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We first prove two new spectral properties for symmetric nonneg-

ative tensors. We prove a maximum property for the largest H-

eigenvalue of a symmetric nonnegative tensor, and establish some

bounds for this eigenvalue via row sums of that tensor. We show

that if an eigenvalue of a symmetric nonnegative tensor has a posi-

tive H-eigenvector, then this eigenvalue is the largest H-eigenvalue

of that tensor. We also give a necessary and sufficient condition for

this.We then introduce copositive tensors. This concept extends the

concept of copositive matrices. Symmetric nonnegative tensors and

positive semi-definite tensors are examples of copositive tensors.

The diagonal elements of a copositive tensor must be nonnegative.

We show that if each sum of a diagonal element and all the negative

off-diagonal elements in the same row of a real symmetric tensor

is nonnegative, then that tensor is a copositive tensor. Some further

properties of copositive tensors are discussed.
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1. Introduction

Eigenvalues of higher-order tensors were introduced in [14,10] in 2005. Since then, many research

works have been done in spectral theory of tensors. In particular, the theory and algorithms for eigen-

values of nonnegative tensors are well developed [2,3,5,9,11,13,18–20,22].

In this paper, we prove two new spectral properties for symmetric nonnegative tensors. Then we

introduce copositive tensors, establish some necessary conditions and some sufficient conditions for

a real symmetric tensor to be a copositive tensor, and discuss some further properties of copositive

tensors.
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Some preliminary concepts and results are given in the next section.

We prove a maximum property of the largest H-eigenvalue of a symmetric nonnegative tensor

in Section 3. Based upon this, we establish some bounds for the largest eigenvalue of a symmetric

nonnegative tensor via row sums of that tensor.

In Section 4, we show that a symmetric nonnegative tensor has at most one H++-eigenvalue, i.e.,

an H-eigenvaluewith a positive H-eigenvector, and if an eigenvalue of a symmetric nonnegative tensor

has a positive H-eigenvector, then that eigenvalue must equal to the largest eigenvalue of that tensor.

We also give a necessary and sufficient condition for the existence of such an H++-eigenvalue.

In Section 5, we introduce copositive tensors and strictly copositive tensors. These two concepts

extend the concepts of copositive matrices and strictly copositive matrices. Symmetric nonnegative

tensors and positive semi-definite tensors are examples of copositive tensors. The diagonal elements

of a copositive tensor must be nonnegative. We show that if each sum of a diagonal element and all

the negative off-diagonal elements in the same row of a real symmetric tensor is nonnegative, then

that tensor is a copositive tensor.

Some further properties of copositive tensors arediscussed in Section6.We showthat if a copositive

tensor has an H+-eigenvalue, i.e., an H-eigenvalue with a nonnegative H-eigenvector, then that H+-

eigenvaluemust be nonnegative. The sets of copositive tensors and strictly copositive tensors form two

convexcones: the copositive tensor coneand the strictly copositive tensor cone.Weshowthat the latter

is exactly the interior of the former. We also introduced completely positive tensors. The copositive

tensor cone is the dual cone of the completely positive tensor cone. If the completely positive tensor

cone is closed, then these two cones are dual to each other.

Some final remarks are made in Section 7.

Denote by e the all 1 n-dimensional vector, ej = 1 for j = 1, · · · , n. Denote by e(i) the ith unit vector

in �n, i.e., e
(i)
j = 1 if i = j and e

(i)
j = 0 if i �= j, for i, j = 1, · · · , n. Denote the set of all nonnegative

vectors in �n by �n+ and the set of all positive vectors in �n by �n++. If both A = (
ai1···ik

)
and

B = (
bi1···ik

)
are real kth order n-dimensional tensors, and bi1···ik ≤ ai1···ik for i1, · · · , jk = 1, · · · , n,

thenwe denote B ≤ A. We useJ to denote the kth order n-dimensional tensorwith all of its elements

being 1. We use I to denote the kth order n-dimensional diagonal tensor with all of its diagonal

elements being 1.

2. Preliminaries

Let A = (
ai1···ik

)
be a real kth order n-dimensional tensor, and x ∈ Cn. Then

Axk =
n∑

i1,··· ,ik=1

ai1···ik xi1 · · · xik ,

and Axk−1 is a vector in Cn, with its ith component defined by

(
Axk−1

)
i
=

n∑

i2,··· ,ik=1

aii1···ik xi2 · · · xik .

Let r be a positive integer. Then x[r] is a vector in Cn, with its ith component defined by xri . We say that

A is symmetric if its entries ai1,··· ,ik are invariant for any permutation of the indices.

If x ∈ Cn, x �= 0, λ ∈ C, x and λ satisfy

Axk−1 = λx[k−1], (1)

then we call λ an eigenvalue ofA, and x its corresponding eigenvector. By (1), if λ is an eigenvalue of

A and x is its corresponding eigenvector, then
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λ = (Axk−1)j

x
k−1
j

,

for some j with xj �= 0. In particular, if x is real, then λ is also real. In this case, we say that λ is an

H-eigenvalue of A and x is its corresponding H-eigenvector. If x ∈ �n+, then we say that λ is an

H+-eigenvalue ofA. If x ∈ �n++, then we say that λ is an H++-eigenvalue ofA. The largest modulus

of the eigenvalues of A is called the spectral radius of A, denoted by ρ(A).
By [2], A is called reducible if there exists a proper nonempty subset I of {1, · · · , n} such that

ai1···ik = 0, ∀i1 ∈ I, ∀i2, · · · , ik �∈ I.

If A is not reducible, then we say that A is irreducible.

Let A = (ai1,··· ,ik) be a kth order n-dimensional symmetric nonnegative tensor. Construct a graph

Ĝ(A) = (V̂, Ê), where V̂ = ∪n
j=1Vj, Vj is a copy of {1, · · · , n}, for j = 1, · · · , n. Assume that ij ∈

Vj, il ∈ Vl, j �= l. The edge (ij, il) ∈ Ê if and only if ai1,··· ,ik �= 0 for some k − 2 indices {i1, · · · , ik} \
{ij, il}. The tensorA is calledweakly irreducible if Ĝ(A) is connected. As observed in [5], an irreducible

symmetric nonnegative tensor is always weakly irreducible.

Suppose that A = (ai1,··· ,ik) is a kth order n-dimensional real tensor. If all the off-diagonal en-

tries ai1···ik , (i1, · · · , ik) �= (i1, · · · , i1) are nonnegative, then A is called an essentially nonnegative

tensor [21]. If all the entries ai1···ik are nonnegative, A is called a nonnegative tensor. We now sum-

marize the Perron–Frobenius theorem for nonnegative tensors, established in [2,5,18]. With the new

definitions of H+-eigenvalues and H++-eigenvalues, this theorem can be stated concisely.

Theorem 1. (The Perron–Frobenius theorem for nonnegative tensors)

(a). [19] If A is a nonnegative tensor of order k and dimension n, then ρ(A) is an H+-eigenvalue of A.

(b). [5] If furthermore A is symmetric and weakly irreducible, then ρ(A) is the unique H++-eigenvalue

of A, with the unique eigenvector x ∈ �n++, up to a positive scaling constant.

(c). [2] If moreover A is irreducible, then ρ(A) is the unique H+-eigenvalue of A.

(d). [19] If A and B are two nonnegative tensor of order k and dimension n, and B ≤ A, then ρ(B) ≤
ρ(A).

Thus, for a nonnegative tensor A, its spectral radius is its largest H-eigenvalue.

As observed in [21], a tensor A is an essentially nonnegative tensor, if and only if there are a

nonnegative tensor B and a real number c, such that A = B + cI .

3. A maximum property of the largest H-eigenvalue of a symmetric nonnegative tensor

Suppose thatA = (ai1···ik) is a kth order n-dimensional real symmetric tensor, with k ≥ 2. Denote

its largest H-eigenvalue by λmax(A). When k is even, by [14], we know that

λmax(A) = max{Axk : x ∈ �n,
n∑

i=1

xki = 1}.

In this section, we first prove the following theorem, which holds whenever k is even or odd.

Theorem2. (Amaximumpropertyof the largestH-eigenvalueof a symmetricnonnegative tensor)

Suppose that A = (ai1···ik) is a kth order n-dimensional symmetric nonnegative tensor, with k ≥ 2. Then

we have
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λmax(A) = max{Axk : x ∈ �n+,
n∑

i=1

xki = 1}. (2)

Proof. We now prove (2). Assume that A is a symmetric nonnegative tensor. By Theorem 1, we have

λmax(A) = max{λ : Axk−1 = λx[k−1], x ∈ �n+} = max{λ : Axk−1

= λx[k−1], x ∈ �n+,
n∑

i=1

xki = 1}

= max{Axk : Axk−1 = λx[k−1], x ∈ �n+,
n∑

i=1

xki = 1} ≤ max{Axk : x ∈ �n+,
n∑

i=1

xki = 1}.

On the other hand, assume that x∗ is an optimal solution of max{Axk : x ∈ �n+,
∑n

i=1 x
k
i = 1}. By

optimization theory, there is a Lagrangian multiplier λ and a nonempty subset I of {1, · · · , n} such

that for i ∈ {1, · · · , n} \ I, x∗
i = 0, and for i ∈ I,

(
A(x∗

i )
k−1

)
i
= λ(x∗

i )
k−1.

Multiplying the above equalities by x∗
i and summing up them, we have

λ = A(x∗)k = max{Axk : x ∈ �n+,
n∑

i=1

xki = 1}.

Construct a kth order n-dimensional symmetric nonnegative tensor B = (bi1···ik) such that bi1···ik =
ai1···ik if i1, · · · , ik ∈ I, and bi1···ik = 0 otherwise. Then we see that λ is an H-eigenvalue of B with an

H-eigenvector x∗. Then we see that B ≤ A. By Theorem 1 (d), we have

λ ≤ ρ(B) ≤ ρ(A) = λmax(A).

Combining these together, we have (2). �

The adjacency tensor of a uniform hypergraph is a nonnegative tensor [4]. The signless Laplacian

tensor of a uniform hypergraph, introduced in [15], is also a nonnegative tensor. Cooper and Dutle [4]

established (2) for the adjacency tensor of a connected uniform hypergraph. Qi [15] established (2) for

the adjacency tensor and the signless Laplacian tensor of a general uniform hypergraph. Zhang [23]

pointed out that (2) holds for aweakly irreducible symmetric nonnegative tensor. Here,we established

(2) for a general symmetric nonnegative tensor.

With Theorem 2, we may establish some lower bounds for ρ(A). We define the ith row sum of a

kth order n-dimensional tensor A = (ai1,··· ,ik) as

Ri(A) =
n∑

i2,··· ,ik=1

aii2···ik ,

and denote the largest, the smallest and the average row sums of A by

Rmax(A) = max
i=1,··· ,n Ri(A), Rmin(A) = min

i=1,··· ,n Ri(A), and R̄(A) = 1

n

n∑

i=1

Ri(A),

respectively. We also denote the largest, the smallest and the average diagonal element of A by
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dmax(A) = max
i=1,··· ,n ai···i, dmin(A) = min

i=1,··· ,n ai···i, d̄(A) = 1

n

n∑

i=1

ai···i,

respectively.

Theorem3. (Boundsof the largestH-eigenvalueof anonnegative tensor) Suppose thatA = (ai1···ik)
is a kth order n-dimensional nonnegative tensor, with k ≥ 2. Then we have

λmax(A) ≤ Rmax(A). (3)

If furthermore A is symmetric, then we have

λmax(A) ≥ max{R̄(A), dmax(A)}. (4)

Proof. By Theorem 1, A has a nonnegative H-eigenvector x. Let xj = maxi=1,··· ,n xi. Then xj > 0. We

have

n∑

i2,··· ,ik=1

aji2···ik xi2 · · · xik = λmax(A)xk−1
j ,

i.e.,

λmax(A) =
n∑

i2,··· ,ik=1

aji2···ik
xi2

xj
· · · xik

xj
≤ Rj(A) ≤ Rmax(A).

This proves (3).

Now assume that A is symmetric. Let y = e

(n)
1
k

. By Theorem 2, we have

λmax(A) ≥ Ayk = 1

n

n∑

i1,··· ,ik=1

ai1···ik = R̄(A).

Assume that aj···j = dmax(A). Let y = e(j). By Theorem 2, we have

λmax(A) ≥ Ayk = aj···j = dmax(A).

Combining these two inequalities, we have (4). �

If we apply Theorem 3 to the adjacency tensor of a uniform hypergraph, we may get the bounds

for the largest H-eigenvalue of that tensor, obtained by Cooper and Dutle in [4]. If we apply Theorem

3 to the signless Laplacian tensor of a uniform hypergraph, we may get the bounds for the largest

H-eigenvalue of that tensor, obtained by Qi in [15].

For a kth order n-dimensional symmetric nonnegative tensorA, if all of its row sums are the same,

then we have λmax(A) = R̄(A). The adjacency tensor and the signless Laplacian tensor of a regular

k-graph are such examples [4,15].

4. The H++-eigenvalue of a symmetric nonnegative tensor

In this section, we show that a symmetric nonnegative tensor has at most one H++-eigenvalue.

Suppose that I ⊂ {1, · · · , n}. Let x be an n-dimensional vector. Then x(I) is an |I|-dimensional

vector with its components indexed for i ∈ I, and x(I)i ≡ xi for i ∈ I. For a kth order n-dimensional

tensor A = (ai1···ik), A(I) is a kth order |I|-dimensional tensor with elements ai1···ik , i1, · · · , ik ∈ I.
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Suppose thatA = (ai1···ik) is a symmetric nonnegative tensor of order k and dimension n. By [5,9],

there is a partition (I1, · · · , Is) of {1, · · · , n}, such that A(Ir) is weakly irreducible for r = 1, · · · , s,
and ai1···ik = 0 for all i1 ∈ Ir, i2, · · · , ik �∈ Ir, r = 1, · · · , s. Furthermore, we have

λmax(A) = max{λmax(A(Ir)) : r = 1, · · · , s}.

Theorem 4. (The H++-eigenvalue of a symmetric nonnegative tensor) Let A = (ai1···ik) be a sym-

metric nonnegative tensor of order k and dimension n. Then A has at most one H++-eigenvalue. A real

number λ is an H++-eigenvalue of A if and only if for the above partition (I1, · · · , Is), we have

λ = λmax(A) = λmax(A(Ir)), for r = 1, · · · , s. (5)

Proof. Suppose that (5) holds. Then by Theorem 1 (a), we have x ∈ �n+ such that
∑

i2,··· ,ik∈Ir

aii2···ik xi2 · · · xik = λxk−1
i , (6)

for i ∈ Ir, r = 1, · · · , s. By Theorem 1 (b), x(Ir) > 0 for r = 1, · · · , s. Thus, x ∈ �n+. (6) further

implies that
n∑

i2,··· ,ik=1

aii2···ik xi2 · · · xik = λxk−1
i , (7)

for i = 1, · · · , n, i.e., λ is an H++-eigenvalue of A.

On the other hand, assume that λ is an H++-eigenvalue of A, with an H-eigenvector x ∈ �n++.

Then we have (7), which implies (6). By Theorem 1 (b), we have λ = λmax(A(Ir)) for r = 1, · · · , s.
Since λmax(A) = max{λmax(A(Ir)) : r = 1, · · · , s}, we have (5). �

5. Copositive tensors

The concept of copositive matrices was introduced by Motzkin [12] in 1952. It is an important

concept in applied mathematics, with applications in control theory, optimization modeling, linear

complementarity problems, graph theory and linear evolution variational inequalities [8]. We now

extend this concept to tensors.

Suppose that A = (ai1···ik) is a real symmetric tensor of order k and dimension n. We say that A
is a copositive tensor if for any x ∈ �n+, we have Axk ≥ 0. We say that A is a strictly copositive

tensor if for any x ∈ �n+, x �= 0, we have Axk > 0. Clearly, a symmetric nonnegative tensor is a

copositive tensor. Recall [14] that a real symmetric tensor A of order k and dimension n, is called a

positive semi-definite tensor, if for any x ∈ �n, Axk ≥ 0, A is called a positive definite tensor, if for

any x ∈ �n, x �= 0, Axk > 0. Except the zero tensor, positive semi-definite tensors are of even order.

Clearly, a positive semi-definite tensor is a copositive tensor, a positive definite tensor is a strictly

copositive tensor.

Theorem 5. (Copositive tensors) Suppose that A = (ai1···ik) and B = (bi1···ik) are two real symmetric

tensors of order k and dimension n. Then we have the following conclusions.

(a). A is copositive if and only if

Nmin(A) ≡ min{Axk : x ∈ �n+,
n∑

i=1

xki = 1} ≥ 0. (8)

A is strictly copositive if and only if

Nmin(A) ≡ min{Axk : x ∈ �n+,
n∑

i=1

xki = 1} > 0. (9)
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(b). If A is copositive, then dmin(A) ≥ 0. If A is strictly copositive, then dmin(A) > 0.

(c). Suppose thatA ≤ B. IfA is copositive, then B is copositive. IfA is strictly copositive, then B is strictly

copositive.

Proof. (a). If A is copositive, then clearly (8) holds. Suppose (8) holds. For any y ∈ �n+, y �= 0, let

x = y
(∑n

i=1 y
k
i

) 1
k

.

Then x ∈ �+,
∑n

i=1 x
k
i = 1, and

Axk = Ayk

∑n
i=1 y

k
i

≥ Nmin(A)
∑n

i=1 y
k
i

≥ 0.

Thus, A is copositive.

Similarly, if (9) holds, we may show that A is strictly copositive. Suppose that (9) does not hold.

As the feasible set of the minimization problem in (9) is compact, the minimization problem has an

optimizer x∗. Then x∗ ∈ �n+, x∗ �= 0 andA(x∗)k = Nmin(A) ≤ 0. ThusA cannot be strictly copositive.

This completes the proof of (a).

(b). Assume that dj(A) = dmin(A). Let y = e(j). Then y ∈ �n+,
∑n

i=1 y
k
i = 1, and dmin(A) = Ayk .

If A is copositive, then by (a),

dmin(A) = Ayk ≥ Nmin(A) ≥ 0.

If A is strictly copositive, then by (a),

dmin(A) = Ayk ≥ Nmin(A) > 0.

These prove (b).

(c). Suppose that A ≤ B. If A is copositive, then for any x ∈ �n+, Bxk ≥ Axk ≥ 0. This implies that

B is copositive. If A is strictly copositive, then for any x ∈ �n+, x �= 0, Bxk ≥ Axk > 0. This implies

that B is strictly copositive. �

We now prove further a nontrivial sufficient condition for a real symmetric tensor to be copositive.

We need to prove some lemmas first.

Lemma 6. Suppose that A = (ai1···ik) is a kth order n-dimensional symmetric, essentially nonnegative

tensor, with k ≥ 2. Then we still have (2).

Proof. Assume that A is a symmetric, essentially nonnegative tensor. Then there are a symmetric

nonnegative tensor B and a real number c, such that A = B + cI . Then,

λmax(A) = λmax(B) + c = max{Bxk : x ∈ �n+,
n∑

i=1

xki = 1} + c

= max{Bxk + c : x ∈ �n+,
n∑

i=1

xki = 1} = max{Axk : x ∈ �n+,
n∑

i=1

xki = 1}.

This completes the proof. �
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We may also show that Theorem 3 also holds for symmetric, essentially nonnegative tensors, and

Theorem 4 also holds for essentially nonnegative tensors. We do not go to the details.

Suppose that A = (ai1,··· ,ik) is a kth order n-dimensional real tensor. If all the off-diagonal entries

ai1···ik , (i1, · · · , ik) �= (i1, · · · , i1) are nonpositive, thenA is called an essentially nonpositive tensor.

For a kth order n-dimensional real tensor A, denote its smallest H-eigenvalues by λmin(A).

Lemma 7. Suppose that A = (ai1···ik) is a kth order n-dimensional symmetric, essentially nonpositive

tensor, with k ≥ 2. Then we have

λmin(A) = min{Axk : x ∈ �n+,
n∑

i=1

xki = 1}. (10)

Proof. Assume that A is a symmetric, essentially nonpositive tensor. Let B = −A. Then B is a sym-

metric, essentially nonnegative tensor. Then,

λmin(A) = −λmax(B) = −max{Bxk : x ∈ �n+,
n∑

i=1

xki = 1} = min{Axk : x ∈ �n+,
n∑

i=1

xki = 1}.

This completes the proof. �

Lemma 8. Suppose that A = (ai1···ik) is a kth order n-dimensional essentially nonpositive tensor, with

k ≥ 2. Then we have

λmin(A) ≥ Rmin(A).

If furthermore A is symmetric, then we have

λmin(A) ≤ min{R̄(A), dmin(A)}.

The proof of this lemma is similar to the proof of Theorem 3. By Lemma 8 and Theorem 5 (a), we

have the following lemma.

Lemma 9. Suppose that A = (ai1···ik) is a kth order n-dimensional symmetric, essentially nonpositive

tensor, with k ≥ 2. If Rmin(A) ≥ 0, for i = 1, · · · , n, then A is copositive. If Rmin(A) > 0, for i =
1, · · · , n, then A is strictly copositive.

Finally, we may prove the following theorem.

Theorem 10. Suppose that B = (bi1···ik) is a kth order n-dimensional real symmetric tensor, with k ≥ 2.

If

bi···i +
∑{bii2···ik : bii2···ik < 0, (i, i2, · · · , ik) �= (i, · · · , i)} ≥ 0, (11)

for i = 1, · · · , n, then B is copositive. If

bi···i +
∑{bii2···ik : bii2···ik < 0, (i, i2, · · · , ik) �= (i, · · · , i)} > 0, (12)

for i = 1, · · · , n, then B is strictly copositive.

Proof. Construct a kth order n-dimensional real symmetric tensor A = (ai1···ik) by ai1···ik = 0 if

bi1···ik > 0 and (i1, · · · , ik) �= (i1, · · · , i1), and ai1···ik = bi1···ik otherwise. Then A is symmetric and

essentially nonpositive, andA ≤ B. Now the conclusions follow from Theorem 5 (c) and Lemma 9. �
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We may call a real symmetric tensor satisfying (11) a nonnegative diagonal dominated tensor,

and a real symmetric tensor satisfying (12) a positive diagonal dominated tensor. We see that a

symmetric nonnegative tensor is a nonnegative diagonal dominated tensor. The Laplacian tensor of

a uniform hypergraph, introduced in [15], is a nonnegative diagonal dominated tensor. Thus, the ad-

jacency tensor, the Laplacian tensor and the signless Laplacian tensor of a uniform hypergraph are

examples of copositive tensors.

6. Further properties of copositive tensors

The proofs of many properties of copositive matrices may not be extended to copositive tensors

directly. This leaves some puzzles: do such properties of copositive matrices still hold for copositive

tensors? The situation is in particular odd when the order k is odd.

The first question is: Does a copositive tensor have an H-eigenvalue? When the order k is even, by

[14], a real symmetric kth order n-dimensional tensor A always has an H-eigenvalue. Thus, we may

ask

Question 1. When the order k is odd, does a copositive tensor A always have an H-eigenvalue?

Question 2. When the order k ≥ 3, if a copositive tensor A has at least one H-eigenvalue, does it

always have a nonnegative H-eigenvalue?

For a copositivematrixA, Haynsworth andHoffman [7] showed that its largest eigenvalueλ satisfies

thatλ ≥ |μ|, whereμ is any other eigenvalue ofA. It is not clear if this is still true for copositive tensors.

Question 3. When the order k ≥ 3, if a copositive tensorA has a nonnegative H-eigenvalue λ, does
it satisfy λ ≥ |μ|, where μ is any other H-eigenvalue of A?

IfA is a symmetric nonnegative tensor, then the answers to the above three questions are all “yes”.

If A is a symmetric, essentially nonpositive tensor, and Rmin(A) ≥ 0, then the answers to the above

three questions are also all “yes”.

When k is even, if all the H-eigenvalues of a real symmetric tensor are nonnegative, then that tensor

is positive semi-definite, thus copositive. The situation becomes again puzzled when k is odd.

Question 4. Suppose that the order k is odd and all the H-eigenvalues of a real symmetric tensor

are nonnegative. Is that tensor copositive?

Nomatter such basic questions remain open, wemay derive some further properties of a copositive

tensor.

Proposition 11. If a copositive tensor A has an H+-eigenvalue λ, then λ ≥ 0.

Proof. Then we have Axk−1 = λx[k−1] with x ∈ �n+, x �= 0. We have λ = Axk∑n
i=1 xki

≥ 0. �

We now extend one theorem of Väliaho, Theorem 3.2 of [16], to copositive tensors.

Proposition 12. Suppose thatA is a kth order n-dimensional copositive tensor. Then x ∈ �n+ andAxk = 0

imply that Axk−1 ≥ 0.

Proof. Consider f (x) = Axk . If Axk = 0 for some x ∈ �n+, then for t > 0 and i = 1, · · · , n,

A(x + te(i))k ≥ 0 as A is copositive and x + te(i) ∈ �n+. This implies that f ′(x) = kAxk−1 ≥ 0. �

However, it is not clear if the next theorem of Väliaho, Theorem 3.3 of [16], can be extended to

copositive tensors or not. This leaves another puzzle.

It is easy to see that ifA andB are two (strictly) copositive tensors of the same order and dimension,

then A + B is also a (strictly) copositive tensor, and if A is a (strictly) copositive tensor and α is a

positive number, then αA is also a (strictly) copositive tensor. Then all copositive tensors of order k

and dimension n form a convex cone. We denote it by Ck,n. Similarly, all strictly copositive tensors of

order k and dimension n form a convex cone. We denote it by SCk,n. Similarly, we have the positive

semi-definite tensor cone of order k and dimension n, denoted by PSDk,n, and the nonnegative diagonal
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dominated tensor cone of order k and dimension n, denoted by NDDk,n, etc. When k is odd, NDDk,n is

a subcone of Ck,n. When k is even, NDDk,n and PSDk,n are two subcones of Ck,n.

Even when k is odd, a copositive tensor may not be a nonnegative diagonal dominated tensor. For

example, let k = n = 3, a113 = a131 = a311 = a223 = a232 = a322 = 2, a123 = a132 = a213 =
a231 = a312 = a321 = −1, and the other elements ofA be zero. ThenAx3 = 6(x21 + x22 − x1x2)x3 ≥ 0

for any x ∈ �3+, i.e.,A is a copositive tensor. ButA is not a nonnegative diagonal dominated tensor, as

all diagonal elements of A are zero, but there are negative off-diagonal elements.

Proposition 13. SCk,n is exactly the interior cone of Ck,n.

Proof. Denote Bk,n as the set of all kth order n-dimensional real symmetric tensors whose Frobenius

norms are 1. Suppose thatA ∈ SCk,n. LetA(t, B) = A+tB, whereB ∈ Bk,n. Let δ be a positive number,

0 ≤ t ≤ δ. Then by (9),

|Nmin(A(t, B)) − Nmin(A)| ≤ cδ,

where c is a certain norm ratio constant. Thus, we have some δ > 0, such that for all B ∈ Bk,n and

0 ≤ t ≤ δ, A(t, B) ∈ SCk,n. This shows that SCk,n is in the interior of Ck,n.

On the other hand, suppose that A ∈ Ck,n \ SCk,n. By Theorem 5, Nmin(A) = 0. Then there is a

y ∈ �n+, such that
∑n

i=1 y
k
i = 1 and Ayk = 0. Let A(t) = A − tyk . Then we see that Nmin(A(t)) < 0

for all t > 0. Thus, A is not in the interior of Ck,n. This completes our proof. �

It is well-known that the copositive matrix cone and the completely positive matrix cone are dual

to each other [1,8,17]. This was established by Hall and Newman [6]. We may consider this issue in

the tensor case. Let y ∈ �n+. Thenwemay regard yk as a rank-one kth order n-dimensional completely

positive tensor yk = (yi1 · · · yik). We call a kth order n-dimensional tensor A a completely positive

tensor if there are y(1), · · · , y(r) ∈ �n+ such that

A =
r∑

i=1

(
y(i)

)k
.

The smallest value of r to make the above expression hold is called the CP-rank of A. Clearly, a com-

pletely positive tensor is a symmetric nonnegative tensor, and all the kth order n-dimensional com-

pletely positive tensors form a convex cone, the completely positive tensor cone, denoted as CPk,n. For

two kth order n-dimensional real symmetric tensors A = (ai1···ik) and B = (bi1···ik), denote its inner

product as

〈A, B〉 =
n∑

i1,··· ,ik=1

ai1···ik bi1···ik .

Denote the space of all kth order n-dimensional real symmetric tensors as Sk,n. For a convex cone K

in Sk,n, its dual cone is defined as

K∗ = {B ∈ Sk,n : 〈A, B〉 ≥ 0
}
.

We have K∗∗ = clK . If K is closed, then we have K∗∗ = K . By the definition of copositive tensors, we

have Ck,n = CP∗
k,n. Thenwe have C∗

k,n = clCPk,n. If CPk,n is closed, thenwe have C∗
k,n = CPk,n. We leave

this as a future research topic.

7. Final remarks

In Sections 3 and 4, we established two new spectral properties of symmetric nonnegative

tensors. This shows that there are still unexplored topics of the spectral theory of symmetric nonnega-
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tive tensors. In Section 5, we introduced copositive tensors and strictly copositive tensors. Symmetric

nonnegative tensors and positive semi-definite tensors are copositive tensors. Beside some simple

properties of copositive tensors and strictly copositive tensors, we show that nonnegative diagonal

dominated tensors are copositive tensors, and positive diagonal dominated tensors are strictly copos-

itive tensors. Section 6 shows that there are many puzzles unsolved for copositive tensors and strictly

copositive tensors. Hence, this paper is only a starting point for studying copositive tensors and strictly

copositive tensors.
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