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Motto

“. . . the relationships between smoothness and frequency forming
the core ideas of Euclidean harmonic analysis are remarkably
resilient, persisting in very general geometries.”
- Szlam, Maggioni, Coifman (2008)



Problem setup: Processing functions on a dataset

Given a dataset X = {x1, . . . , xN} with similarity matrix Wi ,j

(or X = {x1, . . . , xN} ⊂ Rd)

”Nonparametric” inference of f : X → R
Denoise: observe g = f + ε, recover f

SSL / classification: extend f from X̃ ⊂ X to X
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Problem setup: Data adaptive orthobasis

Can use local geometry W , but why reinvent the wheel?

Enter Euclid

Harmonic analysis wisdom in low dim Euclidean space: use
orthobasis {ψi} for space of functions f : X → R
Popular bases: Fourier, wavelet

Process f in coefficient domain e.g. estimate, thereshold

Exit Euclid

We want to build {ψi} according to graph W
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Toy example

Chapelle, Scholkopf and Zien, Semi-supervised learning, 2006

Example: USPS benchmark

X is USPS (ML benchmark) as 1500 vectors in R16×16 = R256

Affinity Wi,j = exp
(
−‖xi − xj‖2

)
f : X → {1,−1} is the class label.
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Toy example: visualization by kernel PCA
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Fourier Basis for {f : X → R}
Belkin and Niyogi, Using manifold structure for partially labelled
classification, 2003

Generalizing Fourier: The Graph Laplacian eigenbasis

Take (W − D)ψi = λiψi where Di ,i =
∑

j Wi ,j
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Cons of Laplacian Eigenbasis

Laplacian (“Graph Fourier”) basis

Oscillatory, nonlocalized

Uninterpretable

Scalability challenging

No theoretical bound on |〈f , ψi 〉|
Empirically slow coefficient decay

No fast transform



Toy example: Graph Laplacian Eigenbasis
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Cons of Laplacian Eigenbasis

Laplacian eigenbasis “Dream” Basis

Oscillatory, nonlocalized Localized

Uninterpretable Interpretable

Scalability Challenging Computation scalable

No theory bound on |〈f , ψi 〉| Provably fast coef. decay

Empirically slow decay Empricially fast decay

No fast transform Fast transform



On Euclidean space, Wavelet basis solves this

Localized

Interpretable - scale/shift of same function

Fundamental wavelet property on R - coeffs decay:
If ψ is a regular wavelet and 0 < α < 1, then

|f (x)− f (y)| ≤ C |x − y |α ⇐⇒ |〈f , ψ`,k〉| ≤ C̃ · 2−`(α+ 1
2 )

Fast transform



Wavelet basis for {f : X → R}?

Prior Art

Diffusion wavelets (Coifman, Maggioni)

Anisotropic Haar bases (Donoho)

Treelets (Nadler, Lee, Wasserman)



Main Message

Any Balanced Partition Tree whose metric preserves smoothness in
W yields an extremely simple Wavelet “Dream” Basis





Cons of Laplacian Eigenbasis

Laplacian eigenbasis Haar-like Basis

Oscillatory, nonlocalized Localized

Uninterpretable Easily interpretable

Scalability Challenging Computation scalable

No theory bound on |〈f , ψi 〉| f smooth ⇔|〈f , ψ`,k〉| ≤ c−`

Empirically slow decay Empricially fast decay

No fast transform Fast transform



Toy example: Haar-like coeffs decay
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Eigenfunctions are oscillatory
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Toy example: Haar-like basis function
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Main Message

Any Balanced Partition Tree, whose metric preserves smoothness
in W ,yields an extremely simple Basis
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Main Message

Any Balanced Partition Tree,whose metric preserves
smoothness in W , yields an extremely simple WaveletBasis



f smooth in tree metric ⇐⇒ coefs decay

How to define smoothness

Partition tree T induces natrual tree (ultra-) metric d

Measure smoothness of f : X → R w.r.t d

Theorem

Let f : X → R. Then

|f (x)− f (y)| ≤ C · d (x , y)α ⇔ |〈f , ψ`,k〉| ≤ C̃ · |supp (ψ`,k)|(α+ 1
2 )

for any Haar-like basis {ψ`.k} based on the tree T .

If the tree is balanced ⇒ |offspring folder | ≤ q · |parent folder |
Then
|f (x)− f (y)| ≤ C · d (x , y)α ⇐⇒ |〈f , ψ`,k〉| ≤ C̃ · q`(α+ 1

2 )

(for classical Haar, q = 1
2).
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Results

Results

1 Any partition tree on X induces “wavelet” Haar-like bases
√

2 “Balanced” tree ⇒ f smooth equals fast coefficient decay
√

3 Application to semi-supervised learning

4 Beyond basics: Comparing trees, Tensor product of Haar-like
bases



Application: Semi supervised learning

Classification/Regression with Haar-like basis

Task: Given values of smooth f on X̃ ⊂ X , extend f to X .

Step 1: Build a partition tree s.t. f is smooth w.r.t tree metric

Step 2: Construct a Haar-like basis {ψ`,i}

Step 3: Estimate f̂ =
∑ ̂〈f , ψ`,i 〉ψ`,i

Control over coefficient decay ⇒ non-parametric risk analysis

Bound on E
∥∥∥f − f̂

∥∥∥2
depends only on smoothness α of the

target f and # labeled points
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Toy Example benchmark
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MNIST Digits 8 vs. {3,4,5,7}
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Results

Results

1 Any partition tree on X induces “wavelet” Haar-like bases
√

2 “Balanced” tree ⇒ f smooth equals fast coefficient decay
√

3 Application to semi-supervised learning
√

4 Beyond basics: Tensor product of Haar-like bases, Coefficient
thresholding
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Coifman and G, Harmonic Analysis of Digital Data Bases (2010)
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The Big Picture

Coifman and Weiss, Extensions of Hardy spaces and their use in analysis,
1979

Geometric tools for Data analysis widely recognized

Analysis tools (e.g. function spaces, wavelet theory) in graph
or general geometries valuable and largely unexplored in ML
context

Deep theory, long tradition: geometry of X ⇐⇒ bases for
{f : X → R} (“Spaces of Homogeneous Type”)
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Summary

Motto

“. . . the relationships between smoothness and frequency forming
the core ideas of Euclidean harmonic analysis are remarkably
resilient, persisting in very general geometries.”
- Szlam, Maggioni, Coifman (2008)

Main message

Any Balanced Partition Tree whose metric preserves smoothness in
W yields an extremely simple “Dream” Wavelet Basis

Fascinating open question

Which graphs admit Balanced Partition Trees, whose metric
preserves smoothness in W ?
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