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ABSTRACT

In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis
of signals that can be broken down into multiple components determined by instantaneous amplitudes and
phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of
instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase
components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution
of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with
sufficient accuracy. In this work, we develop a framework for an SST based on a “quilted” short-time Fourier
transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through
the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based
on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows.
We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings,
and describe an algorithm for the automatic selection of optimal windows depending on the region of interest.
Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST
methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate
the potential of our method for the analysis of real bioacoustic signals.

Keywords: synchrosqueezing, instantaneous frequency, short-time Fourier transform, adaptive time-frequency
representations, time-frequency analysis, audio signal processing, chirped windows, reassigned spectrogram

1. INTRODUCTION

In the field of signal processing, one frequently seeks to model a signal with time-varying oscillatory properties as
a sum of distinct amplitude-phase components containing information on instantaneous amplitudes (IAs) and in-
stantaneous frequencies (IFs). In particular, one might characterize a signal f : R→ C using an amplitude-phase

decomposition given by f(t) =
∑M
m=1 fm(t); fm(t) := Am(t)e2πiφm(t), where the {Am} represent instantaneous

amplitudes (IAs), the {φm} represent instantaneous phases (IPs), and the {φ′m} represent instantaneous frequen-
cies (IFs). Then, the problem is to retrieve the IFs φ′m and amplitude-phase components (modes) fm, given that
only f is known.

One may use a time-frequency representation such as the short-time Fourier transform (STFT) or continuous
wavelet transform (CWT) to analyze the signal. However, these transforms provide blurry amplitude and
frequency information, thereby complicating the task of accurately determining each amplitude-phase component.
Hence, often a post-processing method is used to sharpen the blurry signal information. The tool of interest
to us is the synchrosqueezing transform (SST). Originally introduced by Daubechies and Maes1 in the context
of audio signal processing, the SST is a time-frequency representation that provides a sharpened picture of IAs
and IFs and enables the separation and reconstruction of each separate amplitude-phase component for a certain
class of signals.2–4

The SST technique has been applied to problems in many different disciplines, and researchers have further
developed the SST idea to work in an increasingly large collection of signal processing contexts. In 2011,
Daubechies, Lu, and Wu2 gave theoretical proofs of the effectiveness of the CWT-based version of the SST
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and demonstrated its applicability to sets of medical data. The same year, Thakur and Wu3 generalized the
SST to a version based on STFT. Since then, there has been an uptick of research on SST, and the technique
has been successfully adapted to a number of physical problems, including speaker identification from an audio
signal,1 fault diagnosis in planetary gearboxes for wind turbines,5 quantifying the effect of solar radiation on a
paleoclimate change on Earth,6 and extracting heart-rate variability (HRV) from an ECG signal.2

However, researchers continue to develop techniques for cases where the original SST techniques are insuffi-
cient. Often, this insufficiency is due to the resolution constraints of the underlying time-frequency representation
(STFT or CWT). One area of recent work can be categorized under the umbrella of non-stationary Gabor trans-
forms (NSGT),7 where one analyzes the signal using a kernel function with changing time-frequency resolution
over the time-frequency plane. This allows for generalizations of the STFT and CWT that allow the user to
adapt the time-frequency resolution to the signal content. Balazs et al.7 developed the idea of NSGT in a frame
theory context, and Dörfler further generalized this idea to the notion of quilted Gabor frames.8 Her work refers
to the time-frequency plane as a “quilt” with different “patches” corresponding to regions where a signal exhibits
different time-frequency behavior.

In the context of SST, recent developments under the umbrella of NSGT include generalizations of SST where
different windows may be used to adapt to the signal at different times,9 or at different frequencies.10 In a previous
work,11 we further generalized this idea by introducing an SST based on a quilted STFT (QSTFT), where the
window is allowed to change depending on the time-frequency region of interest. More recently, Sheu et al. derived
an algorithm for SST with the automatic selection of optimal windows in different time-frequency regions,12 but
did not provide a method for signal reconstruction in the context of joint time-frequency window variation. In
this work, we provide theoretical results for the effectiveness of the SST-QSTFT in both the continuous and the
discrete context, and we derive a slightly different algorithm for automatic window selection. Furthermore, we
explore the usage of chirped windows in depth and provide a methodology for signal reconstruction when the
selected windows vary in both time and frequency.

We give an outline of this paper as follows. In Sec. 2, we review the relevant background material on the
STFT and the corresponding synchrosqueezing transform. We then introduce the QSTFT and SST-QSTFT in
the continuous setting (Sec. 3) and in the discrete setting (Sec. 4), and we provide theorems that demonstrate
the effectiveness of the SST-QSTFT for accurate IF detection and mode reconstruction. Numerical results and
applications follow in Sec. 5. We conclude with a summary of our results in Sec. 6.

2. BACKGROUND

2.1 Admissible function class

In this analysis, we restrict our study to a class of signals satisfying certain theoretical properties.

Definition 2.1. A signal f is said to be in the weakly modulated IA and IF signal class Bε,d2–4,6 if for some
M ∈ N we can write

f(t) =

M∑
m=1

fm(t); fm(t) := Am(t)e2πiφm(t); (1)

and if there exist ε, d > 0 such that for each m ∈ {1, . . . ,M},

• Am and φ′m are bounded and sufficiently smooth: Am ∈ C1 ∩ L∞, φm ∈ C2, φ′m ∈ L∞, inf
t∈R

Am(t) > 0 and

inf
t∈R

φ′m(t) > 0;

• the IA Am and IF φ′m are slowly-varying : ‖A′m‖∞ ≤ ε and ‖φ′′m‖∞ ≤ ε;

• φ′m is well-separated from the other IFs: φ′m(t)− φ′m−1(t) > d for each t ∈ R, provided that 2 ≤ m ≤M .

The assumptions above are necessary to ensure the accurate isolation of the IFs {φ′m} and reconstruction of the
modes {fm} in the theory that follows.

Remark 2.2. One models real-valued signals by the real part in (1), yielding freal(t) =

M∑
m=1

Am(t) cos(2πφm(t)).



2.2 Fourier transforms

The standard building block for determining the spectral information of a signal is the Fourier transform, which
comes in different forms and can be defined in many different ways. In this paper, we define the continuous

Fourier transform of a continuous-time signal f ∈ L2(R) ∩ L1(R) by f̂(ξ) :=

∫
R
f(x)e−2πixξ dx for each ξ ∈ R.

Also, for the purposes of this paper, we define the semi-discrete Fourier transform of the periodic sequence g by

ĝ(u) :=

L−1∑
`=0

g[`]e−2πiu` for the continuous argument u ∈ R.

Remark 2.3. It is a slight abuse of notation to use the same hat symbol for the continuous Fourier transform f̂
of a continuously-time function f and for the semi-discrete Fourier transform ĝ of a (discrete) periodic sequence
g. However, the separate meaning of these two transforms is clear based on whether the transform input is
continuously or discretely valued. Moreover, in the rest of this paper, we will only consider the Fourier transform
of continuously-time window functions and discrete periodic window sequences as defined in Sec. 2.3, and we will
not use the hat symbol in ambiguous cases where (for instance) a discrete periodic window sequence is explicitly
said to be derived from discretizing a continuous-time window function.

2.3 Short-time Fourier transform (STFT)

In order to analyze the local frequency content at different times of the signal f , we first consider the continuous
short-time Fourier transform of f with respect to a window function g ∈ L2(R) centered at 0, which we define13

by

Vgf(t, ξ) :=

∫
R
f(x)g(x− t)e−2πiξ(x−t) dx.

Here, the effect of the window g is to essentially truncate the signal f around the time of interest t in a smooth
fashion, in order to enable the user to examine the local spectral information of the signal near the time t. If the
window g is compactly supported, then we say g is time-limited. If ĝ is compactly supported, then we say g is
band-limited. Note that a function h is said to be compactly supported if the set supp(h) := {x ∈ R : h(x) 6= 0}
satisfies supp(h) ⊆ [−R,R] for some finite R > 0.

In the context of discrete implementation, we assume that f is sampled at sampling rate fs, denoting ∆t :=
1/fs. Here and in the rest of this paper, we abuse notation slightly by denoting f [`] := f(`∆t), fm[`] := fm(`∆t),
Am[`] := Am(`∆t), A′m[`] := A′m(`∆t), and similarly for φm and all its derivatives.‡ We also further assume that
f is strictly zero outside a compact region having left boundary at index ` = 0, as it is practical to assume for
many real-world applications where we are only interested in a finite-length signal.

We may now define the discrete short-time Fourier transform of f for a discrete, time-limited window function
g sampled at L points, with g[`] := g` for ` = 0, . . . , L− 1, and with hop size H ∈ N, via13

Vgf [n, k] :=

L−1∑
`=0

f [`+ nH]g[`]e−2πik`/L, (2)

for frequency bins k ∈ {0, . . . , L − 1}, and frames n ∈ {0, . . . , N − 1} where N ∈ N is large enough so that
f [`] = 0 for all ` ≥ (L− 1) + (N − 1)H. For signals with many samples, it is often practical to set the hop size
H larger than 1, yielding a subsampling of the STFT. In such a context, an overlap-add formula can provide a
perfect reconstruction of the original signal, provided that the window satisfies a certain formula for the given
hop size14§.

‡In this paper, we adhere to the convention of using square brackets for functions with discrete inputs, and parentheses
for functions with continuous inputs.
§See http://ccrma.stanford.edu/~jos/sasp/Choice_Hop_Size.html for the specific formula, and which windows

satisfy it.
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Figure 1. Top left: Glockenspiel signal f , sampled at fs := 44100 Hz. Top right: Window functions used to analyze
f . Short window (in blue): Blackman window g1 of length 2000 samples. Tall window (in red): Blackman window
g2 of length 500 samples. g1 and g2 are normalized to have unit `1-norm and zero-padded to 2048 and 512 samples
respectively. Bottom left: log2(1 + |Vg1f [n, k]|2), for times 2.7 to 4.1 seconds and frequencies 2000 to 7500 Hz. Bottom
right: log2(1 + |Vg2f [n, k]|2), over the same frequency range. Vg1f and Vg2f are both computed with hop size H = 250
samples. In the STFT plots, the vertical content corresponds to transient events (note onsets) and the horizontal content
corresponds to tonal events (enduring notes). With g1, the frequency resolution is better, while the time resolution is
worse, leading to better visualization of note pitches but worse visualization of note onset times. With g2, the time
resolution is better, leading to sharp onset resolution, but the frequency resolution is worse, leading to obscured pitch
information.

The STFT allows one to visualize the IAs and IFs of the signal f , as well as the presence of transient and
noise content spanning over many frequencies. Due to the Fourier uncertainty principle15, Sec. 7.3, there is a
tradeoff between the time precision and the frequency precision of the STFT. That is, a window g that enables
the STFT to render more precise frequency information will yield less precise time information, and vice-versa.
This point is illustrated using STFTs with respect to two different windows in Figure 1. Thus, the Fourier
uncertainty principle limits the robustness of the STFT, and so various methods have been designed to sharpen
the STFT information and approximately retrieve the IAs and IFs of a signal. In the next subsection, we describe
the STFT-based synchrosqueezing transform, which enables the sharpening of the frequency information derived
from the STFT.

2.4 Synchrosqueezing transform based on STFT (SST-STFT)

2.4.1 Continuous theory

The idea of the continuous STFT-based synchrosqueezing transform3 is to calculate a reassignment frequency
Ξgf for each STFT coefficient with magnitude above a certain tolerance. This reassignment frequency is an
estimate of the actual frequency location of the nearest IF. Then, for each time-frequency point (t, ξ), the
synchrosqueezing transform finds all other frequencies η where the STFT coefficient Vgf(t, η) at this time has
reassignment frequency Ξgf(t, η) = ξ, and approximately sums up all such STFT coefficients to yield the SST-
STFT coefficient Sβg,γf(t, ξ). (We will explain the meaning of “approximately” summing shortly.) The effect
is to “squeeze” the blurred-out STFT visualization in the frequency direction, leading to a better-concentrated
time-frequency representation along the frequency axis. The SST-STFT is defined as follows.

Definition 2.4. The continuous STFT-based synchrosqueezing transform (SST-STFT)3 with tolerance γ ≥ 0



and limiting parameter β > 0 is given by

Sβg,γf(t, ξ) :=

∫
Ag,γf(t)

Vgf(t, η)
1

β
b

(
ξ − Ξgf(t, η)

β

)
dη,

where b ∈ C∞c (R) is a “bump function” satisfying b̂(0) = 1, Ag,γf(t) := {η ∈ R+ : |Vgf(t, η)| > γ}, and

Ξgf(t, η) :=
∂tVgf(t, η)

2πiVgf(t, η)
is the STFT-based reassignment frequency.

Remark 2.5. As β ↘ 0, the term 1
β b
(
ξ−Ξgf(t,η)

β

)
converges in the distributional sense to δ (ξ − Ξgf(t, η)),

where δ denotes the Dirac delta. This is the meaning of the “approximate summation” described earlier.

Remark 2.6. The choice of Ξgf is motivated by the fact that for a constant chirp f(t) := Ae2πict, with
A, c > 0, we have exactly Ξgf(t, η) = c for all (t, η).1,2

Remark 2.7. Here, C∞c (R) denotes the class of functions where derivatives of all orders exist and are continuous
(a property which we call C∞-smoothness) and where each function is compactly supported.

The following theoretical result ensures the accuracy of the SST-STFT:

Theorem 2.8. (Thakur & Wu;3 Oberlin, Meignen & Perrier4) Let ε > 0, ν ∈ (0, 1/2), ε̃ := εν , d > 0. Suppose

that f =

M∑
m=1

fm ∈ Bε,d. Let g ∈ S(R), where S(R) denotes the Schwartz class of C∞-smooth, rapidly-decaying

functions. Assume that g is real-valued and satisfies supp(ĝ) ⊆ [−d/2, d/2]. Then, if ε is sufficiently small:

• (Concentration of STFT around IF curves) |Vgf(t, ξ)| > ε̃ only when there is an m ∈ {1, . . . ,M}
such that (t, ξ) ∈ Zm := {(t, ξ) ∈ R× R+ : |φ′m(t)− ξ| < d/2}.

• (Closeness of reassignment frequency Ξgf to nearby IF) For all m ∈ {1, . . . ,M} and all (t, ξ) ∈ Zm
such that |Vgf(t, ξ)| > ε̃, we have |Ξgf(t, ξ)− φ′m(t)| ≤ ε̃.

• (Accuracy of reconstruction) For each m ∈ {1, . . . ,M} there is a constant Cm > 0 such that for all
t ∈ R, ∣∣∣∣∣∣∣ lim

β→0+

 ∫
{ξ : |ξ−φ′m(t)|<ε̃}

1

g(0)
· Sβg,ε̃f(t, ξ) dξ

− fm(t)

∣∣∣∣∣∣∣ ≤ Cmε̃. (3)

Remark 2.9. The assumption that g is real-valued in Theorem 2.8 is not essential. In Sec. 3.5, we will
state a generalization of Theorem 2.8 (Theorem 3.6), from which the statement of Theorem 2.8 will follow for
complex-valued g, provided that one normalizes by g(0) instead of g(0) in the reconstruction formula given in
(3).

2.4.2 Discrete theory

The discrete theory of the SST-STFT was partially addressed in the work of Thakur and Wu,3 resulting in a
theorem concerning the concentration of the STFT around the IF curves and the closeness of the reassignment
frequency to the nearby IF. The authors additionally showed robustness to noise and accuracy in the setting
of nonuniform sampling. However, the theory prescribes a reassignment frequency formula that may lead to
aliasing, for the following reason. Thakur and Wu, in computing the analogue of ∂tVgf for the discrete case,
passed the derivative ∂t through the integral and computed

∂tVgf(t, ξ) =

∫
R
f(x)(2πiξg(x− t)− g′(x− t))e−2πiξ(x−t) dx,



which enables one to derive an analogous discrete reassignment frequency formula to replace ∂tVgf . However,
if g′ is nonzero at the boundaries of the support of g (i.e., if g′ does not tail off to zero when g tails off to
zero), then an aliased discrete Fourier transform (DFT) will result, since the signal is assumed to be periodic.
Moreover, the explicit form of g′ may not be available. Indeed, one may wish to use a discrete-time window
sequence that is not simply the discretized version of a continuous-time window function, in which case it does
not make sense to talk about the continuous-time derivative g′. Examples of such window sequences include
the minimal-latency windows used by Su and Wu for real-time SST.16 These considerations lead us to suggest a
reassignment frequency formula based on finite differencing of the phase spectrum in Sec. 4.3. We also address
the issue of reconstruction in Sec. 4.7.

3. SST-QSTFT: CONTINUOUS SETTING

Since the STFT and SST-STFT only permit a single window choice, these transforms are limited in their
capability to adapt to signals whose behavior changes depending on the time-frequency region. Due to the
Fourier uncertainty principle, the window cannot have both good time resolution and good frequency resolution.
Moreover, while the SST-STFT is designed to sharpen frequency resolution, it does not improve time resolution,
and the reassignment frequency is generally less accurate for signals with fast-varying instantaneous frequencies.
Hence we consider the notion of adaptive time-frequency transforms defined from a family of window functions,
where different windows are used for time-frequency regions containing different phenomena. We call such a
family a quilted window family, borrowing the notion of a time-frequency “quilt” from Dörfler, who coined the
term in the context of her work on quilted Gabor frames.8 Here, different “patches” of the quilt refer to time-
frequency regions with different signal behavior. We define a modified version of the STFT for the case of a
quilted window family. Next, we define the SST based on this “quilted” STFT. We then define the notion of
an adaptive quilted window family for a signal f of the class Bε,d. Then we state a theorem for the theoretical
accuracy of the reassignment frequency and mode reconstruction for the SST based on quilted STFT, in the case
when an adaptive quilted window family is used. Due to the page limitation, we leave the proof of this theorem
for our future work.

3.1 Continuous quilted window families

Definition 3.1. We define a continuous quilted window family to be a collection {ht,ξ}(t,ξ)∈R×R+ where
for each (t, ξ) ∈ R × R+, ht,ξ ∈ L2(R) is a window function. Hence, we associate a window function to each
time-frequency point.

As a simple example of a continuous quilted window family, we consider first a collection consisting of two
Blackman windows {g1, g2}, where g1 is a wide Blackman window and g2 is a narrow Blackman window. The
wider window enables sharp resolution along the frequency axis, while the narrower window provides sharp
resolution along the time axis. In Figure 1, we showed an example of such a collection, together with the
different magnitude spectra that would be produced when computing the STFT with respect to each window.

Strictly speaking, the collection {g1, g2} by itself does not define a continuous quilted window family, since
we have not yet associated a window to each time-frequency point of R × R+. In general, one should associate
time-frequency points to window functions in an automatic fashion based on the signal content, and we describe
algorithms in Sec. 5.1 for this purpose. Heuristically, one may associate a narrow window to time-frequency
regions containing either transient events resembling delta spikes or onsets of amplitude-phase components,
in order to better resolve the onset times of these events. Similarly, one may associate a wide window to
regions containing amplitude-phase components enduring over a long time period, in order to better resolve the
instantaneous frequency information. Figure 1 demonstrated the capacity of the collection {g1, g2} to sharply
resolve these different categories of signal content for a glockenspiel signal.

The usage of a more general, larger window family consisting of several dilations of a single Gaussian window
to compute SST was explored in depth by Sheu et al.12 The dilation of the Gaussian window corresponds to
varying its effective bandwidth, enabling for sharp representation of a greater variety of time-frequency events.
As another example, we consider a chirped window family of the form {gσ}σ∈S, where

gσ(t) := g(t)e2πiσt2/2



for each σ in a finite set of real numbers S, with g a fixed window function. Here, the parameter σ is called
the chirp parameter or chirp rate. The STFT Vgσ will then sharply concentrate around instantaneous frequency
curve segments that can be closely approximated by φ′(t) ≈ σt+ c for some c ∈ R. Families of chirped windows
provide an alternative to varying the window width. Moreover, by determining which parameter σ∗ ∈ S yields
the STFT Vgσ∗ that best concentrates the signal content in a small region, one may directly infer that the signal
content in that region is better linearized by a component of the form σ∗t+ c than σt+ c for any other σ ∈ S.
Thus, chirped windows allow us an immediate estimate of the signal information that does not follow directly
from a simple window dilation. We will further explore the use of chirped window families in Sec. 5.

Using the definition of continuous quilted window family, one may consider a tiling of the time-frequency
plane where each tile T ⊆ R2 has a window hT associated to it; i.e., ht,ξ = hT for each (t, ξ) ∈ T . Thus, it
is possible to consider an optimization problem where the window hT is chosen to adapt to the signal behavior
in T . Indeed, such adaptivity will become necessary when considering the accuracy of an SST in the quilted
window context, as we discuss in Secs. 3.4 and 3.5.

3.2 Continuous quilted short-time Fourier transform (QSTFT)

Definition 3.2. Suppose {ht,ξ}(t,ξ)∈R×R+ is a continuous quilted window family, and define the function h by
h(x, t, ξ) := ht,ξ(x) for each t, x ∈ R and ξ ∈ R+. Then we define the quilted short-time Fourier transform11 of
the signal f with respect to h by

VQh f(t, ξ) :=

∫
R
f(x)ht,ξ(x− t)e−2πiξ(x−t) dx. (4)

3.3 Continuous QSTFT-based SST (SST-QSTFT)

Definition 3.3. We define the continuous QSTFT-based synchrosqueezing transform11 (continuous SST-
QSTFT) of a signal f , with respect to the function h defining the continuous quilted window family {ht,ξ}(t,ξ)∈R×R+ ,
and with tolerance γ ≥ 0 and limiting parameter β > 0, as follows:

SQ,βh,γ f(t, ξ) :=

∫
AQh,γf(t)

VQh f(t, η)
1

β
b

(
ξ − ΞQh f(t, η)

β

)
dη,

with b as before, AQh,γf(t) := {η ∈ R+ : |VQh f(t, η)| > γ}, and where ΞQh f(t, ξ) :=
∂tVQh f(t, ξ)

2πiVQh f(t, ξ)
is the QSTFT-

based reassignment frequency.

3.4 Adaptive continuous quilted window function families

In order to ensure the accuracy of reassignment frequency and mode reconstruction for the SST-QSTFT, one
must make some assumptions on the quilted window family. In particular, one must assume that the family is
adaptive to the signal in the following manner.

Definition 3.4. Suppose that f ∈ Bε,d. We say that the continuous quilted window family {ht,ξ}(t,ξ)∈R×R+ is

of class WQ
d,ε,f if the following conditions hold:

• Smoothness, non-triviality, and band-limitation: For each (t, ξ) ∈ R × R+ we have ht,ξ ∈ S(R),

ht,ξ(0) 6= 0, and supp
(
ĥt,ξ

)
⊂ [−d/2, d/2].

• Window choice remains constant in the frequency band around an IF value: For each t ∈ R and
m ∈ {1, . . . ,M}, there exists a single window function gt,m such that ht,ξ ≡ gt,m for all ξ in the frequency
band {ξ : |φ′m(t)− ξ| < d/2}.



Figure 2. SST-QSTFT of glockenspiel signal with respect to
{g̃1, g̃2} and with tolerance γ = 0, using Algorithm 2 for auto-
matic adaptive window selection (see Sec. 5.1), with SST ap-
plied only where g̃1 is used, and frequency range between 2000
and 11000 Hz. g̃1 and g̃2 are normalized to have unit `1-norm.
Colors denote the window chosen in each time-frequency re-
gion (blue for g̃1 and red for g̃2). For improved energy con-
centration, instead of reassigning the original QSTFT coef-
ficients, we reassign their squared magnitudes (See Secs. 4.4
and 4.7). We also apply a threshold to the SST-QSTFT, to
give a cleaner visualization in low-energy regions where the
automatic window choice algorithm becomes unreliable. The
hop size is H = 128 samples, and the parameters used for
Algorithm 2 are A∗ = B∗ = 5, α = 0.25, Tshift = Yshift = 3,
Tstep = Ystep = 1, with PT = PY = {−1, 1}.

• Integration bounds: For each p ∈ {0, 1, 2}, there exists Ip ∈ R+ such that

sup
(t,ξ)∈R×R+

∫
R
|u|p |ht,ξ(u)| du ≤ Ip. (5a)

• The window family does not change too quickly over time: Defining h(x; t, ξ) := ht,ξ(x), we have

sup
(t,ξ)∈R×R+

∫
R
|∂th(u; t, ξ)|du ≤ ε and sup

(t,ξ)∈R×R+

∫
R
|u| |∂th(u; t, ξ)| du ≤ J1 for some J1 ∈ R+. (5b)

Moreover, we call WQ
d,ε,f the class of f -adaptive continuous quilted window families.

Remark 3.5. Of course, one does not generally know the information φ′m in advance. Hence, an algorithm
must be prescribed to automatically select the windows in a signal-adaptive manner. We describe algorithms for
this purpose in Sec. 5.1. Figure 2 demonstrates the usage of an automatic adaptive window selection algorithm to
compute the SST-QSTFT, using a collection of Blackman windows {g̃1, g̃2}, where g̃1 is of length 2048 samples
and g̃2 is of length 512 samples. In this figure, transient note actions are well-concentrated, owing to the better
time resolution of g̃2 in transient note regions.

3.5 Theorem

We state a theoretical result analogous to that of Theorem 2.8 for the continuous SST-QSTFT here:

Theorem 3.6. Let ε > 0, ν ∈ (0, 1/2), ε̃ := εν , d > 0. Suppose that f =

M∑
m=1

fm ∈ Bε,d. Assume that

{ht,ξ}(t,ξ)∈R×R+ is of the class WQ
d,ε,f . Then, if ε is sufficiently small we have:

• (Concentration of QSTFT around IF curves) |VQh f(t, ξ)| > ε̃ only when there is an m ∈ {1, . . . ,M}
such that (t, ξ) ∈ Zm := {(t, ξ) ∈ R× R+ : |φ′m(t)− ξ| < d/2}.

• (Closeness of reassignment frequency ΞQh f to nearby IF) For all m ∈ {1, . . . ,M} and all (t, ξ) ∈ Zm
such that |VQh f(t, ξ)| > ε̃, we have |ΞQh f(t, ξ)− φ′m(t)| ≤ ε̃.

• (Accuracy of reconstruction) For each m ∈ {1, . . . ,M} there is a constant Cm > 0 where for any t ∈ R,∣∣∣∣∣∣∣ lim
β→0+

 ∫
{ξ : |ξ−φ′m(t)|<ε̃}

1

ht,ξ(0)
· SQ,βh,ε̃ f(t, ξ) dξ

− fm(t)

∣∣∣∣∣∣∣ ≤ Cmε̃.
We will give a proof of this theorem in future work.



4. SST-QSTFT: DISCRETE SETTING

The discrete theory and implementation of SST-QSTFT differs depending on whether one uses a window that
is band-limited, time-limited, or neither band-limited nor time-limited. While the continuous theory prescribes
the use of a band-limited window, it has nonetheless been proven17 that the SST is still accurate for windows
that are almost band-limited (i.e., having Fourier transform almost zero for all frequencies outside a certain
passband). Moreover, for many signal processing applications, it is more common to use time-limited windows
such as the well-known Hanning, Hamming, Blackman, and Kaiser windows. Indeed, it is generally not practical
to use band-limited windows for real-time applications, since the implementation requires computing the DFT of
the entire signal (which is not available). Still, the usage of band-limited windows may enable sharper frequency
resolution than is possible in the case of time-limited windows, which all exhibit some sort of frequency roll-off.
Moreover, certain windows may be neither band-limited nor time-limited, but are still of practical interest, such
as the Gaussian window. In practice, one truncates such windows and implements them in either the same way
as a band-limited window or as a time-limited window.

For the sake of brevity, we will focus on the most common case of time-limited windows, which enables
extensions to the recently developed real-time SST theory.16,18,19

4.1 Discrete quilted windows

Notation. For L ∈ N, we define ZL := {0, . . . , L − 1}. This notation will help to simplify the following
definitions.

Definition 4.1. We define a discrete quilted window family for a given hop-size H ∈ N, discrete-time signal of
interest f , and maximal window length L ∈ N, to be a tuple {(hn,k, Ln,k)}[n,k]∈ZN×ZL , where for each n ∈ ZN
and k ∈ ZL,

• hn,k is a discrete sequence of length Ln,k ∈ N defining a discrete window function,

• the Ln,k are chosen such that L = max
[n,k]∈ZN×ZL

Ln,k, and

• N ∈ N is large enough so that f [(L− 1) + (N − 1)H] = 0.

Hence, we associate to each time-frequency point [n, k] ∈ ZN × ZL a window function hn,k of length Ln,k.

Remark 4.2. It is well known that windows of different lengths have different time-frequency resolution. On
the other hand, one often extends windows by zeros along their boundary to a length of 2P for P ∈ N (a practice
commonly known as zero-padding) for the purpose of fast computation using the Fast Fourier Transform (FFT).
For our purposes, one should interpret the parameter Ln,k that determines the length of each window in the
discrete quilted window family as the window length after zero-padding.

Remark 4.3. As in the continuous case, we do not generally choose an entirely different window for each
time-frequency point, opting instead to divide the discrete time-frequency plane into tiles T ⊂ ZN × ZL , with
a window hT associated to each T ; that is, where hn,k = hT for each [n, k] ∈ T . The constructions described in
Sec. 5.1 proceed in such a manner.

4.2 Discrete quilted short-time Fourier transform (QSTFT)

Definition 4.4. In analogy with the manner in which we defined the discrete STFT in Eqn. (2), we may now
define the discrete quilted short-time Fourier transform of f with hop size H ∈ N, for a discrete quilted window
family {(hn,k, Ln,k)}[n,k]∈ZN×ZL , via

V Qh f [n, k] :=

Ln,k−1∑
`=0

f [`+ nH]hn,k[`]e−2πik`/Ln,k , (6)

for each frame n ∈ ZN , and each frequency bin k ∈ ZL, where we define the discrete function h by h[`;n, k] :=
hn,k[`] for each n ∈ ZN and `, k ∈ ZL.



4.3 Discrete reassignment frequency formula

In the continuous context, the reassignment frequency for SST-QSTFT requires the computation of the continuous-
time derivative of the QSTFT VQh f(t, ξ). Since one cannot directly compute ∂tVQh f(t, ξ) in the discrete context,

one option is to observe that ∂tVQh f(t, ξ) can be expressed as the QSTFT of f with respect to the window
function (2πiξht,ξ(· − t) − ∂t(ht,ξ)(· − t)). This is the method used by Thakur and Wu for the theory of the
discrete SST-STFT.3 However, as observed in Sec. 2.4.2, ∂t(ht,ξ) may be nonzero at the boundary of the support
of ht,ξ, which violates the periodicity requirement for taking the DFT and may cause aliasing. Alternatively, we
may wish to use hn,k that does not arise from any continuous-time function h, in which case such a quantity
∂t(ht,ξ) is unavailable.

Instead, one may consider for instance a first-order finite difference approximation D∆t to the derivative ∂t.
However, using this approximation together with the continuous reassignment frequency formula will yield an
inaccurate result in general, which we show in the following. First we put forth the following notation.

Notation. Suppose s(·) is a continuous-time signal defined on a set R ⊂ R, and we define the discretized
version of s by s[n] := s(n∆t) for all n ∈ Z ∩ {n : ∃r ∈ R, n = r/∆t}. Then we define the backward-shifted
discrete signal s+ by s+[n] := s((n+ 1)∆t).

The notation above becomes important because in general we may deal with a QSTFT having hopsize H > 1,
and hence more coarsely sampled than the original signal. Now consider the approximation of the continuous
reassignment frequency using the forward difference (V Qh f

+ − V Qh f)/(∆t), for a complex-valued constant chirp
of the form f(t) = Ae2πict, where A, c ∈ R+:

∂tVQh f(nH∆t, k/Ln,k)

2πiVQh f(nH∆t, k/Ln,k)
≈
V Qh f

+[n, k]− V Qh f [n, k]

2πi∆tV Qh f [n, k]

=

∑(Ln,k−1)
`=0 A

(
e2πic(`+nH+1)∆t − e2πic(`+nH)∆t

)
hn,k[`]e−2πik`/Ln,k

2πi∆t
∑(Ln,k−1)
`=0 Ae2πic(`+nH)∆thn,k[`]e−2πik`/Ln,k

=
e2πic∆t − 1

2πi∆t
= c · eπic∆tsinc(πc∆t).

Hence, this forward difference does not isolate the IF c in this simple case. Instead, one may consider using
the alternative continuous reassignment frequency proposed by Oberlin et al.4 where one instead computes the
time derivative of the phase spectrum arg(VQh f(t, ξ)). Then, we see that the forward difference approximation
exactly retrieves the IF c for the complex-valued constant chirp f , provided that c is below the Nyquist frequency
1/(2∆t):

1

2π
∂targ(VQh f(nH∆t, k/Ln,k)) ≈

arg(V Qh f
+[n, k])− arg(V Qh f [n, k])

2π∆t

=
1

2π∆t
arg

(∑(Ln,k−1)
`=0 Ae2πic(`+nH+1)∆thn,k[`]e−2πik`/Ln,k∑(Ln,k−1)
`=0 Ae2πic(`+nH)∆thn,k[`]e−2πik`/Ln,k

)
=

arg(e2πic∆t)

2π∆t
= c.

Therefore, defining the discrete SST-QSTFT reassignment frequency

Ξ̃Qh f [n, k] :=
1

2π∆t
arg

(
V Qh f

+[n, k]

V Qh f [n, k]

)
(7)

for each frame n ∈ ZN and frequency bin k ∈ ZL where V Qh f [n, k] 6= 0, we see that Ξ̃Qh f [n, k] is exact for the
complex-valued constant chirp of frequency c ∈ (0, 1

2∆t ) considered. Moreover, the derivation of the continuous
formula for the reassignment frequency is motivated by the fact that it is exact for a constant chirp.1,2 Hence,
we use the discrete reassignment formula given by (7) in the following definition of the discrete version of SST-
QSTFT.



4.4 Discrete QSTFT-based SST (SST-QSTFT)

Definition 4.5. We define the discrete QSTFT-based synchrosqueezing transform (discrete SST-QSTFT)
of a discrete-time signal f , with respect to the function h defining the discrete quilted window sequences
{hn,`}[n,`]∈ZN×ZL , and with tolerance γ ≥ 0, as follows:

SQh,γf [n, k] :=
∑

`∈AQh,γf [n]

V Qh f [n, `]1BQh,kf [n][`],

for each frame n ∈ ZN and for each reassignment frequency bin k ∈ ZK with K ≥ L, where AQh,γf [n] := {` ∈
ZL : |V Qh f [n, `]| > γ}, BQh,kf [n] := {` ∈ ZL : − 1

2 ≤ K∆tΞ̃Qh f [n, `] − k < 1
2} is the set of QSTFT frequency

bins ` at the frame n where the corresponding reassignment frequency is closer to k than any other reassignment
frequency bin, 1X is the characteristic function on the set X (i.e., 1X(x) = 1 if x ∈ X and 1X(x) = 0 otherwise),

and Ξ̃Qh f as defined in (7) is the discrete QSTFT-based reassignment frequency.

Remark 4.6. Here, we do not use any function b to do an approximate summation, as in the case of the
continuous SST-QSTFT. The use of b in the continuous case is for the sake of the proof of reconstruction, and
in the following we do not provide a direct reconstruction formula from the discrete SST-QSTFT coefficients,
passing back instead to the original QSTFT coefficients. See Sec. 4.7 for more details.

Remark 4.7. Note that the SST-QSTFT may be computed over more frequency bins K than the QSTFT has
(L), enabling the possibility of an even more precise estimation of IF. Indeed, since the discrete reassignment
frequency formula is exact in the case of a constant chirp regardless of whether the IF coincides with a frequency
bin, it follows that the use of K > L may well yield a more precise concentration around the true IF.

Definition 4.8. Alternatively, we may also calculate the discrete QSTFT-based magnitude synchrosqueezing
transform (discrete magnitude SST-QSTFT), where we reassign the magnitude-squared of the QSTFT coeffi-
cients, by

S
|Q|2
h,γ f [n, k] :=

∑
`∈AQh,γf [n]

∣∣∣V Qh f [n, `]
∣∣∣2 1BQh,kf [n][`].

Remark 4.9. Calculating S
|Q|2
h,γ f enables us to preserve the total energy of the QSTFT coefficients, and hence

yields higher energy peaks along IF curves than the original QSTFT. Since the original QSTFT coefficients are
summed together for SQh,γf , their total energy might decrease after summation. Both SST-QSTFT representa-
tions will be more concentrated than QSTFT, due to the squeezing procedure summing together high-energy

coefficients closer to the IF curves, but S
|Q|2
h,γ f will generally contain more energy along the IF curves than SQh,γf .

Remark 4.10. One may set γ > 0 to ensure an accurate reassignment frequency for all reassigned coefficients.
In fact, this is necessary in the continuous case to guarantee reconstruction accuracy, as per Theorem 3.6.
However, as stated in Remark 4.6, we do not perform direct reconstruction from the discrete SST-QSTFT

coefficients. Moreover, we use S
|Q|2
h,γ f in all our numerical experiments (for reasons given in Sec. 4.7), and the

issue of inaccuracy for reassignment frequency only concerns low-energy coefficients that do not contribute much

to S
|Q|2
h,γ f . Hence, we always set γ = 0 in our experiments.

4.5 Adaptive discrete quilted window function families

For the case of discrete quilted window families, we make the following definition of an adaptive family:

Definition 4.11. Suppose that f ∈ Bε,d. We say that the quilted window family {(hn,k, Ln,k)}[n,k]∈ZN×ZL is

of class WQ
d,ε,f if the following conditions hold:



• Fourier-side decay (almost band-limitation): There exists a constant Ch ∈ R+ such that

sup
u∈R\[−d/2,d/2]
[n,k]∈ZN×ZL

∣∣∣ĥn,k(u)
∣∣∣ = Chε, (8)

so that the semi-discrete Fourier transform of hn,k is bounded outside the frequency band [−d/2, d/2].

• Window choice remains constant in the frequency band around an IF value: For all n ∈ ZN
and m ∈ {1, . . . ,M}, there exists a single discrete window function gn,m such that hn,k ≡ gn,m for all
k ∈ {k : |k/(Ln,k∆t)− φ′m[nH]| < d/2}.

Moreover, we call WQ
d,ε,f the class of f -adaptive discrete quilted window families.

4.6 Theorem

Now, we state the following theorem for the discrete SST-QSTFT:

Theorem 4.12. Let ε > 0, ν ∈ (0, 1/2), ε̃ := εν , d > 0. Suppose that f =

M∑
m=1

fm ∈ Bε,d, with φ′m[nH] ≤ 1/(2∆t)

for all m ∈ {1, . . . ,M} and n ∈ ZN . Assume that {(hn,k, Ln,k)}[n,k]∈ZN×ZL is of the class WQ
d,ε,f . Then, if ε is

sufficiently small we have:

• (Concentration of QSTFT around IF curves) |V Qh f [n, k]| > ε̃ only when there is an m ∈ {1, . . . ,M}
such that [n, k] ∈ Zm := {[n, k] ∈ ZN × ZL : |φ′m[nH]− k/(Ln,k∆t)| < d/2}.

• (Closeness of reassignment frequency Ξ̃Qh f to nearby IF) For all m ∈ {1, . . . ,M} and all [n, k] ∈ Zm
such that |V Qh f [n, k]| > ε̃, we have |Ξ̃Qh f [n, k]− φ′m[nH]| ≤ Cε̃, where limε̃→0+ Cε̃ = 0.

The proof of this theorem is left for our future work, due to the page limitation.

4.7 Discrete reconstruction

We do not provide a reconstruction theorem for the discrete case, because the technique of summing over SST-
QSTFT reassignment frequency bins for each frame is not accurate in the case of time-limited windows used
with hop size H > 1. Instead, we refer to the technique of Holighaus et al.,10 who suggested to store the inverse
reassignment map defined by

(Ξ̃Qh f)−1[n, k] := {` ∈ {0, . . . , L− 1} : Ξ̃Qh f [n, `] = k}

for n ∈ ZN and k ∈ ZK . (Ξ̃Qh f)−1[n, k] is the set of all frequencies ` ∈ ZL whose reassignment frequency is k.
Then, rather than doing reconstruction along the narrow SST IF ridges, the reconstruction can be done over the
thicker QSTFT ridges via frame synthesis, using an overlap-add formula14 and the construction of dual windows
using canonical tight frames [7, Sec. 3.3, Theorem 1]. Note that for this type of reconstruction, the condition of
maintaining the same quilted window over all frequencies in a given IF band (for a fixed frame) is essential.

We note that the usual technique for reconstruction using SST is to: (i) analyze the magnitude-squared of
the SST representation for peaks that form continuous ridges; (ii) use an algorithm to extract IF curves following
these ridges;20–22 and then (iii) employ a discrete version of a reconstruction formula such as the one in Theorem
3.6 to reconstruct from the original SST coefficients.2,4 By contrast, the technique above enables us to replace
step (iii) with reconstruction from QSTFT coefficients, and we only need the SST for extracting the IF curves.

Hence, rather than using SQh,γf , it makes more sense to use the generally more strongly concentrated S
|Q|2
h,γ f for

analysis (see Remark 4.9). In the following, we will refer to both SQh,γf and S
|Q|2
h,γ f as SST-QSTFT, and use only

S
|Q|2
h,γ f in our numerical experiments.



5. NUMERICAL IMPLEMENTATION

In the following section, we describe the numerical implementation of SST-QSTFT. We have developed a Python
suite for the adaptive time-frequency transforms described in this work, including SST-QSTFT, available to
researchers upon request.¶

5.1 Automatic adaptive window selection

The question remains how to adapt the window selection to the signal. In 2007, Jaillet & Torrésani introduced
the idea of the time-frequency jigsaw puzzle, where different windows could be adaptively associated to different
regions (representing “jigsaw pieces”) in the time-frequency plane, based on the time-frequency content.23 As
a starting point, we may incorporate only a single iteration of their algorithm in order to choose an optimal
window for each time-frequency region, from a given window collection. Our first algorithm for automatic
adaptive window selection proceeds as follows:

Algorithm 1.

1. Choose windows hw, w = 1, . . . ,W for W ∈ N, and corresponding sampling lattices, the latter determined
by the hop size H (which must be the same for all windows, by Sec. 4.1) and FFT size Lw.

2. For each hw, compute the discrete STFT Vhwf with hop size H and FFT size Lw (chosen in Step 1).

3. Fix parameters A,B ∈ N to decompose the time-frequency plane R2 into “supertiles” �r,s, where

�r,s := [rÃ, (r + 1)Ã)× [sB̃, (s+ 1)B̃), Ã := AH∆t, B̃ := B/(Fmin∆t), and Fmin := minw{Fw}. We note
that A (resp. B) represents the number of points on the coarsest grid along the time (resp. frequency) axis
contained in each supertile.

4. For each �r,s and hw, calculate the total energy Ewr,s :=
∑

(`,k)∈�r,s |V
Q
hwf [`, k]|2.

5. Fix α ∈ (0, 1). Then for each �r,s and hw, calculate the sampled Rényi entropy23,24 Rα,wr,s of the STFT
coefficients whose corresponding lattice points are within �r,s:

Rα,wr,s :=
1

1− α
log

 ∑
(`,k)∈�r,s

((
H

Lw

)1−α |V Qhwf [`, k]|2

Ewr,s

)α
6. To each supertile �r,s, associate the window hw

∗
with the smallest sampled Rényi entropy Rα,w∗r,s . Thus

we adapt to signal content in �r,s.

Remark 5.1. The Rényi entropy can be seen as a generalization of the `2-normalized `1-norm, and can hence
be seen as a time-frequency sparsity measure. Indeed, with α = 0.5, one recovers the `2-normalized `1-norm.
Furthermore, minimization of the `2-normalized `p-norm with p = 2α is equivalent to minimizing the Rényi
entropy.25

The left plot in Figure 3 demonstrates the application of Algorithm 1 to compute the SST-QSTFT of a
noise-contaminated signal f(t) =

∑4
m=1 fm(t)+fnoise(t) containing crossing linear chirp components of the form

fm(t) = cos(2πφm(t)) with φ′m(t) = cm + σmt, where (cm)4
m=1 = (5000, 8000, 12000, 15000) and (σm)4

m=1 =
(2000, 800,−800,−2000), and with zero-mean white noise component fnoise(t) such that f has SNR equal to 4.0
dB. Here, SNR for a generic signal f(t) = y(t) + fnoise(t), where y is noiseless, is defined by2

SNR(f) := 10 log10

(
var (y)

var (fnoise)

)
.

¶Please email Alex Berrian at aberrian@math.ucdavis.edu for a copy of the Python suite.

aberrian@math.ucdavis.edu


Figure 3. Left: SST-QSTFT of the crossing chirps signal f using Algorithm 1. Right: SST-QSTFT of the same signal
using Algorithm 2. In both plots, colors correspond to the window chosen in each supertile for the calculation of the
QSTFT. Blue: h1. Green: h2. Purple: h3. Red: h4. Frequency range is restricted from 4500 Hz to 15500 Hz. The
perturbed supertiles algorithm leads to fewer instances of QSTFT coefficients near IFs from windows of very dissimilar
chirp rate.

To compute the SST-QSTFT, we use the chirped window collection {hw} where hw(t) := h0(t)e2πiσwt2/2. Here
h0 is a Hanning window of width 4000 samples, zero-padded to L = 212 = 4096 samples, and {σw}4w=1 =
{1900, 900,−900,−1900}Hz2. We set H = 250, K = 4L = 16384, γ = 0, α = 0.5, and A = B = 24.

Remark 5.2. We use this particular set of chirp rates {σw} only because it demonstrates that a reasonable
result may be obtained using windows with chirp rates that are close, but not quite equal, to the actual local
chirp rates {σm}. Often, {σw} may be chosen by visual inspection of a single STFT of the signal. However,
in general, the local chirp rates are unknown, and one should have some systematic method of deciding the
collection {σw}. This topic is out of the scope of this paper, and we leave it for our future work.

In Figure 3, we see that supertiles in the neighborhood of the chirps may be assigned a window with chirp
parameter that does not correspond to the slope of the nearby chirp component. This may happen in the case
that the supertile contains very little signal content, in which case sharply-concentrated content may be mistaken
for noise. There is also the possibility that an IF curve does not pass through a supertile at all, but is analyzed
by a window that yields a very blurry representation of the IF, which ends up “leaking” into the supertile. In
both of these cases, Algorithm 1 may fail to pick the window that yields the sparsest signal representation in the
supertile.

We note that Algorithm 1 is essentially equivalent to a simplified version of the algorithm of Sheu et al.,12

but with the Rényi entropy written out explicitly for the discrete setting. Sheu et al. allow for overlapping
supertiles, and update the optimal entropy choice as they move forward in time and frequency. To improve upon
the deficiencies of Algorithm 1, we go with a more general approach based on perturbed supertiles. In Figure 4,
we plot a single supertile �r,s together with eight perturbations of �r,s along the time and frequency directions.
The basic idea of Algorithm 2 is to calculate the Rényi entropy in the original supertile �r,s as well as in several

perturbations �t̃,ỹr,s of �r,s, and then to compute the average R̃α,wr,s of all the calculated entropies, for all windows

(indexed by w). Then, the window that minimizes this averaged entropy R̃α,wr,s is the optimal window for the
supertile �r,s. We give a rigorous description of our algorithm as follows:

Algorithm 2.

1–3. Do Steps 1-3 of Algorithm 1.



Figure 4. All perturbations of the super-
tile �r,s, for Algorithm 2 parameters given
as follows: PT = PY = {−1, 1} (backward
and forward directional perturbation in
both time and frequency), Tshift = Yshift =
2 (two perturbations per direction in both
time and frequency), τ = Tstep · (H∆t),
and W = Ystep/(Fmin∆t) for arbitrary ∆t,

H,Fmin, Tstep, and Ystep. The label �t̃,ỹ
r,s of

each perturbed supertile is shown in the
upper-left corner of that supertile.

4. Fix permutation step sizes Tstep and Ystep, the total amounts of permutations Tshift and Yshift, and the sets
PT and PY of permutation directions satisfying PT , PY ⊆ {−1, 1}, for the time (T ) and frequency (Y ) axes
respectively. We explain these parameters as follows:

– Tstep (resp. Ystep) is given in units of points on the coarsest grid in the time (resp. frequency) direction.
For example, suppose one sets Ystep = 3. Then, since the distance between two points on the coarsest
frequency grid is 1/(Fmin∆t) Hz, one permutes the supertile with a step size of W := 3/(Fmin∆t) Hz.
If one sets Yshift = 2, then the supertile is permuted two separate times in the frequency direction,
each time by W Hz (see Figure 4).

– The possible forms of PT and PY are {−1}, {1}, and {−1, 1}. The first option means that the
permutations of the supertile grid will be in the backward direction. The second option refers to the
forward direction, and the last option refers to permutation in both directions.

5. Define T̃ := {pT · t · Tstep · (H∆t) : pT ∈ PT ; t = 1, . . . , Tshift}, and

Ỹ := {pY · y · Ystep/(Fmin∆t) : pY ∈ PY ; y = 1, . . . , Yshift}. Then:

5a. For each t̃ ∈ T̃ , define �t̃,0r,s := [rÃ+ t̃, (r + 1)Ã+ t̃)× [sB̃, (s+ 1)B̃).

5b. For each ỹ ∈ Ỹ , define �0,ỹ
r,s := [rÃ, (r + 1)Ã)× [sB̃ + ỹ, (s+ 1)B̃ + ỹ).

6. Now, fix the Rényi entropy parameter α ∈ (0, 1] and do the following for each pair (r, s):

6a. For each � ∈ Br,s :=
{
�r,s,�t̃,0r,s,�

0,ỹ
r,s : t̃ ∈ T̃ ; ỹ ∈ Ỹ

}
and hw, calculate the total energy

Ew,�r,s :=
∑

(`,k)∈�

|V Qhwf [`, k]|2.

6b. For each � ∈ Br,s and hw, calculate the sampled Rényi entropy Rα,w,�r,s of the STFT coefficients



1st-order SST-STFT 2nd-order SST-STFT RM SST-QSTFT
6 dB 0 dB -6 dB 6 dB 0 dB -6 dB 6 dB 0 dB -6 dB 6 dB 0 dB -6 dB

φ′1 3.3% 2.6% 1.5% 9.7% 5.4% 2.1% 15.4% 10.8% 4.6% 16.9% 13.0% 6.3%
φ′2 10.5% 7.9% 4.0% 19.8% 13.7% 6.0% 21.8% 16.1% 7.6% 20.6% 15.7% 8.1%
φ′3 10.6% 8.4% 4.4% 20.2% 14.2% 6.5% 22.2% 16.7% 8.2% 21.0% 16.2% 8.9%
φ′4 3.3% 2.6% 1.4% 9.9% 5.3% 2.0% 15.3% 10.6% 4.5% 17.1% 12.8% 6.1%

Table 1. Comparison of percent total energy along IF ridges relative to the total energy between 5 and 15 kHz over all
times, for time-frequency representations 1st-order SST, 2nd-order SST, RM, and SST-QSTFT, and SNRs of 6 dB, 0 dB,
and -6 dB. Specifically, we compute EC(Rq

m(C, f))/EC(ZN ×W) for each time-frequency representation C, where EC(R)
denotes

∑
[n,k]∈R C[n, k] over the given region R, f is the crossing chirps signal, and W denotes bins between 5 and 15

kHz.

whose corresponding lattice points are within �:

Rα,w,�r,s :=
1

1− α
log

 ∑
(`,k)∈�

((
H

Lw

)1−α |V Qhwf [`, k]|2

Ew,�r,s

)α
6c. For each hw, calculate the averaged entropy measure

R̃α,wr,s :=
1

1 +
∣∣∣T̃ ∣∣∣+

∣∣∣Ỹ ∣∣∣
∑

�∈Br,s

Rα,w,�r,s .

7. To each supertile �r,s, associate the window hw
∗

with the smallest averaged entropy R̃α,w∗r,s . Thus we adapt
to signal content in �r,s.

Remark 5.3. Algorithm 2 is significantly different from the overlapping supertiles algorithm of Sheu et al., since
their algorithm only proceeds forward in time and frequency, and does not incorporate an averaging procedure.

Remark 5.4. Algorithm 2 is similar to a method used by Coifman and Donoho in the context of wavelet-based
signal denoising, called “cycle-spinning,” that involved averaging a certain quantity over grid perturbations.26

The intended effect of averaging the entropy over perturbations of the given supertile is to avoid the errors
that result from supertiles containing minimal signal content and from blurred signal representation leaking
into surrounding supertiles. In the right plot of Figure 3, we used Algorithm 2 with α = 0.5, A = B = 24,
Tstep = Ystep = Tshift = Yshift = 4, and PT = PY = {−1, 1}. We see that Algorithm 2 improves the performance
of SST-QSTFT, leading to far fewer blurry patches along the IF curves. This sharper representation results from
the more frequent selection of windows with chirp parameter closest to the nearest IF component’s chirp rate.

Remark 5.5. We note that the selection of the parameters Tstep, Ystep, Tshift, and Yshift for Figure 3 (and
later on for Figures 5 and 6) is somewhat arbitrary. In general, some tuning of these parameters is necessary to
achieve a desired result. We do not address optimal strategies for tuning these parameters in this paper, leaving
this topic for our future work. However, we generally recommend using PT = PY = {−1, 1}, so that the entropy
averaging calculation is not biased either forward or backward in time or frequency.

5.2 Numerical results

5.2.1 Comparison with SST-STFT, second-order SST, and reassignment method

One way to measure the sharpness of a time-frequency representation for a given signal is to calculate the
amount of energy along the ridges of the IF components. Given a signal f =

∑M
m=1 fm ∈ Bε,d and a discrete

time-frequency representation C(f) (for instance, STFT or SST-STFT) operating on f with N frames, K
frequency bins, and hop size H, we define the mth ridge (m = 1, . . . ,M) of bandwidth q bins to be Rqm(C, f) :=



{C(f)[n, k] : − 1
2 − q ≤ K∆tφ′m[nH] − k < 1

2 + q}}; i.e., all the coefficients C(f)[n, k] within q frequency bins
from the closest frequency bin to φ′m[nH].

Using the crossing chirps signal, we compare the ridge concentration performance of SST-QSTFT with SST-
STFT, second-order SST-STFT ,27 and the reassignment method (RM).28,29 The central idea of second-order
SST-STFT is to use an improved, “second-order accurate” reassignment frequency formula that exactly retrieves
the IF in the case of a noiseless single-component signal with IF of the form φ′(t) = σt+c for real-valued constants
σ and c. Second-order SST-STFT requires the side computation of a reassignment time quantity, but still only
reassigns the frequency locations of the STFT coefficients. By contrast, RM uses reassignment times together
with reassignment frequencies to reassign both the time and frequency locations of the STFT coefficients.

In order to compute second-order SST-STFT and RM, we introduce the discrete reassignment time formula

Tgf [n, k] := nH∆t− 1

2π
arg

(
V +
g f [n, k]

Vgf [n, k]

)
, (9)

where V +
g f [n, k] :=

∑L−1
`=0 f [` + nH]g[`]e−2πi`(k/L+∆t) is the STFT of f with normalized frequency shifted

ahead by ∆t. It is easy to show that for a single spike f(t) = A · 1{t=`0∆t}(t) with constant amplitude A >
0 located at t = `0∆t, Tgf [n, k] ≡ `0∆t whenever nH − `0 ∈ ZL. This formula is a discretization of the
continuous reassignment time formula given by τgf(t, ξ) := t − 1

2π∂ξarg (Vgf(t, ξ)).27 For second-order SST-
STFT specifically, we introduce the discrete second-order reassignment frequency formula given by

Ξ̃(2)
g f [n, k] := Ξ̃gf [n, k] +

DtΞ̃gf [n, k]

DtTgf [n, k]
((nH + b0.5Lc)∆t− Tgf [n, k]) , (10)

where DtΞ̃gf [n, k] := 1
2∆t

(
Ξ̃gf

+[n, k]− Ξ̃gf
−[n, k]

)
, DtTgf [n, k] := 1

2∆t (Tgf
+[n, k]− Tgf−[n, k]), and f−[`] :=

f((` − 1)(∆t)) is the forward-shifted discrete signal. This is a discretization of the continuous formulation of
second-order reassignment frequency given in Eqn. (32) in the seminal paper by Oberlin et al.27 on second-order
SST. We use this discretization instead of the alternative formulation proposed by those authors in Eqns. (13)
and (31) of the aforementioned paper, because it allows us to avoid the issues mentioned in Sec. 4.3.

For this experiment, we set q = 1 and calculate the total energy on Rqm(C, f) for all m = 1, 2, 3, 4 and all
representations C given by SST-STFT (which we also call first-order SST-STFT ), second-order SST-STFT,
RM, and SST-QSTFT. For SST-QSTFT we use Algorithm 2 with the parameters used for Figure 3. For all
the transforms, we reassign the magnitude-squared of the STFT or QSTFT coefficients, in order to preserve the
signal energy (see Remark 4.9). For first-order SST-STFT, second-order SST-STFT, and RM, we set the window
g = h0. For all transforms, H = 250, K = 16384, and γ = 0 as before. Table 1 demonstrates that SST-QSTFT
achieves superior ridge concentration as the SNR decreases, especially for the IFs φ′1 and φ′4 with higher absolute
slope. This underlies the point that the usage of chirped windows effectively exposes the presence of chirped
signal content in heavy noise (as shown in Figure 5). By contrast, the second-order accurate reassignment
frequency formula used for second-order SST-STFT is not as effective in detecting the local chirp rates {σm}4m=1

when noise is present. Similarly, the reassignment time used in RM is not enough to compensate for the noise.
However, both second-order SST-STFT and RM improve over first-order SST-STFT, which is known to be
ineffective when |σm| � 0.27

5.2.2 Application to analysis of gibbon calls

In this section, we describe the potential of using SST-QSTFT together with a chirped window family to analyze
audio recordings of animal calls. In particular, we analyze a dataset of recordings of female Bornean gibbon
great calls, recorded at the Stability of Altered Forest Ecosystems site in Sabah, Malaysia.30 One application of
interest is distinguishing the individual gibbons from each other based on features extracted from their calls.

In what follows, we compute the SST-QSTFT of two calls from different gibbons, both with sampling rate fs =
44100 Hz. To analyze these signals, we use the chirped window collection {hw} where hw(t) := h0(t)e2πiσwt2/2,
h0 and H are as before, K = 3L = 12288, and where we select {σw}5w=1 = {50, 100, 200, 400, 600}Hz2 by visual



Figure 5. Time-frequency representations of noiseless (top row) and -6 dB SNR (bottom row) crossing chirps signal.
From left to right: 1st-order SST, 2nd-order SST, RM, and SST-QSTFT. For visualization purposes, we focus on the
time-frequency region between 1.5 and 2.5 seconds and 8.5 and 11.5 kHz. In SST-QSTFT plots, colors correspond to the
window chosen in each supertile for the calculation of the QSTFT. Blue: h1. Green: h2. Purple: h3. Red: h4. The
SST-QSTFT enables the IFs to be more easily visualized under noise, and concentrates the most signal energy along the
IF ridges, as per Table 1. Note: The calculation in Table 1 is done over a larger time-frequency region than the one shown
here.

inspection of a single STFT of the signal. We use Algorithm 2 for window selection, with α = 0.5, A = B = 24,
Tstep = Ystep = 4, Tshift = Yshift = 2, and PT = PY = {−1, 1}.

We plot the QSTFT and SST-QSTFT of both signals in Figure 6. Here, we see that the SST-QSTFT is a
more concentrated time-frequency representation of the signal than the QSTFT. Moreover, we may see also that
the different curvature of the IF curves for the different gibbons is well-represented by the difference in optimal
chirp rates. In future work, we seek to use the QSTFT and SST-QSTFT to extract features from the gibbon
calls that may be combined with a machine learning algorithm to distinguish the gibbons from one another.

6. CONCLUSION

We have developed a synchrosqueezing transform in the context of a quilted Gabor framework, enabling for
improved adaptivity to the signal, and coming closer to the goal of an ideal time-frequency representation. The
SST-QSTFT yields an improved visualization of the IF information of the signal with adaptation to the time-
frequency content, permitting for the precise isolation of diverse time-frequency events. We have furthermore
implemented a new algorithm for automatically and adaptively selecting optimal windows depending on the time-
frequency content. Reconstruction of each component is possible, even in the considered case of time-limited
windows, by passing back to the original QSTFT coefficients. Theoretical results demonstrate the concentration
of the QSTFT around each IF curve and the closeness of the reassignment frequency to each true IF in both
the continuous and discrete frameworks, as well as the accuracy of modes reconstruction in the continuous case.
Our numerical results show the effectiveness of the SST-QSTFT in adapting to the signal to achieve improved
time-frequency concentration.
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Figure 6. Top row: First gibbon. Bottom row: Second gibbon. From left to right: Original signal, QSTFT,
and SST-QSTFT of the respective gibbon call. Here, we restrict the frequency range of the plots between 500 and 1500
Hz, where the fundamental frequency information is captured. Different colors correspond to the window chosen in each
supertile for the calculation of the QSTFT. Blue: h1. Green: h2. Purple: h3. Red: h4. Black: h5.

MATLAB codes‖ for SST.21,31 We used this Python code suite, including the part based on Dmytro Iatsenko’s
codes, to generate the results in this paper.
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