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Abstract

Diffusion MR imaging provides a unique insight into tissue architecture at the micro-
scopic level. Specifically, it enables scientists to probe the orientational structure of
brain white matter and, from this, to recover fibre trajectories in the living human
brain. However, in general, “Diffusion Tractography” algorithms have been limited
to the reconstruction of pathways in deep white matter regions and have provided
only a qualitative description, or visualisation, of the resulting fibre tracts. This the-
sis addresses the problem of inferring on white matter connectivity in the presence of
imperfect diffusion data, providing a generalisation of the commonly used “streamlin-
ing tractography” algorithm to the case when there is uncertainty in the local fibre
architecture. In doing so, it recovers connectivity distributions providing a quantita-
tive description of belief in the fibre trajectories, and enabling complete trajectories
to be traced from their grey matter sources to their grey matter targets. This thesis
provides the first demonstration of quantitative inference of anatomical connectivity
between grey matter structures using diffusion data.

The connectivity distributions recovered from this “probabilistic tractography” pro-
vide a new and rich source of information with which to infer on anatomical connectivity
in the living human brain. This information is used to provide novel neuroscientific find-
ings relating to thalamo-cortical and cerebellar-cortical circuitry in the human brain.
Specifically, this thesis provides the first topographic map of the cortical connections
of the human thalamus, and demonstrates that, by examining only cortico-thalamic
circuitry, functional and cytoarchitectonic subunits, or nuclei, of the thalamus may
be indentified. In the cortico-cerebellar system, cortical inputs to the cerebellum in
human are contrasted and compared with those in macaque, providing the first demon-
stration of inter-species connectional differences with diffusion data. Finally new ways
are proposed in which diffusion tractography data may be used to identify functional
subunits and functional sub-systems in the absence of any prior knowledge about the
connectional architecture of the brain region.

Thesis submitted for the degree of Doctor of Philosophy
at the University of Oxford
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Chapter 1

Introduction

The transfer of information between processing units in the brain provides the basis
for brain function. The substrate for this information transfer is brain white matter - a
network of microscopic cellular wire-like structures, known as axons, carrying electric
signals from their own cell bodies onto the synapses of other cells. The function of
every processing unit, or neuron, in the brain is constrained by its location in the
axonal network. For this reason, a full understanding of brain function at any scale

relies on the ability to draw the axonal network at that same scale.

At present, information on axonal connectivity between brain regions is very hard
to establish. In the in-vivo human brain, anatomical connectivity is effectively in-
visible and, even post-mortem, the available methodologies reveal only very limited
information (see chapters 5 and 6). By far the dominant source of information regard-
ing connectivity in the human brain is indirect inference from sacrificial tracer studies
in non-human primate. Such studies have revealed a great deal but are extremely
time consuming and limited to specific brain regions. Moreover, knowledge of con-
nectional anatomy in the non-human brain does not necessarily imply knowledge in

human (again, see chapter 5).

This thesis focuses on the development and use of a new method for exploring con-
nectivity in the living human brain. Magnetic resonance diffusion imaging uses the

diffusion of water molecules as a macroscopic probe of tissue microstucture - particu-
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larly of the orientational structure of axonal fibres in brain white matter (1). Using
diffusion imaging and its derivative, diffusion tensor imaging (2), it has been pos-
sible to estimate mean fibre directions in fine resolution imaging voxels throughout
the brain white matter (see chapter 2) and thence to reconstruct major white matter
pathways in the living human brain (3; 4; 5). Such early reports of the in-vivo measure-
ment of anatomical connectivity raised hopes of new insights into brain function and
connectional dysfunction but, as yet, diffusion tractography has been limited to the

reconstruction of deep white matter pathways easily visible in post-mortem dissection.

1.1 Neural Architecture and Diffusion Imaging.

A brain cell, or neuron, consists of a cell body (soma) which processes signals received
at its dendrites and transmits signals down its axon. The axon terminals synapse at
other cell dendrites, passing signals to connected cells. Surrounding the axon, and
providing electrical insulation, are Schwann’s cells which contain a fatty substance

known as Myelin. A simplified diagram of a neuron is shown in figure 1.1.

Basic Neuron Design

22_\.

Dendrites
Cell GieR
Body Hillock
Myelin

Axon

Node of _— S

Ranvier

D2001 HowStuf Works

Figure 1.1: Diagram of a Neuron. Inset, the wire-like structure of the axon, along with its surrounding
myelin sheath hinders diffusion perpendicular to its long axis. Taken from (6)

Diffusion imaging relies upon this structure of axons, and their myelin sheaths.
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Water molecules undergoing random thermal motion (see chapter 2) in the vicinity of
the axon are less likely to diffuse across the long axis of the semi-permeable axonal
cell membrane and myelin sheath than they are along it. Diffusion is said to be more
“hindered” perpendicular to the long axis of the fibre than parallel with it. When we
attempt to trace fibre pathways using diffusion imaging data, we exploit this diffusion
“anisotropy” to recover the local orientation of axons. However, we must consider the
crucial question of scale. The diameter of a typical axon is in the region of 1 — 3um,
whereas diffusion weighted MR data are typically acquired on a grid of the order of

2 %X 2 %X 2mm?

. There may be hundreds of thousands of axons passing through each
imaging voxel. If, in a particular voxel, the axonal fibres are oriented at random then
the diffusion data will contain no orientational information. The second important
feature of axons relied upon by diffusion imaging is their organisation. Axons emerging
from or entering a brain area tend to organise themselves into well aligned “fibre

bundles”, and deep white matter consists of large bundles of aligned axonal fibres

(see figure 1.2) carrying electric signals between distant areas of the brain. These

Figure 1.2: Fibre bundles in the brain. 1. Short arcuate bundles. 2. Superior longitudinal fasciculus.
3. External capsule. 4. Inferior occipitofrontal fasciculus. 5. Uncinate fasciculus. 6. Sagittal stratum.
7. Inferior longitudinal fasciculus. Taken from (7).

fibre bundles exist at a resolution which is available to MR imaging studies, hence
diffusion anisotropy on this scale may be measured with magnetic resonance. Figure 1.3
shows principal diffusion directions (foreground) and diffusion anisotropy (background)
recovered from a diffusion tensor imaging experiment. Note that in areas of large fibre
bundles, diffusion anisotropy is high and the principal diffusion directions align well

with the long axis of the bundle. For these reasons, it is the large deep white matter fibre
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Figure 1.3: Principal diffusion directions from diffusion tensor imaging. PDDs are projected into the
slice plane and overlaid on fractional anisotropy in a normal brain. Note that, in large fibre bundles,
diffusion anisotropy if high (background) principal diffusion direction is aligned with the long axis of
the bundle.

bundles which have been reconstructed successfully by diffusion tensor tractography.

1.2 Thesis Research

It is at this point that the research in this thesis commences. It focuses on several
key areas in making diffusion based tractography a useful probe of neural connectivity
and, in doing so, it provides new neuroscience results relating to thalamo-cortical and

cerebellar-cortical circuitry in the human brain.

In the past, diffusion tractography studies have been limited to the goal of in-vivo
wvisualisation of major fibre pathways. The resulting pictures, although often visually
extremely impressive (e.g. (8; 9)) have been difficult to interpret scientifically. The
lack of a quantitative measure of strength or probability of connection between two
locations in the brain has made it impossible, for example, to carry out between-
group comparisons to examine connectional dysfunction in disease. Moreover, the
deterministic nature of the tractography algorithms to date has meant that in areas of

low diffusion anisotropy, where it is not possible to decide on a single diffusion direction
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to pursue, it has not been possible to trace any connections. For this reason, it has
not been possible to trace connections to their grey matter targets and hence make

inference about axonal connectivity between grey matter regions in the brain.

The principal methodological contribution of this thesis is to provide a statistical
framework in which to infer anatomical connectivity from diffusion imaging data. We
first consider the problem of inferring on voxel-wise models of diffusion in the presence
of image noise and incomplete signal modelling. The inclusion of these factors results
in uncertainty in the recovered fibre orientation (or, in the case of more complicated
models of the local architecture, uncertainty in the recovered distribution of fibre orien-
tations). This uncertainty is represented as probability distribution functions (pdfs) on
the local fibre architecture (in the simplest case, on the local mean fibre orientation).
We then consider the problem of tracing pathways through the diffusion data field in
the presence of this uncertainty. It is no longer possible to trace deterministic pathways
through the data. Instead, we provide a generalisation of streamlining tractography to
the case when there is uncertainty in the local fibre orientation. We estimate a pdf on
the location of the pathway (a connectivity distribution), resulting in probabilities of
connection between a seed location and every other voxel in the brain. We are able to
quantify our belief in the location of a pathway, and therefore quantify our belief in the
existence of axonal connections between brain regions. By removing the need to make
a deterministic decision at every step in the tractography process, we are able to trace
beyond regions of low diffusion anisotropy deep into grey matter structures, allowing
us to provide the first demonstration of reliable inference of anatomical connectivity

between human grey matter structures using diffusion data (chapter 6).

The connectivity distributions resulting from a statistical treatment of diffusion
tractography provide a rich but complicated source of information. Other method-
ological contributions in this thesis focus on the mining and representation of this new
source of data to provide means for extracting interesting results. For example, in
chapter 7 we provide a method for extracting networks of strongly connected voxels

from a data field, and a method for searching for “discontinuities in the connectivity
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field”, so that neighbouring brain regions which exhibit markedly different connectivity

patterns may be distinguished (See figure 1.8).

The availability of so rich a source of connectivity information along with the tech-

niques to mine it has led to experimental contributions in this thesis.

By examining connectivity distributions seeded in the human thalamus, we pro-
vide the first topographic map of human thalamo-cortical connectivity (figure 1.6 and
chapter 6). We are then able to identify functionally discrete thalamic nuclei on the
basis of their cortical connections, providing an in-vivo segmentation of thalamus into
its functionally and cytoarchitectonically discrete nuclei. Detailed comparison between
the location of these nuclei and the location of functional MRI “hot spots” in experi-
ments designed to activate them, along with detailed comparison of their volumes with
volumes reported by post-mortem thalamic dissections provide the first quantitative

attempt to validate results from diffusion tractography studies.

Similar techniques to those employed in the thalamus are used to investigate cortical
projections to cerebellum (which pass through cerebral peduncle). Connectivity-based
segmentation of the peduncle in human reveals a topology of cortical projections to pe-
duncle which is familiar from invasive tracer studies in macaque. However, the relative
contribution of fibres from the different cortical zones found in the human tractog-
raphy data is dramatically different to those reported by the macaque tracer studies
(figure 1.7 (A-C)). Specifically, fibres from the prefrontal cortex occupy a relatively
larger territory in the human tractography data than in the tracer data from macaque,
supporting the new hypothesis of a role for cerebellum in cognitive processing (e.g.
(10; 11)). This result is consolidated with diffusion tractography data from macaque
monkey, which shows the same topology and the same relative contributions as the
invasive tracer studies in macaque (figure 1.7 (D)), providing further validation for
diffusion tractography and, to our knowledge, the first direct comparison of diffusion

tractography results in different species.
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1.3 Thesis Overview

The thesis is split into the following chapters.

Chapters 2 and 3 introduce the reader to concepts fundamental to the new research
in the thesis. Chapter 2 focuses on the theory behind imaging diffusion with nuclear
magnetic resonance, and chapter 3 provides an introduction to learning on models with

Bayesian statistics.

Chapter 4 uses Bayesian statistics to investigate the uncertainty inherent to pa-
rameter estimates in models of the diffusion and measurement processes, resulting in
probability density functions on parameters in the diffusion tensor model and in a simple
two compartment model of diffusion. These distributions are compared with empirical
distributions constructed via repeated acquisition of diffusion imaging data (See figure

1.4) Tt goes on to propose a more complicated model of diffusion accounting for the

80
60
40

20

Figure 1.4: Width of the 95% “cone of uncertainty” on fibre direction (in degrees), (A) Constructed
from a Bayesian analysis of a single diffusion imaging data set. (B) Constructed from maximum
likelihood analyses of repeated diffusion imaging data sets.

effects on the measured NMR signal of a continuous distribution of fibre orientations

within a voxel.

Chapter 5 lays down the theory for performing tractography in the presence of
uncertainty in the voxel-wise parameter estimates - specifically, uncertainty in the mean

underlying fibre orientation. Essentially, it derives a generalisation of streamlining
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tractography to the case of imperfect diffusion weighted data, resulting in a connectivty
distribution from a seed point (see figure 1.5). It then proposes a fast algorithm for
performing the multi-dimensional integrals required to compute the this distribution.

The material in chapters 4 and 5 is published in Magnetic Resonance in Medicine (12).

Figure 1.5: Connectivity distribution from medial dorsal thalamus. The distribution terminates in
prefrontal and temporal cortices.

Chapter 6 applies the methodology in chapters 4 and 5 to map the cortical con-
nectivity of the human thalamus. It introduces the concepts of connectivity based
segmentations and connectivity defined regions and demonstrates the similarity be-
tween cortico-thalamic connections found with diffusion tractography in the human
brain, and those found with sacrificial tracer studies in the non-human primate brain

(figure 1.6).

Group mapping of the connectivity defined regions in figure 1.6 results in a con-
nectivity defined probabilistic atlas of human thalamus. Locations of putative medio-
dorsal and ventral lateral nuclei derived from this atlas are compared with functional
MRI “hot-spots” in experiments designed to activate the same nuclei. Volumes of all
of the putative nuclei are compared with volumes derived from post-mortem thala-
mic dissection and staining. Some of the material in chapter 6 is published in Nature

Neuroscience (13).

Chapter 7 presents recent developments and ongoing studies related to the research

in this thesis.
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Figure 1.6: Connectivity-based segmentation of the thalamus. (A) Division of the human cortex
into principal zones of connectivity of the thalamic nuclei in macaque. (B) Schematic of a human
thalamus with boundaries between nuclei marked. Overlaid in colour, the expected cortical targets of
the respective thalamic nucleus derived from invasive tracer studies in macaque. (C) Most probable
cortical target derived from diffusion-based connectivity distribution seeded from each voxel.

A topologic segmentation similar to that provided for thalamus in chapter 6 is
provided for cerebral peduncle, to investigate projections from cortex to cerebellum

(which pass through peduncle). The topology of the resulting segmentation is found to

Prefrontopontine Corticospinal
fibres

Macdgue
i,
PN

emporopontine
fibres

Figure 1.7: Cortical connectivity of the cerebral peduncle: (A) Derived from invasive tracer studies
in macaque, (B) Colour code for cortical zones in (C),(D). (C) derived from diffusion tractography in
human. (D) Derived from diffusion tractography in macaque.

be as predicted by invasive tracer studies (figure 1.7 (A-C)), but the relative volumes of
the territories occupied by the different cortical regions are dramatically different. This
result is consolidated by the same experiment in macaque monkey where the relative

volumes are as expected from the tracer studies (figure 1.7 (D)).

Two studies are presented which rely on mining the connectivity data to reveal
interesting features in the data. The first relies on the hierarchical organisation of the

primate visual system which reveals itself as a characteristic structure in the connec-
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tivity matrix of the system. By permuting the matrix in search of this structure we are
able to extract clusters of highly connected voxels corresponding to putative ventral
and dorsal visual streams, and primary visual cortex. The second attempts to iso-
late clusters of voxels which exhibit similar connectivity patterns, and therefore draw
boundaries between neighbouring brain areas which show differences in their connectiv-
ity pattern. In order to achieve this, the cross correlation matrices of the connectivity
matrices are computed and reordered such that highly correlated “nodes” (or voxels)
appear near to each other on the graph (figure 1.8 (a) and (b) left). By identifying
clusters in this reordered correlation matrix, we are able to draw a previously invisible
boundary between functional areas in brain (figure 1.8 (a) and (b) right). The specific
example chosen is the boundary between Supplementary Motor Area (SMA) which
connects primarily to motor regions and preSMA which connects primarily to frontal

regions.

Figure 1.8: Reordering connectivity correlation matrices in SMA /preSMA. In 8/11 subjects two clus-
ters were apparent in the reordered correlation matrices (a typical example is shown in (a)). In 3/11
subjects three clusters were apparent (a typical example is shown in (b)).

Chapter 8 Draws conclusions from the previous chapters, and discusses some open

questions in the field of diffusion tractography.



Chapter 2

Measuring Molecular Diffusion with

NMR

2.1 Introduction

Imagine, for a moment, that you are sitting in a sealed room staring at a stationary
glass of water. At least, imagine that you are staring at what appears to be a stationary
glass of water. At the molecular level, well beyond the resolution of human perception
things are far from peaceful. Water molecules, and in fact the molecules of any fluid,
are at constant random motion. This phenomenon, known as Brownian motion, was
first observed by Robert Brown in the early 19" century while he was examining pollen
grains in a water solution (14), but remained unexplained for nearly 50 years until the
emergence of the kinetic theory of matter late in the same century. At the macroscopic
level, the effects of Brownian motion may be witnessed as fluid diffusion. If we take our
imaginary glass of water and place in it a small drop of iodine we will see that, over time,
the iodine diffuses through the water until the concentration is the same throughout.
Each molecule of iodine is taking a random route through the water molecules but,
on average, they are moving from areas of high iodine concentration to areas of low
concentration. The statistical nature of the diffusion process renders its macroscopic

effects entirely predictable. Laws governing macroscopic diffusion were laid out well

11
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before the microscopic processes were understood (15). Crucially, even without the
presence of the iodine, the water molecules are undergoing diffusion in exactly the
same fashion, but now the water molecules are diffusing amongst themselves. This
process is known as self-diffusion and obeys all the same laws as diffusion. In this

[4

thesis, the terms “self-diffusion” and “diffusion” are used interchangeably to mean

self-diffusion.

For scientists interested in the microstructure of tissue, the appeal of diffusion is
that microscopic features of the medium in which diffusion is occurring will reveal
themselves in the macroscopic properties of the diffusion process. If a water molecule
undergoing random motion encounters a barrier such as a myelin wall, it may be less
likely to diffuse across it than along it, and moreover, every molecule which encounters
the wall will experience these same probabilities. The presence of the myelin wall will
be visible in the macroscopic properties of diffusion in its near vicinity. The goal of
diffusion imaging in biological tissue is to use the diffusion process as a macroscopic

probe of tissue microstructure.

This chapter aims to introduce the reader to many of the concepts in diffusion
imaging required to understand the remainder of this thesis. In doing so, it provides
an outline of the theory behind measuring diffusion with NMR. For excellent detailed
descriptions of this theory along with descriptions of the underlying physics of diffusion
see (16) and (17).

2.2 Molecular diffusion and the ensemble average

diffusion propagator

Due to the random processes at hand, we are not able to predict the path of a single
molecule during the process of Brownian motion. However, if we know all of the
relevant physical properties of the diffusing substance, we are able to make statistical

predictions about the macroscopic behaviour of a large number of molecules. The most
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general descriptive tool available to us for this purpose is the diffusion propagator. The
diffusion propagator describes the distribution of displacements of molecules in the
ensemble. That is, the probability of finding a molecule at r given that it was at ry a
time 7 ago:

p(r|ro, 7). (2.1)

However, this distribution may change over space; it is conditioned on ry, the initial
location of the molecule. If we wish to describe, or measure, the distribution of dis-
placements of an ensemble of molecules, we may not restrict ourselves to considering
an infinitesimal point in space, ro. We must describe or measure the average diffusion

propagator for an ensemble of molecules in some finite volume V.

The ensemble average diffusion propagator in volume )V describes the expected
distribution of vector displacements, r — ry, of molecules in volume V after time 7 or,
equivalently, describes the average over V of the probability of a single molecule moving

. . . — . .
a distance |r — rq| along direction r — ry in time 7:

p(r — ro|7). (2.2)

The common objective of the NMR diffusion techniques presented in the remainder

of this chapter is to measure, or approximate, this distribution.

2.3 Diffusion and the NMR spin echo

The possibility of measuring diffusion was hinted at in the very early days of NMR.
In his 1950 paper on the NMR spin echo (18) Hahn noted that the random thermal
motion of spins would reduce the amplitude of the spin echo in the presence of mag-
netic field inhomogeneity. Subsequently, Torrey (19) provided an adaption to the Bloch
equations (the fundamental equations describing the magnetisation of spins in an NMR
experiment) to account for this effect, and hence predict the attenuation of the spin

echo given knowledge of the magnetic field and the local diffusion characteristics. Ini-
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tially this effect was regarded as a potential artefact in a spin echo NMR experiment.
However, in 1965, Stejskal and Tanner (20) used the Pulsed gradient spin echo experi-
ment (PGSE) to harness this NMR “artefact” to perform quantitative measurements

of molecular diffusion in a sample.

2.3.1 The Pulsed Gradient Spin Echo

The PGSE modifies Hahn’s spin echo experiment with the introduction of pulsed gradi-
ents before and after the application of the 180° radio-frequency pulse (see figure 2.1),
thereby explicitly creating the field inhomogeneities which had earlier been a cause of

concern for Hahn.

Read
90 degree 180 degree

RF O 0P $
G G
X_
Gradient
) )
A

Figure 2.1: Pulse sequence diagram for Stejskal-Tanner pulse gradient spin echo experiment. For an
explanation of pulse sequence diagrams see (21)

The easiest way to understand this experiment (as is often the case with NMR) is
to imagine ourselves rotating at the Larmor frequency in the transverse magnetic plane
(see (21)). First let us consider the spin echo experiment in the absence of diffusion
encoding gradients (i.e. the top row in figure 2.1). The 90° RF pulse flips the spins into
the transverse plane where, in the ideal scenario, they remain spinning at the Larmor
frequency (wy = By, where «y is the Larmor constant and By is the static magnetic
field), but lose magnetisation due to spin-spin, or T, relaxation. In fact, due to local
variations in By, the spins will each rotate at slightly different Larmor frequencies

causing a net spin dephasing (figure 2.2 left). After the 180° pulse, the spins rotating



2.3 Diffusion and the NMR spin echo 15

faster are “behind” the slower spins, hence the spins begin to rephase (figure 2.2). The
RF read out is taken at the “spin-echo”, when the spins are once again in phase, with

the only attenuation of the magnetisation being due to spin-spin relaxation.

180 degreeflip

Dephasing Rephasing
'

Figure 2.2: Dephasing and rephasing of the spins in a spin echo experiment viewed in a coordinate

frame rotating about z at the mean Larmor frequency. Note that the sizes of the magnetisation vectors
are smaller in the second diagram due to the inherent spin-spin relaxation.

If we now modify this experiment with Stejskal and Tanner’s pulsed gradients (bot-
tom row in figure 2.1), then we are ensuring that the static field is inhomogeneous.
The effect of this is that spins that do not move in the course of the experiment will ex-
perience the same field strength during the first and second pulses, and hence rephase
exactly as before, but spins which have some component of displacement along the
gradient direction (for example, due to random molecular diffusion) will experience
different field strengths during the two pulses and hence not return to (net) zero phase
at the time of the echo. This dephasing of the magnetisation vectors of the spins leads

to an attenuation of net magnetisation measured in the NMR signal.

Using the Bloch-Torrey equations, Stejskal and Tanner were able to relate this
attenuation directly to the diffusion coefficient (20), thus providing a complete descrip-
tion of the diffusion process in the case of isotropic Gaussian or free diffusion. Later
in the same year (22), Stejskal provided a more general formalism to relate the net
magnetisation measured in the PGSE experiment to any generic diffusion propagator.

This relationship is explained in detail in (17), and is outlined here.
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2.3.2 Relationship with the diffusion propagator

If we assume that the spins do not move during the application of diffusion encoding
gradients (an assumption known as the “infinitely narrow pulse condition”), then the

phase accrued by each spin relative to the phase v7Byé during each pulse will be:

5
o= fy/ gTr dt = yégTr (2.3)
0

where 7 is the Larmor constant, ¢ is the length of time over which the gradient is
applied (figure 2.1), g is the gradient strength vector and r is the position of the spin

in question.

The phase accrued by each spin during the course of the experiment is then (still

relative to yByd )

¢ = 7og’ (rs —11) (2.4)
where r; and ry are the positions of the spin during the first and second gradient pulses.

The signal, S(7), measured from the PGSE experiment is simply the linear super-

position of the magnetisations of N spins each with phase ¢y.

N
S(Te :Zm 7)€% = Sy(7e) [ Zew’“] (2.5)

=1

where N is the number of spins, m(7) is the modulus of the magnetisation vector after
echo time 7, (see figure 2.2) and Sy(7) = Nm(7,) is the spin echo signal in the absence

of any diffusion encoding gradients.

The term in square brackets in equation 2.5 is the expected value, or ensemble
average, of €* which may be rewritten in terms of the probability density function on

the spin phases as
N
1 . . .
T2 R (€)= / e“p(g|r)dg (2.6)
k=1

for diffusion time 7. Substituting in equation 2.4 and defining the wave vector q = vdg
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and R =ry — ry gives

S(a,7,7) _JioN _ iq’R,_ (T T
“Sm) (e) —/e p(q" R|7)dq" R. (2.7)

However, noting the linearity between spin displacement R and phase ¢ = q'R, for

constant g, we may replace the expectation over q” R with an expectation over R:

S(q: 7_;7'5) _ ez’qTR .
e = / p(R/7)dR. (2.8)

= Fslp(R|7)]. (2.9)

Where, F3 is the 3D Fourier transform with respect to spin displacement R. The
signal we expect to measure as a function of wave-vector, q, is linearly related to the
Fourier reciprocal of the ensemble average diffusion propagator. By taking measure-
ments at many points in g-space and simply performing an inverse Fourier transform,

it is possible to reconstruct the ensemble average diffusion propagator.

2.3.3 Free Diffusion

In the case where diffusion is free (i.e. where there are no barriers to restrict or hinder
molecular displacement and no molecular absorption), solution of Fick’s laws, which
govern the macroscopic behaviour of diffusion (15), leads to an isotropic Gaussian

diffusion propagator.

(2.10)

p(RI) = (4n D)3 exp (—RTR)

4Dt
where D is the diffusion coefficient in Fick’s laws of diffusion and subsequently in the
Einstein relation (23)

D= % (R'R), (2.11)

relating the diffusion time, 7, to the mean square spin displacement, <RTR>, in a freely

diffusing medium.
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If we image free diffusion with the PGSE experiment, then equation 2.9 predicts

the signal attenuation as follows:

S(q,7)
So

) (2.12)

= exp (—D7|ql?). (2.13)

Returning to figure 2.1, the effective diffusion time, 7, after correction for diffusion
during the gradient pulses (see (20)) is A — 6/3. Replacing q with its constituent

variables now gives:
S(q,7)
So

= exp (—|vgd[*(A - §/3)D), (2.14)

which is the original relationship derived by Stejskal and Tanner. Introducing LeBi-
han’s b-value,

b= |ygd*(A - 6/3), (2.15)

reveals the most widely used equation in diffusion imaging:

S®) _
< = (2.16)

Under the assumption of free diffusion, this relationship enables us to characterise
completely the macroscopic diffusion of the medium in question with a single spin echo
experiment (to measure Sy) and a single PGSE experiment (to measure S(b)). We may
simply compute

1

2 log, S(b)

D = —
So

(2.17)

2.3.4 The Apparent Diffusion Coefficient

In biological tissue, the assumption of free diffusion does not hold. Barriers to diffu-
sion such as semi-permeable cell membranes or myelinated axonal sheaths will hinder
diffusion such that the diffusion propagator is non-Gaussian (see section 2.6). The true
form of the diffusion propagator has been characterised in many such biological samples

by acquiring at a fine resolution in g-space and performing the inverse Fourier trans-
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form (e.g. (24; 25)). However, with the arrival of diffusion imaging, the change from
measuring a single diffusion propagator for the entire sample to measuring a separate
propagator for each imaging voxel necessitated the assumption of free diffusion (diffu-
sion weighted imaging). Diffusion tensor imaging relaxes this assumption to allow for
anisotropic diffusion but still relies on the the Gaussianity of the propagator (see section
2.5). Without this assumption of Gaussianity the first diffusion imaging experiments
would not have been feasible. However its result is that the quantitative measures of
diffusion - the diffusion coefficient or tensor - will differ between experiments with dif-
ferent diffusion times or gradient strengths. For this reason, the recovered measures are
termed the Apparent Self Diffusion Coefficient (ADC) and the Apparent Self Diffusion

Tensor.

2.4 Imaging Diffusion

The theory related in the section above addresses the problem of measuring the diffu-
sion propagator as an ensemble average over the entire sample excited by the initial
RF pulse. However, in 1973, almost a decade after Stejskal and Tanner first measured
diffusion with NMR, American chemist Paul Lauterbur (26) and English Physicists
Peter Mansfield and Peter Grannell (27) showed independently that, also by applying
magnetic gradients on top of the static magnetic field and therefore also by ensuring
that spins at different locations in the sample rotated at different Larmor frequencies,
it was possible to use the NMR phenomenon to form two dimensional images of the ex-
perimental sample. Shortly afterwards, Garroway, Grannell and Mansfield (28) devised
a scheme for selectively exciting a single two dimensional plane of a three dimensional

sample, allowing for non-invasive three dimensional imaging of biological samples with

NMR.

In the mid 1980s (29; 30), it became apparent that it was possible to use the pulsed
gradients of Stejskal and Tanner in the same experiment as the imaging gradients of

Lauterbur and Mansfield to attenuate the signal in each imaging vozel by the effects
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of diffusion in the same way as the signal from the entire sample was attenuated in
section 2.3. The importance of Diffusion-weighted tmaging first became clear when it
was noted that in animal models of stroke, the local diffusion characteristics around
the infarction changed dramatically within minutes of the ischemia (specfically, the
diffusion coefficient was reduced by up to 60% )(31) (see figure 2.3) whereas other

markers available to MRI changed only very slightly and hours after the event.

Figure 2.3: Diffusion weighted images of sub-acute stroke in the vascular territory of the left middle
cerebral artery (taken from (32))

2.5 Diffusion Tensor Imaging

The reconstruction of the diffusion coefficient under the assumption of free diffusion,
as is carried out in diffusion weighted imaging, deliberately masks the effects of any
orientational structure in the diffusion propagator. The spins in the voxel are assumed
to diffuse along each direction with the identical probability profile. The first and, as
yet, most significant step to relax this assumption was taken by Peter Basser in 1994
(2) with the introduction of Diffusion Tensor Imaging (DTI). DTI does not rely on
the assumption of free diffusion but, in its place, assumes that the diffusion propagator

takes on some generic zero-mean 3D Gaussian profile:

P(R7) =

—m> (2.18)

1
— X
D[ (dr7)? p( Ar
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where D is the symmetric positive definite Apparent Self-Diffusion Tensor. The diffu-

sion coefficient Dy in any single direction R may be computed as:

Dr = R"DR (2.19)

and the covariance matrix, C, of the Gaussian propagator is related to the diffusion
tensor according to:

C =2Dr. (2.20)

The key effect of moving to a generic Gaussian propagator is the ability to characterise
diffusion anisotropy. That is, DTI may characterise diffusion processes in which the

diffusion characteristics are different in different directions.

2.5.1 Estimating the Diffusion Tensor

Referring back to sections 2.3.2 and 2.3.3, it follows that the expected strength of the

spin echo in the case of generic Gaussian diffusion is

S(b, a)
So

= exp (—ba" Da) (2.21)

where b is the b-value in equation 2.15 and 1 is the unit vector along which the diffusion

encoding gradients were applied. Taking logs and rewriting leads to
3 3
S(b,a
i=1 j=1

where b;; is the ij" element of the b-matrix; b = buu”.

Equation 2.22 has 7 unknowns: The six independent elements of the D, and Sy.

Hence, in order to solve for D uniquely, we must take at least 7 measurements. Writing
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these n measurements in matrix form yields:

wa
S bL, 2L, 20L, bl 2bl. bl —1 D,,
2 2 2 2 2 2

S b2, 202, 202, b2, 202, B2, —1 D,,
log | S5 | =—| 3, 203, 2b3, b3, 203, B3, —1 D,, |- (2.23)

D,.

| Sn | U 20, 205, O, 2B, b —1|| D

log S

or

logS = Aa. (2.24)

If we take 7 measurements, S; — S7, such that A is of full rank, we may simply invert
A and compute

a=A"logS (2.25)

However, with only a single measurement per parameter the recovered diffusion tensor
is very sensitive to experimental error. For this reason, experimenters tend to take
measurements along many different diffusion encoding directions using at least two
different b-values. For example, a typical DTT experiment might, in each imaging voxel,
take 6 measurements with no diffusion weighting (b = 0smm™2) and 60 measurements

with b-value, b ~ 1000smm 2

along diffusion encoding directions evenly spaced on a
unit sphere (for more details and explanation, see (33)). In this case, it is impossible to
choose a diffusion tensor such that the NMR signal predicted by the Gaussian model
(equation 2.21) matches exactly with the signal measured in the experiment. The

system of equations laid out in equation 2.23 is over-constrained but can be solved in

a least squares sense by writing the parameter x?(a):

x2(a) = (logS — Aa)"=7'(logS — Aa), (2.26)
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which is the weighted sum of squared differences between observed and predicted echo
intensities. The diagonal elements of ¥ are 0%/S? (where o is the standard devia-
tion of the image noise) and, to a first order approximation, correct for the distortion
introduced by the logarithmic transformation of S(b,0)/S(0) (see (2) for further ex-
planation). Minimising x*(c) with respect to each of the seven parameters in « yields

an optimal solution for c:

ot = (ATSTA)H(ATS ) 1og S, (2.27)

2.5.2 Properties of the Diffusion Tensor

The eigensystem of the diffusion tensor. For each estimated D it is possible to
construct a local orthogonal coordinate system along which the components of diffusion
are decoupled. There are then three independent apparent diffusion coefficients (one
for each orthogonal axis) known as the principle diffusivities. Because D is positive
definite and symmetric, its three eigenvectors €; 3 are orthogonal and form the principle
diffusion directions. The principle diffusivities are the components of diffusion along

these directions and correspond to the eigenvalues \;_3 of D, so:

A 0 0
D = (e1]€2]e3) 0 X O (€1|€2|€3)T- (2.28)
0 0 X3

Isoprobability Surfaces. The 3D Gaussian diffusion propagator may be visualised
by drawing surfaces of equal probability of R for any diffusion time 7. This can be
achieved by setting the exponent in equation 2.18 to be a constant, for example:

R'D'R _

1. 2.29
2T ( )
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If this equation is transformed into the coordinate set of D by
RI = (61‘€2|63)TR, (230)

then from equations 2.29 and 2.28

R/TA—lR/
- =1

2.31
o =1 (231)

where A is the matrix of eigenvalues. Equation 2.31 can be expanded to give

i) () (i) - e

The solutions of equation 2.32 lie on an ellipsoid with major axes equal to the mean

diffusion distances (1/2\;7) along the principle diffusion directions.

Figure 2.4: Isoprobability surface for Gaussian diffusion. Left: Ellipsoidal Diffusion isoprobability
surface. Right: Corresponding orthonormal basis set.

Scalar Properties The parameterisation of the diffusion propagator with a 3D
Gaussian allows for various rotationally invariant scalar properties to be extracted.
Most notably, properties relating to the overall diffusivity, and to the anisotropy of the

diffusion within a voxel.
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Trace The trace of the diffusion tensor is a measure of the overall diffusion in a voxel,
independent of the gradient direction. It can be computed from the original tensor, or

from the eigenspectrum.

3 3
= Z D;; = Z Ai (2.33)
i=1 i=1

Anisotropy Measures Diffusion anisotropy is the degree to which diffusion in a
voxel is preferred in one direction over others. Various different measures of anisotropy
have been proposed. For example, eigenvalue ratio A,,, the normalised eigenvalue ratio
Aper (34),the volume ratio A4, (35).

— A — A — A1d2A
Aer = A Aner — 1)\1 3 AW — 1:\§ 3 (234)

where A = (A} + A2 + A3)/3. However the most commonly used anisotropy index is the

Fractional Anisotropy (35).

Ape = \/ 2()2 +/\2 +A2) 121: VA (2.35)

2.6 Imaging Diffusion in the Brain

We have already seen in section 2.4 that the sensitivity of the echo magnitude to the
effects of stroke may be increased dramatically by encoding for diffusion along only a
single gradient direction. The possibility of measuring diffusion in several directions
in the same living brain brought with it the chance to measure diffusion anisotropy.
As early as 1990, before the advent of DTI, Moseley et al. (1) measured diffusion
coefficients parallel with, and perpendicular to, axons in cat white matter and made
the startling observation that the measured diffusion was repeatably anisotropic. That
is, diffusion was faster along the long axonal axis than in either of the perpendicular

directions.

The biophysical explanation of this diffusion anisotropy is still not fully understood.
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Early reports (e.g. (36)) suggested that the intracellular diffusion across the direction
of the fibre was restricted by the myelin fatty sheaths which surround the axons.
More recently, some anisotropy has been reported in the white matter of neonates
who have not yet developed myelin (37) but the anisotropy increased as the axons
became myelinated. Suggestions have also been made that a large proportion of the
measured diffusion is extracellular. It is likely that diffusion anisotropy is influenced
by a number of micro structural features: The integrity of axonal cell membranes, the
amount and integrity of myelin around the axons, the coherence of axonal orientation,

and the number and size of axons. An excellent review of this topic can be found in

(38).

The advent of diffusion tensor imaging allowed for rotationally invariant quantita-
tive measures of diffusion anisotropy to be taken at every imaging voxel (see section
2.5.2). For example, figure 2.5 shows a slice through a map of Fractional Anisotropy

of a human brain. These measures alone have proven to be a strong marker for white

Figure 2.5: Slice through Fractional anisotropy map of a human brain.

matter integrity in neurological disorders such as Multiple Sclerosis (39), Amyotrophic
Lateral Sclerosis (40), Schizophrenia (41; 42; 43) and Dyslexia (44) to name but a

few. (For a review of the clinical applications of DTI, see (45)). However, possibly the
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most exciting feature of diffusion imaging, and the underlying basis for the research in
this thesis is the ability to use diffusion anisotropy to measure the mean orientation of
axons in a voxel. Figure 2.6 shows principal diffusion directions (PDDs) reconstructed
from DTI overlaid on a fractional anisotropy map from the same experiment. Even
cursory inspection of this figure immediately reveals the cause for the excitement. The
hope is that, by simply following the directions of fastest diffusion, it may be possible
to reconstruct white matter pathways in the living human brain and, from there, to

estimate anatomical connectivity in vivo for the first time.

(A) (B)

Figure 2.6: Principal diffusion directions from diffusion tensor imaging. (A) PDDs are projected into
the slice plane and overlaid on fractional anisotropy in a normal brain. (B) PDDs are encoded zyz
corresponding to red, green, blue and the intensity set by the fractional anisotropy.



Chapter 3

Bayesian Learning

3.1 Introduction

Learning is the process of adjusting a belief or understanding on the basis of new
information. In this chapter we present a brief overview of how learning may occur
in a Bayesian Framework, with particular reference to the techniques employed in this
thesis. For a more extensive and detailed account of the topics covered in this chapter
and many more, we refer the reader to (46; 47) and, for an excellent description of
approximate and variational techniques, to (48) from where the next two paragraphs

are essentially pinched.

3.2 Modelling physical systems - The generative
likelihood.

When we encounter a complicated phenomenon, we seek to explain it by simplification.
We break it down into pieces which we can understand, select those pieces that we
believe to be important, then reassemble them to provide a simplified description.
These building blocks, and their relationship in the overall design, represent a model

of the original phenomenon; a simplification which enables us to understand its nature

28
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and, crucially, to make predictions about its behaviour in different situations.

Such models are of vital importance when we try to learn from data. Our real
interest lies not in the data itself; but in specific features of the system which generated
the data. In these circumstances, our model M encodes our assumptions about the
overall structure of this system; but typically also contains parameters, O, relating
to unknowns in the model which, when varied, vary the behaviour of the model. The
model dictates how these parameters combine with one another to generate predictions

of the data.

However, these predictions may not be deterministic. In the process of building the
model, those blocks that were retained were those which were understood and regarded
to be important contributors to the model’s behaviour. Hence, many processes which
contribute to the observed data are absent in the model. In statistical learning parlance,
these processes are referred to as noise in the system, and are included in the model
as random wvariables. That is, variables for which we may not make a deterministic
prediction of any single realisation, but we may make predictions about the distribution

from which that realisation was drawn.

The presence of noise in the system suggests that we should not be surprised if
our model predicts data which does not match exactly the data which we observe,
but we still should be surprised if the observed data is very different from the model’s
prediction. In fact, the distribution of the noise forms a key part of the model by telling
us exactly how surprised we should be when we observe differences between predicted
and observed data. We now have a model which predicts a distribution of possible
realisations of the data for each choice of parameter set. This distribution is known as
the Generative Likelihood: The probability of observing data, Y, given the model, M,

and the true values of the model parameters, ©,

P(Y|O,M). (3.1)

This distribution provides a complete probabilistic description of the model. The
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process of learning on the model refers to the adjustment of our belief in the values of

the model parameters, ©, when confronted with new observations of the data Y.

3.3 Maximum Likelihood Estimation

It seems as though the problem is solved! If we are interested in the values of the model
parameters, we may simply pick those which make it most likely that the observed
data was generated by our model. We may achieve this by choosing © to maximise

the generative likelihood distribution in Equation 3.1.
O, = arg mgx’P(Y|®,M). (3.2)

This strategy is known as maximum likelihood estimation, and it results in a point
estimate for the parameter set ©. That is, if we were to draw a n dimensional graph
of our parameter space with each axis representing one parameter {0y, 6,,...0, € O},
then the maximum likelihood estimate of © would exist only at a single point on the
graph. At first, this seems entirely rational. If our model is good, then the “true”
values of the parameters exist only at a single point on the graph. Surely, it may be
supposed, when we estimate these parameters from the data, we should be aiming to
estimate this single point. It is at this point that Bayesian learning techniques make
their first conceptual leap towards the need for extremely expensive computers! The
argument goes as follows; since we can never estimate exactly the true location of this
point and, perhaps more importantly, since we cannot know how close to the truth our
best estimate is, then we should not be trying to find an “estimate” of the parameters

at all but rather a representation of our own belief in the parameter values.
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3.4 Learning with densities - an application of Bayes’

Law.

3.4.1 Probabilities and Densities

The most convenient mathematical tool for the representation of belief is the Probabil-
ity Distribution or, equivalently in continuous space, the Probability Density Function
(pdf).

If we have a random variable x in discrete space Q¢, for example the result of a
single trial of the roll of a die in the space {1,2,3,4,5,6}, then x will take each value x;
in €2, with probability p(z = z;). When considered together, these probabilities form

the probability distribution p(z).

Now consider that x exists in continuous space €25. The probability of z taking
on any particular value, X, is infinitesimally small. In this case the distribution, or
probability density function, p(x) on z is defined such that the probability of the result

of a trial lying between two values X; and X, is

X2

Pt <2< X)) = [ pla)ds (3.3)

X1

Crucial features of any distributed variable, whether continuous or discrete, are that it
must take some value at each trial and it cannot take on more than a single value in

any one trial. Hence the sum of all probabilities in the space must equal one.

Zp(ac) =1 Discrete (3.4)
0d
/ p(z)dx =1 Continuous (3.5)

€z

Probability distributions on random variables are truly frequentist objects. They
represent the distribution of results if the same trial were carried out an infinite number

of times. However, the Bayesian School of mathematics proposes a different interpre-
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tation of probabilities. Bayesians maintain that a probability encodes belief - whether
it be in the predicted outcome of some future trial, or in the value of some hidden
parameter. As such, probabilities and their density functions become the ideal tool

with which to represent and manipulate beliefs when attempting to learn from data.

3.4.2 Joint and Conditional Densities

The aim of Bayesian Learning strategies is to reach a point where we may ask questions
such as: For some hypervolume )V in parameter space {2¢ , “What is our belief given
the data that the true value of © is in V?” or in one dimension: For any (6, 6:)
“What is our belief that @ lies between 6, and 6;?”. However, in order to achieve this
aim we require rules which will transform a pdf on the data given the parameters (the
generative likelihood in section 3.2) into a pdf on the parameters of interest given the

data.

Consider an experiment which results in two separate measurements, for example
the rolling of a pair of dice where the measurements are the results of the two separate
rolls. In order to describe the result of this experiment we need to use a vector of
length two, x = [7; Z»]", and in order to predict this result, we need a probability
distribution which governs this vector: The joint probability distribution on [z z5]7,
or in continuous space the joint pdf. This joint distribution sets out the probability of

every possible result of the experiment, so in the example given here

p(x1,m0) = [p(x1 = 1,20 = 1), p(x1 = 1,29 = 2) - - - p(x1 = 6,22 = 6)]. (3.6)

In this case, it is reasonable to suppose that the measurements have no effect on each
other. They are said to be “independent”, and computing the joint distribution is

trivial.

p(x1, 2) = p(z1)p(72) (3.7)

So, for example, the probability that 1 = 4 and x5, = 6 is simply the probability that

z1 = 4, (3 in the unbiased case), multiplied by the probability that z, = 6 (again )
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giving s=. In fact, we may say that two variables are independent if and only if (iff)

equation 3.7 holds.

Now consider exactly the same experiment, but with slightly different measure-
ments. This time, our first measurement will be the result of rolling die 1 and our
second the sum of the results of the two dice rolls. It is clear that these two measure-
ments are not independent. For example, if roll 1 results in a 6, then the sum of the
two rolls cannot be less than 7. So how do we form the joint distribution on the two

measurements?

The general solution to this problem was found independently by Bayes (49), and
Laplace (50) and relies on the notion of conditional probability, the probability of an
event B conditioned on (or given) the result of event A, p(B|A). In our case A and B
are measurements x; and zo and p(xs|z;) is trivially computed. For example p(zo =

5|z1 = 2) = § as this would rely on rolling a 3 with our second die.

What Bayes and Laplace stated was the following:

p(A, B) = p(B|A)p(A) = p(A|B)p(B) (3-8)

That is, the chance of seeing both events A and B is equal to the chance of seeing
event B given that you’'ve seen event A multiplied by the chance of seeing event A
(and vice-versa). This simple and conceptually elegant statement has far reaching
implications for machine learning, as the second equality may be rewritten into Bayes’
law; the fundamental equation governing the adjustment of belief in the presence of

new information.

_ p(B|A)p(A)
p(A‘B) - p(B)
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3.4.3 Learning with Bayes’ Law

Imagine that we are trying to discover whether there was a royal battle on British soil
in 1066. At first, it seems pretty unlikely. Since the beginning of the English monarchy

in AD 802 there have only been 23 battles involving the monarchy in 1202 years. the

23

Tonz - this probability

probability of one of these falling in 1066 is an incredibly small
is our prior belief, p(A). However, searching deep into our memory, we recall that 1066
was the first year of the reign of William I. This information does not tell us directly
what we want to know, but it is nevertheless useful. Battles often result in new kings.
In fact, of the said 23 battles, 7 resulted in a change in the monarchy - we can say that
the probability of a new king appearing given that there was a battle in that year is a
much more healthy looking % - this probability is the generative likelihood we see in
section 3.2 or p(B|A), the likelihood of observing the data (a new king) given what we
wanted to know was true (there was a battle in 1066). In order to update our belief,
we need one final piece of information. How likely is it that a new king would turn
up at random, battle or no battle - For reasons to be explained later in this section,
Bayesians call this probability, p(B), the marginal likelihood of the data or equivalently
the evidence for the model. It tells us how useful our data is; if new kings popped up
year in year out, it wouldn’t be very informative to see one in 1066, but if they only
appeared after bloody battles, then seeing one in 1066 would tell us for sure that there
was a battle in that year. The truth is somewhere between the two. There have in fact
been 67 monarchs in the 1202 years of the monarchy, giving us a marginal likelihood

67
of 1202~

We are now in a position to update our belief in the battle of Hastings. Before we
remembered about William’s accession to the throne, we regarded it as incredibly un-

likely that there was a battle in 1066 p(A) = 13%, but with the additional information,

albeit indirect, we are able to update our belief using Bayes’ equation (3.9) to:

7 23
e 7
p(Battle of Hastings | William’s accession) = w = . (3.10)

903 67
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Any new information we discover (e.g. that the new king wasn’t the son of the previous
monarch or that his surname was “The Conqueror”), may be treated in exactly the
same fashion. We may continue to update our belief given every new piece of evidence,

direct or circumstantial.

This example, although slightly silly, highlights a crucial point in machine learning,
and particularly in Bayesian learning. We do not need to observe the parameters of
interest directly. So long as we have, in the generative likelihood, a model for how our
parameters will affect the observed data we may learn from the most circumstantial of

observations.

3.4.4 Marginalisation

We saw in the previous section how Bayes’ equation may help us to adjust our belief
in an event. In machine learning it is more commonly used to update our belief in the

values of model parameters, and as such, is more often written as follows:

p(Y|0, M)p(©|M)

PO = i

(3.11)

In exactly the same fashion as with Harold and William (but now, in general,
using continuous pdfs) we may update our belief from our prior expectations of the
model parameter values p(©|M) using the data and its modelled relationship with
the parameters p(Y'|©, M) to give us our posterior distribution on the parameters
p(©]Y, M). This posterior distribution represents our belief in the values of the model

parameters after we have considered the data Y.

However, yet again we face the problem of being short of one piece of information,
and this time we cannot turn to our history books to find it out. We need to know the
probability of seeing this data given the model no matter what values the parameters
may take, p(Y|M). Fortunately, where the history books have let us down, the texts

on statistics come to our rescue with a useful feature of probability distributions:
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p(B) = /Q p(A, B)dA (3.12)

That is, if we have a joint distribution p(A, B), then we may recover the distribution
on B regardless of the value taken by A, P(B), by simply integrating over all possible
values of A. This process is known as marginalisation and the resulting distribution
p(B) is known as the marginal distribution on B. This result also holds when A and B
are sets of parameters. In this case p(B) is the joint marginal distribution on parameter

set B.

We can tackle the problem of calculating our final piece of information, p(Y|M),

in exactly this fashion.

p(Y| M) = / p(Y,0lM)d0 = [ p(Y]©, M)p(O|M)dO (3.13)

Qe Qe

Note that the integrand here is exactly the same as the numerator in Bayes’ equation
(3.11), ensuring that the posterior distribution integrates to unity in accordance with

equation 3.4.

Unfortunately, calculating this integral is seldom straightforward. In general, there
is no analytical solution to equation 3.13, and parameter space (g is often very high

dimensional, making standard numerical integration techniques computationally infea-

sible.

To make matters worse, the joint posterior distribution p(©|Y, M) is often not
the distribution which we are really interested in. Models will often have “nuisance”
or “latent” parameters, which add to the behaviour of the model, but which are not
themselves of interest. In this case, we would like to calculate the joint marginal

posterior distribution on the parameters of interest.

(O Y M) = / (O]Y M)dOurons (3.14)

Qelatent

again, an integral which is seldom tractable analytically.
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The problem of estimation in a Bayesian framework is centred on the computation

or approximation of the integrals in equations 3.13 and 3.14.

3.5 Estimation in a Bayesian Framework

A large number of methods have been proposed for solving this problem. A detailed
explanation of many of them can be found in (46; 47; 51). Here, we concentrate only
on the method used in this thesis, Markov Chain Monte Carlo sampling (MCMC). The

description below draws heavily on that given in (52).

3.5.1 Sampling Techniques and MCMC

Sampling techniques provide a means for the implicit computation of the integrals in
the previous section (equations 3.13 and 3.14). They allow us to draw samples of pa-
rameters © from the posterior distribution p(0|Y, M) without ever explicitly evaluating
the normalising constant p(Y|M). In common nomenclature, the techniques presented
below allow us to draw samples from a distribution p(z) by only ever evaluating p*(x),

where

p(x) = . (3.15)

These samples may be histogram-binned to build up the posterior distribution of
interest (figure 3.1). However, drawing samples from a generic distribution is not a

trivial process, particularly when an analytic form of the distribution in not available.

Rejection Sampling. Rejection sampling overcomes this problem by defining a pro-
posal density g(z) from which we can draw samples. If we can multiply ¢(z) by some

constant ¢ such that cg(x) envelopes x:

cq(z) > p*(z) Ve, (3.16)
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Figure 3.1: Building up distributions by sampling: (A) 1000 samples from a Gaussian distribution.
(B) Histogram binning of the same samples.

then we may generate samples with uniform probability from the union of the two
grey areas in figure 3.2. If we then reject samples with uniform probability from
the light grey area, then the remaining samples will be independently uniformally
distributed in the dark grey area and hence distributed in proportion to p*(z) according

to p(x). In order to achieve this, we draw a random sample, z, from ¢(z). We then

Figure 3.2: Schematic demonstrating the principal of area based rejection sampling. Samples from
the proposal density are uniformally distributed in the union of the two grey areas and rejected with
uniform probability in the light grey area. Accepted samples are then uniformally distributed within
the dark grey area.

evaluate cg(x) and draw a second random variable, u, from a uniform distribution in

the range [0, cq(x)]. If u > p*(x) then z is attributed to the light grey area and rejected.
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Otherwise, it is attributed to the dark grey area and accepted.

Rejection sampling is only efficient if the envelope function is a good approximation
to p*(z). In figure 3.2 the ratio of rejected to accepted samples is the same as the
ratio of light to dark grey areas; we accept only % of the proposed samples. Even
when sampling from a single parameter as here, it can be hard to find an enveloping
function which can be sampled from and which gives a good acceptance ratio. When
the dimensionality of the sampling becomes large, this problem may be exacerbated
to the stage that hundreds of thousands of samples are drawn before a single one
is accepted. To overcome this problem, sampling strategies were developed which
concentrate the sampling on areas of high probability. Such strategies are known as
Markov Chain Monte Carlo (MCMC) sampling techniques, and the two used in this

thesis are Metropolis-Hastings (MH) and Gibbs sampling.

MCMC by Metropolis-Hastings. The key insight of Markovian sampling tech-
niques is to allow the proposal density for the next sample to depend upon the value
of the last sample, or in Markovian parlance “The current state of the Markov Chain”.

q(x) becomes q(z'; z®), where 2’ is the new proposal and z(® is the current state.

Figure 3.3: Successive jumps of the MH algorithm in one dimension.

The MH proposal density may have any form although, in this thesis, Gaussian

distributions centred on the current state are always chosen. Figure 3.3 shows the
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proposal densities for two successive jumps of the Markov chain. A new state, ' is

proposed from the proposal density and accepted with probability:

p* (') q(a’; zV)) ) (3.17)

Paccept = Min (1’ p*(x®)g(z®; z")

If the step is accepted, the chain moves to 2/, ("1 = 2/, otherwise the chain stays at
z® 2t = £ Note that a rejected step results in the recurrence of the previous

step in the list of accepted samples.

If g(2'; 2(")) is chosen as a positive function, i.e:

q(2';2) >0 Vi’ | (3.18)

it can be shown (53) that the distribution of accepted samples will converge on

the distribution of interest.

Note that, unlike in rejection sampling, the accepted states in any Markovian sam-
pling technique are not independent; they are autocorrelated. However, also unlike
in rejection sampling, the sampling efficiency need not depend on the dimensionality
of the sampling problem. In high dimensional cases, either the proposal density may
be narrowed until a satisfactory acceptance rate is obtained or, in fact, the different
dimensions may be sampled from successively, each with their own proposal density,
effectively reducing the multi-dimensional problem to a series of one dimensional prob-
lems. This second strategy is referred to as Metropolis-Hastings by single component

jumps (47).

Gibbs Sampling In multi-dimensional problems, if it is possible from the condi-
tional density on a parameter or parameter set; i.e. if it is possible to sample from
p(z|.), where . represents the data, the model and every parameter in the model with
the exception of z, then the choice of proposal density in the MH algorithm may be
avoided completely. Gibbs sampling is simply MH single component sampling where

the proposal density for each parameter z; is the conditional density on z;. Under
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these conditions, substitution into equation 3.17 reveals that every proposed sample is

accepted.

Returning to Bayesian nomenclature, we may derive the full conditional distribution
on any parameter from the joint distribution of all parameters and data, p(©, Y| M) =
p(Y|©, M)p(©| M), the numerator in Bayes’ equation. The full conditional for com-

ponent 7 is given by:
P(Y,0|M)

P00, Y, M) = P(Y,0 ;M)

(3.19)

where, 0_; refers to all parameters with the exception of #;, and because the denomi-

nator does not depend on 6; this becomes:

Hence, to obtain the full conditional, we may write down the full joint distribution
P(6,Y, M) as a product of one or more factors and pick out the terms which involve
6;. If it is possible to sample from the unnormalised full conditional p*(6;|6—;,Y, M)
then Gibbs sampling is also possible. In fact it is common practice to choose prior
distributions which are conjugate to the generative likelihood (see (46)) to ensure that

it is possible to sample from the full conditional.



Chapter 4

Uncertainty in Diffusion Imaging

Uncertainty and its representation have an important role to play in any situation
where the goal is to infer useful information from noisy data. In Diffusion Weighted
MRI (DWMRI) scientists attempt to infer information about, for example, diffusion
anisotropy or underlying fibre tract direction, by fitting models of the diffusion and
measurement processes to DWMRI data (e.g. (35; 38)). In this scheme there is un-
certainty caused both by the noise and artifacts present in any MR scan, but also by
the incomplete modelling of the diffusion signal. That is, the true diffusion signal is
more complicated than we choose to model. This additional complexity in the diffusion
signal appears as residuals when we fit a simple model to the data, causing additional
uncertainty in the model parameters. All of the uncertainty in these parameters may

be represented in the form of probability density functions (pdjfs).

In this chapter, we show how the Bayesian estimation techniques described in chap-
ter 3 may be applied to models of the molecular diffusion process, as measured by
diffusion weighted MRI. The approaches described here are applicable to and useful
with any model which might be used in diffusion imaging. In fact, even in seemingly
“model-free” environments such as g-space imaging (see chapter 2), there is uncer-
tainty associated with the recovered estimates, and Bayesian approaches could usefully

be applied to represent and understand its effect.

The distributions on parameters in a diffusion model are of great significance when

42
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making inference on the basis of these parameters. Inference may be at a group level;
for example there have been studies showing reduced anisotropy in groups of Multiple
Sclerosis patients, in comparison with groups of normal subjects (e.g. (39)). However,
inference may also be within a single subject. There have been many recent papers
(e.g. (3; b; 4)) describing techniques for using parameters from a diffusion tensor fit
to follow major white matter pathways in the brain. In chapter 5 we will show how
the distributions derived in this chapter may be used to examine the effect of local

uncertainty on the location of these global pathways.!

4.1 Models of Diffusion

In this section we present 3 models of the local diffusion process. The first is the
familiar diffusion tensor model (2), which models the local diffusion as a 3 dimensional
Gaussian. Then we choose two different models which attempt to model underlying
fibre structure in a voxel and, from this, predict the diffusion weighted signal. The first
of these is a simple partial volume model allowing for a single fibre direction mixed
with an isotropically diffusing compartment in a voxel. The second is a parametrised
model of the transfer function between a distribution of fibre orientations in a voxel
and the measured diffusion weighted signal. We infer on the first two of these models,
using MCMC to estimate the posterior distributions on parameters of interest. We
present detailed results from a single white matter voxel showing recovered distributions
from both models. We go on to present a validation study, comparing distributions

throughout a slice with those recovered from empirical measurements of uncertainty

(55).

LA preliminary version of the material in this and the following chapter has been published in
Magnetic Resonance in Medicine(12)
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4.1.1 The Diffusion Tensor Model

The diffusion tensor has often been used to model local diffusion within a voxel (e.g.
(2; 56; 57)). The assumption made is that local diffusion may be characterised with
a 3 Dimensional Gaussian distribution (2), whose covariance matrix is proportional to
the diffusion tensor, D. The resulting diffusion weighted signal, u; along a gradient

direction r;, with b-value b; is modelled as:

i = Spexp (—b;r] Dr;), (4.1)

where S is the signal with no diffusion gradients applied. D, the diffusion tensor is:

When performing point estimation of the parameters in the diffusion tensor model, it
has been convenient to choose the free parameters in the model to be the 6 independent
elements of the tensor, D,, — D,,, and the signal strength when no diffusion gradients
are applied, Sy. This parametrisation allows estimation to take the form of a simple
least squares fit to the log data. When sampling, however, our choice of parametrisation
is far less constrained by our estimation technique. The parameters of real interest
in the tensor are the three eigenvalues, and the three angles defining the shape and
orientation of the tensor. By choosing these as the free parameters in the model , not
only do we give ourselves immediate access to the posterior pdfs on the parameters
of real interest, but we also allow ourselves the freedom to apply constraints or add
information exactly where we would like to. As a simple example, as will be seen later,
a sensible choice of prior distribution on the eigenvalues makes it easy to constrain

them to be positive. So the Diffusion Tensor is now parametrised as follows:

D =VAVT, (4.3)
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where
A 0 0
A=]0 ) 0 (4.4)
0 0 X

and V rotates A to (0, ¢,1), such that the tensor is first rotated so that its principal
eigenvector aligns with (0, ¢) in spherical polar coordinates, and then rotated by

around its principal eigenvector?.

The noise is modelled separately for each voxel as independently identically dis-
tributed (iid) Gaussian. with a mean of zero and standard deviation across acquisitions
of 0. The probability of seeing the data at each voxel Y given the model, M, and any

realisation of parameter set, w = (0, @, ¥, A1, A2, A3, So, o) may now be written as:

P(Ylw.2) = [[Ple,M)

P(yilw, M) ~ N (o) (4.5)

where n is the number of acquisitions, and y; and p; are the measured and predicted
values of the i! acquisition respectively. (Note that throughout this chapter, i will be

used to index acquisition number).

Mi = S() exp —bZI';TDI'Z (46)

Thus, the model at each voxel has 8 free parameters each of which is subject to

a prior distribution. Priors are chosen to be non-informative, with the exception of

2Note: This may seem an odd way to span the angular space. The reason we chose to define these
angles, is that it allows us to sample directly from the principal diffusion direction (6,4)
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ensuring positivity where sensible?.

P8, p,1) o sin(8)
’P()q) = 7)()\2) = ’P(/\g) ~ P(CL,\, b)\)
1
,P(F) ~ F(CLJ, ba) (47)
Parameters a¢ and b in the Gamma distributions are chosen to give these priors a
suitably high variance such that they have little effect on the posterior distributions
except for where we ensure positivity. Note that the non-informative prior in angle

space is proportional to sin(f) ensuring that every elemental area on the surface of the

sphere, 0 A = sin(0)000¢ has the same prior probability.

4.1.2 A Simple Partial Volume Model.

Here we take a slightly different approach to modelling in DWMRI. Instead of mod-
elling the diffusion shape directly, we attempt to build a model of the underlying fibre
structure which predicts the diffusion shape, and hence the MR measurements. The
simplest such model of fibre structure is to assume that all fibres pass through a voxel
in the same direction. Assuming no diffusion-diffusion exchange, this leads to a simple
two compartment partial volume model. The first compartment models diffusion in
and around the axons, with diffusion only in the fibre direction. The second models
the diffusion of free water in the voxel as isotropic. One consequence of this model
is that the diffusivity (and hence the restriction to water diffusion) in all directions
perpendicular to the fibre axis is constrained to be the same. This is very different to

the Diffusion Tensor model, where any ellipsoidal diffusion shape may be modelled.

3A description of the ' distribution may be found in the appendix at the end of this chapter
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The predicted diffusion signal is

pi = So((1— f)exp(—b;d)

+f exp(=bidr;" RAR ;) (4.8)

where d is the diffusivity, b; and r; are the b-value and gradient direction associated
with the " acquisition, f and RARY” are the fraction of signal contributed by, and

anisotropic diffusion tensor along, the fibre direction (6, ¢). That is A is fixed as:

and R rotates A to (0, ¢):

Again noise is modelled as 72d Gaussian:

P(Ylo, M) = [[Plulo, )

Plyilw, M) ~ N (pi, o), (4.10)

where the parameter set w now has 6 free parameters (o, S, d, f, 8, ¢). Each of these
parameters is subject to a prior distribution, which is chosen to be non-informative

except for where we ensure positivity:

P(6, §) o sin(6)
P(So) ~ U(0,00)
P(f) ~U(0,1)
P(d) ~ T(ag, ba)

P(=) ~ [(ay, by). (4.11)
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4.1.3 Increasing the Complexity - A Distribution of Fibres?

In the partial volume model presented above, only a single fibre orientation is modelled
in each voxel. In fact, there will be a distribution, H (6, ¢), of fibre orientations in the
voxel. In order to estimate this distribution we must build a model which, given this

distribution, could predict the Diffusion Weighted MR measurements.

Such a model clearly requires some assumptions. We start by assuming that each
subvoxel has only one fibre direction through it and that the MR signal is the sum
of the signal from arbitrarily small subvoxels, and that the signal from each subvozel
behaves as described by Equation 4.8. (Note that this is a strong assumption to make,
but it is explicit in the model. Any other model of the local diffusion characteristics of

a single fibre orientation may be used as a replacement.)

Htotal = Z Hj (412)

j€sub—vozels

where fi;04; is the vector of MR signal from the voxel at each gradient direction and

strength, and 1, is the same vector for each sub-voxel.

If we now consider, instead of the individual sub-voxels, the set ©® of major direc-
tions (0, ¢) in these subvoxels (note the discretisation of ©®), then Equation 4.12 is

identically equivalent to (see equation 4.8):

p= > > % [(1 = f;) exp (—bidj)+

(0,0)c0® \ jeVhy

fj exp (—bide'ZTRQ(pARZ;I'Z’)] (413)

where Vy, is the set of all voxels whose principal fibre direction is (6, ¢) and N is the
number of subvoxels. This equation, although fearsome at first sight, is actually very
straight forward. The first part of the argument to the summation (on the top line)
represents the signal due to all of the isotropic compartments, and the second part

represents the signal due to all of the fibre compartments. If we now further assume
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that Sp (the signal with no diffusion gradients applied) and d (the diffusivity) are
constant across the voxel, then the inner summation (over subvoxels which have the
same principal direction) may be replaced by a constant for the isotropic compartment,
and in the anisotropic compartments, by the distribution function H (6, ¢) defined

earlier. With a little more manipulation it is easy to arrive at:

% = (1— f)exp (—bid) +
0
Y (H(0,9)exp (~bidr] ResARG,1;)) (4.14)

(0,9)c0®

If we then let the sub-voxel size tend to zero we may write:
Bi— (1= f)exp (—bid) +
So
27 ™
f / / H(0, ¢) exp (—b;dr] R ARg,r;) sin(0)dode. (4.15)
o Jo

where 1 — f is now the proportion of the whole voxel showing isotropic diffusion.
Note that the integral is over sin()dfd¢ in order to maintain elemental area over the
sphere. Finally, if we write the gradient direction r; in spherical polar coordinates
r; = [ sin a;cos B; sino;sinf; cos |, and define ; as the angle between gradient
direction, (o, 3;), and fibre direction (6;, ¢;), then the exponent inside the integral

reduces dramatically. We may now write:

WO B) (1 fexp () +

0
2w ™

f/ / H(0, ¢) exp [—bid cos® ;] sin(#)dOd . (4.16)
o Jo

This equation reveals a great deal about the diffusion measurement process. The
real “signal” of interest is H(6, ¢), the distribution of fibres within the voxel. When
we measure the diffusion profile of this signal, we are measuring a version of this
signal which is smoothed in angular space, with a kernel, predicted by this model, of

exp (—bd cos? y). We would like to deconvolve the effect of the measurement process
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from the signal. If we choose to infer on this model in the Bayesian framework, the
resulting posterior distribution of interest will be a distribution on parameters which
describe the fibre orientation distribution (6, ¢). However, we leave the details of this

estimation process, and validation thereof, as future work.

4.2 Local Parameter Estimation: Methods

Data acquisition DT-MRI datasets were acquired on a single male healthy volunteer.
The images were obtained on a 3.0 T Varian Inova scanner using a diffusion-weighted
single-shot EPI sequence. To minimise eddy currents, a doubly-refocused spin-echo
sequence was implemented (58) and diffusion-weighted images were subsequently reg-
istered to the same non-diffusion-weighted reference scan using affine registration (59).
A birdcage radio-frequency head coil was used for both pulse transmission and sig-
nal detection. The diffusion gradients achieved a maximum gradient strength of 22
mTm~. Each data set consisted of 3 non-diffusion-weighted and 60 diffusion-weighted
images acquired with a b-value of 1000 smm 2. The diffusion gradients were uniformly
distributed through space using the optimised scheme proposed by Jones (33). Each
set of images contained 42 contiguous slices with a 2.5 mm thickness. A half k-space
acquisition was performed with a matrix size set to 62 x 96 and a field of view of
240 x 240mm?. The images were interpolated to achieve a matrix size of 128 x 128 and
a final resolution of 1.875 x 1.875 x 2.5mm?. To minimise motion artifacts, peripheral
gating was used such that triggering occurred on every cardiac cycle. The echo time
was set to 106 ms while the effective repetition time was 14 R-R intervals. The total

scan time for each dataset was approximately 15 minutes, depending on heart rate.

Estimation MCMC estimation was performed for the diffusion tensor model and for
the simple partial volume model. In both cases parameters were initialised with a least
squares diffusion tensor fit. The Markov Chains were then jumped 500 times without

sampling as a “burn-in” (see (53)), followed by 2000 times, sampling every second jump,
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to give 1000 samples. A single jump of the parameter set consisted of independent
jumps of each parameter. In both models samples were drawn from the precision
(0—12) with a Gibbs sampler, and from all other parameters with Metropolis Hastings
samplers. Proposal distributions for Metropolis Hastings parameters were zero mean
Gaussians with standard deviations tuned adaptively to give a jump acceptance rate of
0.5. The full conditional distributions for the Gibbs sampling of the precision in both
models are given in the appendix at the end of this chapter. Computation time for

diffusion data with 63 acquisitions is approximately 0.3 seconds per voxel on a Pentium

IV 2GHz. Voxels are processed independently, so computation is easily parallelised.

4.3 Local Parameter Estimation: Results

Example distributions from a single voxel. Figure 4.1 (a) and (b) show samples
from the marginal posterior distributions on # and ¢ from the diffusion tensor model.
The voxel was chosen from the splenium of the Corpus Callosum. (c) shows (a) and
(b), plotted as a joint histogram around the surface of a sphere. This is then the
joint marginal posterior distribution of # and ¢ or the marginal posterior distribution
of principal diffusion direction (PDD). Note how narrow this distribution is. This
represents a high confidence in our calculated PDD, which is as predicted in an area of
dense white matter such as the corpus callosum. Figure 4.2 (a) and (b) show samples
from the marginal posterior distributions on # and ¢ from the simple partial volume
model. The same voxel was chosen as in Figure 4.1. Again (c) shows (a) and (b),

plotted as a joint histogram around the surface of a sphere.

Validation: Comparison with empirical measurements. The posterior pdfs on
the parameter estimates, in either of the above models, characterise our uncertainty
in these parameters. In (55), Jones proposes an empirical method for estimating this
uncertainty. Following this method, we acquired 3 repeats of diffusion data with 63

gradient directions and bootstrapped, to create 1000 datasets of different combinations
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Figure 4.1: Samples from marginal posterior distributions of the diffusion tensor model in a white
matter voxel. (a) shows samples from the marginal posterior distribution on 6. (b) shows samples from
the marginal posterior distribution on ¢. (c) shows (a) and (b) plotted around a sphere, representing
the marginal posterior distribution on principal diffusion direction.

(a) (b) (©)
Figure 4.2: Samples from marginal posterior distributions of the partial volume model in a white
matter voxel. (a) shows samples from the marginal posterior distribution on 6. (b) shows samples from

the marginal posterior distribution on ¢. (c) shows (a) and (b) plotted around a sphere, representing
the marginal posterior distribution on principal diffusion direction.

of these repeats. We fit a diffusion tensor at each voxel in each of these new datasets,
and calculated the uncertainty between the 1000 principal eigenvectors at each voxel.
This uncertainty is measured as the size of the 95% confidence angle from the mean

direction.

Using only one of these 1000 datasets we drew 1000 samples from the posterior
pdf on principal diffusion direction at each voxel under both the diffusion tensor, and
simple partial volume models. From these samples, we computed the same 95% angle

from the mean direction.

Figure 4.3 shows these 95% angles for the diffusion tensor model in (a), and the

partial volume model in (b). (c) shows the same angles predicted by Jones’ method.
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Figure 4.3: 95% uncertainty values (in degrees), predicted from the Diffusion Tensor model (a), the
partial volume model (b), and Jones’ empirical method (c). (d) shows a mask of the corpus callosum
used in some calculations

There are various factors to consider when comparing these results. The first is that
the empirical method in (c) is not necessarily “ground truth”. It has errors associated
with it due to subject motion and interpolation related effects, but also, more subtly,
due to the dependence within the bootstrapped datasets. This is likely to cause an
underestimate in the measured uncertainty. The second factor is the difference in the
two models. (a) and (c) predict uncertainty levels in the principal eigenvector of a
diffusion tensor model. (b) predicts the same thing for the less flexible partial volume
model. In areas of complex fibre structure, the partial volume model, which has only
one fibre direction available to it, is forced to represent this structure as uncertainty
in the single direction. (This will turn out to be extremely useful when trying to do
tractography, as will be seen in chapter 5.) In contrast, the diffusion tensor model
will tend to account for complex fibre structure in a voxel not only with uncertainty
in the principal fibre direction, but also with a change in the diffusion profile (i.e. a
change in the relative sizes of the three eigenvectors.) For this reason we would predict
that, in regions of complex fibre structure, the partial volume model would show more
uncertainty in principal diffusion direction than the diffusion tensor model. We would
expect the two models to predict very similar uncertainties in regions of high fibre

co-alignment, such as in the corpus callosum (Figure 4.3 (d)).

The mean 95% confidence angles within the brain for the three methods are: diffu-
sion tensor model and MCMC (a) 35.4°, partial volume model and MCMC (b) 36.0°

and diffusion tensor model with empirical measurements (Jones)(c) 33.9°. We further
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compare any two of these three methods by computing their absolute difference as a

fraction of their mean value at every voxel, defining fractional deviation (Table 1):

|A— B
FD(A, B) = FD(B, A) = 2
(4, B) (B,A)=2x———
A B C A B C
0.10 (0.08) | 0.15 (0.11) | | A 0.04 (0.03) | 0.13 (0.11)
0.10 (0.08) 0.20 (0.14) | | B | 0.04 (0.03) 0.12 (0.09)
0.15 (0.11) | 0.20 (0.14) C | 0.13 (0.11) | 0.12 (0.09)

Table 1:Fractional Deviation values between the three methods in the
whole brain (left) and within the Corpus Callosum (right). Inside each

cell is the mean with the median in parentheses.

Predictions of uncertainty by MCMC on the two models are within 10% of each
other throughout the brain, and within 5% in the callosal mask, showing, as predicted,
very similar uncertainty where fibres are highly co-aligned, and slight differences in
uncertainty in other areas. With the diffusion tensor model, uncertainties predicted by
MCMC are within 15% of those predicted by the empirical method when considering
the whole brain, and 13% when only considering the corpus callosum. These differences

are small and may be due to errors in either or both approaches.

4.4 Discussion

In general, analysis of diffusion weighted data has involved the fitting of a model of
local diffusion to the diffusion weighted data at each voxel. This model may assume
that local diffusion is Gaussian in profile (the Diffusion Tensor model (2)) or may allow
a more complex structure for local diffusion (e.g. a spherical harmonic decomposition
(60; 61)). However, in all cases, the assumed model is of the diffusion profile and not

of the underlying fibre structure, and any analysis which has occurred after the fitting
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of this local model has made the assumption that the parameters in this model are

known absolutely.

There are two important, but separate issues here. The first, is that the parameters
of real interest to the scientist are ones which relate directly to the underlying fibre
structure, and not to the diffusion profile. These underlying parameters may have
convincing markers within the fitted diffusion profile (for example anisotropy measures
(62; 38) from the diffusion tensor fit have been shown to be a marker for collinearity of
fibres within a voxel), but any attempt to recreate the fibre structure from these profiles
is essentially an educated guess. There has been no model proposed to predict how
a specific structure or distribution of fibre directions within a voxel will reflect itself
in the measured diffusion weighted NMR signal. The second issue is that, even when
fitting a model of local diffusion, the resulting parameters have uncertainty associated
with them. Factors such as noise in the NMR signal (both physical and physiological)
and, crucially, the inadequacy of the proposed model, lead to this uncertainty which

should be incorporated in any further processing (such as tractography schemes).

In this chapter we have presented a method for the full treatment of this uncertainty.
We have shown how, using Bayes’ equation along with well established methods for its
numerical solution, it is possible to form a complete representation of the uncertainty
in the parameters in any generative model of diffusion, in the form of posterior proba-
bility density functions on these parameters. We have applied this Bayesian estimation
technique to two simple local models of diffusion, the diffusion tensor model, and a
simple partial volume model, with only a single anisotropically diffusing direction in
the voxel. We have examined the results in these two cases, comparing the posterior

distributions with empirical measurements of uncertainty.

However, MCMC estimation gives us a great deal of flexibility in our choice of
model. In section 4.1.3, we introduce the idea of modelling a distribution of fibres,
or a fibre structure within a voxel. The additive nature of the NMR signal allows
us, with certain assumptions, to make predictions of the diffusion weighted signal,

given knowledge of the underlying fibre structure. FEffectively, we have proposed a
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parametrised transfer function between true fibre structure and diffusion signal. By
proposing parametrised models of fibre structure it should be possible to estimate
simultaneously the posterior pdfs on the parameters in this transfer function, and on
those in the fibre model itself. This estimation procedure is left for further work, but

the theory is laid out in section 4.1.3.

The issue of uncertainty in principal diffusion direction has been raised before. As
we saw in section 4.1.2, in (55), Jones proposes a method for the empirical measure-
ment of this uncertainty. This method involves acquiring a number of repeats (e.g. 3)
of the complete acquisition sequence. Each repeat has a number (e.g. 60) of measure-
ments, each acquired with different diffusion gradient directions. By bootstrapping
these repeats, it is then possible to create many, (e.g 1000), new data sets, each of
which is a different combination of the original repeats. By measuring the variability
in principal diffusion directions between these new datasets, it is possible to estimate
the uncertainty in this PDD in any one of them. Jones’ method benefits from mak-
ing no distributional assumptions about the noise in the image. In our method, we
make the assumption that the profile of image noise between acquisitions is Gaussian
with the pdf on standard deviation o estimated at each voxel (see, for example, equa-
tion 4.10). By taking many repeats of the same measurements, Jones is able to avoid
the need for such an assumption. However, there are also disadvantages with Jones’
method. Firstly, and most clearly, it requires more acquisition time. In order to col-
lect 3 repeats of the same data, 3 times as much time is needed. Secondly, subject
motion and registration related interpolation effects are likely to cause small errors
in the estimated uncertainty. Thirdly, and most importantly, the 1000 datasets from
which the uncertainty is estimated are not independent. They are all created from a
small number of original repeated acquisitions. The effect of this is likely to be an
underestimate of the uncertainty on PDD. This issue is not fully explored in (55). In
spite of these differences, in section 4.1.2 we show a pleasing correspondence between

the uncertainties predicted by the two approaches.

This chapter has highlighted and distinguished three separate distributions which



4.5 Appendix 57

are of interest to the diffusion imaging experimenter. The first is the well known dif-
fusion propagator: The probability distribution on molecular displacement in a voxel
that is modelled by a Gaussian in DTI experiments. The second is the underlying
distribution of fibre orientations within the voxel. This is the distribution which best
describes the local fibre architecture, but it is obscured from us by the diffusion pro-
cess with which we measure it. The third is the conceptual distribution describing
the uncertainty that we must encounter if we choose to measure either of the physical
distributions described above. This third distribution will prove to be of crucial sig-
nificance in the following chapters when we use the parameters derived from diffusion
imaging to trace white matter pathways through the diffusion data field. By main-
taining knowledge of this distribution at each voxel, we are able to generalise diffusion
tractography to the situation where the data is imperfect, increasing the robustness

and interpretability of the tractography process.

4.5 Appendix

4.5.1 Gamma Distribution

x has a two-parameter gamma distribution, denoted by I'(a, b), with parameters a and

b, if its density is given by:

a

P(z|a,b) = FIZa) 1@ le® (4.17)

where T'(a) is the Gamma function. A x? distribution with v degrees of freedom
corresponds to the distribution I'(v/2,1/2). The b parameter is a scale parameter. The
one-parameter gamma distribution corresponds to I'(a, 1). A sample from Ga(a, b) can
be obtained by taking a sample from I'(a, 1) and dividing it by b. Note, that a gamma

distribution has mean = a/b and variance = a/b?
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4.5.2 Full conditional distibution for precision parameters

The full conditional distribution for Gibbs sampling from the precision parameters ;—2

in both models is

n

P(%W, Q_)=T(a+ g b+ % S - w)), (4.18)

=1

where, Y is the data, €2_ is the set of all parameters except o, n is the number of
acquisitions, Y; is the value of the data at the i** acquisition, @ and b are the parameters
in the Gamma prior on the precision, and y; is the value for the i** acquisition predicted
by the model. y;, for the diffusion tensor model is given by equation 4.6, and for the

simple partial volume model, by equation 4.8.



Chapter 5

Global Connectivity Estimation

5.1 Introduction

Ever since (1) reported the tendency for diffusion to be preferred along the mean fibre
orientation in a voxel, the idea of using the information available in diffusion weighted
MR images to infer anatomical connectivity in the brain has caused a great deal of ex-
citement in the neuroscience community, and an associated frenzy of activity amongst
diffusion weighted methodologists. The reason for this excitement is that, currently,
anatomical connectivity in the living human brain is effectively invisible. Even in the
post-mortem human brain, the techniques available reveal only very limited informa-
tion. Injection of fluorescent dyes post-mortem allows tracts to be traced, but only for
distances of the order of tens of millimetres (e.g. (63)). Longer distance connections
can be investigated either by dissection of major pathways, which reveals only the
largest connections, or by histological studies of remote degeneration following a focal
lesion (64), but such work is based on a relatively small number of informative patients
and, even at its best, reveals no information about the route taken by the connection,
only about the existence of a connection between the lesion and the remote degener-
ated site. By far the dominant source of information for neuroscientists interested in
anatomical connectivity in the human brain has been the non-human primate litera-

ture. Sacrificial tracer studies in the non-human brain can reveal information about

99
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focal connections between distant points in the brain. Such studies have revealed a
great deal but are extremely time consuming. Moreover, knowledge of connectional
anatomy in non-human primates does not necessarily imply knowledge in the human
brain. The human brain has many functions which are different to those of the non-
human brain and the associated anatomy is likely to have different organisation. For
example, consider Broca’s area in the language system. In the human brain, lesions to
Broca’s area impair aspects of speech production (65). In the intact brain, activity in
this area (BA44/45) is readily evoked by language tasks (66). Broca’s area is dedicated
to function which are uniquely human, and therefore although its evolutionary precur-
sors can be studied anatomically in non-human primates (67), a true understanding of

the anatomy of the area can only come from human studies.

The hope is not only that diffusion imaging will provide a unique insight into con-
nections in the normal human brain, but also that the ability to probe fibre connectivity
non-tnvasively will provide new insight into the understanding and diagnosis of many

neurological disorders.

In chapter 4 we outlined techniques for estimating, at each voxel, probability dis-
tributions on every parameter in the chosen model of diffusion. In this chapter we
describe a framework for using these local pdfs to tackle the problem of estimating
anatomical connectivity from a statistical point of view. That is, we will examine the
effect of uncertainty in local parameter estimates on the fibre trajectories recovered
from diffusion tractography. In chapters 6 and 7 we will show examples which both
validate the techniques presented here, and demonstrate how performing tractography
in a probabilistic fashion allows us to address new and interesting questions which are

inaccessible to traditional deterministic tractography routines.
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5.2 Diffusion Tractography

5.2.1 Streamlining

The most popular method for inferring connectivity from DT data is also the simplest.
Cursory inspection of a map of principal diffusion directions (figure 5.1) clearly reveals
2 dimensional trajectories through the data. Streamlining tractography (3; 5; 4; 68)

follows these trajectories in 3 dimensions to reconstruct fibre pathways.

Figure 5.1: Map of projection of principal diffusion directions into slice plane, overlaid on fractional
anisotropy in normal brain.

The mathematics behind the streamlining approach are laid out in Basser et al (5),
where a white matter fibre tract is represented as a 3D space curve r parametrised
by the distance s along the fibre. The evolution of r is described by the differential

equation

= t(s). (5.1)

where t(s) is the unit tangent vector to r(s) at s. If the principal diffusion direction

lies parallel to the orientation of the underlying fibre tract then the tangent vector t(s)
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may be equated up to a sign with the unit eigenvector €; evaluated at position r(s):

t(s) = e1(r(s)). (5.2)

The vector geometry can be seen in figure 5.2.

z t(s)
r(s+ &)
()

£((9)

X

Figure 5.2: Representation of a white matter fibre trajectory as a space curve r(s). The local tangent
vector t(s) is identified with the eigenvector €;(r(s)), associated with the largest eigenvalue of the
Diffusion tensor D at position r(s)

This set of implicit differential equations is then solved by Euler’s method giving:

r(s1) ~ r(so) + aer(r(so)) (5.3)

with « small and r(0) = ry.

The differences between the streamlining approaches proposed by Basser et al.(5),
Conturo et al. (4) and Mori et al. (3; 68) centre around two key issues in solving
the differential equations: How to interpolate the data field D(r(s)) and when to stop
following the trajectory. Conturo et al. uses trilinear interpolation to interpolate the
tensor field, calculates the principal eigenvector and continues until reaching a voxel of
anisotropy lower than some threshold A,. Mori et al. use this same algorithm, except
they choose a nearest neighbour interpoloation scheme. Basser et al. fits splines to
generate a continuous approximation to the tensor field and tracks until one of the

following occurs.

e 1.The tract enters a region of low anisotropy.



5.2 Diffusion Tractography 63

e 2. The radius of curvature of the tract is below 2 voxels.

e 3. The principal diffusion direction in the next voxel is not the eigenvector most

collinear with the tract.

Excellent examples of the success of these algorithms in reconstructing major fibre
systems can be seen in figure 5.3. A and B, taken from (69) show close correspondence
between an in-vivo DTI based reconstruction (A) and a drawing from post mortem
dissection (B) of fibre systems around the human brainstem and cerebellar peduncles.
Figure 5.3 C, taken from (8) shows a beautiful in-vivo reconstruction of the human

callosal system.
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!
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Figure 5.3: ( A,B taken from (69)) (A) In-vivo DTT tractography in the fibres around the human
brainstem and cerebellar peduncles. (B) drawing from post mortem dissection of the same fibre
systems. In both images, the cortico-spinal tract is shown in red, the medial lemniscus in blue, the
inferior cerebellar peduncle in green, and the superior cerebellar peduncle in pink. (C) (taken from
(8)) In-vivo reconstruction of the human callosal system.

However, in order for these streamlining algorithms to produce a faithful represen-
tation of the underlying fibre anatomy two key assumptions must be made. First we

must assume that the underlying vector field along the pathways is smoother than the
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resolution of the diffusion weighted image. If this were true, then a noise-free PDD field
would contain all the information necessary to reconstruct the anatomical pathways
from the data. Second, we must assume that the PDD field which we have measured is
a faithful representation of the true PDD field. That is, we must assume that we have
a noise-free measurement process, or that noise has a negligible effect on the recovered
PDD field. These are strong assumptions to make, and tend to hold only in specific
areas of the brain such as large homogeneous white matter tracts (See later on in this

chapter, and chapter 8 for more discussion on this topic).

For these reasons such studies have been limited to pathways easily seen by post-
mortem dissections, and have therefore not as yet led to any new discoveries in Neuro-
science. Furthermore, between-group comparisons have proved difficult as streamlin-
ing methods have provided only a qualitative description of the recovered trajectories,
with no quantitative measure of either strength of, or confidence in the connections

described.

5.2.2 Distributed Methods

Streamlining methods, as described above, account only for point-to-point correspon-
dences between the seed and end points, recovering what may be (very ambitiously)
described as an “axonal pathway” between the two. However, fibre bundles of the
same order of magnitude as the voxel size (~ 2 x 2 x 2mm? at present) do not main-
tain point-to-point correspondences; they may branch (and merge) in such a way that
axons passing through a single seed voxel may terminate in cortical voxels which are
far apart. Furthermore, the presence of noise in the image means that even if the
underlying fibre bundle did maintain a point-to-point correspondence, there would be
uncertainty in the measurement process such that there would be some probability
that the underlying white matter tract followed a path different from that predicted
by the principal diffusion directions. Distributed methods attempt to account for these
effects by estimating a likelihood for the connection between a seed point and every

other point in the brain.
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Distributed methods proposed to date include simulating a diffusion process through
the data field (70), using the “fast marching” algorithm (71) to expand a volume pref-
erentially in directions of principal diffusion (72), and using simulated annealing to find
the lowest cost path through the data from every potential target voxel to the seed
voxel (16). Each of these methods has its own specific advantage and disadvantage, but
they all suffer from the same overriding problem: They all either assume some heuristic
local relationship between diffusion profile and the orientational distribution of fibres in
the voxel (e.g., in (70), it is assumed that the fibre distribution is fODF(r) oc r'Dr)
or some heuristic bias towards pathways with low curvature (e.g. the cost function
in (72) includes a term penalising moves according to their local curvature), or (in
most cases) both. This makes it extremely difficult to interpret the resulting “fibre”

pathways.

5.3 A Bayesian’s Perspective

In this and the following sections we will consider the streamlining problem from a
probabilistic perspective. We will outline a method to use the local pdfs described
in the previous chapter to compute global pdf on connection between a seed location
and every voxel in the brain. The mathematical descriptions laid out here constitute
the theory behind performing diffusion tractography in the presence of uncertainty in
local fibre orientation and form the heart of the diffusion tractography approach used

to generate the results in chapters 6 and 7.

Throughout these sections we consider that we have available to us at every voxel
a probability density function describing our belief in the underlying fibre orienta-
tion such as those derived in the previous section P((0, ¢).,|Y,,), where subscript z;
refers to the i voxel, and (6, ¢) are spherical polar coordinates describing fibre ori-
entation. At any point in the following mathematical derivations, if these voxelwise
pdfs are considered to be infinitely narrow, the probabilistic solution reduces to the

equivalent streamlining solution. The following two sections represent a generalisation
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of streamlining tractography to the case where there is uncertainty in the local fibre

architecture.

To illustrate this point, let us first consider this exact case where the pdfs are
infinitely narrow, or the values of the local parameters are known with no uncertainty.
What do they tell us about anatomical connectivity between voxels in the brain? In
the case where our local model describes only a single fibre orientation passing through

the voxel, this global model can only take one form:

.
) If there is a connecting
path through (6, ¢)x
P(3A — BJ(0, ¢)x) = (5.4)
\ 0 otherwise

Where P(3A — B|(0, ¢)x) is the probability of a connection existing between points
A and B, given knowledge of local fibre orientation. Note that, throughout the remain-
der of this chapter, subscript x refers to “every voxel in the brain”. Hence (6, ¢) refers

to the complete set of principal diffusion directions.

In order to solve this equation we may simply start a connected path from a seed
point, A, and follow local fibre orientation until a stopping criterion is met. If B lies
on this path we may say that a connection exits between A and B. This procedure is
at the heart of all “streamlining” algorithms (e.g. (4; 68; 5)), which choose (6, ¢)x to

be the principal eigen-direction of the estimated diffusion tensor at each voxel.

However, in the case where there is uncertainty associated with (6, ¢)x, the proba-
bility distribution describing the unknown parameters in the global model is the joint
posterior distribution on the existence of a connection (3A — B) and all of the local

orientations (6, @):

P((BA = B),(0,9)x|Yx) = P(3A = B|(0,¢)s)P((0, 9)x[Yx)- (5-5)
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Expanding P((0, ¢).|Yx), the joint distribution on the field of fibre orientations, re-

veals:
P((3A — B), (8, ¢)x|Yx) = P(3A — BJ(0 HP D)ol Yz),  (5.6)

where v is the number of voxels. That is, for any specific set of fibre orientations at
every voxel, the probability of this being the true set of fibre orientations, and that
this set of fibre directions implies a connection between A and B is simply the product
of the probabilities of these fibre orientations at each voxel multiplied by 1 if there is

a streamline connecting A to B through these orientations or 0 if there is not.

However, this joint distribution is not the distribution of real interest; we would
really like to be able to answer the following question: “Accounting for all of the
uncertainty in the local fibre orientations, what is the distribution on (3A — B) given
the known data”. We would like to compute the marginal posterior distribution on
the existence of a connection P(3A — B|Yx). Acquiring this distribution requires us
to marginalise the joint distribution in equation 5.6 over all possible fibre orientations
at every voxel. i.e. we must perform the following integrations (See chapter 3 for a

detailed discussion on marginalisation):

PEA = BIY) =

// // (34 = B(0,¢)x HP )a,Ya,) (5.7)

dﬁzldqﬁxl .. dby,doy,

That is, for each possible set of fibre orientations at every voxel (0, ¢)x, we must
incorporate the probability of connection given this (6, ¢)x, and also the probability
of this (0, ¢)x given the acquired MR data. Again, note that if P((f, ¢)x|Y) are delta
functions, equation 5.7 reduces to the streamlining solution P(3A — B|(6, ¢)x). How-

ever, when local fibre orientation is uncertain, P(3A — B|Y") will be non-zero for some
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B not on the maximum likelihood streamlines. That is, the global connectivity pattern

from A, will spread to incorporate the known uncertainty in local fibre orientation.

Even in the discrete data case, equation 5.7 represents a v dimensional (where v
is the number of voxels in the brain) integral over distributions with no analytical
representation (the local pdfs, generated with MCMC), and hence clearly cannot be

solved analytically.

Fortunately, as we have seen previously, even when explicit integration is unfeasible,
it is often possible to compute integrals implicitly by drawing samples from the resulting
distribution. In our case, in order to draw a sample from P(JA — B|Y') we may draw a
sample from the posterior pdf on fibre orientation at each point in space and construct
the streamline (henceforth referred to as a “probabilistic streamline”) from A given
these orientations. Computationally, this process is extremely cheap. Samples from the
local pdfs at each voxel have already been generated, so to generate a single probabilistic
streamline from seed point A, referring to the current “front” of the streamline as z,

it is sufficient simply to start z at A and:

e Select a random sample, (6, ¢) from P(0, ¢|Y) at z.
e Move z a distance s along (6, @).

e Repeat until stopping criterion is met.

This probabilistic streamline is said to connect A to all points B along its path. By
drawing many such samples, we may build the spatial pdf of P(3A — B|Y') for all B.
We may then discretise this distribution into voxels, by simply counting the number
of probabilistic streamlines which pass through a voxel B, and dividing by the total

number of probabilistic streamlines.
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5.4 A Path Integral Equivalence

In the previous section we described an approach to the problem of estimating a global
pdf on connectivity via the dominant streamline from the local pdfs on fibre orientation
computed in chapter 4. This approach came from the Bayesian statistics literature and
relied on a numerical marginalisation over each local pdf, to account for the effect of

this local uncertainty on the estimated streamline.

We will now show that if this same problem was approached by a statistical physicist
knowing nothing of Bayesian statistics, he might arrive at exactly the same algorithm
by considering the probability of connection between points A and B as the integral
over every possible path connecting A and B of the probability of that path (see figure
5.4).
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Figure 5.4: Paths connecting two points, A and B in a data field. The probability that A and B are
connected is the integral over all possible paths of the probability of each path.

Let us consider a continuous path, r(s) (s indexes distance along the path), through
a continuous pdf field, where at every point we have a pdf on fibre orientation. If we
discretise this path into n steps of length [, we may write down the probability on the
existence of this path of length In given the field, F',as:

P(x(s)|lin,F)= lim P(0,p|r(0))P (8, d|r(l))...P(0, d|r((n — 1)I)). (5.8)

[—0,In const
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We may now say that a connection of length In exists from point A to point B if any

path of length In leaving point A passes through point B.

P((3A ), B|F, In) = /V o PEOIE () (5.9)

Substituting equation 5.8 into equation 5.9 gives:

P((3A = B)yl|F, In) = /V - (H’P(Q,¢|r(il))) dr(s),  (5.10)

[—0,In const
In

which describes the probability of a connected path of length [n exists between A and
B in the data field. We may now derive the probability of the existence of any path

by integrating this expression over all path lengths, S.

ds  (5.11)

P(3A — B|F) = /0 [ /v .y (11 PO, 8| (il), F)) dr(s)

Now let us consider a particle, p, in the same field, F', starting from point ry, and
progressing according to the algorithm described in section 5.3 above. What is the
spatial probability distribution on p’s location after i steps, r;,? At each step, p moves

a distance [ according to
P(ri,|rio1,) = PO, plri_s,, F), (5.12)

where (6, ¢) is the direction which takes r; 1, to r;,. The spatial density function after

n independent steps is therefore

P I'np‘l'()p, / H P(I'ip |I'Z'_1p)d1'1p P drn—lp (513)
v

rop —Tnp j—1

and we can easily see that if we let the step size tend to zero, this density is the term
inside square brackets in equation 5.11 with A =rq,, B = r,,. Again, the integration

over S is performed by allowing for any path length m < mn. Hence, the algorithm
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derived in the previous section, results in pathways whos spatial pdf is distributed

according to the path integral pdf of connection.

5.5 Technical Details

5.5.1 Data Interpolation

The sampling technique described in the previous section relies on the local pdfs existing
in continuous space. Unfortunately, we only have access to MR acquisitions, and hence
these local pdfs, on a discrete acquisition grid. We need a technique to generate samples

from the local pdfs at a point not on the grid.

An obvious solution to this problem would be to interpolate the original data (using
a standard interpolation scheme, such as sinc or trilinear interpolation), and generate
the local pdf on fibre orientation given this new interpolated data. This would be
extremely computationally costly, but also, on further consideration, may not concep-
tually be the best thing to do. In the middle of large fibre bundles, where neighbouring
voxels have similar fibre orientations (each with low uncertainty), the choice of inter-
polation scheme will have very little effect. However, in places where neighbouring
voxels may have significantly different orientations, such as at the edge of fibre bundles
or where different bundles meet, such an interpolation scheme will generate a fibre
orientation in between the orientations of the voxels on the grid. More over, the result
of sinc or trilinear interpolation of data which is related to parameters in a highly
nonlinear (e.g. exponent of trigonometric functions) manner is likely to produce in-
terpolated data which does not fit well to the model, and thus the resulting most
probable fibre orientation will be highly dependent on the noise in the measurements
at the grid locations. An alternative to interpolating the data in this fashion is to
choose an interpolation scheme which will pick a sample from one of the neighbouring
voxels on the grid. In a probabilistic system, we also have the opportunity to use a

probabilistic interpolation scheme. That is, we can choose a scheme which chooses the
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data from a single neighbouring point on the acquisition grid, but the probabilities of
choosing each neighbour will be a function, g, of their positions relative to the inter-
polation site. There are many possible functions for g, but we have chosen one which

is analogous to trilinear interpolation. That is, in the z-dimension, the probability

ceil(x)—x

m, and from ceil(x)

of choosing data from floor(x) is g(floor(x)|x) =
is g(ceil(x)|x) = 1 — g(floor(x)|x), and the same in the y and z-dimensions. If a
streamline, z, were to pass through the same point twice, different nearest neighbours

may be chosen, reflecting our lack of knowledge of the true pdf at that point.

5.5.2 Stopping criteria

Algorithms which generate streamlines based on maximum likelihood fibre orientations
(principal eigenvector from a diffusion tensor fit) have tended to require harsh stream-
line stopping criteria based on fractional anisotropy and local curvature (angle between
successive steps). Fractional anisotropy thresholds have tended to be in the range of
0.2-0.4 (e.g. (69)), and curvature thresholds have been as strict as requiring successive
steps to be within 45° (e.g. (5)). These criteria are in place to reduce the sensitivity
of the streamlining to noise in the image, partial volume effects, and other related
problems. The aim is to reduce the possibility of seeing false positives in the results
by only progressing when there is high confidence in fibre orientation, and when the
orientation is anatomically plausible. The downside of these constraints is the limita-
tions that they impose on which fibre tracts may be reconstructed and where in the
brain they may occur. For example deep grey matter structures, despite displaying a
high degree of order in their principal diffusion directions, tend to have low anisotropy
(often below the threshold for streamlining algorithms). Streamlines will also tend to
terminate well before cortex as anisotropy reduces, and uncertainty in fibre orientation

increases.

In such circumstances a probabilistic algorithm has significant advantages. First,
in regions where fibre orientation is uncertain (these often coincide with regions of low

anisotropy), the algorithm has available to it a direct representation of this uncertainty.
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Hence, even though it cannot progress along a single direction with high confidence, it
can progress in many directions. The uncertainty in this area will be represented by
voxels further along the path having lower probabilities associated with them; however
a high probability of connectivity to the seed voxel may still be associated with the
region into which the paths progress. A second useful advantage of a probabilistic
algorithm is robustness to noise. It can be difficult to track beyond a noisy voxel using
a non-probabilistic algorithm as it may initiate a meaningless change in path. However,
with a probabilistic algorithm, paths which have taken errant routes tend to disperse
quickly, so that voxels along these paths are classified with low probability. In contrast
“true” paths tend to group together, giving a much higher probability of connection

for voxels on these paths.

These advantages significantly reduce the need for anisotropy and curvature stop-
ping criteria. The results presented here are generated with no anisotropy threshold,
and with a conservative local curvature threshold of £80° for each sample. This cur-
vature threshold is required, as, without it, the sampled streamlines may track back
along a path similar to one already visited, artificially increasing the probability along
the path. In order to reduce this effect further, we check, at every step, whether the

path is entering an area it has already visited, and terminate those that are.

5.6 Results

5.6.1 Simulations

Data was simulated at each voxel from a diffusion tensor with eigenvalues {1, 0.4, 0.2} x

10 3smm 2, giving a Fractional Anisotropy of 0.65. Real and imaginary noise was

So

SN Data was reconstructed

added in Fourier space with standard deviation of /2 x

via the Fast Fourier Transform, and the absolute value was computed. Local pdfs were
then calculated at each voxel as in chapter 4, and tractography was carried out as

described in the previous sections of this chapter.
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Figures 5.6,5.7,5.8 show samples from the connectivity pdf when tracing through
the linear field in figure 5.5 under different Signal to Noise ratios. In each case (A) did
not perform loop checking as described in section 5.5, and (B) did. SNRs were 4 in
figure 5.6, 8 in figure 5.7 and 15 in figure 5.8. Tracking was carried out over 6 voxels

(=~ 12 steps), to examine the effect of SNR on the resulting distribution.

Figure 5.5: Noise free tensor field for the SNR simulations in the following figures. Tensors have
eigenvalues {1,0.4,0.2} x 10~ 3smm 2. Tractogrpahy is seeded in the central voxel.

xy-plane xy-plane

Figure 5.6: Simulated tracking through tensor field in Figure 5.5 with SNR of 4. (A) Without
loopchecking (B) with loopchecking.
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Figure 5.7: Simulated tracking through tensor field in Figure 5.5 with SNR of 8. (A) Without

loopchecking (B) with loopchecking.
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Figure 5.8: Simulated tracking through tensor field in Figure 5.5 with SNR of 15. (A) Without

loopchecking (B) with loopchecking.

These results are quantitated in figure 5.9 (A) and (B). (A) shows the dependence

of the distribution spread on signal to noise ratio (i.e the effect that image noise has

on the recovered distributions). The standard deviations of position in y (blue) and z

(red) are plotted against SNR after the streamlines have travelled 6 voxels in z. Note

that the spread is greater in y than in z as the simulated diffusion tensors had an

eigenvalue of 0.4 x 1073 in y and 0.2 x 1073 in z. Typical SNR levels in diffusion

weighted images might be around 10-15. (B) shows the dependence of the distribution
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on the underlying diffusion anisotropy of the system - determined by the biophysical
properties of the anatomy and the true orientational distribution of fibres. A SNR of

10 was assumed for these simulations.
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Figure 5.9: Effect of SNR (A) and anisotropy (B) on the spread of the connectivity distribution.

5.6.2 Visual System

Figure 5.10 shows probabilistic tractography in the human visual system. Red to
yellow encodes probability of connection.(a) From a voxel in putative lateral geniculate
nucleus of thalamus (LGN), the connectivity distribution was traced anteriorly along
the optic tract, and posteriorly to the visual cortex, consistent with the well-established
anatomy of the visual system. (b) Seeding a voxel in the optic tract generated a
connectivity distribution that followed two distinct paths (meaning that some of the
multiple pathways generated followed one path, whereas others followed the other
path). One path went through the LGN and on to visual cortex, corresponding to
the optic radiations (as in a). A second path corresponded to the brachium of the
superior colliculus (see axial slice in b). The separation of these two paths can be seen
in the coronal sections in b. The more inferior and medial path follows the brachium
and the more superior path will follow the optic radiation (as in a). Seeding a voxel
in the white matter just lateral to the LGN generated a distribution that travelled

indirectly to the visual cortex, via the temporal lobe, forming Meyer’s loop. The path
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Figure 5.10: Connectivity distributions in the human visual system. (a) shows a distribution seeded
in lateral geniculate nucleus of thalamus (LGN). (b) shows a distribution seeded in the optic tract.
See text for details.

displayed here is a maximum intensity projection over 4 axial slices, overlaid on a single

slice.

5.6.3 A note on interpretation

The implication of accounting for the uncertainty in local fibre orientations, and hence
estimating a spatial probability distribution of connectivity from the seed point, is that
the recovered connectivity distribution is spread in space (see, for example thalamic
pathways in chapter 6). It is tempting to think of this distribution as a distribution
of connections from the seed point. This is not the case. According to the model used
earlier in this section, this spatial pdf represents confidence bounds on the location of

the most probable single connection. It is certainly true that some of the uncertainty
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estimated locally is likely to be due to partial volume effects, such as a spread of fibre
orientations in the voxel, and therefore the presence in the brain of multiple connection
sites from the seed may result in a diffuse spatial pdf. However, while the model of
diffusion at each voxel includes only a single fibre orientation, the global inference is

clearly on a single pathway.

5.7 Discussion

In this chapter we have presented an algorithm for tracing pathways through a vector
field in the presence of uncertainty. We have shown that the pdf on connectivity from
a seed point may be obtained either by considering the integral over all possible fibre
orientations at each voxel ( i.e. by marginalising the joint posterior distribution on
fibre orientation at every voxel) or by considering the integral of the probability of a
path over all possible paths. We have shown that these two integrals are equivalent,
and have developed an algorithm for performing these very high dimensional integrals
in a computationally efficient manner. This algorithm turns out to be similar in nature
to others presented, along with this method, at ISMRM 2002 (73; 74; 75), effectively
repeatedly sampling local pdfs to create streamlines, and regarding these streamlines
as samples from a global pdf. A crucial difference between these algorithms and the
one presented here is that the local pdfs used here are meaningful quantities derived
rigorously from the data and model. Hence we are able to define the global distribution
of interest and show that the algorithm presented converges on this distribution. The
global pdfs recovered are both meaningful and easily interpretable. The methods ref-
erenced above all use heuristic experience-based relationships between the shape of the
fitted diffusion tensor and the assumed local pdfs, making it very difficult to interpret

the resulting distributions.

Section 5.6 shows resulting distributions from both simulated and real data; the
simulations in 5.6.1 explore the relationship between the uncertainty in the fibre tra-

jectories (i.e. the spread of the distribution) and factors including MR noise and
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biophysical complexity. The results in figure 5.9 show these effects quantitatively. In
highly coaligned white matter (FFA > 0.7), with MR sequences typically used for trac-
tography (SNR > 10, ~ 60 diffusion encoding directions), the uncertainty caused by
MR noise is very low ( the distributions have cone angles of only 1 or 2 degrees ). How-
ever, even in good signal to noise conditions, biophysical complexity (and therefore low
underlying diffusion anisotropy ) will cause high uncertainty. This can be seen clearly
in figure 5.10, which shows tractography results in the human visual system. The ma-
jority of the connectivity distributions lie in highly aligned white matter, resulting in
minimal uncertainty in principal diffusion direction. However in (b) which is seeded
in the optic tract, the distribution encounters a fibre split, where the optic tract splits
into fibres progressing to LGN and then the optic radiations, and fibres progressing to
the superior colliculus via the superior collicular brachium. This biological complexity
is reflected as uncertainty in the local pdfs and the connectivity distribution spreads

into both pathways.

The work in this chapter has addressed an important problem in tractography,
namely how to quantify our belief in the resulting fibre trajectories. However, there
are other important problems to solve before diffusion tractography can come close
to the specificity achieved by invasive techniques. The discussion on interpretation in
subsection 5.6.3 touches on some of these problems; belief in the fibre trajectories is
not the quality which scientists would most like to quantify. A quick sample of lo-
cal neuropsychologists reveals “The likelihood of neuronal activity in one area directly
influencing neurons in another”, or (only slightly) more realistically, “The number of
fibres connecting two areas” as quantities of real interest. In order to get closer to these
(in some cases) anatomically meaningful quantifications the most obvious requirement
is that, instead of local pdfs on dominant fibre orientation, we have an estimate of
(at worst) the actual distribution of fibres within the voxel (the fibre orientation dis-
tribution function, or fODF, denoted H(6, ¢) in 4.1.3). Even if this information were
available there would be non-trivial problems to be solved. See chapter 8 for a detailed

discussion on this topic, and on how the framework presented in this chapter will apply
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even when the inference is on objects far more complicated than the location of the

dominant streamline.

Despite these limitations, a probabilistic approach to tractography has significant
advantages over deterministic approaches. The internal representation of uncertainty
within the algorithm allows a probabilistic tractography scheme to continue tracing
robustly through areas of low diffusion anisotropy where conventional methods might
fail. This will prove to be crucial in chapter 6 where connections are traced from
thalamic grey matter all the way to cortical grey matter. The ability to quantify belief
in a meaningful manner significantly increases the interpretability of the tractography
output (“Is this really a pathway or is it just noise - how can we be sure? What other
paths might have been taken under different noise conditions”). Finally, the existence
of a distributed representation of our belief in a pathway allows us to answer questions
which are unavailable to conventional techniques. For example, in chapter 6, we are
able to parcellate thalamic grey matter based on the cortical zone with the highest
probability of connection and in chapter 7 we use similarities between connectivity

distributions to cluster cortical grey matter into functionally discrete subunits.



Chapter 6

Results from The Human Thalamus

Evidence concerning anatomical connectivities in the human brain is sparse
and based largely on limited post-mortem observations. Diffusion tensor
imaging has previously been used to define large white matter tracts in the
living human brain, but has had limited success at tracing pathways into
grey matter. Here we identify specific connections between human thalamus
and cortex using the probabilistic tractography algorithm described in the
previous chapter. Classification of thalamic grey matter based on cortical
connectivity patterns reveals distinct subregions whose locations correspond
to nuclei described previously from histological studies. The connections
that we find between thalamus and cortex are similar to those reported
for non-human primates and are reproducible between individuals. Our
results provide the first quantitative demonstration of reliable inference
of anatomical connectivity between human grey matter structures using

diffusion data and the first connectivity-based segmentation of grey matter.!

2

LA preliminary version of the material in this chapter was published in Nature Neuroscience(13)
2The research in this chapter was carried out in close collaboration with Heidi Johansen-Berg who
appeared as joint first author on the resulting paper.
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6.1 Introduction

The anatomical connectivity pattern of a brain region determines its function (76).
However, although invasive tracer studies have produced a large body of evidence
concerning connectivity patterns in non-human animals (77; 78; 79), direct information
concerning brain connections in humans is very limited. Injection of fluorescent dyes
post-mortem allows tracing of tracts, but only for distances of tens of millimetres
(63). Longer distance connections can be investigated by dissection of major tracts or
histological studies of remote degeneration following a focal lesion (64), but such work

is based on a relatively small number of informative patients.

A specific, important focus for investigation is the thalamus because nearly all in-
coming information to the cortex is routed through this deep grey matter structure.
The thalamus is divided into cytoarchitectonically distinct nuclei which have different
patterns of anatomical connectivity that are well characterised for non-human animals
(80; 81). The ability to identify these cytoarchitectonically distinct nuclei would have
many uses; for example the ability to make specific inferences about thalamic acti-
vations in functional imaging studies and the ability to localise nuclei which are the
targets for functional neurosurgery in movement disorders (82). However, boundaries
between thalamic nuclei that can be visualised histologically (83) are not clear in-vivo
even using contrast-optimised magnetic resonance (MR) imaging (84). If connectivity
information were available locally, it could be used as an alternative method for defin-
ing boundaries between thalamic sub-regions and would provide information directly

relevant to function.

Diffusion imaging characterises the apparent diffusion properties of water (85; 2).
In tissue with a high degree of directional organisation, the self-diffusion of water pro-
tons is different in different directions. In brain white matter the principal diffusion
direction corresponds well with orientation of major fibres in the voxel (36). Recent
developments in DTT techniques have enabled tracing of large fibre tracts in the living

human brain (86; 87; 3; 88; 89; 90; 9). However, as noted in chapter 5, conventional
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‘streamlining’ tract tracing algorithms typically can only progress when there is high
certainty of fibre direction (i.e., when local diffusion anisotropy exceeds a specified
threshold) (3; 90; 9). This has limited their usefulness in defining pathways near grey
matter and thus to their cortical or sub-cortical targets.

Here, using the probabilistic tractography algorithm described in chapter6, we demon-
strate how anatomical connectivity progressing fully into grey matter can be inferred.
We have used this approach to provide a first comprehensive description of the connec-
tions between thalamus and cortex in the human brain in vivo. An additional novel
result of this approach is the discrimination of human thalamic subregions on the basis

of their connections with the cortex.

6.2 Results

6.2.1 Connectivity Distributions

We used a fully automated probabilistic tractography algorithm (see chapters 4 and
5) to form connectivity distributions from individual voxels within the thalamus of a
single subject. From these distributions, we traced pathways all the way to the cortex
(Figure 6.1 a-d). For example, seeding a voxel in the lateral geniculate nucleus (LGN)
generated pathways to the visual cortex and optic tract (Figure 6.1 a). The course of

generated pathways depends on seed point locations (Figure 6.1 b).

6.2.2 Commonly connected thalamic sub-regions

We segmented the cortex into large anatomically-defined regions (see methods) cor-
responding to known connection areas of the major thalamic nuclear groups in non-
human primates (Figure 6.2 a). For every thalamic voxel probabilistic tractography was
used to define probability levels for connectivity to each ipsilateral cortical zone. Each
thalamic voxel then was classified according to the ipsilateral cortical zone with which it

had the highest probability of connectivity. This resulted in clusters of commonly con-
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Figure 6.1: Tracing connectivity distributions from individual seed voxels. Voxels are colour coded
according to whether the probability of pathways travelling through that voxel is high (yellow) or low
(red). (a) From a voxel in putative LGN, the connectivity distribution was traced anteriorly along
the optic tract, and posteriorly to the visual cortex, consistent with the well-established anatomy
of the visual system. (b) Seeding a voxel in the optic tract generated a connectivity distribution
that followed two distinct paths (meaning that some of the multiple pathways generated followed one
path, whereas others followed the other path). One path went through the LGN and on to visual
cortex, corresponding to the optic radiations (as in a). A second path corresponded to the brachium
of the superior colliculus (see axial slice in b). The separation of these two paths can be seen in the
coronal sections in b. The more inferior and medial path follows the brachium and the more superior
path will follow the optic radiation (as in a). Seeding a voxel in the white matter just lateral to the
LGN generated a distribution that travelled indirectly to the visual cortex, via the temporal lobe,
forming Meyer’s loop. The path displayed here is a maximum intensity projection over 4 axial slices,
overlaid on a single slice. (¢) From a voxel in putative Medio-Dorsal necleus (MD), the connectivity
distribution progressed anteriorly to the lateral prefrontal cortex and also, at first posteriorly, around
the posterior edge of the thalamus, and then anteriorly to the anterior temporal cortex. (d) From a
voxel in putative VL, the distribution both ascended to the anterior bank of the central sulcus (M1)
and descended. The descending distribution followed two distinct paths, one entered the cerebellum
and branched, terminating in the cerebellar cortex, the other continued further down the brainstem.
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nected voxels within the thalamus. On the basis of the strong correspondence between
our connectivity-based clusters in the human thalamus, known locations of thalamic
nuclei in humans (83), and connections in non-human primates (80), we propose that
these correspond to different thalamic nuclei or nuclear groups (Figure 6.2). Note,
that the description cannot distinguish between thalamo-cortical and cortico-thalamic
connections as DWI is sensitive only to the orientation of fibre tracts and not to their

anatomical polarity.

In the monkey, the mediodorsal nucleus (MD) is reciprocally connected to the
prefrontal cortex (PFC) (91; 92) via the anterior thalamic peduncle and to temporal
regions including the temporal pole (93), olfactory cortex (94) and amygdala (95) via
the inferior thalamic peduncle. Our results suggest that a similar organisation is found
in the human brain as a large medial, dorsal region of the thalamus had highly probable
prefrontal and temporal connections. We suggest that this region includes MD. Studies
in non-human primates have shown that the ventral posterior nucleus (VP) projects to
primary and secondary somatosensory areas (SI,SIT) (96). We found a similar ventral
posterior region with a strong probability of somatosensory connections (Figure 6.2
b,c) and suggest this corresponds to the human VP. In monkeys, the ventral lateral
(VL) and ventral anterior (VA) nuclei project to primary (M1) and premotor cortex
(PMC) (97). A lateral region, anterior to putative VP, was shown here to have a
high probability of motor cortical connectivity (Figure 6.2 b,c). We suggest that this
region includes VL and VA. In the non-human primate, the lateral posterior nucleus
(LP) and parts of the pulvinar (Pu) project to posterior parietal cortex (PPC) and
extrastriate cortices (80), and medial and inferior parts of the pulvinar are connected
to the temporal lobe (98; 99). In the human brain we found a posterior region that
is connected to these areas, and propose that it corresponds to the LP/Pu complex
(Figure 6.2 b,c). Confidence in the connectivity parcellations was increased by the
demonstration that the pattern of connections was comparable between left and right

thalami (Figure 6.2 b,c).
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Figure 6.2: Connectivity-based segmentation of the thalamus in a single subject. (a) Division of the
cerebral cortex. (b) An axial section based on a histological atlas of the human thalamus with nuclei
outlined by black lines (83). Nuclei have been colour coded according to the cortical zone to which
we predict they would show the strongest connections, on the basis of literature from non-human
primates (80; 91; 92; 93; 94; 95; 96; 97). (c)(d) Classifying thalamic voxels based on the zone with
the highest probability of connection resulted in clusters of commonly-connected voxels. The clusters
correspond to histologically-defined locations of major nuclei (b). The medial, anterior purple area in
c and d is thought to include the mediodorsal nucleus and nuclei within the anterior complex, which
are connected to prefrontal cortex and the temporal lobe. The more posterior purple area is thought
to include parts of the lateral and inferior pulvinar which connect to the temporal lobe. The yellow
area is thought to include the anterior pulvinar and the lateral posterior nucleus which project mainly
to posterior parietal and extrastriate areas. The blue area is thought to include the ventral posterior
lateral nucleus, which projects to somatosensory cortices. The orange area is thought to include the
ventral lateral and ventral anterior nuclei, which project to motor and premotor cortices.

6.2.3 Nuclear subdivisions

We further divided the cortical surface in the left hemisphere (for example, M1 was
separated from PMC, Figure 6.3 a) and re-ran the automated tractography-based seg-
mentation for the left thalamus to test for finer thalamic subdivisions. Within the large
lateral clusters, smaller, distinct regions connecting to the somatosensory cortices, M1,
and PMC were distributed along a posterior-anterior axis (Figure 6.3 b). From the

known anatomy in the non-human primate, in which VP projects to SI/SII (96), VLp
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to area 4 (100), and VLa and VA to lateral and medial area 6 (101), we suggest that
these correspond to VP, VLp, and VLa/VA. On the cortical surface we also separated
PPC and the occipital cortex. We propose that the inferior/lateral area (coloured red
in Figure 6.3 ¢) with most highly probable connections to the occipital lobe corresponds
to the lateral geniculate nucleus (LGN). The posterior region that connects to PPC
(coloured yellow in Figure 6.3) may include LP and anterior and lateral Pu. Medial
to this, there are areas that connect to the occipital lobe and to the temporal cortex
(coloured red and purple, respectively, in Figure 6.3). These may include parts of me-
dial and inferior Pu, which have been shown to connect to ventral and anterior parts

of the temporal lobe in non-human primates (98; 99).

6.2.4 Distribution of thalamic pathways within the internal

capsule

Thalamo-cortical pathways are highly organised within the internal capsule (102). To
test the degree to which we could detect this organisation we used the same tractogra-
phy approach to classify white matter voxels within the internal capsule according to
the thalamic region with which they were most strongly connected. The distribution

of thalamic pathways within the internal capsule was as expected (102) (Figure 6.4).

6.2.5 Probabilistic representation of connections

In figures 6.2 and 6.3, classification of thalamic voxels is generated from the highest
probability of connectivity to cortical targets. However, information is available on
the probability of connectivity to every cortical region for each voxel. Representation
of these probabilities demonstrates that some voxels appear connected to more than
one cortical region (Figure 6.5). For example, in the cluster that we propose may
correspond to VA, some pathways reached PMC and others reached PFC consistent
with the known distribution of cortical connections of this nucleus in the monkey

(91; 103) (Figure 6.5). We also detected PFC connections from the medial pulvinar



6.2 Results 88

Figure 6.3: Connectivity-based segmentation of the thalamus. (a) Division of the cortex. (b)(c)(d)
Classification of thalamic voxels based on probable connections to these cortical areas. We propose the
following: the anterior, superior and medial purple regions (visible in ¢ and d) include some of MD,
which receives inputs from the temporal lobe and parts of the anterior complex (AV) that project to
limbic areas in the medial temporal region; the more posterior and inferior purple regions (posterior
to the red area, visible in b and d) includes parts of the medial and inferior pulvinar that project to
the temporal lobe; the dark blue area includes some of MD, VA and parts of the anterior complex
(AM, AD) that project to the prefrontal cortex; the yellow area includes the anterior parts of the
pulvinar that project to PPC; the pale blue area includes LP and VPL which project to somatosensory
cortices; the orange area includes VLp which projects to M1, the green area includes VLa and VA
which project to premotor areas; the red areas include LGN (visible in coronal section, ¢), parts of the
inferior pulvinar (most inferior red areas visible in sagittal section, d) and some intralaminar nuclei.

(Figure 6.5), again consistent with monkey studies (103).

6.2.6 Paths between thalamus and cortex

Each of the large cortical masks used here includes functionally and anatomically dis-
tinct subregions. Information is also available on pathway targets within each cortical
mask, and the path by which they travel to the cortex. We explored this with con-
nections from MD to temporal lobe. A similar approach could be taken with other

thalamic subregions and cortical areas.
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Figure 6.4: Classification of internal capsule white matter based on connections to putative thalamic
nuclei. Voxels are colour-coded according to the thalamic region in Figure 6.3 with which they show
the strongest connection. The anterior limb of the internal capsule contained probable pathways from
putative MD that terminated in the prefrontal cortex. The posterior limb of the internal capsule
contained, listed anteriorly to posteriorly, pathways from putative VA/VL to premotor cortex, from
VL to motor cortex, from VP to sensory cortices, and from the pulvinar to temporal and visual
cortices.

"

Figure 6.5: Probabilistic mapping of cortical connections. Regions of overlapping connections are
illustrated in green. Probabilistic mapping of connections to prefrontal cortex (pfc) and premotor
cortex (pmc) demonstrates the presence of a region, which we propose corresponds to the ventral
anterior nucleus, with a suprathreshold probability of connections to both regions.
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We generated pathways from all voxels within MD with predominantly temporal
lobe connections (Figure 6.6 a) and found that pathways between MD and the temporal
lobe take at least two distinct paths (Figure 6.6 b) and terminate in different regions

(Figure 6.6 b,c,d).

6.2.7 Internal Medullary Lamina

The classification of thalamic voxels described thus far has been based only on prob-
able connections to cerebral cortex. However, in monkey thalamus there are thalamic
regions with predominantly subcortical connections and only weak or diffuse cortical
connections (80). Similarly, in our data there were regions within the thalamus for
which the probability of connection to cortical grey matter was very small. To better
define these regions that show lower probabilities of cortical connections, we re-ran
analyses with thresholding at various levels (Figure 6.7). As the threshold was in-
creased, a region between the proposed lateral and medial nuclear groups was defined
that did not show suprathreshold connectivity probability to any cortical region (Figure
6.7). Pathways from this region were generated mainly to the ipsilateral basal ganglia
or to contralateral subcortical targets via the corpus callosum. We propose that the
thalamic region defined in this way includes parts of the internal medullary lamina
and the intralaminar nuclei. These nuclei project predominantly to the striatum in the

monkey (105), although they also have diffuse cortical connections (80).

6.2.8 Reproducibility between subjects

To explore the reproducibility of the connectivity-based thalamic clusters between sub-
jects we analysed data from an additional seven subjects. In five out of seven subjects
the resulting clusters were very similar in location, ordering and size to those in the
original subject (Figure 6.2.8). In two out of seven subjects the diffusion data was of
poorer quality and most paths generated from some thalamic regions failed to reach

the cortical masks. However, even in those two subjects, pathways from the thalamus
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Figure 6.6: Paths from thalamus to temporal lobe. (a) Probabilistic mapping of connections to the
temporal (turquoise to blue) and prefrontal (red to yellow) regions or both (green). To investigate
the paths and termination sites of connectivity distributions to the temporal cortex we generated a
representation of pathways from all medial voxels with suprathreshold connections to the temporal
(and not prefrontal) region (i.e. the blue/turquoise area in a). (b) Distributions took two distinct
paths to the temporal lobe. The most probable pathway from this region travels around the posterior
edge of the thalamus, extends anteriorly through the hippocampal formation, then spreads before
terminating in the superior temporal gyrus (temporal pole), the anterior middle temporal gyrus and
piriform lobe (as in Figure 6.1 ¢). A less probable pathway (indicated by arrows in b, ¢ and d) extended
anteriorly and inferiorly along the medial wall of the thalamus, then turned laterally into the amygdala
(c,d). A similar path, which travels from the amygdala via the inferior thalamic peduncle and enters
the anterior head of the thalamus, has been described for the non-human primate (104)
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Figure 6.7: Effects of thresholding thalamic clusters based on the probability of connection to cortex.
Thresholding at probabilities of 10% (a,b), 40% (c,d) and 80% (e,f).

that did reach cortex had a very similar distribution to that observed in the original
subject. Explicit representation of pathway uncertainty provides a good criterion to

limit false positive results using our approach.

6.3 Group Results

6.3.1 Population Connectivity Maps

Connection probabilities to each of 7 cortical masks (as in Figure 6.3) were calculated in
11 subjects. To characterise voxel-wise correspondence in thalamic connections across
subjects quantitatively, we co-registered binarised masks of thalamic regions showing
greater than 25% probability of connection to each of the defined cortical areas. The
resulting group probability maps are centred on localised regions of high probability

(across the group) of connection to each cortical region (Figure 6.9). Note that even
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Temporal

Figure 6.8: Comparison of connectivity-based seg-
mentation of the thalamus between eight subjects
(results from subject 1 are described in greater de-
tail elsewhere in the manuscript). Voxels are colour
coded as in Figure 6.2 if at least 1% of generated
pathways reached the cortex. Brains have been re-
aligned to the same standard brain template and a
single axial slice (at Talairach Z = 0) is presented.
The connectivity-based clusters found in subjects
1-6 were very similar. In subjects 7 and 8 there are
some ‘gaps’ in the thalamus which correspond to
regions where fewer than 1% of pathways reached
any cortical mask. The patterns in these two sub-
jects are similar to those seen in subject 1 when
much higher thresholds were used (see Figure 6.7).

Occipital
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Figure 6.9: Group probability maps. Axial images showing overlap of thalamic sub-regions across
subjects in voxels showing greater than 25% probability of connection to selected cortical mask (indi-
cated in top left of each image) using a colour scale running from red (4/11 subjects) to yellow (11/11
subjects). Slices are taken at the average Z co-ordinate (given in bottom right of each image) across
the left and right hemispheres for the centre of gravity of that cluster.

the smallest connectivity-defined regions (e.g. projections to M1) show areas of high

probability, revealing a high degree of consistency across the population. Figure 6.10

shows a complete Talairach atlas of a binarised version of Figure 6.9.

e il
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Figure 6.10: Axial slices through the whole thalamus showing edges of thresholded group probability
maps for connection to each cortical region.
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Figure 6.11: Correspondence between relative volumes based on cytoarchitectonic data and on DWI.
Data is shown for the left (filled circles) and right (open circles) hemispheres. Regression lines are
shown for the left (solid line) and right (dashed line) hemisphere data separately.

6.3.2 Volumetric Measurements

Having established evidence for between-subject reproducibility of our thalamic parcel-
lation, we further tested the hypothesis that the sub-regions found in this way (i.e., the
individual subject CDRs) correspond to thalamic nuclei or nuclear groups. The close
correspondence between the relative locations of our CDRs and cytoarchitectonically-
defined nuclei in the thalamus post-mortem (Figure 6.3) supports this claim. We also
compared the relative volumes of individual connectivity-defined regions and cytoar-
chitectonically -defined nuclear groups in (83). We found a strong correlation between
relative volumes defined using DWI and those based on cytoarchitecture (Figure 6.11,

left hemisphere: r=0.71, p=0.038; right hemisphere: r=0.70, p=0.04).
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6.3.3 Co-localisation with centres of functional activation

We have proposed that the atlas based on our group probability maps could be used to
assign likely anatomical labels to sites of brain activation or lesions. To test directly the
functional-anatomical validity of the boundaries defined by our group maps, we assessed
the correspondence between centres of group maps and previously reported centres of
gravity of functional activations localised to the thalamus. We found centres of thalamic
activation during simple upper limb motor tasks (e.g. (106; 107; 108; 109)). Activation
centres for the motor tasks co-localised well with thalamic regions connecting to motor
and premotor cortices (Figure 6.3.3(a),(b)). Nine out of ten previously reported centres
of motor activation fell within the M1/PMC volume (p = 8.4 x 107°). Similarly,
activation centres for frontal tasks co-localised with the thalamic region connecting
to the prefrontal cortex, with fourteen out of sixteen previously reported centres of

activation falling within the PFC volume (p=0.0025)(Figure 6.3.3(c)).

6.4 Discussion

We have shown that it is possible to trace connections from the thalamus to the grey
matter of the human cerebral cortex n vivo using diffusion imaging. To our knowledge
this is the first demonstration of anatomically specific inferences of connectivity be-
tween grey matter structures using diffusion data. This approach therefore can provide
novel data on human brain connectivity. Here, we have shown that connections between
the thalamus and cortex in the human are largely similar to those previously found from
tracer studies in non-human primates (80; 91; 92; 93; 94; 95; 96; 97; 98; 99; 100; 101)
and are reproducible between individuals. This similarity to data from non-human
primates is apparent not only in the distribution of connections to different cortical
sites, but also in the paths that are followed between the thalamus and the cortex.
The probability of connection to different cortical zones was also used as an anatomi-
cal classifier for individual thalamic voxels. This generated clusters of voxels showing

common patterns of anatomical connectivity to the neocortex. The relative locations
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Figure 6.12: Correspondence between connectivity-defined and functionally-defined thalamic sub-
regions. In each figure the light grey surface represents the whole thalamus, within which spheres
represent centres of functional activations and volumes showing where at least 4/11 subjects had more
than 25% probability of connection to particular cortical targets are represented as semi-transparent
surfaces. Top: Centres of thalamic activation for right hand movement tasks and volumes with high
probability of connection to primary motor cortex (dark grey) and premotor cortex (red). Bottom:
Centres of activation for executive and memory tasks and the volume with high probability of con-
nection to prefrontal cortex (dark grey). Note that some studies provided more than one activation
location.

and sizes of these clusters corresponded well to previously histologically-defined human
thalamic nuclei. The approach used here is generalisable and therefore may be used to

map connectivities and to anatomically parcellate other grey matter structures.

This type of result should complement functional imaging studies and has the po-
tential to provide new insights into understanding disorders associated with variations
in brain structure. In section 6.3 we demonstrated these uses with functional and
anatomical validation of the connectivity-based segmentations and characterisation of

their population variability. We have defined the variation of the thalamic parcella-
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tion between individuals quantitatively by generating a probabilistic thalamic atlas
and used this to test more rigorously the hypothesis that the parcellation corresponds
to functional anatomical divisions within the thalamus. First, we found good agree-
ment between volumes of the thalamic subregions obtained using our method and
comparable sub-regions from previous cytoarchitectonic data. Second, the locations
of the individual regions correspond well with data from prior functional imaging ex-
periments. We showed, for example, that thalamic activations with motor paradigms
map into a region corresponding to the ventral lateral nucleus, while activations as-
sociated with tasks involving executive control and working memory co-localised with

the connectivity-defined sub-region including the mediodorsal nucleus.

Tracing fibres to cortex has been notoriously difficult when using the maximum
likelihood approaches generally employed for DTI tractography. As fibres approach
cortex, diffusion anisotropy reduces and calculated principal diffusion directions be-
come increasingly uncertain due to image noise (55). This problem is so pronounced
that streamlining algorithms used to date have had to apply an arbitrary anisotropy
threshold which forces the early termination of reconstructed pathways (3; 90; 9). This
has limited attempts to trace pathways directly from deep grey matter, which typi-
cally has low anisotropy. In these circumstances a fully probabilistic algorithm has
significant advantages. First, because an explicit representation of uncertainty in path
direction is generated, the relative probabilities of directions can be estimated, and the
pathway can continue even if the probability is low for any single direction. A second
useful advantage of a probabilistic algorithm is robustness to noise. It can be difficult
to track beyond a noisy voxel using a non-probabilistic algorithm as it may initiate
a meaningless change in path. However, with a probabilistic algorithm, paths which
have taken errant routes tend to disperse quickly, so that voxels along these paths are
classified with low probability. In contrast “true” paths tend to group together, giving

a much higher probability of connection for voxels on these paths.

We have used patterns of thalamo-cortical connectivity inferred from diffusion im-

ages to parcellate anatomically distinct regions of the thalamus. While related by use
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of a common imaging technique, this approach is distinct from the differentiation of
thalamic regions on the basis of local diffusion properties (110) and offers significant
advantages as we consider long-distance connectivities. For example, the lateral senso-
rimotor nuclear group (VLa, VLp, VP) contains voxels that have very similar principal
eigenvectors from a diffusion tensor fit, but pathways from the nuclear subdivisions ter-
minate in distinct anatomical regions, allowing their discrimination if connections are
followed up to the cortex. Also, by considering not only diffusion measurements within
a voxel, but also information available at a more global scale, the thalamic segmenta-
tion achieved has a finer spatial resolution than that of the original diffusion images.
Together, these characteristics of our approach have allowed us to make strong tests of
predictions concerning homologies between human and non-human primate thalamic

organisation.

There are limitations to this approach. Firstly, it is impossible to define fibre tract
polarity (e.g., distinguishing thalamo-cortical from cortico-thalamic connections) using
diffusion tractography. Secondly, the method is sensitive primarily to major pathways,
and therefore smaller pathways, pathways with sharp path inflections or pathways that
cross other tracts are not always detected by our method. For example, from seeds
placed within the grey matter of the LGN we were able to detect the dorsal portion of
the optic radiation that travels directly to the visual cortex (Figure 6.1 a). However,
detection of the more ventral part of the optic radiation that travels to visual cortex
via the temporal cortex (forming ‘Meyer’s loop’) was possible only from seeds placed
in the white matter just lateral to the LGN. Use of higher resolution imaging and of
analysis approaches that explicitly model complex fibre structures within a voxel (111)

may increase sensitivity to such paths.

In interpreting the connectivity distributions presented here it is important to note
that our current approach does not allow us to infer the true distribution of fibre
structure within a voxel, but to estimate the uncertainty associated with the principal
direction in order that we may quantify our confidence in the tractography results.

Therefore the distributions that we present are not estimates of true fibre spread from
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a voxel, but of the confidence bound on the location of the most probable single con-
nection. The width of these confidence bounds will depend both on experimental noise
and on any mismatch between our model (a single population of parallel fibres) and

the diffusion data (which may reflect complex structure, such as crossing fibres).

It has previously been difficult to directly validate diffusion tractography due to a
lack of alternative methods providing similar data in humans, as well as the relative
paucity of animal imaging data. Here we took two approaches to validation of the
connectivity-based parcellation: first by comparison to cytoarchitectonic atlases and

second by comparison to functional activations.

The demonstration that relative locations and volumes defined using a connectivity-
based parcellation of the thalamus generally correspond well with volumetric measure-
ments from cytoarchitectonic maps is a powerful test of the ability of the method to
define correct targets and, by implication, to identify appropriate paths. We would not
expect the absolute volumes to correspond between these two methods. While cytoar-
chitectonic measurements were made up only of volumes from major nuclei, the mea-
surements based on diffusion imaging would have included contributions from smaller
nuclei and from white matter regions within the thalamic volume. Therefore, not un-
expectedly, the absolute volumes of sub-regions are greater for the connectivity-based

measures.

Relating the thalamic parcellation to locations of centres of functional activations
offers an alternative approach to its validation (and also illustrates an important poten-
tial application of the parcellation method). Although thalamic activation is frequently
reported in imaging studies (112; 109; 106; 107), authors rarely assign activations to
a specific nucleus, due to the problems of inferring nucleic architecture with current
approaches. Here we have chosen to test the functional validity of connectivity-defined
volumes with data from well-characterised tasks to minimise confounds in interpreta-
tion. Centres of activation associated with two distinct types of tasks showed good
functional-anatomical correspondences: motor activations co-localised to sub-region

corresponding to the ventrolateral nucleus and activations during executive tasks were
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mainly located within the subregion corresponding to the mediodorsal nucleus. The
atlas based on our group maps presented here can be used to assign a probabilistic
anatomical label to activation foci within the thalamus more generally. This could
prove particularly useful in cases where functional connectivity between the thalamus
and neocortex is otherwise ambiguous. For example, although thalamic activation is
frequently reported in studies of pain (112; 113), the nature of the thalamic processing
remains unclear and would be illuminated substantially by a clarification of precisely
which thalamic nuclei are involved in processing nociceptive versus non-nociceptive

stimulation in the human brain.

While the patterns that we found correspond well with those defined by direct
anatomical studies of non-human primates and are consistent with previous functional
and anatomical studies in human, further validation of this approach is desirable. For
example, cytoarchitectonic boundaries could be defined on the same population imaged
and parallel diffusion and manganese-tracer imaging (114) could test the correspon-

dence between probabilistic tracts and real fibre pathways in non-human primates.

The current study was limited to the investigation of thalamic connections to large
cortical regions. However, the non-human primate literature has provided strong ev-
idence for finer grained topographic mapping, e.g., between subregions of MD and
smaller regions in the prefrontal cortex (103; 115). Such investigations in the living
human brain could proceed as a straightforward extension of the current investiga-
tion. There are obvious applications of our method to clinically important problems.
Probabilistic tractography could help characterise developmental and acquired brain
disorders, e.g., testing for alterations in fronto-thalamic circuitry in Schizophrenia (116)
for the relations between quantitative differences in cortico-cortical connectivity and
learning abilities (117). The ability to define regional boundaries reliably in grey mat-
ter could be useful, e.g., in improved targeting of specific sub-cortical structures in the

treatment of movement disorders by functional neurosurgery (82).
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6.5 Methods

6.5.1 Data Acquisition

Diffusion-weighted (DW) data were acquired in 11 healthy subjects (6 male, 2 female,
aged 26 to 33) using diffusion-weighted echo planar imaging (60 x 2.3mm thick slices,
field of view = 220 x 220mm?, matrix = 96 x 96; images were reconstructed on a
128 x 128 matrix giving a final resolution of 1.7 x 1.7 X 2.3 mm?®) implemented on
a General Electric 1.5 T Signa Horizon scanner with a standard quadrature head-

coil and maximum gradient strength of 22 mT m™!.

Informed written consent was
obtained from all subjects in accordance with ethical approval from the Institute of
Neurology. The diffusion weighting was isotropically distributed along 54 directions (0
= 34ms, A = 40ms, b-value = 1150 smm 2, the optimum for white matter diffusion-
weighted imaging (DWI) measurements)(33). 6 diffusion-weighted volumes (b-value
= 300 smm ?) and 6 volumes with no diffusion weighting were acquired. The high
angular resolution of the diffusion-weighting directions (33) improves the robustness
of pdf estimation by increasing the signal-to-noise ratio per unit time and reducing
directional bias. Cardiac gating (118) was used to minimise artefacts from pulsatile flow

of the cerebrospinal fluid. The total scan time for the DWI protocol was approximately

(depending on heart rate) 20 minutes.

The high resolution T1-weighted scan was obtained with a 3D inversion recovery
prepared spoiled gradient echo (IR-SPGR) (FOV = 310 x 155; matrix = 256 x 128;
in-plane resolution = 1.2 x 1.2 mm?; 156 x 1.2mm thick slices; TI = 450ms; TR = 2s;
TE = 53ms).

6.5.2 Thalamic segmentation.

We manually outlined the whole thalamus and a number of cortical zones (see below)
on each subject’s T1-weighted image. For tissue-type segmentation, skull stripping and

registration, tools from FSL (www.fmrib.ox.ac.uk/fsl) were used. We performed prob-
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abilistic tissue type segmentation and partial volume estimation on the T1-weighted
image (119). We thresholded these results to include only voxels estimated at greater
than 35% grey matter occupancy and used this to mask our cortical regions. We skull-
stripped the diffusion-weighted and T1-weighted images (120) and performed affine
registration (59) between the first non diffusion-weighted volume and the T1-weighted
image to derive the transformation matrix between the two spaces. From each voxel in
the thalamus mask, we drew samples from the connectivity distribution (as described in
the previous chapter), maintaining knowledge of location in structural and DWI spaces,
and recorded the proportion of these samples that passed through each of the cortical
masks as the probability of connection to that zone. Hard segmentation was performed
by classifying the seed voxel as connecting to the cortical mask with the highest con-
nection probability (e.g., Figures 6.2 and 6.3). In order to determine whether voxels
showed strong or weak cortical connectivity, thresholding was carried out based on the
probability of reaching any cortical mask (e.g., Figure 6.7). Some voxels showed a high
probability of connection to more than one cortical mask; in order to investigate over-
lapping or branching connections from individual voxels, a probability was assigned
for each mask at each voxel, based on the percentage of cortically-connected pathways

that reach the mask (e.g., Figure 6.6).

6.5.3 Cortical masks.

We defined cortical zones which correspond to known thalamic connection sites (80).
First, we defined four exclusive cortical zones using the following landmarks on the

T1-weighted image:

Prefrontal/temporal zone: The prefrontal cortex was defined as the lateral and or-
bital cortex anterior to the inferior and superior precentral sulci, from the dorsal to the
orbital brain surface. Medially, this region included the cortex superior to the cingulate
sulcus, anterior to the vertical line from the anterior commissure, perpendicular to the
plane between the anterior and posterior commissures (VAC) and also the cingulate

gyrus, from its anterior edge to the level of the central sulcus. The temporal lobe was



6.5 Methods 104

defined as the lateral cortex inferior to the lateral fissure, bordered posteriorly by the
temporo-occipital incisure where visible, or the anterior occipital sulcus. Medially, the
temporal lobe was defined as the cortex anterior to a line from the temporal incisure

to the posterior commissure.

Motor zone: This region included M1, SMA and PMC. Laterally, this included
cortex anterior to the central sulcus up to and including both banks of the inferior and
superior precentral sulci. Medially, this region included cortex anterior to the central
sulcus up to the VAC line. Both lateral and medial parts of this region extended from

the dorsal surface of the brain to the level of cingulate sulcus.

Somatosensory zone: This region included SI and SII. ST was defined as the poste-
rior bank of central sulcus plus postcentral gyrus, from the dorsal surface of the brain
to the lateral fissure. SII was defined as the superior bank of lateral fissure posterior
to the posterior edge of postcentral gyrus.

Parieto-occipital zone: The posterior parietal cortex was defined as the lateral cor-
tex posterior to postcentral gyrus, bordered posteriorly and inferiorly by a line from
the posterior-occipital fissure to the lateral fissure. Medially, posterior parietal cor-
tex included regions posterior to the postcentral gyrus, bordered posteriorly by the
parietal-occipital fissure and inferiorly by the cingulate gyrus. The occipital lobe was
defined as the lateral cortex posterior to anterior occipital sulcus and the temporo-
occipital incisure, bordered superiorly by a line from the parietal-occipital fissure to
the lateral fissure and the medial cortex inferior to the parietal-occipital fissure and
posterior to a line from the temporal incisure to the posterior commissure. The optic

tract, where visible, was also included with the occipital lobe in this target mask.

Further analyses were carried out with seven cortical masks. We separated primary
motor cortex (anterior bank of central sulcus and posterior half of precentral gyrus)
from the premotor and supplementary motor areas (the remainder of the motor zone).
We also separated the posterior parietal cortex from the occipital lobe and separated

the temporal lobe from the prefrontal cortex.
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The insular cortex was not considered in this analysis.



Chapter 7

Recent Developments

7.1 New Findings with Diffusion Tractography?

In chapter 6, we showed examples in which we were able to confirm a similarity between
anatomical connections in human derived from non-invasive diffusion tractography and
those in non-human primate derived from invasive tracer methods. This type of study
should lend itself well to many other structures in the brain where the anatomy is known
in primate, and expected to be similar in human. The major advantage of using DTI
in these studies is its non-invasive nature, potentially allowing the kind of connectivity
maps shown in chapter 6 (e.g. figure 6.3) to be used to search for differences between
control and patient groups. Taking the thalamus as a specific example, the connectivity
between medio-dorsal nucleus of thalamus and prefrontal cortex has been highlighted as
a potential substrate for Schizophrenia (116). The kind of analysis presented here seems
ideally suited to the investigation of this kind of clinical question. The potential to
identify subcortical nuclei for the first time in a non-invasive fashion also has potential
clinical applications. Functional neurosurgery in patients with movement disorders
(such as Parkinson’s disease) relies on the targeting of specific subcortical nuclei for
(for example) electrode implantation. A non-invasive technique for locating such nuclei

with increased accuracy could only benefit the outcome of the surgery.

However, an interesting question which has not yet been addressed by the diffusion

106
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tractography literature is whether, given the caveats with the methodology discussed in
chapters 5, 6 and, in some depth, in 8, we are able to use diffusion tractography to con-
firm or deny new hypotheses about the connectional architecture of the human brain.
Specifically, can we, with any confidence, describe anatomical connectivity patterns

which are different from those derived from non-human data?

The ideal scenario for answering this question would be that diffusion tractography
would advance to the stage where a direct validation with invasive tracer studies in the
same non-human primate brain would reveal no “false-positives” in the results derived
from diffusion imaging. In this case, new results in the human brain could be inter-
preted with confidence as connections unique to humans, and not as potential artefacts
of the methodology. However, we are not yet at the stage to perform such a study.
Firstly, diffusion tractography can lead to false positives. In areas of complex fibre
structure, where the chosen models of diffusion break down, simple fibre tractography
may end up following entirely wrong directions. Secondly, sacrificial tracer methodolo-
gies only trace connections from a small number (1-3) of very specific seed locations in
each experiment. A test on the scale required to inspire confidence in diffusion trac-
tography would require many invasive experiments at a large cost, both financially and
in terms of animal life. Such a study is not appropriate while the methodologies used

for diffusion tractography are changing at their current pace.

However, even in the absence of such a study - in fact, even in the expectation that
in some cases such a study would fail - it still may be possible to find evidence for
previously unknown connections from diffusion tractography. One study, currently in
progress, is using precisely the methodology described in chapters 4 and 5 to investigate
cortico-cerebellar circuitry. Projections to cerebellum from cortex pass through cerebral
peduncle (see figure 7.1 and (121)). An examination of cerebral peduncle similar to
that performed in thalamus in chapter 6 should provide some insight into the areas
of cortex sending signals to cerebellum, and hence into the type of information which
cerebellum is processing. The traditional view of cerebellum is that it processes mainly

low-level information such as signals from cortical motor areas (122). In accordance
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Figure 7.1: Schematic of cerebello-cortical circuitry. Projections from cerebellum terminate on tha-
lamic neurons that project to cerebral cortex. These cortical neurons send return projections to
cerebellum via cerebral peduncle, and relay neurons in the pontine nuclei.

with this view, non-invasive tract tracing studies in macaque monkey have revealed that
connections from cortex to pons (and thence to cerebellum) are organised topologically
as they pass through cerebral peduncle, with anterior to posterior areas in cortex being
represented medially to laterally in peduncle (123; 124), but that the overwhelming
majority of fibres which pass through peduncle have their source in motor/sensory
areas in cortex (red area in figure 7.2 (A)) (121; 125). In human, however, the situation
may be slightly different. Recent functional imaging studies have revealed cerebellar
activations in much higher level cognitive tasks (10; 11), suggesting a different role for

cerebellar circuitry in the human brain.

A connectivity-based segmentation, such as was carried out in chapter 6, would
seem to be an ideal tool to investigate this question. If, as in macaque, the majority
of cerebral peduncle is found to have a high probability of connecting to motor areas,
this would offer supporting evidence for the conventional view of cerebellar processing.
However, if a large part of peduncle is found to have a high probability of connection to
frontal lobe, and specifically, prefrontal cortex, this would favour the alternative view,

that cerebellar circuitry has a role to play in cognitive processing.

Probabilistic tractography was carried out in 11 subjects exactly as in chapter 6

but seeded from voxels in the cerebral peduncle. Again, exactly as in chapter 6, each
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Figure 7.2: Cortical connectivity in the cerebral peduncle (A) derived from invasive tracer studies in
macaque, (b) derived from diffusion tractography in human. (C) Colour code for cortical zones in (B).

voxel was assigned to the cortical zone with which it had the highest probability of
connection (cortical regions are shown in figure 7.2 (B)). Results were consistent across

eleven subjects.

A typical result of the connectivity based segmentation may be seen in figure 7.2
(C). It can be seen that the results from diffusion tractography in human exhibit exactly
the topology predicted from tracer studies in macaque, but that the relative volumes

associated with the different cortical zones are strikingly different. Most noticeably,
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the relative volumes associated with premotor and primary motor/sensory cortical
regions (yellow, navy blue and royal blue) are much smaller than in the predictions
from macaque, and the relative volume associated with prefrontal cortex (green) is

much larger.

This result is very appealing. If the relative volumes seen in the connectivity based
segmentation reflect the ratios in which different cortical areas send projections to
the pontine nuclei and on to cerebellum, then this would provide evidence in favour
of a role for cerebellum in cognitive processing. However, we must first consider an
alternative. We are attempting to make a scientific statement based on a comparison
of data from macaque with data from human, but the two sets of data come from very
different sources. Is it not possible that we are seeing some kind of measurement bias?
How confident can we be that the tractography results reflect the underlying truth in

human? Again, is it possible to make new findings with diffusion tractography?

One possible answer to this question lies in the topology found in both (A) and
and (C) in figure 7.2. The exact same topology is present in both sets of data, giving
extra weight to the differences seen in the relative volumes. That said, far stronger
evidence is shown in figure 7.2 (D). Here diffusion tractography and connectivity-based
segmentation are carried out in the cerebral peduncles of a macaque monkey. The
result shows the same topology as the human data and the predictions from macaque
tracer studies but this time, as in figure 7.2 (A), the majority of the volume of peduncle
has a high probability of connection to motor regions, with prefrontal cortex having
only a small representation. Comparing (D) with (A) allows us to compare results from
two different methodologies without the confounding effects of two different species.
Comparing (D) with (C) allows us to compare the two different species without the

confounding effects of two different methodologies!.

! This work was carried out in collaboration with Narender Ramnani, FMRIB Centre, Oxford
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7.2 Connectivity Matrices - Defining

Anatomical /Functional Subunits

We saw in chapter 6 that, using probabilistic tractography, we were able to gather
connectivity information between thalamus, which includes many discrete functional
subunits, and manually labelled cortical zones which each share function with at least
one of those subunits. We were then able to use this connectivity information to
parcellate thalamus into commonly connected clusters, which correspond well with
histologically defined thalamic nuclei - the functional subunits of interest. However,
in order to achieve this parcellation, we required a strong hypothesis for the cortical
connectivity of the individual thalamic nuclei. In the case of thalamus, this information
was readily available, as thalamo-cortical connections in human are expected to be
similar to those in monkey, which have been studied extensively. However, there are
many areas in the brain where we are much worse informed, but where we would still

hope to be able to learn from connectivity based parcellations.

7.2.1 Intra-connected systems

The brain is split into systems which are densely intra-connected, but only sparsely
inter-connected. Often, these systems are themselves split in a similar fashion, so that
regions of the brain may be classified in a hierarchical fashion. A schematic of such a

system is shown in figure 7.3.

A defining feature of such a system is that, if the nodes in the system are arranged
as the rows and columns of a matrix with each matrix element being the connectivity
strength between the two nodes in question, then this “connectivity” matrix may be
permuted (by a simple permutation of the ordering of the nodes) such that the ele-
ments in the matrix appear in clusters around the leading diagonal. An example of
a connectivity matrix from a hierarchically connected system with binary connections

may be seen in figure 7.4.
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Figure 7.3: Schematic of a hierarchically organised network. Functional subunits are densely intra-
connected but sparsely inter-connected.

Figure 7.4: Example connectivity matrix from an “ideal” hierarchically connected system. Con-
nections strengths are binary, and appear in clusters around the leading diagonal to form densely
intraconnected subunits

As the underlying connectivity structure becomes less and less hierarchical, the
structure in the connectivity matrix will become less and less identifiable. For example,
if links were made between the two lower subunits of the system, in figure 7.3, then we
would see clusters of connectivity in the off diagonal corners in figure 7.4. However, the
existence of discrete densely intra-connected subunits in the system will still reveal itself
with clusters of high connectivity around the leading diagonal, and in their absence it

should prove impossible to organise the matrix in such a fashion.

If diffusion tractography data, when organised in matrix form, could be permuted
to reveal such a structure, then we would be able to parcellate the brain into anatom-

ical subsystems without the need for any prior hypothesis for the connectivity of any
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particular regions.

7.2.2 Matrix Permutation

The search for organised structure in matrices forms a large research area in its own
right. Algorithms range from the very simple (for example Hierarchical Clustering sim-
ply repeatedly groups into a single “node” the two “nodes” in the current matrix with
the highest connectivity) to the very complex (for example “Independent Component
Analysis (ICA)” searches for mixtures of statistically independent processes which may
represent the data (126)). An important topic for further work in this area will be to
develop algorithms which efficiently search the connectivity matrix for clusters in the
processing hierarchy of the kind expected to represent functional subunits in the brain.
However, the early results shown in the next section were generated by an algorithm
with, at least explicitly, a different aim. The “NCut” algorithm, described below, aims
to find the matrix node reordering which minimises the sum of each element value

multiplied by its square distance from the leading diagonal.

N N
p = argmin SN AGH) x (i) (7.1)

Poli=1 =1
where A is the N x N connectivity matrix, (2, is the space of all possible node permu-

tation vectors, and p is the “optimal” permutation vector searched for by NCut.

Effectively, Ncut is searching for a node reordering which forces large connectivity
values close to the leading diagonal. In the case of a perfectly hierarchically connected
system, such as the matrix in figure 7.4, this reordering will organise the matrix such
that connected clusters appear contiguously in the reordered matrix. The major ad-
vantage of the NCut algorithm is its computational efficiency. The reordering process
merely requires the computation of a single eigenvector of an N x N matrix. This
may be expected to prove of great importance for reordering the types of connectivity
matrices we can generate with diffusion tractography. Even at present voxel resolu-

tion, grey matter in a diffusion weighted image comprises around 100000 voxels, giving
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a potential 10° x 10° grey matter connectivity matrix. Data mining on this scale is

simply unfeasible with the majority of available algorithms.

NCut The Ncut algorithm (127) provides a computationally efficient approximate
solution to the problem stated in equation 7.1. This problem may be restated (see
(127),(128)) as one of finding the reordering vector p which minimises the following

quadratic matrix equation.

p=arg nflzin p' Qp (7.2)
4

where

—0jj fori #j

N . .
=2ty fori=j

Now a heuristic is introduced which makes the problem tractable at the expense
of computing a guaranteed optimal solution. Instead of limiting the search to the
discrete set of permutation vectors €2,, we relax the problem to find the minimum over
real vectors, x, of length N, under the caveat that the following trivial solutions are

ignored: x = 0 and x = e, where 0 = [0,0,...,0] and e = [1,1,...,1].

x =aryg min 77 Qx (7.4)

zeR:zTe=0,||z||2=1

which is solved by taking = to be the eigenvector corresponding to the second smallest
eigenvalue of Q (see (127)), equivalently referred to as the Fiedler vector of A. This
solution is a real vector, not the desired permutation vector; however we can use the
ordering of the elements in x to induce a permutation vector p € €2,. We choose p € (2,
such that p; < p; if and only if z; < x;. Spectral reordering via the Ncut algorithm is

the application of this ordering p to matrix A.

Simulated Data Figure 7.5 shows the results of applying NCut spectral reordering
to two types of simulated connectivity matrix. The first is a random matrix with

no underlying structure, (A). Neither the Fiedler vector, (B) and sorted in (C), nor
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the reordered matrix, (D), show any structure. The second is the “ideal” hierarchical
connectivity matrix from figure 7.4 but with the nodes of the matrix permuted in a
random order (E). The Fiedler vector, (F) and sorted in (G), shows 3 distinct clusters,

and the reordered matrix, (H), shows the recovered structure from figure 7.4.

(E) (F) (G) (H)
Figure 7.5: Results of applying spectral reordering to simulated data. Top row - reordering of a
random matrix (drawn from 2(0,1)). (A) original matrix. (B) Fiedler vector. (C) Sorted Fiedler
vector. (D) reordered matrix. Bottom Row - reordering of a matrix with an underlying hierarchical

structure such as in figure 7.4. (E) original matrix. (F) Fiedler vector. (G) sorted Fiedler vector. (H)
reordered matrix.

7.2.3 Connectivity Data

A good starting point for this type of unsupervised clustering approach is the visual
system, which, in primate brain, exhibits exactly the kind of hierarchical connection
structure which the matrix permutation approach relies on. In simple terms, visual in-
formation is sent from primary visual cortex (V1), along two broadly parallel processing
streams (129) (See figure 7.6). The ventral pathway processes object form information
and includes projections to inferior temporal lobe. The dorsal pathway processes infor-
mation on object motion and includes projections to posterior parietal cortex. These

two processing streams are densely intra-connected but sparsely inter-connected, hence,



7.2 Connectivity Matrices - Defining Anatomical /Functional Subunits 116

at the coarsest scale, we would expect to see structure in our connectivity matrix much

like that in figure 7.4

Ventral and dorsal streams

~—_ Parietal lobe

Tk
Dorsal
¢ orsa

\ . pathway
{:’/i\lentral Occipital lobe
d pathway (primary visual

Temporal lobe receiving area)

Figure 7.6: Schematic of the organisation of primate visual system. Visual information is sent from
primary visual cortex along two broadly parallel processing streams. See text for details. Taken from
(129).

Methods Diffusion weighted data were acquired as in chapter 6. Masks were drawn
manually of parietal, temporal and occipital lobes using the same landmarks as in
chapter 6. Probabilistic tractography (chapter 5) was carried out from each voxel
on a 10 x 10 x 10mm? grid within these masks. Connectivity values were stored
from each seed voxel, to every other voxel in the masks. Connectivity information was
arranged in a matrix, A. The natural logarithm of this matrix was taken to decrease the
effective range of the matrix, and hence render it more suitable for spectral reordering,
B = log A. Symmetry was imposed on the matrix C = (B + B7)/2. Connectivity

matrix C was submitted to the NCut spectral reordering routine described above.

Results Figure 7.7 shows the connectivity matrix in its original form (left) and af-
ter spectral reorganisation (right). The reordered matrix was examined by eye, and
divided, at the coarsest scale, into three clusters (horizontal coloured bars in the right
hand panel of figure 7.7). These clusters were then mapped back onto their anatomical
location, as can be seen in figure 7.8. The first cluster (blue) included lateral pari-
etal lobe, corresponding to putative dorsal visual stream. The second cluster (yellow)
included inferior temporal lobe corresponding to putative ventral visual stream. The
third cluster (red) included medial occipital lobe, corresponding to putative primary

visual cortex.
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Original Reordered

100 2 40 60 20 00 120 140 160

Figure 7.7: Connectivity matrices from the human visual system. (A) Before spectral reordering. (B)
After spectral reordering. Clusters were chosen according to the coloured horizontal bars.

Figure 7.8: Connected clusters mapped into anatomical space. Clusters were defined according to the
coloured horizontal bars in figure 7.7(B)

7.2.4 Discussion

There are evidently many open problems with this type of exploratory diffusion con-
nectivity analysis. The most obvious of these is the development of an algorithm which
detects and labels clusters in the reordered matrix in an unbiased fashion. In the anal-
ysis presented above, the three clusters detected were labelled by eye. Not only is this
unsatisfactory due to its subjective nature and associated bias, but it also potentially
ignores much of the available information. If the matrix were examined at different

scales, it is likely that many other “clusters” might emerge. An unbiased measure for
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judging when a “cluster” is a cluster, and where it sits in the cluster hierarchy would
dramatically increase not only the credibility of such studies, but also their power. A
second crucial question to ask is what is the best data to search for clusters in. Again,
the approach taken in the above analysis is clearly far from satisfactory. We were forced
to take the log of the probability values derived in chapter 5 in order to reduce the
effective range of the data to make it suitable for clustering. The reason for this is the
very nature for the probability values themselves. As discussed in chapters 5 and 6, the
probabilities in each voxel represent the probability of the dominant streamline from
the seed voxel passing through this voxel. Not only does this mean that probability
values away from the dominant streamline will be lower than if we had access to true
“connectivity” data, but also they will depend on, for example, the voxel dimensions
of the grid in which you store them (there is a greater probability that the dominant
streamline will pass through a large voxel than a small one!). Access to data which
more closely represents the true levels of “flow of information” between cortical areas

would clearly be of benefit to this style of connectivity analysis.

7.3 Discontinuities in the “Connectivity Field”

Even in the absence of a complete representation of connectivity, diffusion tractography
may still form a rich source of information. Network studies, such as the one presented
in the previous section, will not prove as easy in areas of the brain where, for example,
diffusion tractography is less reliable due to complex fibre architecture or areas where
the most interesting information about the network does not lie in the dominant fibre
pathways. A less ambitious goal might be, instead of trying to infer on the entire
network by tracing the exact white matter routes, to attempt to cluster seed voxels
which exhibit very similar connectivity patterns or, equivalently, to draw boundaries
between adjacent brain areas with markedly different patterns. By simply searching
for discontinuities in the “Field of Connectivity”, we no longer rely on tracing the

true fibre structure through the white matter. We only require that a sharp change in
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connectivity between adjacent brain regions will be reflected as a sharp change in the

connectivity pattern generated by tractography.

7.3.1 Definition of the SMA-preSMA boundary by changes in

connectivity.

Introduction 2?Medial area 6 consists of two cytoarchitectonically distinct regions in
monkey(130) and two(131) or three(132) in human. These cytoarchitectonically dis-
tinct regions are not visible using conventional imaging techniques. However, in non-
human primates there is a change in connectivity along medial frontal cortex: preSMA
connects to prefrontal /anterior cingulate cortex whereas SMA proper connects to sen-
sorimotor regions(131). If this change is visible in the data generated by probabilistic
tractography then it should be possible to use it to identify the corresponding cy-
toarchitectonic boundary. A simple validation of this boundary may be performed by
comparing its anterior-posterior position with that of the anterior commisure, a struc-
ture which is easily visible on a T1-weighted scan, and the current heuristic for the

location of the SMA-preSMA boundary.

Methods Diffusion-weighted data and a T1-weighted image were acquired in 11 sub-
jects. Each re-aligned T1-weighted image was used to define a medial frontal mask on
a single axial slice (MNI 152 Z=>56), which included both SMA and preSMA. Proba-
bilistic tractography (as in chapters 4 and 5) was run from all voxels in this seed mask.
Probabilities of connection from each seed voxel (at 1.2mm? resolution) to every other
voxel in the brain (re-sampled to 5mm?®) were binarised and stored in a matrix, A.
The cross-correlation matrix of A was computed and stored in B. (Note, the matrix
B is of dimension (number of seeds x number of seeds), and element B;; contains the
correlation between the connectivity distribution from voxel ¢ and the connectivity dis-
tribution from voxel j. This matrix contains information reflecting the similarity of the

connectivity distributions of every pair of seed voxels). The nodes in B were permuted

2This work was carried out in collaboration with Heidi Johansen-Berg
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according to the spectral NCut algorithm described in the previous section. Clusters
around the diagonal of this reordered matrix represent clusters of similar connectivity
in the brain. Discontinuities between clusters in the reordered matrix represent sharp
changes in connectivity, and putative cytoarchitectonic boundaries between brain re-

giomns.

Figure 7.9: Reordering connectivity correlation matrices in SMA /preSMA. In 8/11 subjects two clus-
ters were apparent in the reordered correlation matrices (a typical example is shown in (a)). In 3/11
subjects three clusters were apparent (a typical example is shown in (b)).

Results In eight out of eleven subjects the re-ordered connectivity matrix could be
easily divided (by eye) into two clusters whereas in three out of eleven subjects there
were three clusters apparent (typical examples are shown in figure 7.9). In all subjects,
when clusters were mapped back onto the brain, they appeared as distinct regions
along the anterior-posterior axis (figure 7.9). Clusters from the 8 subjects in whom
two clusters were identified were overlaid to define a probabilistic atlas putative pre-
SMA/SMA-proper (figure 7.10). The putative SMA /Pre-SMA boundary lay directly

superior to the anterior commisure (figure 7.10).

Discussion A change in connectivity along medial frontal cortex was detected by
identifying clusters in reordered connectivity correlation matrices. Mapping these clus-
ters back onto the brain defined a boundary that we hypothesise corresponds to a func-
tionally relevant cytoarchitectonic border. Future imaging studies will test how well

this border co-localises with a functional boundary.
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Figure 7.10: Probabilistic atlas of connectivity defined SMA /Pre-SMA. (a,d,e) Show the anterior-
posterior position of the putative boundary. (a) in coronal section and (d,e) on the axial slice con-
taining the anterior commisure (AC). The boundary lies directly superior to the AC. (b,c) show the
probabilistic atlas. Pre-SMA is coded with dark-blue to light blue representing 1-8 subjects, and SMA
is coded with red to yellow representing 1-8 subjects.

This approach is based solely on detecting changes in connectivity and is therefore
able to define grey matter boundaries even when connectivity targets cannot be accu-
rately specified or connectivity information is incomplete. This provides a novel means
for parcellating cortical grey matter in vivo using information that is directly relevant

to function.



Chapter 8

Conclusions

In this thesis we have developed a statistical framework in which to infer on anatomical
white matter connectivity from diffusion weighted MR data, which provides a gener-
alisation of previous “streamlining” techniques to the case when there is uncertainty
in local fibre orientations. We have compared probabilistic predictions derived from
Bayesian statistics with those derived from repeated acquisitions of the same data, and
have shown that, by inferring in a probabilistic fashion, we improve the robustness and
interpretability of diffusion based tractography to an extent that connectivity may be

established between grey matter regions in the human brain.

We have used this “probabilistic diffusion tractography” to infer on cortico-thalamic
circuitry in the human brain, providing a topographic map of the the thalamus coded
by cortical projection/reception sites. The similarity of this map to predictions from
invasive tracer studies in non-human primate provides compelling evidence in favour
of the concept of diffusion tractography as a useful probe of anatomical connectiv-
ity. In fact, the co-localisation of the connectivity defined regions with the functional
activations of the same nuclei, along with the correspondence between connectivity de-
fined volumes and thalamic nuclear volumes measured post-mortem, provide the first

attempt at quantitative validation of diffusion-based tractography.

In recent developments, we have applied the same methodology to infer on cortico-

cerebellar circuitry, revealing new findings about the prefrontal projections to cere-

122
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bellum. We have also suggested new methods for using tractography data to identify

functionally related and functionally distinct grey matter regions.

There are still many open questions in the field of diffusion tractography; many of
them relate to new and interesting potential applications and two of the most exciting
are mentioned in sections 8.1.2 and 8.1.3. However, perhaps the most important ques-
tion for the future of diffusion tractography relates to the diffusion measurement pro-
cess itself; specifically, to the question of how we may interpret our diffusion-weighted
measurements in terms of the underlying fibre architecture: How can we relate fibre

structure to the diffusion we measure?

8.1 Some Open Questions

8.1.1 Relating Fibre Structure to Diffusion

Although the probabilistic framework is generic, the specific application of diffusion
tractography throughout this thesis has been the inference on the location of the dom-
inant streamline from a seed location. As was discussed in chapters 5 and 6, this
dominant streamline, although certainly of interest, is far from the complete picture
in terms of the anatomical connectivity of the seed location. The reason that we are
limited to inferring on a single dominant streamline is that the model we originally fit
to the diffusion signal in chapter 4 allowed for only a single fibre direction within a
voxel. In fact, each voxel will contain a continuous distribution of fibre orientations
(from here on referred to as the fibre orientation distribution function (fODF)), re-
sulting from fibre divergence, convergence and crossing. A key area for future work
in the field of diffusion tractography is to develop models or relationships which allow
us to relate the measured diffusion weighted NMR signal to (at worst) this f{ODF or
(at best) to the actual morphology of the fibre system in the voxel. Recent work on
the model-free recovery of the diffusion function (16; 133) has brought this possibility

one stage closer. Q-space, and Q-ball imaging allow us to recover, respectively, the
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(sampled) ensemble average diffusion propagator (the pdf on diffusion within a voxel
(see chapter 2)) and the diffusion spin ODF (the orientational pdf on diffusion within
a voxel) without the requiring us to make any assumptions about the forms of these
functions. Crucially, this work has resulted in observations of areas in the brain where
the recovered diffusion functions are far from what we would predict with a Gaussian
model of diffusion. For example, areas in the brain where fibre pathways cross are
revealed by diffusion functions with multiple modes, where each mode is along the
direction of one of the crossing pathways. However, unfortunately these techniques do
not yet allow us to recover the distributions which relate directly to the underlying

fibre architecture (the fODF or the fibre morphology in the voxel).

The most obvious approach to achieving this goal yields a problem of such enormous
complexity that it seems unlikely ever to provide us with an adequate solution. The
number of biophysical unknowns which influence diffusion in and around white matter is
so great that as yet, we cannot even state with any confidence which of them contribute
to the diffusion anisotropy we rely on for tractography. It seems then that building a
low-level biophysical model of white matter with a view to predicting the diffusion we

witness in the NMR signal is a not a problem to be tackled in the near future.

All hope is not yet lost. It would certainly be possible to tackle the problem ex-
perimentally at a much higher level. Diffusion measurements from phantoms where we
knew the ground truth fibre architecture could help to understand the measurements
we take in the living brain. However, perhaps the most promising approach to tackling
this essentially biophysical problem, is to ignore completely the biophysics. It may be
possible to take an extremely simple model of the relationship between fibre architec-
ture and diffusion signal (such as the one in section 4.1.3) but infer on it in such a way
that we recover the same distributions as we would if we knew the true model. We can
potentially achieve this by using sensible anatomical constraints on the distributions
we estimate. For example, we know that every fibre that leaves one voxel enters the
relevant neighbour. We know that white matter fibres connect regions of grey mat-

ter. It may be that such general anatomical “prior” information could provide us with
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enough constraints to infer reliably on the fibre distributions of interest without the

need for a complete understanding of the biophysics.

8.1.2 Functionally-relevant brain atlases.

There has been a growing trend in recent years to build images which are in some way
representative of an “average” human brain (e.g. (134)). Such representative brains
serve an important function to the neuroscience community; they provide a common
frame of reference in which neuroscientists can examine and compare their experimen-
tal results. Currently, the representative brain most widely used by neuroscientists is
the MNI 152 brain, which is an arithmetic average of MRI scans of 152 brains at each
imaging voxel. However, before experimental results may be examined in the light of
the MNI brain and, indeed, before the 152 brains could be averaged originally, they
must undergo the process of registration. That is, they must be transformed in some
way such that the same coordinates in each image refer to the same anatomical loca-
tion in the brain (for a detailed explanation of registration and atlases, see (21)). At
present, this transformation process aims to match either visible features in the struc-
tural image (feature based registration) or image intensities at each voxel (intensity
based registration). However, the brain location of real interest to the neuroscientist is
not the physical location of the active neurons defined by neighbouring sulci and gyri,
but their conceptual location in the axonal network which defines neuronal function.
The relationship between these structural and functional locations is not wholly con-
sistent across individuals (e.g. (135)); hence, the explanation of neuronal activation
in the context of their visible anatomical location (termed “Brain Mapping”), while

clearly useful, is far from presenting a complete picture.

In this thesis (chapters 6 and 7) we have introduced methods for defining and
parcellating brain regions according to their location in the axonal network; that is,
according to their connections. An elegant extension to this work would be to devise
registration strategies to match images based on these parcellations such that we may

build a functionally relevant brain atlas which is parcellated and labelled according to
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local connectivity. Not only would this provide a more logical frame of reference in
which to examine experimental results, but it would also allow us, at least on a gross

scale, to build a picture of the axonal network.

8.1.3 Combination with FMRI

Functional MRI (FMRI) provides a means for measuring the decrease in deoxyhaemoglobin
content resulting from the increase in demand for oxygenated blood when neurons fire
or “activate” (21). Neuroscientists use FMRI in conjunction with psychological exper-
iments to build a picture of the areas of the brain involved with processing information
in the task of interest. These “activation maps” provide us with information on the
functional localisation of human brain regions. As discussed in chapters 6 and 7, we
would expect to see a strong relationship between the function of a brain region and
the structure of its anatomical wiring or connectivity. The function is constrained by

the anatomy.

Figure 8.1: Combined FMRI-diffusion experiment. FMRI result (displayed in red to yellow): Group
activation from 8 subjects for a working memory task. Thalamic and prefrontal cortical activations
were apparent. Probabilistic tractography was seeded from the peak of the FMRI activation. The
resulting connectivity distribution terminated in cortex at the location of the prefrontal activation.

With this in mind, tractography data can clearly be useful in informing the inter-
pretation of results of FMRI experiments. For example, Figure 8.1 shows (in red to
yellow8uiui) a projection through 7 slices of an activation map from a working memory

experiment in 8 subjects. Activation clusters are shown in medial thalamus, insular,
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and lateral prefrontal cortex. In more superior slices there was also a parietal lobe ac-
tivation. Probabilistic tractography was carried out as in chapter 5 seeded at the peak
of the thalamic activation cluster. The resulting connectivity distribution terminated
in prefrontal cortex at exactly the location of the prefrontal activation. No connections
were found between the thalamic and parietal activating clusters. However seeding in
the external capsule generated pathways connecting the frontal and parietal activa-
tions. This kind of result is clearly useful in helping us to understand the interaction

between spatially discrete brain regions during the FMRI experiment.

However, this type of “visual-inspection” analysis, while potentially useful, could
certainly be improved upon. A major goal of systems level neuroscience research is
to highlight and describe the neuronal networks involved in processing the task at
hand. The diffusion and BOLD datasets provide us with related but complementary
information about these networks during the course of the FMRI experiment and, as
such, are prime candidates for data fusion - the merging of more than one type of data

derived from the same source, but in different fashions, to infer on that source.

In the Bayesian framework, the process of data fusion is a natural extension of
inference with only a single type of data. Different generative likelihoods predict the
effect of the source as seen in each type of data, and are combined with each other
and the priors to generate the posterior distribution on the source. Here, in the BOLD
data the underlying network is witnessed in the grey matter as correlations between
the BOLD signal and the experimental design. In the diffusion data, it may be seen
as fast diffusion along a white matter route between connected grey matter regions.
Generative likelihoods for the entire network in the diffusion data may be built as a
simple extension of the likelihood for a pathway (e.g. chapter 5) and a local fibre
direction (e.g. chapter 4). In the BOLD data, a network likelihood should include
parameters for the spatial positions of different activating units of the networks, and

parameters for the temporal relationship between the BOLD signals in these units.

If analysed separately, but interpreted together, as in figure 8.1, BOLD- and diffusion-

weighted data may be able to give us some conceptual insight into neuronal processes
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contributing to the FMRI data. If analysed together, such that each dataset may in-
form our inference about the other, then their combination may enable us to infer on

structural /functional networks in the living human brain.
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