier set is the
same as the input. Since no multidimensional search is
involved, a single pass is not very time-consuming. The
flow of all the working pieces described in this paper is
summarized in Algorithm 4.

It is interesting to note that the multipass tensor voting
has some similarities with the Kalman filter, in the sense
that we also perform a prediction-correction process, using
the notion of covariance matrix. The Kalman filter estimates
the state vector of a discrete-time controlled process
governed by a linear stochastic difference equation [21].
This estimation process uses a feedback control, which can
be understood as a predictor-corrector algorithm, with a set
of predictor and corrector equations to implement the
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projection and update measurement. It is well-known that

the Extended Kalman Filter, needed in the nonlinear case, is

difficult to implement, and suffers from issues such as

convergence problems.
There are two important properties of our approach

compared with the Kalman filter. First, we optimize a
geometric measure, which is desirable since we are solving
for a hyperplane, a geometric problem. Second, a nonlinear
update is performed in the ªcorrectorº step, which allows
us to reject outliers very efficiently. These properties are
largely due to our voting fields: They encode geometric
constraints rather than propagating algebraic ones. The
geometric constraint we used is the continuity constraint,
which is propagated along preferred directions.

Algorithm 4 Epipolar Geometry Estimation

while ( inliers 6� outliers) do

Normalize data points
Convert each input pair into an 8D point (Section 1.2)
Scale and quantize the 8D input point set
Tensorize each input site (Section 3.1)
Locally densify each input site (Section 3.2)
Use 8D extremality for outlier rejection (Section 3.3)
Rescale the input
Estimate hyperplane from inliers
Classify inliers based on inferred hyperplane

end while

Apply the Normalized Eight-Point Algorithm [8]
Enforce the singularity constraint [8]
return fundamental matrix

5 SPACE AND TIME COMPLEXITY

Except for tensorization, local densification, and extrema

detection, other processes in Fig. 2 are clearly linear in time

and space. Since we use an efficient data structure to store

the input, and only local densification is performed, the

space complexity of these three processes is also linear, or

O�m�, where m is the input size.
The time complexity of local densification is only a

constant factor of tensorization. The voting field alignment
takes O�1� time since it is only a translation followed by a
rotation. Therefore, the total time complexity for tensoriza-
tion and local densification is O�mk�, where k is the size of
the voting field.

For extrema detection, since there is only a finite number
of detected zero crossings and configurations, the total time
is O�m�.

Therefore, unlike the Hough Transform, the time and
space complexities of the 8D voting are independent of the
dimensionality. The actual running time for an input of
100 matches is approximately one minute on a Pentium II
(450 MHz) processor.

6 RESULTS

We demonstrate the general usefulness of our method on a
variety of image pairs. In terms of the accuracy of the
estimated parameters, we note that all the methods reported
in [22] (M-estimators, LMedS) fail on all of our set of input
matches. This is the first quantitative evaluation. We provide
a second measure on parameter accuracy in the form of
ªdistanceº between the ªground truthº and our estimated
fundamental matrices (in pixels). This distance measure is
computed by randomly generating points in the images, and
computing the mean distance between points and epipolar
lines. We use the program Fdiff provided by Zhang [22]. The
ªground truthº is obtained by using either Zhang's imple-
mentation (in the case of aerial image pairs, we use the image
pairs, not our noisy matches, as input), or the linear method
by manually picked true correspondences. Table 2 sum-
marizes the results of our experiments.

6.1 Aerial Image Pairs

In Pentagon (Fig. 9) and Arena (Fig. 10) experiments, we add

a large number of wrong matches, by hypothesizing all

pairs within 50 pixels of the correct matches in the

corresponding images. We are still able to achieve a high

correct percentage despite the large number of wrong

matches. The resulting filtered matches are numbered in the

corresponding images and a few corresponding epipolar

lines are also drawn. In Gable (Fig. 11), we have inlier to

outlier ratio approximately equals to one, i.e., one match out

of two is incorrect. The lighter crosses in Fig. 11 denote

classified outliers. The darker crosses, alongside with

corresponding matching numbers, indicate the filtered set

of good matches. This resulting set of match is passed into

the normalized Eight-Point Algorithm. A few correspond-

ing epipolar lines are shown.
To understand the effect of outliers on the distribution of

points in 8D in the above examples, and also on the

robustness on our 8D hyperplane extraction, let us visualize
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TABLE 2
Summary of the Results on Epipolar Geometry Estimation
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Fig. 9. Pentagon.

Fig. 10. Arena.

Fig. 11. Gable.



the 2D and 3D counterparts, Fig. 12. In the 2D scenario, we

have a set of 130 points �xi; yi�T sampled on a straight line,

with 260 noises �xi; yj�T ; i 6� j, and j is randomly generated.

Thus, it simulates wrong matches we produced above for

Pentagon and Arena, and allows us to visualize the resulting

noisy point distribution in a lower-dimensional space. In

3D, we have 653 points �xi; yi; zi�T sampled on a plane

(4x� 3y� 5zÿ 2 � 0). A total of 1,306 incorrect data points

are added, with coordinates �xi; yi; zj�T , where i 6� j, and j is

also randomly generated. To make this 3D experiment more

challenging, we scale the z by a factor of two, making the

grid nonisotropic. Note the interesting observation: Given

the same inlier to outlier ratio, noise robustness increases

with dimensions. This is due to the nonlinearity in the

update step of the tensor voting process, in which the

continuity constraint has more dimensions to propagate in

the preferred directions.

6.2 Image Pair with Widely Different Views

In the House pair (courtesy of A. Zisserman), Fig. 13, two

very disparate views of the same static scene are taken. We

manually pick only 16 correct matches and then add

32 wrong matches randomly. Our method rejects all outliers

and produce the accurate epipolar geometry.
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Fig. 12. The effect of manually added outliers on the distribution of points, in 2D and 3D. (a) Original set of 2D points, (b) noisy point set, (c) noise is

attenuated after tensor voting, (d) the 2D curve saliency, (e) a noisy point cluster in 3D, (f) most noise is removed after tensor voting, and (g) the

extracted planar surface.

Fig. 13. House.



6.3 Image Pairs with Nonstatic Scenes

In the presence of moving objects, image registration becomes
a more challenging problem, as the matching and registration
phases become interdependent. Most researchers assume a
homographic model between images, and detect motion by
residual, or more than two frames are used. Torr and Murray
[18] use epipolar geometry to detect independent motion. We
propose to perform true epipolar geometry estimation for
nonstatic scenes by using tensor voting.

Two image pairs, Game-1 (Fig. 14) and Game-2 (Fig. 15), of a
nonstatic basketball game scene are taken. The background of
both image pairs is a 3D static indoor stadium. There is a lot of
independent motion due to moving players. This produces
many incorrect matches to the already noisy set of matches as
given by cross correlation technique. In Game-2, we have
some additional false matches on moving players. Since our
method is designed to detect a salient hyperplane (contrib-
uted by the 3D background) from a noisy 8D cluster, and, in
this case, the outliers are caused by nonstationary agents and
their shadows cast on the floor, we should be able to pull out
this hyperplane containing the inlier matches. The results of

our experiments show that we can indeed discard such
wrong matches, retain true matches coming from the static
background, stationary players, and the audience. Therefore,
we believe that our approach can extract multiple motions,
mainly egomotion or possibly motion of large scene objects
from an image pair, which is the subject of future research.

7 CONCLUSION AND FUTURE WORK

In this paper, we have generalized the tensor voting
formalism into any dimensions and described a novel
approach to address the problem of outlier detection and
removal, in the context of epipolar geometry estimation.
The epipolar geometry estimation problem is posed as an
8D hyperplane inference problem. Our method is more
efficient than the Hough Transform in high dimensions. The
computation and the subsequent use of hyperplane saliency
and extremal property in the spatial domain (versus
parameter domain for orientation) are novel and effective
and are completely different from the Hough Transform.
Since the methodology avoids searching in the parameter
space, it is free of the problems of local optima and poor
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Fig. 14. Game-1.

Fig. 15. Game-2.



iterative convergence. Our approach is initialization free
(i.e., no initial fundamental matrix guess is needed). The
pinhole camera model is the only assumption we make. No
other simplifying assumption is made about the scene being
analyzed. By using an adequate data structure, higher
dimensionality translates into a constant factor in proces-
sing time. The future work of this research will, in addition
to the application of multimotion analysis mentioned in
Section 6.3, focus on the investigation of quantization effect,
scale of analysis, and other problem domains.
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