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A Bayesian Approach for Stochastic White
Matter Tractography

Ola Friman®*, Gunnar Farnebick, and Carl-Fredrik Westin

Abstract—White matter fiber bundles in the human brain can be
located by tracing the local water diffusion in diffusion weighted
magnetic resonance imaging (MRI) images. In this paper, a novel
Bayesian modeling approach for white matter tractography is pre-
sented. The uncertainty associated with estimated white matter
fiber paths is investigated, and a method for calculating the proba-
bility of a connection between two areas in the brain is introduced.
The main merits of the presented methodology are its simple imple-
mentation and its ability to handle noise in a theoretically justified
way. Theory for estimating global connectivity is also presented, as
well as a theorem that facilitates the estimation of the parameters
in a constrained tensor model of the local water diffusion profile.

Index Terms—Bayesian modeling, diffusion tensor-magnetic
resonance imaging (DT-MRI), fiber tracking, magnetic resonance
imaging (MRI), probabilistic tracking, uncertainty.

1. INTRODUCTION

N WHITE matter tractography, white matter fiber paths are
I estimated by tracing the direction of maximal water diffu-
sion in diffusion weighted magnetic resonance imaging (MRI)
images. Such estimated fiber paths can subsequently be used,
for example, to investigate connectivity in mental and neuro-
logical disorders. To infer changes in connectivity in such dis-
orders, the inherent variability of the estimated paths should be
taken into account. Another application of white matter tractog-
raphy is surgical planning, where it is important to consider the
uncertainty associated with the estimated fiber bundles. In gen-
eral, when estimating a quantity based on some available data,
it is natural to ask what uncertainty is associated with the en-
suing estimate. Indeed, uncertainty in white matter tractography,
which arises due to noise, motion, imaging artifacts and partial
volume effects (i.e., crossing, merging and splitting fiber tracts),
has recently been investigated by several authors [1]-[10]. The
question at issue is how image noise and partial volume effects
are translated into uncertainty in the local fiber orientation, and
how this uncertainty induces variability in global connectivity
measures. Uncertainty is naturally quantified by means of prob-
ability, and in this paper, we are interested in the probability of
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Fig. 1. A fiber path is represented by a train of vectors.

a fiber connecting two areas in the brain, given the measured
diffusion data. There are two main statistical approaches that
can deal with this problem. A nonparametric approach does not
make any assumptions regarding the noise or the underlying
water diffusion profile. For example, Lazar et al. [8], and Jones
et al. [9], recently investigated the bootstrap method for dealing
with uncertainty stemming from noise. Another example is the
nonparametric descriptions of the water diffusion profile that are
obtained using ¢ ball imaging [3], the persistent angular struc-
ture MRI [11], and related high angular resolution methods [12].
The drawback with nonparametric methods is that they require
large amounts of data, and thereby also scanning times which
under many circumstances are unacceptable. The alternative is
to adopt a parametric approach, in which the estimation is regu-
larized by prior knowledge in form of models. The widely used
tensor model for the local water diffusion profile is an example
[13]. However, when a parametric method is applied, care must
be taken to introduce our prior knowledge and models at points
where it can be theoretically or experimentally justified. To this
end, Behrens er al. [7] pioneered a method where the proba-
bility density function of the local fiber orientation is derived in
a Bayesian framework. Here we present an alternative Bayesian
approach, which is efficient and straightforward to implement.
The outline is as follows. First, we describe the global mod-
eling of fibers and how to estimate the probability of a fiber
going from a point or area A to an area B in the brain. Then a
Bayesian approach for deriving probability density functions of
the local fiber orientation is described, including a novel model
for the water diffusion profile and an associated theorem that fa-
cilitates the estimation of the parameters in this model. Finally,
results that justify our method are presented. Related theory and
preliminary results have been presented by the authors before
in [14].

II. GLOBAL MODELING AND ESTIMATION

A white matter fiber can be modeled as a finite length path
described by a train of vectors, see Fig. 1. We assume that all
vectors have the same predetermined length, referred to as the
step length. A fiber path can then be parameterized by a train
of unit length vectors, and we use the following notation for
such a path: vq., = {V1,...,V,}. Denote by Q7 the set of all
possible paths of length n that originate in a point or area A, and
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Fig. 2. To integrate the standard normal distribution between —1 and 1 using
Rejection sampling, first a large number of samples are drawn from this distri-
bution. An estimate of the area is then given by the fraction of samples that fall
between — 1 and 1. Using only the 50 random samples plotted along the x axis
yields in an estimated area of 0.70, the correct area is 0.683.

assume that we can assign a probability p(v1.,,) to each path in
this space (or more correctly, define a probability function on the
path space). We also introduce a discrete probability function
p(n) for the path length. Hence, we have

Vl:n) =1 (1)

p(vim) =1 and Z /p(n)p(

5 m=lan

If we have any prior information about the expected path
lengths, this can be encoded in p(n). Without prior knowledge,
a noninformative uniform distribution over a range of reason-
able lengths is used. Integrals over path spaces, like the ones
in (1), also arise in for example quantum mechanics [15], and
computer graphics [16]. Now, let Q7 ; be the set of all possible
paths of length n between A and another area B. We can find
the probability p(A — B|D) of a fiber going from A to B,
given the diffusion data D, by summing the probabilities for all
paths of all lengths between these areas

p(vin[D). 2

p(A — B|D) = Z /

'le

In the above equation, we have suppressed the dependence of the
path length n on D. The integrals in (2) are defined over com-
plicated path spaces 2"} 5, and we cannot hope to find analytical
solutions. Hence, we must resort to numerical integration, and
it is only by applying Monte Carlo methods it is possible to es-
timate such high-dimensional integrals. A technique known as
Rejection sampling is well suited for this problem. To illustrate
this technique, consider the problem of integrating a standard
normal distribution between —1 and 1, see Fig. 2. An estimate
of the shaded area can be obtained by drawing random sam-
ples from the normal distribution and calculating the fraction of
samples between —1 and 1. Similarly, since Q% 5 C Q%, we
can approximate the integrals in (2) by drawing a large number
of random sample paths v¥ , k = 1,...N,, from p(vi.,|D)
over the domain €27, i.e., with starting point in A, and calculate
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the fraction of paths that reach B. Formally, by defining an in-
dicator function

1, vk e
1 k_ — ) 1in AB 3
(Vi) {0, otherwise )
we have
= $5 o )
p(A— BID) = Y > p(n)—="=. )
n=1k=1 N

Expressed in words, a path that reaches B after n steps gives a
contribution to the sum in (4) that depends on the total number
of paths N,, of length n, and the probability of a path of length
n, p(n). In practice, the outer sum in (4) is finite because the
probability function p(n) of the path lengths is assumed zero
above some finite length.

Instead of the probability p(A — B|D), Tuch [13] considers
the path of maximal probability between A and B. As a mea-
sure of connectivity between A and B, the maximal probability
path has the interesting property of being symmetric. In gen-
eral, this does not hold for p(A — B|D); the probability will
depend on whether we start sampling paths in A or in B. To il-
lustrate why, imagine that a fiber bundle starts in a point A and
subsequently splits into two equal parts, which reach two areas
B and C, respectively. p(A — B|D) will then be estimated to
around 0.5. But if we start in B, and assume that no other tracts
reach B, almost all traced paths will reach A, and p(B — A|D)
will be close to 1. Furthermore, note that in order to calculate
p(A — B|D), there is no need to explicitly evaluate the path
probabilities p(vy.,|D); it is sufficient if we can draw sample
paths. In contrast, to find the maximal probability path, the path
probabilities must be computed. Even though we will not ex-
amine this further, it should be mentioned that an estimate of
the maximal probability path is obtained as a byproduct in the
methodology presented later.

A. Sampling Paths

To implement the above scheme, we need a method for
drawing random paths vi.,, = {¥1,...,V,} from a high-di-
mensional probability density function (pdf) p(vi.). Re-
member that the step length is assumed fixed, and that we,
therefore, can work with unit length vectors. Since the sampled
paths are models of actual fibers, a certain regularity must be
imposed upon them. For simplicity and notational convenience,
we assume that the vector V; only depends only on the previous
vector v;_1, and not on V; o,...,v;. This assumption is
trivially relaxed. The probability for a path of a given length n
then factorizes into

p(vin|D) = p1(1|D) [[ pi(¥il¥iz1, D). )

=2

Note that the probability function of the step direction is dif-
ferent for every vector in the path, hence, the indexes of the
probability functions. Henceforth, this index will be dropped
where it is not important. Equation (5) tells us that random paths
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Fig. 3. The posterior distributions of the fiber orientation for a voxel in the
Corpus callosum (left) and for a gray matter voxel (right). Posterior distribution
of the Corpus callosum voxel is very focused, whereas the fiber orientation in
the gray matter voxel is very uncertain.

can be built sequentially by first drawing a random direction v,
then a random direction v, given vy, and so on. This proce-
dure is known as sequential importance sampling [1], [17], and
it is similar to what in the white matter tractography literature is
known as streamlining. The sequential sampling is terminated
when the path reaches a forbidden area, e.g., outside the brain,
or if the uncertainty regarding the next step is too high.

An interpolation problem arises in the sampling process be-
cause we only have the diffusion data D on a discrete grid,
whereas the sampled paths do not have such a restriction. The
probabilistic framework allows us to employ the probabilistic
interpolation method suggested by Behrens ez al. [7], which uti-
lizes the diffusion data at a grid point chosen at random based
on the distance to the current sample point.

III. LOCAL MODELING AND ESTIMATION

To carry out the sequential sampling of fiber paths, in
every step we need to find a pdf of the local fiber orientation
p(V;i|¥i—1,D), and to draw a random sample from this pdf.
Examples of such pdf’s are shown in Fig. 3. Assume that we
have a model that relates the diffusion measurements D with
the underlying tissue properties and fiber architecture. Such
a model necessarily contains at least one fiber direction v,
which here is the parameter of interest, and a set of nuisance
parameters collectively denoted by 6. By applying Bayes’
theorem, we have

p(D[Vi1,Vi,0)p(Vi,0]vi-1)
p(D|vi-1) '

This expression can be simplified if we introduce a few plau-
sible assumptions. First, we assume that the prior distribution
can be factorized p(v;,0|¥v;_1) = p(V;|¥;_1)p(#), meaning
that our prior knowledge about the nuisance parameters in the
current point is independent of both the previous step direction
and our prior knowledge about the next step direction. Like-
wise, we assume that the diffusion measurements in the current
point do not depend on the previous step direction, giving that
p(D[¥:,%:-1.8) = p(D|¥,,6) and p(D[¥,_1) = p(D). The
equation can then be written
N p(D|v;,0)p(vi|vi 1)p(d)

p(0170|‘/\,7—17D) = (6)

TABLE I
THREE MODELS OF HOW THE VOXEL INTENSITY p; DEPENDS ON THE
UNDERLYING WATER DIFFUSION PROFILE

.2l Dg.
Tensor model Bj = poe bj&; Dg;

—8b:(&Tv)?
Constrained model Hi = po e bje ﬁb](gﬁ v)

—bid(sT%)>
Compartment model ;= po[(1 — fle % + fe bid(gﬂ V) ]

The factor p(D) normalizes the posterior probability distribu-
tion to have unit volume and can thus, be written as the integral
of the numerator

pwr=/mmwwmwm4m@. ®)

vi,0

Finally, to find the probability function of interest p(v;|V;_1, D)
used in (5), we need to marginalize, i.e., integrate, (7) over the
nuisance parameters 8. This marginalization and the integral in
(8) have to be calculated in every step in the sequential sampling
of the fiber paths. Since these integrals are high-dimensional
and generally intractable, the cost of the Bayesian approach
will be prohibitive unless approximations for these integrals are
found. As will be discussed in further detail later, Behrens et
al. [7] avoid evaluating the integrals by applying Markov Chain
Monte Carlo (MCMC) methods for drawing samples from a
joint posterior distribution similar to the one in (7). In the fol-
lowing sections, we describe an alternative method, and discuss
different observation models p(D|¥;,8) and priors, p(V;|vi_1)
and p(@), that allow fast and simple computation of the poste-
rior distribution.

A. Observation Model

The true intensities j1;, 7 = 1,..., N, in a voxel in the diffu-
sion sensitized images depend on the local water diffusion pro-
file. In Table I, three models of how the voxel intensity is mod-
ulated by the underlying water diffusivity and fiber orientation
are listed. The gradient directions g; and the b-values b; are
known experimental parameters. In white matter tractography,
the diffusion tensor D or the orientation of maximal water dif-
fusivity v are the parameters of interest. The orientation of max-
imal water diffusivity is generally assumed to coincide with the
orientation of an underlying fiber tract. The remaining parame-
ters in the models in Table I are of little interest in the current
application, but they are required for modeling the connection
between water diffusivity and voxel intensity. They are for this
reason referred to as nuisance parameters.

The tensor model is widely used in diffusion imaging [13]. It
assumes a Gaussian shaped water diffusion profile described by
the diffusion tensor D with eigen-decomposition

D= )\lélé,{ + )\QéQég + )\3é3é§ (9)

where A\; > Ay > A3. The compartment model was proposed
by Behrens et al. [7], though in Table I it is reproduced in a dif-
ferent parametrization. This model assumes that a voxel can be
divided into two compartments: one compartment with isotropic
water diffusion and one compartment where the water diffuses
anisotropically due to a potential fiber bundle going through the
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voxel. In this work we use the constrained model, which is ob-
tained by assuming that the two smallest eigenvalues of the dif-
fusion tensor D are equal, i.e., A2 = A3 = «. This gives

D= /\1e1e1 +a (e2e2 + ege?;)

=\ —a)é el + ol = peel + a1 (10)

which after substitution into the expression for the tensor model
yields the constrained model. The constrained model describes
cigar-shaped diffusion profiles, with a sphere and a line as ex-
tremes. This model has recently been suggested independently
by Alexander [18], and by Friman and Westin [14]. Using the
theorem presented in the Appendix, here an efficient estimation
procedure for this model is provided.

While all three models in Table I describe diffusion profiles,
the constrained model and the compartment model can also be
viewed as modeling the effect of a single underlying fiber tract.
Due to the relatively large voxel size, voxels may contain sev-
eral different fiber tracts, and models that handle multiple fiber
orientations within a voxel have been proposed [11], [12], [19].
In this paper, however, we assume that there is only one fiber
orientation in each voxel, and any deviations from this model
will be captured as uncertainty in this orientation via the poste-
rior distribution in (7). This assumption will be discussed further
in the results and discussion sections. The reason we prefer the
constrained model over the compartment model is because of
its mathematical tractability, as will become clear later.

The voxel intensity y; in a diffusion weighted image is a noisy
observation of 11;. Moreover, the intensity decays exponentially
(or bi-exponentially) with the water diffusivity, as implied by
the models in Table I. Hence, by taking the logarithm of the ob-
servations, z; = Iny;, we obtain a more linear relationship be-
tween observations and model parameters. The noise in magni-
tude MRI images is Rician distributed [20], [21], which should
be taken into account when estimating parameters using the log-
arithmed data. Basser et al. [13] and Salvador et al. [22] show
that z; = Inp; + ¢, where e € N(0,0%/u3), is an accurate
model for the observation noise. That is, after taking the loga-
rithm the noise can be modeled as additive Gaussian with a vari-
ance that depends on the voxel intensity. The joint distribution,

or the likelihood, of the observed (log-)data D = [z1,...,2zN]
in a voxel can then be written

N p2

H *2 (2 —Inpy)? (11)

27r02

where p; is to be replaced by the expression for any of the
models in Table I, and 6 denotes the nuisance parameters in this
model. This likelihood function is substituted into the expres-
sions for the posterior distribution in (7) and (8).

B. Priors

Via the probability functions p(¥v;|v;_1) and p(@), we encode
our prior knowledge about fiber regularity and nuisance parame-
ters. The prior distribution of the fiber regularity can be inferred
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by invasive examination of real white matter fibers. However,
here we use a simple family of distributions given by

ATA‘ Y AT >
p(\/\/l|\?271) x { (V,L Vlfl) , Vi -1 Z 0 (12)

07 T11<0

where v > 0. This prior gives preference to continue in the pre-
vious step-direction, with a decreasing probability for sharper
turns until it reaches a zero probability for turns of 90° and
above. The ~y-parameter controls the sharpness of the distri-
bution, i.e., the regularity of the path. In our experiments we
use v = 1. Turning to the nuisance parameters in the models
in Table I, for example the constrained model in which § =
{10, @, 3,02}, we generally do not have any detailed prior in-
formation, except that these parameters should be nonnegative.
Considering the computational effort required to evaluate the
integral in (8), we choose dirac impulses as priors for the nui-
sance parameters, for example p(8) = 6(p10—f10)0(a—&)d(8—
B)8(c* — 6%). That is, in the calculation of the posterior pdf in
(7), the nuisance parameters are fixed to some values fig, &, 3
and 2. Note, however, that the nuisance parameters will vary
from voxel to voxel. With this simplification, the integral in (8)
and posterior pdf in (7) collapses to be defined only over v, i.e.,
over the unit sphere. Hence, they are easily calculated numeri-
cally and significant computational savings are made.

C. Point Estimates of Model Parameters

To define the priors above, or to initialize an MCMC process
for drawing samples from the posterior distribution, it is impor-
tant to have access to good point estimators for the parameters
in the observation models in Table I. For the tensor model, point
estimates are readily obtained by means of linear least squares
estimation [13], [22]. The parameters in the constrained model
can be found through the following theorem.

Theorem: Let D be a symmetric 3 X 3 matrix with eigenvalue
factorization D = Alélé{+)\2é2ég+)\3é3é§, A1 > Ao > As.
The closest, in terms of the Frobenius norm, symmetric matrix
S with the two smallest eigenvalues equal is given by

A2+ A3

S=2Xée T+ 9

(6287 +&385).  (13)
A proof of this theorem can be found in the Appendix. Recalling
(10), we can find the parameters of the constrained model by
first solving for the full diffusion tensor D in the tensor model,

and then setting

A+ A3

5 (14)

ﬂ:)\l—a \A/:él.

The compartment model is more difficult to handle mathemat-
ically, and we need to apply computationally demanding non-
linear optimization techniques to find accurate estimates of its
parameters. Finally, once the model parameters have been esti-
mated, an estimate of the noise variance 2 is obtained from the
residuals, see [22].
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Fig. 4. Example of how the posterior pdf of the next step direction is computed in an example voxel in the External capsule. In the top panel, distributions for the
next step direction are plotted on the unit sphere. The bottom panel shows same distributions using spherical coordinates, where 8 is the angle from the positive
axis and ¢ is the azimuth, i.e., the angle from the # axis in the xy plane. (a) The likelihood given the diffusion data. Note that the likelihood function is symmetric
because the diffusion data points out an orientation and not a direction. (b) Hypothetical prior distribution of the direction of the next step. This prior was generated
from an assumed previous step direction. (c) Posterior pdf for the next step direction, obtained as the product of the likelihood and prior, and then normalized so

as to become a probability density.

D. Drawing Samples From the Posterior Distribution

Finally, to perform the sequential sampling of fiber paths, we
need to draw random samples of the fiber direction from the
posterior distribution in (7). For drawing samples from com-
plicated and high dimensional pdfs, one can always resort to
MCMC techniques. However, while MCMC sampling is con-
ceptually simple, there are implementation issues, such as con-
vergence and so-called mixing of the Markov chain, that com-
plicate practical use. In contrast, with the dirac priors proposed
above, we need only draw samples from a pdf defined on the
unit sphere. This can be accomplished by evaluating the pdf at
a sufficiently large number of points evenly spread over the unit
sphere, effectively approximating the continuous pdf with a dis-
crete pdf, from which it is straightforward to draw random sam-
ples. We denote such a set of unit vectors with S. Care must
be taken to sample the continuous pdf densely enough, so as to
cover high-probability areas well. In our experiments, we eval-
uate the posterior distribution at 2562 predefined unit length
vectors obtained by a fourfold tessellation of an icosahedron.
This number was found sufficient by examining voxels with the
most anisotropic diffusion in the Corpus callosum. In case a
larger number of directions is desired or required, such direc-
tions can for example be found by an additional tessellation, or
by an electrostatic repulsion algorithm used previously in diffu-
sion tensor-magnetic resonance imaging (DT-MRI) to find suit-
able gradient directions [23].

IV. IMPLEMENTATION

In this section, the implementation of the methodology pre-
sented in the previous sections is discussed. The procedure for
calculating the probability of a connection between two areas in
the brain consists of two separate steps. First, a large number of
fiber paths must be generated. Subsequently, a map of connec-
tion probabilities can be calculated. These two steps are detailed
in the sections below. MATLAB code is available on request.

A. Sampling Fiber Paths

A central issue in probabilistic tractography is how the prob-
ability distribution of the underlying fiber orientation is calcu-
lated, and how random samples are drawn from this distribution.
In Section III, a Bayesian derivation leading to a posterior dis-
tribution of the next step direction is presented. An example of
the posterior distribution in a single voxel is visualized in Fig. 4,
and two more examples of posterior distributions are shown in
Fig. 3. The distribution of the next step direction is found by
marginalizing, i.e., integrating, (7) over the nuisance parame-
ters 8. The integrations required for finding the posterior distri-
bution are demanding operations, and in the sections above two
simplifications are suggested to facilitate the calculation. First,
it is suggested to use dirac priors for the nuisance parameters.
This has the effect of collapsing the integrals over the nuisance
parameters. Second, using the set of unit vectors densely dis-
tributed over the unit sphere S, a discretization of the possible
step directions is suggested, which converts the integration over
the step direction v; in (8) to a summation. Thus, combining (7)
and (8), and taking the simplifications into account, gives the
distribution

p(DVi,0) p (Vi|Vvi_1)
> (D, 0)p (VilVi1)

VLES

In this equation, V; is a random variable which equals one of the
predefined step directions ¥, € S with a certain probability.
The likelihood function p(D|Vy, #) is given by (11), and the
prior distribution p(V|¥v;_1) by (12).

The steps below outline the procedure for generating one
fiber. The parameters that must be chosen beforehand are the
set of vectors S spread over the unit sphere, a seed point, a step
length, and termination criteria.
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1) Estimate Tensor Model for the Current Point:

The tensor can be estimated using a conventional linear
least squares approach, or some more advanced approach
where the eigenvalues are constrained to be nonnegative
[24], [25].

2) Termination Criteria:

The tracking should be terminated if the diffusion
anisotropy is too low, according to for example the
fractional anisotropy or relative anisotropy [26], or some
other measure of anisotropy.

3) Estimate Nuisance Parameters in the Constrained Model.
The nuisance parameters in the constrained model «, (3 are
estimated according to (14), and 2 as the residual noise
variance.

4) Calculate Likelihood Function:

The likelihood p(D|vy, 8) of each of the predefined direc-
tions vi € S is obtained according to (11).

5) Calculate Prior Distribution:

The prior probability p(V|V;_1) for each of the predefined
directions vV, € S is obtained according to (12).

6) Calculate Posterior Distribution:

The posterior probability p(v; = v |V;_1, D) for each of
the directions v, € S is obtained by multiplying the like-
lihood with the prior and normalizing to unity, according
to (15).

7) Draw Random Direction:

One of the directions in S is drawn at random according
to the posterior distribution p(v; = Vi|Vv;_1,D). Since
the posterior distribution is discrete, this is simply done
by letting each of the directions in S occupy an interval
between 0 and 1 of length equal to its probability, and then
choosing the interval in which a uniform random number
between 0 and 1 falls. A step of the predefined step length
is taken in the drawn direction.

8) Stochastic Interpolation:

Asdescribed in [27], choose a neighboring voxel at random
according to the distance to the current point. Use the dif-
fusion data in this voxel for the next step.

9) Go to Step 1)

When generating a large number of fibers according to the above
steps, many voxels will be visited many times. The computa-
tionally most demanding step is the calculation of the likelihood
function in Step 4. Great computational savings are therefore
made if the likelihood function is stored once it has been cal-
culated for a voxel. The tracking algorithm can then start from
Step 5 when a previously visited voxel is encountered.

B. Calculating Probability Maps

Section II describes how the probability p(A — B|D) is cal-
culated. By letting A be a user-defined seed voxel, and calcu-
lating p(A — B|D) for B equal to all other voxels, a map
of connection probabilities is obtained. An important question
is how many fiber samples are required for an acceptable ap-
proximation of the probability of a connection, i.e., for (4) to
approximate (2). The accuracy of the rejection sampling proce-
dure underlying (4) depends on the number of sampled paths.
A sampled path that was terminated after 10 steps can be seen
as 10 paths of different lengths. Hence, the number of sampled
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paths N,, of a particular length n decreases monotonically as
the length increases. For example, there will be many paths of
length 1 but fewer of length 100, because some paths will be
terminated before they reach this length. At some length 7,x
there are not enough paths to give an acceptable approximation
of the integral in (2), that is, V,, in (4) becomes too small for
lengths n > nax. As a rule of thumb, we generate between
5000 and 10 000 paths from each seed point, and require N,, to
be at least 1000. This seems to be sufficient in the sense that the
spatial connectivity maps do not change much if more samples
are generated. Another way of viewing this is that the distribu-
tion of the path length p(n) is set to zero for n > ny.y. In this
work, we set p(n) to a uniform distribution over the lengths 1 to
Timax- The probability of a connection for each voxel is obtained
via (4), with the outer sum going from 1 to n,ax (or to between
limits dictated by p(n) in case another distribution is chosen).
The time it takes to calculate a map of connection probabilities
is negligible compared to the time it takes to sample the fiber
paths. Finally, each generated fiber path has a probability as-
sociated with it according to (5). An estimate of the maximum
probability path between two regions is thus given by the fiber
with the maximum probability among the generated paths be-
tween these regions.

V. RESULTS

For the results, a diffusion weighted data set consisting of
31 volumes acquired with different gradient directions (b =
1000 s/mmz), and one baseline volume acquired with no dif-
fusion weighting (b = 0 s/mm?), is used. The data were ac-
quired using a General Electric 3 T whole-body scanner and a
dual spin echo EPI imaging sequence, with TR = 11.5 ms and
TE = 88.9 ms. The images cover a field of view of 24 cm using
a 128 x 128 grid, which subsequently was interpolated to a 256
x 256 grid. 31 image slices were acquired, with a slice thick-
ness of 3.5 mm. The signal-to-noise ratio (SNR) in white matter
in the b = 0 volume, calculated as image intensity divided by
standard error of the noise, is SNR = 4.6 in this data set. A
slight smoothing of the images, using a Gaussian kernel of a
width of 1.2 voxel full-width at half-maximum (FWHM), was
applied to the original data volumes to avoid problems with neg-
ative eigenvalues in the tensor estimation. A set of T1-weighted
anatomical images were also acquired, and used as overlay im-
ages for some of the results below.

Before showing tracking results, we first compare the be-
havior of the diffusion models in Table I; investigate how the
dirac priors for the nuisance parameters affect the uncertainty
in fiber orientation; and examine how the single-fiber model
behaves when there are multiple fiber orientations present in a
voxel. We then move on to show examples of tracked fibers and
maps of connection probabilities. Unless otherwise stated, the
constrained observation model in Table I is used.

A. Diffusion Model

We begin with a comparison of the water diffusion models in
Table I. The focus is on any potential differences between these
models. The widely used tensor model is used as reference with
which the compartment model used by Behrens et al. [7] and the
constrained model used here are compared. To this end, these
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TABLE II
COMPARISON OF THE THREE WATER DIFFUSION MODELS LISTED TO THE LEFT.
THE TENSOR MODEL IS USED AS REFERENCE. THE ANGULAR DIFFERENCE
IS THE AVERAGE DIFFERENCE IN PRINCIPAL DIFFUSION ORIENTATION IN
‘WHITE MATTER. THE RESIDUAL VARIANCE IS THE VARIANCE OF THE
NOISE REMAINING AFTER THE MODEL HAS BEEN FITTED,
AVERAGED ACROSS ALL WHITE MATTER VOXELS

Angular difference  Residual variance
Tensor model - 1
Constrained model 0°
Compartment model 3.2°

models were first fitted to the diffusion measurements in white
matter voxels. The tensor model was fitted using a conventional
linear least squares approach, the constrained model via (14),
and the compartment model was fitted using an iterative non-
linear least squares method using the MATLAB Optimization
Toolbox. Subsequently, using the tensor model as reference, the
differences in the principal water diffusion orientation and the
variance of the residual data were investigated. The angular dif-
ference in diffusion orientation was calculated for each voxel as
(360/27) arccos(|vEVr|), where V1 is the first eigenvector of
the diffusion tensor in the tensor model, and v is the diffusion
direction in the constrained or compartment model. The residual
variance in a voxel using the tensor model was calculated as

N
o7 = #Z(yj—u”f)z (16)
N 74 7

where [V again is the number of diffusion weighted image vol-
umes (32 in our case), y; is the voxel intensity in volume number
J» and p} is the intensity in this voxel predicted by the tensor
model with the optimal estimated parameters inserted. The vari-
ances for the compartment and the constrained models are cal-
culated similarly, but with the normalizing factor N — 5 instead,
because there are only five parameters in these models, com-
pared to the seven parameters in the tensor model. The angular
difference and the residual variance, averaged over all white
matter voxels, are reported in Table II. First, the principal water
diffusion orientation is the same in the tensor model and the
constrained model, leading to the 0° angular difference. The an-
gular difference between the main diffusion orientation in the
tensor model and the compartment model in white matter av-
erages on 3.2°. The practical consequence of this difference is
illustrated in Fig. 5, where a conventional tracking following the
principal diffusion orientation in the constrained model and the
compartment model is shown. Turning to the residual noise vari-
ance comparison, we see that the residual noise variances for the
constrained model and the compartment model are 20% higher
compared to the tensor model. This is explained by the extra
free parameters the tensor model has to improve the model fit
(seven versus five parameters). The important observation here
is that there is no difference in the goodness of fit between the
constrained model and the compartment model.

The aforementioned results are valid only for white matter
voxels, where a certain diffusion anisotropy can be expected.
In voxels with more isotropic water diffusion, such as in gray
matter voxels, larger differences in, for example, the estimated
main diffusion orientation can be expected. However, since the

Fig. 5. Tracking example using the constrained model and the compartment
model. Tracking was carried out by tracing the principal water diffusion di-
rection, as pointed out by the constrained model and compartment model. The
tracking was initiated in the marked point in Corpus callosum, and then the dif-
fusion orientation was followed in both directions and for both diffusion models.

models are supposed to operate in white matter voxels, and the
fiber tracking is terminated when isotropic voxels are encoun-
tered, any differences outside white matter have little effect on
the final results. As stated previously, the advantage of the con-
strained model lies in its mathematical tractability; fitting the
constrained model in every voxel in a data set is done in a couple
of seconds while fitting the compartment model takes a couple
of hours, i.e., a difference of three orders of magnitude.

B. Prior Distributions

In this section, we investigate how the use of dirac priors in-
fluences the posterior distribution of the fiber orientation. To this
end, we compare the posterior distribution obtained using dirac
priors with the posterior distribution obtained using uniform dis-
tributions as priors. Predictably, saying that we are absolutely
certain about the values of the nuisance parameters leads to a
reduced subjective uncertainty regarding the fiber orientation.
The uniform prior distributions are chosen to cover a +20% in-
terval around the point estimates of the nuisance parameters,
indicating an uncertainty regarding their exact values. To calcu-
late the posterior distribution in this case, we need to evaluate a
six-dimensional integral for the normalization factor in (8). This
is done using trapezoidal integration. Because of the dimension-
ality, the computational time is a few minutes. This should be
compared to the dirac prior case, where the integral in (8) is
defined over the unit sphere (i.e., two-dimensional) and the nu-
merical evaluation is extremely fast. Resulting posterior pdf’s
for three voxels with different degrees of diffusion anisotropy
are shown in Fig. 6. Clearly, the distributions obtained using
uniform priors and dirac priors are nearly indistinguishable. A
very close examination reveals that the posterior pdfs obtained
using the uniform priors indeed are somewhat broader, but this
small difference has no practical relevance. This result indicates
that taking uncertainty in nuisance parameters into account has a
small effect on the uncertainty in fiber orientation, and it thereby
justifies the use of dirac priors for the nuisance parameters and
eliminates the need to apply MCMC sampling.



972

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 25, NO. 8, AUGUST 2006

Posterior distributions obtained using uniform priors

@ /2 ' .
w2

/2

3n/2 2

2 n

Posterior distribm ions obtained using dirac priors

n
0 /2 T 3n/2

-:::-

0.000 0001 0002 0003 0003

0.000 0016 0033 0.049 0.065

) Tﬁ g _ } -

-:::-

T 3m/2 T 3n/2 2n
0001 0098 0.195 0.292 0389

Fig. 6. Comparison of the posterior pdfs obtained using noninformative uniform priors (upper row) and dirac priors (lower row) for the nuisance parameters.
Results for three voxels, one in each column, with different degrees of diffusion anisotropy are shown. The leftmost column shows a voxel from gray matter
with low anisotropy, the middle column shows a voxel from the External capsule, and the rightmost column shows a voxel with high anisotropy from the Corpus

callosum.

+ -

Likelihood

T n

¢

Fig. 7.

Posterior ,
B = ]
no3m2 on Lo
b ¢

(a) Schematic image of the fiber crossing used as basis for simulating diffusion measurements. It is assumed that we are tracking the vertical fiber bundle,

with the last step direction v; _; as indicated in the figure. (b) Likelihood of the next step direction given the simulated diffusion measurements, the prior distribution
of the next step direction given the previous step, and the posterior obtained as the product of the likelihood and the prior.

C. Crossing Fibers

Next, the behavior in a voxel where two fibers cross is in-
vestigated. For this purpose, simulated diffusion measurements
for a 90° crossing in the z—y plane were generated, see Fig. 7(a)
for a schematic image. The compartment model with three com-
partments, one compartment with isotropic water diffusion and
two compartments with anisotropic diffusion along the fiber di-
rections, was used to generate simulated measurements (31 gra-
dient directions and a b value of 1000 s/mm?). The compart-
ment model was used to deliberatively create a mismatch be-
tween the simulated data and the constrained model used for
analyzing the data. We assume that we are tracking the fiber
running along the y axis, with the previous step v;_; indicated
in Fig. 7(a). Fig. 7(b) shows how the likelihood (11) and prior
(12) are combined to a posterior distribution of the next step di-
rection. The likelihood function indicates that the single-fiber
model fits better when aligned with either of the two fiber bun-
dles, but the uncertainty as to where to go next is high in the z—y
plane. When the information about the previous step direction
is added, the uncertainty becomes significantly lower and the
probability of continuing through the crossing is high, as indi-
cated by the posterior distribution. Hence, when repeated a large
number of times, some fiber paths will meander off to the right

or left, but the majority of the fibers will find the correct path.
This illustrates that the single-fiber model has some ability to
handle complex neighborhoods if used in a stochastic tracking
framework, and that the lack of model fit will be manifested as
an increased uncertainty captured by the posterior distribution
of the fiber orientation.

D. Sampling Fiber Paths

In this section, we show examples of real data fiber paths. A
step length of 1 mm was used for generating these paths. The
tracking was terminated when the ratio 8/(« + (), where «
and [ are parameters indicating isotropy and anisotropy, respec-
tively, in the constrained model, became too low (in this case,
lower than 0.2). This ratio will attain values between 0 and 1,
where 0 means that the water diffusion is isotropic and values
close to 1 indicate highly anisotropic diffusion. This anisotropy
measure is related to the linear tensor shape measure proposed
by Westin ef al. [27]. However, one can use for example the
fractional anisotropy or relative anisotropy as terminating cri-
teria as well; this choice has no important impact on the final
result. In the first example, one point in the right and one point
in the left Cingulum bundle were chosen as seed points. 1000
paths initiated in each of these points were then sampled, see
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Log—Probability 0

(b)

Fig. 8. (a) Fiber samples tracing the left and right Cingulum bundles. All the red fibers originate from the same seed point, as do all the yellow paths. The seed
points are located where the bundles cross the axial slice. (b) 3000 fiber samples initiated in the splenium of Corpus callosum, see Fig. 9. The coloring indicates

how the probability evolves along the fiber paths according to (5).

Fig. 8(a). Note how some paths slip into the underlying Corpus
callosum, but that the massive sampling approach yields a ro-
bust delineation of the bundles. Fig. 8(b) shows another example
with 3000 paths seeded in a point in the splenium of Corpus cal-
losum (marked in Fig. 9). The coloring of these paths indicates
how the probability for each fiber evolves along the paths ac-
cording to (5).

These examples show how a stochastic tracking framework is
able to handle splitting fiber bundles and ambiguous neighbor-
hoods in a way that is not possible with conventional tracking
of the principal diffusion direction. Computationally, the sto-
chastic tracking of the fiber paths is by far the most demanding
part in the presented methodology. Using a high-end PC of
today, our MATLAB implementation typically generates a few
paths per second. Still, since a few thousand fibers are required,
the computational time ranges from a few minutes to an hour.

E. Probability of a Connection

Finally, from the sample paths shown in the previous sec-
tion, the probability that a fiber seeded in a user defined point
reaches a specific voxel can be estimated by applying the theory
presented in Section II. As described in Section IV, to get an
overview of the uncertainty associated with a fiber path seeded
in a specific point, a map of connection probabilities can be
produced. Here, a few examples of such probability maps are
demonstrated. Each of these maps has been generated from
10000 fibers initiated in the points indicated by the arrows in
the figures. In the first example, shown in Fig. 9, tracking was
initiated in the splenium of Corpus callosum. The maximum

-0 -9 -§ -7 6 -5 4 -3 =2 -1 0
Log—Probability

Fig. 9. Maximum intensity projection probability map. The coloring indicates
the probability that a fiber seeded in the splenium of Corpus callosum, marked
by the arrow, reaches respective voxel.

length 7,.x, discussed in the Implementation section, in this
example was 84 steps, i.e., 8.4 centimeters using a step length
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Fig. 10. (a) Coronal and sagittal maximum intensity projection probability maps seeded in the Corticospinal tract. (b) Axial and sagittal maximum intensity
projection probability maps of fibers seeded in the points in the Inferior occipitofrontal fasciculi marked by the arrows.

of 1 mm. It is important to stress that the coloring should be
interpreted as our belief that a single fiber initiated at the seed
point reaches respective voxel, and not that fibers going through
the seed point in Corpus callosum diverge and spread into the
Occipital cortex. It is known that fibers in specific parts of
the Corpus callosum connect to very specific locations of the
cerebral cortex [28], [29], but Fig. 9 indicates that the diffusion
data does not have the precision to resolve such a mapping.
More examples of connection probability maps of longer
fiber tracts are shown in Fig. 10. In Fig. 10(a), the Corticospinal
tract is tracked by seeding two points at the level of the Pons.
The image shows how the Corticospinal tract is followed
until the Cerebral peduncles, where the tracking fans out in a
v-shape into the Internal capsule. Note also the high probability
of the paths heading towards the Motor cortex. The maximum
length considered in this case iS nmax = 144 or 14.4 cm. In
Fig. 10(b), the left and right Inferior occipitofrontal fasciculi
are delineated by seeding fibers at the points marked by the

arrows. To achieve this delineation, prior knowledge about the
approximate extent of the Inferior occipitofrontal fasciculi were
implemented by restricting the space of allowable fiber paths,
i.e., fibers going outside a region of interest were removed.
Without this restriction, there would be some fibers entering
the Corpus callosum due partial voluming effects (cf. Fig. 9).
The maximum considered length in this case was n,ax = 168
steps or 16.8 cm.

VI. DISCUSSION

White matter tractography methods are currently under inten-
sive development. The first methods used for tracking fibers in
DT-MRI data are commonly referred to as streamline methods,
because they draw paths in vector fields given by the principal
diffusion orientations [30]-[35]. A major drawback with the
streamline tracking methods is that they do not provide or vi-
sualize the confidence in the estimated fiber paths; and if not in-
terpreted carefully, they might even give an impression of false
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certainty. Several authors have, therefore, recently developed
so-called probabilistic or stochastic tracking methods, which
attempt to take uncertainty stemming from for example noise
and diffusion model imperfections into account [1]-[10]. Apart
from giving a more complete picture of the evidence of connec-
tions in the brain, probabilistic methods have also been noted to
behave more robustly in the presence of fiber crossings and to
be able to operate under looser constraints, for example in terms
of stopping criteria, allowing them to pass low-anisotropy areas
and to penetrate deeper into gray matter where the fibers start
and end [7].

In this work, a novel probabilistic method for assessing un-
certainty in white matter tractography is introduced. The main
merit of this method is that it rests on a solid Bayesian the-
oretical foundation, while yet being simple to implement. A
top-down presentation of the method is given, in which all the
modeling and approximation steps are highlighted. Modeling
and estimation are carried out at two levels: a global level and
a local level. At the global level, the question is how the proba-
bility that a fiber seeded in a point or area A reaches and area B
is estimated. The theoretical foundation of this estimation is pre-
sented in Section II. A similar procedure has been used heuris-
tically by several authors previously [2], [4], [6], [7], [9]. In this
work, a general and comprehensive description of the theoret-
ical background of this procedure is presented.

Algorithmically, the main difference between the approach
presented in this work and previously presented probabilistic
methods lies in the local modeling of the fiber orientation. The
local fiber orientation is estimated from the diffusion data, and
uncertainty enters in this process due to image noise and com-
plex fiber architectures which the observation model is unable
to resolve. The goal is to find a probability density function of
the local fiber orientation. Since this can be computationally
demanding, several authors have employed heuristic distribu-
tions, based for example on parameters derived from the dif-
fusion tensor [1], [2], [4], [6]. However, such distributions have
little theoretical justification, and they should be contrasted with
a Bayesian approach, in which our prior knowledge about pa-
rameters and noise enter naturally.

To apply Bayes’ theorem, we need to specify an observation
model for the water diffusion and provide prior probability dis-
tributions of the parameters in this model. It is preferable to
use an observation model where the underlying fiber architec-
ture is expressed explicitly, because it is on this architecture we
wish to make inference. Herein lies the difference between the
tensor model and the constrained and compartment models. The
latter models cannot attain an oblate diffusion profile, i.e., the
case when the eigenvalues in the tensor model have the relation
A1 & A2 > 3. The tensor adopts an oblate shape in voxels
where fibers cross or split. As was exemplified in Section V-C,
in a stochastic framework using the constrained model or the
compartment model, these cases will instead be captured as un-
certainty regarding the fiber orientation. This is a key mecha-
nism in the probabilistic tracking that cannot be stressed enough.
Compared to the tensor model, which due to its two additional
parameters can describe oblate diffusion shapes, the constrained
model and the compartment model will in some cases have
poorer model fits, as is shown in Section V-A. However, infor-

mation is not lost in such voxels; it is captured in the posterior
distribution of the next step direction and subsequently reflected
in the maps of connection probabilities. This is in contrast to
traditional streamline tracking using the tensor model, where
the information in oblate tensor shapes is ignored because only
the principal diffusion orientation is utilized. In the comparison
between the compartment model and the constrained model in
Section V-A, it was found that these models perform similarly
in terms of describing the diffusion data. The simple estimation
of the parameters via the theorem in the Appendix makes the
constrained model an attractive choice. Note that the popularity
enjoyed by the tensor model is much due to the same reason;
its widespread use can largely be attributed to the simple linear
least squares procedure for estimating the diffusion tensor.

A single-fiber model is clearly insufficient in voxels con-
taining two or more fiber tracts, and it is well known that such
voxels exist [19], [36]-[39]. Therefore, we investigated how the
single-fiber model behaves when there are two fibers crossing
in a voxel, and demonstrated how the lack of model fit is trans-
lated into uncertainty captured by the posterior distribution of
the fiber orientation. Conversely, a two-fiber model will over-fit
in a voxel with only one fiber, leading to an artificial reduc-
tion of uncertainty. Hence, the single-fiber model will always
give a more conservative approximation of the uncertainty than
a higher order model. Note that both a single-fiber and two-fiber
model will over-fit in voxels with no dominant fiber structure,
e.g., in gray matter voxels. To obtain an accurate approxima-
tion of the uncertainty, which ideally should stem from noise
only, we must choose the correct model order for every voxel.
Work in this direction has recently been presented by Parker
and Alexander [10]. When discussing models, it should also be
mentioned that some very recent work has been presented where
tracking is performed using nonparametric (i.e., model free) de-
scriptions of the water diffusion [10], [40]. As mentioned pre-
viously, nonparametric descriptions of the water diffusion, ob-
tained for example via g-ball imaging [3] or persistent angular
structure MRI [11], has the potential to resolve complex fiber
neighborhoods and may prove a very successful strategy in the
future. The current drawbacks of these methods are the longer
scanning times and a sensitivity to noise (in the absence of a
regularizing model) that has been observed to generate spurious
structure in voxels with isotropic diffusion [11], [18], [40].

A critical part of a Bayesian framework is the prior distribu-
tions of the model parameters. Behrens et al. [7] use noninfor-
mative prior distributions for the nuisance parameters, leading to
a full Bayesian modeling. Since the expression for the posterior
distribution of the local fiber orientation then becomes complex,
involving high-dimensional integrals, they use MCMC methods
for generating random samples from the posterior distribution.
In the current work, dirac priors are used instead. This is an ap-
proximation that implies an overconfidence in the estimation of
the nuisance parameters, which in turn may lead to an under-
estimate of the uncertainty in fiber orientation. To investigate
this potential problem, we compared the posterior distributions
of the fiber orientation obtained using noninformative priors
and the dirac priors, and found that the difference is negligible;
the uncertainty in nuisance parameters has a very small effect
on the uncertainty in fiber direction. In our Bayesian formula-
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tion, a prior distribution of the next step direction is also used.
This prior distribution replaces the momentum term commonly
used in traditional streamline tracking to prevent the fibers from
having implausible curvature. The prior on the next step direc-
tion used in this work is quite heuristic, and in our future re-
search we plan to replace it with an empirically derived distribu-
tion obtained by studying real fibers using histology techniques.

One of the crucial differences between the work by Behrens
et al. [ 7], and the work presented here, is how random step direc-
tions are drawn from a posterior distribution. For this Behrens et
al. use MCMC techniques. MCMC methods simulate Markov
chains which are known theoretically to converge and give sam-
ples from the target posterior distribution [41]. This is a gen-
eral approach which conceptually is quite simple. In practice,
however, it is not straightforward to implement a well working
MCMC method. MCMC methods are by nature iterative, and
issues such as convergence, i.e., how many iterations that are
required for the Markov chain to produce samples from the de-
sired distribution, must be checked. The MCMC process is also
governed by a number of additional parameters that must be ad-
justed to give a desired so-called mixing rate of the Markov
chain. These issues become especially cumbersome in white
matter tractography, where a large number of chains must be
simulated, different parameters are required for each voxel, and
convergence and mixing of the Markov chains must be mon-
itored automatically. With the dirac priors used in this work,
we circumvent computationally demanding numerical integra-
tion and marginalization procedures in (7) and (8), and there is
no need to apply MCMC methods. Instead the posterior distri-
bution is approximated by a discrete probability function using
2562 predefined directions evenly spread over the unit sphere,
and one of these directions is chosen as the next step direction
when sampling fiber paths. This makes the calculation of the
posterior and the generation of random samples from it very
simple. The validity of the approach requires that small errors
in the estimation of the nuisance parameters have no, or at least
only weak, influence on the uncertainty of the fiber orientation.
This is in fact required in the method by Behrens et al. too, be-
cause the MCMC method proposed in [7] draws samples from a
joint distribution of the step direction and the nuisance parame-
ters p(V;, ), and not from the marginalized distribution p(¥;).
This means the random step direction will have a dependence
on the nuisance parameters. Rewriting p(v;,8) = p(v;|8)p(0)
we see that v; can be seen drawn from the distribution p(+¥;|0)
and not from p(¥;); these two distributions are the same only
when the nuisance parameters 6 are independent of the step di-
rection v;. This is clearly not true in general, but as is shown in
Section V-B, the dependence is quite weak close to the actual
values of the nuisance parameters. Hence, the results in Sec-
tion V-B validate not only the work presented here, but also the
work presented by Behrens ef al. [7]. It can also be noted that the
maximum probability path is not accessible if we use MCMC
methods, because MCMC methods do not provide the actual
probabilities of the random directions they generate, which is re-
quired for evaluating the probability of an entire path according
to (5).

The end product in this work is the probability p(A — B|D),
i.e., the probability that a single fiber seeded in a point or area
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A reaches an area B, given the diffusion measurements. Maps
of this probability can be useful, for example, in surgical plan-
ning and for studying connectivity in mental and neurological
disorders. As we are working in a Bayesian paradigm, proba-
bility should be interpreted as a subjective belief which is de-
pendent on the supplied models. Hence, to validate the proposed
approach, we need to investigate the models on which itis based,
i.e., the water diffusion model, noise model and prior distribu-
tions. The constrained diffusion model is based on the tensor
model, which is extensively used and generally assumed to be a
reasonable model. Note that when applying a conventional prin-
cipal diffusion direction tracking there is no difference between
the tensor model and the constrained model, and issues such the
alignment of the fibers and water diffusion and error analyzes
have been discussed elsewhere [42], [43]. The noise model is
based on a Gaussian additive noise in the frequency domain, in
which MRI measurements are acquired. This is a theoretically
and experimentally well-founded model [20]. Using dirac priors
for the nuisance parameters is clearly a simplification, but again,
it is shown in the Results section that this has a very small in-
fluence on the uncertainty in fiber orientation.

VII. CONCLUSION

A method for stochastic white matter tractography has been
presented. The necessary modeling and estimation have been
described at both a global level and a local level. At the global
level, a theoretical foundation for estimating the probability of
a connection between two areas in the brain has been detailed.
At the local level, probability density functions of the fiber ori-
entation are derived in a theoretically justified way via Bayes’
theorem. In addition, a theorem that facilitates estimation of the
parameters in a constrained version of the popular tensor model
of the water diffusion has also been presented. To arrive in a
computationally feasible solution, the use of dirac prior distri-
butions for the nuisance parameters was investigated, and it was
found that this approximation has a very weak influence on the
uncertainty in fiber orientation in a voxel. As a consequence
there is no need to apply MCMC sampling for drawing sam-
ples in the stochastic tracking of fiber paths, which makes the
method simple to implement.

APPENDIX

Theorem: Let D be a symmetric 3 x 3 matrix with eigenvalue
factorization

D= /\1619,{ + )\2626%1 + )\3e3e3T, /\1 Z )\2 Z /\3.

Let & be the space of symmetric 3 x 3 matrices where the two

smallest eigenvalues are equal. The matrix S € & minimizing
|D — S||F is given by

A2+ A
{_I_ 223

If Ay > Ao, the solution is unique. If Ay = Ao > A3, there
are multiple solutions which are all given by (17) for different
choices of e; in the eigen-space corresponding to the largest

S = \eje (egeg + e3e3T) . (17
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eigenvalue. If all eigenvalues are equal, the solution is trivially
unique.
Proof: Any matrix S € G can be written

S = ’YlﬁflT + ’72(1 — flflT)

where 1 is a unit vector and v, > 9. The squared Frobenius
distance to D is

ID = S|[F =tr [(D = i’ — (1 - aa”))’]
=|Dl[} +17 + 293 — 2na’Da
— 27 (trD — 4’ D)
=Dl + (v - 4" Dw)* - (a"Dir)?

2
1
+2 (72 - 5(trD - ATDﬁ))
1
— —(trD — 0" Du)?
2
= D[ + (m — 0" Da)?

1 2
+2 (72 - §(trD - ATDﬁ))

3

1 S
- = < trD — ATDﬁ) - 5(trD)Q. (18)

2\3
The expression 17 D1 can take any value a in the interval A; >

a > Az.Lethb = (1/2)(trD—a). With this notation, the squared
distance can be written

IDII7+ (71 —a)* +2(72 —b)* - ;(a— b)? — %(trD)? (19)

For the moment, let ¢ in (19) be fixed and study the two terms
depending on 71 and 72, (y1 — @) + 2(y2 — b)%. If a > b,
this is minimized by v1 = a,72 = b, and the minimum value
is 0. If instead a < b, the minimum is achieved for y; = 5 =
(a+2b)/3 and the minimum value is (2/3)(a — b)2. This gives

min ||D — S||%:

Y1,72
D% - 3(tD)* = 3(a— 1), a>b
IDIfF - 3(0D)?, a<b
ID|% - 4(trD)2—2 (a—ttrD)®, a > itrD
| D)% - L(trD)2, a<itD’
(20)

It is clear that this is minimized by choosing a as large as pos-
sible, i.e., a = Aj. It follows that i must be an eigenvector of
D corresponding to the largest eigenvalue, 1 = a = A1, and
v2 = b = (A2 + A3)/2. Equation (17) follows.
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