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D
iffusion magnetic resonance
imaging (dMRI) is an MRI
modality that has gained
tremendous popularity the
past five years and is espe-

cially promising for imaging the white
matter in the brain. The white matter is
the tissue through which signals are passed
between different areas of gray matter in
the brain, analogous to the cables between
processing units in a computer.

Diffusion imaging is one of the first
methods that made it possible to visual-
ize and quantify the organization of
white matter in the human brain in
vivo. It has the potential to aid in the
diagnosis and subsequent treatment of
disorders of the central nervous system
and is likely to have a major impact on
assessment of white matter pathologies
(e.g., schizophrenia, multiple sclerosis),
quantification of abnormal white matter
development, detection of stroke and
trauma including traumatic brain
swelling, diffuse axonal injury, and
spinal trauma, as well as a large variety
of brain tumors. In addition to direct
clinical impact, dMRI has the potential
to contribute to basic neurosciences,
improving our understanding of physio-
logical white matter development,
aging, and connectivity. Extracting con-
nectivity information from dMRI,
termed “tractography,” is an especially
active area of research as it promises to
model the pathways of white matter
tracts in the brain by connecting local
diffusion measurements into global
trace lines.

This article gives a short introduc-
tion to dMRI tractography methods but
is not a comprehensive review due to
space limitations. It is intended as an

introduction to the field; the interested
reader may study the cited papers and
references therein. 

DIFFUSION
Diffusion is the process by which matter
is transported from one part of a system
to another due to random molecular
motions. The transfer of heat by conduc-
tion is also due to random molecular
motion. The analogous nature of the two
processes was first recognized by Fick
(1855) [1], who described diffusion quan-
titatively by adopting the mathematical
equation for heat conduction derived
some years earlier by Fourier (1822).
Fick’s law states that a local difference in
the concentration of a solution gives rise
to a net flux of molecules from high to
low concentration regions. The net
amount of material diffusing across a
unit cross section that is perpendicular
to a direction is proportional to the
concentration gradient. Thus, the phe-
nomenon of diffusion was described sci-
entifically before any systematic
developments of thermodynamics. This
phenomenon, known as Brownian
motion, is named after the botanist
Robert Brown, who observed the move-
ment of plant spores floating in water in
1827. The first satisfactory theoretical
treatment of Brownian motion, however,
was not made until much later by Albert
Einstein (1905) [2]. Einstein’s interest in
explaining the erratic movement of
pollen in water was not directly motivat-
ed by specific interest in diffusion but by
the general interest in proving the exis-
tence of the atom.

Depending on the media, diffusion can
be restricted in different ways. For exam-
ple, anisotropic media such as crystals,
textile fibers, and polymer films have dif-
ferent diffusion properties depending on

direction. Tissue in general also has
anisotropic properties, and in neural tissue
the major direction of diffusion is along
the direction of the myelinated axons.
Diffusion is often described by an ellipsoid
where the distance to the center defines
the diffusion in a particular direction.

DIFFUSION MRI
Diffusion tensor MRI (DT-MRI) is an MR
imaging modality used for relating
image intensities to the relative mobility
of endogenous tissue water molecules
[3]. In DT-MRI, a tensor describing local
water diffusion is calculated for each
voxel from measurements of diffusion in
several directions. To measure diffusion,
the Stejskal-Tanner imaging sequence is
used [4]. This sequence uses two strong
gradient pulses, symmetrically posi-
tioned around a 180◦ refocusing pulse,
allowing for controlled diffusion weight-
ing. The first gradient pulse induces a
phase shift for all spins; the second gra-
dient pulse will invert this phase shift,
thus canceling the phase shift for static
spins. Spins having completed a change
of location due to Brownian motion dur-
ing the time period will experience dif-
ferent phase shifts by the two gradient
pulses, which means they are not com-
pletely refocused and consequently will
result in a signal loss. To eliminate the
dependence on MRI parameters such as
spin density, spin-lattice relaxation (T1),
and transvere relaxation (T2) we must
take at least two measurements of diffu-
sion-weighted images that are different-
ly sensitized to diffusion but remain
identical in all other respects. The ten-
sor model of diffusion is not the only
one, and there is a growing interest in
more general models [5], which moti-
vates the more general term diffusion
MRI, or dMRI. 
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The dMRI technique has raised hopes
in the neuroscience community for a
better understanding of the fiber tract
anatomy of the human brain. Various
methods have been proposed to visualize
the anatomy of fiber pathways and to
derive connectivity between different
parts of the brain in vivo [6].

DIFFUSION MRI TRACTOGRAPHY

THE PDD METHOD
A simple and effective method for track-
ing nerve fibers using DT-MRI is to fol-
low the direction of the principal
diffusion (direction of maximal diffusion)
in small steps, producing long fiber
tracts that connect anatomically distant
brain regions [6], [7]. The principal diffu-
sion direction is equivalent to the direc-
tion of the main eigenvector in each
tensor. This method is usually referred to
as tracking using the principal diffusion
direction (PDD). 

For accurate solution of the PDD
tracking problem, stated as a differential
equation, both Euler and Runge-Kutta
methods have been used [6]. These trac-
tographic paths are commonly referred
to as fibers, though the data resolution is
too low to measure any individual fibers
or axons; instead, the paths represent
large-scale features of the diffusion data
(the size of a voxel in the dMRI imaging
data is in the order of mm, compared to
the diameter of axons, which is in the
order of μm). A result from dMRI trac-
tography is shown in Figure 1. Note that
although the result represents large-
scale features, there is an intriguing sim-
ilarity of tractography results to
drawings of white matter in anatomy
textbooks [8].

A STOCHASTIC METHOD
Although the PDD method is widely
used, it suffers from some major disad-
vantages. The connectivity is restricted
to a one-to-one mapping between
points, not allowing the branching
that real fiber tracts may undergo. It
also gives the impression of being pre-
cise, not taking the uncertainty of
fiber paths into account in the track-
ing procedure. In practice there are

several factors that introduce uncer-
tainty in the tracking procedure.
Noise, splitting and crossing fibers,
head motion, and image artifacts are
all examples of factors that cause vari-
ability in the estimated fibers. To
quantify this uncertainty, several sto-
chastic tractography methods have
been developed [9]–[12].

In such a framework, the tracking
procedure is regarded as a stochastic
process. Instead of following only the
PDD,  the  t racking  proceeds  in  a
given direction with a probability
derived from the tensor field. The
result is a distribution of fiber traces
emanating from the seed point where
the procedure was initiated and from
this distribution a certain measure of
connectivity, from the seed-point to
all other voxels in the volume, may be
derived. In Friman et al. [12], this is
achieved by modeling the fiber as a
finite length path described by a train
of vectors v1:n = {v1, . . . , vn} . Let �n

A
denote the set of all possible paths of
length n that originate in a point A,
and assuming that we can assign a
probability p(n) to each path in this
space, and by further introducing a
discrete probability function p(n) for
the path length, we have

∫
�n

A

p(v1:n) = 1 and

∞∑
n=1

∫
�n

A

p(n)p(v1:n) = 1. (1)

We can then find the probability
p(A → B |D) of a fiber going from A to
B, given the diffusion data D, by sum-
ming the probabilities for all paths of all
lengths between theses areas

p(A → B |D) =
∞∑

n=1

∫
�n

AB

p(n)p(v1:n|D) (2)

The integrals in (2) are defined over
complicated path spaces �n

AB, and we
cannot hope to find analytical solu-
tions. For solving these integrals we
have to resort to numerical integra-
tion, and it is only possible by applying
Monte Carlo methods to estimate such

high-dimensional integrals. A tech-
nique called rejection sampling is well
suited for this problem. In [12], the
probability distribution of the underly-
ing fiber orientation is derived in a
Bayesian framework. Based on such
probability functions, using a sequen-
tial importance sampling technique
[9], [13], one can generate thousands
of fibers starting in the same point by
sequentially drawing random step
directions. This gives a very rich model
of the fiber distribution, which should
be contrasted with the single fibers
that are produced by conventional trac-
tography methods.

GROUPING FIBERS IN BUNDLES
In neurological studies of white matter
using tractography, it is often important
to identify anatomically meaningful
fiber bundles. However, as shown in
Figure 1, the result of tractography is a
large number of unorganized traced
pathways, which need to be organized
according to connectivity or anatomy to
be used in a study. One way is to group
fibers that have “similar” connections.
The idea behind clustering is shown in
Figure 2(a), where traced fibers are
mapped into points in a high-dimen-
sional embedded space and segmented
into groups. Similar fibers form clusters
of points, where each cluster is identi-
fied as a “fiber bundle.” 

To perform clustering, first a math-
ematical definition of fiber similarity
must be specifed. Then, pairwise fiber
distances may be calculated and used
as input to a clustering algorithm. In
[14], a method was proposed that aims
to segment fibers into bundles based

[FIG1] Result from dMRI tractography. 
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on spectral graph analysis using a
graph partitioning method called nor-
malized cuts. The proposed method
recursively divides clusters into two
parts until a satisfactory segmentation
has been obtained. A fiber grouping
result using this method is shown in
Figure 2(b). 

The above work was extended in
[15], where a method for finding white
matter fiber correspondences and clus-
ters across a population of brains was
presented. The clustering methods gen-
erally involve an eigendecomposition of
a matrix with size equal to the number
of input fibers. Since thousands of fibers
are drawn in each brain, this matrix
quickly becomes very large. In [15] a
technique known as the Nystrom
method was used to address this prob-
lem. The Nystrom method calculates
the basis vectors defining the embed-
ding space using a random sample of

the input data. This technique allows us
to use fibers from multiple brains as
input, and thereby obtain a simultane-
ous clustering and matching of the bun-
dles in all brains. In addition, this
automatically provides correspondence
of bundles across brains; by selecting
one or several paths of interest in one
brain, the most similar paths in all
brains are obtained as the nearest points
in the high-dimensional space. An inter-
esting feature of this method is that the
embedded cluster space created from a
set of subjects can generalize to new
subjects, and thus can be used to create
a high-dimensional atlas describing the
major white matter fiber tracts in the
human brain.

CONCLUSIONS
We have highlighted some dMRI trac-
tography methods and described how
the modality has opened a new window

into the white matter of the human
brain. While there are strong indica-
tions that DT-MRI reveals information
about the fiber pathways in the brain, it
is important to stress that the explicit
measurements are of water diffusion,
and not of the axons themselves. As
dMRI is a fairly new field of research,
many studies are yet to be made to
compare the measured diffusion ten-
sors to detailed tissue properties impor-
tant for fiber path inference.
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S.C. Draper: In my view, usability is
most affected by sensor design and can
also be impacted by the selection of algo-
rithms. For example, being able to seg-
ment and extract features of an iris at
long range (one to a few meters) and in
real time would improve the acceptability
of iris biometrics. However, such develop-
ments would also raise privacy concerns.

Improved matching algorithms can
lead to better overall matching accuracy
and, often more significantly, can
improve performance for users with
more challenging biometrics (e.g., those
whose finger prints do not register well
on many devices). Faster algorithms and
intelligent search techniques can yield
massive speed-ups when searching large
databases for a match with an unlabeled
probe data (i.e., a probe without an asso-
ciated user identification number). Such
developments would increase the accept-
ability of a biometric system. 

Moderator: If you were to summarize
one last thought or outlook on what
comes next for biometrics, what would
that be? 

P.J. Phillips: I would mention the
development of personal biometric
information systems (PBIS) for mobile
Web-enabled cell phones. In a mobile
Web PBIS, facial images or fingerprints
acquired by a cell phone (using included
sensors) could be sent via the mobile
Web to a personal biometric information
system’s provider for matching against a
personal biometric database. The results
of the search could then be transmitted
to the originating cell phone. This would
provide a capability to identify people on
an extensive business contact list.

R. Chellappa: My thought is that next,
biometric systems may be employed for
keyless access to office rooms, homes,
cars, and other devices. They may also be
used to personalize settings in a given
space, e.g., to adjust car seats, tempera-
ture control, positions of mirrors, etc.

A.K. Jain: With a wider perspective in
mind, any system for reliable person
recognition must contain a biometric
component. Because of the unique person
recognition potential provided by biomet-
rics, they have and will continue to pro-
vide useful societal value by deterring
crime, identifying criminals, securing our
borders, and eliminating fraud. At the
same time, the success and acceptance of
their deployment will depend on our abili-
ty to create systems that are cost effective,
usable, and that do not threaten basic
rights to privacy and anonymity.
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