
Harmonic Analysis of Digital Data Bases

Ronald R. Coifman and Matan Gavish

Abstract Digital databases can be represented by matrices, where rows (say) cor-
respond to numerical sensors readings, or features, and columns correspond to data
points. Recent data analysis methods describe the local geometry of the data points
using a weighted affinity graph, whose vertices correspond to data points. We con-
sider two geometries, or graphs - one on the rows and one on the columns, such that
the data matrix is smooth with respect to the “tensor product” of the two geometries.
This is achieved by an iterative procedure that constructs a multiscale partition tree
on each graph. We use the recently introduced notion of Haar-like bases induced
by the trees to obtain tensor Haar-like bases for the space of matrices, and show
that an `p entropy conditions on the expansion coefficients of the database, viewed
as a function on the product of the geometries, imply both smoothness and effi-
cient reconstruction. We apply this methodology to analyze, de-noise and compress
a term–document database. We use the same methodology to compress matrices
of potential operators of unknown charge distribution geometries and to organize
Laplacian eigenvectors, where the data matrix is the “expansion in Laplace eigen-
vectors” operator.
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1 Introduction

We should seek out unfamiliar summaries of observational material, and establish their
useful properties. - J. W. Tukey [21]

There is a fruitful interplay between Harmonic analysis and the vast data analysis
challenges that the scientific community is facing. Ideas that in the past have been
applied for the analysis and extraction of information from physical systems are
being increasingly applied, in their computational reincarnation, to organize and
to extract information from high dimensional digital data sets of arbitrary source.
Some examples are Laplacian eigenfunctions [2, 6] and wavelet bases [7].

In [20], J.O. Strömberg showed that the tensor product of Haar bases is ex-
tremely efficient in representing functions on product structures. For example, when
f : [0,1]d → R has bounded mixed derivatives, he considered the tensor product of
Haar bases in all d dimensions of and showed that f can be approximated with L∞

error O
(
ε logd−1 ( 1

ε

))
by shrinking to zero coefficients of the basis functions with

support smaller than ε . As only O
( 1

ε
logd−1 ( 1

ε

))
coefficients survive, this yields a

remarkable compression scheme.
In fact, product structures are among the most common data structures in exis-

tence. Consider the usual data matrix, abundant in multivariate statistics. By this we
mean a rectangular array with n columns, representing (say) observations or indi-
viduals or data points, and p rows, representing attributes or variables measured on
each data point. More generally, when each data point responds simultaneously to
d− 1 variable sets, the data is given as a rank-d tensor. While the theory we will
develop will include the general case of tensor data structures of arbitrary rank d,
the examples discussed are data matrices where d = 2. Data matrices arise in text
term-document analysis, microarray data analysis, gene association studies, sensor
networks, recommendation engines, hyperspectral image processing - to name just
a few scenarios. Here, the basic assumption underlying matrix analysis in multivari-
ate statistics, namely that observations are independent and identically distributed,
breaks down, since in general correlations exist among both rows and columns of
the data matrix. Models for data of this form have been introduced in the statistical
literature (e.g. Plaid Models [15] and Transposable Regularized Covariance Mod-
els [1]), yet the contrast between the overwhelming wealth of applications and the
tools available remains considerable. In this work, we suggest a harmonic analysis
approach that leads to a nonparametric model for data tensors, and in particular for
data matrices.

Since correlations exist among both rows and columns of the data matrix, there
is no longer a preferred dimension among {rows , columns}. Treating rows and
columns on equal footing naturally leads to tensor analysis. Strömberg’s ideas,
namely that tensor product of Haar bases sparsify smooth functions on a product
space and that coefficients should be sorted by basis function support size, appears
promising for efficiently analyzing matrices and higher order data structures. How-
ever, if we are to use this approach to analyze a matrix (a function on an abstract
product space M : {observations}×{variables}→R), we must first (1) make sense
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of the notion of a geometry and Haar basis on an abstract set such as {observations}
rather than on [0,1], (2) find an algorithm to construct two such geometries, relative
to which a given data matrix is “regular”, and (3) find a computationally reasonable
way to measure the regularity of a matrix with respect to two given geometries - on
{observations} and on {variables}. Only then can we hope to obtain an approxi-
mation result similar to Strömberg’s.

1.1 Outline

Our goal here is to follow this program. For (1), the local geometry of each set is
described by a weighted affinity graph. For (2), in §2.1 we describe a straightforward
procedure to integrate an affinity graph into a multiscale partition tree. In §2.2 we
then describe an iterative procedure to construct two coupled geometries, namely
affinity graphs, given a data matrix.

As an interesting example of organization, in §4 we consider the matrix of Lapla-
cian eigenfunctions on a graph, where the entries represent the value of an eigen-
function at a point. As any two eigenvectors are orthogonal, their mutual distance
is constant and a naive attempt to build an eigenvector organization fails. On the
other hand, if we organize the graph into a contextual folder hierarchy and relate
two eigenvectors also through their correlation on the folders at different scales, we
obtain a dual organization of eigenvectors. In the case of a d-dimensional torus Td ,
using this procedure one recovers the usual Euclidean geometry of the dual group,
namely the lattice Zd .

In §3 we consider a different operator, namely a potential operators on clouds
of unknown geometries. We show that it can be organized to reveal the intrinsic
geometry of their domain and range.

In §5 we turn to function bases. We build on [12, 13] where, in collaboration
with B. Nadler, we showed that a partition tree on an abstract set X induces a “Haar-
like” orthonormal basis for { f : X → R} with wavelet basis properties. Thus, the
construction of a coupled geometry on {observations} and {variables} also in-
duces Haar-like bases, say {ψi} and

{
ϕ j
}

respectively. We prove an approximation
result of Strömberg’s type and show that a condition on the `p sum of expansion
coefficients ∑i, j

∣∣〈M,ψi⊗ϕ j
〉∣∣p implies both efficiency of reconstruction and “bi-

smoothness” of the data matrix with respect to the two trees constructed. Indeed
the `p condition is better suited to this general scenario than a condition on mixed
derivatives, which depends on the dimension d. In particular, this means that the `p
condition measures the compatibility of the data matrix with the coupled geometry
constructed, thus accomplishing (3) and yielding a stopping condition for the iter-
ative procedure of §2.2. This approximation result leads to a decomposition of the
dataset to a “smooth” part and an “irregular” part, the latter having a small support,
in the spirit of the classical Calderón-Zygmund decomposition. In §7, we describe
how a tensor-Haar basis, induced by a coupled geometry that is compatible with
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the data matrix, can be used to perform compression and statistical tasks such as
denoising and missing value imputation on the data matrix.

1.2 An example

In §7 we study a term-document data set: a matrix M whose entry Mi, j is the oc-
currence frequency of word i in document j. We define a graph structure on the
documents, in which we link documents with a preponderance of common vocab-
ulary. This particular graph is crude: highly related documents, which should be
nearest neighbors in this graph, share just a small set of highly correlated words -
but this correlation may drown in the overall noise. Still this graph allows to organize
documents into an inaccurate hierarchy of contextual folders. In order to obtain an
improved hierarchy, it is useful to consider conceptual groupings of words, thereby
leading us to build an analogous graph structure on the vocabulary, in which we link
two words if they occur frequently in the same documents as well as in the con-
textual folders of documents. This leads to a hierarchy of conceptual word folders,
which are then used to refine and rebuild the original document graph and contextual
folder structure, and so on (Figure 1).

In each stage of the iteration, the partition trees constructed on the data set in-
duce two Haar-like bases, one on documents and one on words. The original data
base can now be viewed as a function on the tensor product of the two graphs, and
can therefore be expanded in the tensor product of the two bases. At each stage we
compute the `1 entropy of the tensor Haar coefficients as way of measuring the fit
between the geometry and data base, and stop the iterations when no improvement
is detected. Observe that by construction this procedure is invariant under permu-
tations of matrix rows and columns, providing a tool for recovering an intrinsic
organization of both - even when we are given a matrix with no known order on
its rows or columns. Once a coupled geometry that is compatible with the matrix is
achieved, we expand the data matrix in the tensor Haar basis and process the data
base in the coefficient domain. For instance, the data matrix can now be compressed
or de-noised using standard signal processing methodologies. While the Haar bases
are not smooth, their construction is random and can be repeated and averaged, in
order to eliminate some of the artifacts created, following [5].

In §8 we return to the example of potential operator and show that by trans-
forming to the tensor Haar coefficient matrix, the operator becomes extremely com-
pressed. In other words, by treating a potential operator as a data matrix, recovering
its coupled geometry, transforming to a tensor Haar basis and thresholding coeffi-
cients, we get a fast numerical scheme.

Note that the `1 entropy condition of coefficients of an orthogonal expansion is
used to quantify the “sparseness” of the expansion - a well known notion in the
Compressed Sensing literature [11, 4]. It an easy observation that a function can be
recovered to mean square error ε times the `1 entropy by using only the coefficients
larger than ε , whose number does not exceed the `1 entropy times 1

ε
. In the special
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Fig. 1 The Science News data matrix discussed in §7.2. The partition trees on rows and columns
are shown. The rows and columns have been re-ordered by the trees depth-first order.

case of the Haar or tensor Haar expansions, only coefficients of Haar functions with
support volume larger than ε are required. This conveniently eliminates the need to
sort the large set of coefficients.

2 The coupled geometry of questionnaires and databases

Suppose that

M =

 | |
v1 · · · vn
| |


is a data matrix, whose columns correspond to observations. In order to orga-
nize the observations as the vertices of an affinity graph, a kernel-based approach
would be to take the affinity Wi, j between observations i and j to be, for instance,

exp
(
−
∥∥vi− v j

∥∥2
)

. In modern data analysis scenarios the dimensionality of vi is
often comparable or larger than n. In this scenario, different sets of observations
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might respond to different sets of variables whereas the correlation between any
two complete vectors vi and v j is either very large or very small. Consider for ex-
ample automatic medical tests that measure multiple parameters such as chemical
blood composition or brain activity. Different patient groups (corresponding to dif-
ferent medical situations) will have very different response to different variable sets.
In these scenarios, quantities such as exp

(
−
∥∥vi− v j

∥∥2
)

do not provide a useful a
affinity among observations. Instead, we should consider partitioning both the ob-
servation and variable sets.

2.1 Describing a graph’s global structure using a partition tree

The main computational tool we will use to construct a coupled geometry and, later,
the orthonormal bases they induce, is a partition tree. By this we mean a sequence of
increasingly refined partitions, readily described by a tree. As an affinity graph only
holds “local” geometrical information relating each points to its neighbors, it does
not directly allow computations involving the large scale structure of the graph. A
convenient way to achieve this is by “integrating” the local distances into a partition
tree.

Let X = {x1, . . .xN} be a finite set. Consider a sequence of L finer and finer
partitions of X , denoted X 1, . . .X L. For each 1 6 ` 6 L, the partition at level ` is
composed of n(`) mutually disjoint sets, which we call folders,

X ` =
{

X `
1 , . . . , X `

n(`)

}
(1)

such that

X =
n(`)⊎
k=1

X `
k . (2)

The finest partition, at level ` = L, is composed of n(L) = N singleton folders:
XL

k = {xk} for k = 1 . . .N. The coarsest partition, at level ` = 1, is composed of
a single folder, X1

1 = X . The partitions are nested in the sense that for 1 < ` 6 L,
each folder X `

k ∈X ` is a subset of a folder from X `−1. We let sub f olders(`,k)⊂
{1 . . .n(`+1)} be the indices such that

X `
k =

⊎
j∈sub f olders(`,k)

X `+1
j . (3)

There are many approaches in the literature for constructing a multiscale partition
tree given a symmetric adjacency matrix W describing a weighted graph on the
vertex set X . We suggest using the following random bottom-up construction. The
most refined nontrivial partition, X L−1 is created using a standard “k-means type”
approach: For a fixed “radius” ρ > 0, a maximal set of centroid points {zi} ⊂ X
such that i 6= j ⇒ W (zi,z j) > ρ is selected at random. A partition of X is now
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obtained by grouping points by affinity from the centroids, namely setting XL−1
i ={

x ∈ X
∣∣W (x,zi) > W (x,z j) ∀i 6= j

}
for i = 1 . . .n(L−1), where n(L−1) = #{zi}.

In order to group the folder set X `−1 =
{

XL−1
1 . . .XL−1

n(L−1)

}
and obtain the next

partition, define an affinity between folders by

W̃ (i, j) =
〈

W1XL−1
i

, W1XL−1
j

〉
= ∑

x∈XL−1
i

∑
y∈XL−1

j

W 2(x,y) ,

so that the affinity between folders is measured in the next time-scale. The partition
procedure is repeated for the set X `−1 =

{
XL−1

1 . . .XL−1
n(L−1)

}
with the affinity W̃ to

yield the next partition X L−2, and so on until a trivial partition X1
1 = X is reached.

Below, we refer to the partition sequence X 1, . . .X L as a partition tree T on X .
We remark that for data sets of size small enough to allow computation of graph

Laplacian eigenvectors, it is sometimes preferable to embed the set X in Euclidean
space first (e.g. using a Diffusion Embedding [6]) and construct the partition tree
there.

2.2 An iterative procedure to construct a coupled geometry

Suppose that f ,g : X → R are two functions on X and ρ(·, ·) is an affinity be-
tween functions. Typical choices for ρ ( f ,g) include exp

(
− 1

ε ∑x∈X ( f (x)−g(x))2
)

for some ε > 0. Another example is the absolute value of correlation coefficient,∣∣∣ cov( f ,g)
σ( f )·σ(g)

∣∣∣, whenever it exceeds a given cutoff. If f and g orthogonal, ρ ( f ,g)
would hold no information. But it is possible that f and g are strongly correlated
if restricted to part of X . A classical example is sine functions of close frequencies,
when compared on a small subset of [0,1].

Given a partition tree T on X , define the affinity ρT ( f ,g) as follows. Let
f̃T
(
X `

k

)
= 1
|X`

k |
∑x∈X`

k
f (x) denote the average of f on the folder X `

k of T . In par-

ticular ˜fT
(
XL

k

)
= f (xk). Thus f̃T : T → R is an extension of f , augmenting its

original values by its average values on all folders in all levels of T . By setting
ρT ( f ,g) = ρ

(
f̃T , g̃T

)
, we take into account the mutual behavior of f and g on all

levels of T .
Now consider a matrix M. Denote the set of columns of M by X , and the set of its

rows by Y . When M is a data set, we interpret X as observations and Y as variables,
features or sensors. Thus M : X×Y → R.

Definition 1. For each y ∈ Y , the row My(x) : x 7→M (x,y) of M is a function on X .
For a given a partition tree TX on X , define the dual affinity on Y by WTX (y1,y2) =
ρTX (My1 , My2). Similarly, for each x ∈ X , the column Mx(y) : x 7→M (x,y) of M is
a function on Y . For a given partition tree TY on Y , define the dual affinity on X by
WTY (x1,x2) = ρTY (M , Mx2).
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We thus arrive at the following procedure to refine a given affinity W on the set
X of columns of X :

Algorithm 1. 1. Integrate the affinity W as in §2.1 to obtain a partition tree TX on
X .

2. Compute the dual affinity WTX on Y as in Definition 1.
3. Integrate the affinity WTX to obtain a partition tree TY on Y .
4. Compute the refined version W̃ of W by setting W̃ to the dual affinity WTY on X .

By iterating this cycle, we obtain stable and refined affinities both on X and on Y .
Given a matrix M, the initial affinity W on X is either taken from an external source
or taken to be the affinity between the columns of M. This procedure was introduced
in [22] and applied for automatic translation using term-document matrices of the
same text in different languages.

We now consider two examples from mathematics, rather than data analysis,
which illustrate the notion of coupled geometry and the possibilities offered by an
ability to recover it.

The experiments we describe below suggest that this iterative procedure con-
verges to affinities (WX ,WY ), which capture what we informally call the coupled
geometry of the matrix M. However, we still need a quantitative way to determine
convergence, and a stopping rule for the iterations. Equally important, we must be
able to evaluate the performance of this algorithm and to compare it with other ap-
proaches to the same task. This leads to the following key questions:

1. How to quantify and measure the compatibility of the database to a proposed
coupled geometry?

2. How can a coupled geometry, which is compatible with the database, be used for
analyzing it?

These questions are answered by the theory developed in §6.

3 Example: Numerical compression of a potential operator

As a first example of finding the coupled geometry of matrix rows and columns,
consider the potential interaction between two point clouds in three dimension as in
Fig. 2 (c). Let {xi}N

i=1 ⊂ R3 and
{

y j
}N

j=1 ⊂ R3 denote the blue points (one dimen-
sional helix) and the red points (two-dimensional sheet) respectively. The Coulomb
potential operator is defined by

Mi, j =
1∥∥xi− y j
∥∥ .

Instead of the potential matrix M (Fig. 2 (a)), we are denied the spatial layout
of the point clouds and given only the potential matrix with rows and columns in
random order.
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(a) Original matrix (b) ”Scrambled” matrix
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(c) Charge layout

Fig. 2 (a) Original matrix of potential operator. (b) After permuting rows and columns. (c) The
spatial layout: the helix consists of the points {xi}600

i=1 and the flat sheet consists of the points {yi}600
i=1

In this case, after one iteration of the above procedure we recognize that there is a
one-dimensional and a two-dimensional structure involved. Fig. 3 shows a diffusion
embedding into three dimensional space (as in [6]) of graphs obtained for the ma-
trix columns, corresponding to the two-dimensional charge plate, and of the graph
obtained for the matrix rows, corresponding to the one-dimensional charge helix.

In contrast with the fast multipole method [14], which would treat the points in
three dimensions, here a point is placed in the overall geometry according to its
interactions with other points alone. This suggests a general method for organizing
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(and, as we will see in §8, for compression and fast calculations) of quite general
potential operators on unknown geometries.

(a) column set (b) row set

Fig. 3 The 3-dimensional Diffusion embedding of the ”scrambled” potential matrix (§3) row set
and column set recovers their correct intrinsic dimensionality and geometry. Symmetries of the
spatial layout are present in the potential operator and are reflected in this intrinsic geometry.

4 Example: Recovering the intrinsic geometry of Laplacian
eigenfunctions

A second, interesting example for recovering a coupled geometry using the itera-
tive procedure of §2 involves organizing a matrix whose rows are samples of some
manifold Laplacian eigenfunctions.

On a general manifold, the only a-priori relationship between Laplacian eigen-
functions is through the corresponding eigenvalues, which provide a degener-
ate one dimensional geometry on the eigenfunctions. However, it is often clear
that the set of eigenfunctions carries a much richer structure. As a canonical ex-
ample, consider the Laplacian eigenvectors on the d-dimensional torus Td . This
set is indexed by the dual group, Zd . The structure of eigenfunctions can thus
be organized using the Euclidean geometry Zd . This organization, whereby (in
d = 2, say) the eigenfunctions ϕk,m (x,y) = sin(2πkx)sin(2πmy) and ϕk,m (x,y) =
sin(2π(k +1)x)sin(2π(m+1)y) seem identical on scales much larger and much
smaller than

( 1
k , 1

m

)
is fundamental in Fourier analysis. Extending this fact, we claim

that by considering the correlation between eigenvectors on different levels of the
a multiscale decomposition of the manifold, we can define a “dual geometry“ on
eigenfunctions. This introduces a variety of questions in analysis, concerning the
relation between this dual geometry and the properties of the manifold.
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4.1 Recovering the geometry of circle eigenfunctions using
”partition-based correlation”: a calculation

Model the d-dimensional torus Td by [0,1]d . The fixed dimension d is suppressed
below. For ` > 0 , denote by K` = 2−` ·

{
0, . . . ,2`−1

}d the square mesh of res-
olution 2−` in Td . Consider the partition tree T with partition at level ` given
by X ` =

⊎
k∈K`

(
k+

[
0,2−`

)d
)

. Let ψ be a function such that ∑k∈K`
ψ
(
2`x−k

)
approximates the constant function 1 on Td for each `,

∫
ψ (x)dx = 1, ψ > 0,

∂

∂ξi
ψ̂ (0) = 0 and ∂ 2

∂ξi∂ξ j
ψ̂ (0) = Cδi, j where ψ̂ is the Fourier transform. For ex-

ample, ψ can be the indicator of [0,1)d .

Definition 2. Define the partition-based correlation (with respect to the partition
X ` and weight ψ) of functions f ,g ∈ L2

(
Td
)

by

ρ` ( f ,g) = ∑
k∈K`

∣∣∣∣∣∣
∫
Td

f (x)g(x)ψ
(

2`x−k
)

dx

∣∣∣∣∣∣ .
For eigenfunctions of Td corresponding to eigenvalues m,m′ ∈ Zd we have

ρ`

(
eim·x,eim′·x

)
= ∑

k∈K`

∣∣∣∣∣∣
∫
Td

ei(m−m′)·xψ

(
2`x−k

)
dx

∣∣∣∣∣∣=
= ∑

k∈K`

2−`d
∣∣∣∣ψ̂(m−m′

2`

)∣∣∣∣= ∣∣∣∣ψ̂(m−m′

2`

)∣∣∣∣ .
To see that this recovers the Euclidean affinity of Zd , recall the an affinity needs

hold only for neighbors. Indeed, to second order in 2−` ‖m−m′‖, this gives

ρ`

(
eim·x,eim′·x

)
≈
∣∣∣∣1− C

2
·2−2` ·

∥∥m−m′
∥∥2
∣∣∣∣

so that
22`
(

1−ρ`

(
eim·x,eim′·x

))
∝
∥∥m−m′

∥∥2
.

To improve the approximation, we can define ρ ( f ,g) = ∑`>1 2−`ρ` ( f ,g), so that

ρ

(
eim·x,eim′·x

)
= ∑

`>1
2−`

ρ`

(
eim·x,eim′·x

)
≈
∣∣∣1− const ·

∥∥m−m′
∥∥2
∣∣∣ .

For example, taking d = 1 and ψ = 1[0,1) we get

ρ`

(
eimx,eim′x

)
=
∣∣∣sinc

(
(m−m′)2−(`+1)

)∣∣∣≈ ∣∣∣∣1− 1
6

(
(m−m′)2−(`+1)

)2
∣∣∣∣ .
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4.2 Recovering the geometry of circle eigenfunctions using
”partition-based correlation”: a computation

Given the above, it is tempting to ask whether one can use partition-based corre-
lation, or similar function affinity notions that are based on a partition tree, to re-
cover useful geometries on sets of manifolds and graphs eigenfunctions. However, it
seems that there are very few cases where this question can be tackled analytically.
The following simple experiment suggests that the iterative procedure of §2 enables
one to study this question empirically.

In an experiment, summarized in Figure 4 below, we recover the dual geometry
of the eigenfunctions of the circle T1. Let x1, . . . ,xN be equally spaced points in
[0,1] and consider the 2m by N matrix

Mi, j =

{
sin(2πk) k = 1 . . .m
cos(2πk) k = m+1 . . .2m

The rows of M are orthogonal. However, eigenfunctions of similar frequencies
behave similarly on folders of scale comparable to their frequency. The iterative
procedure is designed to detect precisely this kind of similarity. By augmenting the
values of each eigenfunctions by its values on folders of all scales and taking corre-
lations along these augmented functions, we calculate a version of the correlation-
based affinity and indeed recover the Euclidean affinity between the frequencies. To
emphasize the organizational power of this procedure, we apply random permuta-
tions to the rows and columns of M before invoking the iterative procedure.

In a work in progress, we are applying the same procedure to investigate dual
geometries of eigenfunctions in situations where an analytical approach is unknown,
such the connected sum of two tori in R3.

5 Tensor Haar-like bases

We now proceed to answer the two questions that were stated at the end of §2.
The main tool to evaluate the compatibility of a coupled geometry to a given data
matrix, and later to process a data matrix, tensor Haar-like bases. A Haar-like bases
is a multiscale, localized orthonormal bases induced by a partition tree. These bases
were introduced in [12, 13]. An application to semi-supervised learning is included
in [12]. A similar construction with applications to pattern detection in networks
appears in [18].

As with any hierarchical partition construction on an abstract space, this section
is inevitably heavy with notation. In §6.5 we discuss the familiar Euclidean case
using more or less the same notation.
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Fig. 4 Recovering the eigenfunction organization of T1: an experiment for a sines-cosines ma-
trix on N = 512 points and frequencies 1 . . .m = 100 (see §4.2). Top left: the original matrix
Mi, j . Top right: the matrix after a random permutation of the rows and a random permuta-
tion of the columns. Middle left: the partition tree on the points {xi} generated by the itera-
tive procedure. Points in the same folder in the middle level have close x values. For exam-
ple, points in the folder marked by a circle contain all the points in [0.42,0.49]. Middle right:
the partition tree on the functions generated by the iterative procedure. Functions in the same
folder have similar frequencies. For example, the functions in the folder marked by a circle are
sin(2π ·81) , sin(2π ·82) , cos(2π ·80) , cos(2π ·81). Bottom left: A Diffusion Embedding visu-
alization in 3-d space of the of the affinity graph on the points {xi}, generated by the iterative
procedure. The same points folder as in the middle left panel is highlighted. The curve recovers the
geometry of the points {xi} along the circle R\Z exactly as points along the curve have increasing
x value modulo 1. (The color code represents a partition in one of the tree levels.) Bottom right:
A Diffusion Embedding [6] visualization in 3-d space of the of the affinity graph on the functions,
generated by the iterative procedure. The same points folder as in the middle right panel is high-
lighted. The curve recovers the geometry of the functions exactly as functions along the curve have
increasing frequency. (The color code represents a partition in one of the tree levels.)

5.1 Haar-like bases

Definition 3. Let T be a partition tree (recall §2.1) with levels X 1, . . .X L on a set
X . We say that T is

(
B,B

)
-balanced, or

(
B,B

)
-regular, if
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B 6

∣∣∣X `+1
j

∣∣∣∣∣X `
k

∣∣ 6 B (4)

for any j ∈ sub f olders(`,k) (recall Eq. 3).

There is a discrete analog of multi-resolution analysis associated with a partition
tree. Let V =

{
f
∣∣ f : X → R

}
. Each partition X ` induces a subspace V ` ⊂ V by

V ` = SpanR

{
1X`

1
, . . . ,1X`

n(`)

}
. As V ` ⊂ V `+1, we write W ` (1 6 ` < L ) for the

orthogonal complement of V ` in V `+1. Clearly V L =
[⊕L−1

`=1 W `
]⊕

V 1 .

Definition 4. 1. A Haar-like basis Ψ ` for W ` is an orthonormal basis of the form

Ψ
` =

n(`)⋃
k=1

[{
ψ`,k, j

}#sub f olders(`,k)−1
j=1

]
where for each 1 6 k 6 n(`), the function ψ`,k, j is supported on the folder X `

k .
2. A Haar-like basisΨ for V is a union of Haar-like bases for each W `, 1 6 ` 6 L−1,

together with the normalized constant function on X , ψ0 ≡ 1√
N

. Namely,

Ψ = {ψ0}∪
L−1⋃
`=1

B` = {ψ0}∪
L−1⋃
`=1

n(`)⋃
k=1

[{
ψ`,k, j

}#sub f olders(`,k)−1
j=1

]
.

Fig. 5 illustrates a Haar-like basis induced by a partition tree on a small set.
Remarks:

1. Each basis function ψ`,k, j is associated with its support folder X `
k in the par-

tition X `. The number of basis functions associated to the same folder X `
k is

#sub f olders(`,k)−1.
2. These functions resemble the classical Haar functions in the following sense:

• Since W ` ⊂V `+1, each ψ`,k, j is piecewise constant on the folders of X `+1.
• Since ψ`,k, j is supported on the folder X `

k , it is nonzero only on these folders of
X `+1 that are subfolders of X `

k . In other words, ψ`,k, j is a linear combination

of
{

1X`+1
i

}
i∈sub f olders(`,k)

.

• Since W ` ⊥ V `, we have
〈

ψ`,k, j , 1X`
k

〉
= 0, so that ψ`,k, j is orthogonal to the

constant function on X `
k .

5.2 Tensor product of Haar-like bases

Now suppose that for each α = 1 . . .d, X [α] is a set and that T [α] is a partition tree
on it with levels X [α]` =

{
X [α]`k

}n[α](`)
k=1 for ` = 1 . . .L[α]. Consider the product
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Fig. 5 An illustration of a Haar-like basis on a set of 9 points.

X = X [1]× . . .×X [d] with the normalized counting measure |·|. If #X [α]`k is the
cardinality of X [α]`k, then∣∣∣∣∣ d

∏
α=1

X [α]`(α)
k(α)

∣∣∣∣∣=
(

d

∏
α=1

#X [α]

)−1

·
d

∏
α=1

#X [α]`(α)
k(α) .

Definition 5. 1. Denote by

R =

{
d

∏
α=1

X [α]`(α)
k(α)

∣∣1 6 `(α) 6 L[α] and 1 6 k(α) 6 n[α](`)

}
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the set of all “rectangles”, namely all products of folders of the partition trees
T [1] . . .T [d].

2. Write x = (x1, . . . ,xd) for an element of the product space X = ∏
d
α=1 X [α].

3. If Ψ [α] =
{

ψ[α]`,k, j
}

is a Haar-like basis induced by the partition tree T [α] for
α = 1 . . .d, then

Ψ =

{
x 7→

d

∏
α=1

ψ[α]`,k, j (xα)
∣∣ψ[α]`,k, j ∈Ψ [α]

}

is the corresponding tensor Haar-like basis. Clearly it is an orthonormal basis for
{ f : X → R}.

4. Recall that each basis function ψ[α]`,k, j ∈Ψ [α] is associated with is support
folder X [α]`k. We can thus write R(ψ) ∈R for the support rectangle of a tensor
basis function ψ ∈Ψ .

5. It will be convenient to enumerate the elements of Ψ by Ψ =
{

x 7→ ψq(x)
}N

q=1,

where N = ∏
d
α=1 #X [α].

6. Assume that for each α the tree T [α] is
(
B[α],B[α]

)
- balanced (in the sense of

Definition 3). Define τ (Ψ) =
(
∏

d
α=1 B[α]

)−1
.

To stress the fact that for a data matrix, computing a tensor Haar-like basis func-
tion coefficient involves a non-trivial average of parts of the matrix, Fig. 6 shows
an example from the Science News dataset discussed in §7. Top, a tensor Haar-
like function in color map drawn using the original organization of the data matrix.
Bottom, the same function after reordering the rows and columns according to a
in-order traversal of the partition trees, which is the ordering used to construct the
basis functions.

We conclude this section with an estimate of
∫

X ψ for use in the approximation
theorem below. Recall that the absolute value of a classical Haar function is con-
stant. This gives ‖ψ‖2

∞ · |R(ψ)|= 1 and hence∫
X

|ψ|p =
∫
X

|R(ψ)|−
p
2 = |R(ψ)|1−

p
2

for a classical Haar function ψ . This result extends to our setting using the “balance”
constant τ (Ψ) above.

Lemma 1. Let Ψ be a tensor Haar-like basis. Using the notation of Definition 5, for
any ψ ∈Ψ and any 0 < p < 2 we have∫

X

|ψ|p ≤ τ (Ψ)
p
2 |R(ψ)|1−

p
2

Proof. We first show that

max
ψ∈Ψ

{‖ψ‖2
∞ · |R(ψ)|} ≤ τ(Ψ) . (5)
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Fig. 6 An example of a tensor Haar-like function on the Science News data matrix. Top: In the
original rows and columns order of the matrix. Bottom: After sorting rows and columns according
to the trees which yielded this tensor Haar-like function. In the original order of the rows and
columns, namely the order in which the data matrix is observed, an inner product with this basis
function is a highly nontrivial averaging operation.

It is enough to show that for each 1≤ α ≤ d,

max
ψ[α]∈Ψ [α]

{‖ψ[α]‖2
∞ · |R(ψ[α])|} ≤ B[α].

Indeed, let ψ[α] = ψ[α]`,k, j be associated with the folder X [α]`k. As in (3), we
have X [α]`k =

⊎
j∈sub f olders[α](`,k) X [α]`+1

j . By definition, ψ[α] is constant on each

set X [α]`+1
j , with value we denote by ψ[α]

(
X [α]`+1

j

)
. Let

j∗ = argmax j∈sub f olders[α](`,k)

∣∣∣ψ[α]`,k, j

(
X [α]`+1

j

)∣∣∣ ,
so that ‖ψ[α]‖

∞
= ψ[α]

(
X [α]`+1

j∗

)
. Since
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1 =
∫
X

|ψ[α]`,k, j|2 = ∑
j∈sub f olders[α](`,k)

(
ψ[α]

(
X [α]`+1

j

))2 ∣∣∣X [α]`+1
j

∣∣∣
we have by (4)

‖ψ[α]‖2
∞

= ψ[α]
(

X [α]`+1
j∗

)2
6

1∣∣∣X [α]`+1
j∗

∣∣∣ 6
1

B[α] ·
∣∣X [α]`k

∣∣ .
Multiplying over α = 1 . . .d yields 5.
The lemma now follows as∫

X

|ψ|p 6
(
‖ψ‖2

∞

) p
2 · |R(ψ)|6

(
τ (Ψ)
|R(ψ)|

) p
2
|R(ψ)|= τ (Ψ)

p
2 |R(ψ)|1−

p
2

ut

6 Bounded `p-entropy implies function approximation and
decomposition

...this is the first indication that a powerful theory for high dimensions exists. - J. O.
Strömberg [20]

6.1 Problem statement: Approximating a function on a product
space by a few terms in its tensor Haar expansion

Let X be a product space and Ψ a tensor Haar-like basis as in §5.2. We are interested
in conditions on a function f : X→R that will allow approximating in using a small
number terms in its tensor Haar expansion, ∑

N
i=1 〈 f ,ψi〉ψi.

In [20], J. O. Strömberg, addressing the continuous version of this question, ob-
served it is very useful to sort the tensor Haar functions according to |R|, the volume
of their support. He proved that if f ∈ L1

(
[0,1]d

)
has bounded mixed derivatives,

then

sup
x∈[0,1]d

∣∣∣∣∣ f (x)− ∑
R∈R s.t |R|>ε

〈 f ,ψR〉ψR(x)

∣∣∣∣∣< const · ε · logd−1
(

1
ε

)
,

where ψR is the unique classical tensor Haar basis function supported on the dyadic
rectangle R (see §6.5 below for the details of the continuous Euclidean version).
However, the mixed derivative condition has certain disadvantages as a measure of
function regularity: (1) It is not invariant to rotations and other simple coordinate
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changes, and (2) it does not generalize to general datasets. We are interested in
weaker conditions, which would lead to data analysis algorithms.

We now show that one such condition is that the quantity ∑
N
i=1 |〈 f ,ψi〉|p (for

some 0 < p < 2), which we call the “`p entropy of the tensor Haar coefficients”, is
small. This condition is easy to check and appears to be much better adapted to our
setting than the mixed derivative condition.

6.2 An approximation theorem

All the integrals on X are with respect to the normalized counting measure |·|.

Theorem 1. Fix 0 < p < 2 and f : X → R.

ep( f ) =
N

∑
i=1
|〈 f ,ψi〉|p .

Let ε > 0 and denote by A f an approximation of f obtained by retaining only co-
efficients of tensor Haar functions, which are (i) large, and (ii) correspond to basis
functions supported on large folders:

Aε f = ∑

16i6N s.t |〈 f ,ψi〉|>ε
1
p

and |R(ψi)|>ε

〈 f ,ψi〉ψi(x) .

Then -

1. The number of coefficients retained in Aε f does not exceed ε−1ep( f ). In partic-
ular, it depends on the dimension d only through ep( f ).

2. Approximation in the mean when 0 < p 6 1: if ep( f ) 6 1 then∫
X

|Aε f − f |p
 1

p

6
(

τ (Ψ)
p
2 +1

) 1
p · ε

(
1
p−

1
2

)
. (6)

3. Approximation in Lp when 1 6 p < 2:∫
X

|Aε f − f |p
 1

p

6
(

τ (Ψ)
1
p−

1
2 +1

)
· ε
(

1
p−

1
2

)
· (ep( f ))

1
p , (7)

where (ep( f ))
1
p is the `p norm of the coefficient vector {〈 f ,ψi〉}N

i=1 .
4. Uniform pointwise approximation on a set of large measure: For any λ > 0 and

1 6 p < 2 we have
|Aε f (x)− f (x)|< λ · ε

1
p−

1
2
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for any x outside an exceptional set Eλ with

|Eλ |6
1

λ p

(
τ (Ψ)

1
p−

1
2 +1

)p
· ep( f ) .

Proof. For part (1), the number of coefficients, we have

#
{

1 6 i 6 N
∣∣ |〈 f ,ψi〉|> ε

1
p

}
· ε 6 ∑

16i6N s.t |〈 f ,ψi〉|>ε
1
p

|〈 f ,ψi〉|p 6 ep ( f )

and hence
#
{

1 6 i 6 N
∣∣ |〈 f ,ψi〉|> ε

}
6 ε

−1 · ep ( f ) .

The rest of our proof relies on the following key inequalities.
First key inequality: For 0 < p < 2 we have∫

X

∣∣∣ ∑

16i6N s.t |〈 f ,ψi〉|6ε
1
p

and |R(ψi)|>ε

〈 f ,ψi〉ψi

∣∣∣p 6 ε
1− p

2 · (ep( f ))
p
2 (8)

Second key inequality: for 0 < p 6 1 we have∫
X

∣∣∣ ∑
16i6N s.t |R(ψi)|6ε

〈 f ,ψi〉ψi

∣∣∣p 6 τ (Ψ)
p
2 · ε1− p

2 · ep( f ) (9)

Third key inequality (3): for 1 6 p < 2 we have∫
X

∣∣∣ ∑
16i6N s.t |R(ψi)|6ε

〈 f ,ψi〉ψi

∣∣∣p 6 (τ (Ψ) · ε)1− p
2 · ep( f ) (10)

Let us first deduce the theorem from these inequalities.
For part (2), approximation in the mean, assume 0 < p 6 1. Recall that |x+ y|p 6

|x|p + |y|p. We have
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X

|Aε f − f |p =
∫
X

∣∣∣ f − ∑

16i6N s.t |〈 f ,ψi〉|>ε
1
p

and |R(ψi)|>ε

〈 f ,ψi〉ψi

∣∣∣p =

=
∫
X

∣∣∣ ∑

16i6N s.t |〈 f ,ψi〉|6ε
1
p

or |R(ψi)|6ε

〈 f ,ψi〉ψi

∣∣∣p =

=
∫
X

∣∣∣ ∑
16i6N s.t |R(ψi)|6ε

〈 f ,ψi〉ψi + ∑

16i6N s.t |〈 f ,ψi〉|6ε
1
p

and |R(ψi)|>ε

〈 f ,ψi〉ψi

∣∣∣p 6

6
∫
X

∣∣∣ ∑
16i6N s.t |R(ψi)|6ε

〈 f ,ψi〉ψi

∣∣∣p +
∫
X

∣∣∣ ∑

16i6N s.t |〈 f ,ψi〉|6ε
1
p

and |R(ψi)|>ε

〈 f ,ψi〉ψi

∣∣∣p .

As ep( f ) 6 1, it now follows from (9) and (8) that

∫
X

|Aε f − f |p 6 τ (Ψ)
p
2 · ε1− p

2 ∑
16i6N s.t

|R(ψi)|6ε

|〈 f ,ψi〉|p + ε
1− p

2

 ∑
16i6N s.t

|R(ψi)|>ε

|〈 f ,ψi〉|p



p
2

6

6
(

τ (Ψ)
p
2 +1

)
· ε(1− p

2 )

which is equivalent to (6).
Turning to part (3), approximation in Lp, assume 1 6 p < 2 and let f : X → R

such that ep( f ) 6 1. Consider the function space Lp = Lp (X) (w.r.t the normalized
product counting measure |·|) and let `p denote the sequence space RN with the

norm ‖(a1 . . .aN)‖`p
=
(
∑

N
i=1 |ai|p

) 1
p . Denote by ‖ f‖Lp

= (
∫

X | f |
p)

1
p the norm of

Lp (X). Then by the inequalities (8) and (10),

‖Aε f − f‖Lp
6

∥∥∥∥∥∥∥ ∑
16i6N s.t |R(ψi)|6ε

〈 f ,ψi〉ψi

∥∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥∥∥∥∥∥
∑

16i6N s.t |〈 f ,ψi〉|6ε
1
p

and |R(ψi)|>ε

〈 f ,ψi〉ψi

∥∥∥∥∥∥∥∥∥∥∥
Lp

6 (τ (Ψ) · ε)
1
p−

1
2 + ε

1
p−

1
2 .
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It follows that the norm of linear operator `p→Lp defined by
(
〈 f ,ψ1〉 , . . .〈 f ,ψN〉

)
7→

(Aε f − f ) is bounded by (τ (Ψ)+1)
1
p−

1
2 · ε

1
p−

1
2 , as required. Finally, for part (4),

uniform pointwise approximation on a set of large measure, let λ > 0 and 0 < p < 2.
Define

Eλ ,p =
{

x ∈ X
∣∣∣ |Aε f (x)− f (x)|> λε

1
p−

1
2
}

.

By Markov’s inequality and part (3) above we have

∣∣Eλ ,p
∣∣ 6

∫
X |Aε f − f |p

λ p · ε1− p
2

6

6
1

λ p

(
τ (Ψ)

1
p−

1
2 +1

)p
· ep( f ) .

To complete the proof, we turn to the three key inequalities (8), (9) and (10).
To see the first key inequality (8), by Parseval’s identity we have∫

X

∣∣∣ ∑

16i6N s.t |〈 f ,ψi〉|6ε
1
p

and |R(ψi)|>ε

〈 f ,ψi〉ψi

∣∣∣2 = ∑

16i6N s.t |〈 f ,ψi〉|6ε
1
p

and |R(ψi)|>ε

|〈 f ,ψi〉|2 6

=
(

ε
1
p−

1
2
)2
· ∑

16i6N s.t |〈 f ,ψi〉|6ε
1
p

and |R(ψi)|>ε

|〈 f ,ψi〉|p 6

6
(

ε
1
p−

1
2
)2
· ∑

16i6N s.t |R(ψi)|>ε

|〈 f ,ψi〉|p .

Now, Hölder’s inequality implies that (
∫

X |g|
p)

1
p 6

(∫
X |g|

2
) 1

2
, and (8) follows.

To see the second key inequality (9), assume that 0 < p 6 1. Since |x+ y|p 6
|x|p + |y|p, by Lemma 1 we have∫
X

∣∣∣ ∑
16i6N s.t |R(ψi)|6ε

〈 f ,ψi〉ψi

∣∣∣p 6 ∑
16i6N s.t |R(ψi)|6ε

|〈 f ,ψi〉|p
∫
X

|ψi|p 6

6 τ (Ψ)
p
2 · ∑

16i6N s.t |R(ψi)|6ε

|〈 f ,ψi〉|p |R(ψi)|1−
p
2 6

6 τ (Ψ)
p
2 · ε1− p

2 · ∑
16i6N s.t |R(ψi)|6ε

|〈 f ,ψi〉|p (11)

which is (9). Finally, to see the third key inequality (10), let 1 6 p < 2. Consider
the function space Lp = Lp (X) and the sequence space `p as in the proof of part (3)
above. For a sequence a = (a1 . . .aN), define
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T (a) = ∑
16i6N s.t |R(ψi)|6ε

aiψi .

For 0 < p 6 2, let ‖T‖p,p denote the operator norm of the linear operator T : `p→ Lp.

Clearly ‖T‖2,2 6 1. By the inequality (9), we have ‖T‖1,1 6 (τ (Ψ) · ε)
1
2 . We now

appeal to the Riesz-Thorin Interpolation Theorem (see e.g. [19] pp. 179, theorem
1.3), whereby for any 1 6 p < 2,

‖T‖p,p 6 (τ (Ψ) · ε)
1
2 (1−t) ,

whenever 0 6 t 6 1 satisfies 1
p = 1− t + t

2 , or equivalently 1− t = 2
p −1. It follows

that ‖T‖p,p 6 (τ (Ψ) · ε)
1
p−

1
2 . Let 1 6 p < 2. We have

∫
X

∣∣∣ ∑
16i6N s.t |R(ψi)|6ε

〈 f ,ψi〉ψi

∣∣∣p


1
p

=
∥∥∥T
(
〈 f ,ψ1〉 , . . .〈 f ,ψN〉

)∥∥∥
Lp

6

6 ‖T‖p,p

∥∥(〈 f ,ψ1〉 , . . .〈 f ,ψN〉
)∥∥

`p
=

= (τ (Ψ) · ε)
1
p−

1
2 · (ep( f ))

1
p .

which is equivalent to (10).
ut

In order to find the coefficients retained in the approximation above computa-
tionally, namely to locate i ∈ {1 . . .N} such that |〈 f ,ψi〉| > ε

1
p and R(ψi) > ε , we

must check the size of coefficients 〈 f ,ψi〉 such that R(ψi) > ε . In order to bound
the number of coefficients whose size must be examined, we now show that

#
{

1 6 i 6 N
∣∣R(ψi) |> ε

}
6 (β −1)d

β
2 ·
(

1
ε

)
·
(

logβ

(
1
ε

)
+1
)d−1

where T [i] is
(
B [i] ,B [i]

)
-balanced as in (4), and β = max16i6d

{
1

B[i]

}
. Indeed,

by (4), for any
(
B,B

)
partition tree, n(`) (the number of folders in level `) satisfies

n(`) 6
(

1
B

)`−1
. Denote by

(
B [i] ,B [i]

)
the parameters for the partition tree T [i]

and let β = max16i6d

{
1

B[i]

}
. If β−L 6 ε < β−L+1, then

#
{

R ∈R s.t |R|> β−L } = ∑ (r1,...,rd)∈Nd

β−∑ri >β−L

β ∑ri = ∑
(r1,...,rd)∈Nd

r1+...+rd6L

β ∑ri .
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Let us show by induction that ∑ (r1,...,rd)∈Nd

r1+...+rd6L

β ∑ri 6 β L+1Ld−1 . Indeed, for d = 1

we have ∑
L
r=0 β r = β L+1−1 . Assuming this for d, we have

∑
(r1,...,rd+1)∈Nd+1

r1+...+rd+16L

β
(r1+...+rd+1) =

L

∑
rd+1=0

β
rd+1 ∑

(r1,...,rd)∈Nd

r1+...+rd6L−rd+1

β
(r1+...+rd) 6

6
L

∑
rd+1=0

β
rd+1

(
β

L−rd+1+1 · (L− rd+1)
d−1
)

=

= β
L+1

L−1

∑
k=0

kd−1 6 β
L+1L ·Ld−1 .

Therefore, #
{

R ∈R s.t |R|> ε
}

6 β · β L · Ld−1 6 β 2 ·
( 1

ε

)
·
(

logβ

( 1
ε

)
+1
)d−1

.

Since up to (β −1)d can be associated with any rectangle R ∈R, we finally obtain
that

#
{

1 6 i 6 N
∣∣R(ψi) |> ε

}
6 (β −1)d

β
2 ·
(

1
ε

)
·
(

logβ

(
1
ε

)
+1
)d−1

.

A tighter bound can be obtained by considering each B [i] separately instead of using
the uniform bound β .

6.3 `1-entropy interpreted as smoothness

Consider a data matrix and suppose we have constructed a two coupled graphs, one
on the rows and one of the columns. Did we do a good job? Theorem 1 implies that
the `p entropy of the matrix in the tensor Haar-like basis, induced by two partition
trees describing the two geometries, provides a way to quantify the usefulness of
the coupled geometry at hand. In general, we would like to be able to say that a
function is adapted to a given geometry if the function is smooth and simple in this
geometry. Instead of smoothness in the Euclidean sense of differentiability, in our
general setting it becomes natural to quantify smoothness using a Haar-like basis
in terms of pointwise exponential decay of coefficients (see [12] for a theorem of
this kind), while simplicity means a small number of non-negligible tensor Haar-
like coefficients, which is, in some cases, intimately related to small `1-entropy. The
above inequalities for Haar-like bases relate function smoothness in the geometry,
as it is captured by the basis, to sparsity of the Haar expansion. The unique feature of
the tensor Haar-like basis is that only coefficients of Haar functions ψi with support
volume |R(ψi)| > ε are required, eliminating the need to consider coefficients that
correspond to basis functions with small support.
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In particular, we find an answer to Question 1 from §2.2.

6.4 A Decomposition theorem

The relationship between coefficient decay and smoothness is well-known in har-
monic analysis. In [12, 13] it is shown that, for Haar-like bases, coefficient decay is
equivalent to Hölder property, just as in the classical case. We now extend this fact to
tensor Haar-like bases and deduce a decomposition theorem of Calderón-Zygmund
type.

For a set X [i] with a partition tree T [i], we define a metric on X [i] by

ρ(x,y) =

{
| f older(x,y)| x 6= y
0 x = y

(12)

where f older(x,y) is the smallest folder in any level of T [i] containing both x and
y.

Claim. Let f : X [i]→R and p > 0. Let Ψ be a Haar-like basis corresponding to the
partition tree T [i]. Consider the conditions:

1. There is a constant C such that for any ψ ∈Ψ associated with the folder X `
k ,

|〈 f , ψ〉|6 C ·
∣∣∣X `

k

∣∣∣p+1/2
.

2. f is p-Hölder with constant C in the metric ρ . That is, | f (x)− f (y)|6C ·ρ(x,y)p

for all x,y ∈ X .

Then (1) with constant C =⇒(2) with constant γC, and (2) with constant C =⇒(1)
with constant δC. The numbers γ and δ depend on p and the partition tree T alone.

See [13] for the proof.
In our setting of a product space, a similar phenomenon occurs. We discuss the

case of matrices, where d = 2.

Theorem 2. X = X [1]×X [2]. Suppose that T [i] is a partition tree on X [i] and Ψi
is an induced Haar-like basis, i = 1,2. Let Ψ be the tensor Haar-like basis. Let
f : X → R and p > 0. Consider the following conditions:

1. There is a constant C such that for any ψ ∈Ψ associated with the rectangle
R(ψ),

|〈 f , ψ〉|6 C · |R(ψ)|p+1/2 .

2. f is p– bi-Hölder with constant C in the metric ρ , in the sense that∣∣ f (x,y)− f (x′,y)− f (x,y′)+ f (x′,y′)
∣∣6 C ·ρ[1](x,x′)p

ρ[2](y,y′)p
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for some constant C, all x,x′ ∈ X [1] and all y,y′ ∈ X [2]. Here, ρ[i] is the metric
induced by T [i] on X [i], as in (12), for i = 1,2.

Then (1) with constant C =⇒(2) with constant γC, and (2) with constant C =⇒(1)
with constant δC, where the numbers γ, δ depends on p and on the partition trees
T [1] and T [2] alone.

Proof. =⇒ Assume (1) holds with constant C. Choose x,x′ ∈ X [1] and y,y′ ∈ X [2].
Write the tensor Haar-like function explicitly as products: Ψ =

{
ψi(x)ϕ j(y)

}
i, j for

1 6 i 6 m and 1 6 j 6 n. Then

f (x,y) = ∑
i, j

〈
f ,ψiϕ j

〉
ψi(x)ϕ j(y) = ∑

i
ai(y)ψi(x) ,

where ai(y) = ∑ j
〈

f ,ψiϕ j
〉

ϕ j(y). Since
∣∣〈 f ,ψiϕ j

〉∣∣6 C · |R(ψi)|p+1/2
∣∣R(ϕ j)

∣∣p+1/2,
where R(ϕ j) is the folder in T [2] associated with ϕ j, by Theorem 2 above for X [2],
we have ∣∣ai(y)−ai(y′)

∣∣6 γ2 ·C · |R(ψi)|p+1/2 ·ρ[2]
(
y,y′
)p

,

where γ2 depends on p and T [2] alone. Now, define g(x) = f (x,y)− f (x,y′) =
∑i [ai(y)−ai(y′)]ψi(x). Again by Theorem 2, this time for X [1],∣∣g(x)−g(x′)

∣∣6 γ1 · γ2 ·C ·ρ[1]
(
x,x′
)p ·ρ[2]

(
y,y′
)p

.

⇐=Assume (2) holds with constant C. As
∫

X1
ψi(x) = 0 and similarly for X2, we

have for any ψ = ψi(x)ϕ j(y) and any (x′,y′) ∈ R(ψ) that〈
f ,ψiϕ j

〉
=
∫
X

f (x,y)ψi(x)ϕ j(y)dxdy

=
∫
X

[
f (x,y)− f (x′,y)− f (x,y′)+ f (x′,y′)

]
ψi(x)ϕ j(y)dxdy ,

hence ∣∣〈 f ,ψiϕ j
〉∣∣6 C ·ρ[1](x,x′)p

ρ[2](y,y′)p ·
∫
X

∣∣ψi(x)ϕ j(y)
∣∣dxdy .

But by the definition of ρ[1], we have ρ[1](x,x′) 6 R(ψi) and similarly, ρ[2](y,y′) 6

R(ϕ j). Finally, by Lemma (1), we have
∫

X

∣∣ψi(x)ϕ j(y)
∣∣dxdy 6

√
τ (Ψ) |R(ψi)|

1
2
∣∣R(ϕ j)

∣∣ 1
2 .

In summary, ∣∣〈 f ,ψiϕ j
〉∣∣6√τ (Ψ) ·C · |R(ψ)|p+ 1

2 .

ut

We can decompose a given function on X to a regular part and a part with small
support, à la Calderón-Zygmund. In the context of a data matrix or tensor, this would
mean that if we can describe f efficiently using a tensor Haar-like basis, then it
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decomposes into a “typical” matrix, which is regular with respect to the coupled
geometry we constructed, and an “outlier” matrix or potentially irregular behavior
but with small support.

Theorem 3. Let f : X → R and 0 < p < 2. There is a decreasing sequence of sets
E` ⊂ X where |E`| <

ep( f )
2` for any `, and a decomposition f = g` + b`, such that

x 7→ g`(x) (the “good” function) is 1
p −

1
2 - Hölder with constant 2

`
p and x 7→ b`(x)

(the “bad” function) is supported on E`. The functions g` and b`, as well as the set
E`, all have explicit form.

Proof. Define

Sp(x) =
N

∑
i=1
|〈 f ,ψi〉|p

χR(ψi)(x)
|R(ψi)|

where χR(ψi)(x) is the indicator function of R(ψi). (This is an analog of the
Littlewood-Paley function). A Fubini argument gives

∫
X

Sp(x)dx =
N

∑
i=1
|〈 f ,ψi〉|p = ep( f ) .

As in the proof of Theorem 1, define an “exceptional set”

E`,p =
{

x ∈ X
∣∣∣Sp(x) > 2`

}
.

Clearly E`+1,p ⊂ E`,p. Markov’s inequality gives

∣∣E`,p
∣∣6 ep( f )

2`
.

Now decompose the set of all rectangles R as follows. Define

R` =
{

R ∈R
∣∣R⊆ E`,p and R * E`+1,p

}
and observe that R =

⊎
`∈Z R`. We can thus decompose f = ∑`∈Z f`, where

f` = ∑
16i6N with R(ψi)∈R`

〈 f ,ψi〉ψi .

Fix ` ∈ Z and R ∈ R`. By the definition of R`, there exists x ∈ R with x ∈ E`,p \
E`+1,p. For this x we have

N

∑
i=1
|〈 f ,ψi〉|p

χR(ψi)(x)
|R(ψi)|

= Sp(x) 6 2`+1 .

Choose 1 6 i 6 N with R(ψi) = R. As χR(ψi)(x) = 1, we get
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|〈 f ,ψi〉|p

|R(ψi)|
6 Sp(x) 6 2`+1 ,

namely |〈 f ,ψi〉| 6 2
`+1

p |R(ψi)|
1
p . Define g` = ∑

`−1
k=1 fk and b` = ∑k>` fk. By Theo-

rem 2, g` is as required. Clearly b` is supported on E`,p. ut

We note that the above is not an existence result, but rather an explicit formula for
decomposing a given function.

6.5 The Euclidean analog

We briefly translate the above general, discrete results to the Euclidean case of
f ∈ L1

(
[0,1]d

)
and the tensor product of classical Haar bases. This yields an ap-

proximation theorem in high dimensional Euclidean spaces.
Consider the unit interval [0,1] ⊂ R and the classical Haar basis in [0,1]. Each

Haar functions corresponds to its support, a dyadic interval. We index the basis func-
tions by {ψI}I∈I where I =

{
[n2−k,(n+1)2−k]

}
n,k. Consider the unit cube [0,1]d

in Rd . The tensor Haar basis on [0,1]d , namely
{

ψI1 ⊗ . . .⊗ψId

}
Ii∈I

, is an or-
thonormal basis for L2

(
[0,1]d

)
. Let R denote the set of dyadic rectangles on [0,1]d ,

R =
{

I1× . . .× Id

∣∣∣ Ii ∈I
}

. As each function in the tensor Haar basis corresponds
to its support, a dyadic rectangle, we index the tensor Haar basis by{ψR}R∈R , where
for a dyadic rectangle R = I1× . . .× Id , we have ψR = ψI1 ⊗ . . .⊗ψId . Write |R| for
the d-dimensional Lebesgue measure of R.

The proof of Theorem 1 can be used verbatim to prove its Euclidean version:

Theorem 4. For f ∈ L1
(
[0,1]d

)
and 0 < p < 2, write

ep( f ) = ∑
R∈R
|〈 f ,ψR〉|p .

Let ε > 0 and denote by A f an approximation of f obtained by retaining only large
coefficients of tensor Haar functions supported on large folders:

Aε f = ∑

R∈R s.t |〈 f ,ψR〉|>ε
1
p

and |R|>ε

〈 f ,ψR〉ψR(x) .

Then -

1. The number of coefficients retained in Aε f does not exceed ε−1ep( f ).
2. Approximation in the mean when 0 < p 6 1: if ep( f ) 6 1 then
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[0,1]d

|Aε f − f |p


1
p

6 2
1
p · ε

(
1
p−

1
2

)
. (13)

3. Approximation in Lp when 1 6 p < 2: ∫
[0,1]d

|Aε f − f |p


1
p

6 2 · ε
(

1
p−

1
2

)
· (ep( f ))

1
p . (14)

4. Uniform pointwise approximation on a set of large measure: For any λ > 0 and
1 6 p < 2 we have

|Aε f (x)− f (x)|< λ · ε
1
p−

1
2

for any x outside an exceptional set Eλ with

|Eλ |6
2p

λ p ep( f ) .

5. We only need to evaluate the size of

#
{

R ∈R
∣∣ |R|> ε

}
6 4 ·

(
1
ε

)
·
(

log
(

1
ε

)
+1
)d−1

coefficients.

We remark that the class of functions, for which the Haar expansion has finite
entropy has been characterized by [8] 1 .

The relation between smoothness and tensor Haar coefficient size of Theorem
2 is well known in the Euclidean case. Theorem 3 extends to the Euclidean case
without change in its statement and proof.

1 It is shown there that this class is independent of the wavelet used, and is equivalent to having
a Harmonic extension whose derivative is integrable in the disk (or bi-disk). They also charac-
terize the dual spaces as Bloch spaces, which in our case are just functions with bounded Haar
coefficients. Observe further that

f = ∑
R
|R|

1
2 〈 f ,ψR〉 |R|−

1
2 ψR(x)

is a special atomic decomposition of
∣∣ d

dx

∣∣ 1
2
∣∣∣ d

dy

∣∣∣ 1
2

f , which is therefore in the Hardy space H1 of
the bi-disk. A similar result holds for other entropies, implying a fractional derivative in the Hardy
space.
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7 Database analysis

The iterative procedure for recovering the coupled geometry of a data matrix, to-
gether with the approximation theorem, suggest a family of data analysis schemes.
The general recipe is as follows.

Algorithm 2. Given a data matrix M,

1. Compute an initial affinity W0 on the columns of M.
2. Apply an iteration of Algorithm 1 and obtain partition trees Trows and Tcols on

the rows and columns of M, respectively.
3. Construct induced Haar-like bases Ψrows and Ψcols and the tensor Haar-like basis

Ψ = {ψi}N
i=1 .

4. Compute the `1 entropy e1 (M,Ψ) = ∑
N
i=1 |〈M,ψi〉|

5. Repeat steps 2-4 until e1 (M,Ψ) converges.
6. Transform2 M into the tensor Haar-like basis Ψ to obtain the coefficient matrix

M̃.
7. Process M in the coefficient domain M̃ (see below) and transform back.

This data driven geometric “self-organization” allows to analyze any data matrix
according to its intrinsic row or column structure. While this presentation focuses
on data matrices, there is nothing special about order-2 tensors: this approach gen-
eralizes to data tensors of order d.

The specialization of this general procedure depends on the data analysis task at
hand. Each application calls for a detailed treatment. This is beyond the scope of
this introduction.

1. Compression: to compress M, store both partition trees Trows and Tcols, and
only coefficients of tensor Haar-like functions with R(ψi) > const · ε2, where ε

is the desired error.
2. Denoising: sort coefficients {〈M,ψi〉}N

i=1 according to R(ψi) and apply thresh-
olding.

3. Matrix completion and missing value imputation: If we are given the trees
Trows and Tcols from an external source or prior knowledge, or if the number
of missing values in M allows reliable construction of Trows and Tcols, we can
estimate the coefficients 〈M,ψi〉 using available entries. Using a tensor Haar-like
basis has the distinct advantage that we need only care about averages of the
available points on large sets, leading to small estimator variance. See [12] for a
detailed analysis in the case d = 1.

4. Anomaly detection: the residual matrix

∑
16i6N with |R(ψi)|6ε

〈M,ψi〉ψi

2 Note that a fast algorithm for computing the coefficients 〈M,ψi〉, or equivalently, transforming
M into M̃ exists. We do not pursue this here.
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contains the deviations from the average matrix. This yields a method for detect-
ing anomalous observations, as they are different from the “average matrix” in
their respective folders.

7.1 Eliminating Haar artifacts

While Haar-like bases are simple to construct and to use in our general setting, their
lack of smoothness introduce artifacts into any computation that is taking place in
the coefficient domain. This phenomenon was studied in [5] in signal processing
setting of classical Haar basis on [0,L]. Indeed, the location of the Haar discontinu-
ities, namely the alignment of the dyadic grid on [0,L], is arbitrary. When denoising
a function f : [0,L]→ R using coefficient shrinkage in a given Haar basis, artifacts
appear along this arbitrarily shifted dyadic grid. Therefore, they suggest to denoise
f using several differently shifted Haar bases, and average the resulting denoised
versions of f in order to eliminate the artifacts.

This observation is ideal for eliminating artifacts in our setting. In the general
data-analysis recipe 2, after completing step 5, namely after stabilizing the coupled
geometry of the data matrix M, we have the affinities Wrows and Wcols on the rows
and columns of M, respectively. Recall that the procedure for integrating an affin-
ity into a partition tree, described in 2.1, is random. In order to reduce the artifacts
caused by processing M in a tensor Haar-like basis, we choose r and construct parti-
tion trees

{
T

(i)
rows

}r

i=1
using Wrows and

{
T

(i)
cols

}r

i=1
using Wcols. Computing induced

Haar-like bases
{

Ψ
(i)

rows

}r

i=1
and

{
Ψ

( j)
cols

}r

j=1
, this yields r2 different tensor Haar-like

bases
{

Ψ (i, j)
}r

i, j=1
by setting Ψ (i, j) =Ψ

(i)
rows

⊗
Ψ

( j)
cols. Each basis is used to produced

a processed version of M (as in the last step of the general recipe 2), and the r2

versions are averaged to produce the final result.
We remark that one can modify this basic construction of a hierarchical scale de-

composition, in order to build wavelets that provide filters restricting the frequency
content of a function to bands of eigenfunctions of the diffusion or Laplace operator
on the graph. See for example the constructions in [9, 10].

7.2 Example: the Science News database

As a concrete example of data analysis using the general recipe 2, we consider
a term-document data matrix. The documents are abstracts of 1047 articles ob-
tained from the Science News journal website, each under one of the following
scientific fields: Anthropology, Astronomy, Social Sciences, Earth Sciences, Biol-
ogy, Mathematics, Medicine, or Physics. This data set was prepared and prepro-
cessed for [17], where additional information can be found, and kindly provided
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by J. Solka. In the preprocessing step, a dictionary of 10,906 words were chosen
as relevant for this body of documents. Of these, the 1,000 words with the highest
correlation to article subject classification where selected. The data matrix is thus
(Mi, j)i=1...1,000; j=1...1024 where the entry Mi, j is the relative frequency of the i-th
word in the j-th document.

Fig. 7 Iterative procedure: `1 entropy over iteration number

The original data matrix makes little sense to the naked eye and is not shown.
When running steps 1-5 in Algorithm 2 we observe decrease and convergence of
the `1 entropy e1 (M,Ψ) = ∑

N
i=1 |〈M,ψi〉| (Fig. 7). In Fig. 8 (left) the data matrix is

shown with rows and columns re-organized using depth-first order of the obtained
trees. Fig. 8 compares the original matrix with an approximation obtained by retain-
ing those 15% of the tensor Haar-like coefficients corresponding to ε = 9.5 · 10−5.
We remark that for this data matrix, as well as for other data matrices with ”intrinsic
organization of the row and column sets”, this approximation is superior to counter-
parts from classical multivariate analysis, such as retaining the 15% largest singular
values in the SVD decomposition of the data matrix). Fig. 9 shows the approxima-
tion quality

∫
X |Aε −A| as function of ε , together with the fraction of coefficients

retained for the approximation and the theoretical bound of Theorem 1. Evidently,
our bound is pessimistic - the approximation obtained is much better.

8 Example: Numerical compression of a potential operator -
continued

Operator compression is the ability to store, apply and compute functions of very
large matrices. As these numerical tasks determine the limit of many scientific com-
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Fig. 8 Science News matrix, rows and columns reordered by trees. Left: Original data matrix.
Right: Approximated matrix using 0.15 of the tensor Haar-like coefficients.

putations and simulations, it is a fundamental problem of numerical analysis. When
the matrix at hand describes particle interaction, such as Columbic interaction in
three-dimensional space, multiscale [14] and wavelet [3] methods have proved ex-
tremely useful. (See [16] for a survey). In §3 we saw that we can organize a potential
matrix even when the geometries involved are unknown and the rows and columns
are given in a random order. We now return to this example and show that, having
organized the matrix, it can be compressed efficiently in the tensor Haar basis. In-
deed, a procedure consisting of recovering the coupled geometry of an operator and
compressing it in the induced tensor Haar basis is a natural extension of the ideas
of [14, 3] to the setting where one is given only the operator describing unknown
interaction on unknown geometries.

We observed that the approximation theorem yields an operator approximation
scheme. Suppose that Mi, j is the matrix of an operator and suppose we can construct
a tree Trows on the rows of M and a tree Tcols on the columns of M such that the `1
entropy of M = ∑

N
i=1 〈M,ψi〉ψi in the induces tensor Haar-like basis Ψ = {ψi}N

i=1,
namely e1 (M) = ∑

N
i=1 |〈M,ψi〉|, is small. (As before, N = #rows ·#cols is the num-

ber of entries in M). Denote by Mε the approximation
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Fig. 9 Science News `1 approximation error, theoretical bound and fraction of coefficients retained
over ε

Mε = ∑

16i6N with |〈 f ,ψi〉|>ε
1
p

and |R(ψi)|>ε

〈M,ψR〉ψR

for M. From the approximation theorem, Theorem 1, we obtain that

1
N ∑

x,y
|M(x,y)−Mε(x,y)|6

√
ε ·
(√

τ (Ψ)+1
)

e1 (M) ,

where

e1 (M) =
N

∑
i=1
|〈M,ψi〉| .

Returning to the potential operator example from §3, we find that this yields an
efficient compression scheme. The tensor Haar-like coefficients matrix is shown in
Fig. 10. Fig. 11 shows the `2→ `2 operator norm of the residual Mε−M for different
values of ε . Fig. 12 shows the `1 norm of the residual and the bound from Theorem
1. It seems that this bound is too pessimistic.

9 Conclusion

Data matrices, for which both the variable/feature/covariate set and the observa-
tion set have an intrinsic organization, are very common. The framework described
here proposes a data-driven geometric approach for data “self-organization” and
nonparametric statistical analysis, which applies to any data set given as a product
structure (of order 2 or higher). The basic assumption underlying this method is the
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(a) (b)

(c) (d)

Fig. 10 (a) ”Scrambled” potential operator matrix from Fig. 2. (b) Absolute value of the corre-
sponding coefficient matrix in a tensor Haar-like basis (color saturation set to 1 for better visibil-
ity). (c) The ”Scrambled” matrix on log10 scale. (d) The Absolute value of coefficient matrix on
log10 scale.

existence of intrinsic row and column structure. This framework relies on several of
observations:

1. A partition tree on a single graph, or data set, leads to Haar-like multiscale anal-
ysis of function on it [12, 13].

2. When the variables set is not arbitrary but rather carries intrinsic structure, it is
useful to consider the coupled structure of the data matrix. Formally, we view
the matrix itself as a function on the product of its row and columns spaces. This
extends naturally to higher order data tensors (§2).

3. The first role of tensor product of Haar-like bases is that the absolute sum of ex-
pansion coefficients quantifies the regularity of the data set in a proposed coupled
geometry (§6).

4. Their second role is for analyzing the data set. By expanding the data matrix in
a “well-adapted” tensor Haar-like basis, we can analyze the data in the coeffi-
cient domain. Tensor product of Haar-like basis offers a compact representation
of data tensors of rank d that is, in some sense, not affected by d. Expansion co-
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Fig. 11 `2→ `2 operator norm of the residual and number of coefficients retained over ε

Fig. 12 `1 norm of the error, theoretical bound and number of coefficients retained over ε

efficients in a tensor Haar-like have a one-dimensional organization that relies on
the support size |R(ψi)|, thus allowing direct use of classical signal processing
ideas for high dimensional data sets (§7).

We remark that the tensor Haar-like basis used here may be replaced by a tensor
product of other constructions, such as scaling functions. In particular, two distinct
bases can be used for the column set and for the row set of a matrix, including any
Laplacian eigenfunctions of the row or columns affinity graph. From this perspec-
tive, the Singular Value Decomposition is a special case of this construction.
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