私が推薦する本
最も基本的で私が好きなものに限っています。
リストを見ればお分りの通り、多くの本は古典的なものです。
絶版になっている本は、小さいフォントで記しています。一刻も早い復刻を願っています。
- General math books, dictionaries, and tables:
- T. Gower (Ed.): The Princeton Companion to Mathematics, Princeton Univ. Press, 2008.
- F. W. J. Olver et al. (Eds.): NIST Handbook of Mathematical Functions, Cambridge Univ. Press, 2010.
- I. S. Gradshteyn & I. M. Ryzhik: Table of Integrals, Series, and Products, 7th Ed. (A. Jeffrey & D. Zwillinger, Eds.), Academic Press, 2007.
- 日本数学会(編): 数学辞典, 第4版, 岩波書店, 2007.
- M. M. Deza & E. Deza: Encyclopedia of Distances, 4th Ed., Springer, 2016.
- J. Havil: Gamma, Princeton Univ. Press, 2003.
- M. Aigner & G. M. Ziegler: Proofs from THE BOOK, 5th Ed., Springer, 2014.
- J. H. Conway & R. K. Guy: The Book of Numbers, Copernicus, 1996.
- M. R. Schroeder: Number Theory in Science and Communication, 5th Ed., Springer, 2009.
- P. J. Nahin: In Pursuit of Zeta-3, Princeton Univ. Press, 2021.
- Books on Career Advice, Publishing, English Grammar, etc.:
- I. Stewart: Letters to a Young Mathematician, Basic Books, 2007.
- P. J. Feibelman: A Ph.D. Is Not Enough! A Guide to Survival in Science, 2nd Ed., Basic Books, 2011.
- F. Rosei & T. Johnston: Survival Skills for Scientists, Imperial College Press, 2006.
- R. M. Reis: Tomorrow's Professor: Preparing for Careers in Science and
Engineering, IEEE Press, 1997.
- S. G. Krantz: A Mathematician's Survival Guide: Graduate School and
Early Career Development, AMS, 2003.
- S. G. Krantz: The Survival of a Mathematician: From Tenure-Track to
Emeritus, AMS, 2008.
- R. A. Day & B. Gastel: How to Write and Publish a Scientific Paper, 7th Ed., Greenwood, 2011.
- N. J. Higham: Handbook of Writing for the Mathematical Sciences,
3rd Ed., SIAM, 2019.
- S. G. Krantz: A Primer of Mathematical Writing, 2nd Ed., AMS, 2017.
- W. Strunk, Jr. & E. B. White: The Elements of Style, 4th Ed.,
Longman, 2000.
- R. A. Day & N. Sakadusky: Scientific English: A Guide for Scientists and Other Professionals, 3rd Ed., Greenwood, 2011.
- 木下是雄: 理科系の作文技術, 中公新書, 1981.
- True Classics (not categorized):
- K. Aki & P. G. Richards: Quantitative Seismology, 2nd Ed., Univ. Sci. Books, 2002.
- E. T. Bell: Men of Mathematics, 1937, Touchstone hardcover edition, 2008.
- M. Born & E. Wolf: Principles of Optics, 7th Ed., Cambridge Univ. Press, 2002.
- E. A. Coddington & N. Levinson: Theory of Ordinary Differential Equations, McGraw-Hill, 1955.
- R. Courant & D. Hilbert: Methods of Mathematical Physics, Vol.I-II, Wiley, 1953/1962.
- H. Dym & H. P. McKean: Fourier Series & Integrals, Academic Press, 1972.
- R. P. Feynman: Lectures on Physics, Vol.I-III, Commemorative Issue, Addison-Wesley, 1989.
- F. R. Gantmacher: The Theory of Matrices, Vol.I-II, AMS Chelsea, 2000.
- F. R. Gantmacher & M. G. Kreĭn: Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, Revised Ed., AMS Chelsea, 2002.
- P. R. Garabedian: Partial Differential Equations, AMS Chelsea, 1986.
- G. H. Hardy: A Course of Pure Mathematics, Centenary Ed. (10th Ed.), Cambridge Univ. Press, 2008.
- G. H. Hardy: Divergent Series, AMS Chelsea, 2nd Ed., 1991.
- G. H. Hardy, J. E. Littlewood, & G. Pólya: Inequalities, 2nd Ed., Cambridge Univ. Press, 1952.
- G. H. Hardy & E. M. Wright: An Introduction to the Theory of Numbers, 6th Ed., Cambridge Univ. Press, 2008.
- H. Helmholtz: On the Sensations of Tone, Dover, 1954.
- H. Helmholtz: Treatise on Physiological Optics, Vol.I-III, Dover Phoenix Ed., 2005.
- (Sir) J. Jeans: Science & Music, Dover, 1968.
- T. Kato: Perturbation Theory for Linear Operators, 2nd Ed., Springer, 1980.
- O. Kellogg: Foundations of Potential Theory, Dover, 1954.
- K. Knopp: Theory and Application of Infinite Series, 2nd English Ed., Blackie & Son, Ltd., 1951 (republished by Dover, 1990).
- C. Lanczos: Applied Analysis, Prentice-Hall, 1956 (republished by Dover, 2010).
- C. Lanczos: Linear Differential Operators, D. Van Nostrand, 1961 (republished by SIAM, 1996, and by Dover, 1997).
- C. Lanczos: Discourse on Fourier Series, Hafner Pub. Co., 1966 (republished by SIAM, 2016).
- N. S. Landkof: Foundations of Modern Potential Theory, Springer, 1972.
- D. Marr: Vision, W. H. Freeman, 1982 (republished by MIT Press, 2010).
- A. W. Marshall, I. Olkin, & B. C. Arnold: Inequalities: Theory of Majorization and Its Applications, 2nd Ed., Springer, 2011.
- P. M. Morse & H. Feshbach: Methods of Theoretical Physics, Part I-II, Feshbach Pubs, 2005 (originally published by McGraw-Hill, 1953).
- G. Pólya: Mathematics and Plausible Reasoning, Vol.I-II, Princeton Univ. Press, 1954.
- J. W. S. (Lord) Rayleigh: The Theory of Sound, Vol.I-II, Dover, 1945.
- W. Rudin: Real & Complex Analysis, 3rd Ed., MacGraw-Hill, 1987.
- V. I. Smirnov: A Course in Higher Mathematics, Vol.I-V, Pergamon Press, 1964-65 (日本語訳:「スミルノフ高等数学教程」は、 共立出版から今でも出版されています).
- I. Stakgold & M. J. Holst: Green's Functions and Boundary Value Problems, 3rd Ed., Wiley, 2011.
- E. M. Stein: Singular Integrals & Differentiability Properties of Functions, Princeton Univ. Press, 1970.
- E. M. Stein & G. L. Weiss: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
- E. C. Titchmarsh: The Theory of Functions, 2nd Ed., Oxford Univ. Press, 1939 (Reprinted 2002).
- G. N. Watson: A Treatise on the Theory of Bessel Functions, 2nd Ed., Cambridge Univ. Press, 1944.
- E. T. Whittaker & G. N. Watson: A Course of Modern Analysis, 4th Ed., Cambridge Univ. Press, 1927.
- K. Yosida: Functional Analysis, 6th Ed., Springer, 1980.
- 吉田洋一: 函数論, 第2版, 岩波書店, 1965.
- A. Zygmund: Trigonometrical Series, 2nd Ed., Chelsea, 1952.
- A. Zygmund: Trigonometric Series, 3rd Ed., Cambridge Univ. Press, 2003.
- Applied Analysis:
- S. G. Mikhlin: Mathematical Physics, An Advanced Course, North-Holland Pub. Co., 1970.
- H. Sagan: Boundary and Eigenvalue Problems in Mathematical Physics, Wiley, 1961 (republished by Dover, 1989).
- F. V. Atkinson: Discrete and Continuous Boundary Problems, Academic Press, 1964.
- J. L. Troutman and M. P. Bautista: Boundary Value Problems of Applied Mathematics, 2nd Ed., Dover, 2017.
- Approximation Theory:
- I. P. Natanson: Constructive Function Theory, Vol.I-III, Frederick Ungar, 1964-65.
- L. N. Trefethen: Approximation Theory and Approximation Practice, SIAM, 2013.
- Bayesian Data Analysis:
- E. T. Jaynes: Probability Theory: The Logic of Science, Cambridge Univ. Press, 2003.
- D. Sivia (with J. Skilling): Data Analysis: A Bayesian Tutorial, 2nd Ed., Oxford Univ. Press, 2006.
- Complex Analysis:
- J. E. Marsden & M. J. Hoffman: Basic Complex Analysis, 3rd Ed., 1998.
- 高橋礼司: 新版 複素解析, 東京大学出版会, 1990.
- Continuous vs Discrete Math:
- F. V. Atkinson: Discrete and Continuous Boundary Problems, Academic Press, 1964.
- 浦川肇: ラプラシアンとネットワーク, 裳華房, 1996.
- Data Compression & Information Theory:
- T. M. Cover & J. A. Thomas: Elements of Information Theory, 2nd Ed., Wiley, 2006.
- K. Sayood: Introduction to Data Compression, 5th Ed., Morgan Kaufmann, 2017.
- Discrete Math/Graph Theory:
- R. B. Bapat: Graphs & Matrices, 2nd Ed., Springer, 2014.
- F. Chung: Spectral Graph Theory, AMS, 1997.
- J. H. van Lint & R. M. Wilson: A Course in Combinatorics, 2nd Ed., Cambridge Univ. Press, 2001.
- D. Cvetković, P. Rowlinson, & S. Simić: An Introduction to the Theory of Graph Spectra, Cambridge Univ. Press, 2010.
- J. Matoušek: Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Algebra, AMS, 2010.
- C. H. Papadimitriou & K. Steiglitz: Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, 1982 (republished by Dover, 1998).
- Fourier/Harmonic Analysis:
- G. B. Folland: Fourier Analysis & Its Applications, Brooks/Cole 1992
(republished by AMS, 2009).
- T. W. Körner: Fourier Analysis, Cambridge Univ. Press, 1988.
- J. S. Walker: Fourier Analysis, Oxford Univ. Press, 1988.
- M. A. Pinsky: Introduction to Fourier Analysis and Wavelets, Brooks/Cole, 2002 (republished by AMS, 2009).
- J. Duoandikoetxea: Fourier Analysis, AMS, 2000.
- J. M. Ash: Studies in Harmonic Analysis, MAA, 1976.
- S. G. Krantz: A Panorama of Harmonic Analysis, MAA, 2000.
- S. G. Krantz: Explorations in Harmonic Analysis, Birkhäuser, 2009.
- Functional Analysis:
- N. Young: An Introduction to Hilbert Space, Cambridge Univ. Press, 1988.
- P. D. Lax: Functional Analysis, Wiley, 2002.
- K. Schmüdgen: Unbounded Self-adjoint Operators on Hilbert Space, Springer, 2012.
- 黒田成俊: 関数解析, 共立出版, 1980.
- 藤田宏・黒田成俊・伊藤清三: 関数解析, 岩波書店, 1991.
- Geometry & Topology:
- R. Ghrist: Elementary Applied Topology, CreateSpace Independent Publishing Platform, 2014.
- H. Edelsbrunner & J. L. Harer: Computational Topology: An Introduction, AMS, 2010.
- F. Morgan: Riemannian Geometry: A Beginner's Guide, 2nd Ed., A K Peters, Ltd., 1998.
- W. M. Boothby: An Introduction to Differentiable Manifolds and Riemannian Geometry, Revised 2nd Ed., Academic Press, 2003.
- 藤岡敦: 具体例から学ぶ多様体, 裳華房, 2017.
- 坪井俊: 多様体入門, 東京大学出版会, 2005.
- 小林昭七: 曲線と曲面の微分幾何, 改訂版, 裳華房, 1997.
- 松本幸夫: 多様体の基礎, 東京大学出版会, 1988.
- Integral Equations:
- R. Kress: Linear Integral Equations, 3rd Ed., Springer, 2014.
- S. G. Mikhlin: Integral Equations, Pergamon Press, 1964.
- J. A. Cochran: The Analysis of Linear Integral Equations, McGraw-Hill, 1972.
- Inverse Problems:
- D. Colton & R. Kress: Inverse Acoustic and EM Scattering Theory, 3rd Ed., Springer, 2013.
- Lie Theory:
- J. Stillwell: Naive Lie Theory, Springer, 2008.
- Linear Algebra:
- C. D. Meyer: Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
- R. A. Horn & C. R. Johnson: Matrix Analysis, Cambridge Univ. Press, 2nd Ed., 2012.
- R. A. Horn & C. R. Johnson: Topics in Matrix Analysis, Cambridge Univ. Press, 1994.
- 佐竹一郎: 線型代数学, 改訂版, 裳華房, 1974.
- J. Matoušek: Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Algebra, AMS, 2010.
- Numerical Analysis (general):
- G. Dahlquist & Å. Björck: Numerical Methods, Prentice-Hall, 1974 (republished by Dover, 2003).
- R. Kress: Numerical Analysis, Springer, 1998.
- E. E. Tyrtyshnikov: A Brief Introduction to Numerical Analysis, Birkhäuser, 1997.
- F. S. Acton: Real Computing Made Real, Dover, 2005.
- Numerical Linear Algebra:
- L. N. Trefethen & D. Bau, III: Numerical Linear Algebra, SIAM, 1997.
- G. H. Golub & C. F. van Loan: Matrix Computations, 4th Ed., Johns Hopkins Univ. Press, 2013.
- D. Skillicorn: Understanding Complex Datasets, Chapman & Hall, 2007.
- R. S. Varga: Geršgorin and His Circles, Springer, 2004.
- Numerical Integration:
- P. J. Davis & P. Rabinowitz: Methods of Numerical Integration, 2nd Ed., Academic Press, 1984 (republished by Dover, 2007).
- Optimal Transport:
- F. Santambrogio: Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling, Birkhäuser, 2015.
- Pattern Recognition/Statistical Machine Learning:
- S. Watanabe: Pattern Recognition: Human & Mechanical, Wiley, 1985.
- T. Hastie, R. Tibshirani, & J. Friedman: Elements of Statistical Learning, 2nd Ed., Springer, 2009.
- T. Hastie, R. Tibshirani, & M. Wainwright: Statistical Learning with Sparsity: The Lasso and Generalizations, CRC Press, 2015.
- PDE (Theory):
- G. B. Folland: Introduction to Partial Differential Equations, 2nd Ed., Princeton Univ. Press, 1995.
- F. John: Partial Differential Equations, 4th Ed, Springer, 1981.
- W. Strauss: Partial Differential Equations: An Introduction, 2nd Ed., Wiley, 2008.
- D. Colton: Partial Differential Equations: An Introduction, Dover, 2004.
- Potential Theory:
- K. L. Chung: Green, Brown, and Probability & Brownian Motion on the Line, World Scientific, 2002.
- W. Strauss: Partial Differential Equations: An Introduction, 2nd Ed., Wiley, 2008.
- D. Colton: Partial Differential Equations: An Introduction, Dover, 2004.
- 二宮信幸: ポテンシャル論, 共立出版, 1969.
- Probability/Stochastic Differential Equations:
- K. L. Chung: Green, Brown, and Probability & Brownian Motion on the Line, 2002.
- P. G. Doyle & L. Snell: Random Walks and Electric Networks, MAA, 1984. Available online via ArXiv.
- M. Kac: Statistical Independence in Probability Analysis and Number Theory, MAA, 1959 (republished by Dover, 2018; 日本語訳:Kac統計的独立性, 数学書房, 2011).
- Real Analysis:
- G. B. Folland: Real Analysis, 2nd Ed., Wiley, 1999.
- E. H. Lieb & M. Loss: Analysis, 2nd Ed., AMS, 2001.
- P. Duren: Invitation to Classical Analysis, AMS, 2012.
- K. T. Smith: Primer of Modern Analysis, Springer, 1983.
- Spectral Geometry:
- P. H. Bérard: Spectral Geometry: Direct and Inverse Problems, Lecture Notes in Mathematics, Springer, 1986.
- S. Rosenberg: The Laplacian on a Riemannian Manifold: An Introduction to Analysis on Manifolds, Cambridge Univ. Press, 1997.
- 浦川肇: ラプラシアンとネットワーク, 裳華房, 1996.
- A. Grigor'yan: Heat Kernel and Analysis on Manifolds, AMS, 2009.
- 高橋陽一郎: 漸近挙動入門—太鼓の形を聴くために, 日本評論社, 2002.
- 浦川肇: スペクトル幾何, 共立出版, 2015.
- Spectral/Eigenvalue Problems:
- E. B. Davies: Spectral Theory and Differential Operators, Cambridge Univ. Press, 1995.
- 池部晃生: 数理物理の固有値問題—離散スペクトル, 産業図書, 1976.
- W. Strauss: Partial Differential Equations: An Introduction, 2nd Ed., Wiley, 2008.
- K. Schmüdgen: Unbounded Self-adjoint Operators on Hilbert Space, Springer, 2012.
- Spectral Methods:
- L. N. Trefethen: Spectral Methods in MATLAB, SIAM, 2000.
- Time Series Analysis:
- D. B. Percival & A. T. Walden: Spectral Analysis for Physical Applications, Cambridge Univ. Press, 1993.
- Wavelets:
- S. Jaffard, Y. Meyer, & R. D. Ryan: Wavelets: Tools for Science & Technology, SIAM, 2001.
- S. Mallat: A Wavelet Tour of Signal Processing, 3rd Ed., Academic Press, 2009.
- Vision Science:
- D. H. Hubel: Eye, Brain, and Vision, 2nd Ed., W. H. Freeman, 1995.
- B. A. Wandell: Foundations of Vision, Sinauer Assoc., 1995.
Please email
me if you have any comments or questions!
Go back to
Naoki's home page