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Combining Image Compression and Classification 
Using Vector Quantization 

Karen L. Oehler, Member, IEEE, and Robert M. Gray, Fellow, IEEE 

AbstractStatistical clustering methods have long been used 
for a variety of signal processing applications, including both 
classification and vector quantization for signal compression. We 
describe a method of combining classification and compression 
into a single vector quantizer by incorporating a Bayes risk term 
into the distortion measure used in the quantizer design algo- 
rithm. Once trained, the quantizer can operate to minimize the 
Bayes risk weighted distortion measure if there is a model provid- 
ing the required posterior probabilities, or it can operate in a 
suboptimal fashion by minimizing only squared error. Compari- 
sons are made with other vector quantizer based classifiers, in- 
cluding the independent design of quantization and minimum 
Bayes risk classification and Kohonen’s LVQ. A variety of ex- 
amples demonstrate that the proposed method can provide classi- 
fication ability close to or superior to LVQ while simultaneously 
providing superior compression performance. 

Indm Terms-Image compression, image classification, vector 
quantization, image coding, statistical clustering. 

I. INTRODUCTION 

MAGE compression and classification play important roles I in making digital images useful. Consider a typical comput- 
erized tomography (CT) image consisting of a matrix of gray- 
scale pixel values: 512 pixels x 512 pixels x 12 bits resolution. 
This format requires 393 kilobytes of memory per image. 
Given the steadily increasing number of images produced by 
hospitals, compression is increasingly important for prolong- 
ing local storage and speeding transmission. Because lossless 
or invertible compression can typically provide only a com- 
pression ratio of less than 2: 1-4: 1, lossy compression tech- 
niques become necessary to achieve significant compression. 
When storage or communication capacity dictates the use of 
lossy compression, the overall goal is to preserve the highest 
fidelity possible, ideally producing a compressed image which 
either has no perceptual difference from the original or which 
has only statistically insignificant differences from the original 
in a specific application, e.g., medical diagnosis or interpreta- 
tion [l]. Improved quality can always be achieved at the ex- 
pense of higher bit rates, but good compression systems must 
provide, a trade-off between fidelity and bit rate that is good if 
not optimal. In attempting to obtain an efficient and accurate 

representation of an original image for a reduced number of 
bits, a fundamental goal of compression is to extract the in- 
formation in an image important for a particular application. 

In many scientific and medical applications, images are 
used by human experts to make specific decisions or infer- 
ences. The actions of human experts can sometimes be mim- 
icked by sophisticated computer algorithms based on ideas 
from image analysis and expert systems design. These algo- 
rithms can either assist a human observer in identifying fea- 
tures or provide an automated second opinion as a check. For 
both human and computer decisions, one can measure the 
quality of an image processing algorithm at least in part by 
how accurate the decisions based on the processed image are 
in comparison with those based on the original. Image analysis 
is a broad and complicated area, and in general sophisticated 
techniques involve large amounts of computer processing on 
entire images in order to reach decisions. Simple low-level 
local classification involving only small regions of an image, 
however, can assist human observers by highlighting special 
areas of interest and can simplify further classificatiodanalysis 
algorithms by incorporating preprocessing into the digital rep- 
resentation. For some applications, such local classifiers may 
provide performance competitive to that using the sophisti- 
cated full-frame methods, especially in light of their relative 
simplicity. 

Classification of small groups of pixels can be viewed as a 
form of compression since it extracts the information of pri- 
mary interest in a specific application, or it can be viewed as a 
form of image enhancement, since it provides a segmentation 
of an image into disjoint regions labeled by class membership. 
For example, classification of microcalcifications and masses 
in digital mammograms permits a radiologist to add false color 
to regions classified as suspicious, providing an automated 
second opinion. Conversely, compression can be viewed as a 
form of classification since it assigns a template or codeword 
in a small set to input pixel groups drawn from a large set in 
such a way as to provide a good approximation. All inputs 
yielding a common binary representation can be considered to 
belong to a common class, and compression is achieved by 
replacing the original input by a class label. Not surprisingly, 
these similarities of goals between compression and classifica- 
tion have resulted in a long history of similar methods for al- 
gorithm design and occasional direct applications from one 
field to the other. 

A principal difference between compression and classifica- 
tion is the choice of cost measures used to quantify perform- 

lack of quality) by an average distortion, typically mean squared 
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error similar to quantitative distortion measure. Average dis- 
tortion is traded off against bit rate as given by the average 
number of bits per pixel required by the compressed image. In 
classification one measures quality by probability of classifi- 
cation error or, more generally, by average Bayes risk, which 
can be viewed as an average distortion. Average Bayes risk is 
typically traded off against some measure of the complexity of 
the algorithm used to do the classification, typically the num- 
ber of nodes in a decision tree, but possibly also the average 
number of nodes traversed when making a decision using a 
tree-structured algorithm. In both cases an average distortion is 
traded off against something like bit rate. Another difference 
between compression and classification is that in the latter the 
classes are usually known beforehand, whereas in the former 
the classes can be chosen in order to maximize the overall 
quality. 

One method which has proved important to both compression 
and classification is statistical clustering. In general the problem 
is to assign a label to every input in such a way as to minimize 
an average distortion (such as squared error for compression or 
Bayes risk for classification) subject to a constraint on the 
complexity of the algorithm (such as average bit rate for com- 
pression or average computation for classification). 

The combination of compression with classification is not 
new, but previous work has concentrated on systems that either 
focused entirely on using a compression algorithm to perform 
classification without regard to optimality of either compres- 
sion or classification, or that simply cascaded a compression 
algorithm with a classification algorithm designed for the out- 
puts of the compressor. The former systems include isolated 
utterance speech recognition where several compression al- 
gorithms, one for each utterance, are applied to the input. The 
one that works best (yields the lowest distortion) identifies the 
class [2], [3], [4]. The latter systems include image compres- 
sion systems consisting first of compression to yield small av- 
erage squared error followed by a classifier designed to mini- 
mize probability of error given the compressor output [5], [6] .  
We here describe a means of explicitly combining the two 
operations of compression and classification into a single code 
by combining the two quality measures into the distortion 
measure used to design the code. A Lagrange weighting per- 
mits one to weight the compression and classification impor- 
tance. Perhaps surprisingly, in some problems the inclusion of 
some compression into a classifier can actually result in clas- 
sification accuracy nearly equal to that achievable on the 
original data, while simultaneously obtaining significant com- 
pression and reduction in classifier complexity. On the other 
hand, the inclusion of classification into a compression system 
can enhance the usefulness of the compressed image by pro- 
viding a segmentation into interesting classes, while costing 
virtually nothing in terms of average distortion for a given bit 
rate. The combination of compression and classification can be 
useful even in problems where only compression or only clas- 
sification constitutes the design goal. 

The combination of compression and classification into a 
single mapping can be done in the context of either viewpoint. 
We adopt the compression viewpoint because it is more com- 

monly described in terms of general distortion measures and it 
readily extends to the combined system. In this context, a 
minimum distortion data compression system or source coder 
can be modeled as a vector quantizer (VQ), a mapping of input 
vectors into a finite collection of templates or reproduction 
codewords called a codebook. VQ is a method of lossy com- 
pression that applies statistical techniques explicitly to opti- 
mize distortionhit rate trade-offs. (See, for example, [7], [8].) 
A distortion measure quantifying the cost or loss of reproduc- 
ing a specific original image by a decompressed reproduction 
is assumed for both design and implementation of a compres- 
sion code. VQ operates on individual image subblocks or 
vectors (e.g., blocks of 4 pixels x 4 pixels). For each k- 
dimensional input vector X ,  the VQ encoder a determines the 
best match from a collection of N reproduction vectors or 
codewords, C = [il, i2, . .., iN) and puts out the binary rep- 

resentation of the chosen codeword’s index; a ( X )  = i if 2; is 
selected. The sequence of indices so generated can then be 
either stored or transmitted, depending on the application. The 
VQ decoder p (or “inverse quantizer”) reverses this process as 
it has the index i as input and puts out the reproduction 
2; = p(i) .  The decoder is a simple table lookup. This low 
complexity decompression is an advantage for VQ in compari- 
son with other compression techniques requiring computation 
at the decoder. 

The overall action of a VQ q with input X is to produce a 
reconstruction q(X) = p<a(X)). The encoder partitions the input 
vector space into l’ = { R I ,  R2, . . ., R N ) ,  where the disjoint cells 
are defined by Ri = { X : a(X) = i )  . Thus if X E Ri, the encoder 
is a(X) = i and the decoder is p ( i )  = ii. The VQ is completely 

described by the encoder-decoder combination (a, p> or, 
equivalently, by the partition-codebook combination ( l‘, c ). 

The performance of a VQ (or any other compression 
scheme) is usually measured by two competing attributes: the 
average bit rate required to perfectly describe the indices 
i (k-llogl N bits per pixel [bpp] if all of the indices have identi- 
cal length as binary vectors) and the average of an objective 
distortion measure. A distortion measure can be used for code 
optimization by explicitly designing codes to minimize aver- 
age distortion subject to a bit rate constraint. We here begin 
with the simple squared error because of its simplicity: 

where X = (X( l), . , . , X(k) )  is a k-dimensional vector. The 
method extends to any distortion measure for which Lloyd 
centroids exist. 

Given a distortion measure, a common measure of the per- 
formance of a compression scheme is the average distortion 

where FAX) is the distribution of the vectors. In the case where 
Fx is an empirical distribution based on a sample sequence of 
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vectors {XI, . . . , XL } , this becomes a sample average 
D = - l L  c d( x i ,  q ( x ) )  . 

L 
When the squared error distortion is used, the average distortion 
is called the mean squared error (MSE), and the result is often 
reported by normalizing by a constant DO and giving the result in 
a negative dB scale to produce a signal-to-noise ratio, SNR = 
10 loglo (Do / D). A common choice for Do is E[II X - E(X) I?], 
the minimum average distortion achievable with a 0 rate code. 
For some image types Do is set to k times the square of the 
maximum allowable pixel value, in which case the S N R  is 
called a peak S N R  (PSNR). 

A common approach to VQ design is to use clustering 
techniques to minimize the average distortion subject to con- 
straints on bit rate and code structure. The Lloyd clustering 
algorithm [9], [8] for full search unconstrained VQ involves an 
iterative application of two optimality conditions: 

For a given decoder p (or, equivalently, codebook C) ,  
the optimal encoder is a minimum distortion or nearest 
neighbor selection of a reproduction codeword from the 
codebook. For the case of a squared error distortion, this 
is the minimum mean squared error (MMSE) or Euclid- 
ean nearest neighbor rule. 
For a given encoder a (or, equivalently, partition 2’ ), the 
optimal decoder assigns to each index i the conditional 
centroid of all input vectors X for which a ( X )  = i. In the 
case of squared error, the optimal decoder output for an 
encoder output index i is the conditional expectation 
E[XI a(X)=i]. 

The Lloyd algorithm begins with an initial code and per- 
forms this iteration, successively optimizing the encoder and 
decoder for each other, until the decrease in average distortion 
falls below some predetermined threshold. Variations on this 
algorithm have found extensive application during the past 
thirty-five years to quantization and to the related area of sta- 
tistical clustering and classification under other names, includ- 
ing Forgey’s algorithm [ 101 and k-means [ 1 11. 

We next turn to classification and assume a joint probability 
distribution on a pair ( X ,  Y), where X is an observed random 
vector of pixels and Y is a “class label” which takes values in a 
finite set 3 f =  ( 1, ..., M}; we wish to accurately guess the 
class Y when only the observable X is known. Analogous to a 
VQ encoder this is accomplished by a mapping of the input 
vector into a finite set, which we here call a classifier and denote 
y(X)  E 3f We again can define a distortion measure and per- 
formance, but here the usual form is a Bayes risk B(ln defined by 

where c j k  represents the cost of classifying x as class k when 

the true class (i.e., Y) is j and where l(expression) is 1 if the 
expression is true and 0 otherwise. The costs c j k  can be chosen 
to reflect the fact that classification errors can have different 
consequences. We assume that C, = 0 for all k. In the case of 
equal costs for incorrect decisions, i.e., c,k = 1 for j # k and 0 
for j = k, the Bayes risk is simply the probability of error, 
Pr(y(x) f Y) and the minimum Bayes risk classifier becomes a 
maximum a posteriori (MAP) classifier. In general the optimal 
classifier in the sense of minimizing the Bayes risk is immedi- 
ately seen from (1) to be 

M 
yBayes(x)=argminCqk R ( Y =  j ( x = x ) .  

j=1 

Our goal here is to combine classification with the com- 
pression process. In particular, instead of viewing the original 
random vector X of the pair ( X ,  Y) and classifying it using a 
Bayes classifier, the vector X is first quantized and then classi- 
fied. Suppose that q is a quantizer with encoder a, partition 
2’ = {RI, . . . , RN}, and decoder p, then a classifier 6 associates 
a class label 6 ( i ) ~  3 f  with each cell Ri for every index 
(encoder output) i = 1, . . . , N .  

The introduction of quantization before classification raises 
a natural question: Since quantizing will lose information and 
hence likely damage the classifier performance, would it not 
be better to always classify based on the original, unquantized, 
data? There are two distinct responses. First, one can consider 
a quantizer as simply part of the classifier and one of the free 
components for design. Even if the overall goal is purely clas- 
sification, this can yield several benefits. As the bit rate of the 
quantizer and the size of the training set increase, the perform- 
ance of an optimal classifier for the quantized data should 
converge to that of an optimal classifier on the original data 
[12], [13], [14]. If performance can be made close to the opti- 
mum by using a modest bit rate quantizer, the complexity of 
the overall system can be drastically reduced since the classi- 
fier operating on the quantizer output can be implemented as a 
simple table lookup. The addition of the compression compo- 
nent to a classification problem yields as a by-product a com- 
pressed version of the image without seriously reducing the 
quality of the classifier. This in turn may make the image more 
useful in future, yet unspecified, tasks requiring a reconstruc- 
tion of the original image. Finally, the inclusion of the extra 
constraint naturally provides an algorithm not suggested by the 
classification goal alone, which nonetheless allows one to 
weight the classification performance as being the more impor- 
tant criterion and which may eventually yield better classifica- 
tion algorithms. The second response to the rhetorical question 
is that in some cases a quantizer step is forced on the designer 
by a storage or transmission capacity constraint. For example, 
if the original image is analog as are the vast majority of x- 
rays, then quantization is necessary before a digital classifica- 
tion algorithm can be applied. In this case our goal can be 
viewed as finding an algorithm for jointly designing a quan- 
tizer and classifier in order to yield performance close to that 
achievable by an optimal classifier operating on the original 
data. 

The cascade of VQ encoder a and decision rule 6 induces a 
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classification rule on the original vector, y (X)  = 6(a (X)). Be- 
cause the decision rule is constrained by the quantizer parti- 
tion, it cannot perform better than the Bayes classifier operat- 
ing on x in the sense of minimizing Bayes risk. Furthermore, if 
y is an optimal classifier given X, it need not be true that 
y (p  (a (X))) is also a good classifier except in the limit of 
large bit rate and asymptotically accurate decompression. The 
goal here is to jointly design a, p, and 6 so that S N R  and 
Bayes risk are both good. 

A simple approach to the problem of combined compres- 
sion and classification is to separately and independently de- 
sign the VQ and classifier. For example, a VQ could be de- 
signed to minimize mean squared error (which we will refer to 
as an MMSE VQ) and then a classifier could be designed for 
the VQ output a (X)  so as to minimize average Bayes risk. 
Hilbert [ 161 applied Lloyd-like clustering techniques to a 
training set to produce a code whose outputs were labeled us- 
ing a maximum likelihood classifier. This provided an early 
form of independent VQ and classifier design. More recently 
McLean [5] cascaded a transform VQ with a MAP classifier to 
perform combined compression and texture classification. We 
shall refer to this design approach as independent design. 

The independent design approach has the obvious flaw that 
the first step uses one optimality criterion, minimizing mean 
squared error, while the second uses another, minimizing aver- 
age Bayes risk. This mismatch has been observed in the statis- 
tical detection literature and several ad hoc algorithms have 
been developed for matching scalar quantizer design to the 
detection of signals in Gaussian noise [17], [18] based on as- 
ymptotic approximations of low signal power or high quantizer 
bit rate. 

An alternative approach to the problem is to design a VQ 
with an MMSE encoder explicitly to operate as a classifier and 
to ignore the compression aspect. This approach has a rich 
history and falls in the general class of nonparametric classifi- 
cation methods which use a learning set to estimate the prob- 
ability densities [19]. The earliest example of using a method 
formally equivalent to VQ encoding for classification is the 
classical nearest neighbor (NN) algorithm which makes classi- 
fication decisions based directly from a labeled learning set 
[19], [20]. The NN classifier can be viewed as a VQ which has 
an entire labeled learning set as a codebook. Viewed as a VQ, 
however, the nearest neighbor algorithm has the obvious fault 
of having an impractically large codebook as it contains the 
entire learning set. This implies both large computational 
complexity for classification and the lack of effective com- 
pression, although methods exist for pruning the codebook 
[21]. More recently several methods have emerged for modify- 
ing the nearest neighbor approach by clustering the codebook 
[22], [23], [24]. Perhaps the best known clustered VQ for 
classification, however, is the approach of Kohonen et al. [25], 
[26], called “learning vector quantization” (LVQ). The en- 
coder operates as an ordinary MMSE selection of a represen- 
tative from the codebook, but the codebook is designed to at- 
tempt to reduce classification error implicitly rather than re- 
ducing mean squared error. Kohonen argued that for the case 
of Gaussian data, the partition induced by a VQ can approxi- 

mate that required for a Bayes estimator; his algorithm is 
based on this intuition. Kohonen’s algorithm has aspects in 
common with MacQueen’s original k-means algorithm [ 1 11 
and Stone’s generalized nearest neighbor algorithm [27], and it 
can be considered a clustered simplification of the nearest 
neighbor approach. Kohonen’s general goal was to imitate a 
Bayes classifier with less complexity than other neural network 
approaches, but there is no explicit minimization of classifica- 
tion error in the code design. The ability to compress is not 
explicitly considered in LVQ. 

As an alternative to a full search VQ which performs an 
MMSE search of the entire codebook, one can use a tree 
structured VQ (TSVQ). This can provide a significant reduc- 
tion in complexity and a variable rate code with a progressive 
structure. For the usual compression application, the codes can 
be designed by using extensions of ideas from classification 
and regression tree design [15] combined with clustering al- 
gorithms. (See, e.g., [8], [28], [29], [30].) A TSVQ tree is 
grown by successively splitting nodes and then optimally 
pruned until the desired rate is reached. The technique also 
provides a natural modification for performing classification: 
the node to split next can be chosen as the one which contrib- 
utes most to the classification error, which forces the tree to 
grow more in those areas that it had difficulty classifying [31], 
[32]. Another splitting method that considered classification 
rather than squared error was introduced by Kramer [33]. He 
used heuristics to guide the sigmoid least mean square (LMS) 
training of a linear classifier for each node of a tree-structured 
classifier. 

Our approach strongly resembles other VQ approaches to 
classification in implementation, but not in design. All VQ 
approaches use a VQ codebook and encoder which finds the 
“best” match within the codebook for an input vector. LVQ 
and other VQ classifiers select the best match using a Euclid- 
ean nearest neighbor rule, and the match is used only to clas- 
sify. The proposed technique can use a Euclidean nearest 
neighbor rule to do the matching once the code is designed, but 
a nearest neighbor rule with respect to a modified distortion 
measure explicitly incorporating both squared error and Bayes 
risk in a Lagrangian form is used during codebook design. The 
modified distortion measure can also be used once the code- 
book design is completed if the posterior class probabilities are 
known, e.g., if one has a parametric model for the source. 

Several examples, including conditionally uniform and 
Gaussian random vectors, CT lung scans, and aerial images, 
are considered to demonstrate that the proposed algorithm 
provides superior or comparable classification performance to 
other VQ-based methods while significantly improving the 
compression performance. When the posterior class probabili- 
ties are known, the proposed algorithm improves the classifie1 
performance over all other methods considered for the given 
examples, including LVQ. 

n. VECTOR QUANTIZATION AND CLASSIFICATION 

Let q be a k-dimensional vector quantizer with codebook c, 
partition T, encoder a, and decoder p. Let 6 be a classifie- 
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assigning a class label 6 (i) E H t o  each possible encoder out- 
put i = 1, ..., N, producing an overall classification rule of 

The compression performance measured by mean squared 
Y ( 4  = 6(a  (XI). 

error is 

The classification performance measured by Bayes risk is 

M M  

B ( a , 6 )  = x'cjk P r ( G ( a ( X ) )  = k and Y = j )  

= x P r ( a ( X )  = i ) x 1 ( 6 ( i )  = k )  

. Xcjk Pr(Y = j I a(x)  = i ) .  

k=l j = l  

(3) 
N M 

i=l k=l 

M 

j=1 

The MSE does not depend on the classifier 6 and the Bayes 
risk does not depend on the decoder p. This immediately 
yields two important optimality properties of a combined VQ 
and classifier. From (2) we have that 

N 
D(a,6)2xminE[d(X,y) la(X)=i]Pr(a(X)= i )  , (4) 

;=I y 

an unbeatable lower bound which is achievable if for the given 
encoder a the decoder is chosen as the Lloyd centroid, i.e., as 

PLloyd(i)=argminE[d(X,y)la(X)=i], Y 

regardless of the classifier. Similarly, from (3) we have that r j=1 i N 
B ( a , 6 ) 2 x P r ( a ( X ) = i ) m i n  c c , k P r ( Y =  j la (x)=i )  , 

an unbeatable lower bound which is achievable if the classifier 
is chosen to be the Bayes classifier, which minimizes 
Bayes risk given a particular encoder a, i.e., 

i=l 

GBayes(i) = argmin x c,k ~r ( Y = j I a(x) = i )  . 

This classifier depends only on the encoder a and not on the 
decoder p. 

We can summarize these optimality properties as follows: 

PROPERTY 1: Given an encoder a, then the Lloyd decoder 
b l O y d  minimizes the MSE, regardless of the classifier. 

 PROPERTY^: Given an encoder a, then the Bayes classifier 
hayes minimizes the overall Bayes risk. 

Properties 1 and 2 imply that for a given encoder, the design 
of the decoder and the classifier are independent. The key is- 

1" j=1 i 

sue is how to design the encoder, a problem for which several 
approaches will be considered. Properties 1 and 2 are only 
slight modifications of well known properties for the separate 
compression (minimum average distortion) and classification 
(minimum Bayes risk) problems. 

In order to simultaneously consider the compression and 
classification abilities of the encoder, we use a Lagrangian 
modified distortion expression which includes both ordinary 
distortion and classification error: 

The Bayes risk is incorporated into the distortion measure with 
a Lagrangian multiplier in the same way that average code- 
word length is incorporated into a modified distortion measure 
in the design of entropy constrained VQ [28], and our ap- 
proach should be viewed as a variation on entropy constrained 
VQ. This measure allows flexible trade-offs between com- 
pression and classification priorities: when A + 0, we obtain 
an ordinary MMSE VQ and an independent design of VQ and 
classifier; when A + -, we obtain a minimum Bayes risk 
classifier based on a VQ structure. 

From ( 5 )  the modified distortion J ,  is 

For a given decoder p and classifier 6, this expression is 
minimized by minimizing the integrand for each value of x .  
This provides a third optimality property: 

PROPERTY 3 :  For a given decoder p and class$er 4 the opti- 
mal encoder a is given by 

a ( x )  = 

This is a nearest neighbor encoder with respect to a modified 
(non-Euclidean) distortion measure. The optimal encoder can 
make better classification decision regions for cases when the 
Bayes regions partitioned by the optimal Bayes rule are not 
well approximated by Euclidean Voronoi cells. Unlike an or- 
dinary MMSE encoder, the optimal encoder allows the curving 
of quantizer regions in order to improve classification. 

The three optimality properties taken together provide a de- 
scent algorithm for the design of a VQ with a modified distor- 
tion measure comprising both squared error and Bayes risk. 
We shall refer to such a quantizer as a Bayes risk weighted VQ 
or, more simply, a Bayes VQ. 
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111. CODE DESIGN 
The VQ-based methods used in the simulations are de- 

scribed next. 

A. Independent Design 

Here the encoder a is matched to the decoder p by using an 
MMSE rule. The encoder and decoder are designed by the 
iterative Lloyd algorithm to produce an ordinary MMSE VQ. 
Following convergence the Bayes classifier is applied to the 
VQ outputs. In the equal cost binary class case, this means 
simply classifying each codeword index according to the ma- 
jority of class labels quantized into that index in the training 
set. For this case the encoder and codebook design are based 
entirely on minimizing squared error alone without regard to 
classification. 

B. Learning Vector Quantization 

The VQ design techniques of Kohonen and his colleagues 
[25], [26] use clustering techniques to design a VQ with an 
MMSE encoder specifically for classification. MacQueen’s 
original k-means algorithm [ 111 encodes each training vector 
in succession, each time mapping it to the index of the nearest 
codeword in the codebook, and then modifying the code- 
word to be a centroid of all input vectors that have mapped 
into that index since training began. All other codewords are 
left unchanged. Let the size N codebook at time n-1 be de- 
scribed as (yl(n- l), y&~-  l), ..., ydn-  l ) ) .  Suppose that the 
next training vector x(n)  selects yi(n- l), the ith reproduction 
codeword, as the nearest neighbor and hence selects index i. 
Then the new centroid for i is formed as 

n-1 1 1 
n n n 

y,(n) = -yi(n - 1) + - x ( n )  = yi(n - 1) + - ( x ( n )  - y;(n - 1)). 

Defining a(n) = l/n, the k-means update rule becomes 

yi(n) = Yi(n-1) +a(n)(x(n)-yi<n-1)) (6) 
if d ( x ( n ) , y , ( n -  1)) 5 d(x(n) ,  y,(n- I)), all 1. 

Kohonen’s LVQl replaces the “update the centroid of the 
selected index” of (6)  with a rule that depends on whether or 
not the class label of the selected index matches that of the 
training vector: if yes, the update rule of (6) is used to incorpo- 
rate the new input vector into codeword; if no, then the update 
rule is instead yi(n)  = y i  ( n -  1) - a(n) (x(n)  - yXn- l)), effec- 
tively trying to separate the new input vector from the mis- 
taken class. All other codewords are left unaffected. Here 
0 < a(n) c 1, and a(n) should either be constant or decrease 
monotonically with time. A variation of this basic method, 
optimized learning rate LVQl (OLVQl), is used here [34]. 

C. Bayes Risk Weighted VQ (Bayes VQ) 

risk weighted distortion is nondecreasing. 
We start with some initial coder (do’, Po), 8”) and itera- 

tively apply an improvement transformation (a(’+’), per+'), P I ) )  

= T(&’, p’”, 8‘)) so that J,(d”, p’”, 8‘)) is nonincreasing in t. 
Since J,  is bounded below by 0, we know that J:) must con- 
verge as t + -. The transformation T is implemented by suc- 
cessive application of Properties 2, 1, and 3 to the previous 
coder. 

Both design and implementation of the algorithm require 
knowledge of the posterior class probabilities, Pr (YIX). We 
here consider two cases: parametric and nonparametric. In the 
parametric examples it is assumed that these probabilities are 
known and hence the design method is exactly as described 
above and the encoder, decoder, and classifier are exactly as 
produced in the final iteration of the design algorithm. This is 
the case, for example, if the random objects are generated from 
a known probabilistic model such as a Gaussian distribution 
with different classes corresponding to different variances or 
means. In the nonparametric case these probabilities must be 
estimated. Since the VQ is designed based on a learning set of 
empirical data, this same set can be used to estimate the poste- 
riors during design by relative frequencies. For example, 
P(Y =j lX  = x) is estimated by t,lt where f, is the number of 
times x occurred with class label j and t is the number of oc- 
currences of x. 

Unfortunately, knowledge of P( Y I X )  within the learning set 
does not immediately provide a useful estimate of the condi- 
tional probabilities outside the training set. While one could 
use some form of multidimensional interpolation or kernel 
estimation technique, the computational complexity involved 
can be extreme. For this reason we have chosen here to use a 
simple MMSE encoder (Euclidean nearest neighbor) for the 
nonparametric examples outside the training set, as do other 
VQ classification techniques including LVQ. Unlike those 
techniques, however, we do use the estimated posteriors in the 
design of the codebook. The parametric (optimal weighted 
Bayes encoder with true posterior probabilities) and subopti- 
mal (MMSE) encoders are both considered for our parametric 
examples to demonstrate the achievable gains when the poste- 
riors are known and can be used. Methods of estimating the 
class posteriors with low complexity and using these estimates 
to approximate optimal encoding outside the training data are 
developed in [35] ,  [36]. 

Two important implementational issues are the choice of A 
and the stopping rule used to halt the iterations. There is no 
general rule for optimal selection of A. We chose values 
yielding good performance on the training data. There are sev- 
eral stopping rules that could be used to determine when to 
halt the iteration process. We could select a particular A and 
iterate until the decrease in average distortion J ,  falls below a 
certain threshold. Increasing A generally reduces the Bayes - -  

A Bayes risk weighted VQ uses the Bayes risk weighted 
distortion of (5) as a generalized distortion measure and uses 
Properties 1-3 to define a descent algorithm for quantizer de- 
sign, that is, an iterative algorithm to modify decoder p, clas- 
sifier 6, and encoder a in such a way that the average Bayes 

risk while increasing the average ordinary distortion D. The 
stopping rule used here is to set a maximum allowable increase 
in the ordinary distortion (over the distortion obtained with 
regular VQ with A = 0) and then iterate over increasing values 
of A until the maximum is reached. This can also be used as a 
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method to select an appropriate A. If the suboptimum MMSE 

there is no guarantee that iterations based on the optimal en- 
coder will always improve Bayes risk with the MMSE en- 
coder. Hence, we cease increasing A if the Bayes risk with the 
MMSE encoder decreases. 0 

encoder is to be used once the codebook is designed, then -1 0 

IV. EXAMPLES 
1 A. Simulated Data 22 

We consider two simulated examples where the distribu- 
tions are known. In both cases the input vector is a mixture of 
two equally likely distributions of two-dimensional data. Equal 
costs are assumed. The compression and classification results 

(a) (b) 

Fig. 1 Diamond example. (a) Origlnd Classlfication, (b) Parametnc Bayes 
vQ Voronol diagram. 

are compared with two other methods of VQ design: inde- 
pendent design and LVQ. 

A. 1. Diamond Example 

Suppose that the vectors X=(XI, X,) belonging to Class 1 
are uniformly distributed over the diamond lrll + k 2 l  I 1 and 
the vectors belonging to Class 2 are uniformly distributed over 
lrll + k*l> 1 where lrll I 1 and lrzl I 1. The ideal classification 
is a diamond shape as shown in Fig. l(a); the white center re- 
gion is Class 1, and the gray corner regions are Class 2.  The 
simplicity of this separable problem provides a good means of 
visualizing the effects of the algorithm. 

The vector quantizers are designed using a training se- 
quence consisting of 10,000 randomly chosen vectors and 
evaluated using a test set of 10,000 (different) vectors. Various 
codebook sizes ( N  = 8, 16, 32,  64) are considered. The simu- 
lations are repeated a total of five times with different random 

(4 (b) 

Fig. 2. Diamond Voronoi diagram: 
(a) Independent Design, 
(b) Bayes VQ. 

o,12 

seeds, and the averages are reported. 
For this separable example, the true probabilities and the 

probabilities estimated from the training set are equivalent. 
The Voronoi diagram for a sample codebook designed using 
the optimal encoder for both training and test (parametric 
Bayes VQ) is shown in Fig. l(b). Note that this encoder attains 
perfect classification. 
For comparison we consider nonparametric encoders outside 
the learning set, i.e., an MMSE encoding. The following three 
codebook design methods are compared: Independent Design 
using an MMSE VQ followed by a Bayes classifier designed 
using the relative class frequencies of the quantized training 
set. Bayes VQ where the value of A is initialized to 0.01 and 
allowed to increase by a multiplicative factor of 1.1 until 
mismatch is detected. During training, optimal encoder prob- 
abilities are based on frequency of occurrence in the training 
set. During testing, ordinary MMSE encoding is used. LVQ 
designed using OLVQI using 50,000 iterations. The codebook 
is initialized using the LVQ-PAK eveninit algorithm. 

The partition and classification for a codebook with 32 
codewords using independent design are shown in Fig. 2(a). 
Again, the white regions are labeled as Class 1 and the gray 
regions are Class 2 .  No classification information is used when 
constructing this codebook. In contrast, the partition and 
classification for the same size codebook designed using 
Bayes 

x = mean squared error 

'0 0.02 0.04 0.06 lambda 0.08 0.1 0.12 0.14 

Fig. 3. Diamond example: effect of il on classification error and mean squared 
error for codebook size 32. 

VQ are shown in Fig. 2(b). The codeword boundaries are 
much more closely aligned with the ideal classification 
boundaries, improving the classification error. A plot showing 
the effect of A on the classification error and on mean squared 
error for a Bayes VQ codebook of this size is given in Fig. 3.  
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As expected, increasing A generally reduces the classification 
error. Increasing A also generally increases the mean squared 
error, but the increases are extremely small (less than 2%). 

Fig. 4 provides a comparison of the Bayes VQ algorithm to 
independent design and Kohonen’s LVQ algorithm. The clas- 
sification performance generally improves as the number of 
codewords increases. We observe from Fig. 4 that Bayes VQ 
and Kohonen’s LVQ produce comparable classification re- 
sults, and both methods perform substantially better than inde- 
pendent design. By altering the usual VQ codebook design, we 
can obtain improved classification. The ability to compress, 
measured by mean squared error, is examined in Fig. 5.  As 
expected, squared error decreases as the number of codewords 

- 
- 

l r - - - - - l  98 

Optimal encoder 
Bayes VQ 

Kohonen LVQ 
Independent Design 

73.63 73.61 73.63 73.60 
71.13 69.56 72.26 73.07 
72.14 72.47 72.78 72.24 
70.11 70.41 71.94 73.01 

- -  ~KoaOllenLVQ 

I 
io m 30 10 so 60 70 

801 

codeboot dEc 

Fig. 4. Diamond example: classification comparison of design methods. 

A.2. Concentric Gaussian Example 

The next example considered is a nonseparable problem 
taken from Kohonen [26]. The mixture in this case consists of 
two concentric two-dimensional (bivariate) Gaussian distribu- 
tions, each with zero mean. The coordinates are independent 
for both classes with variance = 1 for Class 1 and variance = 4 
for Class 2. These distributions overlap, so no decision rule 
provides perfect classification. The Bayes decision rule, which 
minimizes the Bayes risk (or classification error since we have 
equal costs), is easily determined to be a circle about the origin 
of radius 1.923. This optimal decision rule will classify 
73.624% of vectors correctly on average. 

As before, we design and evaluate the codebooks using sets 
of 10,OOO random vectors, averaging the results over five simu- 

TABLE 1 

PERCENT VECTORS CORRECTLY CLASSIFIED 
CONCENTRIC GAUSSIAN EXAMPLE: 

Fig. 5 .  Diamond example: MSE comparison of design methods. 

increases. Bayes VQ and independent design are comparable, 
with Kohonen’s LVQ performing worse. 

In this example, Bayes VQ does very well. It classifies 
virtually as well as Kohonen’s LVQ (a method intended 
strictly for classification not compression) and it compresses 
as well as independent design. 

1 C z h k  11 ~ Czebik:2m ~ 64 1 
Desi Method 

Parametric Bayes VQ 
MMSE encoder 73.03 73.11 73.50 73.65 

Parametric Bayes VQ 

TABLE I1 
CONCENTRIC GAUSSIAN EXAMPLE: 

MEANSQUAREDERROR 

lations. We first use the true probabilities in the parametric 
encoder to design various sized codebooks using the paramet- 
ric Bayes VQ algorithm. In this case, the true probabilities 
are substantially different from those estimated from the 
training data. Once the codebooks have been designed, two 
types of encoding outside the training sequence are presented: 
optimal encoding using the true probabilities and ordinary 
MMSE encoding. Compression and classification results are 
given in Tables I and 11. Results are based on data outside the 
training sequence averaged over five simulations. 

Like the diamond example, three methods of design are 
considered for the nonparametric algorithm. Classification 
results are given in Table I. In this example, the classification 
abilities of the three design methods are much more similar 
than in the diamond example. Kohonen’s LVQ method does 
best for the three smaller codebook sizes, but the Bayes VQ 
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method does best for the.largest codebook size. The strong 
performance of the independent design method suggests that 
Gaussian distributions are well suited to classification by VQ 
in general, and the design methods that stress classification 
(like Kohonen’s LVQ and Bayes VQ) can provide little gain 
over independent design. The mean squared error for the three 
design methods is given in Table 11. As in the diamond exam- 
ple, the Bayes VQ and independent design perform noticeably 
better than Kohonen’s LVQ method. 

The classification performance of codebooks designed us- 
ing the known distributions to determine Pr(Y = j I X = x )  
(parametric Bayes VQ) is significantly better than codebooks 
designed using probabilities determined by the class labels of 
the training set. The parametric Bayes VQ methods correctly 
classify at least 73.0% of the vectors. Although subsequent 
encoding of the test data using the true probabilities performs 
better than the ordinary MMSE encoding, both perform quite 
well. For example, the size 8 parametric Bayes VQ codebook 
with MMSE encoder classifies 73.0% correctly. This com- 
pares with the 71.1% classification from the Bayes VQ which 
used estimates from the training set rather than the true prob- 
abilities during codebook design. The same size parametric 
Bayes VQ codebook with optimal encoder classifies 73.6% 
correctly, equivalent to the theoretically optimal Bayes classi- 
fier. Further comparisons of Bayes VQ with an MSE encoder 
and LVQ on Gaussian mixtures are treated by Wesel et al. [37]. 

B. Image Data 

The Bayes VQ algorithm is next used to identify tumors in 
CT lung images and to classify man-made and natural regions 
in aerial images. The compression and classification results for 
the aerial application are compared with independent design 
VQ and the LVQ design. Because the CT application uses 
unbalanced costs, comparison with LVQ is omitted as LVQ 
has no provision for such costs. 

B. I .  CT Images 

First consider CT images where we wish both to compress 
the images and to identify pulmonary tumor nodules. The 12 
bit grayscale images are of size 512 x 512 pixels. Class 1 cor- 
responds to healthy tissue, and Class 2 corresponds to tumor. 
The locations of the tumors are determined by trained radiolo- 
gists. The training set consists of 10 images plus the tumor 
vectors from five additional images; the additional tumor 
training vectors are added because of the low average percent- 
age of tumor vectors in the data. We test on similar images 
outside the training set. Here classification costs of Cl2 = 1, 
C21 = 100 are chosen to reflect the relative importance of the 
two error types constructed using various values of A. Each 
codebook contains 256 codewords with dimension 2 x 2, pro- 
ducing a fixed rate 2 bpp code (additional entropy coding 
would reduce this to about 1.56 bpp). 

A representative test image yielded the following statistics: 
SNR = 26.69 dB, sensitivity 83.3%, specificity = 96.4%, pre- 
dictive value positive = 4.4%, and overall Bayes risk = 0.070. 
Sensitivity is the percentage of tumor vectors which are cor- 
rectly classified as tumor. Specificity is the percentage of 

nontumor vectors which are correctly classified as nontumor. 
Predictive value positive (PVP) is the percentage of vectors 
classified as tumor that are actually tumor vectors. The algo- 
rithm was able to identify most of the tumor vectors in the test 
images, with up to 83.3% sensitivity. It should be recalled that 
the classifier operates only on 2 x 2 pixel intensity blocks with 
no context. The original test image is shown in Fig. 6(a). The 
image is shown after windowing the intensity values to im- 
prove the contrast in the pixel value region of interest (the 
same adjustment performed by radiologists). This image con- 
tains three circular tumors in the left lung. The true positions of 
the three tumors are shown in Fig. 6(b), where bright regions 
represent tumor and dark regions represent nontumor. Com- 
pression and classification results for the test image are shown 
in Fig. 6(c) and (d). The algorithm correctly identifies substan- 
tial parts of each of the three tumors. Even though the algorithm 

TABLE Ill 

FOR AERIAL IMAGE SIMULATION 
AVERAGE PSNR AND CLASSIFTCATION A B ~ Y  

does identify as tumor a fair amount of the image that is not 
tumor, such a phenomenon would not greatly mar the diagnos- 
tic aid. 

B.2. Aerial Images 
Here the goal is to highlight subblocks in aerial images that 

are classified as being man-made as opposed to natural in or- 
der to attract the attention of human observers. The classifica- 
tion of the training set (learning set) of aerial photographs is 
done by hand-labeling those features (man-made and natural 
regions) that are to be recognized in subsequent images. The 
training set consisted of aerial images of the San Francisco 
Bay Area provided by ESL, Inc. The images were 512 x 512 
pixels of 8 bit grayscale. Each 8 x 8 pixel subblock in the 
training set was assigned to be either man-made or natural 
based on the perceptions of a human observer. While the 
training vectors were classified in 8 x 8 vectors to simplify the 
task of the human classifier, the codebook construction and 
image encoding were carried out using 4 x 4 pixel vectors. 

Because of the limited labeled training data available, 
simulations were performed using a form of 6-fold cross- 
validation [15] to improve the quality of the results. The 
training set consisted of six images containing both urban and 
rural regions. Codebooks were trained using data from all but 
one of the images, and the resulting codebooks were tested on 
the image not used for training. This process was repeated 
until all the images were used for testing. Using equal classifi- 
cation costs, size 256 full search codebooks are constructed 
using 4 x 4 vectors (providing a fixed bit rate of 0.5 bpp). The 
value of A is increased from 0.01 until it exceeds 1,OOO or 
mismatch is detected 
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Fig. 6. CT image: (a) original 12 bpp image, (b) true tumor locations, (c) compressed at 2 bpp, (d) classification using Bayes VQ 

Fig. 7(a) and (b) shows a typical test image and the hand- 
labeled classification for this image. Fig. 7(c) and (d) shows 
the image after compression at 0.5 bpp and demonstrates the 
classification produced by Bayes VQ. 

The classification is denoted by showing subblocks that the 
encoder classified as natural as black and showing subblocks 
classified as man-made as white. For this image, the codebook 
correctly classifies 74% of the vectors. The ability to classify 
is computed with respect to the hand-labeling of the training 
and test images, which is an imperfect “gold standard” affected 

by the lower resolution (larger block size) of the hand-labeling 
and the human observer’s perception and inevitable inconsis- 
tencies. Results averaged over all s i x  images are given in 
Table 111. Table I11 also contains results from independent 
design VQ and Kohonen’s LVQ algorithm with the same size 
codebooks (for Kohonen, the training sequence was cycled 
through five times). 

The Bayes VQ algorithm does quite well on the aerial im- 
age task. The method classified an average of 74% of the test 
image vectors correctly, performing slightly better than the 



47 1 OEHLER AND GRAY: COMBINING IMAGE COMPRESSION AND CLASSIFICATION USING VECTOR QUANTIZATION 

Fig. 7. Aerial image: (a) original 8 bpp image, (b) hand-labeled classification, (c) compressed at 0.5 bpp, PSNR = 26.2 dB, (d) classification using Bayes VQ. 
(Man-made subblocks shown white, natural subblocks shown black.) 

tree-structured method described in [31] (the PSNR is also 
higher). However, independent design applied to these same 
tasks also does reasonably well. On the aerial images, inde- 
pendent design correctly classified 71% of the vectors, 3% less 
than Bayes VQ. One possible explanation is that these real 
image tasks have class distributions similar to the concentric 
Gaussian task, so that the simple clustering provided by the 
independent design algorithm is sufficient to generate a good 
classifier. The Kohonen LVQ algorithm classified 1% more of 
the vectors correctly with a loss of 0.7 dB in PSNR. 

V. EXTENSION TO TREE-STRUCTURED VQ 

The basic idea of Bayes risk weighted VQ extends to TSVQ in 
a natural way. Tree-structured code growing and pruning 
techniques [29], [28], [30], [8] are applied to the modified 
distortion measure .I1. rather than to the ordinary distortion D. 
Such tree growing techniques can be considered as a new 
variation of traditional classification tree design algorithms 
such asCART[15]. 

This technique was used to construct tree-structured code- 
books for the diamond example discussed previously. With an 
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average bit rate of 2.5 bits per pixel (the same rate as a full 
search codebook with 32 codewords), the tree-structured code 
provided an average classification of 94.0% and an average 
mean squared error of 0.026. In comparison, the Bayes VQ 
size 32 full search codebook provided 95.1% classification 
and 0.022 mean squared errot. The slight loss in classification 
and compression performance is offset by a substantial reduc- 
tion in the time required for design and encoding. The tree- 
structured encoder requires only an average of 10 distance 
computations per vector compared to the 32 distance compu- 
tations needed for full search encoding. This complexity ad- 
vantage is even more significant with higher dimensions or 
larger codebooks. The modified distortion measure might be 
combined with other structured VQ codebook design tech- 
niques to develop low-complexity efficient quantizers for 
compression and classification. It is not as obvious how to 
adapt Kohonen’s method to structured VQ formulations. 

VI. CONCLUSIONS 

An algorithm has been introduced for the design of vector 
quantizers combining the goals of compression and classifica- 
tion. This was accomplished by combining an ordinary com- 
pression distortion measure such as squared error with a Bayes 
risk term to measure classification accuracy. A clustering al- 
gorithm such as the Lloyd algorithm then produces a code 
minimizing a weighted combination of squared error and 
Bayes risk, where the weighting can be adjusted according to 
relative importance. We here considered the parametric case, 
where the necessary conditional class probabilities are known, 
and the specific nonparametric case where these probabilities 
are estimated by relative frequencies within the training set and 
a suboptimal MMSE encoder is used outside the training set. 
Extensions to simple class probability estimators inside and 
outside the training set are pursued in [35], [36]. It was found 
that the suboptimal MMSE encoder works quite well in com- 
parison to the optimal encoder in some problems, while per- 
forming quite poorly in others. We suspect that the MMSE 
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